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Abstract. In this paper, we study the thermo-elastodynamics of nonlinearly viscous solids in the Kelvin-Voigt

rheology where both the elastic and the viscous stress tensors comply with the frame-indifference principle.

The system features a force balance including inertia in the frame of nonsimple materials and a heat-transfer
equation which is governed by the Fourier law in the deformed configuration. Combining a staggered minimizing

movement scheme for quasi-static thermoviscoelasticity [35, 2] with a variational approach to hyperbolic PDEs
developed in [5], our main result consists in establishing the existence of weak solutions in the dynamic case.

This is first achieved by including an additional higher-order regularization for the dissipation. Afterwards, this

regularization can be removed by passing to a weaker formulation of the heat-transfer equation which complies
with a total energy balance. The latter description hinges on regularity theory for the fourth order p-Laplacian

which induces regularity estimates of the deformation beyond the standard estimates available from energy

bounds. Besides being crucial for the proof, these extra regularity properties might be of independent interest
and seem to be new in the setting of nonlinear viscoelasticity, also in the static or quasi-static case.

1. Introduction

Understanding the coupling between mechanical and thermal phenomena in viscoelastic solids has been a
mainstay in the mathematical and physical literature over the last decades. Even at small strains, the problem
is notoriously difficult since the heat-transfer equation has no obvious variational structure due to the low
regularity of data. In fact, after the pioneering work of Dafermos [15, 16, 17, 18] in one space dimension, new
fundamental ideas related to the existence theory for parabolic equations with measure-valued data developed
in [9, 10] were needed to obtain results in three dimensions [8, 11, 44]. At large strains, the problem is still
considered to be extremely difficult even in the isothermal case, due to the highly nonlinear nature of models
respecting material frame indifference [1]. For some results without temperature coupling, we refer to [37, 38]
for existence of global-in-time weak solutions for initial data sufficiently close to a smooth equilibrium and to
a local-in-time existence result [33]. By now, more general settings can only be treated by passing to weaker
solution concepts such as measure-valued solutions [19, 20, 29]. Resorting to energy densities with higher-order
spatial gradients, i.e., to so-called nonsimple materials [46, 47], existence of weak solutions has been shown in
[24, 35] for the quasi-static case (without inertia) and in [5] for the dynamic case (with inertia). The variational
approach adopted in these papers is quite flexible and has led to various extensions in the last years, ranging
from models for dimension reduction [25, 26, 27], to problems with self-contact [12, 13, 32], approximability [14],
diffusion [48], or homogenization [28], to applications for fluid-structure interactions [5, 6, 7, 31].

Nonlinear frame-indifferent models in thermoviscoelasticity were analyzed only very recently [2, 3, 4, 35],
again adopting the concept of nonsimple materials, yet neglecting inertial effects. The goal of this work is
to extend this analysis to the setting of thermo-elastodynamics including inertia. While our work follows the
Lagrangian perspective, let us mention that in the last years several works appeared in the isothermal and
nonisothermal framework which employ the alternative Eulerian approach instead, see [40, 41, 42, 43, 45]. In
this context, higher-order gradients are involved rather in the dissipative than in the conservative part, which
sometimes is referred to as multipolar viscous solids. Besides adopting the Lagrangian framework, a main
motivation of our work is to establish an existence result without higher-order regularization of the dissipation.

We now introduce the large-strain model in more detail. In the Kelvin-Voigt rheology, the force balance of
a nonlinearly viscoelastic material in a setting of nonsimple materials is given by the system

f = ρ∂2
tty − div

(
∂FW (∇y, θ) + ∂ḞR(∇y, ∂t∇y, θ)−∇(DH(∆y))

)
in [0, T ]× Ω. (1.1)

Here, [0, T ] is a process time interval with T > 0, Ω ⊂ Rd (d = 2, 3) denotes the reference configuration,
y : [0, T ] × Ω → Rd is the time-dependent deformation, θ : [0, T ] × Ω → [0,∞) denotes the temperature, and
f : [0, T ]×Ω→ Rd is a volume density of external forces acting on Ω. The free energy densityW : Rd×d×[0,∞)→
R∪{+∞} depends on the deformation gradient ∇y (with placeholder F ∈ Rd×d) and respects frame indifference
under rotations as well as positivity of the determinant of∇y. Additionally, adopting the framework of nonsimple
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materials, the stored energy features a contribution depending on the Laplacian ∆y given in terms of a convex
potential H : Rd → R with p-growth for some p > d. Finally, R : Rd×d × Rd×d × [0,∞) → R denotes a

(pseudo)potential of dissipative forces (Ḟ is the time derivative of F ). As observed by Antman [1], R must
comply with a time-continuous frame indifference principle meaning that R can be written in terms of the right
Cauchy-Green tensor C := FTF and its time derivative Ċ := ḞTF + FT Ḟ , see (D.1) below for details.

