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Abstract

In this paper, we discuss several results we have obtained in our Frontiers of Science
Award (FSA) paper [4]. In particular we present a numerical method based on
iterative Bregman projections and its impact on computational optimal transport.
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1 Historical background

Before describing in details the approach of our paper [4] to approximate solutions
to linear programs related to optimal transport (OT), we believe it is instructive to
give some historical background on entropic optimal transport. The general idea
is to introduce an entropic regularization of the initial linear program. For general
LP problems, the detailed analysis of this approximation (and its dual) can be
found in [19]. In the context of optimal transport, entropic regularization leads
to entropy minimization with marginal constraints. It is particularly appealing
both theoretically and for computational purposes and, as such, has received a lot
of attention in the last decade, following the influential paper of Cuturi [20] who
demonstrated the power of Sinkhorn’s algorithm in this context.

It is in our opinion fascinating that entropy minimization subject to marginal
constraints, which is the core of entropic optimal transport has emerged at different
times and in different, seemingly unrelated, contexts. These problems have roots
in statistical physics and can be traced back to the seminal work of Schrödinger [41]
in 1931, since then, the Schrödinger bridge problem stimulated a lot of interest
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in connection with large deviations [21], [24], stochastic control [35] and classi-
cal OT [34]. Moreover, Kullback-Leibler divergence minimization plays a distin-
guished role in the information-theoretic approach to many statistical inference
problems. In this context, the so-called iterative proportional fitting procedure
(IPFP) (equivalent to Sinkhorn), has found numerous applications in the proba-
bility and statistics literature, [22], [39],[40], [8]. Entropic regularization is also
well-motivated in economics and econometrics, where OT is used to predict flows
of commodities in a market. In this context, regularizing the OT problem can
ensure the smoothness of such flows [45, 23] or facilitate inference in matching
models [27], we refer the reader to the textbook [28] for more and in particular the
derivation of entropic OT by random utility choice model (with Gumbel noise).
Lastly, it is worth noting that the Sinkhorn algorithm [42, 44, 43] is a fixed-point
iteration algorithm for matrix scaling and the connection to entropic OT is not
totally obvious at first glance. Given an n×m matrix A with positive entries, one
looks for a an n×n matrix D and an m×m matrix ∆ (both with positive entries)
such that DA∆ is bi-stochastic (see [10] for an extension to kernels). The solution
to this diagonal scaling problem can be found efficiently through the Sinkhorn
algorithm. The convergence rate of Sinkhorn’s algorithm is linear [25]; it can be
implemented in a few lines of code that only require matrix vector products and
elementary operations, which can all be easily parallelized on modern hardware.
The relevance to entropic OT lies in the fact that the optimality condition for min-
imizing the Kullback-Leibler with marginal constraints exactly consists in solving
a matrix scaling problem and therefore can be solved by Sinkhorn/IPFP.

2 Optimal Transport and Sinkhorn

Discrete Optimal Transport

We now consider the optimal transport problems between probability measures on
two finite sets X and Y with, for simplicity, both of cardinality N and we set

µ =
∑
x∈X

µxδx ν =
∑
y∈Y

νyδy.

Remark 2.1 (Notation). With a slightly abuse of notation we will often identify
the measure µ with a vector µ ∈ RN (which belongs to the N dimensional simplex)
containing the weights associated to each point x ∈ X.

Definition 2.2 (Discrete OT). The discrete Optimal transport problem between
two given measures µ and ν and a given cost function c : X ×Y → R+ ∪{+∞} is
the following minimization problem

MKc(µ, ν) := inf

∑
x∈X

∑
y∈Y

γxyc(x, y) | γ ∈ Π(µ, ν)

 , (2.1)

where the set of admissible couplings is now defined as

Π(µ, ν) := {γ ∈ P(X × Y ) | γ ∈ C1

⋂
C2},
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where

C1 := {γ |
∑
y∈Y

γxy = µx ∀x ∈ X},

and

C2 := {γ | ,
∑
x∈X

γxy = νy ∀y ∈ Y }.

