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Abstract

In the Euclidean framework, a (vector valued) function of bounded variation is a func-
tion f ∈ L1(Rn)m whose distributional differential is a matrix valued Radon measure,
meaning that there exist nm Radon measures, (Difj)i=1,...,n,j=1,...,m, satisfying

ˆ
Rn

fj∂xi
gdLn = −

ˆ
Rn

gdDifj for every g ∈ C1
c (Rn),

for every i = 1, . . . , n, and for every j = 1, . . . ,m. An important class of functions of
bounded variation is the one of sets of finite perimeter, i.e. those sets whose characteristic
function f = χE has bounded variation.

Functions of bounded variation have proven to be an essential tool in many situations,
both from the theoretical perspective and from the applied perspective, for instance
in the fields of minimal surfaces, image segmentation, and denoising. This led to the
study of many properties of functions of bounded variation (in particular, of sets of finite
perimeter), such as their fine properties and calculus rules. For example, a fundamental
theorem of De Giorgi characterizes a suitable measure theoretic boundary for sets of finite
perimeter and shows properties similar to those of sets with smooth boundary, whereas
the Vol’pert chain rule describes the distributional differential of φ ◦ f in terms of the
distributional differential of f , for a (vector valued) function of bounded variation f and
a C1 Lipschitz function φ.

Recently, there has been growing interest in the class of RCD(K,N) spaces. RCD(K,N)
spaces are those metric measure spaces whose Sobolev space is a Hilbert space and having,
in a synthetic sense, Ricci curvature bounded from below by K and dimension bounded
from above by N . A metric measure space consists in a triplet (X, d,m) given by a set,
a complete and separable distance and a non-negative Borel measure that is finite on
bounded sets. In this non-smooth framework, it is possible to give a meaning to various
function spaces. The RCD(K,N) condition can be enforced through several (equivalent)
methods, such as requiring the convexity of certain entropy functionals defined on the
space of probability measures or a version of the Bochner inequality, coupled with the
request that the Sobolev space is a Hilbert space. One of the motivations of the interest
in RCD(K,N) spaces is the following: any sequence of Riemannian manifolds with Ricci
curvature bounded from below by K and dimension bounded from above by N , has a
subsequence that converges to an RCD(K,N) space (which, in general, is not a Rieman-
nian manifold). For this reason, RCD(K,N) spaces have been proven to be useful also
when one starts from an investigation in the smooth context of Riemannian manifolds.

The goal of this manuscript is to provide a comprehensive study of (vector valued) func-
tions of bounded variation defined on RCD spaces, describing their distributional differ-
ential and investigating their fine properties and calculus rules. More precisely, this note
begins with a recollection of results already present in the literature, some of which are
proved in a slightly different way in comparison to the original references: the ideas and
techniques used are still the same, but a careful reordering and slight modifications bring
to an improvement of the presentation. Then, the bulk of this note contains a collection
of results obtained by the author together with coauthors, see [32, 33, 46, 45, 44, 42, 43].
Improvements about the organization of the results and their proofs, in comparison to
the original references, are obtained also in this part.
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Chapter 1

Introduction

This manuscript is about functions of bounded variation on RCD spaces. We start this introduction
by recalling the most classical results about functions of bounded variation on Euclidean spaces,
with the goal of generalizing them to the non-smooth framework. Then, we recall the definition
of RCD space along with some properties. Finally, we discuss how the results mentioned at the
beginning of this introduction can be proved in the context of RCD spaces.

1.1 Functions of bounded variation on Euclidean spaces

As stated above, we begin with a recollection of results that are nowadays part of the classical
literature of geometric measure theory, e.g. [18, 77, 76, 79, 91], and are fundamental tools in
various areas of both applied and theoretical analysis.

1.1.1 Definitions

Functions of bounded variation are those functions whose distributional derivatives can be repre-
sented by a Radon measure and arise naturally, for example, taking weak limits of sequences of
smooth functions with uniformly bounded 1-Sobolev norm. Namely, for f ∈ L1(Rn), we say that f
is a function of bounded variation, or f ∈ BV(Rn), if there exist n Radon measures D1f, . . . ,Dnf
satisfying ˆ

Rn

f∂xigdLn = −
ˆ
Rn

gdDif for every g ∈ C1
c (Rn),

for every i = 1, . . . , n. We also have a local version of this definition: f ∈ BVloc(Rn) if for every
open and bounded set B, we can find fB ∈ BV(Rn) such that fB = f on B. This induces a
well-defined notion of distributional differential also for functions belonging to BVloc(Rn).

Finally, applications often require the study of vector valued functions of bounded variation,
i.e. m-tuples of functions of bounded variation. To a map of bounded variation f = (f1, . . . , fm) ∈
BV(Rn)m (or in BVloc(Rn)m) one associates in a natural way the matrix-valued Radon measure
Df := (Difj)i=1,...,n,j=1,...,m, the distributional differential of f . Then, the total variation of a map
f ∈ BVloc(Rn)m is, by definition, the total variation (as a matrix-valued Radon measure, with
respect to the Hilbert–Schmidt norm) of Df and is denoted by |Df |. It is also customary to write
the polar decomposition

Df =
dDf

d|Df |
|Df |,

where dDf
d|Df | is the polar matrix which has (Hilbert–Schmidt) norm equal to 1 |Df |-a.e.

9
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As a particularly relevant example, we have sets of finite perimeter, also known as Caccioppoli
sets, after [54, 55]. A set of finite perimeter is a Borel set E such that χE ∈ BVloc(Rn) with
|DχE |(Rn) < ∞. The total variation of the indicator function of a set of finite perimeter is also
called perimeter and is also denoted by Per(E, · ) := |DχE |. In this case, one denotes the polar
vector as νE , so that DχE = νE |DχE | = νEPer(E, · ). A similar notation is used for sets of locally
finite perimeter, i.e. those Borel sets E satisfying χE ∈ BVloc(Rn). The perimeter measure can be
seen as a generalization of the concept of (n− 1)-dimensional surface area.

Of great importance, and a hint towards the strong link between sets of finite perimeter and
functions of bounded variation in general, we have the coarea formula [78],

|Df | =

ˆ
R
|Dχ{f>t}|dt, (1.1.1)

which holds for any f ∈ BVloc(Rn).

1.1.2 De Giorgi’s Theorem

A deep result establishes that sets of (locally) finite perimeter behave infinitesimally as sets with
regular boundary do. Specifically, as proved in [65], given a set of (locally) finite perimeter E, there
exists an (n− 1)-rectifiable set FE such that the perimeter measure is concentrated on FE, more
precisely

|DχE | = Hn−1 FE

(here and after, H denotes the Hausdorff measure), and satisfying the following blow-up conditions.
For every x0 ∈ FE, the blow-ups ιx0,r(E) converge in measure to the half-space

{z ∈ Rn : z · νE(x0) ≥ 0}

and the blow-ups r−(n−1)(ιx0,r)∗|DχE | weakly converge to

Hn−1 {z ∈ Rn : z · νE(x0) = 0},

as r ↘ 0. Here ιx0,r : Rn → Rn is defined by y 7→ r−1(y−x0) and (ιx0,r)∗|DχE | is the push-forward
of |DχE | through ιx0,r.

1.1.3 Fine properties

Given f ∈ BVloc(Rn)m, one considers its singular set Sf , i.e. the complement of the set of approxi-
mate continuity of f , the latter defined as the set of those x ∈ Rn such that there exists (a unique)
f̄(x) ∈ Rm satisfying

lim
r↘0

−
ˆ
Br(x)

|f − f̄(x)|dLn = 0. (1.1.2)

Here and after, the dashed integral sign denotes the averaged integral. Moreover, there exists a
Hn−1-rectifiable set Jf , the jump set of f , such that Hn−1(Sf \ Jf ) = 0 (this is meaningful, as
|Df | ≪ Hn−1), that is characterized as follows. If νJf : Jf → Rn denotes a Borel choice of the unit

normal to Jf , every point x ∈ Jf is a jump point, i.e. there exist f r(x), f l(x) ∈ Rm, satisfying

lim
r↘0

−
ˆ
B+

r (x,νJf (x))
|f − f r(x)|dLn = lim

r↘0
−
ˆ
B−

r (x,νJf (x))
|f − f l(x)|dLn = 0, (1.1.3)



1.1. FUNCTIONS OF BOUNDED VARIATION ON EUCLIDEAN SPACES 11

where B±
r (x, νJf (x)) := {y ∈ Br(x) : ±(y − x) · νJf (x) ≥ 0}. On Jf , we set

f̄(x) :=
f r(x) + f l(x)

2
.

Recall (1.1.2) and notice that f̄ is a Borel representative of f , called the precise representative.
It is customary to split the total variation into absolutely continuous part and singular part as

|Df | = |Df |a + |Df |s where |Df |a ≪ Ln and |Df |s ⊥ Ln,

and further split the singular part into jump part and Cantor part,

|Df |s = |Df |j + |Df |c where |Df |j = |Df | Jf .

1.1.4 Calculus rules

As soon as one has at disposal the precise representative of a map of bounded variation, it is
possible to investigate various calculus rules. The most powerful is the general chain rule of [12]:
if f ∈ BV(Rn)m and φ ∈ LIP(Rm) with φ(0) = 0, then φ ◦ f ∈ BV(Rm) and it holds

D(φ ◦ f) Jf =
(
φ(f r) − φ(f l)

)
νJf |Df | Jf ,

D(φ ◦ f) (X \ Jf ) =

(
∇φ(f̄) · dDf

d|Df |

)
|Df | (X \ Jf ).

Here, it is part of the claim that for |Df |-a.e. x /∈ Jf , φ is differentiable at f̄(x) in the directions

of the image of dDf
d|Df | . Hence, the term in brackets in the second line is meaningful (this is not due

to Rademacher Theorem, notice indeed that it is possible that the image of f̄ is contained in a
negligible set, see the discussion after (4.3.10)).

Among the consequences of the general chain rule, we find the Vol’pert chain rule (which has
been proved, previously and independently, in [125, 126]), that is the specialization to the case
φ ∈ C1(Rm) ∩ LIP(Rm): in this case, we can even combine the two equations above using the
so-called “Vol’pert averaged superposition” as

D(φ ◦ f) =

(ˆ 1

0
∇φ(tf r + (1 − t)f l) · dDf

d|Df |
dt

)
|Df |.

Finally, if f, g ∈ BV(Rn) ∩ L∞(Rn), it holds that fg ∈ BV(Rn) with

D(fg) = f̄Dg + ḡDf,

which can be seen as a straightforward consequence of the above chain rule applied to φ(t) = t2

(by polarization) or to φ(u, v) = uv (applied to (f, g)).

1.1.5 Subgraphs

The results of this section provide another inspiring link between sets of finite perimeter and
general functions of bounded variation (recall the coarea formula (1.1.1)). Let f ∈ BV(Rn). Then,
as investigated in [107], see also [79], setting

Gf := {(x, t) ∈ Rn × R : t < f(x)},

it turns out that Gf is a set of locally finite perimeter. Furthermore, if we denote π1 : Rn×R → Rn

the map defined by (x, t) 7→ x, the expressions concerning the push-forwards π1∗DiχGf
, π1∗|DiχGf

|,
and π1∗|DχGf

| can be computed in terms of Df (such rules are obviously compatible with the usual
ones, recall e.g. the area formula, in the case in which f is smooth).
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1.1.6 Alberti’s Rank one Theorem

It is not hard to prove that on Jf , dDf
d|Df | = (f r − f l) ⊗ νJf , in particular, dDf

d|Df | is a rank one matrix

|Df | Jf -a.e. Alberti’s Rank one Theorem, conjectured in [14] and proved in [1] (see also [106]),
shows that this behaviour also holds for the Cantor part. In other words, for any f ∈ BV(Rn)m,
dDf
d|Df | is a rank one matrix |Df |s-a.e. Notice that the same claim for the absolutely continuous part

of |Df | is obviously false.
The Rank one Theorem has found application, for example, in the field of partial differential

equations, as in [8, 38] (it has to be said that the Rank one Theorem is not strictly necessary for
[8], see [8, Remark 3.7]), and in the field of relaxation of integral functionals, see [13].

1.2 RCD spaces

We introduce RCD spaces and some of their key properties that will be needed in the rest of
this introduction, with the aim of motivating the fact that, despite being non-smooth spaces,
RCD spaces have a regular enough structure to allow the generalization of the results recalled in
Section 1.1. We do not provide a systematic introduction to this deep subject, as it is not the
focus of the manuscript and also as we are going to use the fine properties of RCD spaces as a
“black box” rather than a comprehensive understanding of the subject. We refer to the surveys
[124, 9, 85], the references therein, and the textbook [123], for an account on this subject.

1.2.1 Definitions

Now we briefly introduce the RCD condition, which stands for Riemannian Curvature-Dimension
condition. In essence, RCD(K,N) spaces are those metric measure spaces whose Ricci curvature is
bounded from below by K and whose dimension is bounded from above by N , in a synthetic sense.
Here and after, a metric measure space is a triplet (X, d,m) where X is a set, d is a complete and
separable distance and m is a (non-negative) Borel measure giving finite mass to bounded sets. On
metric measure spaces one can define the 2-Sobolev space W 1,2(X). For example, the approach of
[21], after [57], is as follows. Given a function g ∈ LIP(X), one defines

lip(g)(x) :=

lim sup
y→x

|g(y) − g(x)|
d(y, x)

if x is not isolated,

0 if x is isolated

and then the Cheeger energy of f ∈ L2(m) is defined by

Ch(f) := inf

{
lim inf

k

ˆ
X

lip(fk)2dm : {fk}k ⊆ L2(m) ∩ LIP(X), fk → f in L2(m)

}
.

Then the 2-Sobolev space W 1,2(X) is defined as

W 1,2(X) :=
{
f ∈ L2(m) : Ch(f) <∞

}
and it is endowed with the ∥ · ∥W 1,2(X) norm,

∥f∥2W 1,2(X) := ∥f∥2L2(m) + Ch(f) for every f ∈W 1,2(X).

It turns out that (W 1,2(X), ∥ · ∥W 1,2(X)) is always a Banach space, but, in general, is not a Hilbert
space. Moreover, to f ∈ W 1,2(X), one associates |∇f | ∈ L2(m), called the minimal asymptotic
relaxed slope, satisfying Ch(f) =

´
X |∇f |2dm.
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By definition, (X, d,m) is an RCD(K,N) space, where K ∈ R and N ∈ [1,∞], if it satisfies
the Curvature-Dimension condition CD(K,N) ([120, 121], [104], a suitable convexity property of
certain entropy functionals in terms of Wasserstein geodesics) and its 2-Sobolev space is a Hilbert
space ([82], [22]). It is possible to give an idea towards the rigorous definition of the RCD condition,
considering an equivalent formulation with respect to the one mentioned above. Namely, a metric
measure space (X, d,m) is an RCD(K,N) space if, in addition to certain technical assumptions (a
bound for the growth of volumes and the so-called Sobolev to Lipschitz property), the associated
2-Sobolev space is a Hilbert space, and moreover the “Bochner inequality”

∆
|∇f |2

2
≥ (∆f)

N
+ ∇f · ∇∆f +K|∇f |2 (1.2.1)

holds in a weak sense for any f ∈ D(∆) such that ∆f ∈ H1,2(X).
Let us motivate this definition involving the weak Bochner inequality. For an n-dimensional

Riemannian manifold (M, g), the well known Bochner equality states that, for a C3 function f ,

∆
|∇f |2

2
= ∇∆f · ∇f + |Hessf |2HS + Ric(∇f,∇f). (1.2.2)

If the Ricci curvature is bounded from below by K, in the sense that Ric ≥ Kg, and N ≥ n, we can
use the bound from below on the Ricci tensor and the inequality N |Hessf |2HS ≥ n|Hessf |2HS ≥ (∆f)2

to prove that (1.2.1) is satisfied in this setting. Conversely, if (1.2.1) above holds for any C3 function
f at any point, then indeed Ric ≥ Kg and N ≥ n. This is seen by plugging into (1.2.1) suitable
chosen test functions, namely, for every p ∈ M , v ∈ TpM , and λ > 0, it is possible to choose
a C3 function f = fp,v,λ satisfying ∇f(p) = v and ∇2f(p) = λId, see [123, Proof of Theorem
14.8] for details in a more general situation (i.e. the weighted case). Thus, we have seen that the
inequality (1.2.1) is strong enough to entail bounds on the Ricci tensor and on the dimension, but,
with respect to (1.2.2), the term |Hessf | (which involves second order derivatives and that cannot
be directly understood in the sense of distributions) disappeared.

In this Introduction, we will only consider finite dimensional RCD spaces, i.e. the case N ∈
[1,∞).

RCD spaces enjoy many interesting properties, for example, the class of RCD spaces (with a
bound on the volume of unit balls) is compact with respect to the pointed-measured-Gromov–
Hausdorff (pmGH) topology (at the end of this section, we give a brief description of such conver-
gence). Moreover, as discussed above, the RCD(K,N) condition is compatible with the smooth
case: the metric measure space (M, dg,Volg) naturally induced by an n-dimensional Riemannian
manifold (M, g) is RCD(K,N) if and only if Ricg ≥ K and n ≤ N . As a consequence, the following
important fact is usually used to motivate the interest in the class of RCD space:

given any sequence of Riemannian manifolds with Ricci curvature uniformly bounded from
below and dimension uniformly bounded from above, there exists a subsequence converging
(in the pmGH topology) to an RCD space.

It is worth mentioning that RCD spaces obtained with such procedure are usually called Ricci-
limits, after [59, 60, 61], and are not, in general, Riemannian manifolds.

1.2.2 Properties

This short section recollects results about the structure theory of finite dimensional RCD spaces,
obtained in several papers [67, 98, 111, 52, 90, 49]. Given an RCD(K,N) space (X, d,m), there
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exists n ∈ N, n ≤ N , such that m = ΘnHn, where Θn is a Borel function. The integer n is called the
essential dimension of the space. Moreover, an RCD space of essential dimension n is n-rectifiable,
in the sense that it can be covered, up to an m-negligible set, by countably many Lipschitz images
of Borel subsets of Rn. A notable property of RCD spaces is that at m-a.e. x ∈ X, the blow-up
of (X, d,m) at x is (Rn, de, cnLn), where the blow-up is the suitable generalization of the tangent
space, and cn is a renormalization constant that depends only on n. Rigorously, a blow-up is the
pmGH limit of the sequence (

X, r−1d,
m

m(Br(x))
, x

)
as r ↘ 0 (later on, we are going to take a different renormalization factor, but this plays no
role). Informally speaking, a sequence of pointed RCD(K,N) spaces (Xi, di,mi, xi) converges to a
pointed metric measure space (X∞, d∞,m∞, x∞) in the pmGH topology if there exists a complete
and separable metric space (Z, dZ) such that, for every i ∈ N ∪ {∞}, we can isometrically embed
(Xi, di) in (Z, dZ) and the image measures of mi weakly converge to the image measure of m∞ and
the image points corresponding to xi converge to the image of x∞. It is worth mentioning that,
after [37], rectifiability and characterization of blow-ups are morally equivalent.

1.2.3 Functions of bounded variation on metric measure spaces

In the seminal paper [108] (and in [6, 7]), a definition of function of bounded variation on general
metric measure spaces has been given (see [71] and references therein), inspired by [35] (recall also
the definition of the 2-Sobolev space above, [57]). In particular, this definition suits the context
of RCD spaces, but, nevertheless, in this section we will consider also less regular spaces. More
precisely, given a metric measure space (X, d,m) and f ∈ L1(m), define

|Df |(U) := inf

{
lim inf

k

ˆ
X

lip(fk)dm : {fk}k ⊆ L1(m) ∩ LIP(X), fk → f in L1(m)

}
(1.2.3)

for any U ⊆ X open. Then, f ∈ BV(X) if |Df |(X) < ∞ and, in such case, it is possible to prove
that |Df | is induced by a Radon measure, still denoted by |Df |. As in the Euclidean framework,
one can define the space BVloc(X) and sets of (locally) finite perimeter.

1.2.4 Functions of bounded variation on PI spaces

An intermediate (thanks to [113], [121]) setting between general metric measure spaces and RCD
spaces is given by the one of PI spaces. PI spaces are those metric measure spaces (X, d,m) such
that there exists λ ∈ R and, for every R > 0, there exist CD(R), CR(P ) > 0 satisfying

m(B2r(x)) ≤ CD(R)m(Br(x)) for every x ∈ X, r ∈ (0, R),

and, for every f ∈ LIP(X),

−
ˆ
Br(x)

∣∣f − −́
Br(x)

fdm
∣∣dm ≤ CP (R)r−

ˆ
BλR(x)

lip(f)dm for every x ∈ X, r ∈ (0, R).

BV functions on metric measure spaces start behaving like the ones on Euclidean spaces already
in the PI framework. For example, given a set of (locally) finite perimeter E, it holds that ([6, 7])

|DχE | = ΘEHh ∂∗E,
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where ΘE is a suitable Borel function, Hh is the one-codimensional spherical Hausdorff measure
and is a replacement for Hn−1, and ∂∗E, the essential boundary of E, is the replacement for FE
and is defined as

∂∗E :=

{
x ∈ X : lim sup

r↘0

m(Br(x) ∩ E)

m(Br(x))
> 0 and lim sup

r↘0

m(Br(x) \ E)

m(Br(x))
> 0

}
.

Then, one is tempted to study further fine properties of functions of bounded variation and hence,
for a (scalar valued function) of bounded variation f , one defines f∨, f∧ (which play the role of
f r, f l) using approximate limits:

f∧(x) := ap lim inf
y→x

f(y) := sup

{
t ∈ R̄ : lim

r↘0

m(Br(x) ∩ {f < t})

m(Br(x))
= 0

}
,

f∨(x) := ap lim sup
y→x

f(y) := inf

{
t ∈ R̄ : lim

r↘0

m(Br(x) ∩ {f > t})

m(Br(x))
= 0

}
,

and finally defines f̄ := f∨+f∧

2 . However, it turns out that the usual Leibniz rule does not hold
even if one only looks at total variations: the seemingly natural inequality

|D(fg)| ≤ |f̄ ||Dg| + |ḡ||Df | for f, g ∈ BV(X) ∩ L∞(X)

does not hold in general, see e.g. [102, Example 4.8]. For various reasons, including this one, further
investigation is needed in the more regular setting of RCD spaces.

1.3 Contributions

Now we want to discuss how the results of Section 1.1 can be generalized to the setting of RCD
spaces as in Section 1.2.

1.3.1 Structure of the thesis

We first draw a parallel between the results recalled in Section 1.1 and their generalization contained
in this manuscript.

The first section of this manuscript aims at generalizing the results mentioned in Section 1.1.2.
This manuscript begins by recalling the main results about the study of sets of finite perimeter
on RCD spaces obtained in [10, 51, 50]. At the time when [10, 51] were written, the powerful
result of [70] was still not available. Later on, the result of [70] was used in [50] to sharpen one
of the conclusions of [51]. We can then leverage the findings from [70] right from the beginning
to introduce the results of the articles mentioned above. This not only significantly shortens the
proofs but also makes some of them simpler and better suited for the subsequent development of the
theory. The main ideas and techniques used in this section, even after the modifications described
above, are the ones contained in [10, 51, 50]. As we do not use the remarkable “splitting via rigidity
in the Bakry–Émery inequality in BV” of [10] in this manuscript, we add a brief discussion about
the topic in Section 3.6.

The second section of the manuscript deals with the results of Section 1.1.1, Section 1.1.3, and
Section 1.1.4. In particular, we define the distributional differential of (vector valued) functions of
bounded variation and study some related properties. The material is mostly taken from [42, 43],
but simplifications have been made especially for what concerns the proofs. It is worth noticing
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that in the particular case of sets of finite perimeter, a definition of the distributional differential
has already been proposed in [51]. Here, the result has been improved to hold for vector valued
functions of bounded variation, but the technique is still borrowed from [51]. With respect to the
definition of the distributional differential, a completely different technique can be used, see [44].

The third section deals with the interplay between functions of bounded variations and the sets
of locally finite perimeter represented by their subgraphs, see the results of Section 1.1.5. The
material is taken from [32, 33] and proofs have been rewritten to become more readable.

The fourth section deals with the bulk of the proof of the Rank one Theorem, [32], and is a
generalization of Section 1.1.6. Thanks to the adaptations of some key lemmas about the rectifia-
bility of the reduced boundaries of sets of finite perimeter, the proof contained in this manuscript
is shorter than the original one.

Finally, the fifth section is extracted from [46] and deals with the nonlocal characterization of
the total variation, but it will not be discussed in this introduction.

1.3.2 Contents

Having thus outlined the structure of the manuscript, we pass to a more detailed discussion about
the mathematical content. The statements are not always completely precise, and are sometimes
informal: this is done not to overwhelm this introduction with the necessary technicalities, which,
given the technical nature of this work, would make this introduction unreasonably long. Also,
as most of the results of the first section were already present in the literature, the discussion is
limited to some properties of functions of bounded variation, taken from the second, third, and
fourth sections (we do not discuss here the fifth section). The purpose of this introduction is to
highlight the main challenges faced in obtaining the results presented in this thesis as well as to
give a taste of the techniques of geometric measure theory on non-smooth spaces we used.

For what remains of the introduction, fix an RCD(K,N) space (X, d,m). First, one has to
define the objects that are at the centre of the investigation, namely the distributional differentials
of functions of bounded variation. There are (at least) two equivalent approaches: the polar
decomposition as in [51] and the abstract one as in [44], here we consider the first one. In order to
define this object, one needs the machinery of normed modules on metric measure spaces ([84], [69]).
Without entering into details, a normed module is the suitable generalization of a vector bundle.
For example, the notion of tangent module, read in the smooth (Riemannian) framework, is the
algebraic object whose elements are the sections of the tangent bundle. In the non-smooth world,
elements in normed modules are defined up to equivalence with respect to a suitable outer/Radon
measure; even though the possibility of defining these elements almost everywhere with respect to
total variations is a key point, let us avoid this discussion. To sum up, it is possible to show that
given a function of bounded variation f , we have the “polar decomposition” Df := νf |Df |, where

• νf is an element of the tangent module, defined up to |Df |-a.e. equivalence,

• |Df | is the total variation of f , as defined in (1.2.3).

Generalizing this notion to vector valued functions of bounded variation does not take much effort.
Indeed, if f = (f1, . . . , fm) ∈ BV(X)m, one defines Df := νf |Df |:

• νf is an element of the Cartesian product of m copies of the tangent module, defined up to
|Df |-a.e. equivalence,
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• |Df | is the total variation of f , seen as a vector valued function of bounded variation. We
omit the adaptation of (1.2.3) to the vector valued setting, but it is important to mention
that this definition is compatible with the standard one in the Euclidean context.

As soon as that one has the object Df , the first step is the investigation of its fine properties.
Namely, a generalization of the coarea formula as in Section 1.1.1 ([108]) and rather soft arguments
building upon the theory of sets of finite perimeter, allow us to prove what follows. For a vector
valued function of bounded variation f ∈ BV(X)m, there exists a vector field νJf (“normal to Jf”)
such that, for every i = 1, . . . ,m,

νfi is parallel to νJf on Jf ,

where Jf is a suitable generalization of the jump set of f . Also, we obtain the analogue of (1.1.3).
Moreover, adopting the notation as in Section 1.1.1, we prove that

|Df | Jf = dn|f r − f l|dHh Jf ,

where dn is a constant that depends only on the essential dimension of (X, d,m). The just mentioned
properties will play a role in the derivation of the calculus rules, as they imply that it is morally
enough to establish the calculus properties outside the jump set.

For what concerns the calculus properties, we generalize the results of Section 1.1.4. In the
Euclidean framework, one can follow this scheme:

1. General chain rule: compute D(φ ◦ f), where f ∈ BV(X)m and φ ∈ LIP(Rm),

2. Vol’pert chain rule: compute D(φ ◦ f), where f ∈ BV(X)m and φ ∈ LIP(Rm) ∩ C1(Rm),

3. Leibniz rule: compute D(fg), where f, g ∈ BV(X) ∩ L∞(X),

4. Chain rule: compute D(φ ◦ f), where f ∈ BV(X) and φ ∈ LIP(R) ∩ C1(R).

Indeed, item (1) can be proved by slicing, relying on elementary results about functions of bounded
variation of real variable, [12]. Then item (2) and item (4) follow as particular cases whereas item
(3) follows taking as φ ∈ LIP(R2) a function that coincides with (u, v) 7→ uv on a sufficiently large
neighbourhood of 0 ∈ R2.

In the non-smooth setting the slicing technique used to prove item (1) in the Euclidean frame-
work is not available so we have to resort to other ideas. The technique is then to reverse the
procedure, i.e. starting from item (4) and obtain, as a chain of consequences, items (3), (2), and
finally (1). In particular, item (4) is obtained via a suitable modification of the coarea formula,
carefully exploiting fine properties of functions of bounded variation. Then item (3) is obtained
by polarization, from item (4). Item (2) is then proved in the case in which φ is a polynomial,
iterating item (3), and then is proved by approximation, in the general case. Finally, (1) is obtained
by approximation from (2), exploiting a link between “closability of certain differentiation oper-
ators” and “differentiability of Lipschitz functions in related directions”, [2]. Just to explain the
difficulties encountered in proving the implication from item (2) to item (1), notice the following
fact: it is false, in general, that φ is differentiable at f̄(x) for |Df |-a.e. x, hence a statement of the
kind D(φ ◦ f) = ∇φ(f)Df has to be suitably interpreted.

In order to build the tools for the proof of the Rank one Theorem, we need to study the
relations between functions of bounded variation and the sets of locally finite perimeter given by
their subgraphs. Namely, let f ∈ BV(X), and consider, in the product space,

Gf :=
{

(x, t) ∈ X× R : t < f(x)
}
.
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It is not hard to prove that Gf is a set of locally finite perimeter. Let π : X × R → X be defined
by (x, t) 7→ x. Then we establish the link between the push-forward π∗|DχGf

| and |Df |. Moreover,
we study important relations between νGf

(x, t) and νf (x). As a result, it turns out that the
singular behaviour of f is presented at the projections of the points (x, t) at which the vector νGf

is horizontal. In particular, we have a description of the set Cf , i.e. the set on which the Cantor
part of |Df | is concentrated, as a projection of a suitable set in X× R.

With the tools mentioned above at our disposal, it is possible to prove the Rank one Theorem,
which is the most technical result of the manuscript. The motivation behind the interest in this
theorem is to showcase the possibility of obtaining very refined results in the non-smooth setting
of RCD spaces. The proof of this result builds upon all the theory developed in this thesis and its
bulk aims at showing what follows. Given f ∈ BV(X)m, the polar vector νf has rank one |Df |c-a.e.,
where this means that νf1 , . . . , νfm are parallel |Df |c-a.e. It is not hard to realize that it is enough
to prove this statement in the case m = 2.

The discussion above implies that it is enough to show that νf1 and νf2 are parallel a.e. with
respect to |Df1|c ∧ |Df2|c, where the wedge denotes the minimum of two measures, i.e. the biggest
measure µ satisfying µ ≤ |Df1|c and µ ≤ |Df2|c. Then, one relies on fine properties of functions of
bounded variation to reduce the claim to a statement about the reduced boundaries of subgraphs
of functions of bounded variation. Then, we prove a transversality lemma in the spirit of [106],
exploiting heavily the rectifiability of reduced boundaries of sets of finite perimeter, which ultimately
implies the thesis.



Chapter 2

Preliminaries

The aim of this chapter is to give the preliminary notions that are necessary for the understanding
of the thesis. For most of the results, we will not give a proof but rather some references, and
in some cases, we refer to the references also for the definition of objects involved. Most of the
material contained in Section 2.1 and Section 2.2 (and much more) can be found in [89]. We assume
that the reader has familiarity with the content of [89], nevertheless, we recall below the notions
that we are going to use most frequently.

2.1 Metric measure spaces

Here we deal with metric measure spaces in general, which will be the framework in this manuscript.
Later on, we are going to focus on RCD spaces, as in Section 2.2.

2.1.1 Definitions

In this manuscript, we consider only complete and separable metric spaces. A metric measure
space is a triplet (X, d,m) where X is a set, d is a (complete and separable) distance on X and
m is a non-negative Borel measure that is finite on balls. We adopt the convention that metric
measure spaces have full topological support, that is to say that for any x ∈ X and r > 0, we have
m(Br(x)) > 0. Also, to avoid pathological situations, we assume that metric measure spaces are
not single points.

A pointed metric measure space is a quadruplet (X, d,m, x) where (X, d,m) is a metric measure
space and x ∈ X. We consider two pointed metric measure spaces (X′, d′,m′, x′) and (X′′, d′′,m′′, x′′)
to be isomorphic if there exists an isometry Ψ : X′ → X′′ such that Ψ(x′) = x′′ and Ψ∗m

′ = m′′,
where the notation f∗ν denotes the push-forward of the measure ν through the measurable map f .

We denote the Borel σ-algebra of X by B(X). For B subset of X and A open subset of X, we
write B ⋐ A if B is a bounded subset of A with d(B,X \ A) > 0. Clearly, if the space is proper
(i.e. bounded sets are relatively compact), B ⋐ A if and only if B̄ is a compact subset of A.

Given A ⊆ X open, we denote with LIPloc(A) the space of Borel functions that are Lipschitz
in a neighbourhood of x, for any x ∈ A. If the space is locally compact, LIPloc(A) coincides with
the space of functions that are Lipschitz on compact subsets of A. LIPbs(X) denotes the space
of Lipschitz functions that have bounded support. We adopt the usual notation for the various
Lebesgue spaces and we extend the meaning of the subscripts loc and bs in the natural way to
other function spaces.

19
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2.1.2 Sobolev functions

The Cheeger energy ([57], see also [116, 21, 20]) associated to a metric measure space (X, d,m) is
the convex and lower semicontinuous functional defined on L2(m) as

Ch(f) :=
1

2
inf

{
lim inf

k

ˆ
lip(fk)2 dm : {fk}k ⊆ LIPb(X) ∩ L2(m), fk → f in L2(m)

}
, (2.1.1)

where lip(f) is defined as

lip(f)(x) := lim sup
y→x

|f(y) − f(x)|
d(y, x)

,

which has to be understood to be 0 if x is an isolated point. The finiteness domain of the Cheeger
energy is denoted by H1,2(X) and is endowed with the complete norm ∥f∥2H1,2(X)

:= ∥f∥2L2(m) +

2Ch(f). It is possible to identify a canonical and local object |df | ∈ L2(m), called minimal relaxed
slope, providing the integral representation

Ch(f) =
1

2

ˆ
|df |2 dm for every f ∈ H1,2(X).

We denote with H1,2
loc (X) the space of measurable functions f : X → R such that for every

point x ∈ X, there exist a neighbourhood of x, B = Bx, and a function fB ∈ H1,2(X), such that
f = fB m-a.e. on B, and we define |df | exploiting locality. We define S2(X) as the space of functions
f such that, for every n ∈ N, (f ∧ n) ∨ −n ∈ H1,2

loc (X) and such that |df | (which is well defined by
locality), belongs to L2(m). Sometimes, with a slight abuse, we write |∇f | in place of |df |. In the
setting of infinitesimal Hilbertian spaces, however, it is possible to prove that this is not an abuse
at all.

It is important to mention that most of the usual calculus rules hold also in this context.

2.1.3 Infinitesimal Hilbertianity

Any metric measure space on which Ch is a quadratic form is said to be infinitesimally Hilbertian,
[82]. Under this assumption, (see [82]) it is possible to define a symmetric bilinear form

H1,2(X) ×H1,2(X) ∋ (g, f) → ∇f · ∇g ∈ L1(m)

such that
∇f · ∇f = |df |2 =: |∇f |2 m-a.e. for every f ∈ H1,2(X).

On infinitesimally Hilbertian metric measure spaces it is possible to define a linear Laplacian
operator ∆ : D(∆) ⊆ H1,2(X) → L2(m) in the following way: we let D(∆) to be the set of those
f ∈ H1,2(X) such that, for some h ∈ L2(m), one hasˆ

∇f · ∇g dm = −
ˆ
hg dm for every g ∈ H1,2(X), (2.1.2)

and, if this is the case, we put ∆f = h, which is uniquely determined by the equation above, as
LIPbs(X) ⊆ H1,2(X) is dense in L2(m).

We are going also to use the Laplacian for functions defined on balls, see [25], or [51, Section
1.2.2]. In particular, one fist defines the space H1,2

loc (B), where B is any (open) ball, similarly

to what done at the end of Section 2.1.2. Then, H1,2(B) are those functions f ∈ H1,2
loc (B) with

f, |∇f | ∈ L2(B,m). Then, for f ∈ H1,2(B), one defines ∆f as the unique (if exists) function
h ∈ L2(B,m) satisfying (2.1.2), tested against Lipschitz functions whose support is contained in B.
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2.1.4 Heat flow on infinitesimally Hilbertian spaces

We can define the heat flow ht as the L2 gradient flow of Ch, whose existence and uniqueness follow
from the Komura-Brezis theory. On infinitesimally Hilbertian spaces, we can characterize the heat
flow by requiring that for any u ∈ L2(m), the curve [0,∞) ∋ t 7→ htu ∈ L2(m) is continuous in
[0,∞), locally absolutely continuous in (0,∞) and satisfies{

d
dthtu = ∆htu for every t ∈ (0,∞),

h0u = u,

where we implicitly state that if t > 0, htu ∈ D(∆). It is possible to prove that on infinitesimally
Hilbertian spaces, the heat flow provides a linear, continuous and self-adjoint contraction semigroup
in L2(m), which extends to a linear and continuous contraction semigroup, that we still denote
with ht, in all spaces Lp(m), for p ∈ [1,∞). We define ht on L∞(m) in duality with L1(m), i.e. if
f ∈ L∞(m), ˆ

ghtf dm =

ˆ
fhtg dm for every g ∈ L1(m),

and, with this extension, ht turns out to be a linear and continuous contraction semigroup in all
spaces Lp(m) with p ∈ [1,∞]. Moreover, ∆ and ht, when well defined, commute.

2.1.5 Normed modules

We assume that the reader is familiar with the notion of normed module, introduced in [84], inspired
by the theory developed in [127]. To briefly introduce this concept, take a metric measure space
(X, d,m). Let R be either L∞(m) or L0(m) and let M be an algebraic module of the commutative
ring R. A Lp-pointwise norm, for p ∈ {0} ∪ [1,∞), is a map | · | : M → Lp(m) such that

• |v| ≥ 0 m-a.e. for every v ∈ M, and |v| = 0 m-a.e. if and only if v = 0,

• |v + w| ≤ |v| + |w| m-a.e. for every v, w ∈ M

• |fv| = |f ||v| m-a.e. for every f ∈ R and v ∈ M.

One can then consider

• Lp(m)-normed L∞(m)-modules, for p ∈ [1,∞), i.e. the case of a module M over R = L∞(m),
endowed with an Lp(m)-pointwise norm | · | such that ∥v∥M = ∥|v|∥Lp(m) is a complete norm
on M,

• L0(m)-normed L0(m)-modules, i.e. the case of a module M over R = L0(m), endowed with
an L0(m)-pointwise norm | · | inducing a complete distance on M.

It is possible to prove that there exists a unique couple (L2(T ∗X),d) where L2(T ∗X) is a L2-
normed L∞-module (the cotangent module) and d : H1,2(X) → L2(T ∗X) a linear operator (the
differential), such that

i) |df | is equal to the one introduced in Section 2.1.2, for every f ∈ H1,2(X),

ii) L2(T ∗X) is generated (in the sense of modules) by
{

df : f ∈ H1,2(X)
}

.
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We define the tangent module L2(TX) as the dual (in the sense of modules) of L2(T ∗X). We define
L0(T ∗X) as the L0-completion of the cotangent module L2(T ∗X) and also (this definition coincides
with the previous one if p = 2)

Lp(T ∗X) :=
{
v ∈ L0(T ∗X) : |v| ∈ Lp(m)

}
for p ∈ [1,∞].

Similarly, we define L0(TX) as the L0-completion of L2(TX) and

Lp(TX) :=
{
v ∈ L0(TX) : |v| ∈ Lp(m)

}
for p ∈ [1,∞].

We also remark that our definition of the tangent and cotangent modules is, in general, different
from the one given in [53] for p ̸= 2. If the space is infinitesimally Hilbertian, it turns out that
L2(T ∗X) is a Hilbert module so that we can, and will, identify L2(T ∗X) with its dual L2(TX), via
a map that sends df to ∇f (the latter vector field being given by Riesz Theorem).

Definition 2.1.1. Let p ∈ {2,∞}. For v ∈ Lp(TX) we say that v ∈ D(divp) if there exists a
function g ∈ Lp(m) such thatˆ

df(v) dm = −
ˆ
fg dm for every f ∈ H1,2(X) with bounded support, (2.1.3)

and such g, which is uniquely determined, is denoted by div v.

Notice that if v ∈ D(div2)∩D(div∞), then the two objects div v as above coincide, in particular,
div v ∈ L2(m)∩L∞(m). From (2.1.3) it follows that supp (div v) ⊆ supp v and also notice that, if the
space is infinitesimally Hilbertian and p = 2 (then LIPbs(X) ⊆ H1,2(X) is dense, as a consequence
of the result in [20, Section 8.3] or [11]), (2.1.3) readsˆ

∇f · v dm =

ˆ
fg dm for every f ∈ LIPbs(X).

Also, the classical calculus rule holds: if v ∈ D(div∞) and f ∈ LIPb(X), then fv ∈ D(div∞) and

div(fv) = df(v) + fdiv v. (2.1.4)

In the case p = 2, again from the algebra properties of bounded Sobolev functions together with
an easy approximation argument, we have that if v ∈ D(div2) ∩ L∞(TX) and f ∈ S2(X) ∩ L∞(m),
then fv ∈ D(div2) and the calculus rule above holds.

In the case p = 2, we often omit to write the superscript 2 for what concerns the divergence.

2.2 RCD spaces

Now we turn to the particular framework of RCD metric measure spaces.

2.2.1 Definitions

The main setting for our investigation is the one of RCD(K,N) metric measure spaces (for K ∈ R
and N ∈ [1,∞]), that are infinitesimally Hilbertian spaces ([82]) satisfying a lower Ricci curvature
bound and an upper dimension bound (meaningful if N < ∞) in synthetic sense according to
[120, 121], [104]. General references on this topic are [19, 21, 22, 23, 29, 83, 84, 74, 89] and we
assume the reader to be familiar with part of this material. See also [124, 9, 85] and references
therein.

Our focus be mainly on finite dimensional RCD spaces, so that in the sequel when we write
RCD(K,N) we will assume 1 ≤ N <∞.
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2.2.2 Doubling and Poincaré

Recall that RCD(K,N) spaces are locally uniformly doubling ([104, 121]), i.e. for every R > 0 there
exists CD = CD(R) > 0 such that

m(B2r(x)) ≤ CDm(Br(x)) for every x ∈ X and 0 < r < R, (2.2.1)

and support a weak local (1, 1)-Poincaré inequality ([113]), i.e. there exists λ ≥ 1 and for every
R > 0, there exists CP = CP (R) > 0 such that, for every f ∈ LIP(X),

−
ˆ
Br(x)

∣∣f − −́
Br(x)

fdm
∣∣dm ≤ CP r−

ˆ
Bλr(x)

lip(f) dm for every x ∈ X and 0 < r < R. (2.2.2)

By [93, Theorem 5.1], the Poincaré inequality improves to the following form (see also [57] for what
concerns this formulation): there exists λ ≥ 1 and for every R > 0, there exist C ′

P = C ′
P (R) > 0

and Q = Q(R) > 1 such that, for every f ∈ LIP(X),(
−
ˆ
Br(x)

∣∣f − −́
Br(x)

fdm
∣∣ Q
Q−1 dm

)Q−1
Q

≤ C ′
P r−
ˆ
B2λr(x)

lip(f) dm for every x ∈ X and 0 < r < R.

(2.2.3)
Recall that locally uniformly doubling spaces are proper. We call locally uniformly doubling spaces
supporting a weak local (1, 1)-Poincaré inequality PI spaces. We can, and will, assume that R 7→
CD(R), R 7→ CP (R), R 7→ C ′

P (R) are non-decreasing functions.

2.2.3 Test functions and test vector fields

Following [84, 114] (with the additional request of a L∞ bound on the Laplacian), we define the
vector space of test functions on an RCD(K,∞) space as

TestF(X) := {f ∈ LIP(R) ∩ L∞(m) ∩D(∆) : ∆f ∈ H1,2(X) ∩ L∞(m)},

and the vector space of test vector fields as

TestV(X) :=

{
n∑

i=1

fi∇gi : fi ∈ S2(X) ∩ L∞(m), gi ∈ TestF(X)

}
.

To be precise, the original definition of TestV(X) was slightly different. However, when using
test vector fields to define regular subsets of vector fields such as H1,2

H (TX) and H1,2
C (TX) (see

Section 2.2.4), the two definitions produce the same subspaces, as one may readily check inspecting
the proofs of Lemma 2.2.2 and Lemma 2.2.3 below.

It is possible to see that TestF(X) ⊆ H1,2(X) is dense. Also, if f ∈ H1,2(X) ∩ L∞(m), we can
find a sequence {fn}n ⊆ TestF(X) with fn → f in H1,2(X) and ∥fn∥L∞(m) ≤ ∥f∥L∞(m). Using
[89, Theorem 6.1.11] (extracted from [114]), one proves that TestF(X) is an algebra. Clearly, if
f ∈ S2(X) ∩ L∞(m) ⊇ TestF(X) and v ∈ TestV(X), then fv ∈ TestV(X).

2.2.4 Second order calculus

By [84], we know that RCD spaces admit second order calculus. In particular, it has been de-
fined the object of covariant derivative for vector fields in L2(TX), in particular, of Hessian of
functions, denoted by Hessf . These definitions build upon integration by parts and the use of
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test vector fields as in Section 2.2.3. Vector fields admitting a covariant derivative in L2 are said
to belong to W 1,2

C (TX), which is proved to be a normed space, subspace of a tensor product of

the tangent/cotangent module. The closure of TestV(X) in the W 1,2
C (TX) topology is denoted by

H1,2
C (TX). A remarkable fact is that for any f ∈ D(∆), it holds that ∇f ∈ H1,2

C (TX), in other
words, f admits a Hessian in L2 (see [84], but in this direction, also [36, 114, 122]). The spaces
W 1,2

H (TX) and H1,2
H (TX) have been defined in [84]. The former is the space of L2 vector fields with

divergence in L2 and exterior derivative in L2, whereas the latter is the closure of test vector fields
in the topology of W 1,2

H (TX).

For future reference, we record a consequence of the improved Bochner inequality of [94], stated
in [51, (1.22)]. For every f ∈ D(∆) with ∆f = 0,

r2
ˆ
Br(x)

|Hessf |2dm ≤ CK,N inf
m∈R

ˆ
B2r(x)

||∇f |2 −m|dm− r2K

ˆ
B2r(x)

|∇f |2dm. (2.2.4)

We conclude this subsection with a couple of simple lemmas.

Lemma 2.2.1. Let (X, d,m) be an RCD(K,∞) space and let v = (v1, . . . , vm) ∈ H1,2
H (TX)m

with |v| ≤ 1 m-a.e. Then there exists a sequence {vk = (vk1 , . . . , v
k
m)}k ⊆ TestV(X)m such that

|vk| ≤ 1 m-a.e. for every k and vki → vi in H
1,2
H (TX) for every i = 1, . . . ,m.

Proof. By the very definition of H1,2
H (TX), for every i = 1, . . . ,m, we have a sequence {wk

i } ⊆
TestV(X)m with wk

i → vi in H1,2
H (TX). Set then, for ε > 0,

vk,εi :=
1

(1 + ε) ∨
√∑

j |wk
j |2

wk
i

and finally vk,ε := (vk,ε1 , . . . , vk,εm ). It is clear that |vk,ε| ≤ 1 m-a.e. so that, using also a diagonal
argument, it suffices to show that for every i = 1, . . . ,m,

vk,εi → 1

1 + ε
vi in H1,2

H (TX) as k → ∞.

Fix then i = 1, . . . ,m and ε > 0. It is clear that

vk,εi → 1

1 + ε
vi in L2(TX) as k → ∞.

By the calculus rules in Lemma 2.2.2 below, we just have to show that∣∣∣∣∣∣∇ 1

(1 + ε) ∨
√∑

j |wk
j |2

∣∣∣∣∣∣|wk
i | → 0 in L2(m) as k → ∞.