The system (1.1) is coupled to a heat-transfer equation of the form

cV (∇y, θ) ∂tθ = div(K(∇y, θ)∇θ) + ∂ḞR(∇y,∇∂ty, θ) : ∇∂ty + θ∂2
FθW (∇y, θ) : ∇∂ty in [0, T ]× Ω, (1.2)

where cV (F, θ) = −θ∂2
θθW (F, θ) is the heat capacity, K denotes the matrix of the heat-conductivity coefficients,

and the last term plays the role of an adiabatic heat source. This corresponds to a heat transfer modeled by the
Fourier law in the deformed configuration which is pulled back to the reference configurations and thus includes
dependence on the deformation gradient. The coupled system (1.1)–(1.2) is complemented with suitable initial
and boundary conditions, see (2.18)–(2.19) below.

The goal of this article is to establish an existence result for weak solutions to the nonlinear thermo-
elastodynamic system (1.1)–(1.2), see Theorem 2.5. Our proof strategy heavily hinges on two recent advances in
the variational analysis of nonlinearly elastic solids: we combine the staggered minimizing movement scheme for
proving existence results in quasi-static thermoviscoelasticity [35, 2] with a variational approach to hyperbolic
PDEs [5] which allows to include inertia.

In the following, we describe the main ingredients for the proof in more detail. The fundamental idea in

[5] consists in replacing the acceleration term ρ∂2
tty by a discrete difference ρ∂ty−∂ty(·−h)

h which allows to turn
the hyperbolic problem (1.1) into a parabolic one. The latter time-delayed problem can be approximated by a
time-discretized scheme as in [35, 2] with time step τ > 0. Then, given solutions to the discretized problems
with two different length scales τ and h (called the velocity and the acceleration time scale, respectively), one
first passes to τ → 0 and afterwards to h → 0 to obtain a weak solution for (1.1). As in [35], a generalized
version of Korn’s inequality [36] relying on the second-order regularization is essential in order to tame the
nonlinearity arising from the frame indifference of the dissipation term. Concerning the coupling to the heat-
transfer equation, the approach in [35, 2] crucially relies on the theory of parabolic equations with measure-valued
right-hand side [10]. A delicate part of the proof lies in the passage to the limit τ → 0 in the dissipation term
∂ḞR(∇y,∇∂ty, θ) : ∇∂ty, see (1.2). For this, strong convergence of the time-discrete approximations ∇∂tyτ
is indispensable which is guaranteed by exploiting the convergence of a mechanical energy balance, cf. [35,
Proposition 5.1] for details.

Although all techniques mentioned above are crucial ingredients in our work, it turns out that they do not
suffice in the setting with heat coupling and inertia. The main reason lies in missing regularity which impedes
the derivation of a mechanical energy balance. To explain this issue, let as consider the simplified problem

ρ∂2
tty −∆∂ty + ∆(|∆y|p−2∆y) = f, (1.3)

which arises from (1.1) by neglecting the first Piola-Kirchhoff stress tensor ∂FW , and considering a linear
variant of ∂ḞR as well as a p-homogeneous variant of H. In the quasi-static case ρ = 0 or in the time-

delayed problem where ρ∂2
tty is replaced by the discrete difference ρ∂ty−∂ty(·−h)

h , a test of the time-discretized
problem with ∂ty and an integration by parts (neglecting boundary terms) leads to the natural energy bounds
∆y ∈ L∞([0, T ];Lp(Ω)) and ∇∂ty ∈ L2([0, T ];L2(Ω)). Then, in the case ρ = 0, a mechanical energy balance
is achieved by testing (1.3) with ∂ty, cf. [2, Equation (4.11)]. In this context, the term ∆(|∆y|p−2∆y) might
in principle not have the correct duality coupling to apply the chain rule. However, since the other two terms
f and ∆∂ty are in duality, also the delicate fourth-order term can be handled by comparison. In contrast, for
ρ > 0, the two terms ρ∂2

tty and ∆(|∆y|p−2∆y) are not in duality and the chain rule (and thus the mechanical
energy balance) may fail.