Notice that with γ ∈ P(X × Y ) we mean a probability measure of the form
γ =

∑
x∈X,y∈Y γxyδ(x,y).

Unfortunately, this linear programming problem has complexity O(N3) which ac-
tually means that it is infeasible for large N . A way to overcome this difficulty
is by means of the Entropic Regularization which provides an approximation
of Optimal Transport with lower computational complexity and easy implementa-
tion.

The Entropic Optimal Transport

2.1 The discrete case

We start from the primal formulation of the optimal transport problem, but in-
stead of imposing the constraints γxy ⩾ 0, we add a term Ent(γ) =

∑
x,y e(γxy),

involving the (opposite of the) entropy

e(r) =


r(log r − 1) if r > 0

0 if r = 0

+∞ if r < 0

More precisely, given a parameter ε > 0 we consider

Pε = inf {⟨γ|c⟩+ εEnt(γ) | γ ∈ Π(µ, ν)} , (2.2)

where ⟨γ|c⟩ =
∑
x,y γxyc(x, y) and Ent(γ) =

∑
x,y e(γxy). Notice that the

problem can be equivalently formulated as a minimization of a relative entropy
(or Kullback-Leibler divergence) H(ρ|µ) :=

∑
x ρx(log(

ρx
µx

)− 1), that is

Pε = inf {H(γ|πε) | γ ∈ Π(µ, ν)} , (2.3)

where πε = e−c/ε.

Theorem 2.3. The problem Pε has a unique solution γ⋆, which belongs to Π(µ, ν).
Moreover, if min(minx∈X µx,miny∈Y νy) > 0 then

γx,y > 0 ∀(x, y) ∈ X × Y.

Before introducing the duality, it is important to state the following conver-
gence result in ε.
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Theorem 2.4 (Convergence in ε [38]). The unique solution γε to (2.2) converges
to the optimal solution with minimal entropy within the set of all optimal solutions
of the Optimal Transport problem, that is

γε −−−→
ε→0

argmin {Ent(γ) | γ ∈ Π(µ, ν), ⟨γ|c⟩ = MKc(µ, ν)} . (2.4)

We want now to derive formally the dual problem. For this purpose we
introduce the Lagrangian associated to (2.2)

L(γ, φ, ψ) :=
∑
x,y

γxyc(x, y) + εe(γxy) +
∑
x∈X

φ(x)

µx −∑
y∈Y

γxy


+

∑
y∈Y

ψ(y)

νy −∑
y∈Y

γxy

 ,

(2.5)

where φ : X → R and ψ : Y → R are the Lagrange multipliers. Then,

Pε = inf
γ

sup
φ,ψ

L(γ, φ, ψ),

and the dual problem is obtained by interchanging the infimum and the supremum:

Dε = sup
φ,ψ

min
γ

∑
x,y

γxy(c(x, y)− ψ(y)− φ(x) + ε(log(γxy)− 1))+

∑
x∈X

φ(x)µx +
∑
y∈Y

ψ(y)νy.
(2.6)

Taking the derivative with respect to γxy, we find that for a given φ,ψ, the optimal
γ must satisfy:

c(x, y)− ψ(y)− φ(x) + ε log(γxy) = 0

i.e. γxy = exp
(φ(x) + ψ(y)− c(x, y)

ε

) (2.7)

Putting these values in the definition of Dε gives

Dε = sup
φ,ψ

Φε(φ,ψ) with (2.8)

Φε(φ,ψ) :=
∑
x∈X

φ(x)µx +
∑
y∈Y

ψ(y)νy −
∑
x,y

ε exp
(φ(x) + ψ(y)− c(x, y)

ε

)
Note that thanks to the relation (2.7), one can recover a solution to the

primal problem from the dual one. This is true because, unlike the original lin-
ear programming formulation of the optimal transport problem, the regularized
problem (2.2) is smooth and strictly convex. The following duality result holds

Theorem 2.5 (Strong duality). Strong duality holds and the maximum in the
dual problem is attained, that is ∃φ,ψ such that