Set now Ak,ε :=
{√∑

j |wk
j |2 > 1 + ε

}
and notice that Ak,ε → ∅ in L0(m) as k → ∞. Using the
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calculus rules, we can estimate∣∣∣∣∣∣∇ 1

(1 + ε) ∨
√∑

j |wk
j |2

∣∣∣∣∣∣|wk
i |

≤ 1

2
χ
Ak,ε

(
1∑

j |wk
j |2

)3/2 ∣∣∣∣∇∑
j

|wk
j |2
∣∣∣∣|wk

i |

≤ χ
Ak,ε

(
1∑

j |wk
j |2

)3/2
∑

j

|wk
j |2
1/2∑

j

|∇wk
j |2
1/2

|wk
i |

≤ χ
Ak,ε

(
1

1 + ε

)2∑
j

|∇wk
j ||wk

i |,

where in the second inequality we used the Cauchy-Schwarz inequality, and then we see that the
last term converges to 0 in L2(m) as k → ∞.

In the previous proof we used the following calculus rules, which are an immediate consequence
of the already known ones proved in [84]. We add also another lemma, again based on [84], which
is not explicitly used in this work but whose proof grants coincidence between the definitions of
H1,2

C (TX) via the usual definition of test vector fields and our definition of test vector field.

Lemma 2.2.2. Let (X, d,m) be an RCD(K,∞) space, X ∈ W 1,2
H (TX) ∩ L∞(TX) and f ∈ S2(X) ∩

L∞(m). Then fX ∈W 1,2
H (TX) and

div(fX) = ∇f · X + fdivX,

d(fX) = ∇f ∧X + fdX.

If moreover X ∈ H1,2
H (TX), then fX ∈ H1,2

H (TX).

Proof. Recall that W 1,2
H (TX) and H1,2

H (TX) are Hilbert spaces. We prove the claim with an ap-
proximation argument. Also, as in the discussion after [84, Definition 3.5.11], if ω ∈ L2(TX), then
ω ∈ D(δ) if and only if ω ∈ D(div) and, if this is the case, δω = −div(ω).

If f ∈ TestF(X), the claim is a consequence of [84, Proposition 3.5.4] (which is stated with a
slightly different definition of TestV(X)) and the calculus rules for the divergence and the following
approximation argument. If {Xn}n ⊆ TestV(X) with Xn → X in W 1,2

H (TX), then fXn ∈ TestV(X)

and fXn → fX in W 1,2
H (TX) (see the next paragraph for more details).

If f ∈ H1,2(X) ∩ L∞(m), take {fn}n ⊆ TestF(X) with ∥fn∥L∞(m) uniformly bounded and
fn → f in H1,2(X). Now we can use the calculus rules for fn ∈ TestF(X) and easily prove, using
also dominated convergence,

div(fnX) = ∇fn · X + fndivX → ∇f · X + fdivX in L2(m)

d(fnX) = ∇fn ∧X + fndX → ∇f ∧X + fdX in L2(Λ2TX).

This shows that fX ∈ W 1,2
H (TX), that the calculus rules hold and finally that fnX → fX in

W 1,2
H (TX), so that if X ∈ H1,2

H (TX), then fX ∈ H1,2
H (TX).

If f ∈ S2(X)∩L∞(m) we fix x̄ ∈ X and we take {φn}n ⊆ LIPbs(X) with φn(x) := ((n−d(x, x̄))∧
1)+. Similar computations to the ones of the previous paragraph with fφn in place of fn show that
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fX ∈W 1,2
H (TX), that the calculus rules hold and finally that (fφn)X → fX in W 1,2

H (TX), so that

if X ∈ H1,2
H (TX), then fX ∈ H1,2

H (TX).

Lemma 2.2.3. Let (X, d,m) be an RCD(K,∞) space, X ∈ W 1,2
C (TX) ∩ L∞(TX) and f ∈ S2(X) ∩

L∞(m). Then fX ∈W 1,2
C (TX) and

∇(fX) = ∇f ⊗X + f∇X.

If moreover X ∈ H1,2
C (TX), then fX ∈ H1,2

C (TX).

Proof. Recall that W 1,2
C (TX) and H1,2

C (TX) are Hilbert spaces. We prove the claim with an ap-
proximation argument.

Assume first f ∈ H1,2(X)∩L∞(m). Then the first part of the statement has been proved in [84,
Proposition 3.4.5]. The second part follows approximating X with a sequence of test vector fields.

If f ∈ S2(X)∩L∞(m) we fix x̄ ∈ X and we take {φn}n ⊆ LIPbs(X) with φn(x) := ((n−d(x, x̄))∧
1)+ and we set fn := fφn. We can use the calculus rule for fn ∈ H1,2(X)∩L∞(m) and easily prove,
using also dominated convergence,

∇(fnX) = ∇fn ⊗X + fn∇X → ∇f ⊗X + f∇X in L2(T⊗2X).

This shows that fX ∈ W 1,2
C (TX), that the calculus rule holds and finally that fnX → fX in

W 1,2
C (TX), so that if X ∈ H1,2

C (TX), then fX ∈ H1,2
C (TX).

2.2.5 Heat flow on RCD spaces

The RCD condition entails good properties at the level of the heat flow semigroup. A first im-
portant feature is the L∞-Lipschitz regularization property : given any function f ∈ L∞(m) in an
RCD(K,∞) space and t ∈ (0, 1], it holds |∇htf | ∈ L∞(m) and

∥|∇htf |∥L∞(m) ≤
∥f∥L∞(m)

eK
√

2t
. (2.2.5)

In particular, htf admits a Lipschitz representative (which we still denote by htf) having Lipschitz

constant at most
∥f∥L∞(m)

eK
√
2t

; this is a consequence of the so-called Sobolev-to-Lipschitz property of

RCD spaces, which states that every Sobolev function f ∈W 1,2(X) satisfying |∇f | ≤ 1 m-a.e. has a
1-Lipschitz representative. Notice also that the maximum principle ensures that for any f ∈ L∞(m)

|htf | ≤ ∥f∥L∞(m) everywhere on X.

Given any µ ∈ P2(X) (i.e. µ is a Borel probability measure on X with finite second moment),
it makes sense to define htµ for any t > 0 as the unique element of P2(X) satisfying the identity

ˆ
fdhtµ =

ˆ
htfdµ for every f ∈ Cb(X), (2.2.6)

where we took the Lipschitz representative of f at the right hand side. Equivalently ([19, 22, 21, 80]),
ht is the EVIK gradient flow of the entropy, and it turns out that the existence of this gradient
flow for any initial datum can be used to characterize RCD(K,∞) spaces among length spaces
with a growth condition on the reference measure. Moreover, the heat flow of measures is K-
contractive with respect to the Wasserstein W2 distance and, for t > 0, maps probability measures
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into probability measures that are absolutely continuous with respect to m (the latter assertion is
an immediate consequence of fact that t 7→ htµ is the gradient flow of the entropy). Then, we can
define the heat kernel (0,+∞) × X× X ∋ (t, x, y) 7→ pt(x, y) as

pt(x, ·) :=
dhtδx
dm

,

where δx stands for the Dirac measure at x.
We now focus on RCD(K,N) spaces (X, d,m) with N < ∞. Recall from Section 2.2.2 that

these spaces (X, d,m) are PI, thus accordingly (t, x, y) 7→ pt(x, y) admits a locally Hölder continuous
representative by [118, 119]. In [97] it has been proved that, for any ε > 0, there exist positive
constants C1 = C1(ε,K,N) > 0 and C2 = C2(ε,K,N) > 0 such that for every t > 0, x, y ∈ X, the
following estimate holds

1

C1m(B√
t(y))

exp

{
−d(x, y)2

(4 − ε)t
− C2t

}
≤ pt(x, y) ≤ C1

m(B√
t(y))

exp

{
−d(x, y)2

(4 + ε)t
+ C2t

}
. (2.2.7)

For any finite Borel measure µ ≥ 0 on X we can define

htµ(x) :=

ˆ
pt(x, y)dµ(y) for every x ∈ X.

Using Fubini’s theorem, one can check that this definition is consistent with the one in (2.2.6) when
µ ∈ P2(X), and that ht(fm) = htf for every f ∈ L1(m) non-negative.

It is worth mentioning that the regularizing properties of the heat flow on (finite dimensional)
RCD spaces have been used to prove the existence of “good” cut-off functions, [111, Lemma 3.1]
and [29, Lemma 6.7].

Lemma 2.2.4. Let (X, d,m) be an RCD(K,N) space. For any 0 < 2r < R and x ∈ X, there exists
η ∈ TestF(X) satisfying

• 0 ≤ η ≤ 1, η = 1 on Br(x), η = 0 on X \B2r(x),

• r2|∆η| + r|∇η| ≤ C, where C = CK,N,R is a constant that depends only on K,N and R.

Heat flow and vector fields

On an RCD(K,∞) space (X, d,m), following [84], one can consider hH,t, the gradient flow relative
to the augmented Hodge energy functional in L2(TX), which is defined as

EH(ω) =

1
2

ˆ
|dω|2 + div(ω)2dm if ω ∈W 1,2

H (TX),

+∞ otherwise.

This means that for every v ∈ L2(TX) the curve t 7→ hH,tv ∈ L2(TX) is the unique curve that is
continuous in [0,∞), locally absolutely continuous in (0,∞) and satisfies{

d
dthH,tv = −∆HhH,t(v) for every t ∈ (0,∞),

hH,0v = v,

where we implicitly state that if t > 0, hH,tv ∈ D(∆H) ⊆ H1,2
C (TX).
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In [84] and [51, Section 1.4] there are proved several properties of the heat flow hH,t, we recall
here some of them. The first is the pointwise estimate for v ∈ L2(TX)

|hH,tv|2 ≤ e−2Ktht(|v|2) m-a.e. for every t ≥ 0.

Then we recall that hH,t is self-adjoint, meaning that for every v, w ∈ L2(TX),ˆ
hH,tv · w dm =

ˆ
v · hH,tw dm for every t ≥ 0.

Also, we recall the commutation, for v ∈ D(div),

div(hH,tv) = ht(div v) m-a.e. for every t ≥ 0,

where we recall hH,tv ∈ D(∆H) ⊆ D(div). Finally we state that if f ∈ H1,2(X), then

hH,t(∇f) = ∇htf for every t ≥ 0.

2.2.6 Convergence of spaces

We assume the reader to be familiar with the notion of pointed-measured-Gromov–Hausdorff topol-
ogy (pmGH for short), see [92] and [120, 88], and we recall that we are assuming that metric
measure spaces have full topological support.

We only need to consider the pmGH topology on a collection X whose elements are pointed
RCD(K,N) spaces with

sup
(X,d,m,x)∈X

m(B1(x)) <∞,

and we give a bit more detail in this specific context. We have the following properties. First, the
pmGH topology on X is metrizable, say by dpmGH. This is due to the fact that elements in X
are PI with uniform parameters as in (2.2.1). Then, X is relatively compact with respect to the
pmGH topology, this is to say that for any sequence of elements of X , there exists a subsequence
converging to a pointed RCD(K,N) space. We add a bit more detail to this statement, as there
is a slight abuse of notation in it. First, by Gromov compactness Theorem and weak compactness
in the space of measures, we have a subsequence converging in the pmGH topology to a metric
measure space. We are committing a slight abuse, as it may very well happen that for this limit
metric measure space, the measure does not have full support. Then, the deep result of stability
of the RCD condition under pmGH convergence implies that the support of the measure is an
RCD(K,N) space. Finally, we have this equivalent characterization of pmGH convergence on X .
A sequence {(Xk, dk mk, xk)}k∈N ⊆ X converges in the pmGH topology to (X∞, d∞,m∞, x∞), or

dpmGH

(
(Xk, dk mk, xk), (X∞, d∞m∞, x∞)

)
→ 0, (2.2.8)

if and only if we have a realization of the convergence as follows: we have a proper metric
space (Z, dZ) together with a sequence of isometric embeddings {ιk}k∈N∪{∞}, where for every k,
ιk(Xk, dk) → (Z, dZ) and it holds that

ιk(xk) → ι∞(x∞) in (Z, dZ),

(ιk)∗mk → (ι∞)∗m∞ in duality with Cbs(Z).
(2.2.9)

We assume familiarity with convergences of function spaces along convergent spaces, as in
[24, 25]. See, for instance, the preliminaries of [10, 51].

Fix a sequence as in (2.2.8), together with a realization (Z, dZ). We remark that the following
results may depend on the choice of the particular realization, i.e. the notions are not intrinsic.

The following is [26, Theorem 3.3], building upon [80, 88].
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Theorem 2.2.5 (Pointwise convergence of heat kernels). For every sequence uk, vk, tk ∈ Xk×Xk×
(0,∞), for k ∈ N ∪ {∞} with ιk(uk) → ι∞(u∞) and ιk(vk) → ι∞(v∞) in (Z, dZ) and tk → t∞ ∈
(0,∞), it holds that

pXk(uk, vk, tk) → pX∞(u∞, v∞, t∞).

Definition 2.2.6. Let fk : Xk → R for k ∈ N and let f∞ : X∞ → R.

• We say that fk locally uniformly converge to f∞ if for every R > 0 and for every ε ∈ (0, 1),
there exist k0 ∈ N and δ ∈ (0, 1) such that for every k ≥ k0, zk ∈ Xk and z∞ ∈ BR(x∞) with
dZ(ιk(zk), ι∞(z∞)) < δ, it holds |fk(zk) − f∞(z∞)| < ε. This convergence is also sometimes
called pointwise convergence.

• We say that {fk}k∈N is locally equi-uniformly continuous if for every R > 0 there exists a
function ωR : (0,+∞) → (0,+∞) with ωR(s) ↘ 0 as s ↘ 0 such that for every k ∈ N, for
every uk, vk ∈ BR(xk), it holds that |fk(uk) − fk(vk)| ≤ ωR(d(uk, vk)).

The previous definitions can be localized to the case of functions defined on balls, as well as the
following following proposition, which is proved as the classical Arzelà–Ascoli Theorem.

Proposition 2.2.7. Let {fk}k∈N be a sequence of locally equi-uniformly continuous functions such
that {fk(xk)}k∈N is bounded. Then there exist a subsequence {nk}k and function f∞ : X∞ → R
such that fnk

locally uniformly converges to f∞. Moreover, if ωR : (0,∞) → (0,∞) for R > 0
are the function as in the definition of locally equi-uniform continuity for {fk}k, then for every
u∞, v∞ ∈ BR(z∞), it holds that |f∞(u∞) − f∞(v∞)| ≤ ωR(d(u∞, v∞)).

Now we deal with Lp or Sobolev convergence.

Definition 2.2.8. Let fk ∈ L2(Xk) for k ∈ N and let f∞ ∈ L2(X∞).

• We say that fk weakly converge in L2 to f∞ if fkmk → f∞m∞ in duality with Cbs(Z) and
supk ∥fk∥L2(mk) <∞.

• We say that fk strongly converge in L2 to f∞ if fk weakly converge in L2 to f∞ and
∥fk∥L2(mk) → ∥f∞∥L2(m∞).

Definition 2.2.9. Let fk ∈ L1(Xk) for k ∈ N and let f∞ ∈ L1(X∞).

• We say that fk strongly converge in L1 to f∞ if σ ◦ fk strongly converge in L2 to σ ◦ f∞,
where σ(t) := sign(t)

√
|t|.

We also recall the following definition.

Definition 2.2.10. Let Ek ⊆ Xk and E∞ ⊆ X∞ be Borel sets, with mk(Ek) <∞ and m(E∞) <∞.

• We say that Ek strongly converge in L1 to E∞ if mk(Ek) → m∞(E) and mk Ek → m∞ E∞
in duality with Cbs(Z).

• We say that Ek strongly converge in L1
loc to E∞ if Ek ∩ BR(xk) → E∞ ∩ BR(x∞) in L1 for

every R > 0.

We have the following properties.

Proposition 2.2.11. Let p = 1, 2, let fk, gk ∈ Lp(Xk) for k ∈ N and let f∞, g∞ ∈ Lp(X∞).
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• If fk → f∞ strongly in Lp, and gk → g∞ strongly in Lp, then fk + gk → f∞ + g∞ strongly in
Lp.

• In the case p = 2, if fk → f∞ strongly in L2, and gk → g∞ strongly in L2, then fkgk → f∞g∞
strongly in L1.

• In the case p = 1, if fk → f∞ strongly in L1 and supk ∥fk∥L∞(mk) < ∞, then fk → f∞
strongly in L2.

For what concerns (local) Sobolev spaces, we have the following definitions.

Definition 2.2.12. Let fk ∈ H1,2(Xk) for k ∈ N and let f∞ ∈ H1,2(X∞).

• We say that fk weakly converge in H1,2 to f∞ if fk weakly converge in L2 to f∞ and
supk Ch(fk) <∞.

• We say that fk strongly converge in H1,2 to f∞ if fk weakly converge in L2 to f∞ and
Ch(fk) → Ch(f∞).

The local counterpart is defined similarly.

2.2.7 Tangents

We recall now the definition of tangent cone to an RCD(K,N) space. First, given a pointed metric
measure space (X, d,m, x) and r ∈ (0, 1) we define the rescaled space (X, r−1d,mx

r , x) where

mx
r := (Cr

x)−1m,

for

Cr
x :=

ˆ
Br(x)

(
1 − r−1d(x, z)

)
dm(z). (2.2.10)

The transformation from m to mx
r is performed in order to have the space normalized, i.e.

ˆ
Br−1d

1 (x)

(
1 − r−1d(x, z)

)
dmx

r (z) = 1.

As a notation, we set

Lk := (Lk)01 =
k + 1

ωk
Lk, (2.2.11)

where Lk denotes the k dimensional Lebesgue measure and

ωk := Lk(BRk

1 (0)).

Definition 2.2.13. Let (X, d,m) be an RCD(K,N) space and x ∈ X. We say that a pointed metric
measure space (X′, d′,m′, x′) is tangent to (X, d,m) at x if there exists a sequence of radii rj ↘ 0
such that (X, r−1

j d,mx
rj , x) → (X′, d′,m′, x′) in the pointed-measured-Gromov–Hausdorff topology.

We denote the collection of all tangent spaces to (X, d,m) at x as Tanx(X, d,m).

If (X, d,m) is an RCD(K,N) space, Gromov compactness theorem shows that for every x ∈ X,
Tanx(X, d,m) is not empty. Moreover, by the stability and rescaling property of the RCD(K,N)
condition, we see that elements of Tanx(X, d,m) are RCD(0, N) spaces.
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2.2.8 Structure theory

The known results of structure theory for RCD(K,N) spaces can be summed up in the following
theorem, which, in particular, states that RCD(K,N) spaces are rectifiable as metric measure
spaces (see [49, 52, 87, 98, 111, 90]).

Theorem 2.2.14. Let (X, d,m) be an RCD(K,N) space. Then there exists a unique n ∈ N, called
the essential dimension of X, with 1 ≤ n ≤ N , such that:

i) for m-a.e. x ∈ X,
Tanx(X, d,m) = {(Rn, de,Ln, 0)}

and we call the collection of points x ∈ X satisfying the equation above Rn(X).

ii) (X, d,m) is countably n-rectifiable. More precisely, given any ε > 0, we can cover (X, d,m), up
to an m-negligible subset, by a countable union of subsets that are (1+ε)-bilipschitz equivalent
to measurable subsets of Rn.

iii) There exists a non-negative density θ ∈ L1
loc(X,Hn Rn(X)) such that

m = θHn Rn(X). (2.2.12)

Remark 2.2.15. We point out that the set Rn(X) of n-regular points is Borel. To check it, define
φ : X → [0,∞) as φ(x) := lim supr↘0 dpmGH

(
(X, r−1d,mr

x, x), (Rn, de,Ln, 0)
)
. One can readily

verify that (0, 1) ∋ r 7→ (X, r−1d,mr
x, x) is dpmGH-continuous for any given x ∈ X, whence it follows

that

φ(x) = inf
k∈N

sup
q∈Q∩(0,1/k)

dpmGH

(
(X, q−1d,mq

x, x), (Rn, de,Ln, 0)
)

for every x ∈ X. (2.2.13)

Since X ∋ x 7→ (X, r−1d,mr
x, x) is dpmGH-continuous for any given r ∈ (0, 1), we deduce that

X ∋ x 7→ dpmGH

(
(X, q−1d,mq

x, x), (Rn, de,Ln, 0)
)

is a continuous function for any q ∈ Q ∩ (0, 1).
Consequently, (2.2.13) ensures that Rn(X) = {x ∈ X : φ(x) = 0} is a Borel set (in fact, a countable
intersection of Fσ sets), as we claimed. ■

If (X, d,m) is an RCD(K,N) space of essential dimension n, it holds that for every x ∈ X,

(Rk, de,Lk, 0) /∈ Tanx(X, d,m) if k > n,

this is due to the lower semicontinuity of the essential dimension, [101, 49].

Now, we introduce the set R∗
n(X). As customary, given a metric measure space (X, d, µ) and a

real number k ≥ 0, we define the upper and lower k-dimensional densities of µ as

Θk(µ, x) := lim sup
r↘0

µ(Br(x))

ωkrk
, Θk(µ, x) := lim inf

r↘0

µ(Br(x))

ωkrk
for every x ∈ X,

respectively. In the case where Θk(µ, x) and Θk(µ, x) coincide, we denote their common value by
Θk(µ, x) ∈ [0,∞] and we call it the k-dimensional density of µ at x.

Definition 2.2.16. Let (X, d,m) be an RCD(K,N) space having essential dimension n. Then we
define the Borel set R∗

n(X) as

R∗
n(X) :=

{
x ∈ Rn(X) : ∃Θn(m, x) ∈ (0,∞)

}
.
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We have that, cf. (2.2.12),
m = Θn(m, x) R∗

n(X). (2.2.14)

Take an RCD(K,N) space (X, d,m) of essential dimension n and consider the product (X×R, d⊗
de,m ⊗ L1). We will often use, without mention, this fact: x ∈ R∗

n(X) if and only if (x, t) ∈
R∗

n+1(X× R) for some (hence all) t ∈ R and, if this is the case,

Θn+1(m⊗ L1, x) = Θn(x,m).

2.2.9 Fine modules

We assume familiarity with the definition of capacitary modules, quasi-continuous functions and
vector fields and related material in [69]. A summary of the material we use can be found in [51,
Section 1.3].

We start by recalling the notion of capacity.

Definition 2.2.17. Let (X, d,m) be a metric measure space. For any set A ⊆ X we define the
2-capacity, (or simply capacity) as

Cap(A) := inf
{
∥f∥2H1,2(X) : f ∈ H1,2(X), f ≥ 1 m-a.e. on some neighbourhood of A

}
.

It turns out that Cap is a submodular outer measure, finite on bounded sets, and, obviously,
m ≤ Cap. Moreover, a function f : X → R is quasi-continuous if for every ε > 0, there exists
Eε ⊆ X with Cap(Eε) < ε such that the restriction of f to X \ Eε is continuous. We denote by
QCR the quasi-continuous representative.

The following theorem states that, on RCD spaces, gradients of test functions have a better
representative than gradients of general Sobolev functions. These representatives enjoy the property
(actually, define the property) of being quasi-continuous.

Theorem 2.2.18 ([69, Theorem 2.6]). Let (X, d,m) be an RCD(K,∞) space. Then there exists a
unique couple (L0

Cap(TX), ∇̄), where L0
Cap(TX) is a L0(Cap)-normed L0(Cap)-module and

∇̄ : TestF(X) → L0
Cap(TX)

is a linear operator such that:

i) |∇̄f | = QCR(|∇f |) Cap-a.e. for every f ∈ TestF(X),

ii) the set
{∑

n
χEn∇̄fn

}
, where {fn}n ⊆ TestF(X) and {En}n is a Borel partition of X is dense

in L0
Cap(TX).

Uniqueness is up to unique isomorphism, in the sense that, if another couple (L0
Cap(TX)′, ∇̄′) satis-

fies the same properties, then there exists a unique module isomorphism Φ : L0
Cap(TX) → L0

Cap(TX)′

such that Φ ◦ ∇̄ = ∇̄′. Moreover, L0
Cap(TX) is a Hilbert module that we call capacitary tangent

module.

It is worth spending a few words on L0(Cap)-normed L0(Cap)-modules and, in particular, on
L0
Cap(TX), as the L0(Cap) and L0(m) topologies may behave quite differently. First, L0(Cap)-

normed L0(Cap)-modules enjoy the following important properties (cf. [84, Definition 1.2.1]):

i) locality : for every v ∈ L0
Cap(TX) and {Ai}i sequence of Borel subsets of X such that χAiv = 0

for every i ∈ N, then χ⋃
i Ai

v = 0,
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ii) gluing : if {vi}i ⊆ L0
Cap(TX) and {Ai}i is a sequence of pairwise disjoint Borel subsets of X,

there exists v ∈ L0
Cap(TX) such that χAiv = χAivi for every i ∈ N.

Indeed, the first property follows trivially from the existence of the pointwise norm. For what
concerns the second property, notice first that, partitioning the sets Ai and using locality, we
can with no loss of generality assume that |vi| ∈ L∞(Cap) for every i. We can then set ai :=
2−i∥1 + |vi|∥L∞(Cap) and consider the Cauchy sequence n 7→

∑n
i=1 a

−1
i
χAivi and then multiply its

limit by f :=
∑∞

i=1 aiχAi so that we can conclude by locality. However, the gluing property for
L0
Cap(TX) follows directly from its construction, starting from the set of infinite linear combinations

as in item ii) of Theorem 2.2.18. Notice that one needs the gluing property for L0
Cap(TX) to define

the multiplication by functions in L0(Cap) so that we cannot use the argument above to prove the
gluing property for L0

Cap(TX). This discussion is relevant because the map

L0(Cap) × L0
Cap(TX) ∋ (f, v) 7→ fv ∈ L0

Cap(TX)

is not continuous in general. For example, set (X, d,m) = ([0, 1], de,L1), recall [69, Example 2.17],
and notice that L∞(Cap) is a closed (non-trivial) subspace of L0(Cap). Take vn := (1 + n−1)χ(0,1)

and f(x) := 1/x. Clearly vn → v := χ
(0,1) ∈ L0

Cap(TX), however {fvn} ∈ L0
Cap(TX) is not even a

Cauchy sequence.
Notice that we can, and will, extend the map QCR from H1,2(X) to S2(X)∩L∞(m) by a locality

argument. We define

TestV̄(X) :=

{
n∑

i=1

QCR(fi)∇̄gi : fi ∈ S2(X) ∩ L∞(m), gi ∈ TestF(X)

}
.

We define also the vector subspace of quasi-continuous vector fields, QC(TX), as the closure of
TestV̄(X) in L0

Cap(TX) and finally,

QC∞(TX) := {v ∈ QC(TX) : |v| is Cap-essentially bounded} .

Recall now that as m ≪ Cap, we have a natural projection map

Pr : L0(Cap) → L0(m) defined as [f ]L0(Cap) 7→ [f ]L0(m)

where [f ]L0(Cap) (resp. [f ]L0(m)) denotes the Cap (resp. m) equivalence class of f . It turns out that
Pr, restricted to the set of quasi-continuous functions, is injective ([69, Proposition 1.18]). We have
the following projection map P̄r, given by [69, Proposition 2.9 and Proposition 2.13], which plays
the role of Pr on vector fields.

Proposition 2.2.19. Let (X, d,m) be an RCD(K,∞) space. There exists a unique linear continu-
ous map

P̄r : L0
Cap(TX) → L0(TX)

that satisfies

i) P̄r(∇̄f) = ∇f for every f ∈ TestF(X),

ii) P̄r(gv) = Pr(g)P̄r(v) for every g ∈ L0(Cap) and v ∈ L0
Cap(TX).

Moreover, for every v ∈ L0
Cap(TX), ∣∣P̄r(v)

∣∣ = Pr(|v|) m-a.e.

and P̄r, when restricted to the set of quasi-continuous vector fields, is injective.
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We point out that if v ∈ QC(TX), [69, Proposition 2.12] shows that |v| ∈ L0(Cap) is quasi-
continuous, in particular, v ∈ QC∞(TX) if and only if P̄r(v) ∈ L∞(TX).

In what follows, with a little abuse, we often write, for v ∈ L0
Cap(TX), v ∈ D(div) if and only if

P̄r(v) ∈ D(div) and, if this is the case, div v = div(P̄r(v)). Similar notation will be used for other
operators acting on subspaces of L0(TX).

Theorem 2.2.20 ([69, Theorem 2.14 and Proposition 2.13]). Let (X, d,m) be an RCD(K,∞) space.
Then there exists a unique map ¯QCR : H1,2

C (TX) → L0
Cap(TX) such that

i) ¯QCR(v) ∈ QC(TX) for every v ∈ H1,2
C (TX),

ii) P̄r ◦ ¯QCR(v) = v for every v ∈ H1,2
C (TX).

Moreover, ¯QCR is linear and satisfies∣∣ ¯QCR(v)
∣∣ = QCR(|v|) Cap-a.e. for every v ∈ H1,2

C (TX),

so that ¯QCR is continuous.

We often omit to write the ¯QCR (which, as before, stands for quasi-continuous) operator for
simplicity of notation. This should cause no ambiguity thanks to the fact that

¯QCR(gv) = QCR(g) ¯QCR(v) for every g ∈ H1,2(X) ∩ L∞(m) and v ∈ H1,2
C (TX) ∩ L∞(TX).

(2.2.15)
This can be proved easily as the continuity of the map QCR implies that QCR(g) ¯QCR(v) as above is
quasi-continuous and the injectivity of the map P̄r restricted the set of quasi-continuous vector fields
yields the conclusion. Again by locality, we have that (2.2.15) holds even for g ∈ S2(X) ∩ L∞(m).

We have the following dimensional decomposition of the capacitary tangent module, along with
the existence of a basis on the sets of a suitable partition. This is proved in [43]. Notice that to
every element of the partition Ak is associated an integer n(k) ≤ n, and the inequality may be
strict, see e.g. [69, Example 3.17]

Theorem 2.2.21. Let (X, d,m) be an RCD(K,N) space of essential dimension n. Then there
exists a partition of X made of countably many bounded Borel sets {Ak}k such that for every k
there exist n(k) with 0 ≤ n(k) ≤ n and

{
vk1 , . . . , v

k
n(k)

}
⊆ TestV(X) with bounded support which is

an orthonormal basis of L0
Cap(TX) on Ak, in the sense that

vi · vj = δji Cap-a.e. on Ak

and for every v ∈ L0
Cap(TX) there exist g1, . . . , gn(k) ∈ L0(Cap) such that

v =

n(k)∑
i=1

giv
k
i Cap-a.e. on Ak,

where, in particular,

gi = v · vki Cap-a.e. on Ak.

Here we implicitly state that if n(k) = 0 then for every v ∈ L0
Cap(TX) we have v = 0 Cap-a.e.

on Ak.
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Proof. First, we remark that that it is easy to show that in item ii) of Theorem 2.2.18 we can
replace TestF(X) with a countable subset, say {fk}k∈N. This is due to the fact that H1,2

C (TX) is

separable, so that we can take a countable dense subset of TestV(X) in the W 1,2
C (TX) topology. Set

now vk := ∇̃fk and D := {vk}k.
Consider now the (countable) sequence of Cap-a.e. defined functions

FI := det (vi · vj)i,j∈I

where I ranges over all finite subsets of N. Notice that if |I| > n then the fact that L2(TX) has
dimension n and basic linear algebra yield that FI = 0 m-a.e. hence FI = 0 Cap-a.e. because FI is
quasi-continuous. We set then for i ∈ N, i ≥ 1

Ai :=
⋃
|I|=i

{FI ̸= 0}
⋂

|J |≥i+1

{FJ = 0}

and A0 := X \ ∪i≥1Ai. Notice X = A0 ∪ · · · ∪An as a disjoint union.
Notice now that we can show, by density, that for every v ∈ L0

Cap(TX) we have v = 0 Cap-a.e.

on A0. Then, by definition, we can write Ai =
⋃

I A
I
i countable (disjoint) union, where on AI

i we
have that FI ̸= 0 Cap-a.e. and FJ = 0 Cap-a.e. if |J | > |I|. We claim now that {vk}k∈I is a basis
of L0

Cap(TX) on AI
i , in the sense that for every v ∈ L0

Cap(TX) there exists {gk}k∈I such that

v =
∑
k∈I

gkvk Cap-a.e. on AI
i

and that if for some {gk}k∈I ⊆ L0(Cap) we have that
∑

k∈I gkvk = 0 Cap-a.e. then gk = 0 Cap-a.e.
on AI

i for every k ∈ I.
The second claim follows by basic linear algebra: indeed if

∑
k∈I gkvk = 0 Cap-a.e. then we

have in particular ∑
k,h∈I

ghgkvh · vk = 0 Cap-a.e.

and this implies gk = 0 Cap-a.e. on AI
i for every k ∈ I as FI ̸= 0 Cap-a.e. on AI

i .
We show now the first claim. This is again basic linear algebra together with a simple density

argument. Take any w in L0
Cap(TX), then a density-continuity argument and the fact that FI∪{k} =

0 Cap-a.e. on AI
i for every k show that if we set (with an abuse) vk̄ := w we have that

FI∪{k̄} = 0 Cap-a.e. on AI
i .

In particular, as FI ̸= 0 Cap-a.e. on AI
i , we have that vk̄ · vl =

∑
j∈I gjvj · vl Cap-a.e. on AI

i

for l ∈ I ∪ {k̄} where {gj}j ⊆ L0(Cap) (as they are the unique solution of a linear system with
coefficients in L0(Cap)). This immediately implies∣∣∣∣vk̄ −∑

j∈I
gjvj

∣∣∣∣2 = 0 Cap-a.e. on AI
i .

We do now a further decomposition of the sets AI
i . First, we orthogonalize the basis {vk}k∈I

by means of a Gram-Schmidt procedure as follows. Assume for simplicity I = {1, 2, . . . ,m}. We
set recursively

v′k := ckkvk +

k−1∑
l=1

ckl v
′
l for k = 1, . . . ,m,



36 CHAPTER 2. PRELIMINARIES

where {ckl }1≤l≤k≤m are defined as

ckl :=



k−1∏
j=1

v′j · v′j if l = k,

−
vk · v′l
v′l · v′l

k−1∏
j=1

v′j · v′j if l < k.

Notice that {ckl } ⊆ S2(X) ∩ L∞(m) and that {v′k}k∈I is still a basis on AI
i in the sense described

above. Also, v′h · v′k = 0 Cap-a.e. on AI
i if h ̸= k, h, k ∈ I.

If ε > 0, we set then (AI
i )ε := AI

i ∩ {|v′k| > ε for every k ∈ I}, notice that AI
i =

⋃
ε>0(A

I
i )ε and

we can write such union as a countable union. We rescale now the basis writing

v′′k :=
1

ε ∨
∣∣v′k∣∣v′k

and this allows us to conclude the proof.

The following theorem, which is [51, Section 1.3] (see also [42]), is crucial in the construction
of modules tailored to particular measures.

Theorem 2.2.22. Let (X, d,m) be a metric measure space and let µ be a Borel measure finite on
balls such that µ ≪ Cap. Let also M be a L0(Cap)-normed L0(Cap)-module. Define the natural
(continuous) projection

πµ : L0(Cap) → L0(µ).

We define an equivalence relation ∼µ on M as

v ∼µ w if and only if |v − w| = 0 µ-a.e.

Define the quotient module M0
µ := M/∼µ with the natural (continuous) projection

π̄µ : M → M0
µ.

Then M0
µ is a L0(µ)-normed L0(µ)-module, with the pointwise norm and product induced by the

ones of M: more precisely, for every v ∈ M and g ∈ L0(Cap),{
|π̄µ(v)| := πµ(|v|),
πµ(g)π̄µ(v) := π̄µ(gv).

(2.2.16)

If p ∈ [1,∞], we set
Mp

µ :=
{
v ∈ M0

µ : |v| ∈ Lp(µ)
}
,

which is a Lp(µ)-normed L∞(µ)-module. Moreover, if M is a Hilbert module, also M0
µ and M2

µ

are Hilbert modules.

In the particular case in which M = L0
Cap(TX) and µ is a Borel measure finite on balls such

that µ≪ Cap, we set

Lp
µ(TX) := (L0

Cap(TX))pµ for p ∈ {0} ∪ [1,∞].
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In the case µ = m notice that considering the map

∇̇ : TestF(X)
∇̄−→ L0

Cap(TX)
π̄m−→ (L0

Cap(TX))0m

we can show that (L0
Cap(TX))0m is isomorphic to the usual L0 tangent module via a map that sends

∇f to ∇̇f so that we have no ambiguity of notation and, by construction, the map π̄m coincides
with P̄r defined in Proposition 2.2.19. We define the traces

trµ : H1,2
loc (X) → L0(µ) as trµ := πµ ◦ QCR,

t̄rµ : H1,2
C (TX) → L0

µ(TX) as t̄rµ := π̄µ ◦ ¯QCR.

To simplify the notation, we often omit to write the trace operators. This should cause no
ambiguity because from (2.2.15) and (2.2.16) it follows that

t̄rµ(gv) = trµ(g)t̄rµ(v) for every g ∈ H1,2
loc (X) ∩ L∞(m) and v ∈ H1,2

C (TX) ∩ L∞(TX).

We define

TestVµ(X) := t̄rµ(TestV(X)) ⊆ L∞
µ (TX)

and the proof of [51, Lemma 2.7] gives the following result.

Lemma 2.2.23. Let (X, d,m) be an RCD(K,∞) space and let µ be a finite Borel measure such
that µ≪ Cap. Then TestVµ(X) is dense in Lp

µ(TX) for every p ∈ [1,∞).

We also need Cartesian products of normed modules. Fix n ∈ N, n ≥ 1 and denote by ∥ · ∥e
the Euclidean norm of Rn. Given a L0(m)-normed L0(m)-module N , we can consider its Cartesian
product N n and endow it with the natural module structure and with the pointwise norm

|(v1, . . . , vn)| := ∥(|v1|, . . . , |vn|)∥e

which is induced by a scalar product if and only if the one of N is, and if this is the case, we still
denote the pointwise scalar product on N n by the dot · . We endow N n with the norm induced
by the Lebesgue norm of the relevant exponent of the pointwise norm with respect to m. Also, N n

is a L2(m)-normed L∞(m)-module if and only if N is, and, if this is the case, a subspace N1 of
N is dense if and only if (N1)

n is dense in N n. Similar considerations hold if m is replaced by a
Borel measure, finite on balls and (with the suitable interpretation) in the case of L0(Cap)-normed
L0(Cap)-modules or if we alter the integrability exponent. It is clear that if M is a L0(Cap)-normed
L0(Cap)-module and µ is a Borel measure finite on balls such that µ≪ Cap, then also

(Mp
µ)n = (Mn)pµ for p ∈ {0} ∪ [1,∞].

We adopt the natural notation

Lp
µ(TnX) := Lp

µ(TX)n

and, when possible, we endow Lp
µ(TnX) with the norm induced by the Lp(µ) norm of the (Euclidean)

pointwise norm | · |.
The following remark will be used in the sequel without further notice: if v = (v1, . . . , vn) ∈ N n

is such that for every i = 1, . . . , n, vi ∈ H1,2(X), then |v| ∈ H1,2(X). This follows from the fact that
if f1, . . . , fn ∈ H1,2(X) and φ ∈ LIP(Rn;R) is such that φ(0) = 0, then φ(f1, . . . , fn) ∈ H1,2(X).
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2.3 Functions of bounded variation

Now we turn to the study of functions of bounded variation on metric measure spaces. Most of the
material can be found in the thesis [71] and the references therein.

2.3.1 Definitions and basic properties

We assume that the reader is familiar with the theory of functions of bounded variation and sets of
(locally) finite perimeter in metric measure spaces developed in [6, 7, 108] and in the more recent
[10, 51] for what concerns the RCD(K,N) setting. We recall now the main notions.

Fix a metric measure space (X, d,m). Given f ∈ L1
loc(m), we define, for any A ⊆ X open, the

total variation

|Df |(A) := inf

{
lim inf

k

ˆ
lip(fk) dm : {fk}k ⊆ LIPloc(A), fk → f in L1

loc(A,m)

}
, (2.3.1)

where fk → f in L1
loc(A,m) if for every x ∈ A there exists a neighbourhood U = Ux of x such that

fk → f in L1(U,m).
For Ω ⊆ X open, we say that f has locally bounded variation on Ω provided that for every

x ∈ Ω, there exists a neighbourhood A = Ax of x with |Df |(A) < ∞. In this case we write
f ∈ BVloc(A). If moreover f ∈ L1(Ω) and |Df |(Ω) <∞, we say that f has bounded variation on Ω
and we write f ∈ BV(Ω). In particular, we say that f is a function of bounded variation, and we
write f ∈ BV(X), if f ∈ L1(m) and |Df |(X) <∞. In this case it is easy to show that in (2.3.1), L1

convergence can be equivalently taken instead of L1
loc convergence.

If f = χE , we say that E is a set of locally finite perimeter if χE ∈ BVloc(X) and we say that
E is a set of finite perimeter if |DχE |(X) <∞.

If f ∈ BVloc(Ω), then |Df |( · ) turns out to be the restriction to open sets of a Borel measure
(finite or locally finite) that we denote with the same symbol and that we still call total variation.
If f = χE , we denote |Df |( · ) also with Per(E, · ) and we call it perimeter.

Notice that, by its very definition, the total variation is lower semicontinuous with respect to
L1
loc convergence, is subadditive and |D(φ ◦ f)| ≤ L|Df | whenever f ∈ BV(X) and φ is L-Lipschitz.

Finally, (2.2.3) and, in particular, (2.2.2) extend immediately to the case f ∈ BV(X), with the term
1

m(Bcr(x))
|Df |(Bcr(x)) in place of −́

Bcr(x)
lip(f) dm. Therefore,

min{m(Br(x) ∩ E),m(Br(x) \ E)} ≤ 2CP r|DχE |(Bλr(x)) for every x ∈ X and r ∈ (0, R).
(2.3.2)

The following remark will be used with no further reference.

Remark 2.3.1. Let f ∈ BV(X). Whenever we have an optimal sequence {fk}k ⊆ LIPloc(X)∩L1(m)
for the computation of |Df |(X) as in (2.3.1), i.e. fk → f in L1(m) and

´
X lip(fk)dm → |Df |(X),

then it holds that lip(fk)m → |Df | in duality with Cb(X). Moreover, by the results in [71], there
exists at least one such sequence, which moreover satisfies {fk}k ⊆ LIPbs(X). ■

Several classical results have been generalized to the abstract framework of metric measure
spaces. Among them, the Fleming–Rishel coarea formula, which we now state.

Proposition 2.3.2 (Coarea). Let A ⊆ X open and let f ∈ L1
loc(A). Then

|Df |(A) =

ˆ
R

Per({f > r}, A) dr .

In particular, for f ∈ L1(A), it holds that f ∈ BV(A) if and only if
´
R Per({f > r}, A) dr <∞.
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In the proposition above, it is part of the statement that if |Df |(A) <∞, then the set {f > r}
has finite perimeter for L1-a.e. r ∈ R.

We also have the following consequence of the coarea formula above. If f ∈ BV(X), then
ˆ
hd|Df | =

ˆ
R

ˆ
hdPer({f > r}, · ) dr for any Borel function h : X → [0,∞]. (2.3.3)

A standard consequence of the coarea formula is that given x ∈ X, then for L1-a.e r ∈ (0,∞)
the ball Br(x) has finite perimeter. In the framework of RCD(K,N) spaces this conclusion holds
for every r ∈ (0,∞) and the Bishop–Gromov inequality ([121]) provides sharp upper bounds for
perimeters of balls. We also recall that sets of finite perimeters are an algebra, more precisely, if E
and F are sets of finite perimeter, then

Per(E, · ) = Per(X \ E, · ) and Per(E ∩ F, · ) + Per(E ∪ F, · ) ≤ Per(E, · ) + Per(F, · ).

2.3.2 Fine properties on PI spaces

We now fix a PI space (X, d,m). The following definitions make sense on arbitrary metric measure
spaces, but most of the results of this section hold for PI spaces.

Given a measurable set E, we define its essential boundary as

∂∗E :=

{
x ∈ X : lim sup

r↘0

m(Br(x) ∩ E)

m(Br(x))
> 0 and lim sup

r↘0

m(Br(x) \ E)

m(Br(x))
> 0

}
,

and given a measurable function f : X → R, we define the approximate lower and upper limits as

f∧(x) := ap lim inf
y→x

f(y) := sup

{
t ∈ R̄ : lim

r↘0

m(Br(x) ∩ {f < t})

m(Br(x))
= 0

}
,

f∨(x) := ap lim sup
y→x

f(y) := inf

{
t ∈ R̄ : lim

r↘0

m(Br(x) ∩ {f > t})

m(Br(x))
= 0

}
.

Notice that if E is a measurable subset of X, then

∂∗E = {x : (χ∧
E(x), χ∨

E(x)) = (0, 1)}.

We define
Sf :=

{
x : f∧(x) < f∨(x)

}
. (2.3.4)

If x ∈ X \ Sf , then f∧(x) = f∨(x) and we denote their common value by f̄(x). If x ∈ Sf we define

f̄(x) :=
f∧(x) + f∨(x)

2
,

adopting the convention +∞ + (−∞) = 0. We call f̄ the precise representative of f .

We also need the definition of codimension one spherical Hausdorff measure, defined as

Hh(A) := lim
δ↘0

Hh
δ (A)

where

Hh
δ (A) := inf

{∑
i∈N

m(Bri(xi))

ri
: A ⊆

⋃
i∈N

Bri(xi), ri ≤ δ

}
.
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Notice that, for any δ > 0,
Hh

δ (A) = 0 ⇒ Hh(A) = 0.

It is possible to prove (see [99, Lemma 3.2]) that for f ∈ BV(X),

−∞ < f∨(x) ≤ f∧(x) < +∞ for Hh-a.e. x ∈ X. (2.3.5)

Moreover, the following relations can be easily proved with standard measure theoretic arguments
(see e.g. [28, Proposition 5.2]):

if x ∈ Sf and t ∈ (f∧(x), f∨(x)) then x ∈ ∂∗{f > t},
if x ∈ ∂∗{f > t} then t ∈ [f∧(x), f∨(x)],

in particular

if x /∈ Sf and x ∈ ∂∗{f > t} then f̄(x) = t.

(2.3.6)

We recall that [7, Lemma 5.2] and [51, Theorem 1.12], together with the coarea formula show
that, in the framework of PI spaces (in particular, in the framework of RCD(K,N) spaces),

|Df | ≪ Hh ≪ Cap for every f ∈ BVloc(X). (2.3.7)

We also have the following more precise version of the first absolute continuity in (2.3.7), by
[6, 7] and [28]: for any set of finite perimeter E, there exists a Borel function ΘE , which is
bounded uniformly from below and from above by strictly positive constants that depend only on
the parameters in (2.2.1) and (2.2.2), such that

|DχE | = ΘEHh ∂∗E. (2.3.8)

However, we will prove in Theorem 2.3.7 that

|Df | ≪ Cap (2.3.9)

holds for any m.m.s. (X, d,m) and f ∈ BV(X).
Moreover, [28], it holds that the coarea formula implies that

Hh(B) <∞ ⇒ |Df |(B \ Sf ) = 0.

The following proposition summarizes results about sets of finite perimeter that are now well-
known in the context of PI spaces and are proved in [7, 75], see also [6].

Proposition 2.3.3. Let (X, d,m) be a PI space and let E ⊆ X be a set of locally finite perimeter.
Then, for |DχE |-a.e. x ∈ X the following hold:

i) E is asymptotically minimal at x, i.e., there exist rx > 0 and a function ωx : (0, rx) → (0,∞)
with limr↘0 ωx(r) = 0 satisfying

|DχE |(Br(x)) ≤ (1 + ωx(r))|DχE′ |(Br(x)) if r ∈ (0, rx) and E′∆E ⋐ Br(x),

ii) |DχE | is asymptotically doubling at x, i.e.

lim sup
r↘0

|DχE |(B2r(x))

|DχE |(Br(x))
<∞,
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iii) we have the following estimates:

0 < lim inf
r↘0

r|DχE |(Br(x))

m(Br(x))
≤ lim sup

r↘0

r|DχE |(Br(x))

m(Br(x))
<∞,

iv) the following holds:

lim inf
r↘0

min

{
m(Br(x) ∩ E)

m(Br(x))
,
m(Br(x) \ E)

m(Br(x))

}
> 0.

As customary, we split the total variation of a function of bounded variation in absolutely
continuous, jump, and Cantor part.