This fundamental issue has already been observed in [35, Remark 6.6]. A possible workaround lies in adding
an additional regularization for the dissipation, see (2.17a), which in the simplified setting reads as

ρ∂2
tty −∆∂ty + ∆(|∆y|p−2∆y)− ε∂t∆3y = f. (1.4)

With the test ∂ty, this induces the energy bound ∇∆∂ty ∈ L2([0, T ];L2(Ω)) which is strong enough to recover
the chain rule. In this case, a mechanical energy balance can be guaranteed and we can follow the strategy
devised in [35, 2] and [5], see Theorem 2.2. (Note that we choose a simple higher-order regularization which
does not comply with the principle of dynamical frame indifference. A frame-indifferent regularization would
necessarily be very nonlinear.) This regularized setting is related to [43] where existence results under higher-
order regularizations of the dissipation have been derived in a Eulerian settting. Yet, a main motivation of our
work is to derive an existence result without such regularization.
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Our strategy relies on passing to a weaker formulation of the heat-transfer equation (1.2) which is inspired
by the derivation of a total energy balance (see [35, Equation (2.21)] or (2.28) below) and does not feature the
delicate dissipation term ∂ḞR(∇y,∇∂ty, θ) : ∇∂ty, see (2.27) for details. On a formal level, the idea is to test
(1.1) with ∂ty which allows to replace the dissipation term in (1.2). As discussed above, however, this test is
actually not allowed in (1.3). Therefore, we perform this replacement first on the regularized level (1.4), and
afterwards we pass to the limit ε → 0. This procedure leads to a modified weak formulation of the system
which does not guarantee a mechanical energy balance but has the essential feature that the total energy is in
equilibrium with the work by external body forces and heat sources, see (2.28). Moreover, the solution concept
introduced here becomes a standard weak solution or a strong solution once the necessary regularity properties
for the deformation and the temperature are available.

Although curing the issue with the dissipation, the passage to the weaker modified setting causes a new prob-
lem: the resulting weak formulation features a third-order term ∇(DH(∆y)) which is not compatible with the
available energy bound ∆y ∈ L∞([0, T ];Lp(Ω)), see below (1.3). Therefore, it is necessary to improve the regu-
larity of the deformation. Loosely speaking, this is achieved by testing (1.3) with −∆y which after integration
by parts (omitting any boundary terms) leads to an elliptic estimate. In fact, using ∇∂ty ∈ L2([0, T ];L2(Ω)),

the first term |
´
∂2
tty∆y dtdx| ≤ C‖∇∂ty‖2L2([0,T ];L2(Ω)) ≤ C is controlled. Assuming p = 2 for simplicity here,

the second and third term can be controlled as∣∣∣ ˆ T

0

ˆ
Ω

∆∂ty ·∆y dtdx
∣∣∣ ≤ C‖∇∂ty‖∈L2([0,T ];L2(Ω))‖∇∆y‖L2([0,T ];L2(Ω)) ≤ C‖∇∆y‖L2([0,T ];L2(Ω)),∣∣∣ ˆ T

0

ˆ
Ω

∆(∆y) ·∆y dtdx
∣∣∣ ≥ 1

C ‖∇∆y‖2L2([0,T ];L2(Ω)).

This allows to obtain the control ∇∆y ∈ L2([0, T ];L2(Ω)) which suffices to give sense to the term ∇(DH(∆y))
in the weak formulation. Again, on a rigorous level, this test is performed for the regularized problem (1.4) with
ε-independent bounds, and then the regularity for y is obtained in the limit of vanishing regularization ε→ 0,
see Proposition 3.11 and Lemma 3.12 for details. More precisely, for given p > d, the additional regularity reads

as (1+ |∆y|)
p−2
2 |∇∆y|2 ∈ L2([0, T ];L2(Ω)), see Theorem 2.5. Even in the nonlinear case of p 6= 2, the regularity

estimates introduced here rely on the theory for the Laplace operator only and as such are independent of
nonlinear regularity techniques. This seems to be a special feature of the fourth order p-Laplacian, which was
observed by the authors very much to their surprise. Up to their knowledge, it has not been used before.

Besides being crucial for our proof, the result might be of independent interest and improves the known
regularity properties also for results in the quasi-static case (ρ = 0) [35, 2] or in the isothermal case [24].
It seems that even in the static case of elastic minimizers this extra regularity property has not been shown
previously. Let us mention, however, that compared to [2, 24, 35] the regularity issues force us to impose
Dirichlet conditions on the entire boundary ∂Ω.