Pε = Dε = Φε(φ,ψ).
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Corollary 2.6. If (φ,ψ) is the solution to (2.8), then the solution γ⋆ to (2.2) is
given by

γx,y = exp
(φ(x) + ψ(y)− c(x, y)

ε

)
Notice now that the optimal coupling γ can be written as

γx,y = Dφe
−c(x,y)

ε Dψ,

where Dφ and Dψ are the diagonal matrices associated to eφ/ε and eψ/ε, respec-
tively. The problem is now similar to a matrix scaling problem

Definition 2.7 (Matrix scaling problem). Let π ∈ RN×N be a matrix with positive
coefficients. Find Dψ and Dψ positive diagonal matrices in K ∈ RN×N such that
DφKDψ is doubly stochastic, that is sum along each row and each column is equal
to 1.

Remark 2.8. Uniqueness fails since if (Dφ, Dψ) is a solution then so is (cDφ,
1
cDψ)

for every c ∈ R+.

The matrix scaling problem can be easily solved by using an iterative algo-
rithm, known as Sinkhorn-Knopp algorithm, which simply alternates updating Dφ

and Dψ in order to match the marginal constraints (a vector 111N of ones in this
simple case).

Algorithm 1 Sinkhorn-Knopp algorithm for the matrix scaling problem

1: function Sinkhorn-Knopp(K)
2: D0

φ ← 1N , D
0
ψ ← 1N

3: for 0 ⩽ k < kmax do
4: Dk+1

φ ← 1N ./(πD
k
ψ)

5: Dk+1
ψ ← 1N ./(π

TDk+1
φ )

6: end for
7: end function

where ./ stand for the element-wise division. Denoting by (πε)x,y = e
−c(x,y)

ε

the algorithm takes the form 2 for the regularized optimal transport problem.

Algorithm 2 Sinkhorn-Knopp algorithm for the regularised optimal transport
problem

1: function Sinkhorn-Knopp(πε, µ, ν)
2: D0

φ ← 1X , D
0
ψ ← 1Y

3: for 0 ⩽ k < kmax do
4: Dk+1

φ ← µ./(πDk
ψ)

5: Dk+1
ψ ← ν./(πTDk+1

φ )
6: end for
7: end function
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Notice that one can recast the regularized OT in the framework of bistochastic

matrix scaling by replacing the kernel e
−c(x,y)

ε with (πε)x,y = diag(µ)e
−c(x,y)

ε diag(ν),
where diag(µ) (diag(ν)) denotes the diagonal matrix with the vector µ (ν) as main
diagonal. In this case the problem (2.2) can be re-written as

Pε(µ, ν) = inf {⟨γ|c⟩+ εH(γ|µ⊗ ν) | γ ∈ Π(µ, ν)} . (2.9)

Remark 2.9 (Sinkhorn as coordinate ascent algorithm). Notice that algorithm 2
can be seen as a coordinate ascent method on the dual functional Φ(φ,ψ), that is

φk+1 = argmaxΦ(φ,ψk) = ε log(µ)− ε log
(
πDk

ψ

)
, (2.10)

ψk+1 = argmaxΦ(φk+1, ψ) = ε log(ν)− ε log
(
πTDk+1

φ

)
. (2.11)

Remark 2.10 (Sinkhorn as an alternate Bregman projection algorithm). Problem
(2.2) can be reformulated as follows

inf
C

H(γ|πε), (2.12)

where C = C1

⋂
C2. A natural way to solve it (and the original point of view in [4])

consists in projecting alternatively on C1 and C2 to obtain a sequence converging
to the primal solution, that is

γ2k = projHC1
(γ2k−1) :=

µ

γ2k−11N
γ2k−1, (2.13)

γ2k+1 = projHC2
(γ2k) := γ2k

ν

γ2k,T1N
. (2.14)

Noticing now that γ2k and γ2k+1 can be decomposed as γ2k = Dk
φπεD

k
ψ and γk+1 =

Dk
φπεD

k+1
ψ , on can recover the Sinkhorn algorithm we detailed above.