Definition 2.3.4 (Decomposition of the total variation). Let (X, d,m) be a PI space and let
f ∈ BVloc(X). We split the total variation in absolutely continuous part and singular part,

|Df | = |Df |a + |Df |s where |Df |a = gfm ≪ m and |Df |s ⊥ m,

and further split the singular part into jump part and Cantor part,

|Df |s = |Df |j + |Df |c where |Df |j = |Df | Sf ,

so that we can write

|Df |c = |Df | Cf with m(Cf ) = 0 and Cf ∩ Sf = ∅.

2.3.3 Integration by parts

The following representation formula for the total variation is based on a result proved in [72] and
then modified in [53] (see [53, Remark 3.18]). In the particular setting of RCD(K,∞) spaces, it is
possible to use an approximation argument to provide a direct proof (cf. Proposition 2.3.18). See
[42] for the following formulation.

Proposition 2.3.5 (Representation formula). Let (X, d,m) be a metric measure space and let
f ∈ BV(X). Then, for every A open subset of X, it holds that

|Df |(A) = sup

{ˆ
A
fdiv v dm

}
, (2.3.10)

where the supremum is taken among all v ∈ WA, where

WA := {v ∈ D(div∞) : |v| ≤ 1 m-a.e. supp v ⋐ A} .

Finally, the supremum can be equivalently taken among all v ∈ W̃A, where

W̃A := {v ∈ D(div∞) : |v| ≤ 1 m-a.e. supp v ⊆ A} .

Proof. Fix A ⊆ X open. If v ∈ WA, as supp v ⋐ A, we can find B open with v ∈ WB and B̄ ⊆ A.
Take now a sequence {fn}n ⊆ LIPbs(X) with fn → f in L1(m) and

´
X lip(fn)dm → |Df |(X) (hence

lip(fn)m → |Df | in duality with Cb(X)). Then

ˆ
fdiv v dm = lim

n

ˆ
fndiv v dm = − lim

n

ˆ
dfn(v) dm .
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We have that for every n (recall the bound |dfn| ≤ lip(fn) m-a.e.),∣∣∣∣ˆ dfn(v) dm

∣∣∣∣ ≤ ˆ
B

lip(fn) dm .

Exploiting the weak convergence of lip(fn)m to |Df | we have

lim sup
n

ˆ
B

lip(fn) dm ≤ |Df |(B̄) ≤ |Df |(A)

and this proves that the quantity defined by the supremum in (2.3.10) is bounded by |Df |(A).

Now, (with the notation of [72, 53]), let δ ∈ Der∞,∞(X) be with |δ| ≤ 1 m-a.e. and supp δ ⋐ A.
Then δ ∈ Der2,2(X) so that, using [53, Lemma 3.12], we can find a vector field vδ ∈ D(div) such
that |vδ| ≤ |δ| m-a.e. and div vδ = div δ m-a.e. and then also the opposite inequality in (2.3.10) is
proved, in virtue of [72, Theorem 3.4].

In order to conclude, we just have to show that if A ⊆ X is open and v ∈ W̃A, then

ˆ
fdiv v dm ≤ |Df |(A).

By an immediate approximation argument, there is no loss of generality in assuming that v has
bounded support. Let ε > 0. By regularity, let K ⊆ X be a compact set with K ⊆ X \ A and
|Df |((X \A) \K) < ε. It is clear that supp v ⋐ X \K, so that

ˆ
fdiv v dm ≤ |Df |(X \K) ≤ |Df |(A) + ε,

so that the proof is concluded being ε > 0 arbitrary.

Remark 2.3.6. If f ∈ BV(X), v ∈ D(div) ∩ L∞(m) and {nk}k ⊆ (0,∞), {mk}k ⊆ (0,∞) are two
sequences with limk nk = limkmk = +∞, then the limit

lim
k

ˆ
(f ∨ −mk) ∧ nkdiv v dm (2.3.11)

exists finite and does not depend on the particular choice of the sequences {nk}k and {mk}k. Indeed,
a cut-off argument and an approximation argument as the one in the proof of Proposition 2.3.5
yields that, if g ∈ BV(X) ∩ L∞(m) and v is as above, then∣∣∣∣ˆ gdiv v dm

∣∣∣∣ ≤ |Dg|(X)∥v∥L∞(TX),

so that, using also coarea, we get the claim.

Therefore, if f ∈ BV(X) and v ∈ D(div) ∩ L∞(m), we can write

ˆ
fdiv v dm ,

with the convention that it has to be interpreted as the limit in (2.3.11). ■
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2.3.4 Total variation and capacity

We recall Definition 2.2.17. For a function of bounded variation f , on a PI space, it holds that
|Df | ≪ Cap, by (2.3.7). For general metric measure space, there is little hope to recover (2.3.7).
However, the fact that |Df | ≪ Cap still holds, as the following theorem shows. Notice that this
fact is of crucial importance, as it allows to exploit the results of Section 2.2.9.

Theorem 2.3.7. Let (X, d,m) be a metric measure space and let f ∈ BV(X). Then

|Df | ≪ Cap.

We prove Theorem 2.3.7 after Lemma 2.3.8, which states that we can compute the capacity of
compact sets using Lipschitz functions, instead of Sobolev ones.

Lemma 2.3.8. Let (X, d,m) be a metric measure space and let K ⊆ X be a compact set. Then

Cap(K) = inf ∥f∥2H1,2(X) = inf

ˆ
f2 + lip(f)2 dm (2.3.12)

where both the infima are taken among all functions f ∈ LIPbs(X) such that f ≥ 1 on a neighbour-
hood of K.

Proof. Recalling that if f ∈ LIPbs(X), then f ∈ H1,2(X) and

∥f∥2H1,2(X) ≤
ˆ
f2 + lip(f)2 dm ,

we immediately obtain the two inequalities (≤) in (2.3.12).
To conclude, we can assume with no loss of generality that Cap(K) < ∞. If ε > 0, fix

g ∈ H1,2(X) with g ≥ 1 m-a.e. on a neighbourhood of K such that ∥g∥2H1,2(X) ≤ Cap(K) + ε. Up to

replacing g with 0∨ g ∧ 1, there is no loss of generality in assuming that g takes values in [0, 1] and
that g = 1 m-a.e. on a neighbourhood of K, call this neighbourhood A. Let also {gn} ⊆ LIPbs(X)
be such that gn → g in L2(m) and

´
lip(gn)2 dm → Ch(g) (using an immediate cut-off argument

we can replace LIPb(X) ∩ L2(m) with LIPbs(X) in (2.1.1)). Take η ∈ LIPbs(X) such that η = 1 on
a neighbourhood of K, η(x) ∈ [0, 1] for every x ∈ X and supp η ⊆ A (here we use the compactness
of K). Set now fn := (1 − η)gn + η ∈ LIPbs(X) and notice that fn ≥ 1 on a neighbourhood of K.
Exploiting the fact that gn → g in L2(m) and g = 1 m-a.e. on A,

lim sup
n

ˆ
f2n dm =

ˆ
g2 dm .

Using the convexity inequality for the slope (e.g. [71, Lemma 1.3.2]) and arguing as above, we have
that

lip(fn) ≤ (1 − η)lip(gn) + lip(η)|gn − 1|

so that

lim sup
n

ˆ
lip(fn)2 dm ≤ lim sup

n

ˆ
lip(gn)2 dm .

All in all, we conclude as ε > 0 was arbitrary and

lim sup
n

ˆ
f2n + lip(fn)2 dm ≤ ∥g∥2H1,2(X) ≤ Cap(K) + ε.
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Remark 2.3.9. It is worth pointing out that Lemma 2.3.8 holds also replacing lip with the bigger
lipa in (2.3.12), which is defined by

lipa(f)(x) := lim sup
y,z→x

|f(y) − f(z)|
d(y, z)

,

which has to be understood to be 0 if x is an isolated point, for any f locally Lipschitz. The proof
is exactly the same, if one takes into account the main result of [20]. ■

Proof of Theorem 2.3.7. First notice that thanks to coarea and the regularity of |Df |, we can
reduce ourselves to prove that |Df |(K) = 0 whenever K ⊆ X is a compact set with Cap(K) = 0
and assuming also f ∈ BV(X)∩L∞(m). Thanks to Lemma 2.3.8, we can take a sequence {φn}n ⊆
LIPbs(X) such that φn(x) ∈ [0, 1] for every x ∈ X, φn(x) = 1 on a neighbourhood of K (this
neighbourhood depends on n) and ∥φn∥H1,2(X) → 0.

Take v ∈ D(div∞) with |v| ≤ 1 m-a.e. and supp v bounded. Consider nowˆ
fdiv v dm =

ˆ
fdiv(φnv) dm +

ˆ
fdiv((1 − φn)v) dm

and notice that, by the calculus rules for the divergence in (2.1.4) (recall that we are assuming
f ∈ L2(m)), ˆ

fdiv(φnv) dm → 0 as n→ ∞

and also that, by Proposition 2.3.5,∣∣∣∣ˆ fdiv((1 − φn)v) dm

∣∣∣∣ ≤ |Df |(X \K)

as supp ((1 − φn)v) ⋐ X \K. If we let n → ∞ and then take the supremum among all v as above,
we have, by Proposition 2.3.5,

|Df |(X) ≤ |Df |(X \K),

which proves our claim.

2.3.5 Cartesian surfaces

Here and after, when we deal with a Cartesian product of sets of the kind X1× · · · ×Xk, we denote
by

πj : X1 × · · · × Xk → Xj (x1, . . . , xk) 7→ xj

the projection onto the corresponding factor, for j = 1, . . . , k.

Definition 2.3.10. Let (X, d,m) be a metric measure space and let f : X → R be Borel. Then we
define the subgraph of f as the Borel set Gf ⊆ X× R given by

Gf :=
{

(x, t) ∈ X× R : t < f(x)
}
.

Lemma 2.3.11. Let (X, d,m) be a locally uniformly doubling metric measure space and let f : X →
R be a Borel function. Then it holds that

(x, t) ∈ ∂∗Gf ⇒ t ∈ [f∧(x), f∨(x)],

t ∈ (f∧(x), f∨(x)) ⇒ (x, t) ∈ ∂∗Gf .

In particular, if x ∈ X \ Sf , then it holds that ∂∗Gf ∩ ({x} × R) is either empty or coincides with
{(x, f̄(x))}.
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Proof. In the proof the constant C may change from line to line and it only depends on the doubling
constant at scale R = 1. We can compute, for r ∈ (0, ε), using Fubini’s Theorem,

(m⊗ L1)(Br(x, t) ∩ Gf )

(m⊗ L1)(Br(x, t))
≤

(m⊗ L1)
(
(Br(x) ×Br(t)) ∩ Gf

)
(m⊗ L1)(Br/2(x) ×Br/2(t))

≤ C
(m⊗ L1)({(y, t) ∈ Br(x) ×Br(t) : t < f(y)})

rm(Br(x))

≤ C
−́t+r
t−r m({y ∈ Br(x) : s < f(y)}) ds

m(Br(x))

≤ C
m(Br(x) ∩ {f > t− ε})

m(Br(x))
.

Therefore, if (x, t) ∈ ∂∗Gf , then t ≤ f∨(x). Similarly, we can show that if r ∈ (0, ε),

(m⊗ L1)(Br(x, t) \ Gf )

(m⊗ L1)(Br(x, t))
≤ C

m(Br(x) ∩ {f < t+ ε})

m(Br(x))
,

which in turn shows that if (x, t) ∈ ∂∗Gf , then t ≥ f∧(x). Conversely, arguing as above, we can
show that if r ∈ (0, ε),

(m⊗ L1)(B2r(x, t) ∩ Gf )

(m⊗ L1)(B2r(x, t))
≥ C

m(Br(x) ∩ {f > t+ ε})

m(Br(x))

and that
(m⊗ L1)(Br(x, t) \ Gf )

(m⊗ L1)(Br(x, t))
≥ C

m(Br(x) ∩ {f < t− ε})

m(Br(x))

which yield the second claim.

By [30, Theorem 5.1] and its proof, taking into account the elementary inequality

a ≤
√

1 + a2 ≤ 1 + a, for every a > 0,

(or see [28, Proposition 4.2]) we obtain the following proposition.

Proposition 2.3.12. Let (X, d,m) be a PI space and f ∈ BV(X). Then Gf is a set of locally finite
perimeter in X× R and

|Df | ≤ π1∗|DχGf
| ≤ |Df | + m. (2.3.13)

In particular, if Cf and Sf are the m-negligible sets as in Definition 2.3.4,

(π1∗|DχGf
|) (Cf ∪ Jf ) = |Df | (Cf ∪ Jf ).

2.3.6 Vector valued functions of bounded variation

In what follows we fix m ∈ N, m ≥ 1. We treat now the case of vector valued BV functions, i.e.
functions of bounded variation taking values in Rm, or equivalently, collections of m real valued
functions of bounded variation. As the case m = 1 has already been treated, we focus on m ∈ N,
m ≥ 2.
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Definition 2.3.13. Let (X, d,m) be a metric measure space and f ∈ L1(m)m. We define, for any
A open subset of X,

|Df |(A) := inf

{
lim inf

k

ˆ
A
∥(lip(fi,k))i=1,...,m∥e dm

}
(2.3.14)

where the infimum is taken among all sequences {fi,k}k ⊆ LIPloc(A) such that fi,k → fi in
L1
loc(A,m) for every i = 1, . . . ,m.

Remark 2.3.14. Notice that we are taking the relaxation of the integral of the Euclidean norm of
the vector whose components are the local Lipschitz constants of the various coordinates, not the
local Lipschitz constant of a vector valued function. The former approach follows [18], while the
latter (a slight variant of the one in) [108]. For open subsets of Rn the former approach corresponds
to the relaxation of the integral of the Hilbert-Schmidt norm of the Jacobian matrix of a sequence
of approximating functions, while the latter employs the operator norm instead, and is seen to be
equivalent to the one proposed in [4]. Also, it is straightforward to show that f ∈ BV(X)m if and
only if the quantity defined in (2.3.14) for |Df |(X) is finite, and similarly for BVloc(X). ■

Proposition 2.3.15. Let (X, d,m) be a metric measure space and f ∈ BV(X)m. Then |Df |( · ) as
defined in (2.3.14) is the restriction to open sets of a finite non-negative Borel measure that we call
total variation of f and still denote with the same symbol.

Proof. The proof of [15, Lemma 5.2] can be easily adapted with no substantial changes. Indeed,
one has only to notice that the convexity inequality for the slope used in [15, Lemma 5.4] and the
properties of the Euclidean norm imply a suitable version of the convexity inequality for the slope
in our situation.

Definition 2.3.16. Let (X, d,m) be a metric measure space and f = (f1, . . . , fm) ∈ BV(X)m. We
define the Borel set

Sf :=

m⋃
i=1

Sfi ,

where Sfi is defined in (2.3.4).

Also in this case we adopt the terminology (and notation) of Definition 2.3.4 for what concerns
the splitting of the total variation of a vector valued function of bounded variation in absolutely
continuous, jump and Cantor part.

2.3.7 Functions of bounded variation on RCD spaces

The proof of the following result can be found in [86, Remark 3.5], we briefly sketch it here for the
sake of completeness. Notice that there is a slight abuse in the statements of (2.3.15) and (2.3.16),
as we identified measures with their densities freely.

Proposition 2.3.17 (Bakry–Émery estimate in BV). Let (X, d,m) be an RCD(K,∞) space and
f ∈ BV(X). Then, if t > 0, htf ∈ BV(X) and it holds

|Dhtf | ≤ e−Ktht|Df |. (2.3.15)

If moreover f ∈ BV(X) ∩ L∞(m), then htf ∈ BV(X) ∩H1,2(X) and

|∇htf | ≤ e−Ktht|Df | m-a.e. (2.3.16)
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Proof. First notice that by the general theory of Sobolev spaces, we easily obtain that |Dhtf | ≤
|∇htf |m if f ∈ BV(X) ∩ L∞(m). Then, thanks to the lower semicontinuity of the total variation
and a truncation argument, the first statement follows from the second.

In order to conclude the proof, take a sequence {fk}k ⊆ LIPbs(X) with fk → f in L1(m) and´
X lip(fk)dm → |Df |(X) (hence lip(fk)m → |Df | in duality with Cb(X)). Clearly, we can assume

that ∥fk∥L∞(m) ≤ ∥f∥L∞(m), so that htfk ∈ H1,2(X)∩LIPb(X) for every k, with uniformly bounded
Lipschitz constants, by the L∞-LIP regularization property. Also, by [114, Corollary 4.3], we have
that for every k,

|∇htfk| ≤ e−Ktht|∇fk| ≤ e−Kthtlip(fk) m-a.e.

Then, {|∇htfk|}k ⊆ L2(m) is bounded and, as |∇htf | is bounded from above by any L2 weak limit
of {|∇htfk|}k, we can conclude easily, recalling that the heat flow on finite measures preserves the
weak convergence in duality with Cb(X).

For the rest of this subsection, we fix m ∈ N, m ≥ 1. The following proposition provides us with
a generalization of Proposition 2.3.5 (actually, also with a different proof, but only for the special
context of RCD spaces) to the multi dimensional case, in the context of RCD(K,∞) spaces.

In view of the following proposition, recall that the interpretation of the integral in (2.3.17) is
given by Remark 2.3.6.

Proposition 2.3.18. Let (X, d,m) be an RCD(K,∞) space and let f ∈ BV(X)m. Then, for every
A open subset of X, it holds that

|Df |(A) = sup

{
m∑
i=1

ˆ
A
fidiv vi dm

}
, (2.3.17)

where the supremum is taken among all v = (v1, . . . , vm) ∈ Wm
A , where

Wm
A :=

{
v = (v1, . . . vm) ∈ TestV(X)m : |v| ≤ 1 m-a.e. supp |v| ⋐ A

}
. (2.3.18)

Finally, the supremum can be equivalently taken among all v ∈ W̃m
A , where

W̃m
A :=

{
v = (v1, . . . vm) ∈ TestV(X)m : |v| ≤ 1 m-a.e. supp |v| ⊆ A

}
.

Proof. Call |Df |∗ the quantity defined by the right hand side of (2.3.17), we show now that |Df |∗
is the restriction to open sets of a finite Borel measure, that we still denote with |Df |∗ and that
|Df |∗ = |Df | as measures.

Step 1. We show that |Df |∗(A) ≤ |Df |(A) for every open set A. Fix then A ⊆ X open. Assume
for the moment that also fi ∈ L∞(A,m) ∩ LIPloc(A) is such that

´
A lip(fi) dm < ∞ for every

i = 1, . . . ,m and take any v = (v1, . . . , vm) ∈ Wm
A . Set now

C := supp |v|

Notice C ⋐ A and take a cut-off function ψ ∈ LIPbs(X) with ψ(x) ∈ [0, 1] for every x ∈ X, ψ = 1 on
a neighbourhood of C and suppψ ⋐ A. Therefore, for every i = 1, . . . ,m, ψfi ∈ L∞(m)∩LIPloc(X)
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is such that
´

lip(ψfi) dm < ∞. We can now estimate, for t > 0, using the Cauchy-Schwarz
inequality and (2.3.16),

−
m∑
i=1

ˆ
ht(ψfi)div vi dm =

m∑
i=1

ˆ
∇ht(ψfi) · vi dm ≤

ˆ
C
∥(|∇ht(ψfi)|)i∥e dm

≤ e−Kt

ˆ
C
∥(ht|D(ψfi)|)i∥e dm ≤ e−Kt

ˆ
C
∥(htlip(ψfi))i∥e dm

so that, letting t↘ 0,

−
m∑
i=1

ˆ
fidiv vi dm ≤

ˆ
C
∥(lip(ψfi))i∥edm ≤

ˆ
A
∥lip(fi)∥edm.

Back to the general case f ∈ BV(X)m, we notice that we have to show the claim in the case
fi ∈ L∞(A,m) for every i = 1, . . . ,m. Then, we can conclude by the very definition of |Df | and
what said above, noticing that approximating sequences can be taken made of functions uniformly
bounded in L∞(m) with no loss of generality.

Step 2. We show that |Df |∗ is the restriction to open sets of a finite Borel measure (that we still
call |Df |∗). To this aim, we can use Carathéodory criterion ([18], cf. [15, Proof of Lemma 5.2]) and
is then enough to verify (all the sets in consideration are assumed to be open):

1. |Df |∗(A) ≤ |Df |∗(B) if A ⊆ B,

2. |Df |∗(A ∪B) ≥ |Df |∗(A) + |Df |∗(B) if d(A,B) > 0,

3. |Df |∗(A) = limk |Df |∗(Ak) if Ak ↗ A,

4. |Df |∗(A ∪B) ≤ |Df |∗(A) + |Df |∗(B).

We notice that (1) and (2) follow trivially from the definition of |Df |∗ and that (2) does not even
need the sets to be well separated. We prove now property (3). Fix ε > 0 and take a compact
subset K with K ⊆ A and |Df |(A \K) ≤ ε. Then there exists k̄ such that K ⊆ Ak̄, in particular
we can find ψ ∈ LIPbs(X) with ψ(x) ∈ [0, 1] for every x ∈ X, ψ = 1 on a neighbourhood of K
and suppψ ⋐ Ak̄. If we take v = (v1, . . . , vm) ∈ Wm

A , we can write vi = ψvi + (1 − ψ)vi for
i = 1, . . . ,m, notice (ψvi)i ∈ Wm

Ak̄
and ((1 − ψ)v)i ∈ Wm

A\K . Then we can compute, using that

|Df |∗(A \K) ≤ |Df |(A \K) ≤ ε,

m∑
i=1

ˆ
A
fidiv vi dm =

m∑
i=1

ˆ
Ak̄

fidiv(ψvi) dm +

m∑
i=1

ˆ
A\K

fidiv((1 − ψ)vi) dm ≤ |Df |∗(Ak̄) + ε

so that (3) follows as v ∈ Wm
A and ε > 0 are arbitrary. We prove now (4). Take a sequence

of bounded open sets {Ak}k with Ak ↗ A and Ak ⊆
{
x ∈ A : d(x,X \A) > k−1

}
; take similarly

{Bk}k. Fix k and take ψ̃A ∈ LIPbs(X) with ψ̃A(x) ∈ [0, 1] for every x ∈ X, ψ̃A = 1 on a neighbour-
hood of Ak and supp ψ̃A ⋐ A; define similarly ψ̃B. Define also ψA := ψ̃A and ψB := ψ̃B(1 − ψ̃A).
Take then v = (v1, . . . , vm) ∈ Wm

Ak∪Bk
. Writing vi = ψAvi + ψBvi for i = 1, . . . ,m we can argue

similarly as above to verify that

|Df |∗(Ak ∪Bk) ≤ |Df |∗(A) + |Df |∗(B)

so that (4) follows letting k → ∞, taking into account (3).
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Step 3. We conclude that |Df |∗ = |Df |. By the previous steps, it is enough to show |Df |∗(X) ≥
|Df |(A) if A ⊆ X is open and bounded. Assume for the moment that also f ∈ L∞(m)m. Let tk ↘ 0
and consider fi,k := htkfi. By lower semicontinuity of the total variation,

|Df |(A) ≤ lim inf
k

|D(f1,k, . . . , fn,k)|(A)

and then, taking into account that m(A) <∞ and the general theory of Sobolev spaces,

|Df |(A) ≤ lim inf
k

ˆ
A
∥(|∇fi,k|)i=1,...,m∥e dm ≤ lim inf

k

ˆ
∥(|∇fi,k|)i=1,...,m∥e dm . (2.3.19)

By density, we take fi,k,l ⊆ TestF(X) such that fi,k,l → fi,k in H1,2(X) as l → ∞ for every i. We
can write the right hand side of (2.3.19) as

lim inf
k

lim
ε↘0

lim
l

lim
δ↘0

∑
i

ˆ
∇fi,k ·

∇hδfi,k,l√∑
j hδ(|∇fj,k,l|2) + ε

dm ,

that is,

lim inf
k

lim
ε↘0

lim
l

lim
δ↘0

∑
i

ˆ
fi,kdiv

 ∇hδfi,k,l√∑
j hδ(|∇fj,k,l|2) + ε

dm . (2.3.20)

Recalling the properties of the heat flow hH,t, we can rewrite the quantity in (2.3.20) as

lim inf
k

lim
ε↘0

lim
l

lim
δ↘0

∑
i

ˆ
fidiv

hH,tk

 ∇hδfi,k,l√∑
j hδ(|∇fj,k,l|2) + ε

dm

and see that it is bounded by |Df |∗(X), by an approximation argument that relies on Lemma 2.2.1;
here we used that an immediate approximation argument yields that if A = X the request that
supp vi is compact in (2.3.18) is irrelevant. We have therefore proved |Df |∗(X) = |Df |(X) in the
case f bounded.

We treat the general case. We write

f l := ((f1 ∨ −l) ∧ l, . . . , (fm ∨ −l) ∧ l). (2.3.21)

Now we can conclude easily, as, by lower semicontinuity, what we just proved, and coarea

|Df |(X) ≤ lim inf
l

|Df l|(X) = lim inf
l

|Df l|∗(X) ≤ |Df |∗(X) + lim inf
l

|D(f l − f)|∗(X)

≤ |Df |∗(X) +
∑
i

lim sup
l

|D(f li − fi)|(X) = |Df |∗(X).

The last claim can be proved as for Proposition 2.3.5.

Remark 2.3.19. One may wonder whether Proposition 2.3.18 holds also in the more general setting
of (infinitesimally Hilbertian) metric measure spaces, with the obvious modifications (i.e. whether
we can extend Proposition 2.3.5 to functions taking values in Rm instead of R). It seems anything
but straightforward to adapt the argument used in [71] (extracted from [72, 15]) as here we face a
difficulty generalizing the approach via test plans. For this reason we had to provide a completely
different proof, obtained via approximation arguments, at the price of working in more regular
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spaces. We give here an example of this issue, using the notation of the articles just cited. We
point out that the difference |Df | ≠ |Df |w that we are going to see is what we expect, given the
choice of the relaxation made to define the total variation, cf. Remark 2.3.14. Nevertheless, being
all the norms on finite dimensional spaces equivalent, the two objects are equivalent, in the sense
that one bounds the other, up to a multiplicative constant.

Consider X := [0, 1]2 ⊆ R2 endowed with the Euclidean distance and the Lebesgue measure. Let
f : X → R2 be the identity. It is clear that f ∈ BV(X)2 and |Df |(X) =

√
2. However, computing

the total variation defined via test plans, |Df |w = 1. Indeed, if B ⊆ X is a Borel set and π is a test
plan, we obtain, using Fubini’s theorem,

ˆ
γ#|D(f ◦ γ)|(B) dπ(γ) ≤

ˆ
L1({t : γt ∈ B})Lip(γ) dπ(γ)

≤ ∥Lip(γ)∥L∞(π)(L1 ⊗ π)({(t, γ) : γt ∈ B})

≤ ∥Lip(γ)∥L∞(π)C(π)L2(B),

so that |Df |w ≤ L2. ■



Chapter 3

Sets of finite perimeter

This chapter is about the fine properties of sets of finite perimeter on finite dimensional RCD
spaces. Namely, blow-ups of sets of finite perimeter are studied, along with the rectifiability of
reduced boundaries and representation formulae for perimeter measures.

3.1 Regular behaviour

The main result of this section states that total variations of functions of bounded variation are
concentrated on the regular set R∗

n(X). We state it for functions of bounded variation, nevertheless
notice that by coarea the same result for characteristic function of sets of finite perimeter would
imply the result as stated below.

Theorem 3.1.1. Let (X, d,m) be an RCD(K,N) of essential dimension n. Then

|Df |(X \ R∗
n(X)) = 0 for every f ∈ BV(X).

Proof. The statement can be achieved by repeating verbatim the proof of [50, Theorem 3.1], using
R∗

n(X) instead of Rn(X), and Lemma 3.1.2 below instead of [50, Proposition 2.14].

The proof of Theorem 3.1.1 builds upon the characterization of total variation along curves, as
well as the following crucial result, which is based on [70] (which, in turn, is the generalization to
RCD spaces of [62], obtained in the context of Ricci limits).

Lemma 3.1.2. Let (X, d,m) be an RCD(K,N) space of essential dimension n. Suppose that
γ : [0, 1] → X is a geodesic satisfying γt ∈ R∗

n(X) for a dense family of t ∈ (0, 1). Then it holds that
γt ∈ R∗

n(X) for every t ∈ (0, 1).

Proof. Let δ ∈ (0, 1/20) be fixed. The non-branching property of X, proved in [70, Theorem 1.3],
ensures that the constant-speed reparametrisation of γ|[δ/2,1−δ/2] on [0, 1] is the unique geodesic
between its endpoints.

We first prove that γt ∈ Rn(X) for every t ∈ [δ, 1 − δ]. Now by [70, Theorem 1.1] (see also [70,
Theorem 1.2]), we have r̄ and C such that

dpGH((Br(γs), γs), (Br(γs′), γs′)) ≤ Cr|s− s′| for every r ∈ (0, r̄) and s, s′ ∈ [δ, 1 − δ].

Fix for the moment s′ ∈ [δ, 1−δ] and take (X′, d′,m′, x′) ∈ Tanγs′ (X, d,m). Notice that if γs ∈ Rn(X),
then, by the equation above, for any R > 0,

dpGH((BX′
R (x′), x′), (BRn

R (0), 0) < CR|s− s′|

51
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and since γs ∈ Rn(X) for a dense set of s, we infer that (BX′
R (x′), d′, x′) = (BRn

R (0), de, 0) so that,
being R arbitrary, (X′, d′, x′) = (Rn, de, 0). As (X′, d′,m′, x′) is RCD(0, N), an iterative application
of the splitting Theorem ([81]) yields that (X′, d′,m′, x′) = (Rn, de,Ln, 0), whence γs′ ∈ Rn(X).

Now we prove that γt ∈ R∗
n(X) for every t ∈ [δ, 1−δ]. Recall that [70, Eq. (166)] gives constants

ε, r̄ and C such that∣∣∣∣m(Br(γs))

m(Br(γs′))
− 1

∣∣∣∣ ≤ C|s− s′|
1

2(1+2N) for every r ∈ (0, r̄) and s, s′ ∈ [δ, 1 − δ] with |s− s′| < ε.

In particular, for any s, s′ ∈ [δ, 1 − δ] with |s− s′| < ε we have that∣∣∣∣m(Br(γs))

ωnrn

(
m(Br(γs′))

ωnrn

)−1

− 1

∣∣∣∣ ≤ C|s− s′|
1

2(1+2N) for every r ∈ (0, r̄). (3.1.1)

Now let t ∈ [δ, 1− δ] be fixed and choose a sequence {ti}i∈N ⊆ γ−1(R∗
n(X))∩ [δ, 1− δ]∩ (t− ε, t+ ε)

such that ti → t. Up to a not relabelled subsequence, we can assume that Θn(m, γti) → λ for some
λ ∈ [0,∞]. Pick sequences {rj}j∈N, {r̃j}j∈N ⊆ (0, r̄) such that

m(Brj (γt))

ωnrnj
→ Θn(m, γt) and

m(Br̃j (γt))

ωnr̃nj
→ Θn(m, γt).

Plugging (s, s′, r) = (t, ti, rj) or (s, s′, r) = (t, ti, r̃j) in (3.1.1), and letting j → ∞, we deduce that
Θn(m, γt) <∞ and∣∣∣∣ Θn(m, γt)

Θn(m, γti)
− 1

∣∣∣∣, ∣∣∣∣ Θn(m, γt)

Θn(m, γti)
− 1

∣∣∣∣ ≤ C|t− ti|
1

2(1+2N) for every i ∈ N. (3.1.2)

Similarly, plugging (s, s′, r) = (ti, t, rj) or (s, s′, r) = (ti, t, r̃j) in (3.1.1), and letting j → ∞, we
deduce that Θn(m, γt) > 0 and∣∣∣∣Θn(m, γti)

Θn(m, γt)
− 1

∣∣∣∣, ∣∣∣∣Θn(m, γti)

Θn(m, γt)
− 1

∣∣∣∣ ≤ C|t− ti|
1

2(1+2N) for every i ∈ N. (3.1.3)

Observe that (3.1.2) and (3.1.3) imply, respectively, that for every i ∈ N it holds that∣∣Θn(m, γt) − Θn(m, γt)
∣∣ ≤ 2C|t− ti|

1
2(1+2N) Θn(m, γti), (3.1.4)∣∣Θn(m, γt) − Θn(m, γt)

∣∣ ≤ 2C|t− ti|
1

2(1+2N)
Θn(m, γt)Θn(m, γt)

Θn(m, γti)
. (3.1.5)

Hence, we can conclude that Θn(m, γt) = Θn(m, γt) ∈ (0,+∞) by letting i→ ∞ in (3.1.4) if λ <∞,
or in (3.1.5) if λ = +∞. This shows that γt ∈ R∗

n(X) for every t ∈ [δ, 1 − δ].
Thanks to the arbitrariness of δ, we proved that γt ∈ R∗

n(X) for every t ∈ (0, 1), as desired.

3.2 Blow-ups

The goal of this section is to study how sets of finite perimeter behave after a blow-up of the
space. We start introducing the definition of blow-up of a set of finite perimeter and a tech-
nical/compactness tool. Then we discuss splitting maps, good coordinates, and their interplay.
Finally, we prove the main result of the section, i.e. the characterization of blow-ups of sets of finite
perimeter.
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3.2.1 Tools

The following is one of the most important definitions of this manuscript.

Definition 3.2.1. Let (X, d,m) be an RCD(K,N) space, let x ∈ X and let E be a measurable
subset of X. We say that the quintuple (X∞, d∞,m∞, x∞, E∞) is tangent to (X, d,m, E) at x if
there exists a sequence of radii rk ↘ 0, such that

i) (X, r−1
k d,mx

rk
, x) → (X∞, d∞,m∞, x∞) in the pointed measured Gromov-Hausdorff topology,

say in a realization (proper metric space) (Z, dZ) with respect to isometric embeddings ιk :
(X, r−1

k d) → (Z, dZ) and ι∞ : (X∞, d∞) → (Z, dZ).

ii) E∞ is measurable subset of X∞ such that ιk(E) converge in L1
loc to ι∞(E∞) with respect to

the realization as above.

iii) E∞ is a set of locally finite perimeter and weak convergence of rescaled perimeters holds, i.e.

(ιk)∗|DkχE | → (ι∞)∗|DχE∞ | in duality with Cbs(Z) (3.2.1)

with respect to the realization as above, where |DkχE | is the perimeter measure relative to
the rescaled space (X, r−1

k d,mx
rk

).

We denote the collection of all tangent spaces to (X, d,m, E) at x as Tanx(X, d,m, E) and we will
write a converging sequence as above by

(X, r−1
k d,mx

rk
, x, E) → (X∞, d∞,m∞, x∞, E∞).

We consider two elements (X∞, d∞,m∞, x∞, E∞), (X′
∞, d

′
∞,m

′
∞, x

′
∞, E

′
∞) ∈ Tanx(X, d,m, E)

to be isomorphic if there exists an isometry Ψ : X∞ → X′
∞ such that Ψ(x∞) = x′∞, Ψ∗m∞ = m′

∞
(i.e. (X∞, d∞,m∞, x∞) and (X′

∞, d
′
∞,m

′
∞, x

′
∞) are isomorphic as pointed metric measure spaces

through Ψ) and moreover m′
∞(Ψ(E∞)∆E′

∞) = 0.
Now we show a result which implies, in a sense, compactness of sets of (locally) finite perimeter

during a blow-up procedure.

Theorem 3.2.2. Let (X, d,m) be an RCD(K,N) space and let E ⊆ X be a set of locally finite
perimeter. Let x ∈ supp |DχE | be satisfying the conclusions of Proposition 2.3.3.

Let rk ↘ 0 be such that (X, r−1
k d,mx

rk
, x) → (X∞, d∞,m∞, x∞) in the pmGH topology, for some

realization. Then we can extract a not relabelled subsequence such that there exists a set of locally
finite perimeter E∞ ⊆ X∞ and, with respect to the same realization as above, (X, r−1

k d,mx
rk
, x, E) →

(X∞, d∞,m∞, x∞, E∞) according to Definition 3.2.1. In particular, we have that Tanx(X, d,m, E)
is not empty.

Proof. This is [10, Corollary 4.10] with its proof, we give some of the details, we use the notation
of Definition 3.2.1. By item iii) of Proposition 2.3.3, it holds that, for any R > 0,

lim sup
k

|DkχE |(Bk
R(x)) = lim sup

k

rk|DχE |(BRrk(x))

m(Brk(x))

≤ lim sup
k

rk|DχE |(BRrk(x))

m(BRrk(x))
mx

rk
(Bk

R(x))

≤ lim sup
k

Rrk|DχE |(BRrk(x))

m(BRrk(x))

m∞(BR(x∞))

R
<∞,

(3.2.2)
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so that we can apply [10, Corollary 3.4] and extract a (not relabelled) subsequence such that also
item ii) of Definition 3.2.1 holds, for some Borel set E∞ ⊆ X∞ (notice that the realization (Z, dZ)
is fixed in [10, Section 3], so that such convergence happens in the realization (Z, dZ) that we have
in the statement). It remains to show that, up to passing to a subsequence, also item item iii) of
Definition 3.2.1 is satisfied, as the last conclusion follows from Gromov compactness Theorem for
RCD(K,N) spaces.

Item iii) of Definition 3.2.1 follows from [10, Proposition 3.9], we repeat the argument. We
know that ιk(E) → ι∞(E∞) in L1

loc and, up to passing to a (not relabelled) subsequence, that
(ιk)∗|DkχE | → (ι∞)∗ν in duality with Cbs(Z), for some Radon measure ν on (X∞, d∞). The second
conclusion is due to weak compactness in the space of measures, taking into account (3.2.2) again
and the fact that any weak limit of (ιk)∗|DkχE | is supported on ι∞(X∞). In other words, we only
have to prove that ν = |DχE∞ |.

Now we argue as in the proof of [10, Corollary 3.4] (recall (3.2.2)), and we see that, up to
extracting a not relabelled subsequence, for a sequence of radii Rl ↗ ∞, for every l,

sup
k

|Dkχ
Bk

Rl
(x)|(X) <∞ and sup

k
|Dkχ

E∩Bk
Rl

(x)|(X) <∞. (3.2.3)

Notice that, by the very definition of L1
loc convergence, we have that ιk(χE ∩ Bk

Rl
(x)) = ιk(χE) ∩

BRl
(ιk(x)) converge in L1-strong to ι∞(χE∞ ∩ BRl

(x∞)) = ι∞(χE∞) ∩ BRl
(ι∞(x∞)), for every

l. This observation allows us to use [10, Proposition 3.6], in particular, [10, Equation (3.9)], to
conclude that, for every l, E∞ ∩BRl

(x∞) has finite perimeter andˆ
X∞

gd|DχE∞∩BRl
(x∞)| ≤ lim inf

k

ˆ
X
gd|Dkχ

E∩Bk
Rl

(x)| for every g ∈ LIPbs(Z, dZ) non-negative.

In particular, by locality, taking into account that Rl ↗ ∞, we deduce that E∞ has locally finite
perimeter and

|DχE∞ | ≤ ν. (3.2.4)

Now, for every l we apply [10, Proposition 3.8] to obtain a sequence {El
k}k of sets of finite

perimeter, where El
k ⊆ X satisfy

El
k → E∞ ∩BRl

(x∞) in L1-strong and |Dkχ
El

k
|(X) → |DχE∞∩BRl

(x∞)|(X∞).

In particular, using as before [10, Proposition 3.6] (but this time, we can exploit the second con-
clusion above), we deduce that

(ιk)∗|Dkχ
El

k
| → (ι∞)∗|DχE∞∩BRl

(x∞)| in duality with Cbs(Z). (3.2.5)

Again, we have taken a not relabelled subsequence of {rk}k (with a diagonal argument).
Now fix l and let s ∈ (Rl/2, Rl) be such that

ν(∂Bs(x∞)) = |DχE∞ |(∂Bs(x∞)) = |DkχE(∂Bk
s (x))| = 0 for every k

(notice that a.e. s ∈ (Rl/2, Rl) is suitable) and define

Ẽl
k := (El

k ∩Bk
s (x)) ∪ (E \Bk

s (x)) = (El
k ∩Bsrk(x)) ∪ (E \Bsrk(x)).

By item ii) of Proposition 2.3.3, we have that, for k big enough (namely, such that Rlrk < rx),

|DkχE |(Bk
Rl

(x)) =
rk|DχE |(BRlrk(x))

m(Brk(x))
≤ (1 + ωx(Rlrk))

rk|DχẼl
k
|(BRlrk(x))

m(Brk(x))

= (1 + ωx(Rlrk))|Dkχ
Ẽl

k
|(Bk

Rl
(x)) = λk|Dkχ

Ẽl
k
|(Bk

Rl
(x)),
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where λk := (1 + ωx(Rlrk)) → 1 as k ↗ ∞. We can then compute

|DkχE |(B̄k
s (x)) = |DkχE |(Bk

Rl
(x)) − |DkχE |(Bk

Rl
(x) \ B̄k

s (x))

≤ λk|Dkχ
Ẽl

k
|(Bk

Rl
(x)) − |DkχE |(Bk

Rl
(x) \ B̄k

s (x))

= λk|Dkχ
Ẽl

k
|(Bk

s (x)) + λk|Dkχ
Ẽl

k
|(∂Bk

s (x))

+ λk|Dkχ
Ẽl

k
|(Bk

Rl
(x) \ B̄k

s (x)) − |DkχE |(Bk
Rl

(x) \ B̄k
s (x))

= λk|Dkχ
El

k
|(Bk

s (x)) + λk|Dkχ
Ẽl

k
|(∂Bk

s (x))

+ (λk − 1)|DkχE |(Bk
Rl

(x) \ B̄k
s (x)).

Hence, using the second conclusion of (3.2.3) and the fact that λk → 1, and then (3.2.5) for the
second inequality,

ν(Bs(x∞)) ≤ lim inf
k

|DkχE |(B̄k
s (x)) ≤ lim sup

k
|Dkχ

El
k
|(Bk

s (x)) + lim inf
k

|Dkχ
Ẽl

k
|(∂Bk

s (x))

≤ |DχE∞∩BRl
(x∞)|(B̄s(x∞)) + lim inf

k
|Dkχ

Ẽl
k
|(∂Bk

s (x))

= |DχE∞ |(Bs(x∞)) + lim inf
k

|Dkχ
Ẽl

k
|(∂Bk

s (x)),

where the last equality is due to the constraints on s.
Therefore, recalling (3.2.4), it remains to prove that

lim inf
k

|Dkχ
Ẽl

k
|(∂Bk

s (x)) = 0 for a.e. s ∈ (Rl/2, Rl). (3.2.6)

We start by noticing that

χ
Ẽl

k
= χ

El
k

χ
Bsrk

(x) + χEχX\Bsrk
(x) = (χEl

k
− χE)χBsrk

(x) + χE ,

so that
|DχẼl

k
| ≤

∣∣D((χEl
k
− χE)χBsrk

(x)
)∣∣+ |DχE |. (3.2.7)

Now we apply (with an immediate localization argument) [10, Lemma 3.10] with χEl
k
−χE in place

of f to deduce that∣∣D((χEl
k
−χE)χBsrk

(x)
)∣∣(∂Bsrk(x)) ≤

ˆ
X
|χEl

k
−χE |d|DχBsrk

(x)| for a.e. s ∈ (Rl/2, Rl). (3.2.8)

Hence, recalling the constraint on s, reading (3.2.7) and (3.2.8) in the rescaled spaces,

|Dkχ
Ẽl

k
|(∂Bk

s (x)) ≤
ˆ
X
|χEl

k
− χE |d|Dkχ

Bk
s
(x)| for a.e. s ∈ (Rl/2, Rl).

Then, using also Fatou’s Lemma and the coarea formula,

ˆ Rl

Rl/2
lim inf

k
|Dkχ

Ẽl
k
|(∂Bk

s (x))ds ≤ lim inf
k

ˆ Rl

Rl/2
|Dkχ

Ẽl
k
|(∂Bk

s (x))ds

≤ lim inf
k

ˆ Rl

Rl/2

ˆ
X
|χEl

k
− χE |d|Dkχ

Bk
s
(x)|ds

≤ lim inf
k

ˆ
Bk

Rl
(x)

|χEl
k
− χE |dmx

rk
.

(3.2.9)
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Now notice thatˆ
Bk

Rl
(x)

|χEl
k
− χ

E∩BRl
(x)|dmx

rk
=

ˆ
Bk

Rl
(x)

χ
El

k
+ χ

E∩BRl
(x) − 2χEl

k∩(E∩BRl
(x))dm

x
rk

→ 0,

where we used that El
k → E∞∩BRl

(x∞) and E ∩BRl
(x) → E∞∩BRl

(x∞) in L1-strong and hence
also El

k ∩ (E ∩ BRl
(x)) → E∞ ∩ BRl

(x∞) in L1-strong by [10, Lemma 3.5]. This implies that the
last term of (3.2.9) is 0, so that (3.2.6) follows.

3.2.2 Splitting maps

We introduce splitting maps, after [58]. In the definition below, ĈK,N is the constant appearing in
the definition of δ splitting map in [51], which is linked to the (local) Lipschitz constant of harmonic
functions [96].

A splitting map is an object that plays the role of some coordinate functions (u1, . . . , uk) :
Rn → Rk. Notice that these standard coordinate functions are Lipschitz, harmonic, have vanishing
Hessian and have orthonormal gradients. Moreover, for any RCD(0, N) space, the presence of a
map satisfying these properties implies that the space splits off a factor Rk, isometrically (this
follows from an iterated application of the splitting Theorem [81] as in [34, Lemma 1.21], see also
[10, Section 2]).

Definition 3.2.3 (Splitting map). Let (X, d,m) be an RCD(K,N) space. Let x ∈ X, let k ∈ N,
and let r, δ > 0 be given. We say that a map

u = (u1, . . . , uk) : Br(x) → Rk

is a δ-splitting map if the following three properties hold:

i) for every i = 1, . . . , k, ui is harmonic and ĈK,N -Lipschitz,

ii) for every i = 1, . . . , k,

r2−
ˆ
Br(x)

|Hessui|2dm < δ,

iii) for every i, j = 1, . . . , k,

−
ˆ
Br(x)

|∇ui · ∇uj − δi,j |dm < δ.

Remark 3.2.4. Let u, v : Br(x) → R be harmonic maps on an RCD space (hence u and v are locally
Lipschitz, [96]). Then ∇u · ∇v has Lebesgue points with respect to m everywhere in Br(x). This
is [50, Remark 2.10] together with a polarization argument. ■

Remark 3.2.5. Let u, v : Br(x) → R be harmonic maps on an RCD space. Then ∇u admits a quasi-
continuous representative on Br(x) as well as ∇u · ∇v admits a quasi-continuous representative
on Br(x). In particular, for any Borel measure, finite on balls, µ≪ Cap, ∇u admits a well defined
trace on L0

µ(TX) on Br(x) (see Theorem 2.2.22) as well as ∇u · ∇v admits a well defined trace on
L0(µ) on Br(x). We are going to exploit this traces throughout with no further notice.

Moreover, the Lebesgue representative (with respect to m) for ∇u · ∇v, say f , is quasi-continuous
on Br(x) (see [69] and the references therein for the relevant notions). In particular, f coincides
with the trace of ∇u · ∇v on L0(µ). We prove this fact. By a cut-off argument and the local nature
of this claim, we can assume that f has compact support in Br(x), hence f ∈ H1,2(X). We denote
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with f̄ the quasi-continuous representative for f , our claim is then f̄ = f in L0(Cap). Take also
{fn}n ⊆ LIPbs(X) with fn → f in H1,2(X). Notice that (taking the continuous representative of
fn) fn → f̄ in L0(Cap) by the continuity of the quasi-continuous representative map H1,2(X) →
L0(Cap). Now the conclusion comes from the argument in the first part of the proof of [39, Theorem
5.62], see in particular [39, Equation (5.15)], with f̄ in place of u and fk in place of f . ■

Remark 3.2.6. The condition ii) of Definition 3.2.3 is easily seen to be unnecessary, in applications,
but we preferred to keep it to follow the original definition. For example, inspecting the proof of
Proposition 3.2.9 from [51, Proposition 3.7], we see that this condition does not enter into play, and
the smallness of the Hessian is ultimately implied by condition iii), thanks to the local Bochner
inequality (2.2.4), together with the doubling inequality (cf. Remark 3.2.13). ■

Now we state four key propositions [51] which show the interplay between the existence of
splitting maps and the fact that a suitable rescaling of the space is close to a space that splits
isometrically an Euclidean factor. The first shows existence of a splitting map, provided that the
space is close enough to a product space.