3 Generalised Sinkhorn via Bregman iterations

In this section we present the main results we obtained in in our FSA paper [4].
As already pointed out above regularized problem (2.2) corresponds to a relative
entropy (Kullback-Leibler Bregman divergence) projection of a vector (represent-
ing some initial joint distribution) on the polytope of constraints. We were able
to show that for many problems related to optimal transport, the set of linear
constraints can be split in an intersection of a few simple constraints, for which
the projections can be computed in closed form. This allows us to make use of
iterative Bregman projections (when there are only equality constraints), see for
instance Remark 2.10 or more generally Bregman-Dykstra iterations (when in-
equality constraints are involved). In particular this approach let us solve many
variational problems related to Optimal Transport: barycenters for the optimal
transport metric, tomographic reconstruction, multi-marginal optimal transport
and in particular its application to Brenier’s relaxed solutions of incompressible
Euler equations, partial unbalanced optimal transport, etc. In the following we
give a glimpse of our results for some of these problems.
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Wasserstein barycenter We are given a set (µk)
K
k=1 of input marginals, and

we wish to compute a weighted barycenter according to the Wasserstein metric
as defined in [1]. Following [1], the general idea is to define the barycenter as
a solution of a variational problem mimicking the definition of barycenters in
Euclidean spaces. Given a set of normalized weights (λk)

K
k=1, we consider the

regularized Wasserstein barycenter problem

min

{
K∑
k=1

λkH(γk|πε) | (γk)Kk=1 ∈ C1 ∩ C2

}
(3.1)

and the constraint sets are defined by

C1 := {(γk)Kk=1 | γTk 1 = µk, ∀k}
C2 := {(γk)Kk=1 | ∃µ ∈ RN ,∀k, γk1 = µ},

where µ denotes the barycenter. It is easy to see that the projection on C1 is
computed as in Remark 2.10 where as the one on C2 is detailed in the following
proposition

Proposition 3.1. For (γk)k ∈ (RN×N
+ )K , the projection (γk)

K
k=1 = projHC2

((γk)k)
satisfies

∀k, γk = diag

(
µ

γk1

)
γk, where µ :=

K∏
r=1

(γr1)
λr (3.2)

where
∏

and (·)λr should be understood as entry-wise operators.

Notice that Sinkhorn algorithm can be easily generalised to compute the
barycenter problem: instead of updating K transport plans one can only consider
2K vectors Dφk

and Dψk
and a vector tracking the update of the barycenter. The

iterations take the following form

D(n+1)
φk

=
µ(n)

πεD
(n)
ψk

)
,

D
(n+1)
ψk

=
µk

πTε D
(n+1)
φk )

,

µ(n) =

K∏
k=1

(
D(n+1)
φk

⊙ (πεD
(n+1)
ψk

)

)λk

.

Figure 1 shows an example of barycenters computation for K = 2 (in this case the
barycenter is the geodesic between the two measures µ and ν). The computation
is performed on an uniform 2D-grid of N = 500×500 points in [0, 1]2, ε = 5∗10−4.

Multi-Marginal OT In this case we have to deal with K marginals µk, mean-
ing that the optimal γ is now a coupling on ×Kk=1Xi. The solution lies now at

the intersection of m convex sets
⋂K
i=1 Ci associated to each marginal. Sinkhorn

algorithm can now be straightforward generalised to this case by iterating over K
Dφi

variables for each marginal constraint. For more details on this generalisation
as well as for the applications, see [6, 5, 7, 36].
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λ1 = 1, λ2 = 0 λ1 = 0.9, λ2 = 0.1 λ1 = 0.6, λ2 = 0.4

λ1 = 0.4, λ2 = 0.6 λ1 = 0.1, λ2 = 0.9 λ1 = 0, λ2 = 1

Figure 1: Left: support of the densities µ and ν and the barycenter for different
values of λ.

Partial OT In the partial transport problem, one is given two marginals (µ, ν),
not necessarily with the same total mass. We wish to transport only a given
fraction of mass

m ∈ [0,min(µT1, νT1)],

minimizing the transportation cost ⟨γ|c⟩.
The corresponding regularized problem reads

min

{
H(γ|πε) | γ1 ⩽ µ, γT1 ⩽ ν,

∑
x,y

γxy = m

}
(3.3)

where the inequalities should be understood component-wise.

This is equivalent to a relative entropy minimization problem on the inter-
section C1 ∩ C2 ∩ C3 of K = 3 convex sets associated to the marginal and mass
constraints

C1 := {γ | γ1 ⩽ µ}, C2 := {γ | γT1 ⩽ ν}, C3 := {γ |
∑
x,y

γxy = m}.

The following proposition shows that the projection, with respect to the relative
entropy, onto those three sets can be obtained in closed form.
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Proposition 3.2. Let γ ∈ RN×N
+ . Denoting γk := projHCk

(γ) for k ∈ {1, 2, 3}
where Ck is defined as above, one has

γ1 = diag

(
min

(
µ

γ1
,1

))
γ,

γ2 = γ diag

(
min

(
ν

γT1
,1

))
,

γ3 = γ
m∑
xy γxy

,

where the minimum is component-wise.

In Figure 2 we plot the support of the densities µ and ν (left) and the support
of the marginals of the optimal solution (right). The computation is performed
on an uniform 2D-grid of N = 500 × 500 points in [0, 1]2, ε = 10−3 and m =
0.4min(µT1, νT1).

Figure 2: Left: support of the densities µ and ν. Right: support of the marginals
of the optimal γ.

Capacity constraint OT Korman and McCann proposed and studied in [31,
32] a variant of the classical OT problem when there is an upper bound on the
coupling weights so as to capture transport capacity constraints. The capacity is
described by γ ∈ (R+)

N×N , where γxy is the maximum possible mass that can be
transferred from x to y. The corresponding regularized problem reads

min
{
H(γ|πε) | γ1 = µ, γT1 = ν, γ ⩽ γ

}
(3.4)

where the inequalities should be understood component-wise. This is equiv-
alent to a relative entropy minimization problem with K = 3 convex sets and

C1 := {γ | γ1 = µ}, C2 := {γ | γT1 = ν}, C3 := {γ | γ ⩽ γ}.
The projection on C1 and C2 is as in Remark 2.10. The projection on C3 is simply

projHC3
(γ) = min(γ, γ).

where the minimum is component-wise.
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4 Related research

As explained in the previous paragraphs, in [4], we formulated a variety of entrop-
ically regularized generalizations of (discrete) OT in the framework of Bregman
iterative projections, and proposed simple scaling algorithms à la Sinkhorn to solve
them. The scope and analysis of scaling algorithms for generalized OT problems
has been significantly extended in recent years. Of particular importance, in our
opinion, is the extension to unbalanced OT, see [17] and gradient flows [37], [13].

In the setting of [4], convergence is in principle ensured by general results
from [11] (affine constraints) and [3] (inequality constraints). This being said,
[4] does not address at all quantitative convergence issues of the algorithm or
accuracy as the penalization parameter ε goes to 0. There are actually several
approaches to the convergence analysis of Sinkhorn. Linear convergence of the
Sinhkorn algorithm for two marginals and a bounded cost is well-known both in the
discrete and continuous cases. A very elegant proof uses a celebrated theorem of
Birkhoff [9] to show that the Sinkhorn algorithm consists in iterating a contraction
for the Hilbert projective metric, see Franklin and Lorenz [26], Chen, Georgiou and
Pavon, [15]. There are convergence proofs rather based on entropic and functional
inequality arguments, see Rüschendorf [39] and more recently, Léger [33], Ghosal
and Nutz [29] who obtained sublinear rates under much more general conditions.
The Hilbert metric contraction proof does to extend to the multi-marginal case,
which can be addressed by the coordinate ascent on the dual interpretation of
Sinkhorn see [12]. Note that most of the convergence results mentioned above
involve constants that scale exponentially badly with ε. Quantitative convergence
results to OT as ε to 0 is still a very active area of research, but since it depends
very much on the cost, marginals and reference measure, it is far beyond the scope
of this short discussion.