Proposition 3.2.7. Let N > 1 and let k ∈ N with k ≤ N . For every δ ∈ (0, 1), there exists
ε = ε(N, δ) ∈ (0, 1) such that for every RCD(−ε,N) space (X, d,m) and x ∈ X, if there exists a
pointed RCD(0, N − k) space (Z, dZ,mZ, z) satisfying

dpmGH

(
(X, d,m, x), (Rk × Z, dRk×Z,Lk ⊗mZ, (0, z))

)
< ε,

then there exists a δ-splitting map u : B5(x) → Rk.

Then we have the scale-invariant version of Proposition 3.2.7.

Proposition 3.2.8. Let N > 1 and let k ∈ N with k ≤ N . For every δ ∈ (0, 1), there exists
ε = ε(N, δ) ∈ (0, 1) such that for every RCD(K,N) space (X, d,m) and x ∈ X, if r ∈ (0, 1) is such
that r2 max{−K, 0} < ε and there exists a pointed RCD(0, N − k) space (Z, dZ,mZ, z) satisfying

dpmGH

(
(X, r−1d,mr

x, x), (Rk × Z, dRk×Z,Lk ⊗mZ, (0, z))
)
< ε,

then there exists a δ-splitting map u : B5r(x) → Rk.

The third proposition is a sort of converse of the two above: if we have a map that is a
splitting map at sufficiency many scales, then the space is close to a product space. Notice that
while the assumption (the existence of a splitting map defined on Bδ−1(x)) is local, the conclusion
(dpmGH(X,Rk × Z) < ε) has more a “global taste”. The possibility of having such a statement
comes from the very definition of the pmGH distance, through the usual use of cut-off functions.

Proposition 3.2.9. Let N > 1 and let k ∈ N with k ≤ N . For every ε ∈ (0, 1) there exists
δ = δ(N, ε) ∈ (0, 1) such that for any RCD(−δ,N) space (X, d,m) and x ∈ X, if there exists a map
u : Bδ−1(x) → Rk such that for every s ∈ (0, δ−1), u : Bs(x) → Rk is a δ-splitting map, then there
exists a pointed RCD(0, N − k) metric measure space (Z, dZ,mZ, z) such that

dpmGH

(
(X, d,m, x), (Rk × Z, dRk×Z,Lk ⊗mZ, (0, z))

)
< ε.

Then we have the scale-invariant version of Proposition 3.2.9.

Proposition 3.2.10. Let N > 1 and let k ∈ N with k ≤ N . For every ε ∈ (0, 1) there exists
δ = δ(N, ε) ∈ (0, 1) such that for every r ∈ (0, 1), for every RCD(K,N) space (X, d,m) with x ∈ X,
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if there exists a map u : Br(x) → Rk such that for every s ∈ (0, r), u : Bs(x) → Rk is a δ-splitting
map, then for every (X∞, d∞,m∞, x∞) ∈ Tanx(X, d,m), there exists a pointed RCD(0, N −k) space
(Z, dZ,mZ, z) such that

dpmGH

(
(X∞, d∞,m∞, x∞), (Rk × Z, dRk×Z,Lk ⊗mZ, (0, z))

)
< ε.

Finally, for any splitting map, there exists a “bad set” with small Hausdorff content outside
which the map is still a splitting map at any smaller scale. We omit its proof ([50]), which is based
on a maximal function argument.

Proposition 3.2.11. Let N > 1 and let k ∈ N with k ≤ N . Let (X, d,m) be an RCD(K,N)
space, let x ∈ X and let u : B4r(x) → Rk be a δ-splitting map for some r ∈ (0, 1/2) such that
r2 max{−K, 0} ≤ 4. Then there exists a Borel set G ⊆ B2r(x) with

Hh
5(B2r(x) \G) ≤ CN

√
δ
m(B2r(x))

2r
,

where CN ∈ (0,∞) is a constant that depends only on N , such that for every y ∈ G and s ∈ (0, r),
u : Bs(y) → Rk is a CNδ

1,4-splitting map.

The proposition above motivates the following definition.

Definition 3.2.12 (Good splitting map). Let (X, d,m) be an RCD(K,N) space of essential di-
mension n. Let x ∈ X, let r > 0 and let η ∈ (0, n−1). We say that a map

u = (u1, . . . , un) : B2r(x) → Rn

is a good η-splitting map on D ⊆ Br(x) if the following two properties hold:

i) for every i = 1, . . . , n, ui is harmonic and ĈK,N -Lipschitz,

ii) for every i, j = 1, . . . , n, for every y ∈ D and s ∈ (0, r),

−
ˆ
Bs(y)

|∇ui · ∇uj − δi,j |dm < η

(i.e. u satisfies items i) and satisfies ii) of Definition 3.2.3 for every centre y ∈ D and scale s ∈ (0, r)).
We simply write good splitting map if the value of η ∈ (0, n−1) is not important.

Remark 3.2.13. It may seem strange that in the definition of good splitting map we have dropped
the scale-invariant averaged control on the squared Hilbert–Schmidt norm of the Hessian, i.e. the
bound on r2−́Br(y)

|Hessui|2dm as in item iii) of Definition 3.2.3. This, however, is coherent with
the motivation for good splitting maps, i.e. being able to operate at arbitrarily small scales. Indeed,
|∇ui|2 has Lebesgue points everywhere in Br(x) (Remark 3.2.4) hence, by (2.2.4) and the doubling
inequality, for every y ∈ Br(x),

r2−
ˆ
Br(y)

|Hessui|2dm → 0,

so that the bound mentioned above would have been redundant. ■

Given a good splitting map, we can rotate its components in order to have them asymptotically
form an orthonormal basis.
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Lemma 3.2.14. Let (X, d,m) be an RCD(K,N) space of essential dimension n. Let η ∈ (0, n−1)
and let u : B2r(x) → Rn be a good η-splitting map on D ⊆ Br(x). We define the matrix valued
Borel map M = {Mi,j}i,j : B2r(x) → Rn×n as the Gram matrix

Mi,j := ∇ui · ∇uj .

Then there exists a matrix valued Borel map A = {Ai,j}i,j : D → Rn×n satisfying

AMAT = Id and |A| ≤ Cη,n on D,

where Cη,n ∈ (0,∞) is a constant depending only on η and n.
In particular, if y ∈ D and we set vy := A(y)u, then

(∇viy · ∇vjy)(y) = δi,j for i, j = 1, . . . , n.

Proof. Notice first that being u a good η-splitting map (recall Remark 3.2.4), for every i, j =
1, . . . , n,

|Mi,j − δij | ≤ η < n−1 on D. (3.2.10)

Now fix for the moment y ∈ D. Let λ ∈ R be an eigenvalue of M(y) and let w = (w1, . . . , wn) be
a corresponding eigenvector, assume that |w| = 1. Then

λ = wTM(x)w = wT (M(y) − Id)w + |w|2

so that by (3.2.10) and Holder’s inequality,

|λ− 1| = |wT (M(y) − Id)w| =
∣∣∑

i,jw
i(M(y)i,j − δi,j)w

j
∣∣ ≤ η

∣∣∑
i,jw

iwj
∣∣ ≤ η|w|2ℓ1 ≤ ηn < 1.

In particular, M(y) is invertible.
Fix for the moment y ∈ D. We perform a formal Gram–Schmidt orthogonalization algorithm.

Namely, we set

ṽ1y := u1, v1y :=
ṽ1y√

(∇̃v1y · ∇ṽ1y)(y)

and for i > 1,

ṽiy := ui − (∇ui · ∇v1y)(y)v1y − · · · − (∇ui · ∇vi−1
y )(y)vi−1

y , viy :=
ṽiy√

(∇ṽiy · ∇ṽiy)(y)
,

notice that the denominators are strictly positive by the invertibility of M(y). Then we set A(y)
to be the natural matrix satisfying vy = (v1y , . . . , v

n
y ) = A(y)u according to the procedure above,

namely

A(y)i,j =


0 if i < j,

1√
(∇ṽiy ·,∇ṽiy)(y)

if i = j,

− (∇ui ·∇vjy)(y)√
(∇ṽiy ·,∇ṽiy)(y)

if i > j.

Now we compute

(A(y)M(y)A(y)T )i,j =
∑

k,lA(y)i,kA(y)j,l(∇uk · ∇ul)(y) = (∇viy · ∇vjy)(y) = δi,j ,
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where the last equality is due to the Gram–Schmidt-type construction. Let now w ∈ Rn. We
compute

|A(y)Tw|2 = wTA(y)A(y)Tw = wTA(y)M(y)A(y)Tw + wTA(y)(Id −M(y))A(y)Tw

≤ |w|2 + (ηn)|A(y)Tw|2

where we used that the eigenvalues λ1, . . . , λn of the symmetric matrix M(y) satisfy |λi−1| ≤ ηn <
1. Therefore we can bound |A(y)T | by a constant that depends only on η and n.

Now we need to introduce a notion of unit normal, in the sense of calculus, to a set of finite
perimeter. We need this object in order to keep track of the set of finite perimeter in a blow-up
procedure. We only state the result, revealing in advance a particular version of Theorem 4.1.1 of
Chapter 4 (actually, the bulk of the proof of Theorem 4.1.1 is the same as the one of Theorem 3.2.15).

Theorem 3.2.15 (Gauss–Green formula). Let (X, d,m) be an RCD(K,N) space and let E ⊆ X be
a set of finite perimeter and finite measure. Then there exists a unique vector field νE ∈ L∞

|DχE |(TX)
such that it holdsˆ

E
div vdm = −

ˆ
v · νE d|DχE | for every v ∈ H1,2

C (TX) ∩D(div) ∩ L∞(TX).

Moreover, |νE | = 1 |DχE |-a.e.

Now we want to isolate a condition for which, given a harmonic Lipschitz vector valued map,
this map is suitable to recognize the blow-up of a particular set of finite perimeter at a point.

Definition 3.2.16 (Good coordinates). Let (X, d,m) be an RCD(K,N) space of essential dimension
n. Let E ⊆ X be a set of finite perimeter and let x ∈ supp |DχE | be given. Then we say that an
n-tuple of harmonic Lipschitz functions

u = (u1, . . . , un) : Br(x) → Rn

is a system of good coordinates for E at x provided the following properties are satisfied.

i) For any i, j = 1, . . . , n, it holds that

lim
s↘0

−
ˆ
Bs(x)

|∇ui · ∇uj − δij |dm = lim
s↘0

−
ˆ
Bs(x)

|∇ui · ∇uj − δij |d|DχE | = 0. (3.2.11)

ii) For any i = 1, . . . , n, there exists ν̄ui (x) ∈ R such that

lim
s↘0

−
ˆ
Bs(x)

|νE · ∇ui − ν̄ui (x)|d|DχE | = 0.

iii) The resulting vector ν̄u(x) := (ν̄u1 (x), . . . , ν̄un(x)) ∈ Rn satisfies |ν̄u(x)| = 1.

Remark 3.2.17. Let (X, d,m) be an RCD(K,N) space of essential dimension n, let x ∈ X and let
u = (u1, . . . , un) be an n-tuple of harmonic Lipschitz functions satisfying for every i, j = 1, . . . , n
(cf. (3.2.11))

lim
r↘0

−
ˆ
Br(x)

|∇ui · ∇uj − δij |dm = 0.
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Given a sequence of radii ri ↘ 0 such that

(X, r−1
i d,mri

x , x) → (Rn, de,Ln, 0)

and fixed a realization of such convergence, it follows from the results of [24, 25] (recalled in [51,
Section 1.2.3]) and (2.2.4) that, up to extracting a not relabelled subsequence, the functions in

{uji := r−1
i (uj − uj(x))}i for j = 1, . . . , n

converge locally uniformly and locally in H1,2-strong on BR(0) (for every R > 0) to orthogonal
coordinate functions of Rn. ■

The fact that systems of good coordinates have components that are asymptotically orthonormal
grants that, for sufficiently small scales, these maps are splitting maps.

Lemma 3.2.18. Let (X, d,m) be an RCD(K,N) space of essential dimension n. Let u : Br(x) →
Rn a n-tuple of harmonic Lipschitz functions satisfying for every i, j = 1, . . . , n (cf. (3.2.11))

lim
s↘0

−
ˆ
Bs(x)

|∇ui · ∇uj − δi,j |dm = 0.

Then, for every δ ∈ (0, 1), there exists rδ ∈ (0, 1) such that u is a (1 + δ)-Lipschitz δ-splitting map
on Bs(x) for every s ∈ (0, rδ).

Proof. As in Remark 3.2.13, we have that for every i,

lim
r↘0

r2−
ˆ
Br(x)

|Hessui|2dm = 0.

Finally, considering the scale-invariant version of [48, Remark 3.3] we have that for every δ ∈ (0, 1),
there exists rδ ∈ (0, 1) such that u is (1 + CNδ

1/2)-Lipschitz on Brδ(x).

Now we decompose an RCD space as a countable union of Borel sets {Dk}k, up to a set that is
not seen by total variations, in such a way that every Dk is a “good set” of a good splitting map. It
is worth noticing that this decomposition depends only on the RCD space and not on a particular
function of bounded variation.

Lemma 3.2.19. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let η ∈ (0, n−1).
Then there exists a sequence of maps {uk : B2rk(xk) → Rn}k and a sequence of pairwise disjoint
Borel sets {Dk ⊆ Brk(xk)}k such that

i) for every f ∈ BV(X),

|Df |

(
X \

⋃
k

Dk

)
= 0, (3.2.12)

ii) for every k, uk is a good η-splitting map on Dk.

To any such collection of η-splitting maps, we can therefore associate a natural map⋃
k

Dk → N x 7→ k(x).
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Proof. The proof follows the arguments given in the proof of [51, Theorem 3.2], but the outcome
is stronger, thanks to a suitable improvement of the proof.

Fix a countable dense set S ⊆ R∗
n(X). Let y ∈ S be given. If ε > 0 is small enough and

r ∈ (0,
√
ε/|K|) ∩Q is such that

dpmGH

(
(X, r−1d,mr

y, y), (Rn, de,Ln, 0)
)
< ε,

then, by Proposition 3.2.8 we obtain a δ-splitting map uy,r : B5r(y) → Rn for some δ (which can
be made arbitrarily small, taking ε small enough). Let

Dy,r :=
{
x ∈ B5/2r(y)

∣∣uy,r is an η-splitting map on Bs(x) for every s ∈ (0, 5/4r)
}
.

The claim of the lemma will be proved with the sequence of sets {Dy,r}y,r and maps {uy,r}y,r, after
having made the sets Dy,r disjoint.

Assume now, by contradiction, that the claim is false. Then, by coarea, we find a set of finite
perimeter E ⊆ X such that

|DχE |
(
X \

⋃
y,r

Dy,r

)
> 0.

In particular, by Proposition 2.3.3 and Theorem 3.1.1,

|DχE |
(
B \

⋃
y,r

Dy,r

)
> 0, (3.2.13)

where (notice B ⊆ R∗
n(X) ∩ ∂∗E), for some j that will be assumed fixed,

B :=

{
x ∈ R∗

n(X) ∩ ∂∗E :
r|DχE |(Br(x))

m(Br(x))
> j−1 for every r ∈ (0, j−1)

}
.

Fix ε > 0 to be determined later. If x ∈ B, then there exists r = r(x) ∈ Q ∩ (0, 1) such that
|K|r2 < ε < 4 and

dpmGH

(
(X, r−1d,mr

x, x), (Rn, de,Ln, 0)
)
< ε and

r|DχE |(Br/4(x))

m(Br/4(x))
> 4j−1.

By density of S and thanks to an easy continuity argument, we deduce that for some point y =
y(x) ∈ S ∩Br/2(x),

dpmGH

(
(X, r−1d,mr

y, y), (Rn, de,Ln, 0)
)
< ε, and

r|DχE |(Br/4(y))

m(Br/4(y))
> 4j−1. (3.2.14)

By the discussion above, we obtain a δ-splitting map uy,r : B5r(y) → Rn for some δ = δ(ε) (which
can be made arbitrarily small, taking ε small enough). By Proposition 3.2.11, uy,r is a CNδ

1/4-
splitting map on Bs(x) for any x ∈ Dε

y,r ⊆ B5/2r(y) and s ∈ (0, 5/4r), where

Hh
5(B5/2r(y) \Dε

y,r) ≤ CNδ
1/2m(B5/2r(x))

5/2r
.

Therefore, Dε
y,r ⊆ Dy,r if CNδ

1/4 < η.
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We apply Vitali covering lemma to the family {Br(x)/2(y(x))}x∈B constructed arguing as above
and we obtain a sequence of disjoint balls {Br(xi)/2(y(xi))}i such that

B ⊆
⋃
i

B5/2r(xi)(y(xi)).

Set
Dε :=

⋃
i

Dε
y(xi),r(xi)

.

Then we can compute

Hh
5(B \Dε) ≤

∑
i∈N

Hh
5

(
B5/2r(xi)(y(xi)) \Dε

y(xi),r(xi)

)
≤ CNδ

1/2
∑
i∈N

m(B5/2r(xi)(y(xi)))

5/2r(xi)

≤ CNδ
1/2
∑
i∈N

m(Br(xi)/4(y(xi)))

r(xi)/4
≤ CN jδ

1/2|DχE |(X),

where the constants CN may change from line to line, in the third inequality we are using the
doubling property together with the fact that r(xi) is sufficiently small, and in the last inequality
we are using (3.2.14) together with the fact that {Br(xi)/2(y(xi))} are disjoint. Let now {εi}i with

εi ↘ 0 be such that the corresponding {δi}i satisfy both δ
1/2
i ≤ 2−i and CN jδ

1/4
i < η, and set

G :=
⋃
i

Dεi ⊆ Dy,r.

Then Hh
5(B \G) = 0, which contradicts (3.2.13).

In view of the following proposition, recall Definition 3.2.16, in particular the definition of ν̄.
We are going to prove that, given a good splitting map, we can rotate it in order to have a system
of good coordinates.

Proposition 3.2.20. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let E ⊆ X
be a set of finite perimeter. Let η ∈ (0, n−1) and let u : 2B → Rn be a good η-splitting map on
D ⊆ B. Let A : D → Rn×n be the matrix valued Borel map given by Lemma 3.2.14 and set, for
y ∈ D, vy := A(y)u. Then, for |DχE |-a.e. y ∈ D, the map vy is a system of good coordinates for
E at y and

ν̄
vy
E (y) = A(y)

(
(νE · ∇ui)(y)

)
i
∈ Rn for |DχE |-a.e. x ∈ D. (3.2.15)

In particular, for |DχE |-a.e. y, there exists a system of good coordinates for E at y.

Proof. Up to removing a |DχE |-negligible set, we can assume that every point of D is a Lebesgue
point of ∇ui · ∇uj , νE · ∇ui, with respect to |DχE | for every i, j = 1, . . . , n. This is due to the
asymptotically doubling property of |DχE |. Also, up to removing another |DχE |-negligible set, we
can assume that at every point of D, the Lebesgue value for ∇ui · ∇uj with respect to m coincides
with the Lebesgue value for (the trace of the quasi-continuous representative of) ∇ui · ∇uj with
respect to |DχE |, for every i, j = 1, . . . , n. This is due to Remark 3.2.5 together with the fact that
|DχE | is asymptotically doubling. Notice that this last property implies, in particular, that (taking
the traces on L2

|DχE |(TX))

A{∇ui · ∇uj}i,jAT = Id |DχE |-a.e. on D, (3.2.16)
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where we also used Lemma 3.2.14.
By the paragraph above, for every y ∈ D, the map vy satisfies (3.2.11). We compute, exploiting

the fact that every y ∈ D is a Lebesgue point for νE · ∇ui,

lim sup
r↘0

−
ˆ
Br(y)

∣∣∑
kA(y)i,k(νE · ∇uk)(z) −

∑
kA(y)i,k(νE · ∇uk)(y)

∣∣d|DχE |(z)

≤ lim sup
r↘0

Cη,n

∑
k
−
ˆ
Br(y)

|(νE · ∇uk)(z) − (νE · ∇uk)(y)|d|DχE |(z) = 0,

where the inequality is due to Lemma 3.2.14. Hence (3.2.15) is satisfied.
It remains to prove only that |νvyE (y)| = 1 for |DχE |-a.e. y ∈ D, notice that y 7→ ν

vy
E (y) ∈ Rn is

|DχE |-measurable thanks to (3.2.15). First, by (3.2.16),(∑
kAi,k∇uk

)
·
(∑

kAj,k∇uk
)

= δi,j |DχE |-a.e. on D. (3.2.17)

Now, as L2
|DχE |(TX) has dimension at most n (Theorem 2.2.21) we deduce that the n vector fields

{
∑

kA(y)i,k∇uk}i=1,...,n form an orthonormal basis for L2
|DχE |(TX) on D. Therefore,

νE =
∑
i

((∑
kνE · Ai,k∇uk

)(∑
kAi,k∇uk

))
on D,

as element of L2
|DχE |(TX). Now, as |νE | = 1 |DχE |-a.e. and by (3.2.17),

1 =
∑
i,j

((∑
kνE · Ai,k∇uk

)(∑
kνE · Aj,k∇uk

)(∑
kAi,k∇uk

)
·
(∑

kAj,k∇uk
))

=
∑
i

(∑
kνE · Ai,k∇uk

)2
|DχE |-a.e. on D, whence the claim follows from (3.2.15).

The last conclusion is due to Lemma 3.2.19.

3.2.3 Main result

The following important theorem completely characterizes blow-ups of sets of finite perimeter, and
how we can recognize the blow-up, in the limit space, using a system of good coordinates.

Theorem 3.2.21. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let E ⊆ X be
a set of locally finite perimeter. Let x ∈ supp |DχE | such that the conclusions of Proposition 2.3.3
hold at x. Assume that there exists a system of good coordinates for E at x, u : Br(x) → Rn. Then

Tanx(X, d,m, E) =
{

(Rn, de,Ln, 0, {xn > 0})
}
. (3.2.18)

More precisely, if H ⊆ Rn is a half-space such that

(Rn, de,Ln, 0, H) ∈ Tanx(X, d,m, E),

where the coordinates in Rn are chosen as limits of rescalings of u as in Remark 3.2.17, then

H = {y : y · ν̄uE(x) ≥ 0} .

In particular, (3.2.18) holds for |DχE |-a.e. x ∈ X.
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Proof. By a standard reduction argument, we can assume that E has finite perimeter and finite
measure. Fix x ∈ supp |DχE | and fix u : Brx(x) → Rn, system of good coordinates for E at
x. Notice that if O is a rotation matrix, then v := Ou : Brx(x) → Rn is still a system of good
coordinates for E at x with ν̄vE(x) = Oν̄uE(x) (here we are making the dependence on the system of
good coordinates explicit). Hence, for Step 2, up to changing also the coordinates on Rn, we see
that there is no loss of generality in assuming that ν̄uE(x) = (0, . . . , 0, 1). This has the only effect
to simplify some computations.

Step 1. By Lemma 3.2.18, for every δ ∈ (0, 1), there exists rδ ∈ (0, 1) such that u is a δ-splitting
map on Bs(x) for every s ∈ (0, rδ). Now, take (X′, d′,m′, x′) ∈ Tanx(X, d,m) (which is not empty,
by Gromov compactness Theorem). Now we can apply Proposition 3.2.10 for any δ ∈ (0, 1). Take
indeed ε = j−1 and δ = δ(ε) given by Proposition 3.2.10, then, by the map u, we know that there
exists a pointed RCD(0, N − n) space (Zj , dj ,mj , zj) such that

dpmGH((X′, d′,m′, x′), (Rn × Zj , de ⊗ dj ,Ln ⊗mj , (0, zj))) < j−1.

Applying Gromov compactness Theorem, we have that for some pointed RCD(0, N − n) space
(Z∞, d∞,m∞, z∞) we have that

dpmGH((Z∞, d∞,m∞, z∞), (Zj , dj ,mj , zj)) → 0

so that we infer

dpmGH((X′, d′,m′, x′), (Rn × Z∞, de ⊗ d∞,Ln ⊗m∞, (0, z∞))) = 0.

The lower semicontinuity and additivity of the essential dimension forces Z∞ to be a point, so that
(X′, d′,m′, x′) must be Rn. This shows that

Tanx(X, d,m) =
{

(Rn, de,Ln, 0)
}
.

Step 2. Now take a sequence rj ↘ 0 such that (X, r−1
j d,mx

rj , x) → (Rn, de,Ln, 0) in the pmGH
topology and let (Z, dZ) be a realization of such convergence, with isometric embeddings ιj :
(X, r−1

j d) → (Z, dZ) and ιj : (Rn, de) → (Z, dZ). We can assume (possibly taking a not relabelled

subsequence, see Remark 3.2.17) that the maps {uij := r−1
j (ui−ui(x))}j converge locally uniformly

and in H1,2-strong on BR(0) (for every R > 0) to coordinate functions on Rn, say e1, . . . , en. We
will use these coordinates on Rn. We can assume (possibly taking a not relabelled subsequence, see
Theorem 3.2.2) that (X, r−1

j d,mx
rj , x, E) → (Rn, de,Ln, 0, E′), i.e. ιj(E) converge in L1

loc to ι∞(E′)
and we have weak convergence of rescaled perimeters, see (3.2.1), for some set of locally finite
perimeter E′ ⊆ Rn. We have to show that E′ = {y : y · ν̄uE(x) ≥ 0}, recall that we are assuming

ν̄uE(x) = (0, . . . , 0, 1).

We prove this by a limiting procedure involving the Gauss–Green formula.

For this part of the proof we are going to follow the arguments of the proofs of [51, Proposition
4.7] and [50, Proposition 4.8], building heavily on the convergence results of [24, 25], recalled
also in [51, Section 1.2.3]. As these convergence results are by now standard, we are going to
use them freely, referring the reader to the references above for details. Let φ∞ ∈ LIPbs(Rn).
We take φj ∈ LIPbs(X, r

−1
j d), uniformly Lipschitz, with uniformly bounded support and strongly
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converging to φ∞ in H1,2 and locally uniformly converging to φ∞. By Theorem 3.2.15, we have
that for i = 1, . . . , n, if φ ∈ LIPbs(X) has support contained in Brx(x),

ˆ
E
∇φ · ∇uidm = −

ˆ
φ∇ui · νEd|DχE |,

where we used that as ui is harmonic on Brx(x), then φ∇ui ∈ H1,2
C (TX)∩D(div) and div(φ∇ui) =

φ∇ui. We can multiply both sides by
rj

C
rj
x

and use the scaling properties of the gradients and the

measures to infer that ˆ
Ej

∇jφj · ∇juijdm
x
rj = − rj

C
rj
x

ˆ
φj∇ui · νEd|DχE |, (3.2.19)

where this equality makes sense for j large enough as for j large enough, with a little abuse,
suppφj ⊆ Brx(x). Concerning the left hand side of (3.2.19), we have the convergence

ˆ
Ej

∇jφj · ∇juijdm
x
rj →

ˆ
E′

∇φ∞ · ∇eidLn. (3.2.20)

Using twice the rescaling property |DjχE | =
rj

C
rj
x

|DχE |, if R is big enough,∣∣∣∣ rjCrj
x

ˆ
φj∇ui · νEd|DχE | − δi,n

ˆ
φjd|DjχE |

∣∣∣∣
≤ ∥φj∥∞

rj

C
rj
x

ˆ
BRrj

(x)
|∇ui · νE − δi,n|d|DχE |

= ∥φj∥∞|DχEj |(BR(x))−
ˆ
BRrj

(x)
|∇ui · νE − δi,n|d|DχE | → 0.

Therefore, concerning the right hand side of (3.2.19), we have the convergence

rj

C
rj
x

ˆ
φj∇ui · νEd|DχE | → δi,n

ˆ
φ∞d|DχE′ |, (3.2.21)

where we used again the weak convergence of rescaled perimeters together with the local uniform
convergence φj → φ∞. All in all by (3.2.19), (3.2.20) and (3.2.21), we obtain that in the space
(Rn, de,Ln) (we are not rescaling the measure now), we have that for every φ ∈ LIPbs(Rn),

ˆ
E′
∂iφdLn = −δi,n

ˆ
φdHn−1 ∂∗E′. (3.2.22)

Now, for any i = 1, . . . , n− 1, by (3.2.22),

ˆ
E′
∂iφdLn = 0,

which easily implies that χE′(y) = χH′(yn) for some H ′ ⊆ R. Taking product test functions, one
verifies that (3.2.22) with i = n implies that H ′ is a set of locally finite perimeter and that for
every ψ ∈ LIPbs(R), ˆ

H′
ψ′dt = −

ˆ
ψdH0 ∂∗H ′.
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This shows that
|DχH′ | = DχH′ ,

so that we have that H ′ = χ
[a,∞) for some a ∈ R. Now we can use the weak convergence of rescaled

perimeters together with item iii) of Proposition 2.3.3 to infer that a = 0, whence the claim.

Step 3. The last conclusion is due to Proposition 3.2.20 and Proposition 2.3.3.

We briefly comment on Step 1 of the proof of Theorem 3.2.21. Notice that the conclusion
entails a “constancy of the dimension” statement (which is not obtained for free but hidden in
the proof of Lemma 3.2.19, which exploits Theorem 3.1.1). Also, if one is only interested on the
conclusion of Theorem 3.2.21 at almost every point with respect to the perimeter measure, the
argument of Step 1 is unnecessary and can be replaced directly by Theorem 3.1.1.

3.3 Reduced boundary

In view of the following definition, recall the definition of tangent to a set given in Definition 3.2.1.
We want to have a subset of the essential boundary that is big enough to carry all the perimeter
measure, but made of points that are regular enough to have nice properties.

Definition 3.3.1 (Reduced boundary). Let (X, d,m) be an RCD(K,N) space of essential dimension
n. Let E ⊆ X be a set of locally finite perimeter. Then we define the reduced boundary FE ⊆ ∂∗E
of E as the set of all those points x ∈ R∗

n(X) satisfying all the four conclusions of Proposition 2.3.3
and such that

Tanx(X, d,m, E) =
{

(Rn, de,Ln, 0, {xn > 0})
}
.

By Theorem 3.2.21, Theorem 3.1.1 and Proposition 2.3.3 we obtain the following corollary,
which confirms that Definition 3.3.1 is meaningful.

Corollary 3.3.2. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let E ⊆ X be
a set of locally finite perimeter. Then

|DχE |(X \ FE) = 0.

Remark 3.3.3. For any x ∈ FE the following hold (recall the definition of Cr
x in (2.2.10)).

i) If ri ↘ 0 is such that
(X, r−1

i d,mri
x , x) → (Rn, de,Ln, 0) (3.3.1)

in a realization (Z, dZ), then, up to not relabelled subsequences and a change of coordinates
in Rn,

(X, r−1
i d,mri

x , x, E) → (R, de,Ln, 0, {xn > 0}),

in the same realization (Z, dZ). Notice that, given a sequence ri ↘ 0, it is always possible to
find a subsequence satisfying (3.3.1) by Gromov compactness Theorem.

ii) We have

lim
r↘0

m(Br(x))

rn
= ωnΘn(m, x) ∈ (0,∞),

lim
r↘0

Cr
x

rn
=

ωn

n+ 1
Θn(m, x),

lim
r↘0

|DχE |(Br(x))

rn−1
= ωn−1Θn(m, x).
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iii) x is a point of density 1/2 for E, i.e.

lim
r↘0

m(Br(x) ∩ E)

m(Br(x))
= 1/2.

This follows indeed by Theorem 3.2.2 and by the membership to R∗
n(X). ■

3.4 Rectifiability

In view of the following theorem, recall that |DχE | is concentrated on FE, by Corollary 3.3.2,
for any set of locally finite perimeter E. We are then going to prove the rectifiability of reduced
boundaries of sets of finite perimeter, and give an explicit description of the maps that we can use
to have rectifiability: indeed, we are going to use good splitting maps.

Theorem 3.4.1. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let E ⊆ X be
a set of locally finite perimeter. Then FE is countably (n− 1)-rectifiable. More precisely, for every
ε > 0, we can write

FE =
⋃
i∈N

Bi ∪N,

where, for every i, Bi is (1 + ε)-bilipschitz to a Borel subset of Rn−1 and |DχE |(N) = 0.

Theorem 3.4.1 is an easy consequence of the following lemma, and we postpone its proof after
the proof of Lemma 3.4.2. Lemma 3.4.2 is proved by blow-up.

Lemma 3.4.2. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let E ⊆ X be
a set of locally finite perimeter. Let u be a good splitting map on D and let A : D → Rn×n be the
matrix valued Borel map given by Lemma 3.2.14. Let ε small enough so that ε2(ĈK,N + 1) < ε,

where ĈK,N is the constant appearing in Definition 3.2.12.
Let G ⊆ FE ∩D be a set of points with the following properties:

i) for some l ∈ N, l ≥ 1,

r|DχE |(Br(y))

m(Br(y))
> l−1 for every y ∈ G and r ∈ (0, l−1),

ii) for every y ∈ G, the map vy := A(y)u is a system of good coordinates for E at y,

iii) there exist a matrix Ā ∈ Qn×n and a a vector ν̄ ∈ Qn such that

|A(y) − Ā| < ε2 and |ν̄vyE (y) − ν̄| < ε2 for every y ∈ G.

Then there exists a projection map π̄ : Rn → Rn onto a hyperplane and a sequence of sets {Gk}k
with Gk ⊆ G and

|DχE |

(
G \

⋃
k

Gk

)
= 0,

such that, for every k,
π̄Āu : Gk → Rn

is (1 + 2ε)-bilipschitz onto its (n− 1)-dimensional image.
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Proof. Define π̄ : Rn → Rn to be the projection onto the subspace orthogonal to ν̄, i.e. π̄(z) =
z − (z · ν̄)ν̄ and set ū := Āu.

Take any y ∈ G. We claim that there exists ry ∈ (0, 1] satisfying∣∣|π̄ū(y) − π̄ū(z)| − d(y, z)
∣∣ ≤ 2εd(y, z) for every z ∈ G such that d(y, z) < ry. (3.4.1)

Assume the contrary and take a sequence {zk}k ⊆ G with rk := d(y, zk) → 0 satisfying∣∣|π̄ū(y) − π̄ū(zk)| − d(y, zk)
∣∣ > 2εd(y, zk).

Now we consider the rescaled spaces (X, r−1
k d,mrk

y , y). Recall that vy is a system of good coordinates
for E at y, hence, up to taking not relabelled subsequences we can exploit the membership y ∈
FE (in particular, Theorem 3.2.21) and Remark 3.2.17 to have that {vjy,k := r−1

k (vjy − vjy(y))}k
converge locally uniformly to orthogonal coordinates on Rn, say vjy,∞, for j = 1, . . . , n, where
(X, r−1

k d,mrk
y , y, E) → (Rn, de,Ln, 0, H) in the pmGH topology, for the half-space

H = {z : vy,∞(z) · ν̄vyE (y) ≥ 0}.

Also, up taking again subsequences, we can assume that zk → z∞ for some z∞ ∈ Rn, notice that
de(0, z∞) = 1 = |vy,∞(0) − vy,∞(z∞)|. Now we claim that z∞ ∈ ∂H. Assume not, say z∞ /∈ ∂H,
then for some σ ∈ (0, 1), taking into account weak convergence of measures involved, and that
{zk}k ⊆ G,

0 < Ln(BRn

σ (z∞)) = lim
k

mrk
y (Bk

σ(zk)) = lim
k

m(Bσrk(zk))

Crk
y

≤ lim sup
k

l
rk|DχE |(Bσrk(zk))

Crk
y

= l lim sup
k

|DχEk
|(Bk

σ(zk)) = l|DχH |(BRn

σ (z∞)) = 0

which is a contradiction. Therefore z∞ ∈ ∂H so that, by the description of H,

(vy,∞(0) − vy,∞(z∞)) ⊥ ν̄
vy
E (y),

and hence∣∣|π̄vy,∞(0) − π̄vy,∞(z∞)| − |vy,∞(0) − vy,∞(z∞)|
∣∣ ≤ |ν̄ − ν̄

vy
E (y)||vy,∞(0) − vy,∞(z∞)| < ε2.

Therefore, by local uniform convergence,

lim
k
r−1
k

∣∣|π̄vy(y) − π̄vy(zk)| − d(y, zk)
∣∣ = lim

k

∣∣|π̄vy,k(y) − π̄vy,k(zk)| − r−1
k d(y, zk)

∣∣
=
∣∣|π̄vy,∞(0) − π̄vy,∞(z∞)| − de(0, z∞)

∣∣ < ε2.

Hence, if k is big enough, ∣∣|π̄vy(y) − π̄vy(zk)| − d(y, zk)
∣∣ < (ε+ ε2)rk.

Now we compute, if k is big enough, as ε is small enough,∣∣|π̄ū(y) − π̄ū(zk)| − d(y, zk)|
∣∣ ≤ |Ā−A(y)||u(y) − u(zk)| +

∣∣|π̄vy(y) − π̄vy(zk)| − d(y, zk)|
∣∣

≤ ε2ĈK,Nd(y, zk) + (ε+ ε2)d(y, zk) < 2εd(y, zk),

which is a contradiction. Therefore (3.4.1) is proved.
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By an exhaustion argument, we can assume that for every y ∈ Gk, ry > m−1, for some m ∈ N,
where we are taking the maximal ry ∈ [0, 1], which is not zero by (3.4.1). Notice indeed that, taking
the maximal ry, y 7→ ry is upper semicontinuous. By a partitioning argument we assume moreover
that the diameter of Gk is smaller than m−1: if y, z ∈ Gk, then∣∣|π̄ū(y) − π̄ū(z)| − d(y, z)

∣∣ ≤ 2εd(y, z),

as d(y, z) ≤ m−1 < ry. Hence the map π̄ū provides the suitable bilipschitz map.

Proof of Theorem 3.4.1. Fix ε > 0 small enough (this smallness depending on ĈK,N , which appears
in Lemma 3.4.2).

Now we use Lemma 3.2.19 for some η ∈ (0, n−1) and, keeping the same notation, we concentrate
on one fixed k. Dropping the subscript k, we have to prove rectifiability of |DχE | D, where there
exists a good splitting map u : 2B → Rn on D ⊆ B, for some ball B ⊆ X. Now we apply
Proposition 3.2.20 (the matrix valued Borel map D ∋ y 7→ A(y) ∈ Rn×n given by Lemma 3.2.14)
and, up to discarding a |DχE |-negligible subset from D, vy := A(y)u is a system of good coordinates
for E at y, for any y ∈ D. Up to a partitioning and exhaustion argument we see that we can
assume that assumptions of Lemma 3.4.2 are in place (recall Remark 3.3.3). Hence we can use a
further partitioning argument and exploit the maps given by Lemma 3.4.2 (as their image lies in a
hyperplane, we can choose coordinates of such hyperplane and assume that these maps take values
in Rn−1).

We add now a technical result which will be useful later on. Namely, fixed a BV function f we
can cover an RCD space, up to a |Df |-null set, by a countable union of sets that are bi-Borel to
Borel subsets of the Euclidean space.

Proposition 3.4.3. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let f ∈
BV(X)m. Then there exists a countable collection {(Gi,Ψi, Bi)}i such that

i) {Gi}i is a collection of pairwise disjoint Borel subset of X satisfying

|Df |
(
X \

⋃
i

Gi

)
= 0,

ii) {Bi}i is a collection of Borel subsets of Rn,

iii) for every i,

Ψi : Gi → Bi

is an invertible Borel map with Borel inverse

Ψ−1
i : Bi → Gi,

iv) for every i, Ψi is the restriction of some Ψ̃i ∈ BV(X)n to Gi with JΨ̃i
∩Gi = ∅.

Proof. As |Df | ≤ |Df1| + · · · + |Dfm|, there is no loss of generality in assuming m = 1, so write
f = f1.

Split X in the disjoint union Af ∪ Cf ∪ Sf , according to the decomposition

|Df | = |Df |a + |Df |c + |Df |j



3.5. REPRESENTATION FORMULA 71

in absolutely continuous, Cantor and jump part (Definition 2.3.4). Then the claim on the portion
Sf follows from the rectifiability result of Theorem 3.4.1. The claim on the portion Af follows from
the rectifiability of (X, d,m), e.g. [111] or [49]. As the maps providing rectifiability are bilipschitz,
an application of McShane extension Theorem shows that item iv) can be satisfied.

We treat now the part Cf . First, we define the subgraph of f as in Section 2.3.5, i.e.

Gf := {(x, t) ∈ X× R : t < f(x)}.

By Proposition 2.3.12, Gf is a set of locally finite perimeter and that, if π : X×R → X denotes the
projection onto the first factor, it holds that

|Df | ≤ π∗|DχGf
|.

By the rectifiability result of Theorem 3.4.1 again, there exists a countable collection {Ĉi}i of
pairwise disjoint Borel subsets of ∂∗Gf ⊆ X× R such that

|DχGf
|
(

(X× R) \
⋃
i

Ĉi

)
= 0

and for every i there exists a map
Φi : Ĉi → B̂i ⊆ Rn

which is bilipschitz onto its image. To our aim, there is no loss of generality in assuming that
for every i, Ĉi ⊆ (Cf ∩ {f ∈ R}) × R (we use also (2.3.5)). We set for every i, Ci := π(Ĉi) and
Ψi := Φi ◦ (Id, f)|Ci

, and it is easy to show that this assignment satisfies the request in item iii),
recalling (2.3.6).

We now show item iv), up to removing from Ci the |Df |-negligible subset JΨ̃i
∩ Ci (the fact

that JΨ̃i
∩ Ci is |Df |-negligible follows from (3.4.2) below and the fact that |Df | (X \ Sf ) does

not charge jump sets of functions of bounded variation). We first use McShane extension Theorem
for Φi to obtain a L-Lipschitz function Φ̃i and set Ψ̃i := Φ̃i ◦ (Id, f). Notice that if g ∈ LIPloc(X)
it holds that lip(Φ̃i ◦ (Id, g)) ≤ L(lip(g) + 1), therefore an approximation argument yields that
DΨ̃i ∈ BVloc(X)n with

|DΨ̃i| ≤ L(|Df | + m), (3.4.2)

and then the conclusion follows.

3.5 Representation formula

Now we want to state formulae which give the representation of the perimeter measure. The first
one, (3.5.1), is in terms of the 1-codimensional Hausdorff measure, whereas the second one, (3.5.2),
is a purely metric formula (and answers in the affirmative to [115, Conjecture 5.32]). It is worth
comparing (3.5.1) to (2.3.8), which holds on any PI space.

Theorem 3.5.1 (Representation formula for the perimeter). Let (X, d,m) be an RCD(K,N) space
of essential dimension n. Let E ⊆ X be a set of locally finite perimeter. Then,

|DχE | =
ωn−1

ωn
Hh FE (3.5.1)

and
|DχE | = Θn(m, ·)Hn−1 FE. (3.5.2)

In particular, it holds that Θn−1(|DχE |, x) = Θn(m, x) for Hn−1-a.e. x ∈ FE.
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Proof. Formula (3.5.1) is proved in [51, Corollary 3.15], taking into account Corollary 3.3.2.
Now we prove (3.5.2). For any x ∈ FE we compute, by Remark 3.3.3,

∃Θn−1(|DχE |, x) = lim
r↘0

|DχE |(Br(x))

ωn−1rn−1
= Θn(m, x) ∈ (0,∞). (3.5.3)

Notice that |DχE | is concentrated on FE (Corollary 3.3.2) and that we are heavily exploiting the
fact that, by definition, FE ⊆ R∗

n(X), which is meaningful thanks to Theorem 3.1.1. we deduce
that µE := Hn−1 FE is a σ-finite. Now, by [31, Theorem 2.4.3] we have that Hn−1 FE is a
σ-finite measure and moreover that

Hn−1 FE ≪ |DχE | FE ≪ Hn−1 FE.

Also, from Theorem 3.4.1 (and Remark 3.5.2), we see that we can apply [27, Theorem 5.4]
(which is based on [100]) and the computation in (3.5.3) and deduce that

|DχE | = lim
r↘0

|DχE |(Br(x))

ωn−1rn−1
Hn−1 FE = Θn(m, x)Hn−1 FE,

whence the conclusion.

Remark 3.5.2. Consider an RCD(K,N) space (X, d,m) of essential dimension n and a set of locally
finite perimeter E ⊆ X. Notice that

Hh(B) = 0 if and only if |DχE |(B) = 0 for every B ⊆ ∂∗E Borel (3.5.4)

and that
Hh(B) = 0 if and only if Hn−1(B) = 0 for every B ⊆ R∗

n(X) Borel. (3.5.5)

Indeed, (3.5.4) follows from [7, Theorem 5.3], whereas (3.5.5) is proved via standard arguments,
starting from the claim on

Bj :=

{
x ∈ B :

m(Br(x))

rn
∈ (j−1, j) for every r ∈ (0, j−1)

}
and using σ-sub additivity as j → ∞.

In particular, we have
Hh ∂∗E ≪ |DχE | ≪ Hh FE, (3.5.6)

where we also used Corollary 3.3.2. ■

3.6 Bibliographical notes

The theory of sets of finite perimeter in Euclidean spaces is nowadays well understood. The results
stated in this chapter, in the smooth framework, are by now classical, see for example the references
already recalled in this manuscript, e.g. [18, 77, 76, 79, 91] as well as [64, 65].

The systematic study of fine properties of sets of finite perimeter in RCD spaces was initiated
in [10] (for what concerns blow-ups), and then continued in [51, 50] (for what concerns rectifiability
and finer results). These papers are the main references for this chapter. However, at the time when
[10, 51] were written, the powerful result of [70] was not available. Later on, [70] was used in [50] to
sharpen the result of [51]. We are then in a position to leverage the findings from [70] already from
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the beginning of this note. This not only significantly shortens the proofs but also makes some of
them simpler and better suited for the subsequent development of the theory. In particular, this
allows us to bypass the technique of splitting via rigidity in the Bakry–Émery inequality of [10]
and prove directly that the blow-up of an RCD space, at almost every point with respect to the
perimeter measure, is Euclidean. Also, the part of the technique of [51] borrowed from [111] is
now unnecessary. The main ideas and techniques used in this section, even after the modifications
described above, are the ones contained in [10, 51, 50].

The statement of Theorem 3.1.1 is taken from [32], however, its proof is from [50] (and relies
on [112, 70]), and uses Proposition 3.1.2 (proved in [32]), which is a sharpening of [50, Proposition
2.14].

Definition 3.2.1 is taken from [10], up to the fact that here we add the requirement of item iii). i.e.
the weak convergence of (3.2.1), however, this will make basically no difference, by Theorem 3.2.2.
Theorem 3.2.2 is proved in [10], here we give a statement that, under some aspects, is slightly
sharper. See also [10] for what concerns references for the argument used.

Definition 3.2.3 is [51, Definition 3.4], which, in turn, recalls [58]. Proposition 3.2.7, Propo-
sition 3.2.8, Proposition 3.2.9, Proposition 3.2.10, and Proposition 3.2.11 are taken from [51].
Definition 3.2.12 is clearly inspired by the ideas just mentioned and is motivated by [32, Definition
2.28]. Notice that, with respect to the literature, we do not include any Hessian bound (cf. item
ii) of Definition 3.2.3) in the definition of good splitting map, see Remark 3.2.13. Notice also that
good η-splitting maps for η = 1/(2n) are enough for the material of this manuscript. Lemma 3.2.14
is standard and takes its roots from [32, Lemma 2.27 and Definition 2.28].

Theorem 3.2.15 is [51, Theorem 2.4]. We are going to slightly improve this result in Chapter 4,
however, such result is needed also in this chapter and hence we have decided to move up its
statement.

Definition 3.2.16 is [50, Definition 4.6]. We have added item iii), with an immaterial difference
with respect to the reference, thanks to [50, Proposition 3.6].

Lemma 3.2.19 is extracted from [32, Lemma 2.27], which, in turn, builds upon the argument
of [51, Theorem 3.2] and uses, as main ingredients, [51, Corollary 3.10 and Corollary 3.12]. One
of the contributions of Lemma 3.2.19 is to “throw away” the bad set of small Hausdorff content of
Proposition 3.2.11 inside its proof, avoiding the necessity to treat this set afterwards. The main
part of Proposition 3.2.20 is that ν

vy
E (y) has norm 1. This is done in [50, Proposition 3.6].

Theorem 3.2.21 sums up achievements of [10, 51, 50]. Its proof, however, is slightly modified, as
we prove that the blow-up of the set of finite perimeter is a half-space without relying on [10]. This,
as explained in the introduction, is due to the fact that we can exploit the result of [70] right from
the beginning of this manuscript. The major drawback is that, in this note, we take [70] as a black
box, and, without doing so, it would have been possible to prove a slightly weaker (in the sense that
at |DχE |-a.e. point the tangent is Euclidean, but possibly of not constant dimension) version of
Theorem 3.2.21, in a self-contained way. Nevertheless, to obtain the constancy of dimension of the
tangents as in Theorem 3.2.21, [70] seems necessary ([50]), and this is the reason why we decided
to follow this approach. It is worth spending some lines about the technique of [10]. The authors
proved that, for an RCD(0, N) space (X, d,m), if there exists a Lipschitz and bounded function f
satisfying equality in (2.3.16) for some s > 0, i.e.

|∇hsf | = hs|∇f | m-a.e. (3.6.1)

then the space splits a line, isometrically, and f , read in the split space, depends only on the real
variable, in a monotone way. It was indeed shown that the flow trajectories of the vector field ∇hsf

|∇hsf |
are lines and provide a splitting of the space, [81]. It was then shown that, if E ⊆ X is a set of finite
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perimeter, then, for |DχE |-a.e. x ∈ X, for any (X∞, d∞,m∞, x∞, E∞) ∈ Tanx(X, d,m, E), for any
t > 0, f := hX∞

t (χE∞) satisfies (3.6.1). Hence, tangents at such points split a line, and an iterated
application of Preiss’ iterated tangents principle provides us the with existence, almost everywhere
with respect to the perimeter measure, of Euclidean tangents. Later on, in [51], this conclusion
has been sharpened, but still taking the above discussion as starting point, using techniques of
geometric analysis: almost everywhere with respect to the perimeter measure, the tangent to a set
of finite perimeter is unique and Euclidean of a certain (possibly not constant) dimension.

Definition 3.3.1 is taken from [10], here we introduce also the requirement of the conclusions of
Proposition 2.3.3 (which is equivalent, up to a set which is negligible with respect to the perimeter,
by Proposition 2.3.3).

Theorem 3.4.1 was first proved in [51]. We remark (see [32, Appendix A]) that Theorem 3.2.21
is already enough to establish rectifiability, by [37]. However, we give a more direct proof, following
[51], as we will also need more information about the maps providing rectifiability. Compared
to [51], we give a slightly different proof of the rectifiability statement, as we use Lemma 3.4.2
instead of [51, Proposition 4.7]. The argument used is the same, i.e. blow-up, but here we manage
to avoid the introduction of “bad sets” with small Hausdorff content. The precise statement of
Lemma 3.4.2 appears here for the first time and simplifies the proof of Theorem 6.1.2, with respect
to [32]. Proposition 3.4.3 is taken from [43] and will be used in the proof of Theorem 4.3.6.

For what concerns Theorem 3.5.1, equation (3.5.1) is proved in [10], whereas (3.5.2) is proved
in [32] (in [10], for what concerns non-collapsed RCD spaces).



Chapter 4

Distributional differential of BV
functions

In this chapter we give a definition of “distributional differential” for vector valued functions of
bounded variation on RCD spaces, and we study the properties that this newly defined object
satisfies.

4.1 Existence and basic notions

Let (X, d,m) be an RCD(K,∞) space and let f ∈ BV(X)m. Recall that (2.3.9) states that |Df | ≪
Cap, so that we have, by Theorem 2.2.22, the module Lp

|Df |(TX). In view of the following theorem,

recall also that the interpretation of the integral in (4.1.1) is given by Remark 2.3.6. The proof of
Theorem 4.1.1 relies on the strategy developed in [51] in the case in which f is a simple function,
and on suitable arguments to extend the result to the general case.

Theorem 4.1.1. Let (X, d,m) be an RCD(K,∞) space and let f = (f1, . . . , fm) ∈ BV(X)m. Then
there exists a unique vector field νf ∈ L∞

|Df |(T
mX) such that it holds

m∑
i=1

ˆ
fidiv vi = −

ˆ
v · νf d|Df | for every v = (v1, . . . , vm) ∈ (QC∞(TX)∩D(div))m. (4.1.1)

Moreover, |νf | = 1 |Df |-a.e.

Proof. We divide the proof in several steps.

Step 1. We show that if f ∈ BV(X)∩L∞(m), then there exists a unique νf ∈ L∞
|Df |(TX) such that

ˆ
fdiv v = −

ˆ
v · νf d|Df | for every v ∈ H1,2

C (TX) ∩D(div) ∩ L∞(TX), (4.1.2)

and moreover |νf | = 1 |Df |-a.e. This can be proved following verbatim the proof of [51, Theorem
2.2]. Notice that in [51] the assumption that the dimension was finite could have been dropped
taking into account Theorem 2.3.7 and Proposition 2.3.17.

Step 2. Under the same assumptions of Step 1, we show that (4.1.2) holds for every v ∈
QC∞(TX) ∩ D(div). Fix then v ∈ QC∞(TX) ∩ D(div). By an easy cut-off argument, there is
no loss of generality in assuming that v has bounded support. We take a sequence tk ↘ 0, then

75
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we define vk := ψeKtkhH,tkv, where ψ ∈ LIPbs(X) (say suppψ ⋐ B for some ball B) is a cut-off
function that is identically 1 on a neighbourhood of supp v. Now notice that the equality in (4.1.2)
holds for vk and that, as div vk → div v in L2(m), it suffices to check that vk → v in L0

Cap(TX),
then dominated convergence together with the theory developed in [69] implies the conclusion.

We thus have to show that vk → v in in L0
Cap(TX). We can assume with no loss of generality

that |v| ≤ 1 m-a.e. so that also |vk| ≤ 1 m-a.e. for every k. As v ∈ QC(TX), we can take a sequence
{wl}l ⊆ TestV(X) such that wl → v in L0

Cap(TX), suppwl ⋐ B and |wl| ≤ 1 m-a.e.

We claim that

wl,k := ψeKtkhH,tkwl → ψeKtkhH,tkv = vk uniformly in k in L0
Cap(TX) as l → ∞. (4.1.3)

Fix for the moment ε > 0. As wl → v in L0
Cap(TX) and the fact that all these vector fields have

uniformly bounded support, we can take functions {gl}l ⊆ H1,2(X) such that ∥gl∥H1,2(X) → 0,
gl(x) ∈ [0, 1] for m-a.e. x and {|wl − v| > ε} is contained in the interior of {gl ≥ 1} . Therefore,
taking into account that

|wl,k − vk| ≤ χB

(
eKtk |hH,tk

(
(wl − v)χ{|wl−v|>ε}

)
| + eKtk |hH,tk

(
(wl − v)χ{|wl−v|≤ε}

)
|
)

≤ χB

(
htk(|(wl − v)χ{|wl−v|>ε}|) + htk(|(wl − v)χ{|wl−v|≤ε}|)

)
≤ 2χBhtkgl + 2ε

and that

∥htkgl∥H1,2(X) ≤ ∥gl∥H1,2(X) → 0 uniformly in k as l → ∞,

it follows that, uniformly in k,

lim sup
l

Cap
{
|wl,k − vk| > 4ε

}
≤ lim sup

l
Cap (B ∩ {|htkgl| > ε}) = 0

and hence (4.1.3) follows.

Now we can conclude easily, noticing that

dL0
Cap(TX)(vk, v) ≤ dL0

Cap(TX)(vk, wl,k) + dL0
Cap(TX)(wl,k, wl) + dL0

Cap(TX)(wl, v)

as we can first take l large enough to estimate the first and last summand (uniformly in k) and
then let k → ∞, recalling that as wl,k → wl in H1,2

H (TX), wl,k → wl in L0
Cap(TX).

Step 3. We drop the L∞(m) bound assumption on f made in Step 1. For k ∈ Z, define

fk := (f ∨ k) ∧ (k + 1) − (k + χ{k<0}(k)).

Notice that for every k ∈ Z, |Dfk| ≤ |Df | and, by Step 1, there exists νfk ∈ L2
|Dfk|(TX) with

|νfk | = 1 |Dfk|-a.e. and such that

ˆ
fkdiv v dm = −

ˆ
v · νfk d|Dfk| for every v ∈ QC∞(TX) ∩D(div). (4.1.4)

If we consider νfk as an element of L0
Cap(TX), we have that π̄f (νfk)d|Dfk|

d|Df | is well defined. Now

notice that by coarea it holds |Df | =
∑

k∈Z |Dfk|. Then, as∥∥∥∥π̄f (νfk)
d|Dfk|
d|Df |

∥∥∥∥
L2
|Df |(TX)

≤ |Dfk|(X),
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and by the completeness of L2
|Df |(TX), we see that

νf :=
∑
k∈Z

π̄f (νfk)
d|Dfk|
d|Df |

is a well defined element of L2
|Df |(TX) that satisfies |νf | ≤ 1 |Df |-a.e.

Let now v ∈ QC∞(TX) ∩D(div). We prove the integration by parts formula (4.1.2) for f and
v. Using (4.1.4) we have,

lim
l

ˆ l−1∑
k=−l

fkdiv v dm = − lim
l

ˆ
v ·

l−1∑
k=−l

π̄f (νfk)
d|Dfk|
d|Df |

d|Df | = −
ˆ
v · νf d|Df | .

Now we can show that |νf | ≥ 1 |Df |-a.e. arguing as in the proof of [51, Theorem 2.2]. Finally,
uniqueness of νf follows from Lemma 2.2.23. All in all, we have proved the theorem in the case
m = 1.

Step 4. We treat the case m > 1. Notice that |Df | is a finite measure such that

|Df | ≤ |Df1| + · · · + |Dfm| ≪ Cap.

Also, taking into account that |Dfi| ≤ |Df |, we can write, thanks to Radon–Nikodym Theorem,

|Dfi| = gi|Df | for every i = 1, . . . ,m,

where gi ∈ L∞(|Df |). Then for every i = 1, . . . ,m we can set

νi := giπ̄|Df |(νfi) ∈ L2
|Df |(TX),

where we are considering νfi as a element of L0
Cap(TX). Notice that as νfi is well defined |Dfi|-a.e.

νi is well defined and that |νi| = |gi| |Df |-a.e. We set νf := (ν1, . . . , νm) ∈ L2
|Df |(T

mX) and clearly

(4.1.1) is satisfied.
As uniqueness of such νf follows from uniqueness in the unidimensional case, to conclude it

remains only to show that
|νf | = 1 |Df |-a.e.

By Lemma 2.2.23, take a sequence {wk = (wk
1 , . . . , w

k
m)} ⊆ TestV(X)m such that wk → χ

{|νf |>0}
νf

|νf |
in L2

|Df |(T
mX). Then define {vk}k ⊆ TestV(X)m as

vk :=
1

1 ∨ |wk|
wk.

Notice that still vk → χ
{|νf |>0}

νf

|νf | and moreover |vk| ≤ 1 m-a.e. Let A ⊆ X open and take a

sequence {ψk}k ⊆ LIPbs(X) such that ψk(x) ∈ [0, 1] for every x ∈ X, suppψk ⊆ A and ψk(x) ↗ 1
for every x ∈ A. By Proposition 2.3.18 and (4.1.1) we can compute

|DF |(A) ≥ −
m∑
i=1

ˆ
fidiv(ψkv

k
i ) dm =

ˆ
ψkv

k · νf d|Df | →
ˆ
A
|νF |d|Df | ,

and this shows that |νf | ≤ 1 |Df |-a.e. Now notice that Proposition 2.3.18 and (4.1.1) imply thatˆ
|νf |d|Df | ≥ 1

so that we conclude.
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It is clear that the map BV(X)m ∋ f 7→ νf is local, in the sense that if A is an open set and
f, g ∈ BV(X)m are such that f = g m-a.e. on A, then |Df | = |Dg| on A and moreover νf = νg |Df |-
a.e. on A. We can therefore extend the definition of ν · to BVloc(X)m and it easily follows that
(4.1.1) holds even for f ∈ BVloc(X)m as soon as we consider vector fields v with compact support.
In particular, we can associate to every set of locally finite perimeter E the vector field νE := νχE .
Notice that ν−f = −νf and that νX\E = −νE , again by (4.1.1),

Of course, the i-th element of the polar vector of (f1, . . . , fm) is linked to the polar vector of fi.
This is the content of the following trivial remark.

Remark 4.1.2. Let f = (f1, . . . , fm) ∈ BVloc(X)m. Then,

(νf )i =
d|Dfi|
d|Df |

νfi |Df |-a.e. for every i = 1, . . . ,m, (4.1.5)

which is an immediate consequence of (4.1.1) (or of the construction of νf ). ■

We are not going to use the following remark in the sequel, but we believe that it is interesting
as it provides us with an optimal density result.

Remark 4.1.3. We show that if F ∈ BV(X)m, then there exists a sequence

{vk = (vk1 , . . . , v
k
m)}k ⊆ Wm

where

Wm :=
{
v = (v1, . . . vm) ∈ H1,2

H (TX)m : |v| ≤ 1 m-a.e. div vi ∈ L∞(m) for every i = 1, . . . ,m
}

such that vk → νf in L2
|Df |(T

mX).

Indeed, we can modify the proof of Proposition 2.3.18 (see in particular its Step 3), replacing
TestV(X)m with Wm in (2.3.18) and then it is enough to take a sequence {vk = (vk1 , . . . , v

k
m)}k ⊆

Wm such that (with the usual interpretation for the integral)

m∑
i=1

ˆ
fidiv vki dm → −|Df |(X)

and compute
ˆ

|vk − νf |2 d|Df | =

ˆ
|vk|2 d|Df | +

ˆ
|νf |2 d|Df | − 2

ˆ
vk · νF d|Df |

≤ 2|Df |(X) + 2
m∑
i=1

ˆ
fidiv vki dm → 0,

where in the last inequality we used (4.1.1). Notice that this argument works only to approximate
νf , and the difficulty in approximating other elements of L2

|Df |(T
mX) lies in the request of essentially

bounded divergence coupled with the request |v| ≤ 1 m-a.e. ■

4.1.1 Formal interpretation

In this manuscript, we will need to do some algebraic manipulation of the abstract object νf |Df |,
especially when dealing with fine properties and calculus rules for functions of bounded variation.
We introduce now a formal framework to denote the distributional differential of functions of
bounded variation that will allow us to proceed.
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Definition 4.1.4. Let (X, d,m) be an RCD(K,∞) space. Let ν ∈ L∞
Cap(TmX) and let µ be a finite

measure with µ ≪ Cap. We write νµ to denote the linear operator that acts on L∞
Cap(TmX) as

follows:

νµ(B)(v) :=

ˆ
B
v · ν dµ for every v ∈ L∞

Cap(TmX) and B ⊆ X Borel.

We also consider the restriction operator: if C ⊆ X is Borel,

((νµ) C)(B)(v) :=

ˆ
B∩C

v · ν dµ for every v ∈ L∞
Cap(TmX) and B ⊆ X Borel,

in other words, (νµ) C = ν(µ C), so that we will not write the unnecessary brackets.

Given ν1µ1 and ν2µ2, we write ν1µ1 = ν2µ2 if and only if

ν1µ2(X)(v) = ν1µ2(X)(v) for every v ∈ L∞
Cap(TmX). (4.1.6)

Remark 4.1.5. Notice that the expression νµ makes sense even if the vector field ν is defined only
µ-a.e. as well as µν C makes sense even if C is only µ-measurable. We will exploit this fact
throughout.

Also, we have that (4.1.6) holds if and only if

ν1µ1(X)(v) = ν2µ2(X)(v) for every v ∈ TestV(X)m.

This is a standard consequence of Lemma 2.2.23. If this is the case, then µ := |ν1|µ1 = |ν2|µ2 and
ν1
|µ1| = ν2

|µ2| µ-a.e. ■

We define now some formal algebraic operations for objects of the kind νµ.

Definition 4.1.6. Let (X, d,m) be an RCD(K,∞) space.

i) Let ν ∈ L∞
Cap(TmX) and let µ be a finite measure with µ≪ Cap. Let moreover φ : X → Rl×m

be a µ-measurable function. We define φ(νµ) := (φν)µ, where

(φν)j :=

m∑
i=1

φj,iνi j = 1, . . . , l.

Notice that

(φνµ)(X)(v) =

ˆ m∑
j=1

n∑
i=1

vj · φj,iνi dµ

for every v = (v1, . . . , vm) ∈ L∞
Cap(TmX).

ii) Let ν1, ν2 ∈ L∞
Cap(TmX) and let µ1, µ2 be two finite measures with µ1 ≪ Cap, µ2 ≪ Cap. We

define ν1µ1 + ν2µ2 as sum of linear operators, in the sense that

(ν1µ1 + ν2µ2)(X)(v) =

ˆ
v · ν1 dµ1 +

ˆ
v · ν2 dµ2 .

Notice that, if we define µ := µ1 + µ2, then

ν1µ1 + ν2µ2 =

(
ν1

dµ1
dµ

+ ν2
dµ2
dµ

)
µ.
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We then specialize this language to distributional differentials of functions of bounded variation,
and read the characterization of the distributional differential in these terms.

Definition 4.1.7. Let (X, d,m) be an RCD(K,∞) space and f ∈ BV(X)m. We define

Df := νf |Df |,

according to Definition 4.1.4 and we call this object the distributional differential of f .

Remark 4.1.8. Let f ∈ BV(X)m. Then (4.1.1) reads

m∑
i=1

ˆ
fidivvi = −Df(X)(v) for every v = (v1, . . . , vm) ∈ (QC∞(TX) ∩D(div))m.

Also, if µν is as in Definition 4.1.4 and satisfies

m∑
i=1

ˆ
fidivvi = −µν(X)(v) for every v = (v1, . . . , vf ) ∈ TestV(X)m,

then DF = νµ.

Finally, it is clear that the map BV(X)m ∋ f 7→ Df is linear. ■

4.2 Fine properties

Having at our disposal an object that represents the distributional differential of a function of
bounded variation as well as a language to deal with such objects, we start investigating some
properties. The following lemma, despite being simple, is of crucial importance for the development
of the theory and will be used several times. It relates the normal of the superlevel sets of a BV
function with the polar vector of the function, according to the principle that for smooth maps
reads as “the gradient of the function is normal to the level sets”.

Lemma 4.2.1. Let (X, d,m) be an RCD(K,∞) space and let f ∈ BV(X). Then

ν{f>t} = π̄|Dχ{f>t}|(νf ) ∈ L2
|Dχ{f>t}|(TX) for L1-a.e. t ∈ R,

where we took a Cap-representative of νf .

Proof. Notice first that the coarea formula implies that the claim of this lemma is well posed and
that

∣∣π̄|Dχ{f>t}|(νf )
∣∣ = 1

∣∣Dχ{f>t}
∣∣-a.e. for L1-a.e. t ∈ R. By Cavalieri’s integration formula and

using twice (4.1.1),

ˆ
v · νf d|Df | =

ˆ +∞

0

ˆ
v · ν{f>t} d

∣∣Dχ{f>t}
∣∣dt− ˆ 0

−∞

ˆ
v · ν{f<t} d

∣∣Dχ{f<t}
∣∣ dt

=

ˆ
R

ˆ
v · ν{f>t} d

∣∣Dχ{f>t}
∣∣ dt (4.2.1)

for every v ∈ TestV(X) with bounded support.
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By Lemma 2.2.23 and a cut-off argument, we have a sequence {vk}k ⊆ TestV(X) with bounded
support such that vk → νf in L2

|Df |(TX), so that, using the coarea formula in (2.3.3),∣∣∣∣ ˆ
R

ˆ
νf · ν{f>t} d

∣∣Dχ{f>t}
∣∣dt− ˆ

R

ˆ
vk · ν{f>t} d

∣∣Dχ{f>t}
∣∣ dt ∣∣∣∣

≤
ˆ
R

ˆ
|νf − vk| d

∣∣Dχ{f>t}
∣∣dt =

ˆ
|νf − vk|d|Df | → 0,

where we implicitly took the projection of νf on L2
|Dχ{f>t}|

(TX). We can then compute, using the

coarea formula and (4.2.1),

ˆ
R

ˆ
|ν{f>t} − νf |2 d

∣∣Dχ{f>t}
∣∣dt = 2|Df |(X) − 2

ˆ
R

ˆ
νf · ν{f>t} d

∣∣Dχ{f>t}
∣∣dt

= 2|Df |(X) − 2 lim
k

ˆ
R

ˆ
vk · ν{f>t} d

∣∣Dχ{f>t}
∣∣dt = 2|Df |(X) − 2 lim

k

ˆ
vk · νf d|Df | = 0,

which yields the conclusion, by the coarea formula again.

The next lemma is a rigidity property of the triangle inequality for total variations.

Lemma 4.2.2. Let (X, d,m) be an RCD(K,∞) space and f, f1, f2 ∈ BV(X) such that f = f1 + f2
and |Df | = |Df1| + |Df2|. Then

νf = νfi |Dfi|-a.e. for i = 1, 2,

νf1 = νf2 |Df1| ∧ |Df2|-a.e.

Proof. By Lemma 2.2.23, we have a sequence {vk}k ⊆ TestV(X) such that vk → νf in L2
|Df |(TX).

In particular,

|Df |(X) = lim
k

ˆ
vk · νf d|Df | .

Thanks to the hypothesis |Df | = |Df1| + |Df2|,

∥vk − νf1∥2L2
|Df1|

(TX) + ∥vk − νf2∥2L2
|Df2|

(TX)

= ∥νf1∥2L2
|Df1|

(TX) + ∥νf2∥2L2
|Df2|

(TX) + ∥vk∥2L2
|Df |(TX)

− 2

ˆ
vk · νf1 d|Df1| − 2

ˆ
vk · νf2 d|Df2|

= |Df |(X) + ∥vk∥2L2
|Df |(TX) − 2

ˆ
vk · νf d|Df |

where in the last equality we used also the linearity of the map f 7→ Df . It follows

lim
k

(
∥vk − νf1∥2L2

|Df1|
(TX) + ∥vk − νf2∥2L2

|Df2|
(TX)

)
= 0.

We conclude as we have proved vk → νf in L2
|Df |(TX) and vk → νfi in L2

|Dfi|(TX) for i = 1, 2.
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Now, we begin by investigating the fine properties (and calculus rules for) BV functions. We
have our results only in the setting of finite dimensional RCD spaces. The reason is that we need
the interplay between total variations and 1-codimensional spherical Hausdorff measure Hh given
by (2.3.7), which is available only in the finite dimensional setting.

Now we state a transversality lemma, which is a consequence of Lemma 4.2.2 in the case of
χE , χF , for E ⊆ F . The adjective “transversality” is due to the following reason: it states that it
two hypersurfaces meet at many points, then they have the same normal vector at the intersection.

Lemma 4.2.3. Let (X, d,m) be an RCD(K,N) space and let E,F ⊆ X be two sets of locally finite
perimeter. Then

νE = ±νF Hh-a.e. in ∂∗E ∩ ∂∗F. (4.2.2)

More precisely, there exist two sets N+, N− ⊆ ∂∗E ∩ ∂∗F with Hh((∂∗E ∩ ∂∗F ) \ (N+ ∪N−)) = 0
such that the following holds: for every x ∈ N+ (resp. N−) the set E∆F has density 0 (resp. 1) at
x and (4.2.2) holds Hh-a.e. in N+ (resp. N−) with the + (resp. −) sign.

Notice that (3.5.1) implies that (4.2.2) is well defined.

Proof. By a standard reduction, we can treat only the case in which E and F have finite perimeter
and finite measure.

First assume E ⊆ F . Notice that coarea shows that f1 = χE and f2 = χF satisfy the assump-
tions of Lemma 4.2.2. Indeed,

|D(χE + χF )|(X) =

ˆ
|Dχ{χE+χF>t}|(X)dt =

ˆ 1

0
|DχF |(X)dt+

ˆ 2

1
|DχE |(X)dt

= |DχE |(X) + |DχF )|(X),

where we used that E ⊆ F . Therefore, by Lemma 4.2.2, recalling also (3.5.1),

νE = νF Hh-a.e. in ∂∗E ∩ ∂∗F.

Assume now E ∩ F = ∅. Using the same arguments as above (with f1 = χE and f2 = −χF , notice
that ν−χF = −νF ),

νE = −νF Hh-a.e. in ∂∗E ∩ ∂∗F.
Thanks to Remark 3.3.3 (recall (3.5.6)), we may consider only the set of points at which the

sets E and F have density 1/2 and the sets E \ F , F \ E and E∆F have density in {0, 1/2, 1}.
We easily show that E∆F cannot have density 1/2 at such points. If E∆F has density 0 at x,
then E ∩ F has density 1/2 at x. We can use the first case treated above to compare first νE with
νE∩F and then νF with with νE∩F . If instead E∆F has density 1 at x, both E \F and F \E have
density 1/2 at x. We can use the first case treated above to compare first νE with νE\F , then νF
with νF\E and conclude comparing νE\F with νF\E , using the second case treated above.

In the following proposition, given a set of locally finite perimeter E, we denote by E1 (resp.
E0) the set of interior (resp. exterior) points in the sense of geometric measure theory, namely
the set of density 1 (resp. 0) points of E with respect to m. Notice that E1 = {χ∧

E = 1} and
E0 = {χ∨

E = 0}. Also, if F is another set of locally finite perimeter, we denote by

{νE = ±νF } := {x ∈ ∂∗E ∩ ∂∗F : |νE ∓ νF |(x) = 0}.

Notice that (3.5.1) implies that the sets above are well defined. The next result is a consequence
of Lemma 4.2.3 and gives a finer description of the behaviour of the unit normals to two sets of
locally finite perimeter.
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Proposition 4.2.4. Let (X, d,m) be an RCD(K,N) space and let E,F ⊆ X be two sets of locally
finite perimeter. Then, up to Hh-negligible sets,

{νE = νF } ∪ {νE = −νF } = ∂∗E ∩ ∂∗F,
{νE = νF } = ∂∗E ∩ ∂∗F ∩ (E∆F )0,

{νE = −νF } = ∂∗E ∩ ∂∗F ∩ (E∆F )1.

Moreover,

DχE∩F = DχE (F 1 ∪ ({νE = νF })) + DχF E1 = DχE F 1 + DχF (E1 ∪ {νE = νF }),

DχE∪F = DχE (F 0 ∪ {νE = νF }) + DχF E0 = DχE F 0 + DχF (E0 ∪ {νE = νF }),

DχE\F = DχE (F 0 ∪ {νE = −νF }) − DχF E1 = −DχE F 1 + DχF (E0 ∪ {νE = −νF }),

and

|DχE∩F | = |DχE | (F 1 ∪ {νE = νF }) + |DχF | E1 = |DχE | F 1 + |DχF | (E1 ∪ {νE = νF }),

|DχE∪F | = |DχE | (F 0 ∪ {νE = νF }) + |DχF | E0 = |DχE | F 0 + |DχF | (E0 ∪ {νE = νF }),

|DχE\F | = |DχE | (F 0 ∪ {νE = −νF }) − |DχF | E1

= −|DχE | F 1 + |DχF | (E0 ∪ {νE = −νF }).

Proof. The first three equalities are a restatement of Lemma 4.2.3.
Thanks to Remark 3.3.3, we can prove the other equalities on the set of points at which the

densities of the sets of locally finite perimeter E, F , E ∩ F , E ∪ F , E \ F are in {0, 1/2, 1}. Also,
recall that (3.5.6) holds for all the sets involved.

We first prove
DχE∩F = DχE (F 1 ∪ {νE = νF }) + DχF E1. (4.2.3)

Notice that (E ∩ F )1 ⊆ E1 ∩ F 1, hence both sides of (4.2.3) vanish on (E ∩ F )1. Also, up to
Hh-negligible sets, (E ∩F )0 ⊆ E0 ∪F 0 ∪{νE = −νF }, by Lemma 4.2.3, hence both sides of (4.2.3)
vanish on (E ∩ F )0. Now,

∂∗(E ∩ F ) = (∂∗E ∩ F 1) ∪ (∂∗F ∩ E1) ∩
(
∂∗E ∩ ∂∗F ∩ ∂∗(E ∩ F )

)
,

up to Hh-negligible sets. We can conclude that (4.2.3) is satisfied on ∂∗(E∩F ), as by Lemma 4.2.3,
νE∩F = νE Hh-a.e. on ∂∗(E ∩ F ) ∩ ∂∗E, νE∩F = νF Hh-a.e. on ∂∗(E ∩ F ) ∩ ∂∗F and finally
(∂∗E ∩ ∂∗F ) ∩ ∂∗(E ∩ F ) = {νE = νF }, up to Hh-negligible sets.

Now, through algebraic manipulations, using (4.2.3),

DχE∪F = DχX\((X\E)∩(X\F )) = −Dχ(X\E)∩(X\F )

= −DχX\E ((X \ F )1 ∪ {νX\E = νX\F }) − DχX\F (X \ E)1

= DχE (F 0 ∪ {νE = νF }) + DχF E0.

Similarly,

DχE\F = DχE∩(X\F ) = DχE ((X \ F )1 ∪ {νE = νX\F }) + DχX\F E1

= DχE (F 0 ∪ {νE = −νF }) − DχF E1.

Finally, the remaining equalities in the second set of equalities are obtained by symmetry. Then,
the equalities in the third set of equalities follow from Remark 4.1.5, as all the summands considered
have pairwise disjoint support.
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We state a technical result which will be extremely useful in approximation arguments. Its proof
is based on the Gaussian estimates of the heat kernel and a blow-up argument at jump points.

Lemma 4.2.5. Let (X, d,m) be an RCD(K,N) space and let f ∈ BV(X) ∩ L∞(m). Then

lim
s↘0

hsf(x) = f̄(x) Hh-a.e.

Proof. In the sequel, let C denote a numerical constant depending only on the parameters entering
into play (it may vary during the proof). We let n denote the essential dimension of the space.
Thanks to (2.3.5), we can restrict ourselves to prove the claim for x ∈ X such that −∞ < f∧(x) ≤
f∨(x) < +∞.

Step 1: case x ∈ X \ Sf . We can compute

lim sup
s↘0

∣∣hs2f(x) − f̄(x)
∣∣ ≤ lim sup

s↘0

ˆ
ps2(x, y)

∣∣f(y) − f̄(x)
∣∣dm(y) .

Fix now a > 1. Using the Gaussian estimate for the heat kernel in (2.2.7)

ˆ
Bas(x)

ps2(x, y)
∣∣f(y) − f̄(x)

∣∣dm(y) ≤ C

m(Bs(x))

ˆ
Bas(x)

∣∣f(y) − f̄(x)
∣∣ dm(y)

and the right hand side converges to 0, because of the doubling inequality and the fact that points
in X \ Sf are Lebesgue points for f . Also, as f ∈ L∞(m),

ˆ
X\Bas(x)

ps2(x, y)
∣∣f(y) − f̄(x)

∣∣dm(y) ≤ C

ˆ
X\Bas(x)

ps2(x, y) dm(y) .

Using again the Gaussian estimates for the heat kernel in (2.2.7),

ps2(x, y) ≤ C

m(Bs(x))
exp

{
−d(x, y)2

6s2

}
≤ CH(x, y)

1

m(B2s(x))
exp

{
−d(x, y)2

8s2

}
≤ CH(x, y)p4s2(x, y),

where, using the doubling inequality,

H(x, y) :=
m(B2s(x))

m(Bs(x))
exp

{
−d(x, y)2

6s2
+

d(x, y)2

8s2

}
≤ Ce−a2/24 if d(x, y) ≥ as.

Therefore ˆ
X\Bas(x)

ps2(x, y) dm(y) ≤ Ce−a2/24

ˆ
p4s2(x, y) dm(y) ≤ Ce−a2/24. (4.2.4)

Being a arbitrary, we conclude lims↘0 hs2f(x) = f̄(x) if x /∈ Sf .

Step 2: case x ∈ Sf . Let D ⊆ R a countable dense set such that if t ∈ D, then Et := {f > t}
is a set of finite perimeter. This is possible thanks to coarea. Set, for every t ∈ D, Nt as the
set of points of ∂∗Et where (3.2.18) fails. We know that |DχEt |(Nt) = 0, hence Hh(Nt) = 0, by
Remark 3.5.2. We set

N :=
⋃
t∈D

Nt,
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notice Hh(N) = 0. We show now lims↘0 hs2f(x) = f̄(x) for every x ∈ Sf \N . Fix x ∈ Sf \N and
t ∈ (f∧(x), f∨(x))∩D so that x ∈ ∂∗Et be (2.3.6), so that, as x /∈ Nt, x satisfies (3.2.18). Hence by
Theorem 2.2.5 together with a sort of Fatou’s Lemma and the convergence in L1

loc of sets of finite
perimeter, see e.g. the proof of [10, (4.13)],

lim
s↘0

hs2(χEt)(x) = hRn

1 (χ{xn>0})(0) = 1/2,

so that
lim
s↘0

hs2(χX\Et
)(x) = 1/2.

We can then write

lim sup
s↘0

∣∣hs2f(x) − f̄(x)
∣∣

≤ lim sup
s↘0

∣∣hs2(χX\Et
(f − f∧(x)))

∣∣(x) + lim sup
s↘0

∣∣hs2(χEt(f − f∨(x)))
∣∣(x).

It is enough then to show lim sups↘0 |hs2(χEt(f − f∨(x)))|(x) = 0 (the other term can be dealt
similarly). We fix a > 1. We can compute∣∣hs2(χEt(f − f∨(x)))

∣∣(x) ≤
ˆ
Et

ps2(x, y)
∣∣f(y) − f∨(x)

∣∣ dm(y)

=

ˆ
Et∩Bas(x)

ps2(x, y)
∣∣f(y) − f∨(x)

∣∣ dm(y)

+

ˆ
X\Bas(x)

ps2(x, y)
∣∣f(y) − f∨(x)

∣∣ dm(y) .

The second term on the right hand side is bounded by Ce−a2/24, thanks to f ∈ L∞(m) and (4.2.4).
As a is arbitrary, we conclude if we show that the first term converges to 0 as s ↘ 0. Using the
Gaussian estimates for the heat kernel in (2.2.7) and the doubling inequality we estimate the first
term by

lim sup
s↘0

ˆ
Et∩Bas(x)

ps2(x, y)
∣∣f(y) − f∨(x)

∣∣dm(y)

≤ lim sup
s↘0

C

m(Bas(x))

ˆ
Et∩Bas(x)

∣∣f(y) − f∨(x)
∣∣dm(y) .

Take now any t1 ∈ (t, f∨(x)) ∩D and t2 ∈ (f∨(x),∞) ∩D. We can split

Bas(x) ∩ Et = (Bas(x) ∩ (Et \ Et1)) ∪ (Bas(x) ∩ (Et1 \ Et2)) ∪ (Bas(x) ∩ Et2) .

Now by the very definition of f∨(x), Et2 has density 0 at x. Also, Et \ Et1 has density 0 at x, as
Et1 ⊆ Et and both Et and Et1 have density 1/2 at x, as a consequence of x ∈ ∂∗Et1 ∩ ∂∗Et and
x /∈ N . Therefore, taking into account f ∈ L∞(m), we are left with

lim sup
s↘0

C

m(Bas(x))

ˆ
Et∩Bas(x)

∣∣f(y) − f∨(x)
∣∣ dm(y)

= lim sup
s↘0

C

m(Bas(x))

ˆ
(Et1\Et2 )∩Bas(x)

∣∣f(y) − f∨(x)
∣∣ dm(y) ≤ C(t2 − t1).

We conclude as we can take t2, t1 → t by density of D in R.
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4.2.1 The jump set

The aim of this section is to investigate in detail the behaviour of a function of bounded variation
on the jump set.

For the following definition, notice that the intersection with R∗
n(X) plays essentially no role,

by Theorem 3.1.1.

Definition 4.2.6. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let f ∈
BV(X)m. We set Jf := Sf ∩R∗

n(X), the jump set.

The following proposition goes towards the study of jump sets for vector valued functions of
bounded variation (recall Definition 2.3.16). In particular, total variation and Hausdorff measures
are mutually absolutely continuous on jump sets. Moreover, for a vector valued function of bounded
variation, at almost every point in the jump set, every component of f contributing to the jump has
the same polar vector, up to the sign. Notice that item iii) can be seen as a blow-up result for vector
valued functions of bounded variation on the jump set. The main tool to prove Proposition 4.2.7
is the transversality Lemma 4.2.3.

Proposition 4.2.7. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let f ∈
BV(X)m. Then

|Df | Jfi ≪ Hh Jfi ≪ Hn−1 Jfi ≪ |Dfi| Jfi for every i = 1, . . . ,m. (4.2.5)

Moreover, there exist a pair of |Df |-measurable functions f l, f r : X → Rm and a vector field
νJf ∈ L∞

|Df |(TX) such that

i) it holds
|νJf | = 1 and f r ̸= f l |Df |-a.e. on Jf ,

ii) for every i = 1, . . . ,m,

(f ri − f li )ν
J
f = (f∨i − f∧i )νfi |Df |-a.e. (4.2.6)

where we considered νJf and νfi as elements of L0
Cap(TX), set f̄(x) := fr(x)+f l(x)

2 ,

iii) for |Df |-a.e. x ∈ Jf there exists a set of finite perimeter E such that x ∈ FE and

lim
r↘0

−
ˆ
Br(x)∩E

|f − f r(x)|dm = lim
r↘0

−
ˆ
Br(x)∩(X\E)

|f − f l(x)| dm = 0, (4.2.7)

iv) for |Df |-a.e. x ∈ X \ Jf , f̄(x) := f l(x) = f r(x) and

lim
r↘0

−
ˆ
Br(x)

∣∣f − f̄(x)
∣∣ dm = 0. (4.2.8)

Finally, if f̃ l, f̃ r, ν̃Jf is another triplet as above, then Jf = J̃+
f ∪ J̃−

f , with

(f̃ l, f̃ r) = σ±(f l, f r) and ν̃Jf = ±νJf |Df |-a.e. on J̃±
f

(where σ+(a, b) = (a, b) and σ−(a, b) = (b, a)) and

f̃ l = f̃ r = f l = f r |Df |-a.e. on X \ Jf .
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Proof. First notice that part of (4.2.5) follows from the coarea formula in (2.3.3) (see e.g. [28,
Theorem 5.3]), recalling also that |Df | ≪ Hh. The remaining part of (4.2.5) is due to Remark 3.5.2
(as Jfi ⊆ R∗

N (X) by definition). This shows also that (4.2.6) is well posed.
We recall that thanks to (2.3.5), f∨i , f

∧
i , fi ∈ R for Hh-a.e. x ∈ X and for every i = 1, . . . ,m.

We set f li = f ri := fi if x /∈ Jfi . We define νJf as an element of L0
Cap(TX), then it is enough to take

the projection π̄|Df | to obtain a vector field of L∞
|Df |(TX) as in the statement. We define f li , f

r
i and

νJf iteratively. More precisely, we define (f r1 , f
l
1) = (f∨1 , f

∧
1 ) on Jf1 and νJf = νf1χJf1

. At step k, let

Gk :=
⋃k−1

i=1 Jfi . We define (f rk , f
l
k) = (f∨k , f

∧
k ) on Jfk \ Gk and we add to νJf the Cap vector field

νfkχJfk\Gk
. Now, Lemma 4.2.3 and the construction above imply that at Hh-a.e. x ∈ Jfk ∩ Gk it

holds νfk = ±νJf , whence (f rk , f
l
k) is uniquely defined on Jfk ∩Gk by the request ii).

Using Lemma 4.2.1 and standard considerations, we can find a countable dense subset of R,
{tj}j∈N, such that for every i = 1, . . . ,m, we have

i) for every j, for
Ei,j := {fi > tj},

Ei,j is a set of locally finite perimeter,

ii) Jfi =
⋃

j∈N ∂
∗Ei,j ,

iii) for every j
νEi,j = π̄|DχEi,j

|(νfi).

We prove now (4.2.7). First, arguing as in the proof of [99, Theorem 3.5] and taking into
account (2.3.5), we see that we can assume with no loss of generality that fi ∈ L∞(m) for every
i = 1, . . . ,m. Up to discarding a Hh-negligible set, we may restrict ourselves to the set of points of
Jf at which the density of every set Ei,j is in {0, 1/2, 1}, see e.g. Remark 3.3.3, Remark 3.5.2 and
Corollary 3.3.2. Notice that if m = 1 and x ∈ ∂∗Ei,j , then (4.2.7) holds with either Ei,j or X \Ei,j

in place of E. This follows from a standard argument as the one used at the end of Step 2 of
the proof of Lemma 4.2.5. But then the same conclusion holds also if m > 1, up to Hh-negligible
subsets, by Lemma 4.2.3 (thanks to our choice of f l and f r). Finally, we can assume that x ∈ FE
as Hh(∂∗Ei,j \ FEi,j) = 0. Also, [99, Theorem 3.5] proves (4.2.8).

We prove now uniqueness, in the sense explained at the end of the statement. On X \Jf , this is
clear, so let us focus on Jf . We just have to prove that at |DF |-a.e. x ∈ Jf , (f̃ l(x), f̃ r(x)) coincides,
up to the order, with (f l(x), f r(x)), then we can use (4.2.6) to conclude. We can assume that at
x there exist two sets of finite perimeter E, Ẽ with x ∈ FE ∩ FẼ and such that (4.2.7) holds and
also the variant of (4.2.7) for f̃ l(x), f̃ r(x), Ẽ holds. Now, notice that it holds that

0 < lim sup
r↘0

m(E ∩Br(x))

m(Br(x))
≤ lim sup

r↘0

m(E ∩ Ẽ ∩Br(x))

m(Br(x))
+ lim sup

r↘0

m(E \ Ẽ ∩Br(x))

m(Br(x))
.

Therefore, either 0 < lim supr↘0
m(E∩Ẽ∩Br(x))

m(Br(x))
or 0 < lim supr↘0

m(E\Ẽ∩Br(x))
m(Br(x))

. In the first case,

we infer that f̃ r(x) = f r(x), in the second case that f̃ l(x) = f r(x). We can deal similarly with
f l(x).

Remark 4.2.8. A careful inspection of the proof of Proposition 4.2.7 shows that in item iii) we can

replace the integral −́
Br(x)∩E |f − f r(x)|dm with −́

Br(x)∩E |f − f r(x)|Q/(Q−1) dm for any Q = Q(R)

given as in (2.2.3) and similarly for the integral involving f l. A similar consideration holds for item
iv). ■
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Proposition 4.2.7 gives us a “canonical” unit normal to the jump set. In the following lemma,
we clarify that such normal depends on the jump set rather than on the vector valued function of
bounded variation.

Lemma 4.2.9. Let (X, d,m) be an RCD(K,N) space and let f ∈ BV(X)m and let g ∈ BV(X)l.
Then we can choose νJf = νJg on Jf ∩ Jg and for (|Df | ∧ |Dg|)-a.e. x ∈ Jf ∩ Jg, there exists a set
of finite perimeter E such that x ∈ FE and

lim
r↘0

−
ˆ
Br(x)∩E

|(f, g) − (f r(x), gr(x))|dm = lim
r↘0

−
ˆ
Br(x)∩(X\E)

|(f, g) − (f l(x), gl(x))| dm = 0.

In particular, if g = φ ◦ f for some φ ∈ C1(Rm,Rl)∩LIP(Rm,Rl) such that φ(0) = 0, then we can
choose νJφ◦f = νJf on Jφ◦f as Jφ◦f ⊆ Jf and we have

(φ ◦ f)r = φ(f r) and (φ ◦ f)l = φ(f l).

Proof. The proof is an application of Proposition 4.2.7 to (f, g) ∈ BV(X)m+l.

The results obtained so far allow us to obtain a well-defined fine representative of a vector
valued function of bounded variation with meaningful properties.

Definition 4.2.10. Let (X, d,m) be an RCD(K,N) space and let f ∈ BV(X)m. Define the functions
left representative, right representative and precise representative f l, f r, f̄ : X → Rm, respectively,
and the vector field normal to the singular set νJf as then ones given by Proposition 4.2.7.

There may be more than one possible choice for the triplet (f l, f r, νJf ), however, notice that

the quantity (f l − f r)νJf is well defined |Df |-a.e. on Jf .
It is classical that whenever reduced boundaries of sets of finite perimeter are rectifiable, the

same conclusion holds for jump sets of functions of bonded variation. We record this fact in the
following proposition.

Proposition 4.2.11. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let f ∈
BVloc(X)m. Then Hh Jf and Hn−1 Jf are σ-finite and mutually absolutely continuous. Moreover,
Jf is countably (n− 1)-rectifiable. More precisely, for every ε > 0, we can write

Jf =
⋃
i∈N

Bi ∪N,

where for every i, Bi is (1 + ε)-bilipschitz to a Borel subset of Rn−1 and |Df |(N) = 0.

Proof. We can clearly assume that f ∈ BV(X). By a classical argument, Jf can be obtained as
a countable union of reduced boundaries of sets of finite perimeter. For example, by coarea there
exists S ⊆ R countable and dense such that Es := {f > s} has locally finite perimeter for any
s ∈ S, then, by (2.3.4) and (2.3.6) it holds Jf =

⋃
s∈S ∂

∗Es. Then it is enough to recall the
representation formulae of Theorem 3.5.1 together with Remark 3.5.2. The same argument also
yields rectifiability, using Theorem 3.4.1 and taking into account Remark 3.5.2 and (4.2.5).

In view of the following result, recall that as an immediate consequence of Proposition 4.2.11,
Hn−1 Jf ≪ Cap, so that, if ν is a Cap-vector field, νHn−1 Jf is well defined. We are going to give
a precise description of the behaviour of the distributional differential (and of its total variation) of
a function of bounded variation on the jump set. The proof is by coarea and a sort of integration
by Cavalieri’s formula.
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Proposition 4.2.12. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let f ∈
BV(X)m. Then

Df Jf = (f r − f l)νJf
ωn−1

ωn
Hh Jf (4.2.9)

and
Df Jf = (f r − f l)νJf Θn(m, · )Hn−1 Jf . (4.2.10)

In particular,

|Df | Jf = |f r − f l|ωn−1

ωn
Hh Jf (4.2.11)

and
|Df | Jf = |f r − f l|Θn(m, · )Hn−1 Jf . (4.2.12)

Proof. First notice that the statement makes sense thanks to (4.2.5). We start from the case m = 1.
By coarea and (3.5.1) we have that for v ∈ TestV(X)

ˆ
v · νf d|Df | Jf =

ˆ
R

ˆ
Jf

v · νf d
∣∣Dχ{f>t}

∣∣dt =
ωn−1

ωn

ˆ
R

ˆ
Jf

χ
∂∗{f>t}v · νfdHh dt .

Now notice that the map (t, x) 7→ χ
∂∗{f>t}(x) is measurable, thanks to standard arguments: just

notice that for any r the maps

(x, t) 7→ m(Br(x) ∩ {f > t})

m(Br(x))
and (x, t) 7→ m(Br(x) \ {f > t})

m(Br(x))

are continuous everywhere up to a set of null (Hh Jf ) ⊗ L1 measure. We can therefore apply
Fubini’s Theorem (integrability is given by coarea and σ-finiteness of Hh by Proposition 4.2.11)
and infer thatˆ

v · νf d|Df | Jf =
ωn−1

ωn

ˆ
Jf

ˆ
R
χ
∂∗{f>t}v · νf dt dHh =

ωn−1

ωn

ˆ
Jf

(f∨ − f∧)v · νfdHh,

where we used (2.3.6) for the last equality. Now (4.2.9) follows from the equation above and (4.2.6).
Now we prove (4.2.10), the proof follows from the same argument as above, relying on (3.5.2) (in
particular, Theorem 3.1.1) instead of (3.5.1), hence writing

|Dχ{f>t}| = |Dχ{f>t}| R∗
n(X) = Θn(m, · )χ∂∗{f>t}Hn−1 R∗

n(X).

Now we turn to case m > 1. Take v = (v1, . . . , vm) ∈ TestF(X)m. Then, using (4.1.5),
Proposition 4.2.7 and what proved in the case m = 1,

Df Jf (X)(v) =

ˆ
Jf

v · νfd|Df | =

m∑
i=1

ˆ
Jf

vi · νfid|Dfi| =
m∑
i=1

ˆ
Jf

(f ri − f li )vi · νJf
ωn−1

ωn
Hh

which proves (4.2.9) in the general case. Similarly we obtain (4.2.10) in the general case.
Finally, (4.2.11) (resp. (4.2.12)) follows from (4.2.9) (resp. (4.2.9)) and Remark 4.1.5.

4.3 Calculus rules

We turn now to study the calculus rules for (vector valued) functions of bounded variation. Again,
the study is performed only on finite dimensional RCD spaces, as we need to use the fine properties
of the previous section.
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4.3.1 Chain rule

The first result that we state is the chain rule, and studies the distributional differential of a BV
function after taking the composition with a Lipschitz function. It is proved exploiting the fine
properties that we have just studied combined with the coarea formula.