Finally, we wish to mention some recent works concerning the specific case
of Wasserstein barycenters, which is a representative illustration of the results
of [4]. An interesting alternative to Sinkhorn is the stochastic algorithm of [18].
Among improvements, let us mention the doubly regularized approach of Chizat
[16] where one does not only add an entropic penalty on the plans but also on the
unknown (barycenter) marginal (as in [14]), resulting in an improvement of the
entropic smoothing bias, see [30]. The story is certainly not over yet, in particular
in view of the inspiring analysis of Altschuler and Boix-Adserà [2] who proved that
the problem is NP-hard.
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Gabriel Peyré. Iterative bregman projections for regularized transportation
problems. SIAM Journal on Scientific Computing, 37(2):A1111–A1138, 2015.

[5] Jean-David Benamou, Guillaume Carlier, Simone Di Marino, and Luca
Nenna. An entropy minimization approach to second-order variational mean-
field games. Math. Models Methods Appl. Sci., 29:1553–1583, 2019.

[6] Jean-David Benamou, Guillaume Carlier, and Luca Nenna. A numerical
method to solve multi-marginal optimal transport problems with Coulomb
cost. In Roland Glowinski, Stanley J. Osher, and Wotao Yin, editors, Split-
ting Methods in Communication, Imaging, Science, and Engineering, pages
577–601. Springer, 2016.

[7] Jean-David Benamou, Guillaume Carlier, and Luca Nenna. Generalized in-
compressible flows, multi-marginal transport and Sinkhorn algorithm. Numer.
Math., 142:33–54, 2019.

[8] B. Bhattacharya. An iterative procedure for general probability measures to
obtain I-projections onto intersections of convex sets. Ann. Statist., 34(2):878–
902, 2006.

[9] Garrett Birkhoff. Extensions of Jentzsch’s theorem. Trans. Amer. Math. Soc.,
85:219–227, 1957.

[10] J. M. Borwein, A. S. Lewis, and R. D. Nussbaum. Entropy minimization,
DAD problems, and doubly stochastic kernels. J. Funct. Anal., 123(2):264–
307, 1994.

[11] L. M. Bregman. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming.
USSR computational mathematics and mathematical physics, 7(3):200–217,
1967.

[12] Guillaume Carlier. On the linear convergence of the multimarginal Sinkhorn
algorithm. SIAM J. Optim., 32(2):786–794, 2022.

[13] Guillaume Carlier, Vincent Duval, Gabriel Peyré, and Bernhard Schmitzer.
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[38] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With



Regularized transportation problems 13

applications to data science. Foundations and Trends® in Machine Learning,
11(5-6):355–607, 2019.

[39] L. Ruschendorf. Convergence of the iterative proportional fitting procedure.
The Annals of Statistics, 23(4):1160–1174, 1995.

[40] L. Ruschendorf and W. Thomsen. Closedness of sum spaces and the gen-
eralized Schrodinger problem. Theory of Probability and its Applications,
42(3):483–494, 1998.

[41] E. Schrodinger. Uber die umkehrung der naturgesetze. Sitzungsberichte
Preuss. Akad. Wiss. Berlin. Phys. Math., 144:144–153, 1931.

[42] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly
stochastic matrices. Ann. Math. Statist., 35:876–879, 1964.

[43] R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and col-
umn sums. Amer. Math. Monthly, 74:402–405, 1967.

[44] R. Sinkhorn and P . Knopp. Concerning nonnegative matrices and doubly
stochastic matrices. Pacific J. Math., 21:343–348, 1967.

[45] A. G. Wilson. The use of entropy maximizing models, in the theory of trip
distribution, mode split and route split. Journal of Transport Economics and
Policy, pages 108–126, 1969.

MOKAPLAN, INRIA Paris
Paris, France.
E-mail address: Jean-David.Benamou@inria.fr
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