Proposition 4.3.1 (Chain rule). Let (X, d,m) be an RCD(K,N) space, f ∈ BV(X) and φ ∈ LIP(R)
such that φ(0) = 0. Then φ ◦ f ∈ BV(X) and

D(φ ◦ f) =

(ˆ 1

0
φ′(tf∨ + (1 − t)f∧) dt

)
Df. (4.3.1)

We comment briefly on the well-posedness of (4.3.1). Recalling (2.3.5), we see that it suffices
to check that

|Df |(A) = 0,

where
A :=

{
x ∈ X \ Jf : φ is not differentiable at f̄(x)

}
.

We can then use coarea, the relations in (2.3.6), (3.5.1) and finally Rademacher’s Theorem to
compute

|Df |(A) =

ˆ
R

∣∣Dχ{f>t}
∣∣(A) dt =

ωn−1

ωn

ˆ
R
Hh(A ∩ ∂∗{f > t}) dt

=
ωn−1

ωn

ˆ
R
Hh({x ∈ X \ Jf : φ is not differentiable at t and f̄(x) = t}) dt = 0.

Proof. The proof is done by coarea, taking inspiration from [5]. Using linearity, we can assume
that φ is also bilipschitz and strictly increasing with no loss of generality. For what concerns the
jump part, the claim on Jφ◦f follows from Proposition 4.2.12 and Lemma 4.2.9.

It remains to show the claim on X \ Jf , as |D(φ ◦ f)|(Jf \ Jφ◦f ) = 0. Take any v ∈ TestF(X).
We compute, using the coarea formula in (2.3.3), Lemma 4.2.1, the change of variables t = φ(s)
and (2.3.6),

D(φ ◦ f) (X \ Jf )(v) =

ˆ
X\Jf

v · νφ◦fd|D(φ ◦ f)| =

ˆ
R

ˆ
X\Jf

v · νφ◦fd|Dχ{φ◦f>t}|dt

=

ˆ
R

ˆ
X\Jf

v · ν{φ◦f>t}d|Dχ{φ◦f>t}|dt

=

ˆ
R
φ′(s)

ˆ
X\Jf

v · ν{f>s}d|Dχ{f>s}|ds

=

ˆ
R

ˆ
X\Jf

φ′(f̄)v · ν{f>s}d|Dχ{f>s}|ds.

With the same argument as above, we “reverse”
ˆ
R

ˆ
X\Jf

φ′(f̄)v · ν{f>s}d|Dχ{f>s}|ds =

ˆ
R

ˆ
X\Jf

φ′(f̄)v · νfd|Dχ{f>s}|ds

=

ˆ
X\Jf

φ′(f̄)v · νfd|Df | = φ(f̄)Df (X \ Jf )(v),

so that the claim is proved.
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4.3.2 Leibniz rule

Now we polarize the chain rule to obtain the Leibniz rule, which describes the distributional dif-
ferential of the product of two functions of bounded variation. We restrict ourselves to the case
f, g bounded functions of bounded variation although the boundedness hypothesis can be slightly
weakened using approximation arguments as done in the proof of Proposition 4.3.4 below.

Proposition 4.3.2 (Leibniz rule). Let (X, d,m) be an RCD(K,N) space and let f, g ∈ BV(X) ∩
L∞(m). Then fg ∈ BV(X) and

D(fg) = f̄Dg + ḡDf. (4.3.2)

In particular, |D(fg)| ≤
∣∣f̄ ∣∣|Dg| + |ḡ||Df |.

Proof. Using the chain rule of Proposition 4.3.1 with φ ∈ LIP(R) that coincides with t 7→ t2 on a
sufficiently large neighbourhood of 0, we see that

D(f + g)2 = 2(f + g)D(f + g) = 2(f + g)D(f + g), (4.3.3)

Df2 = 2fDf, (4.3.4)

Dg2 = 2gDg. (4.3.5)

Here we used that f + g = f + g Hh-a.e. which follows e.g. from Lemma 4.2.5. Using the linearity
of the map f 7→ Df , subtracting (4.3.4) and (4.3.5) from (4.3.3), we obtain (4.3.2).

As a consequence, we record the following result. Even though we are not going to need it
elsewhere, we state it because we believe that it is interesting: it shows that ∇htfm weakly converge
to Df in duality with objects of the kind gv, where g ∈ BV(X)∩L∞(m) and v ∈ QC∞(TX)∩D(div).

Proposition 4.3.3. Let (X, d,m) be an RCD(K,N) space and f, g ∈ BV(X) ∩ L∞(m). Then

lim
t↘0

ˆ
gv · ∇htf dm =

ˆ
ḡv · νf d|Df | for every v ∈ QC∞(TX) ∩D(div).

Proof. We can write, thanks to the calculus rules,

ˆ
htfhsgdiv v dm = −

ˆ
hsg∇htf · v dm−

ˆ
htf∇hsg · v dm .

We let now first s ↘ 0 then t ↘ 0, use Lemma 4.2.5 and compare the outcome with the result
given by (4.3.2).

4.3.3 Vol’pert chain rule

The Leibniz rule can be iteratively used to study the distributional differential of the product of
several BV functions, hence, by linearity, we know how to compute D(φ◦f) when φ is a polynomial
and f is a vector valued function of bounded variation. By approximation, we can treat the case in
which φ is any C1 function. The result is the following chain rule, also called Vol’pert chain rule.

Theorem 4.3.4 (Vol’pert chain rule). Let (X, d,m) be an RCD(K,N) space and let f ∈ BV(X)m.
Let φ ∈ C1(Rm,Rl) ∩ LIP(Rm,Rl) such that φ(0) = 0. Then

D(φ ◦ f) =

(ˆ 1

0
∇φ(tf r + (1 − t)f l) dt

)
Df. (4.3.6)
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Proof. By Remark 4.1.2, we see that we can assume l = 1 with no loss of generality (see e.g.
the second part of the proof of Proposition 4.2.12). The jump part is dealt as in the proof of
Proposition 4.3.1, building upon Proposition 4.2.12 and Lemma 4.2.9. Indeed, we know that

ˆ
Jf

v · νφ◦fd|D(φ ◦ f)| =

ˆ
Jf

(φ(f r) − φ(f l))v · νJf d|Df |. (4.3.7)

Now we turn to the proof of (4.3.6) on X \ Jf . Assume for the moment also f ∈ L∞(m)m, say
|fi| ≤ L m-a.e. for i = 1, . . . ,m. Fix v ∈ TestF(X), recalling (4.1.5) we have to show that

ˆ
X\Jf

v · νφ◦fd|D(φ ◦ f)| =

ˆ
X\Jf

m∑
i=1

∂iφ(f̄)v · νfid|Dfi|. (4.3.8)

Notice that the differential is a closed linear operator, in the sense that if {φk}k are uniformly
Lipschitz functions satisfying the same hypotheses of φ such that φk → φ pointwise, then

´
φk ◦

fdivv →
´
φ ◦ fdivv, so that

D(φk ◦ f)(X)(v) → D(φ ◦ f)(X)(v). (4.3.9)

By (4.3.7) and (4.3.9) we infer that if φk is as above, then

ˆ
X\Jf

v · νφk◦fd|D(φk ◦ f)| →
ˆ
X\Jf

v · νφ◦fd|D(φ ◦ f)|.

As a consequence of this discussion, we see that if {φk}k are uniformly Lipschitz functions satisfying
the same hypotheses of φ such that (4.3.8) holds for any φk and (φk,∇φk) → (φ,∇φ) uniformly
on [−L,L]m, then (4.3.8) holds also for φ. Also, the left hand side of (4.3.8) is linear in φ.

Let ε > 0. By a mollification and cut-off argument, we find φ̃ ∈ C∞(Rm) such that supp φ̃ ⊆
[−2L, 2L]m, φ̃(0) = 0, and

sup
x∈[−L,L]m

|φ(x) − φ̃(x)| + |∇φ(x) −∇φ̃(x)| < ε.

Now, by the Stone–Weierstrass Theorem, we find a polynomial g : Rm → R such that

sup
x∈[−2L,2L]m

|∂1 · · · ∂mφ̃(x) − g(x)| < ε.

Set now

φ̂((x1, . . . , xm)) :=

ˆ x1

−2L
ds1 · · ·

ˆ xm

−2L
dsm g((s1, . . . , sm)),

it is not hard to verify that still

sup
x∈[−L,L]m

|φ̃(x) − φ̂(x)| + |∇φ̃(x) −∇φ̂(x)| < Cε,

where C depends only on L and m. Eventually adding to φ̂ a (small) constant, we can assume that
φ̂(0) = 0. Notice that φ̂ is a polynomial.

Then, by discussion above, we see that it is enough to prove (4.3.8) for a polynomial, say φ
(notice that the fact that polynomials are not Lipschitz plays no role here, as f is assumed to be
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bounded). Therefore, using also linearity, we see that we can assume with no loss of generality that
φ is a monomial. Also, up to changing m and repeating some function fi, we can assume that

φ(x1, . . . , xm) = x1 · · ·xm.

All in all, we have reduced the claim to

ˆ
X\Jf

v · νf1···fmd|D(f1 · · · fm)| =

ˆ
X\Jf

m∑
i=1

(∏
j ̸=i

f̄j

)
v · νfid|Dfi|.

The claim is now proved by iteration of the Leibniz rule of Proposition 4.3.2 taking into account
that if x /∈ Jf , then

∏
j∈J fj(x) =

∏
j∈J f̄j(x) for J ⊆ {1, . . . ,m}, by (4.2.8) together with the

assumption f ∈ L∞(m). Indeed, restricting all equalities to X \ Jf ,

νf1···fmd|D(f1 · · · fm)| = f2 · · · fmνf1 |Df1| + f̄1νf2···fmd|D(f2 · · · fm)|
= f̄2 · · · f̄mνf1 |Df1| + f̄1νf2···fmd|D(f2 · · · fm)|
= f̄2 · · · f̄mνf1 |Df1| + f̄1

(
f3 · · · fmνf2 |Df2| + f̄2νf3···fmd|D(f3 · · · fm)|

)
= · · · =

m∑
i=1

∏
j ̸=i

f̄jνfid|Dfi|

so that the proof is concluded under the additional assumption f ∈ L∞(m)m.
Now we get rid of the assumption f ∈ L∞(m)m using an approximation argument. In this

procedure, we consider the approximating sequence {f l}l as in (2.3.21). Now we can let l → ∞ in
(4.3.6) for f l, recalling Lemma 4.2.2, (2.3.5) and coarea together with the closure property of the
differential for what concerns the convergence of the let hand side.

4.3.4 General chain rule

This section contains the last calculus rule of the chapter. It is the general chain rule, Theorem 4.3.6,
which concerns the distributional differential of the composition of a vector valued function of
bounded variation and a Lipschitz function. We remark that it is the strongest of our results
concerning the calculus rules, in the sense that it immediately implies all the previous results.
However, the previous results are needed for its proof.

With start with some preparatory material to state Theorem 4.3.6. For what concerns the
notation, if ν = (ν1, . . . , νm) ∈ L0

Cap(TmX) and v ∈ L0
Cap(TX), we write

ν · v := (ν1 · v), . . . , (νm · v) ∈ Rm.

The following lemma gives a concept of image of a matrix field in the non-smooth framework, where
we do not have pointwise defined objects. Gr(Rm) denotes the collection of all the vector subspaces
of Rm.

Lemma 4.3.5. Let (X, d,m) be an RCD(K,N) space, let µ ≪ Cap be a finite Borel measure and
let ν ∈ L0

Cap(TmX). Then there exists unique (up to µ-a.e. equality) µ-measurable map

G : X → Gr(Rm)

satisfying
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i) for every v ∈ L0
Cap(TX),

ν · v ∈ G µ-a.e.

ii) if G′ : X → Gr(Rm) is another map satisfying the requirement i), then

G ⊆ G′ µ-a.e.

We call the map G given by the lemma above µ− ess span ν.

Proof. First notice that uniqueness of G trivially follows from item ii).

Fix for the moment a set A as in the decomposition given by Theorem 2.2.21 and an orthonormal
basis of L0

Cap(TX) on A, say {v1, . . . , vk}. The map

A ∋ x 7→ span
(
{ν · vi(x)}i=1,...,k

)
∈ Gr(Rm)

is µ-measurable. We then define G equals this map on A and then define G µ-a.e. on X with a
gluing argument.

We show now that G satisfies the desired properties. It is sufficient to fix a set A and vector
fields {v1, . . . , vk} as above and prove the claims on A. Item i) follows from the fact that {v1, . . . , vk}
is a basis of L0

Cap(TX) on A. For what concerns item ii), take G′ satisfying item i). In particular,
µ-a.e. ν · vi ∈ G for every i = 1, . . . , k so that µ-a.e. G ⊆ G′.

Now we state the main result of this section. We defer the proof after the statement and the
proof of Lemma 4.3.7 below. First, we recall a definition about the differentiability of Lipschitz
functions, as in Section 8.1, Given φ ∈ LIP(Rm,Rl), we say that φ is differentiable at x with respect
to V ∈ Gr(Rm) if there exists a linear map ∇V φ(x) : V → Rl such that

φ(x+ v) = φ(x) + ∇V φ(x) · v + o(|v|) for v ∈ V .

If v ∈ Rm, we say that φ is differentiable at x in direction v if φ is differentiable at x with respect
span(v). Notice that every φ is differentiable with respect to {0} at any point of Rm.

If we want to generalize the calculus rule of Theorem 4.3.4 to the case in which φ is not C1,
but only Lipschitz, we certainly have to be coherent with (4.3.6). Notice that, outside the jump
set, (4.3.6) reads as

D(φ ◦ f) (X \ Jf ) = ∇φ(f̄)Df (X \ Jf ). (4.3.10)

While Rademacher Theorem states that Lipschitz functions are differentiable almost everywhere
with respect to the Lebesgue measure, it is in general false that a Lipschitz function φ is differ-
entiable for |Df |-a.e. x ∈ X \ Jf at f̄(x), in the case in which f is a vector valued function of
bounded variation (this, however holds if f is scalar valued, see the discussion after the statement
of Proposition 4.3.1). Take, for example, φ(u, v) := u ∨ v and f(x, y) := (x, x). For this reason,
Theorem 4.3.6 below can not be proved with soft techniques as we did for Theorem 4.3.4 and
(4.3.10) has to be suitably interpreted, and this obstacle is not due to the fact that we are working
in the RCD realm. The key remark to overcome this difficulty ([12]) is that we do not really need
the full differentiability of φ at f̄(x), but only the differentiability in directions given by the image
of the “polar matrix” dDf

d|Df | , as is only against these directions that the differential of φ is tested.
It turns out that indeed φ is differentiable a.e. with respect to these directions and Theorem 4.3.4
has a suitable generalization.
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Theorem 4.3.6. Let (X, d,m) be an RCD(K,N) space, let f ∈ BV(X)m and let φ ∈ LIP(Rm,Rl)
such that φ(0) = 0. Then

D(φ ◦ f) Jf =
(
φ(f r) − φ(f l)

)
Df Jf .

Set now V := |Df | − ess span νf . Then for |Df |-a.e. x /∈ Jf , φ is differentiable at f̄(x) with respect
to V and it holds

D(φ ◦ f) (X \ Jf ) = ∇V φ(f̄)νf |Df | (X \ Jf ). (4.3.11)

In the theorem above, by ∇V φ(f̄)νf we mean the unique, up to |Df |-a.e. equality, vector field
in L0

Cap(TX)l such that for every v ∈ L0
Cap(TX) it holds

(∇V φ(f̄)νf ) · v = ∇V φ(f̄)(νf · v) |Df |-a.e.

Here we show the main lemma towards the proof of Theorem 4.3.6, whose purpose is to gain
directions along which φ is differentiable. Its proof is based on the link between “closability of
certain differentiation operators” and “differentiability of Lipschitz functions in related directions”
recalled in Section 8.1, coupled with the information that “the map that takes φ and returns the
distributional differential of φ ◦ f is closable”.

Lemma 4.3.7. Let (X, d,m) be an RCD(K,N) space, let f ∈ BV(X)m, let φ ∈ LIP(Rm) such that
φ(0) = 0, and let v ∈ TestV(X). Then for |Df |-a.e. x /∈ Jf , φ is differentiable at f̄(x) in direction
(νf · v)(x) ∈ Rm and it holds

νφ◦f · v|D(φ ◦ f)| (X \ Jf ) = ∇νf · vφ(f̄)(νf · v)|Df | (X \ Jf ). (4.3.12)

Proof. Denote by n the essential dimension of X. By Proposition 3.4.3 and the fact that |D(φ◦f)| ≤
L|Df |, where L denotes the Lipschitz constant of φ, it is enough to prove the claim on G, where
G ⊆ X \ Jf is a bounded Borel set for which there exists a Borel map Ψ : G → B, where B is a
Borel subset of Rn and Ψ has Borel inverse Ψ−1 : B → G and moreover Ψ is the restriction to G
of some Ψ̃ ∈ BV(X)n. Also, JΨ̃ ∩G = ∅ and we can assume that v has compact support. We avoid
writing ·̄ for the precise representative, to simplify the notation.

We set then f ′ := (f, Ψ̃) and φ′ := φ ◦ π1, where π1 : Rm × Rn → Rm is the projection onto
the first factor. In particular, |Df | ≤ |Df ′|. Notice that f ′ and φ′ still satisfy the assumptions
of the lemma and that still Jf ′ ∩ G = ∅. Notice also that φ′ ◦ f ′ = φ ◦ f , that (|Df |-a.e.) φ′ is
differentiable in direction νf ′ · v if and only if φ is differentiable in direction νf · v and finally that

(νf ′ · v)i = (νf · v)i
d|Df |
d|Df ′|

|Df ′|-a.e. for i = 1, . . . ,m,

so that it remains to show (4.3.12) on G with φ′ in place of φ and f ′ in place of f .
To simplify the notation, we return to the notation f and φ, keeping in mind that f is injective

on G and its inverse is Borel. We set

w := (νf · v) ◦ f−1 and µ := f∗(|Df | G).

Assume for the moment also that φ ∈ C1(Rm). Then we know that (4.3.12) holds with this
choice of φ by Proposition 4.3.4. We compute now

f∗(∇φ(f)(νf · v)|Df | G) =

m∑
i=1

∂iφf∗((νf · v)i|Df | G) = ∇φ · wµ.
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We check that the differentiation operator depending on φ defined above is closable in the sense of
item i) of Theorem 8.1.1 in the Appendix. We have to check that if {φk}k is a sequence as in item
i) of Theorem 8.1.1 then there exists ℓ ∈ L∞(µ) such that for every h ∈ L1(µ),

ˆ
Rm

h∇φk · w dµ→
ˆ
Rm

hℓdµ .

Clearly, we can assume that φk(0) = 0 for every k. Equivalently, we have to prove that
ˆ
X
h ◦ f∇φk(f)(νf · v) d|Df | G→

ˆ
X
h ◦ fℓ ◦ f |νf · v| d|Df | G ,

where h ◦ f ∈ L1(|Df | G). As also φk ∈ C1(Rm), by Proposition 4.3.4 we have that
ˆ
X
h ◦ f∇φk(f)(νf · v) d|Df | G =

ˆ
X
h ◦ fνφk◦f · v d|D(φk ◦ f)| G,

which is well posed, since |D(φk ◦ f)| ≤ L|Df | for every k, where L ∈ (0,∞) denotes the Lipschitz
constant of the functions in {φk}k. Also, |D(φ ◦ f)| ≤ L|Df |. For every ε > 0, take hε ∈ LIPbs(X)
such that

∥h ◦ f − hε∥L1(|Df |) < ε,

where we understand h◦f = 0 |Df |-a.e. on X\G. By Theorem 4.1.1 (with the usual interpretation
of the integrals involving div(hεv) given by Remark 2.3.6),

−
ˆ
X
hενφk◦f · v d|D(φk ◦ f)| =

ˆ
X
φk ◦ fdiv(hεv) dm

→
ˆ
X
φ ◦ fdiv(hεv) dm = −

ˆ
X
hενφ◦f · v d|D(φ ◦ f)| .

Now, we have that∣∣∣∣ˆ
X

(h ◦ f − hε)νφk◦f · v d|D(φk ◦ f)|
∣∣∣∣ ≤ L∥v∥L∞(TX)∥h ◦ f − hε∥L1(|Df |) ≤ L∥v∥L∞(TX)ε,

and a similar estimate holds for φ in place of φk. Then we see that
ˆ
X
h ◦ f∇φk(f)(νf · v) d|Df | G→

ˆ
X
h ◦ fνφ◦f · v d|D(φ ◦ f)| G

=

ˆ
Rm

h(νφ◦f · v) ◦ f−1d|D(φ ◦ f)|
d|Df |

◦ f−1 dµ .

This provides the existence of the sought ℓ ∈ L∞(µ).
Therefore we can apply Theorem 8.1.1. It follows that if φ is as in the statement, then φ is

differentiable in direction w µ-a.e. In other words, at |Df | G-a.e. x, φ is differentiable at f(x) in
direction (νf · v)(x).

Take now g ∈ L1(|Df | G). We approximate φ with a sequence {φk}k as in Lemma 8.1.2.
Using Proposition 4.3.4, we see that for every k

ˆ
X
gνφk◦f · v d|D(φk ◦ f)| G =

ˆ
X
g∇φk(f)(νf · v) d|Df | G .

Using dominated convergence to deal with the right hand side and by the very same computations
as above to deal with the left hand side, we prove that (4.3.12) holds for φ, as g was arbitrary.
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Having Lemma 4.3.7 at our disposal, the proof of Theorem 4.3.6 is rather classical.

Proof of Theorem 4.3.6. Denote by n the essential dimension of X. We start from a couple of
reductions, as in the proof of Proposition 4.3.4. By Remark 4.1.2, we see that we can assume l = 1
with no loss of generality (see e.g. the second part of the proof of Proposition 4.2.12). The jump
part is dealt as in the proof of Proposition 4.3.1, building upon Proposition 4.2.12 and Lemma 4.2.9.

We prove now (4.3.11) and the differentiability statement. We first show that for |Df |-a.e.
x /∈ Jf , φ is differentiable at f̄(x) with respect to V . Recalling the construction of V in Lemma 4.3.5
(in particular, Theorem 2.2.21), it is enough to show this claim on a Borel subset A on which we
have an orthonormal basis of L0

Cap(TX), say {v1, . . . , vk} ⊆ TestV(X): namely, we have to show

differentiability at f̄(x) with respect to span
(
{νf · vi}i=1,...,k

)
.

By Lemma 4.3.7, if v ∈ TestV(X), for |Df |-a.e. x ∈ A \ Jf it holds that φ is differentiable at
f̄(x) in direction νf · v. Therefore, for |Df |-a.e. x ∈ A \ Jf φ is differentiable at f̄(x) in every
direction contained in spanQ

(
{νf · vi}i=1,...,k

)
. Lemma 4.3.7 again shows that the differential on

spanQ
(
{νf · vi}i=1,...,k

)
is linear, up to discarding a set of null |Df | (A \ Jf ) measure. It is then

classical to infer from this the conclusion.

4.4 Bibliographical notes

We recall that, as already mentioned in Section 3.6, the topic of this manuscript is to generalize
the classical results about functions of bounded variation to the framework of (finite dimensional)
RCD spaces. We refer to Section 3.6 for a list of general references on the topic, in the framework
of Euclidean spaces. For what concerns the calculus rules, there are two more advanced results: the
Vol’pert (who gives the name to the Vol’pert averaged superposition, that is the form in which we
state (4.3.1) and (4.3.6)) chain rule formula, proved in the smooth setting in [125] (see also [126])
and the general chain rule formula, proved in the smooth setting in [12].

Most of the material is taken from [42, 43]. Some of the proofs have been revised and became
shorter and more transparent, for example, the proof of Theorem 4.3.4 benefits from the separate
treatment on the jump part (thanks to Proposition 4.2.12).

As stated during its proof, the bulk of Theorem 4.1.1 is already present in [51]. There, the
authors treated only characteristic functions of sets of finite perimeter and finite measure on a finite
dimensional RCD space. Our improvement is in the direction of treating more general functions (i.e.
vector valued functions of bounded variation) and also by considering possibly infinite dimensional
RCD spaces. The first improvement is obtained by a rather soft argument, noticing that in [51]
the fact that the function is a characteristic function is not really used. For what concerns the
possibility of treating the infinite dimensional case, there were only two ingredients missing in [51].
The first one is the fact that one needs total variations to be absolute continuous with respect to
the 2-Sobolev capacity. In [51, Lemma 1.10 and Theorem 1.12], the authors showed that, on finite
dimensional spaces,

|Df | ≪ Hh ≪ Cap for every f ∈ BV(X)

(actually, they showed the result for characteristic functions, but, thanks to coarea, there is no
difference). This chain of relations is crucial in the subsequent development of the theory (and
is one of the major reasons why we need to work on finite dimensional spaces to obtain the most
refined results), but really needed the fact that the space is finite dimensional, to use its property of
being PI. Hence, to state Theorem 4.1.1 in the infinite dimensional case, we had to give a different
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proof of the fact that
|Df | ≪ Cap for every f ∈ BV(X),

see Theorem 2.3.7. The second ingredient is the validity of the Bakry–Émery estimate in BV in the
infinite dimensional setting, Proposition 2.3.17. Such result was already stated in [86, Remark 3.5],
but only for proper RCD(K,∞) spaces. The properness assumption can be immediately removed
thanks to the approximation result of [71].

It is worth remarking that Theorem 4.1.1 can be proved also with a completely different tech-
nique, relying on the language of local vector measures and an abstract Riesz’s Theorem, see [44].
A local vector measure is the non-Euclidean analogue of a vector valued measure and is defined
as a map from the Borel subsets of a Polish space to the dual of a suitable normed module. This
theory experiences an improvement in the setting of RCD spaces (rather than Polish spaces) and
allows the abstract construction of a local vector measure Df satisfying

m∑
i=1

ˆ
fidivvi = −v · Df(X) for every v = (v1, . . . , vm) ∈ (QC∞(TX) ∩D(div))m.

Also, as soon as one has at disposal the language of local vector measures, Section 4.1.1 becomes
unnecessary: the operations described there can be seen as operations among local vector measures.
In particular (with the language of [44]) Definition 4.1.4 trivially identifies νµ with the local vector
measure whose polar decomposition is νµ. We have decided not to include the material of [44] as
local vector measures are not strictly necessary for the development of this theory.

Proposition 4.2.4 is not present in [42, 43], but its statement is in [50], with a different proof.
Here we exploit our tools to give a more direct proof, that avoids the blow-up argument of [50].
In relation to Proposition 4.2.5, we remark that in [16, 17] the opposite procedure has been used:
in these papers, the essential boundary is recognized through the short-time behaviour of heat
semigroup. Half of Proposition 4.2.12 is taken from [42] (namely (4.2.9) and (4.2.11)), whereas
the other half (namely (4.2.10) and (4.2.12)), follow from the same techniques, taking into account
(3.5.2), proved in [32].



Chapter 5

Cartesian Surfaces

In this chapter we extend classical results for subgraphs of functions of bounded variation in Rn×R
to the setting of X×R, where X is a finite dimensional RCD space. We recall here Definition 2.3.10,

Gf :=
{

(x, t) ∈ X× R : t < f(x)
}
,

and that

π1 : X× R → X, π2 : X× R → R

denote the projections onto the corresponding factors.

In particular, we give the precise expression of the push-forward onto X of the perimeter measure
of the subgraph in X × R of a BV function on X. Moreover, in properly chosen good coordinates,
we write the precise expression of the normal to the boundary of the subgraph of a BV function f
with respect to the polar vector of f , and we prove change-of-variable formulae.

5.1 Main results

First, recall the notation of Section 2.3.5 and the decomposition of the total variation as in Defini-
tion 2.3.4. The first result of this chapter establishes the equivalence between local finiteness of the
total variation of a function and finiteness of the perimeter of the subgraph on cylinders. Notice
that it is part of the claim that local integrability is a consequence of finiteness of the perimeter of
the subgraph on cylinders. Finally, we have a characterization of the total variation of the function
in terms of the push-forward of the perimeter of the subgraph.

Theorem 5.1.1. Let (X, d,m) be an RCD(K,N) space and let f ∈ L0(m). Then the following are
equivalent:

i) f ∈ BVloc(X),

ii) for every bounded set B ⊆ X, |DχGf
|(B × R) <∞.

If this is the case, then

π1∗|DχGf
| =

√
g2f + 1m + |Df | (Cf ∪ Jf ).

We defer the proof of Theorem 5.1.1 to Section 5.1.2 below.

99
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To state the next results we need to read the “components” of polar vector fields, e.g. νf or νGf
.

Even though the following definition is not intrinsic, the quantities introduced will play a key role
in the proof of the Rank one Theorem 6.1.2. By tensorization of the energy, the following definition
is well posed.

Definition 5.1.2. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let u be a
good splitting map on D. Let f ∈ BVloc(X). Then we define

i) the Rn-valued |Df |-measurable map νuf defined for |Df |-a.e. x ∈ D by

νuf (x) := ((νf · ∇u1)(x), . . . , (νf · ∇un)(x)),

ii) the Rn+1-valued |DχGf
|-measurable map νuGf

defined for |DχGf
|-a.e. p := (x, t) ∈ D × R by

νuGf
(p) := ((νGf

· ∇u1)(p), . . . , (νGf
· ∇un)(p), (νGf

· ∇π2)(p)).

If E is set of locally finite perimeter, we write νE := νχE for simplicity.

Recalling again Lemma 3.2.19, we see that domains of a countable family of good splitting
maps cover X up to sets that are negligible with respect to relevant measures. Hence, in practice,
there is no loss of generality in working on the domain of a fixed good splitting map. Namely, in
Theorem 5.1.3 and Theorem 5.1.4 below, we are going to compare νuGf

and νuf only for a single
good splitting map u, on its domain D. This, however, still allows us to have a complete picture
(i.e. the comparison for |DχGf

|-a.e. (x, t)), thanks to Lemma 3.2.19 and the remark that, using the
notation of Lemma 3.2.19, we have,

|DχGf
|
((

X \
⋃
k

Dk

)
× R

)
= 0 for every f ∈ BVloc(X),

which is a consequence of (3.2.12) and Proposition 2.3.12. Finally, notice that νuGf
is well-defined

at (x, f̄(x)) for |Df |-a.e. x ∈ D \ Jf and for m-a.e. x ∈ D \ Jf . This is due to (2.3.13) and (5.1.1)
below, taking into account Lemma 2.3.11.

Now we state the results that link νuf and νuGf
, as in Definition 5.1.2. For what concerns

Theorem 5.1.3, we have that, on the regular part (i.e. outside Jf ∪ Cf ) the expression is the same
as for smooth maps in Euclidean spaces. Then, on the singular part (i.e. on Jf ∪ Cf ), the last
component if νuGf

vanishes. As a by-product, we obtain that the singular part is identified by the
vanishing of the last component of νuGf

.

Theorem 5.1.3. Let (X, d,m) be an RCD(K,N) space and let f ∈ BVloc(X). Let u be a good
splitting map on D. Then, for |DχGf

|-a.e. (x, t) ∈ D × R, it holds that

νuGf
(x, t) =


(√

1
1+g2f

gfν
u
f ,−

√
1

1+g2f

)
(x) if x ∈ D \ (Jf ∪ Cf ),

(νuf , 0)(x) if x ∈ D ∩ (Jf ∪ Cf ).

With the results above it is not hard to deduce the following “integral version”.

Theorem 5.1.4. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let f ∈
BVloc(X). Let u be a good splitting map on D. Let also φ : D × R → R be a bounded Borel
function. Then
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i) for every i = 1, . . . , n,

ˆ
(D\Jf )×R

φ(x, t)
(
νuGf

(x, t)
)
i
d|DχGf

|(x, t) =

ˆ
D\Jf

φ(x, f̄(x))
(
νuf (x)

)
i
d|Df |(x) ,

ii) it holds

ˆ
(D\Jf )×R

φ(x, t)
(
νuGf

(x, t)
)
n+1

d|DχGf
|(x, t) = −

ˆ
D\Jf

φ(x, f̄(x)) dm(x) ,

iii) for every i = 1, . . . , n,

ˆ
(D∩Jf )×R

φ(x, t)
(
νuGf

(x, t)
)
i
d|DχGf

|(x, t)

=

ˆ
D∩Jf

(
νuf (x)

)
i
Θn(m, x)

ˆ f∨(x)

f∧(x)
φ(x, t)dt dHn−1(x) ,

iv) it holds ˆ
(D∩Jf )×R

φ(x, t)
(
νuGf

(x, t)
)
n+1

d|DχGf
|(x, t) = 0.

We defer the proof of Theorem 5.1.3 and Theorem 5.1.4 to Section 5.1.2 below.

5.1.1 Auxiliary results

This section contains the auxiliary results that will be needed to prove Theorem 5.1.1, Theorem 5.1.3
and Theorem 5.1.4. The first technical result establishes the absolute continuity Hn R∗

n(X) ≪
π1∗|DχGf

|. In an imprecise way, this means that every point of X is the projection of some point
contained in the reduced boundary of the subgraph.

Lemma 5.1.5. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let f ∈ BV(X).
Then

m ≪ Hn R∗
n(X) ≪ π1∗|DχGf

|. (5.1.1)

Proof. The first absolute continuity of (5.1.1) is due to the structure theory of RCD spaces, see
(2.2.14). By Proposition 2.3.12, Gf ⊆ X×R is a set of locally finite perimeter. By (3.5.2) (see also
Remark 3.5.2), we have that

|DχGf
| = Θn+1(m⊗ L1, · )Hn (∂∗Gf ∩R∗

n+1(X× R)).

Now, notice the elementary fact R∗
n+1(X × R) = R∗

n(X) × R. Take B ⊆ R∗
n(X), assume that

π1∗|DχGf
|(B) = 0, then Hn(∂∗Gf ∩ (π1)−1(B)) = 0. Therefore, as the projection is Lipschitz,

Hn
(
π1(∂

∗Gf ∩ (π1)−1(B))
)

= 0 so that by Lemma 2.3.11 and the fact that −∞ < f∧ ≤ f∨ < +∞
for Hn-a.e. x ∈ R∗

n(X), we infer that Hn
(
π1((π

1)−1(B))
)

= 0, so that Hn(B) = 0.
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Recall that Definition 5.1.2 involves both an object defined on X (νuf ) and an object defined
on X × R (νuGf

), where the first one is defined in terms of a good splitting map u, and the second

one in terms of (u ◦ π1, π2). We show that also the second map is a good splitting map, and
also record that the relation among the matrices given by Lemma 3.2.14 for u and for (u ◦ π1, π2)
is the trivial one. Namely, the rotation that we have to apply to u to obtain a system of good
coordinates induces naturally a rotation of (u ◦ π1, π2) to obtain a system of good coordinates (see
also Proposition 3.2.20).

Remark 5.1.6. Let (X, d,m) be an RCD space of essential dimension n and recall Definition 3.2.12.
Let u : B2r(x) → Rn be a good η-splitting map on D ⊆ Br(x). Notice that, by tensorization of the
energy, (u ◦ π1, π2) : B2r(x, t) ⊆ X × R is a good η-splitting map on D̃ := (D × R) ∩ Br(x, t), for
any t ∈ R. Also, if A is the matrix valued Borel map given by Lemma 3.2.14 for u and Ã is the
matrix valued Borel map given by Lemma 3.2.14 for (u ◦ π1, π2), then

Ãi,j(y, s) =


Ai,j(y) for i, j ∈ 1, . . . , n,

0 for i = 1, . . . , n and j = n+ 1,

0 for i = n+ 1 and j = 1, . . . , n,

1 for i = j = n

(5.1.2)

for every (y, s) ∈ D̃. Hence the map (y, s) 7→ Ã(y, s) is independent of s so that we will assume it
to be defined on D × R. ■

Given a good splitting map on D, the following proposition selects a “nice” subset of D, Df ,
that is big enough to describe f , in the sense that the remaining part is seen only by |Df |j , but
satisfies additional convenient properties. We will denote by A the matrix valued Borel map given
by Lemma 3.2.14 for a good splitting map u. In item v), we are going to exploit the matrix valued
Borel map A and Ã as in Remark 5.1.6.

Proposition 5.1.7. Let f ∈ BVloc(X) and let u be a good splitting map on D. Then there exists
a Borel set Df ⊆ D satisfying the following properties:

i) |Df |c(D \Df ) = 0 and m(D \Df ) = 0.

ii) |DχGf
|((D \ (Df ∪ Jf )) × R) = 0.

iii) Df ⊆ R∗
n(X) \ Jf and FGf ∩ (Df × R) = (IdX, f̄)(Df ). Hence, for every x ∈ Df , (x, f̄(x)) ∈

FGf , in particular, f̄(x) ∈ R.

iv) For every x ∈ Df , (x, f̄(x)) is a Lebesgue point for νuGf
with respect to |DχGf

|.

v) Given any x ∈ Df ,

v(x,f̄(x)) := (A(x)u ◦ π1, π2) = Ã(x, f̄(x))(u ◦ π1, π2)

is a system of good coordinates for Gf at (x, f̄(x)) and moreover,

ν̄
v(x,f̄(x))
Gf

(x, f̄(x)) = Ã(x, f̄(x))νuGf
(x, f̄(x)), (5.1.3)

where we took the Lebesgue value for νuGf
.
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Proof. We will build sets D ⊇ D1 ⊇ D2 ⊇ D3 ⊇ D4 =: Df . First, we set D1 := D \ Jf . Clearly, D1

still satisfies items i) and ii).
Take now N ⊆ ∂∗Gf ∩ ((X \ Jf )×R). Notice that if N is |DχGf

|-negligible, then π1(N) is both
|Df |c-negligible and m-negligible, by Proposition 2.3.12 and Lemma 5.1.5, taking into account also
Lemma 2.3.11 that implies (π1)−1(π1(N)) = N . Hence removing π1(N) still leaves items i) and ii)
unaffected. We set then D2 := D1 ∩π1(FGf ). Corollary 3.3.2 ensures that items i) and ii) are still
satisfied whereas Lemma 2.3.11 ensures that item iii) holds. We set now

D3 := {x ∈ D2 : (x, f̄(x)) is a Lebesgue point for νuGf
with respect to |DχGf

|}.

The asymptotic doubling property of |DχGf
| ensures that items i) and ii) are still satisfied whereas

iv) is satisfied thanks to this choice. We set now

D4 := {x ∈ D3 : the conclusions of Proposition 3.2.20 (for (u ◦ π1, π2) and Gf ) hold at (x, f̄(x))},

by Proposition 3.2.20 (and a covering argument, as a priori good splitting maps are defined on
balls) items i) and ii) are still satisfied whereas item v) is satisfied thanks to this choice.

The following is a simple consequence of the definition of the set Df .

Remark 5.1.8. Let Df be as in Proposition 5.1.7, we keep the same notation. Let x ∈ Df . By
item iii) (and the definition of FGf ), Gf satisfies the conclusions of Proposition 2.3.3 at (x, f̄(x)).
Therefore, also the conclusion of Theorem 3.2.21 is in place, in particular, if

(Rn+1, de,Ln+1, 0, H) ∈ Tan(x,f̄(x))(X× R, dX×R,m⊗ L1,Gf ),

then

H = {z ∈ Rn+1 : z · ν̄
v(x,f̄(x))
Gf

(x, f̄(x)) ≥ 0} = {z ∈ Rn+1 : z · Ã(x, f̄(x))νuGf
(x, f̄(x)) ≥ 0}, (5.1.4)

provided that the coordinates in Rn+1 are chosen as limits of appropriate rescalings of the maps
v(x,f̄(x)) (Remark 3.2.17) (in a suitable realization). Also, notice that (5.1.3) implies that(

νuGf
(x, f̄(x))

)
n+1

=
(
ν̄
v(x,f̄(x))
Gf

(x, f̄(x))
)
n+1

∈ [−1, 1]. (5.1.5)

We are going to use these properties throughout. ■

The next proposition is the main technical tool of this section. It shows that on Df the last
component of νuGf

identifies the Radon–Nikodym derivative of the push forward of the perimeter
of the subgraph with respect to the reference measure. This is our first bridge between quantities
defined in terms of the subgraph (in X× R) and quantities defined in terms of the BVloc function
(in X). Notice that the claim on the Cantor part is that the normal to the subgraph is horizontal.
The proof is a careful blow-up analysis, that uses new techniques as well as very classical techniques
of geometric measure theory.

Proposition 5.1.9. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let f ∈
BVloc(X). Let also u be a good splitting map on D and let Df ⊆ D\Jf be given by Proposition 5.1.7.
Then,

lim
r↘0

π1∗|DχGf
|(Br(x))

m(Br(x))
= −

(
νuGf

(x, f̄(x))
)−1

n+1
for |DχGf

|-a.e. (x, f̄(x)) ∈ Df × R, (5.1.6)

where the right hand side has to be understood as +∞ where
(
νuGf

(x, f̄(x))
)
n+1

= 0.
In particular, we can compute the Radon–Nikodym derivative as follows:

dπ1∗|DχGf
|

dm
= −

(
νuGf

(x, f̄(x))
)−1

n+1
for m-a.e. x ∈ Df . (5.1.7)
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Proof. First, if x ∈ R∗
n(X), we have,

Θn(m, x) = lim
r↘0

m(Br(x))

ωnrn
= lim

r↘0

(m⊗ L1)(Br(x, f̄(x)))

ωn+1rn+1
= Θn+1(m⊗ L1, (x, f̄(x))),

lim
r↘0

m(Br(x))

Cr
x

= ωn
(n+ 1)

ωn
,

lim
r↘0

rm(Br(x))

Cr
(x,f̄(x))

= ωn
(n+ 2)

ωn+1
.

(5.1.8)

Indeed, this can be proved easily taking into account weak convergence of measures and using
Fubini’s Theorem.

Fix p := (x, f̄(x)) with x ∈ Df . Let {ri}i ⊆ (0,∞) with ri ↘ 0. As x ∈ Df ⊆ R∗
n(X), up to

passing to a subsequence that we are still going to call {ri}i, we have the convergence(
X, r−1

i dX×R,m
ri
x , x

)
→ (Rn, de,Ln, 0),

in a realization (Z, dZ), where (Z, dZ) is a proper metric space. Hence also(
X× R, r−1

i dX×R, (m⊗ L1)rip , p
)
→ (Rn+1, de,Ln+1, 0)

in the realization (Z × R, dZ×R). We use Remark 3.3.3 together with Proposition 5.1.7 to obtain
that, up to passing to a further subsequence that we are still going to call {ri}i,(

X× R, r−1
i dX×R, (m⊗ L1)rip , p,Gf

)
→ (Rn+1, de,Ln+1, 0, H),

in the realization (Z × R, dZ×R). Passing to a further subsequence that we are still going to call
{ri}i, we choose coordinates in Rn+1 as limits of rescalings of v(x,f̄(x)) (Remark 3.2.17), hence H is
as in (5.1.4).

Then we compute, for any M ∈ (0,∞) (notice that |DχH |
(
∂(BRn

1 (0) ×BR
M (0))

)
= 0)

lim
i

ri|DχGf
|
(
Bri(x) ×BriM (f̄(x)

)
Cri
p

= lim
i
|Dχ(Gf )i |

(
Bi

1(x) ×Bi
M (f̄(x))

)
= |DχH |

(
BRn

1 (0) ×BR
M (0)

)
,

so that, by (5.1.8) and (2.2.11),

lim
i

|DχGf
|
(
Bri(x) ×BriM (f̄(x)

)
rni

= Θn(m, x)ω−1
n Hn

(
∂H ∩ (BRn

1 (0) ×BR
M (0))

)
.

In what follows, we are going to use the Lebesgue value for νuGf
(p).

Step 1: the case
(
νuGf

(p)
)
n+1

= 0. Then H = H ′ × R for some half-space H ′ ⊆ Rn, so that

lim inf
i

π1∗|DχGf
|(Bri(x))

rni
≥ Θn(m, x)ω−1

n Hn
(
∂(H ′ × R) ∩ (BRn

1 (0) ×BR
M (0)

)
= ω−1

n 2Mωn−1.

Being M arbitrary,

lim inf
i

π1∗|DχGf
|(Bri(x))

rni
= +∞
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and, being the sequence {ri}i chosen before arbitrary,

lim
r↘0

π1∗|DχGf
|(Br(x))

rn
= +∞.

Step 2: non-positivity of (νuGf
(p)
)
n+1

. Take x ∈ Df such that

(νuGf
(x, f̄(x))

)
n+1

̸= 0 (5.1.9)

and set, as before, p := (x, f̄(x)). Let

±Bε := BZ
ε (0R

n
) ×BR

ε (±1R) ⊆ Z× R

for ε ∈ (0, 1) small enough so that (±Bε)∩ ∂H ̸= ∅, that exists by (5.1.9). Now, by convergence in
L1
loc and Fubini’s Theorem

Ln+1(H ∩ (±Bε)) = lim
i

(m⊗ L1)rip ((Gf )i ∩ ±Bε)

= lim
i

(m⊗ L1)rip
(
(Gf )i ∩ (Bi

ε(x) ×Bi
ε(±ri))

)
= lim

i

(m⊗ L1)
(
Gf ∩ (Bεri(x) ×Bεri(±ri))

)
Cri
p

= lim
i

1

Cri
p

ˆ
Bεri (x)

H1
(
({z} ×Bεri(±ri)) ∩ Gf

)
dmi(z).

Therefore, recalling the definition of Gf we obtain

Ln+1(H ∩ (−Bε)) − Ln+1(H ∩Bε) ≥ 0,

whence the claim follows.

Step 3: the case
(
νuGf

(p)
)
n+1

̸= 0. We set (by (5.1.5))

α :=
(
νuGf

(p)
)
n+1

∈ [−1, 1] \ {0}.

Set also
β :=

√
1 − α2 ∨ 1/2 ∈ (0, 1).

An immediate computation yields that ∂H ∩BRn+1

1 (0) ⊆ BRn

1 (0) ×BR
β (0) whence

lim
i

ri|DχGf
|
(
Bri(p) \ (X×Bβri(f̄(x)))

)
Cri
p

= lim
i
|Dχ(Gf )i |

(
Bi

1(p) \ (X×Bi
β(f̄(x)))

)
= 0,

hence, by arbitrariness of the sequence {ri}i chosen before and by (5.1.8),

lim
r↘0

|DχGf
|
(
Br(p) \ (X×Bβr(f̄(x)))

)
rn

= 0. (5.1.10)

Now, for γ ∈ (0,∞) and (x, t) ∈ X× R, we denote the cone

Cγ(x, t) := {(y, s) ∈ X× R : γd(y, x) ≥ |s− t|}.
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Set

γ :=

√
1 + β

1 − β
∈ (1,∞).

Now we claim that

lim
r↘0

|DχGf
|(Br(p) \ Cγ(p))

rn
= 0. (5.1.11)

This will follow from a “cube-density implies cone-density” argument exploiting (5.1.10). In order
to prove the claim, fix δ ∈ (0, 1). By (5.1.10), we can take r̃0 > 0 small enough so that

sup
r∈(0,r̃0)

|DχGf
|
(
Br(p) \ (X×Bβr(f̄(x)))

)
rn

< δ. (5.1.12)

Notice that

Br̃0(p) \ Cγ(p) ⊆
⋃
i

Br̃i(p) \ (X×Bβr̃i(f̄(x))), (5.1.13)

where for any i ∈ N with i ≥ 1 we defined

r̃i := β

√
γ2 + 1

γ2
r̃i−1 =

(
β

√
γ2 + 1

γ2

)i

r̃0.

Given that by (5.1.12)

|DχGf
|
(
Br̃i(p) \ (X×Bβr̃i(p))

)
≤ δr̃ni = δ

(
β

√
γ2 + 1

γ2

)ni

r̃n0 ,

it follows from the inclusion in (5.1.13) that

|DχGf
|(Br̃0(p) \ Cγ(p))

r̃n0
≤ δ

∑
i

(
β

√
γ2 + 1

γ2

)ni

.

Then, (5.1.11) is proved, thanks to the arbitrariness of δ > 0 and the finiteness of the sum at the
right hand side (by the definition of γ).

Step 4: making the estimate (5.1.11) of Step 4 “set theoretic”. Let ε > 0. We show that
there exists a set Σ = Σε ⊆ (Df × R) ∩ FGf with

|DχGf
|
({

(x, f̄(x)) ∈ FGf : x ∈ Df ,
(
νuGf

(x, f̄(x))
)
n+1

̸= 0
}
\ Σ
)
< ε (5.1.14)

and such that there exist γ ∈ (1,∞) and r0 ∈ (0, 1) satisfying

(Σ ∩Br0(p)) \ C2γ(p) = ∅ for every p ∈ Σ. (5.1.15)

We do it using a standard argument, see e.g. the proof of [117, Theorem 1.6]. Take indeed Σ ⊆
(Df × R) ∩ FGf satisfying (5.1.14) and

• f̄ is continuous on π1(Σ)



5.1. MAIN RESULTS 107

• there exists γ ∈ (1,∞) such that for any δ ∈ (0, 1) there exists r̂0 = r̂0(δ) ∈ (0, 1) such that,
for every r ∈ (0, 2r̂0) and p ∈ Σ,

|DχGf
|(Σ ∩Br(p))

Θn+1(m⊗ L1, p)ωnrn
≥ 1 − δ and

|DχGf
|
(
(Σ ∩Br(p)) \ Cγ(p)

)
Θn+1(m⊗ L1, p)ωnrn

≤ δ. (5.1.16)

This is possible thanks to Lusin’s and Egorov’s Theorems, taking into account (5.1.8), Remark 3.3.3,
(5.1.11) of Step 3 and an exhaustion argument, keeping in mind the fact that in (5.1.14) we are
estimating the perimeter of a set of points (x, f̄(x)) satisfying

(
νuGf

(x, f̄(x))
)
n+1

̸= 0.

We aim to show that if δ ∈ (0, 1) is small enough (to be determined later), then this choice of
Σ and r̂0 satisfies also (5.1.15). Assume now that there exist p ∈ Σ and q ∈ (Σ ∩Br̂0(p)) \ C2γ(p).
Then denoting d̃ := dX×R for brevity,

Bρ(q) ⊆ Bd̃(p,q)+ρ(p) \ Cγ(p), where ρ := d̃(p, q) sin(arctan(2γ) − arctan(γ)) > 0. (5.1.17)

Therefore, we can estimate, by (5.1.16) for what concerns the first and last inequalities (notice that
d̃(p, q) + ρ ≤ 2d̃(p, q) < 2r̂0), by (5.1.17) for the central inequality

δ ≥
|DχGf

|
(
(Σ ∩Bd̃(p,q)+ρ(p)) \ Cγ(p)

)
Θn+1(m⊗ L1, p)ωn(d̃(p, q) + ρ)n

≥
|DχGf

|(Σ ∩Bρ(q))

Θn+1(m⊗ L1, p)ωn(d̃(p, q) + ρ)n

≥ (1 − δ)
ρn

(d̃(p, q) + ρ)n
= (1 − δ)

(
sin(arctan(2γ) − arctan(γ))

)n(
1 + sin(arctan(2γ) − arctan(γ))

)n ,
which leads to a contradiction provided δ > 0 was chosen small enough (depending on γ), proving
thus (5.1.15).

Step 5: improved blow-up argument. Let Σ, γ and r̂0 be given by Step 4. We prove that if
x ∈ π1(Σ), then

lim
r↘0

π1∗(|DχGf
| Σ)(Br(x))

rn
= −Θn(m, x)

(
νuGf

(p)
)−1

n+1
. (5.1.18)

Fix x ∈ π1(Σ) and set p := (x, f̄(x)) ∈ Σ. Up to removing from Σ a |DχGf
|-negligible subset, we

can moreover assume that

lim
r↘0

r|DχGf
|(Br(p) \ Σ)

Cr
p

= 0. (5.1.19)

Indeed, this follows from the asymptotically doubling property of |DχGf
|, recalling (5.1.8).

Since f̄ is continuous on π1(Σ), there exists r̂1 ∈ (0, r̂0/
√

2) such that |f̄(y) − f̄(x)| < r̂0/
√

2
for all y ∈ Br̂1(x) ∩ π1(Σ). By Σ ⊆ (Df × R) ∩ FGf , Σ ⊆ {(x, t) ∈ X× R : t = f̄(x)}, so that

Σ ∩ (Br̂1(x) × R) ⊆ Σ ∩Br̂0(p) ⊆ C2γ(x, f̄(x)) (5.1.20)

by (5.1.15) of Step 4. Now we compute, by (5.1.20),

lim sup
i

ri|DχGf
| Σ(Bri(x) × R)

Cri
p

= lim sup
i

ri|DχGf
| Σ

(
Bri(x) ×B2γri(f̄(x))

)
Cri
p

≤ lim
i
|Dχ(Gf )i |

(
Bi

1(x) ×Bi
2γ(f̄(x))

)
= |DχH |(BRn

1 (0) ×BR
2γ(0)) ≤ |DχH |(BRn

1 (0) × R).
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On the other hand, recalling (5.1.19) and the computation right before Step 1, for any M ∈ (0,∞),

lim inf
i

ri|DχGf
| Σ(Bri(x) × R)

Cri
p

≥ lim inf
i

ri|DχGf
| Σ

(
Bri(x) ×BMri(f̄(x))

)
Cri
p

= lim inf
i

ri|DχGf
|
(
Bri(x) ×BMri(f̄(x))

)
Cri
p

= lim
i
|Dχ(Gf )i |

(
Bi

1(x) ×Bi
M (f̄(x))

)
= |DχH |(BRn

1 (0) ×BR
M (0)).

Hence, by the arbitrariness of M ,

lim
i

ri|DχGf
| Σ(Bri(x) × R)

Cri
p

= |DχH |(BRn

1 (0) ×BR
1 (0)),

and, being the sequence {ri}i chosen before arbitrary, recalling also (5.1.8) and Step 2,

lim
r↘0

π1∗(|DχGf
| Σ)(Br(x))

rn
= lim

r↘0

|DχGf
| Σ(Br(x) × R)

rn

= Θn(m, x)

(
ωn
n+ 2

ωn+1

)−1

|DχH |(BRn

1 (0) × R)

= −Θn(m, x)

(
ωn
n+ 2

ωn+1

)−1n+ 2

ωn+1
ωn

(
νuGf

(p)
)−1

n+1

= −Θn(m, x)
(
νuGf

(p)
)−1

n+1
,

(5.1.21)

that is (5.1.18).

Step 6: proof of (5.1.6). For ε ∈ (0, 1), denote by Σε the set given by Step 4 for this value of ε.
We first prove (5.1.6) for |DχGf

|-a.e. (x, f̄(x)) ∈ (Df ∩ Cf ) × R. Namely, we prove that for
|DχGf

|-a.e. (x, f̄(x)) ∈ (Df ∩ Cf ) × R, then

(
νuGf

(x, f̄(x))
)
n+1

= 0 and lim
r↘0

π1∗|DχGf
|(Br(x))

m(Br(x))
= ∞. (5.1.22)

Now, by (5.1.18) of Step 5 and [31, Theorem 2.4.3] together with an exhaustion argument, we
have that

π1∗(|DχGf
| Σε) ≪ Hn R∗

n(X) ≪ m,

hence, letting ε↘ 0 along a vanishing sequence we obtain by (5.1.14) that (as m(Cf ) = 0)

|DχGf
|
({

(x, f̄(x)) ∈ FGf : x ∈ Df ∩ Cf ,
(
νuGf

(x, f̄(x))
)
n+1

̸= 0
})

= 0,

which is the first claim in (5.1.22). Now we show that

lim
r↘0

|Df |(Br(x))

m(Br(x))
= ∞ for |Df |-a.e. x ∈ Df ∩ Cf . (5.1.23)

This can be easily proved with a classical exhaustion and covering argument. Indeed, assume by
contradiction that there exists a compact set K ⊆ Df ∩ Cf with |Df |(K) > 0 and

lim inf
r↘0

|Df |(Br(x))

m(Br(x))
< M
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for some M ∈ (0,∞). Let also δ ∈ (0, 1). For every x ∈ K, choose rx such that rx/5 ∈ (0, δ)
and |Df |(Brx(x)) < Mm(Brx(x)). Now the conclusion comes applying Vitali’s covering Theorem
together with the fact that m(Bδ(K)) → 0 as δ ↘ 0 and the local doubling property of m. Then
the second claim in (5.1.22) follows, using (2.3.13) twice.

Now we prove (5.1.6) for |DχGf
|-a.e. (x, f̄(x)) ∈ (Df \ Cf ) × R. First notice that combining

(5.1.1), Proposition 2.3.12 and the fact that Df ∩ Jf = ∅, we have

m Df ≪ (π1∗|DχGf
|) (Df \ Cf ) ≪ m. (5.1.24)

By (5.1.21) of Step 5 and differentiation of measures (e.g. combining [95, (3.4.24) and (3.4.32)]
with the doubling property of m),

lim
r↘0

π1∗|DχGf
|(Br(x))

m(Br(x))
= lim

r↘0

π1∗|DχGf
|(π1(Σε) ∩Br(x))

m(Br(x))
= lim

r↘0

π1∗(|DχGf
| Σε)(Br(x))

m(Br(x))

= −
(
νuGf

(x, f̄(x))
)−1

n+1
,

for m-a.e. x ∈ π1(Σε), being m locally doubling. By (5.1.14) and (5.1.24), if we let ε ↘ 0 along a
sequence, we see that

lim
r↘0

π1∗|DχGf
|(Br(x))

m(Br(x))
= −

(
νuGf

(x, f̄(x))
)−1

n+1
,

for m-a.e. x ∈ Df \ Cf such that
(
νuGf

(x, f̄(x))
)−1

n+1
̸= 0. Recalling (5.1.24) again, we have proved

(5.1.6) for |DχGf
|-a.e. (x, f̄(x)) ∈ (Df \ Cf ) × R such that

(
νuGf

(x, f̄(x))
)
n+1

̸= 0. To conclude, it

is enough to notice that by Step 1, (5.1.6) is satisfied for |DχGf
|-a.e. (x, f̄(x)) ∈ Df ×R such that(

νuGf
(x, f̄(x))

)
n+1

= 0.

Step 7: proof of (5.1.7). First recall that by (2.3.13) it holds

(π1∗|DχGf
|) (X \ (Cf ∪ Jf )) ≪ m and (π1∗|DχGf

|) (Cf ∪ Jf ) ⊥ m,

as |Df | (X\(Cf∪Jf )) ≪ m and m(Cf ) = m(Jf ) = 0. Then (5.1.7) follow from the Radon–Nikodym
Theorem, see e.g. [95, Remark 3.4.29] and (5.1.6), taking into account (2.3.13) again.

The following lemma completes the analysis of Proposition 5.1.9 on Df : it studies the first
n components of νuf and νuGf

on Df , which are the ones left out from the previous proposition

(notice that the relation is the one satisfied by smooth maps on Euclidean spaces, even though our
statement holds also for the Cantor part). In view of it, notice that (5.1.25) below is well defined
thanks to (2.3.13).

Lemma 5.1.10. Let (X, d,m) be an RCD(K,N) space of essential dimension n and let f ∈
BVloc(X). Let also u be a good splitting map on D and let Df ⊆ D \ Jf be given by Proposi-
tion 5.1.7. Then,√

1 −
(
νuGf

(x, f̄(x))
)2
n+1

νuf (x) =
(
νuGf

(x, f̄(x))
)
1,...,n

for |Df |-a.e. x ∈ Df . (5.1.25)

Proof. By coarea and the representation formula (3.5.2), it is enough to show that for a.e. t ∈ R it
holds √

1 −
(
νuGf

(x, f̄(x))
)2
n+1

νuf (x) =
(
νuGf

(x, f̄(x))
)
1,...,n

for Hn−1-a.e. x ∈ Df ∩ FEt,
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where, as usual, Et := {f > t}. By Lemma 4.2.1, the equality above reads, for a.e. t ∈ R,√
1 −

(
νuGf

(x, f̄(x))
)2
n+1

νuχEt
(x) =

(
νuGf

(x, f̄(x))
)
1,...,n

for Hn−1-a.e. x ∈ Df ∩ FEt. (5.1.26)

Fix t such that Et is a set of finite perimeter, it is enough prove (5.1.26) for this value of t
at x ∈ Df ∩ FEt satisfying the conclusions of Proposition 3.2.20 (for u and Et). Set for brevity
p := (x, f̄(x)). We are going to use the notation of Proposition 5.1.7 with vx := A(x)u.

By Remark 3.3.3, the assumptions on x and the membership x ∈ Df , we can find a sequence
ri ↘ 0, two half-spaces H ⊆ Rn+1 and H ′ ⊆ Rn, and a proper metric space (Z, dZ) such that(

X, r−1
i d,mri

x , x, Et

)
→ (Rn, de,Ln, 0, H ′),(

X× R, r−1
i dX×R, (m⊗ L1)rip , p,Gf

)
→ (Rn+1, de,Ln+1, 0, H),

in the realizations Z and Z× R, respectively. Also,

H ′ = {y ∈ Rn : y · ν̄vxEt
≥ 0} and H = {z ∈ Rn+1 : z · ν̄vpGf

≥ 0}, (5.1.27)

where we chose the coordinates on Rn+1 as limits of appropriate rescalings of vp (Remark 3.2.17).
Notice also that

{(y, s) ∈ X× R : s < t} → {(y, s) ∈ Rn × R : s < 0} in L1
loc,

in the realization Z× R. Therefore, by stability (e.g. [10, Lemma 3.5]) we deduce that

{(y, s) ∈ X×R : s < f(y), s < t} = Gf ∩ (X× (−∞, t)) → H ∩ {(y, s) ∈ Rn ×R : s < 0} in L1
loc.

(5.1.28)
Also, using Fubini’s Theorem and dominated convergence, we see that

Et × (−∞, t) → H ′ × (−∞, 0) in L1
loc. (5.1.29)

Given that Et × (−∞, t) = {(y, s) ∈ X×R : t < f(y), s < t} ⊆ {(y, s) ∈ X×R : s < f(y), s < t}
we obtain from (5.1.28) and (5.1.29) that

H ′ × (−∞, 0) ⊆ H ∩ {(y, s) ∈ Rn × R : s < 0},

so that, recalling (5.1.27),

ν̄
vp
Gf

=
(
αν̄vxEt

,
(
ν̄
vp
Gf

)
n+1

)
for some α ∈ [0, 1].

Now, as
1 =

∣∣ν̄vpGf

∣∣2 = α2
∣∣ν̄vxEt

∣∣2 +
(
ν̄
vp
Gf

)2
n+1

= α2 +
(
ν̄
vp
Gf

)
n+1

,

recalling (3.2.15) (for u and χEt), (5.1.3) and the fact that A(x) is invertible, (5.1.26) follows.

The following result is a type of area formula: on the regular part (i.e. outside Cantor and
jump part), the area factor (that, for smooth maps, reads

√
1 + |∇f |2) corresponds to the Radon–

Nikodym derivative of the perimeter with respect to the reference measure (such object is related to
the last component of the normal of the subgraph by Proposition 5.1.9). Our proof is via blow-up,
exploiting the results of [57] for what concerns Lipschitz functions, and then by approximation for
the general case.



5.1. MAIN RESULTS 111

Lemma 5.1.11 (Area formula). Let (X, d,m) be an RCD(K,N) space and let f ∈ BVloc(X). Then
we have the following expression for the Radon–Nikodym derivative:

dπ1∗|DχGf
|

dm
(x) =

√
gf (x)2 + 1 for m-a.e. x ∈ X \ (Cf ∪ Jf ).

Proof. By Lemma 3.2.19 and Proposition 5.1.7 we can fix u, a good splitting map on D and prove
the claim for m-a.e. x ∈ Df , where the set Df is the one obtained in Proposition 5.1.7. Also,
m-a.e. x ∈ Df it holds that

(
νuGf

(x, f̄(x))
)
n+1

< 0, by Proposition 5.1.9. Clearly, there is no loss of

generality in assuming f ∈ BV(X).

Case f ∈ BV(X) ∩ LIP(X). First, recall [24, Proposition 6.3] and [57], which imply that |Df | =
(lipf)m. Take p := (x, f̄(x)) with x ∈ Df . We take {xi}i ⊆ X with xi → x and

lim
i

f(xi) − f(x)

d(xi, x)
= ±lipf(x),

where the choice of the sign is any possible choice. Set ri := d(x, xi), and notice that we can, and
will, assume that ri ↘ 0. Therefore (Remark 3.3.3), up to not relabelled subsequences, we have
that (

X× R, r−1
i dZ×R, (m⊗ L1)rip , p,Gf

)
→ (Rn+1, de,Ln+1, 0, H),

where H is the half-space

H :=
{
y ∈ Rn+1 : y · ν̄vpGf

(p) ≥ 0
}
,

(see Proposition 5.1.7 for the notation) and this convergence is realized in a proper metric space
(Z × R, dZ×R) with respect to isometric embeddings ιi : (X × R, ri−1dX×R) → (Z × R, dZ×R) and
ι∞ : (Rn × R, de) → (Z × R, dZ×R). Therefore, up to a not relabelled subsequence, ιi(xi, f(xi)) →
ι∞(z̄,±lipf(x)) in Z× R, where |z̄| = 1.

Now we recall the first equality in (5.1.5), and we set for ease of notation

Rn × R ∋ ν̄
vp
Gf

(p) = (ν̂, νn+1) =
(
ν̂, νuGf

(p)n+1

)
,

for some ν̂ ∈ Rn with |ν̂|2 + ν2n+1 = 1. Hence, ∂H = {(z, t) ∈ Rn × R : z · ν̂ + tνn+1 = 0}. In
particular, if νn+1 ̸= −1, for every (z, t) ∈ ∂H,

z · ν̂

|ν̂|
√

(−νn+1)−2 − 1 = t,

so that

(−νn+1)
−1 = sup

(z,t)∈∂H:|z|=1

√
t2 + 1. (5.1.30)

Notice that (5.1.30) holds even if νn+1 = −1. Now we claim that(
− νuGf

(p)
)−1

n+1
=
√

lipf(x)2 + 1. (5.1.31)

Set q̄ := (z̄,±lipf(x)). Therefore, if we show that q̄ ∈ ∂H, it will follow by (5.1.30) the
inequality (≥) in (5.1.31). Take q̄′ = (z̄, t) such that q̄′ ∈ ∂H, we want to show that q̄ = q̄′. By weak
convergence rescaled perimeters and Lemma 2.3.11, we find a sequence of points {(x′i, f(x′i))}i ⊆
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X × R with ιi(x
′
i, f(x′i)) → ι∞(q̄′) in Z × R. Now we compute, if L denotes the global Lipschitz

constant of f ,

| ± lipf(x) − t| = lim
i

|f(xi) − f(x′i)|
ri

≤ lim sup
i

L
d(xi, x

′
i)

ri
= lim sup

i
LdZ(ιi(xi), ιi(x

′
i))

≤ lim sup
i

L(dZ(ιi(xi), ι∞(z̄)) + dZ(ιi(x
′
i), ι∞(z̄))) = 0.

This shows that t = ±lipf(x) and hence that ∂H ∋ q̄′ = q̄.

Now we show the inequality (≤) in (5.1.31), again using (5.1.30). Take any q̄ := (z̄, t) ∈ ∂H
with |z̄| = 1. As before, we find {(xi, f(xi))}i ⊆ X × R with ιi(xi, f(xi)) → ι∞(q̄) in Z × R. But
then

|t| = lim
i

|f(xi) − f(x)|
ri

= lim
i

|f(xi) − f(x)|
d(xi, x)

d(xi, x)

ri

≤ lim sup
i

|f(xi) − f(x)|
d(xi, x)

lim sup
i

dZ(ιi(xi), ιi(x)) ≤ lipf(x)|(z̄, 0)| = lipf(x).

Case f ∈ BV(X). Let ε ∈ (0, 1) and, by [99, Proposition 4.3], take h ∈ BV(X) ∩ LIP(X) with
m({h ̸= f}) < ε. Recall Proposition 5.1.7 and call

D̂ε := (Df ∩Dh ∩ {h = f̄}) \ Cf .

It will be enough to prove the claim for m-a.e. x ∈ D̂ε, by the arbitrariness of ε. Notice that by
[99, Proposition 3.7], |D(f − h)|(D̂ε) = 0, in particular,

gf = liph m-a.e. on D̂ε. (5.1.32)

Now notice that m-a.e. x ∈ D̂ε satisfies

lim
r↘0

(|Dh| + m)(Br(x) ∩ {h ̸= f})

rn
= 0. (5.1.33)

This follows since |Dh| ≤ Lm, where L is the Lipschitz constant of h, as m is locally doubling and
concentrated on R∗

n(X). Take x ∈ D̂ε satisfying (5.1.33). We prove that at p := (x, h(x)), |DχGh
|

and |DχGh
| ∧ |DχGf

|, properly rescaled and in suitable realizations, have the same weak limit.
Indeed, we compute, by (3.5.1) together with Remark 3.5.2 for the first inequality, Lemma 2.3.11
for the second inequality and (2.3.13) for the last inequality,

lim sup
r↘0

(
|DχGh

| − |DχGh
| ∧ |DχGf

|
)
(Br(p))

rn
≤ lim sup

r↘0

|DχGh
|(Br(p) \ ∂∗Gf )

rn

≤ lim sup
r↘0

|DχGh
|({(y, t) ∈ Br(p) : h(y) ̸= f̄(y)})

rn

≤ lim sup
r↘0

π1∗|DχGh
|(Br(x) ∩ {h ̸= f̄})

rn

≤ lim sup
r↘0

(|Dh| + m)(Br(x) ∩ {h ̸= f})

rn
,
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whence, taking into account Remark 3.3.3 and the fact that x satisfies (5.1.33),

lim
r↘0

r
(
|DχGh

| − |DχGh
| ∧ |DχGf

|
)
(Br(p))

Cr
px

= 0. (5.1.34)

Now, as x ∈ Df ∩Dh, we can find a sequence ri ↘ 0, two half-spaces H1, H2 ⊆ Rn+1 such that(
X× R, r−1

i dX×R, (m⊗ L1)rip , p,Gh

)
→ (Rn+1, de,Ln+1, 0, Hf ),(

X× R, r−1
i dX×R, (m⊗ L1)rip , p,Gf

)
→ (Rn+1, de,Ln+1, 0, Hg).

Here (see Proposition 5.1.7 for the notation),

Hf = {y ∈ Rn+1, y · ν̄vpGh
≥ 0}, and Hg = {y ∈ Rn+1, y · ν̄vpGf

≥ 0},

where we chose the coordinates on Rn+1 as limits of rescalings of vp (Remark 3.2.17). Now, (5.1.34)
implies that ν̄

vp
Gh

= ±ν̄vpGf
. With this in mind, Proposition 5.1.9 (together with (5.1.1) and the first

equality in (5.1.5) both for Gh and Gf ) implies that

dπ1∗|DχGf
|

dm
= −

(
νuGf

(x, f̄(x))
)−1

n+1
= −

(
νuGh

(x, h(x))
)−1

n+1
for m-a.e. x ∈ Dε,

so that the claim follows from what proved in the first Case of the proof and (5.1.32).

With by now standard tools of geometric measure theory, exploiting the rectifiability Theo-
rem 3.4.1 together with the representation formula (3.5.2) of Theorem 3.5.1 (in particular, Theo-
rem 3.1.1), we obtain the following result.

Lemma 5.1.12. Let (X, d,m) be an RCD(K,N) space and let E ⊆ X be a set of finite perimeter.
Then

(Hn−1 FE) ⊗H1 = Hn (FE × R)

as measures on X× R.

Proof. Using Theorem 3.4.1 and Corollary 3.3.2 together with Remark 3.5.2, we can use [27, The-
orem 5.4] (actually, the result of [100] is enough for this purpose) and see that

Θn−1(Hn−1 FE, x) = lim
r↘0

Hn−1 FE(Br(x))

ωn−1rn−1
= 1 for Hn−1-a.e. x ∈ FE.

By Fubini’s Theorem and what remarked above,

lim
r↘0

(Hn−1 ⊗H1) (FE × R)(Br(x, t))

ωnrn
= 1 for Hn−1-a.e. x ∈ FE, for every t ∈ R. (5.1.35)

In particular, (5.1.35) holds for (Hn−1 ⊗ H1)-a.e. (x, t) ∈ (FE × R), so that [31, Theorem 2.4.3]
yields that

(Hn−1 FE) ⊗H1 ≪ Hn (FE × R).

Moreover, a simple covering argument shows that if N ⊆ FE is Hn−1-negligible, then N × R ⊆
FE ×R is Hn-negligible, hence (5.1.35) holds for Hn (FE ×R)-a.e. (x, t) ∈ FE ×R. Therefore,
with the same arguments as before we can use [27, Theorem 5.4] (which is based on [100]) to
conclude.
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Notice that, by (2.3.13), (π1∗|DχGf
|) Jf = |Df | Jf , hence (5.1.36) below is well posed. The

following lemma concludes the section by studying the relation between νuGf
and νuf on Jf : the

normal to the subgraph is perfectly horizontal and is in the same direction of the polar vector of
the function. The proof is done reducing to the case in which f is characteristic function (and in
such case, the conclusion is trivial), by comparing the normal of the subgraph to the normal of
suitable simple functions.

Lemma 5.1.13. Let (X, d,m) be an RCD(K,N) space and let f ∈ BVloc(X). Let also u be a good
splitting map on D, then

νuGf
(x, t) = (νuf (x), 0) for |DχGf

|-a.e. (x, t) ∈ (D ∩ Jf ) × R. (5.1.36)

Proof. We can clearly assume f ∈ BV(X). As stated right before this lemma,

(π1∗|DχGf
|) Jf = |Df | Jf

and we are going to exploit throughout this equality. Now, let S ⊆ R be countable and dense and
such that for every s ∈ S, Es := {f > s} has locally finite perimeter and satisfies the conclusion of
Lemma 4.2.1 (this is possible by coarea). As S ⊆ R is dense, we can use a partitioning argument
to see that it is enough to show the claim on B × R, where B ⊆ D ∩ Jf is a |Df |-measurable
set satisfying s ∈ (f∨(x), f∧(x)), for some s ∈ S. By (2.3.6), B ⊆ ∂∗Es. Then (Remark 3.5.2
and (4.2.11)), if N ⊆ B is with |DχEs |(N) = 0, then |DχGf

|(N × R) = 0. In particular, by
Corollary 3.3.2, we see that we can assume that B ⊆ FEs and, by the assumptions on S, that for
every x ∈ B,

νuf (x) = νuEs
(x), (5.1.37)

where we fixed Borel representative.
Now, Lemma 5.1.12 together with the fact that graphs have zero (product) measure, implies

that
Hn({(x, t) : x ∈ B, t = f∨(x)}) = 0,

(here we used also (3.5.1) to deduce that Hn−1 FEs is σ-finite). Then, by (3.5.1),

|DχGf
|({(x, t) : x ∈ B, t = f∨(x)}) = 0,

and the same equality holds with f∧ in place of f∨. Therefore, we can use a partitioning argument
to reduce ourselves to prove the claim on B × I, where I ⊆ R is an open interval with s ∈ I and
such that for every x ∈ B, Ī ⊆ (f∧(x), f∨(x)). Now recall that for every (x, t) ∈ B × I, then
x ∈ FEs, so that (x, t) ∈ F(Es ×R) and that using twice (3.5.1) and Lemma 5.1.12, we have that

|DχGf
| (B × I) ≤ ωn

ωn+1
Hh (B × I) = |DχEs×R| (B × I) = (|DχEs | B) ⊗ (L1 I).

Now take (x, t) ∈ B × I. Then

Et × (−∞, t) = {(y, u) ∈ X× R : t < f(y), u < t} ⊆ {(y, u) :∈ X× R : u < f(y), u < t}
= Gf ∩ (X× (−∞, t))

and

(X \ Et) × [t,∞) = {(y, u) ∈ X× R : t ≥ f(y), u ≥ t} ⊆ {(y, u) ∈ X× R : u ≥ f(y), u ≥ t}
= ((X× R) \ Gf ) ∩ (X× [t,∞)).
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Now, if t ≤ s, then Es ⊆ Et so that

Es × (−∞, t) ⊆ Gf and Es × (−∞, t) ⊆ Es × R

whereas if t ≥ s, then Et ⊆ Es so that

(X \ Es) × [t,∞) ⊆ (X× R) \ Gf and (X \ Es) × [t,∞) ⊆ (X× R) \ (Es × R).

As, for every x ∈ B, Es has density 1/2 at x, the inclusions above together with Fubini’s Theorem
show that (Es ×R)∆Gf cannot have density 1 at (x, t) ∈ B × I. Notice also that for |DχEs×R|-a.e.
(x, t) ∈ B × I,

νuEs×R(x, t) = (νuEs
(x), 0).

The conclusion then comes from Lemma 4.2.3 and (5.1.37).

5.1.2 Proof of the main results

The main contribution towards the proof of Theorem 5.1.1 is the simple remark that the relative
isoperimetric inequality allows us to gain some integrability starting from the finiteness of the total
variation.

Proof of Theorem 5.1.1. If f ∈ BVloc(X), then Gf has perimeter that is finite on cylinders, thanks
to the proof of item (a) in [30, Theorem 5.1]. Conversely, assume that Gf has finite perimeter on
cylinders. Then, the argument in the proof of item (b) of [30, Theorem 5.1] yields that for any
x ∈ X and r > 0, ˆ

R
|Dχ{f>t}|(Br(x))dt <∞.

Now we take t0 ∈ (0,∞) big enough so that m({f > t0} ∩ Br(x)) ≤ min{1,m({f ≤ t0} ∩ Br(x))}
and m({f < −t0} ∩ Br(x)) ≤ min{1,m({f ≥ −t0} ∩ Br(x))}. This is possible as f ∈ L0(m).
Thus, taking into account that for L1-a.e. t, |Dχ{f>t}| = |Dχ{f<t}|, we obtain from the relative
isoperimetric inequality (2.3.2) (that holds with λ = 1 on finite dimensional RCD spaces, see [93,
Section 9] - but this is not important) that

ˆ ∞

t0

m({f > t} ∩Br(x))dt < +∞ and

ˆ −t0

−∞
m({f < t} ∩Br(x))dt < +∞.

This implies f ∈ L1
loc(X) by Fubini’s theorem. By coarea, it also follows that f ∈ BVloc(X).

The last conclusion is an immediate consequence of Lemma 5.1.11 for what concerns the abso-
lutely continuous part and (2.3.13) for what concerns the singular part.

The proofs of Theorem 5.1.3 and Theorem 5.1.4 follow rather easily from the series of prepara-
tory results of Section 5.1.1.

Proof of Theorem 5.1.3. We first show that

νuGf
(x, t) =

(√
1

1 + g2f
gfν

u
f ,−

√
1

1 + g2f

)
(x) for |DχGf

|-a.e. (x, t) ∈ (D \ (Jf ∪ Cf )) × R.

Recall that Proposition 5.1.7 imply that we can reduce ourselves to show this claim for |DχGf
|-a.e.

(x, t) ∈ (Df \ Cf ) × R (recall that Df ∩ Jf = ∅).



116 CHAPTER 5. CARTESIAN SURFACES

For |DχGf
|-a.e. (x, t) ∈ ({gf = 0}∩Df \Cf )×R, by Lemma 5.1.11, Proposition 5.1.9 and (2.3.13)

it holds that
(
νuGf

(x, f̄(x))
)
n+1

= −1, hence the claim follows by (5.1.3), as
∣∣ν̄(A(x)u◦π1,π2)

Gf

∣∣ = 1 (and

A(x) is invertible).
Now we show the claim at |DχGf

|-a.e. (x, t) with x ∈ ({gf > 0} ∩Df \Cf )×R. Notice that on
{gf > 0} ∩Df \Cf it holds that m ≪ |Df | ≪ m. Therefore, by Lemma 5.1.10, taking into account
Lemma 5.1.11, Proposition 5.1.9 and (2.3.13), we have the claim.

Now we prove that

νuGf
(x, t) =

(
νuf (x), 0

)
for |DχGf

|-a.e. (x, t) ∈ (D ∩ Cf ) × R.

By Proposition 5.1.7, we can show the claim for |DχGf
|-a.e. (x, t) ∈ (Df ∩ Cf ) × R. Then this

follows from Proposition 5.1.9 (see also (5.1.23)) together with Lemma 5.1.10 and (2.3.13).
Finally,

νuGf
(x, t) =

(
νuf (x), 0

)
for |DχGf

|-a.e. (x, t) ∈ (D ∩ Jf ) × R

by Lemma 5.1.13.

Proof of Theorem 5.1.4. Items i) and ii) can be proved using Theorem 5.1.3, Theorem 5.1.1, and
Lemma 2.3.11. Item iv) follows from Lemma 5.1.13.

We show now item iii). By (3.5.2), we write

ˆ
(D∩Jf )×R

φ(x, t)
(
νuGf

(x, t)
)
i
d|DχGf

|(x, t)

=

ˆ
(D∩Jf )×R

φ(x, t)
(
νuf (x)

)
i
χ∂∗Gf

(x, t)Θn(m, x)dHn(x, t),

where we used the first equality in (5.1.8) and Lemma 5.1.13. Now notice that if N ⊆ Jf is such
that Hn−1(N) = 0, then Hn(N × R) = 0. This can be proved with an easy covering argument.

Therefore, taking into account also Lemma 2.3.11 and coarea, we reduce ourselves to prove that
for every ψ : D × R → [0, 1] Borel, we have that for H1-a.e. s ∈ R

ˆ
(D∩FEs∩Jf )×R

ψ(x, t)dHn(x, t) =

ˆ
D∩FEs∩Jf

ˆ
R
ψ(x, t)dtdHn−1(x),

where Es := {f > s}, which follows from Lemma 5.1.12.

5.2 Bibliographical notes

In the Euclidean setting, the topic exposed in this chapter can be dated back at least to [107, 77].
There, the author was concerned with the study of Cartesian surfaces, i.e. subsets of Rn × R that
can be written as {(x, t) ∈ Rn ×R : x ∈ Ω, t = f(x)}, where Ω ⊆ Rn is open, and f ∈ BVloc(Ω). A
systematic study of Cartesian surfaces and subgraphs of functions of locally bounded variation in
Euclidean spaces can be found in [79, Section 4.1.5]. In fact, our results are the generalization of
the results contained in [79, Section 4.1.5] to the setting of finite dimensional RCD spaces.

The classical strategy of [79] seems not suitable for our context, as we do not have a canonical
way to decompose the distributional derivatives Df and DχGf

along different directions. This also
causes the need to define the “components”

(
νuf
)
i

(
νuGf

)
i

exploiting maps that look like charts.
The drawback is that these charts are defined only on Borel subsets, hence it is not clear the
distributional nature of the objects

(
νuf
)
i

and
(
νuGf

)
i
. Nevertheless, in our main result we compare
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(
νuf
)
i

with
(
νuGf

)
i
. In order to do so, a new strategy has to be exploited, and we therefore employ

a blow-up procedure, which is more compatible with the use of geometric measure theory results
and does not need the distributional meaning of such objects.

The results of [79, Section 4.1.5] have already been used in the short proof of the Rank one
Theorem in the Euclidean setting of [106], and (after having been generalized to Carnot groups,
see e.g. [73, Theorem 4.3]) have been exploited to prove the Rank one Theorem for a subclass of
Carnot groups in [73] (see Section 6.2). The generalization of these results to finite dimensional
RCD spaces that is contained in this chapter will be used to prove the Rank one Theorem in
Chapter 6.

The material of this chapter is taken from [32, 33], after some rewriting. The rewriting is done
in such a way to merge smoothly the results contained in [32, 33], but takes also into account some
slight differences, for example, the definition of good splitting map that we adopt here is slightly
modified with respect to the one used in [32, 33], but this plays no difference, see Remark 3.2.13.
Proposition 5.1.7 has to be compared with [32, Proposition 3.6] and [33, Proposition 32]. Notice
that what here and in [33, Proposition 32] is called Df is the analogue of what is called Cf in [32,
Proposition 3.6] (the notation of [32] creates a bit of confusion as Cf , here, is any m-negligible set
on which |Df |c is concentrated). We remark that the first part of Lemma 5.1.11 can be proved also
exploiting [30, Theorem 5.1], but the proof given here is tailored to this setting and more in the
spirit of this chapter. Also, the claim of Lemma 5.1.12 is contained in [33, Lemma 38], but here
we adopt a different proof, which is shorter but less elementary. Part of the proof of Lemma 5.1.13
has been changed with respect to the proof of [33, Lemma 38] and is now simpler.
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Chapter 6

Rank one Theorem

The aim of this chapter is to state and prove the Rank one Theorem for vector valued functions
of bounded variation on (finite dimensional) RCD spaces. In the Euclidean context such theorem
establishes that for a vector valued function of bounded variation f , the polar matrix dDf

d|Df | has

rank one almost everywhere with respect to the singular part of |Df | (it is clear that this does not
hold, in general, with respect to the absolutely continuous part of |Df |). The conclusion on the
jump part is not so hard and follows from the material of the previous chapters (i.e. it follows from
a sort of transversality condition for rectifiable sets), the bulk of the proof is then the conclusion
on the Cantor part.

6.1 Main result

Before stating the main result of this chapter, we define what it means for m-tuple of vector fields
to have rank one.

Definition 6.1.1. Let (X, d,m) be an RCD(K,∞) space. Let ν ∈ L0
Cap(TmX) and let µ be a

Radon measure such that µ≪ Cap. We say that

Rk(ν) = 1 µ-a.e.

(or that ν has rank one µ-a.e.) if there exist ω ∈ L0
Cap(TX) and λ1, . . . , λm ∈ L0(Cap) such that

for every i = 1, . . . ,m,

νi = λiω µ-a.e.

We remark that this is one of the possible definitions we could have given of having rank one.
For example, one can give an alternative and equivalent definition exploiting the existence of a
local basis (with respect to a decomposition of the space in Borel sets) of L0

Cap(TX), to recover the
language of rank of a matrix, see e.g. Theorem 2.2.21. It is however clear that in Euclidean spaces,
the definition given above coincides with the usual one.

We are now ready to state the main theorem of this chapter, which is the generalization of the
Rank one Theorem to the setting of RCD(K,N) spaces.

Theorem 6.1.2 (Rank one Theorem). Let (X, d,m) be an RCD(K,N) space and let f ∈ BVloc(X)m.
Then

Rk(νf ) = 1 |Df |s-a.e. (6.1.1)

119
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In (6.1.1), we chose a Cap-representative of νf . It is clear that its validity does not depend on
the choice of this representative.

Now we start proving Theorem 6.1.2. The bulk of the proof is contained in Lemma 6.1.3, whose
proof is deferred to Section 6.1.3 below. First notice that if N ⊆ FGf∩(Df×R) is |DχGf

|-negligible,
then π1(N) is |Df | negligible, by (2.3.13), as N ⊆ Df × R. Hence (6.1.2) below is well posed.

Before stating the lemma, let us shortly explain which is its moral in the Euclidean context
([106]). What one wants to show is that, if Σ1,Σ2 are two C1 hypersurfaces in Rn+1 with unit
normals νΣ1 , νΣ2 , the set

{p ∈ Σ1 : ∃q ∈ Σ2 : π(p) = π(q),
(
νΣ1(p)

)
n+1

=
(
νΣ2(q)

)
n+1

= 0, and νΣ1(p) ̸= ±νΣ2(p)}

is Hn-negligible, where π : Rn+1 = Rn×R → Rn denotes the projection onto the first factor. From
this property the Rank one theorem can be easily deduced. It is then clear that the set in (6.1.2)
is defined in this spirit, adding one dummy variable to reduce the problem to the study of the
intersection of two C1 hypersurfaces with different normals at the points of intersection.

Lemma 6.1.3. Let (X, d,m) be an RCD(K,N) and let f, g ∈ BVloc(X). Let also u be a good
splitting map on D and let Df , Dg ⊆ D be given by Proposition 5.1.7 for f and g respectively. We
define R̃ ⊆ X× R× R as

R̃ :=
{

(x, t, s) ∈ (Df ∩Dg) × R× R :(x, t) ∈ FGf , (x, s) ∈ FGg, ν
u
Gf

(x, t) ̸= ±νuGg
(x, s),

(νuGf
(x, t))n+1 = (νuGg

(x, s))n+1 = 0
}
.

(6.1.2)

Then, setting R := π1(R̃), it holds that

(|Df | ∧ |Dg|)(R) = 0.

The following lemma is basically the Rank one Theorem 6.1.2 in the case m = 2 and on the
Cantor part. Its proof is based on the study of Cartesian surfaces of the previous chapter and the
previous lemma (in which an additional coordinate is added).

Lemma 6.1.4. Let (X, d,m) be an RCD(K,N) space and let f, g ∈ BVloc(X). Choose two Cap-
vector fields representatives for νf and νg. Then

νf = ±νg (|Df |c ∧ |Dg|c)-a.e.

Proof. We denote by n the essential dimension of the space. We use a partitioning argument based
on Lemma 3.2.19 together with Proposition 5.1.7 to reduce the claim on Df ∩ Dg, where there
exists u, a good splitting map on D. Then, from Theorem 5.1.3 and Lemma 6.1.3, taking into
account (2.3.13), we deduce that

νuf (x) = ±νug (x) (|Df |c ∧ |Dg|c)-a.e. on Df ∩Dg. (6.1.3)

Now, we show that {∇ui}i=1,...,n generates L0
Cap(TX) on D. This follows from Remark 3.2.5

together with Theorem 2.2.21. Indeed, set Mi,j equal to the Cap-representative of ∇ui · ∇uj . By
the fact that u is a good splitting map on D, together with Remark 3.2.5, it holds that Mi,j is
invertible Cap-a.e. on D. Now, Theorem 2.2.21 shows there can be at most n linearly independent
Cap-vector fields. This improves (6.1.3) to

νf (x) = ±νg(x) (|Df |c ∧ |Dg|c)-a.e. on Df ∩Dg,

whence the conclusion.
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Proof of Theorem 6.1.2. By Remark 4.1.2, for every i = 1, . . . ,m,

(νf )i =
d|Dfi|
d|Df |

νfi |Df |-a.e.

Hence, by classical arguments based on the properties of variation measures, it is enough to consider
the case m = 2.

Then from Lemma 6.1.4, we have that

νf1 = ±νf2 (|Df1| ∧ |Df2|)-a.e. on Cf1 ∩ Cf2 ,

whereas, by Lemma 4.2.9 we have that

νf1 = ±νf2 (|Df1| ∧ |Df2|)-a.e. on Jf1 ∩ Jf2 ,

and thus the conclusion, again by classical properties of variation measures.

6.1.1 Proof of Lemma 6.1.3

Now we prove Lemma 6.1.3, which is the bulk of the proof of the Rank one Theorem 6.1.2. We
remark that one of the difficulties faced in proving Lemma 6.1.3 is the fact that its statement involves
a “codimension 2” analysis. Indeed, the set R̃ of (6.1.2) is the intersection of two 1-codimensional
objects. There are no known techniques to deal directly with such high codimensional objects on
RCD spaces, and for this reason we have to resort to the analysis in the Euclidean space, translating
our problem and relying on a well-know transversality result for C1 hypersurfaces. It is then evident
that the problem becomes understanding the structure of “charts” for RCD spaces.

Proof of Lemma 6.1.3. To fix the notation, assume that u is defined on B2r̄(x̄), hence D ⊆ Br̄(x),
notice that R ⊆ Df ∩ Dg ⊆ D ⊆ Br̄(x̄). We let n denote the essential dimension of the space.
We start with some exhaustion and partitioning argument that will allow us to gain additional
properties on the set R (i.e. for R̃, as R̃ ⊆ R×R×R). This is possible by the nature of the claim,
taking advantage of the fact that if we writeR =

⋃
k∈NRk∪Nf∪Ng where |Df |(Nf ) = |Dg|(Ng) = 0,

then it is enough to show that (|Df | ∧ |Dg|)(Rk) = 0 for every k.

By an exhaustion argument building upon Remark 3.3.3, we can assume that for some l ∈ N,
l ≥ 1, we have that

r|DχGf
|(Br(x, f̄(x)))

(m⊗ L1)(Br(x, f̄(x)))
> l−1 for every x ∈ R and r ∈ (0, l−1) (6.1.4)

and moreover

Θn(m, x) ∈ (l−1, l) for every x ∈ R. (6.1.5)

We assume also that we have the same bounds with g in place of f .

Step 1: rectifiability and surfaces. Up to a partitioning argument, we can assume that FGf ∩
(R×R) is contained in Br̄(x̄, t̄), for some t̄ ∈ R. Recall (Remark 5.1.6) that (u◦π1, π2) : B2r̄(x̄, t̄) →
Rn+1 is a good splitting map on (R×R)∩Br̄(x̄, t̄). Recall also the definitions of the matrix valued
Borel maps A and Ã, e.g. Remark 5.1.6 again. Now we are going to use Lemma 3.4.2 as in the
proof of Theorem 3.4.1, we give the details. By the definition of Df , for every x ∈ R, the map

v(x,f̄(x)) = Ã(x, f̄(x))(u ◦ π1, π2) = (A(x)u ◦ π1, π2)
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is a systems of good coordinates for FGf at (x, f̄(x)). Moreover (we state it for future reference)
(x, f̄(x)) is a Lebesgue point for νuGf

with respect to |DχGf
| and (5.1.3) is satisfied. Now, take

ε ∈ (0, 1) small enough so that ε2(ĈK,N+1 + 1) < ε, where ĈK,N+1, the constant appearing in
Definition 3.2.12. Then, up to a further partitioning argument, we assume that there exists an
invertible (as A(x) is invertible for every x ∈ R) matrix Ā ∈ Qn×n and a vector ν̄f ∈ Qn+1 such
that for every x ∈ R,

|A(x) − Ā| < ε2 and |ν̄uGf
(x, f̄(x)) − ν̄f | < ε2 for every x ∈ R.

In particular, if ˜̄A denotes the matrix obtained starting from Ā as in (5.1.2),

|Ã(x, f̄(x)) − ˜̄A| < ε2 for every x ∈ R.

Therefore, recalling also (6.1.4), the assumptions of Lemma 3.4.2 are in place for Gf in place of
E (with the obvious change of notation). Then we apply Lemma 3.4.2 and a further partitioning
argument to assume that the map

π̄(Āu ◦ π1, π2) : (R× R) ∩ FGf → Rn+1

is bilipschitz onto its n-dimensional image, where π̄ is a projection onto a hyperplane of Rn+1.
Hence, also

(u ◦ π1, π2) : Γf → Rn+1 (6.1.6)

is bilipschitz onto its n-dimensional image, being Ā invertible and u Lipschitz, where we set, for
simplicity of notation,

Γf := (R× R) ∩ FGf .

Take now N ⊆ Rn+1 with Hn(N) = 0 and set M := (u◦π1, π2)−1
|Γf

(N) ⊆ X×R. Being (u◦π1, π2)
bilipschitz, Hn(M) = 0, so that, by the representation formula of Theorem 3.5.1 (in particular,
Theorem 3.1.1 and Remark 3.5.2), |DχGf

|(M) = 0, whence |Df |(π1(M)) = 0, by (2.3.13), as
M ⊆ Df ×R. Therefore, by standard results of geometric measure theory in Euclidean spaces and
a partitioning argument, we can assume that

Γ′
f := (u ◦ π1, π2)(Γf ) (6.1.7)

is contained in a C1 hypersurface Σf . As Hn Σf is asymptotically doubling, by the discussion
above we see that we can assume

lim
r↘0

Hn Σf (Br(q) ∩ Γ′
f )

ωnrn
= 1 for every q ∈ Γ′

f . (6.1.8)

Finally, taking into account also that |DχGf
| is asymptotically doubling, we can assume that

lim
r↘0

|DχGf
|(Br(p) ∩ Γf )

|DχGf
|(Br(p))

= 1 for every p ∈ Γf . (6.1.9)

To sum up, we have reduced ourselves to prove the claim where R is such that the map in
(6.1.6) is bilipschitz onto its n-dimensional image which is contained in a C1 hypersurface Σf , and
such that (6.1.4), (6.1.5), (6.1.8), (6.1.9) and (5.1.3) hold (taking the Lebesgue representative for
νuGf

). Moreover, the similar assertions hold for g in place of f (this is proved exactly with the same

argument and a further partitioning and exhaustion).
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Step 2: almost one-sided Kuratowski convergence. Let p ∈ Γf and let ρk ↘ 0 such that

(X× R, ρ−1
k dX×R, (m⊗ L1)ρkp , p,Gf ) → (Rn × R, de,Ln+1, 0, H),

in a realization (Z × R, dZ×R), where (Z, dZ) is a proper metric space, with respect to isometric
embeddings {ιk}k and ι∞, where ιk : (X × R, ρ−1

k dX×R) → (Z × R, dZ×R) and ι∞ : (Rn × R, de) →
(Z× R, dZ×R). We claim that for every ρ, ε > 0, there exists k0 ∈ N such that

BZ×R
ρ (ιk(p)) ∩ ιk(Γf ) ⊆ BZ×R

ε (ι∞(∂H)) if k ≥ k0.

We argue by contradiction. Up to taking a not relabelled subsequence, by the contradiction
assumption, there exists a sequence {qk}k ⊆ Γf such that for every k,

ιk(qk) ∈ BZ×R
ρ (ιk(p)) \BZ×R

ε (ι∞(∂H)).

Up to a not relabelled subsequence, ιk(qk) → ι∞(q) ∈ Z, with dZ×R(ι∞(q), ι∞(∂H)) ≥ ε/2, for some
q ∈ Rn×R (the fact that the limit point of {ιk(qk)}k belongs to ι∞(Rn×R) is an easy consequence
of the doubling property of the measure). By weak convergence of rescaled perimeters,

lim
k

ρk|DχGf
|(Bερk/2(qk))

Cρk
p

= 0.

On the other hand, recalling (6.1.4) and using again the weak convergence of measures,

lim inf
k

ρk|DχGf
|(Bερk/2(qk))

Cρk
p

= lim inf
k

ρk|DχGf
|(Bερk/2(qk))

(m⊗ L1)(Bερk/2(qk))

(m⊗ L1)(Bερk/2(qk))

Cρk
p

≥ l−1Ln+1(Bε/2(q)) > 0,

which is a contradiction.
Clearly, the analogue statement holds with g in place of f .

Step 3: tensorization of inequalities. We start from a couple of useful equalities. First, by
(6.1.9), if p′ ∈ Γf ,

lim
r↘0

|DχGf
|(Br(p

′) \ Γf )

|DχGf
|(Br(p′))

= 0,

so that, for every p = (p′, t) ∈ Γf × R, as |DχGf×R| = |DχGf
| ⊗ L1,

lim
r↘0

|DχGf×R|(Br(p) \ (Γf × R))

|DχGf×R|(Br(p))
= 0. (6.1.10)

Also, by (6.1.5) together with Fubini’s Theorem (see e.g. the first equality in (5.1.8)),

Θn+2(m⊗ L1 ⊗ L1, q) ∈ (l−1, l) for every q ∈ R× R× R. (6.1.11)

Step 4: blow-up argument. Here and below we denote with τ : Y×R×R the involution given
by (x, t, s) 7→ (x, s, t), for Y any set. Now we set V := (u ◦ π1, π2, π3). Clearly,

V : Γf × R → Rn+1 and V : τ(Γg × R) → Rn+1 (6.1.12)
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are bilipschitz onto their (n + 1)-dimensional image, by Step 1. Set also Vp := (A(π1(p))u ◦
π1, π2, π3). Fix p ∈ R̃, we aim at preparing the setting for the proof of Step 5 below, i.e. the proof
of (6.1.16) and (6.1.17).

By our assumptions and by Remark 3.3.3, we know that there exists a sequence ρk ↘ 0 and a
proper metric space (Z, dZ) that realizes the convergence

(X, ρ−1
k d,mρk

p , p) → (Rn, de,Ln, 0).

Hence, (Z× R× R, dZ×R×R) realizes the convergence

(X× R× R, ρ−1
k dX×R×R, (m⊗ L1 ⊗ L1)ρkp , p) → (Rn × R× R, de,Ln+2, 0),

for suitable isometric embeddings ιk : (X×R×R, ρ−1
k dX×R×R) → (Z×R×R, dZ×R×R) and ι∞ : (Rn×

R×R, de) → (Z×R×R, dZ×R×R). Then, up to taking not relabelled subsequences (Remark 3.3.3)
we can assume that, in the same realization, we have

(X× R× R, ρ−1
k dX×R×R, (m⊗ L1 ⊗ L1)ρkp , p,Gf × R) → (Rn × R× R, de,Ln+2, 0, H ′

f ) (6.1.13)

(X× R× R, ρ−1
k dX×R×R, (m⊗ L1 ⊗ L1)ρkp , p, τ(Gg × R)) → (Rn × R× R, de,Ln+2, 0, H ′

g), (6.1.14)

where H ′
f and H ′

g are half-spaces in Rn × R× R. Further, up to passing again to a not relabelled
subsequence and changing coordinates in Rn, we will assume that the maps Vp, properly rescaled
(i.e. {ρ−1

k Vp}k), locally uniformly converge to the coordinate functions of Rn ×R×R with respect
to the convergences above, see Remark 3.2.17 (here and after we assume, to simplify the notation,
that Vp(p) = 0).

By (5.1.3) and a tensorization argument, it follows that

H ′
f = {(z, u, v) ∈ Rn × R× R : (z, u) · (Ã(x, u)νuGf

(x, u)) ≥ 0},

and
H ′

g = {(z, u, v) ∈ Rn × R× R : (z, v) · (Ã(x, v)νuGg
(x, v)) ≥ 0},

so that, by p ∈ R̃,

H ′
f = Hf × R× R, H̃ ′

g = Hg × R× R and Hf ̸= ±Hg

for Hf and Hg half-spaces of Rn (here we also used that A(x) is invertible).
Fix C ≥ 5 greater than the bilipschitz constants of the maps in (6.1.12) and such that

|(A(x), π1, π2)c| ≤ (C − 2)|c| for every c ∈ Rn+2 (6.1.15)

and let δ ∈ (0, C−1) be sufficiently small so that we find a ∈ (∂Hf ×R×R)∩B1/2(0) ⊆ Rn+2 such
that

B2Cδ(a) ∩ (∂Hg × R× R) = ∅.

As a consequence of (6.1.10), we can find a sequence {ak}k ⊆ X× R× R with

ak ∈ (Γf × R) ∩Bρk/2(p) for k large enough,

and ιk(ak) → ι∞(a) in Z× R× R. Up to decreasing δ, we assume that

BCδρk(ak) ⊆ Bρk(p) for k large enough.
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Step 5: transversality. We claim that, with the notation introduced in Step 4, (recall the
definition in (6.1.7))

lim inf
k

ρ−n−1
k Hn+1

(
Bδρk(V (ak)) ∩ (Γ′

f × R)
)
> 0, (6.1.16)

lim inf
k

ρ−n−1
k Hn+1

(
Bδρk(V (ak)) ∩ τ(Γ′

g × R)
)

= 0. (6.1.17)

By weak convergence of rescaled perimeters,

lim inf
k

ρk|DχGf×R|(BC−1δρk(ak))

Cρk
p

> 0.

Taking into account (6.1.10) and (6.1.11) together Remark 3.3.3 to deal with the denominators,
using (3.5.2), we see that the equation above reads

lim inf
k

ρ−n−1
k Hn+1

(
BC−1δρk(ak) ∩ (Γf × R)

)
> 0.

Therefore, it is easy to verify by contradiction that (6.1.16) follows, by our choice of C.
Now we concentrate on (6.1.17). We claim that there exists k0 ∈ N such that

V
(
B2C2ρk(p) ∩ τ(Γg × R)

)
∩Bδρk(V (ak)) = ∅. if k ≥ k0. (6.1.18)

Notice that (6.1.17) would follow from (6.1.18). Indeed, as δ < C and ak ∈ Bρk(p),

Bδρk(V (ak)) ∩ τ(Γ′
g × R) ⊆ B2Cρk(V (p)) ∩Bδρk(V (ak)) ∩ τ(Γ′

g × R)

⊆ V
(
B2C2ρk(p) ∩ τ(Γg × R)

)
∩Bδρk(V (ak)),

so that (6.1.18) implies that the sets considered in (6.1.17) are empty for k ≥ k0.
Therefore, we have reduced ourselves to prove (6.1.18). Recall that ρ−1

k Vp locally uniformly
converge to the coordinate functions of Rn × R × R. Hence, there exist ε ∈ (0, δ) and k0 ∈ N
such that for every ξ ∈ B3C2ρk(p) and ξ′ ∈ Rn × R × R with dZ×R×R(ιk(ξ), ι∞(ξ′)) < ε, then

|ρ−1
k Vp(ξ) − ξ′| < δ for every k ≥ k0. Up to increasing k0, we may assume that for every k ≥ k0,

dZ×R×R(ιk(ak), ι∞(a)) < ε.

By (a tensorization of) Step 2, we get that, up to increasing k0, if k ≥ k0, then

ιk(B2C2ρk(p) ∩ τ(Γg × R)) ⊆ BZ×R×R
ε (ι∞(∂Hg × R× R)). (6.1.19)

Hence, take k ≥ k0 and b ∈ B2C2ρk(p) ∩ τ(Γg × R), to show (6.1.18) we have to prove that

|V (b) − V (ak)| ≥ δρk. (6.1.20)

Notice that (6.1.20) does not follow from the fact that the maps in (6.1.12) are C-bilipschitz. By
(6.1.19), the exists b′ ∈ ∂Hg × R× R such that

dZ×R×R(ιk(b), ι∞(b′)) < ε.

Notice that if b′ is as above, then, by our choice of δ and a,

|b′ − a| ≥ Cδ.
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By local uniform convergence,

|ρ−1
k Vp(b) − ρ−1

k Vp(ak)| ≥ |b′ − a| − 2δ if k ≥ k0

so that

|Vp(b) − Vp(ak)| ≥ (C − 2)δρk,

which implies, recalling (6.1.15), (6.1.20).

Step 6: proof of σ-finiteness of Hn R̃. We prove that Hn R̃ is σ-finite. Notice that
R̃ ⊆ (Γf × R) ∩ τ(Γg × R), hence it is enough to show that V (R̃) is σ-finite with respect to Hn.
By Step 1, V (R̃) ⊆ (Σf × R) ∩ τ(Σg × R), so that, by a standard result of in Geometric Measure
Theory on Euclidean spaces, we can simply show that at every p = (x, t, s) ∈ R̃ it holds that
Σf ×R ⊇ Γ′

f ×R and τ(Σg ×R) ⊇ τ(Γ′
g ×R) intersect transversally at V (p), or, equivalently, that

Σf ×R and τ(Σg×R) have different tangent spaces at V (p). Now, by (6.1.16) and (6.1.17) together
with (the tensorized version of (6.1.8)) it follows easily that Γ′

f × R and τ(Γ′
g × R) have different

tangent spaces at 0, whence the conclusion (by the tensorized version of (6.1.8) again). Hence we
write

R̃ =
⋃
i∈N

R̃i,

where, for every i, R̃i has finite Hn measure.

Step 7: a technical estimate. Fix p ∈ R̃. We claim that

lim
r↘0

Hn
5

(
(π1, π2)(R̃ ∩Br(p))

)
rn

= 0.

Let us prove the claim. Take a sequence ρk ↘ 0. We recall, that, with the same notation as in
Step 4, up to a not relabelled subsequence, we can assume that (6.1.13) and (6.1.14) hold. Let

I := I
(
ι∞((∂Hf ∩ ∂Hg) × R× R)

)
be a neighbourhood (in Z× R× R) of ι∞(∂Hf ∩ ∂Hg) × R× R that satisfies, for ε ∈ (0, 1),

Hn
5 ((π1, π2)(I)) < ε.

This is possible since ∂Hf ̸= ∂Hg. As a consequence of (a tensorized version of) Step 2, there
exists k0 ∈ N such that

BZ×R×R
1 (ιk(p)) ∩ ιk(R̃) ⊆ I for every k ≥ k0,

from which, taking the projection (π1, π2), the claim follows as ε ∈ (0, 1) was arbitrary.

Step 8: conclusion. By Step 6, it is enough to show that

(|Df | ∧ |Dg|)(π1(R̃i)) = 0,

for every i ∈ N. We concentrate on a fixed i and, for simplicity, we drop the subscript i from R̃i.
Therefore, Hn(R̃) <∞. Fix ε > 0. For every j ∈ N, j ≥ 1 we consider the sets

R̃j :=
{
p ∈ R̃ : r−nHn

5

(
(π1, π2)(R̃ ∩Br(p))

)
< ε for every r ∈ (0, j−1)

}
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and
R̃′

j := R̃j \
⋃
i<j

R̃i.

Notice that, by Step 7,

R̃ =
⋃
j≥1

R̃′
j , (6.1.21)

and that, by construction, this union is disjoint.
For every j ≥ 1, we take a countable family of balls {B

rji
(pji )}i∈N such that, for every i ∈ N it

holds that rji < j−1 and pji ∈ R̃′
j , as well as

R̃′
j ⊆

⋃
i

B
rji

(pji ) and
∑
i

(rji )
n ≤ 2nHn(R̃′

j) + 2−j . (6.1.22)

We can compute, recalling the definition of R̃j and (6.1.22),

Hn
5 ((π1, π2)(R̃′

j)) ≤ Hn
5

(
(π1, π2)

(
R̃ ∩

⋃
i

B
rji

(pji )
))

≤
∑
i

ε(rji )
n ≤ ε(2nHn(R̃′

j) + 2−j).

Therefore, recalling (6.1.21), we see that

Hn
5 ((π1, π2)(R̃)) ≤ ε(2nHn(R̃) + 1),

and, being ε > 0 arbitrary, |DχGf
|((π1, π2)(R̃)) = 0, whence the conclusion follows thanks to

Proposition 2.3.12 and the fact that R ⊆ Df .

6.2 Bibliographical notes

In 1988 Ambrosio and De Giorgi [14], motivated by the study of some functionals coming from
the Mathematical Physics, conjectured that for every f ∈ BVm the matrix dDf

d|Df | has rank one

|Df |s-almost everywhere. In 1993 Alberti [1] solved in the affirmative the previous conjecture, see
also the account in [66].

As an added value to the theoretical interest of the Rank one Theorem, in 2016 De Philippis
and Rindler [68] showed a general structure theorem for A-free vector valued Radon measures on
Euclidean spaces, where A is a linear constant-coefficient differential operator, from which the Rank
one Theorem can be derived as a consequence. As a side note, we mention that the main result
of [68] is used to prove (2.2.12), namely that the reference measure of an RCD space is absolutely
continuous with respect to the Hausdorff measure, see [67, 98, 90]. We also remark that Massaccesi
and Vittone recently gave a very short proof of the Rank one Theorem based on the theory of sets
of finite perimeter [106], and with Don they used this simplified strategy to prove the analogue of
the Rank one Theorem in some Carnot groups [73].

The latter strategy is the starting point of our investigation and it is precisely the strategy of
[106, 73] that we have adapted to the non-smooth framework in [32], from which this chapter is
taken. Exactly as in the references, the bulk of the proof is the transversality lemma, Lemma 6.1.3.
However, the lack of a linear structure forces us to perform a delicate fine analysis, and to resort
ultimately to a well-known transversality lemma for C1 surfaces in the Euclidean space.

In this manuscript, the proof of Lemma 6.1.3 has undergone heavy rewriting (starting from
[32]), mostly for what concerns the presentation. Besides some minor improvements, a consistent
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simplification is obtained by employing Lemma 3.4.2 instead of [51, Proposition 4.7]. There are no
deep changes in the techniques, but the possibility of “throwing away” only a set of small perimeter
instead of a set of small perimeter together with a set of small content allow us to make the proof
less intricate. The possibility of doing so comes from the fact that in this manuscript we have
moved up “throwing away” a set of small content to the proof of Lemma 3.2.19, making also the
rectifiability lemma, Lemma 3.4.2, more transparent. Moreover, still concerning Lemma 6.1.3, we
state and prove the result with respect to a single good splitting map, and not with respect a
countable family of good splitting maps, as done in [32]. This improvement is possible thanks to
the discussion that we have just made, still thanks to the fact that we use Lemma 3.4.2 instead of
[51, Proposition 4.7]. To be more precise, here we also modify the definition of good splitting map,
but, taking into account Remark 3.2.13 and Lemma 3.2.14, this does not make a big difference.



Chapter 7

Nonlocal characterization

The aim of this chapter is to show that, even on (finite dimensional) RCD spaces, the total variation
of a BV function (as well as the membership to the space BV) can be recognized via a limit of
certain nonlocal functionals depending on a parameter, namely, exploiting the short-time behaviour
of the heat flow. In particular, we are going to study the limit, as t↘ 0, of the functionals

L1 ∋ f 7→ 1√
t

ˆ ˆ
pt(x, y)|f(x) − f(y)|dm(x)dm(y).

7.1 Main results

Now we state the main results of this chapter. As discussed above, the first result allows us to
compute the total variation of a BV functions in terms of quantities that are nonlocal.

Theorem 7.1.1. Let (X, d,m) be an RCD(K,N) space and let f ∈ L1(m). Then

lim
t↘0

1√
t

ˆ ˆ
pt(x, y)|f(x) − f(y)|dm(x)dm(y) =

2√
π
|Df |(X),

where the existence of the limit is part of the statement and |Df |(X) = +∞ has to be interpreted
as f /∈ BV(X).

The second result studies the first term in the Taylor expansion (with respect to
√
t) of the

quantity ˆ
fgdm−

ˆ
htfgdm.

Theorem 7.1.2. Let (X, d,m) be an RCD(K,N) space and let f, g ∈ BV(X) with g ∈ L∞(m).
Then

lim
t↘0

1√
t

ˆ
(f − htf)gdm =

1√
π

ωn−1

ωn

ˆ
Jf∩Jg

(f∨ − f∧)(g∨ − g∧)(νf · νg)dHh. (7.1.1)

We defer the proof of Theorem 7.1.1 and Theorem 7.1.2 to Section 7.1.2 below.

7.1.1 Auxiliary results

The following lemma is concerned with the part of “recognizing membership in BV” stated in
Theorem 7.1.1. It is a straightforward application of a result of [105].

129



130 CHAPTER 7. NONLOCAL CHARACTERIZATION

Lemma 7.1.3. Let (X, d,m) be an RCD(K,N) space and let f ∈ L1(m). Assume that

lim inf
t↘0

1√
t

ˆ ˆ
pt(x, y)|f(x) − f(y)|dm(x)dm(y) < +∞.

Then f ∈ BV(X).

Proof. Given any radius t ∈ (0,∞), we define the near-diagonal set ∆t ⊆ X× X as

∆t := {(x, y) ∈ X× X : d(x, y) < t}.

Since (X, d,m) is a PI space, we know from [105, Theorem 3.1] that for any f ∈ L1(m) if

lim inf
t↘0

1

t

ˆ
∆t

|f(x) − f(y)|√
m(Bt(x))

√
m(Bt(y))

d(m⊗m) (x, y) < +∞,

then f ∈ BV(X). Now we conclude as the lower bound in (2.2.7) implies that for some constant
C = C(K,N) ∈ (0,∞),

χ∆t(x, y)√
m(Bt(x))

√
m(Bt(y))

≤ Cpt2(x, y), for every t ∈ (0, 1) and x, y ∈ X.

Now we state a result which is the main tool to compute total variations starting from the
nonlocal quantities as in Theorem 7.1.1 and Theorem 7.1.2. Its proof is based on a delicate blow-
up argument, which relies heavily on the fine structure theory of RCD spaces of the previous
chapters as well as the special properties of the heat flow on RCD spaces.

Lemma 7.1.4. Let (X, d,m) be an RCD(K,N) space and let E ⊆ X be a set of finite perimeter.
Then

lim
t↘0

tht2 |∇ht2
χE |(x) =

1√
8π

for every x ∈ FE. (7.1.2)

In particular, it holds that

lim
t↘0

t

ˆ
ht2 |∇ht2

χE |d|DχE | =
1√
8π

|DχE |(X). (7.1.3)

Proof. Fix x as in the statement and take a sequence ti ↘ 0. Up to taking a subsequence, we have
that

(X, t−1
i d,mx

ti , x, E) → (Rn, de,Ln, 0, H),

in a realization (Z, dZ), where (Z, dZ) is a proper metric space, see Remark 3.3.3. Here H = {xn >
0}, in a suitable system of coordinates.

We use the superscript i to denote objects relative to the i-th rescaled space, e.g. ∇i and pi,
and we denote with ·̃ the objects relative to the limit space (Rn, de,Ln, 0). Then we compute for
m-a.e. y ∈ X,

ti|∇ht2i
χE |(y) = ti

∣∣∣∣∇ ˆ pt2i
(·, z)χE(z)dm(z)

∣∣∣∣(y) =

∣∣∣∣∇i

ˆ
pi1(·, z)χE(z)dmx

ti(z)

∣∣∣∣(y)

= |∇ihi
1
χE |(y).

(7.1.4)
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Now observe that for any R ∈ (0,∞) we can use (2.2.5) to estimate

ˆ
X\Bi

R(x)
pi1(x, y)|∇ihi

1
χE |(y)dmx

ti(y) ≤C
ˆ
X\Bi

R(x)
pi1(x, y)dmx

ti(y)

=C

ˆ
X\BtiR

(x)
pt2i

(x, y)dm(y)

≤Ce−
R2

24 ,

(7.1.5)

where the last equality is due to (4.2.4) and C ∈ (0,∞) denotes a constant that depends only on
K and N .

Now we prove that

hi
1

(
χ
Bi

R(x)|∇
ihi

1
χE |
)
(x) → h̃1

(
χ
B̃R(0)|∇̃h̃1χH |

)
(0).

We know from [10, Proposition 4.12] that |∇ihi
1
χE |mx

ti → |∇̃h̃1χH |L̃n in duality with Cbs(Z), so
that, for any R ∈ (0,∞), we have that

χ
Bi

R(x)|∇
ihi

1
χE |mx

ti → χ
B̃R(0)|∇̃h̃1χH |L̃n in duality with Cbs(Z).

Now, by [10, Lemma 4.11] we have that

lim inf
i

hi
1

(
χ
Bi

R(x)|∇
ihi

1
χE |
)
(x) ≥ h̃1

(
χ
B̃R(0)|∇̃h̃1χH |

)
(0). (7.1.6)

Also, as mri
x → Ln in duality with Cbs(Z), we have that(

1√
2eK

− χ
Bi

R(x)|∇
ihi

1
χE |
)
mx

ti →
(

1√
2eK

− χ
B̃R(0)|∇̃h̃1χH |

)
L̃n in duality with Cbs(Z).

As by (2.2.5) the measures involved in the convergence above are non-negative, we can use [10,
Lemma 4.11] again to deduce that

lim inf
i

hi
1

(
1√
2eK

− χ
Bi

R(x)|∇
ihi

1
χE |
)

(x) ≥ h̃1

(
1√
2eK

− χ
B̃R(0)|∇̃h̃1χH |

)
(0),

i.e.
lim sup

i
hi
1

(
χ
Bi

R(x)|∇
ihi

1
χE |
)
(x) ≤ h̃1

(
χ
B̃R(0)|∇̃h̃1χH |

)
(0). (7.1.7)

Therefore (7.1.3) follows from (7.1.6) and (7.1.7).
Notice that, as R↗ ∞,

h̃1

(
χ
B̃R(0)|∇̃h̃1χH |

)
(0) → h̃1

(
|∇̃h̃1χH |

)
(0) =

1√
8π
, (7.1.8)

where the limit is due to monotone convergence and the last equality follows from the direct
computation

|∇Rn
hRn

1
χH | =

∣∣∣∣∇Rn

ˆ
{zn>0}

pR
n

1 (x, z)dLn(z)

∣∣∣∣ =

∣∣∣∣ d

dx

ˆ
{z>0}

pR1 (x, z)dL1(z)

∣∣∣∣
=

∣∣∣∣ ˆ
{z>0}

d

dx
pR1 (x, z)dL1(z)

∣∣∣∣ =

∣∣∣∣ˆ
{z>0}

d

dz
pR1 (x, z)dL1(z)

∣∣∣∣ = pR1 (x, 0),



132 CHAPTER 7. NONLOCAL CHARACTERIZATION

which yields

hRn

1

(
|∇Rn

hRn

1
χH |

)
(0) = (hR

1 p
R
1 ( · , 0))(0) = pR2 (0, 0) =

1√
8π
.

Next, we can estimate, exploiting (7.1.5),∣∣∣∣ ˆ pi1(x, y)|∇ihi
1
χE |(y)dmx

ti(y) − 1√
8π

∣∣∣∣ ≤ ∣∣∣∣ˆ
Bi

R(x)
pi1(x, y)|∇ihi

1
χE |(y)dmx

ti(y) − 1√
8π

∣∣∣∣+ Ce−
R2

24

=

∣∣∣∣hi
1

(
χ
Bi

R(x)|∇
ihi

1
χE |
)
(x) − 1√

8π

∣∣∣∣+ Ce−
R2

24 ,

whence if we let first i↗ ∞ and then R↗ ∞, keeping in mind (7.1.8), we deduce that
ˆ
pi1(x, y)|∇ihi

1
χE |(y)dmx

ti(y) → 1√
8π
,

that reads, recalling (7.1.4),

tiht2i
|∇ht2i

χE |(x) → 1√
8π
.

Since the sequence ti ↘ 0 from which we started was arbitrary, (7.1.2) follows.
Now we show (7.1.3). First notice that by Corollary 3.3.2, (7.1.2) holds for |DχE |-a.e. x ∈ X.

Hence (7.1.3) follows by dominated convergence, where the application of dominated convergence
is justified by (2.2.5) and the maximum principle.

The following lemma is a consequence of Lemma 7.1.4 that we are going to use in the proof
of the main results. In the case in which E = F , the conclusion comes directly from L’Hôpital’s
rule and the blow-up computation of Lemma 7.1.4. In the case in which E ̸= F , we also need a
polarization argument.

Lemma 7.1.5. Let (X, d,m) be an RCD(K,N) space of essential dimension n. Let E,F ⊆ X be
two sets of finite perimeter and finite measure. Then

lim
t↘0

1√
t

ˆ
(χE − htχE)χFdm =

1√
π

ωn−1

ωn

ˆ
FE∩FF

νE · νFdHh. (7.1.9)

In particular, it holds that

lim
t↘0

1√
t

ˆ
(χE − htχE)χEdm =

1√
π
|DχE |(X) =

1√
π

ωn−1

ωn
Hh(FE). (7.1.10)

Proof. We have to compute

lim
t↘0

´
(χE − ht2

χE)χFdm

t

for E and F sets of finite perimeter and finite measure. Notice that as E and F have finite measure,´
(χE − ht2

χE)χFdm → 0 as t↘ 0, so that by L’Hôpital’s rule we reduce ourselves to compute

lim
t↘0

−2t

ˆ
χF∆ht2

χEdm = lim
t↘0

2t

ˆ
∇ht2/2

χF · ∇ht2/2
χEdm.

Therefore, we conclude that the left-hand side of (7.1.9) is equal to

lim
t↘0

√
8 t

ˆ
∇ht2

χF · ∇ht2
χEdm.
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For E,F ⊆ X sets of finite perimeter and finite measure, we write

gt(E,F ) :=
√

8 t

ˆ
∇ht2

χE · ∇ht2
χFdm for t ∈ (0,∞).

If E = F , we simply write gt(E) instead of gt(E,E). Our aim is then to study limt↘0 gt(E,F ),
where E and F are sets of finite perimeter and finite measure. We start by studying two particularly
simple cases and then we combine the information obtained to treat the general case.

Case E = F . First, we compute, using (2.2.5) and Proposition 2.3.16 for the last inequality,∣∣∣∣t ˆ |∇ht2
χE |2dm− te−Kt2

ˆ
|∇ht2

χE | ht2 |DχE |dm
∣∣∣∣

≤ t

eKt2

ˆ
|∇ht2

χE |
∣∣∣∣eKt2 |∇ht2

χE |
ht2 |DχE |

− 1

∣∣∣∣ht2 |DχE |dm

≤ 1√
2 e2K

ˆ (
1 − eKt2 |∇ht2

χE |
ht2 |DχE |

)
ht2 |DχE |dm

=
1√

2 e2K

(
|DχE | − eKt2

ˆ
|∇ht2

χE |dm
)
.

Hence, by lower semicontinuity of the total variation, as t↘ 0,∣∣∣∣t ˆ |∇ht2
χE |2dm− te−Kt2

ˆ
|∇ht2

χE | ht2 |DχE |dm
∣∣∣∣→ 0. (7.1.11)

Now, Lemma 7.1.4 yields

lim
t↘0

t

ˆ
|∇ht2

χE |ht2 |DχE |dm = lim
t↘0

t

ˆ
ht2 |∇ht2

χE |d|DχE | =
1√
8π

|DχE |(X). (7.1.12)

Then, by combining (7.1.11), (7.1.12) and finally (3.5.1), we obtain that

lim
t↘0

gt(E) =
√

8
1√
8π

|DχE |(X) =
1√
π

ωn−1

ωn
Hh(FE).

Case E ∩ F = ∅. We start noticing that χE∪F = χE + χF , so that the linearity of the heat flow
and of the gradient yields

gt(E ∪ F ) = gt(E) + gt(F ) + 2gt(E,F ).

Therefore, by the Case E = F above,

lim
t↘0

gt(E,F ) =
1√
π

|DχE∪F |(X) − |DχE |(X) − |DχF |(X)

2
.

Being E and F disjoint, ∂∗E ∩ F 1 = ∂∗F ∩ E1 = {νE = νF } = ∅, so that, by Proposition 4.2.4,

|DχE∪F | = |DχE | F 0 + |DχF | E0 = |DχE | (X \ ∂∗F ) + |DχF | (X \ ∂∗E),

that implies, by (3.5.1) (see also Remark 3.5.2),

|DχE∪F |(X) =
ωn−1

ωn

(
Hh(FE \ FF ) + Hh(FF \ FE)

)
=
ωn−1

ωn

(
Hh(FE) + Hh(FF ) − 2Hh(FE ∩ FF )

)
.
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Hence, by (3.5.1) again,

lim
t↘0

gt(E,F ) = − 1√
π

ωn−1

ωn
Hh(FE ∩ FF ).

General case. Write E = (E ∩F )∪ (E \F ) and F = (F ∩E)∪ (F \E), notice that E ∩F , E \F
and F \ E are pairwise disjoint. Exploiting linearity as before, we write

gt(E,F ) = gt(E ∩ F ) + gt(E ∩ F, F \ E) + gt(E \ F, F ∩ E) + gt(E \ F, F \ E).

Using the two cases treated above, we have that

lim
t↘0

gt(E,F ) =
1√
π

ωn−1

ωn

(
Hh(F(E ∩ F )) −Hh(F(E ∩ F ) ∩ F(F \ E))

−Hh(F(E \ F ) ∩ F(F ∩ E)) −Hh(F(E \ F ) ∩ F(F \ E))
)
.

(7.1.13)

By a density argument based on Lemma 4.2.3 (see also Proposition 4.2.4), up to Hh-negligible sets,
it holds

F(E ∩ F ) =
(
FE ∩ F 1

)
∪
(
FF ∩ E1

)
∪
(
FE ∩ FF ∩ (E∆F )0

)
,

F(F \ E) =
(
FF ∩ E0

)
∪
(
FE ∩ F 1

)
∪
(
FE ∩ FF ∩ (E∆F )1

)
,

F(E \ F ) =
(
FE ∩ F 0

)
∪
(
FF ∩ E1

)
∪
(
FE ∩ FF ∩ (E∆F )1

)
,

where all unions are disjoint. We use these identities to compute, up to Hh-negligible sets,

F(E ∩ F ) ∩ F(F \ E) = FE ∩ F 1,

F(E \ F ) ∩ F(F ∩ E) = FF ∩ E1,

F(E \ F ) ∩ F(F \ E) = FE ∩ FF ∩ (E∆F )1.

We compute then

Hh(F(E ∩ F )) −Hh(F(E ∩ F ) ∩ F(F \ E)) −Hh(F(E \ F ) ∩ F(F ∩ E))

−Hh(F(E \ F ) ∩ F(F \ E))

= Hh
(
FE ∩ F 1

)
+ Hh

(
FF ∩ E1

)
+ Hh

(
FE ∩ FF ∩ (E∆F )0

)
−Hh

(
FE ∩ F 1

)
−Hh

(
FF ∩ E1

)
−Hh

(
FE ∩ FF ∩ (E∆F )1

)
= Hh

(
FE ∩ FF ∩ (E∆F )0

)
−Hh

(
FE ∩ FF ∩ (E∆F )1

)
=

ˆ
FE∩FF

νE · νFdHh,

where in the last equality we used Lemma 4.2.3 (or Proposition 4.2.4). Therefore, by recalling
(7.1.13) we conclude that the statement holds for any E,F ⊆ X of finite perimeter and finite
measure.

Having Lemma 7.1.5 at our disposal, there is no effort in obtaining Theorem 7.1.6 below.

Theorem 7.1.6. Let (X, d,m) be an RCD(K,N) space. Let E ⊆ X be a set of finite perimeter
such that either m(E) <∞ or m(X \ E) <∞. Then

lim
t↘0

1√
t

ˆ ˆ
pt(x, y)|χE(x) − χE(y)|dm(x)dm(y) =

2√
π
|DχE |(X). (7.1.14)
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Proof. We can assume with no loss of generality that m(E) <∞. We compute (all the integrands
are positive)

ˆ ˆ
pt(x, y)|χE(y) − χE(x)|dm(y)dm(x)

=

ˆ
(1 − χE(x))

ˆ
E
pt(x, y)dm(y)dm(x) +

ˆ
χE(x)

ˆ
X\E

pt(x, y)dm(y)dm(x)

=

ˆ
χ
X\E htχEdm +

ˆ
χE htχX\Edm = 2

ˆ
X\E

htχEdm = 2

ˆ
(1 − χE)htχEdm

= 2

(
m(E) −

ˆ
χE htχEdm

)
= 2

ˆ
(χE − htχE)χEdm.

(7.1.15)

We obtain (7.1.14) by dividing (7.1.15) by
√
t, letting t↘ 0, and using (7.1.10).

As a technical tool, we need the following easy computation, obtained via classical techniques.
Notice the role played by the regularizing properties of the heat flow on RCD spaces.

Lemma 7.1.7. Let (X, d,m) be an RCD(K,N) space and let E,F ⊆ X two sets of finite perimeter
and finite measure. Then∣∣∣∣ ˆ (htχE − χE)χFdm

∣∣∣∣ ≤ 2eK(t/2−1)|DχE |(X)
√
t.

Proof. We can compute, using (2.2.5) and (2.3.16) for the second inequality,∣∣∣∣ˆ (htχE − χE)χFdm

∣∣∣∣ =

∣∣∣∣ˆ t

0

d

ds

ˆ
(hsχE − χE)χFdmds

∣∣∣∣ =

∣∣∣∣ˆ t

0

ˆ
χF∆hsχEdmds

∣∣∣∣
≤
ˆ t

0

ˆ
|∇hs/2

χF ||∇hs/2
χE |dmds ≤ 1

eK

ˆ t

0

e−Ks/2

√
s

ˆ
hs/2|DχE |dmds

≤ 2eK(t/2−1)|DχE |(X)
√
t,

which is the claim.

7.1.2 Proof of the main results

Proof of Theorem 7.1.1. By Lemma 7.1.3, if f /∈ BV(X), then the statement holds. Therefore, in
what follows we assume f ∈ BV(X). We argue via coarea and integration via Cavalieri’s formula,
as done in the references [41, Theorem 2.14] and [110, Theorem 4.1], building upon Theorem 7.1.6.
Recall that (7.1.15) and Lemma 7.1.7 imply that for every t ∈ (0,∞),

1√
t

ˆ ˆ
pt(x, y)|χE(x) − χE(y)|dm(x)dm(y) ≤ 4eK( t

2
−1)|DχE |(X) (7.1.16)

for every set of finite perimeter and finite measure E ⊆ X. Notice that (7.1.16) continues to hold
as soon at least one between E and X \ E has finite measure.
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Take any sequence ti ↘ 0. We denote Es := {f > s} and then we compute, by coarea, (7.1.14),
dominated convergence (thanks to (7.1.16)) and Fubini’s Theorem,

|Df |(X) =

ˆ
R
|DχEs |(X)ds =

ˆ
R

lim
i

1

2

√
π

ti

ˆ ˆ
pti(x, y)|χEs(x) − χEs(y)|dm(x)dm(y)ds

= lim
i

1

2

√
π

ti

ˆ
R

ˆ ˆ
pti(x, y)|χEs(x) − χEs(y)|dm(x)dm(y)ds

= lim
i

1

2

√
π

ti

ˆ ˆ
pti(x, y)

ˆ
R
|χEs(x) − χEs(y)|dsdm(x)dm(y).

(7.1.17)

Now we fix a Borel representative of f and x, y ∈ X. If f(y) ≤ f(x),

ˆ
R
|χEs(x) − χEs(y)|ds =

ˆ ∞

−∞
χEs(x) − χEs(y)ds = f(x) − f(y) = |f(x) − f(y)|

and a similar conclusion holds if f(y) ≥ f(x). Therefore, we can continue (7.1.17) to obtain

|Df |(X) = lim
i

1

2

√
π

ti

ˆ ˆ
pti(x, y)|f(x) − f(y)|dm(x)dm(y).

As the sequence {ti}i was arbitrary, this concludes the proof.

Proof of Theorem 7.1.2. The proof of Theorem 7.1.2 is via coarea and integration via Cavalieri’s
formula, as done in the reference [110, Theorem 4.3], building upon Lemma 7.1.5. First, we write
f = f+ − f−, where f+ := f ∨ 0 and f− := (−f) ∨ 0. Thanks to the coarea formula, we can
apply Lemma 4.2.2 and infer that νf± = ν±f |Df±|-a.e. Also, a direct computation yields that
f∧ = (f+)∧ − (f−)∨ and f∨ = (f+)∨ − (f−)∧. Therefore, by linearity, we can assume that f ≥ 0
m-a.e. We repeat the same argument for g to see that we can assume that also g ≥ 0 m-a.e. Up to
scaling, we assume that 0 ≤ g ≤ 1 m-a.e.

Let now Es := {f > s} and Fs := {g > s} and notice that for L1-a.e. σ ∈ R, by (7.1.16),

1√
t

ˆ ˆ
|pt(x, y)χFτ (x)(χEσ(x) − χEσ(y))|dm(x)dm(y) ≤ 4eK(t/2−1)|DχEσ |(X). (7.1.18)

Notice that we can write for (m ⊗ m)-a.e. (x, y) ∈ X × X, as we are assuming 0 ≤ f m-a.e. and
0 ≤ g ≤ 1 m-a.e.

pt(x, y)g(x)(f(x) − f(y)) =

ˆ ∞

0

ˆ 1

0
pt(x, y)χFτ (x)(χEσ(x) − χEσ(y))dτdσ,

so that, by Fubini’s Theorem (whose application is justified by (7.1.18) and coarea), we obtain

1√
t

ˆ
(f − htf)gdm =

1√
t

ˆ ˆ
pt(x, y)g(x)(f(x) − f(y))dm(y)dm(x)

=
1√
t

ˆ ∞

0

ˆ 1

0

ˆ ˆ
pt(x, y)χFτ (x)(χEσ(x) − χEσ(y))dm(y)dm(x)dτdσ

=
1√
t

ˆ ∞

0

ˆ 1

0

ˆ
χFτ (χEσ − htχEσ)dmdτdσ.
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Lemma 7.1.7 together with coarea again justify an application of the dominated convergence
theorem in the limit as t↘ 0 in the equation above, so that, by (7.1.9),

lim
t↘0

1√
t

ˆ
(f − htf)gdm =

1√
π

ωn−1

ωn

ˆ ∞

0

ˆ 1

0

ˆ
FEσ∩FFτ

νEσ · νFτ dHhdτdσ

=
1√
π

ωn−1

ωn

ˆ ∞

0

ˆ 1

0

ˆ
FEσ∩FFτ

νf · νgdHhdτdσ

=
1√
π

ωn−1

ωn

ˆ ∞

0

ˆ 1

0

ˆ
χ∂∗Fτ (νf · νg) d(Hh (FEσ)) dτdσ,

where the second equality is due to Lemma 4.2.1.
Now recall that the map (τ, x) 7→ χ∂∗Fτ (x) is measurable with respect to L1 ⊗ (Hh (FEσ))

(cf. the proof of Proposition 4.2.12), so that by Fubini’s theorem we can write

1√
π

ωn−1

ωn

ˆ ∞

0

ˆ 1

0

ˆ
χ∂∗Fτ (νf · νg) d(Hh (FEσ)) dτdσ

=
1√
π

ωn−1

ωn

ˆ ∞

0

ˆ
(g∨ − g∧)(νf · νg) d(Hh (FEσ)) dσ

=
1√
π

ˆ ∞

0

ˆ
(g∨ − g∧)(νf · νg)d|DχEσ |dσ,

where we took into account (2.3.6) and finally (3.5.1) for the last equality. Notice that the integra-
tion over X is only on Jg, which is a σ-finite set with respect to Hh (Proposition 4.2.11), so that
|Df | Jg = |Df | (Jf ∩ Jg). Hence, by coarea we can continue the computation as

1√
π

ˆ ∞

0

ˆ
(g∨ − g∧)(νf · νg)d|DχEσ |dσ =

1√
π

ˆ
Jg

(g∨ − g∧)(νf · νg) d(|Df | Jf )

=
1√
π

ωn−1

ωn

ˆ
Jg

(g∨ − g∧)(f∨ − f∧)(νf · νg) d(Hh Jf ) ,

where we used (4.2.11). All in all, we have proved (7.1.1).

7.2 Bibliographical notes

We briefly motivate the investigation contained in this chapter along with some bibliographical
notes. In their seminal work [40], Bourgain–Brezis–Mironescu showed that if Ω ⊆ Rn is a smooth
bounded domain and p ∈ (1,∞), then the p-Sobolev seminorm of a function f ∈ Lp(Ω) coincides
(up to a multiplicative factor, depending only on p and n) with the limit

lim
i→∞

(ˆ
Ω

ˆ
Ω

|f(x) − f(y)|p

|x− y|p
ρi(|x− y|)dxdy

)1/p

,

where {ρi}i are suitably chosen kernels of mollification. The result was then generalized to BV
functions by Dávila [63] and Ambrosio independently. In the BV case, it holds that if Ω ⊆ Rn

is a bounded domain with Lipschitz boundary, then the total variation |Df |(Ω) of any function
f ∈ L1(Ω) coincides (up to a multiplicative factor, depending only on n) with

lim
i→∞

ˆ
Ω

ˆ
Ω

|f(x) − f(y)|
|x− y|

ρi(|x− y|)dxdy.
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Brezis suggested in [47, Remark 6] that it might be interesting to generalize the theory to more
general metric measure spaces (X, d,m). Recently, in [103] the authors studied a characterization
of the BV space in metric measure spaces supporting a doubling measure and a Poincaré inequality
for a large class of mollifiers. In the same paper, the authors also provided a counterexample in the
case p = 1, demonstrating that (unlike in Euclidean spaces) in metric measure spaces the limit of
suitable nonlocal functionals is only comparable, but not necessarily equal, to the total variation
measure of the function f . Hence, it is clear that, in order to obtain results like Theorem 7.1.1 and
Theorem 7.1.2, additional assumptions on the space are in order.

In many cases of interest, a good choice of mollifiers is given by the (suitably rescaled) heat
kernels. In the case of functions of bounded variation, this has been done by several authors: on
Euclidean spaces or Riemannian manifolds in [110, 109] and [56], on Carnot groups in [41], and on
PI spaces in [105].

Chapter 7 is entirely taken from [46], with no significant modifications, where parts of the
arguments are borrowed from from [41, 110]. In particular, for what concerns the proofs of The-
orem 7.1.1 and Theorem 7.1.2, we follow the argument as in the proofs of [110, Theorem 4.1 and
Theorem 4.3], respectively, (however, to deduce the membership f ∈ BV(X) of Theorem 7.1.1, we
exploit directly [105]). Our main contributions are then in the proofs of the intermediate results
that are combined to prove Theorem 7.1.1 and Theorem 7.1.2. In particular, Lemma 7.1.4 is in-
spired by the proof of [41, Theorem 2.13], obtained with a blow-up argument, but we have to face
the additional difficulty of the lack of the linear structure of Carnot groups. Also, the computations
with L’Hôpital’s rule used to prove Lemma 7.1.5 have already been used to prove [41, Theorem
2.13], but in our case, again, we cannot exploit the linear structure, so that we have to rely on the
regularizing properties of the heat flow on RCD spaces. The case of possibly different E and F
is obtained with a polarization argument and a careful computation: due to the lack of a linear
structure, the strategy used in the references seems not suitable to our case.



Chapter 8

Appendix

8.1 Differentiability of Lipschitz functions

The aim of this section is to introduce a powerful result that relates “closability of certain differen-
tiation operators” and “differentiability of Lipschitz functions in related directions”, and which is
an indispensable tool to prove Theorem 4.3.6. We decided to move Theorem 8.1.1 to the appendix,
as it is not related with the main framework of this manuscript, which is the one of non-smooth
spaces.

Before stating the main result of this section, we start recalling some terminology. Given
φ ∈ LIP(Rm,Rl), we say that φ is differentiable at x with respect to V ∈ Gr(Rm) if there exists a
linear map ∇V φ(x) : V → Rl such that

φ(x+ v) = φ(x) + ∇V φ(x) · v + o(|v|) for v ∈ V .

If v ∈ Rm, we say that φ is differentiable at x in direction v if φ is differentiable at x with respect
to span(v).

We are going to exploit in a crucial way the following result, which is a restatement of results
contained in [3, 2] (see in particular, [3, Theorem 1.1] and [2, Theorem 1.1]). We refer the reader to
these references for the definition of V (µ, · ), the decomposability bundle associated to the Radon
measure µ, as we are not going to use this notion elsewhere (indeed, we are going to exploit
the equivalence between items ii) and iii) below, which can be understood without knowing the
definition of the decomposability bundle).

Theorem 8.1.1. Let vµ be a m-vector valued measure on Rm, where v ∈ L∞(µ)m and µ is finite.
Then the following assertions are equivalent.

i) v(x) ∈ V (µ, x) for µ-a.e. x.

ii) Every Lipschitz function is differentiable in direction v(x) for µ-a.e. x.

iii) The operator
D : C1(Rm) ∩ LIPb(Rm) → L∞(µ) φ 7→ ∇φ · v

is closable, in the sense that if {φk}k ⊆ C1(Rm)∩LIPb(Rm) is a sequence of uniformly bounded
and uniformly Lipschitz functions converging pointwise to φ ∈ LIPb(Rm), then D(φk) → ℓ in
the weak∗ topology of L∞(µ), for some ℓ ∈ L∞(µ).
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If any (hence all) of the items above holds, if ℓ is as in item iii) for φ, then

ℓ(x) = ∇v(x)φ(x) · v(x) for µ-a.e. x.

In our approximation arguments, we are going to need the following result, which is extracted
from [3, Corollary 8.3]. Below, the global Lipschitz constant of φ ∈ LIP(Rm) is the least number
L ∈ R such that |φ(x)−φ(y)| ≤ L|x−y| for every x, y ∈ Rm. Notice that the claim of the following
lemma is stronger than item iii) of Theorem 8.1.1, as the consequence is pointwise and not only in
the weak sense.

Lemma 8.1.2. Let φ ∈ LIP(Rm) and let µ be a finite measure on Rm. Assume also that x 7→ v(x)
is a bounded Borel map such that for µ-a.e. x, φ is differentiable in direction v(x) at x. Then there
exists a sequence {φk}k ⊆ C1(Rm) ∩ LIP(Rm) such that φk → φ uniformly, the global Lipschitz
constant of φk converges to the global Lipschitz constant of φ, and finally

∇φk(x) · v(x) → ∇v(x)φ(x) · v(x) for µ-a.e. x.

8.2 Bibliographical notes

The results of the short Section 8.1 are taken from [3, 2].

In an imprecise way (see [3] for the rigorous definition), the decomposability bundle of µ is the
“minimal” map Vµ : Rn → Gr(Rn) such that, whenever we have a measure space (I, dt) and a
family of measures (µt)t∈I such that

• µt is the restriction of H1 to an 1-rectifiable set Et, for every t ∈ I,

• t 7→ µt enjoys suitable regularity assumptions,

•
´
I µtdt≪ µ,

then
Tan(Et, x) ⊆ Vµ(x) for µt-a.e. x ∈ Rn and a.e. t ∈ I.

The main result of [3] is then to characterize the directions along which Lipschitz functions are
differentiable µ-a.e. in terms of Vµ. In particular:

• for every f ∈ LIP(Rn), f is differentiable at µ-a.e. x with respect to the subspace Vµ(x);

• there exists f̄ ∈ LIP(Rn) such that for µ-a.e. x and v /∈ Vµ(x), f̄ is not differentiable at x in
direction v.

This implies the equivalence between items i) and ii) of Theorem 8.1.1. The equivalence between
items i) and iii) of Theorem 8.1.1 is still a consequence of the results [3] and has been proved in [2].
More precisely, the implication iii) ⇒ i) (which, together with the implication i) ⇒ ii) is what we
really need in the proof of Theorem 4.3.6) is a consequence of the construction of “width functions”,
see (the discussion above) [3, Lemma 4.12].
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[34] G. Antonelli, E. Bruè, and D. Semola. Volume bounds for the quantitative singular strata of
non collapsed RCD metric measure spaces. Anal. Geom. Metr. Spaces, 7(1):158–178, 2019.

[35] G. Anzellotti and M. Giaquinta. Funzioni BV e tracce. Rendiconti del Seminario Matematico
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