The plan of the paper is as follows. Section 2 introduces the nonlinear model and states our main results.
Then, the results are proved in Sections 3–5. We start by considering the ε-regularized problem and introduce a
discretized solution with time stepping τ of the parabolic approximation with time delay h > 0. This introduces
a three layer approximation, and we successively pass to the limits in the layers, namely first in τ (Section 3),
then in h (Section 4), and eventually in the regularization ε (Section 5). It is important to mention that
all essential a priori bounds are already established on the τ -level in Section 3 and transfer over to the limits
τ → 0, h→ 0, and ε→ 0. Moreover, some additional higher-order bounds based on elliptic regularity theory are
provided (see Lemma 3.12) that blow up in the limit ε→ 0. Still, they are crucial to perform the final limiting
passage in the heat-transfer equation to control some ε-dependent terms resulting from the regularization, see
Proposition 5.4 for details.

2. The model and main results

2.1. Notation. Denoting by d ∈ {2, 3} the dimension, we indicate by Ω ⊂ Rd an open bounded set with C5-
boundary and fix p ∈ (d, 2∗), where 2∗ = ∞ for d = 2 and 2∗ = 6 for d = 3. In what follows, we use standard
notation for Lebesgue, Sobolev, and Bochner spaces. By 1J we denote the indicator function of a set J ⊂ R
or J ⊂ Ω. The lower index + means nonnegative elements, i.e., L2

+(Ω) denotes the convex cone of nonnegative
functions belonging to L2(Ω) and a similar definition is used for H1

+(Ω). Mean integrals are denoted by −́.

We also set R+ := [0,+∞). Let a ∧ b := min{a, b} for a, b ∈ R. Moreover, we let Id ∈ Rd×d be the identity
matrix, and id(x) := x stands for the identity map on Rd. We define the subsets SO(d) := {A ∈ Rd×d : ATA =
Id, detA = 1}, GL+(d) := {F ∈ Rd×d : det(F ) > 0}, and Rd×dsym := {A ∈ Rd×d : AT = A}. Furthermore, for

a matrix F ∈ Rd×d we write F−T := (F−1)T = (FT )−1, and given a tensor G (of arbitrary dimension and
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order), |G| will denote its Frobenius norm. We write the scalar product between vectors and matrices as · and
:, respectively. The tensor product of two vectors v1, v2 ∈ Rd is denoted by v1 ⊗ v2 ∈ Rd×d. As usual, in the
proofs generic constants C are strictly positive and may vary from line to line. If not stated otherwise, all
constants only depend on d, p, Ω, and the potentials and data defined in Subsection 2.2 below. We frequently
use a scaled version of Young’s inequality with constant λ ∈ (0, 1) by which we mean ab ≤ λaq + Cλb

q′ for
a, b ≥ 0, exponents q, q′ > 1 with 1/q + 1/q′ = 1, and a suitable constant Cλ > 0.

For Ω ⊂ Rd and p as above, we introduce the set of admissible deformations by

Yid :=
{
y ∈W 2,p(Ω;Rd) : y = id on ∂Ω, det(∇y) > 0 in Ω

}
, (2.1)

and we say that the absolute temperature θ is admissible if θ ∈ L1
+(Ω).

2.2. Energies and their respective potentials. The variational setting described in the sequel mostly co-
incides with the one from [2], up to a more special choice of the strain-gradient energy. In the following, let
C0 ≥ 1 be some fixed positive constant.
Mechanical energy and coupling energy: The elastic energy Wel : Yid → R+ is given by

Wel(y) :=

ˆ
Ω

W el(∇y) dx, (2.2)

where W el : GL+(d)→ R+ is a frame indifferent elastic energy potential with the usual assumptions in nonlinear
elasticity. More precisely, we require:

(W.1) W el is C2;
(W.2) Frame indifference: W el(QF ) = W el(F ) for all F ∈ GL+(d) and Q ∈ SO(d);

(W.3) Lower bound: W el(F ) ≥ 1
C0

(
|F |2 + det(F )−q

)
− C0 for all F ∈ GL+(d), where q ≥ pd

p−d .

Adopting the concept of 2nd-grade nonsimple materials, see [46, 47], we also consider a strain-gradient energy
term H : Yid → R+, defined as

H(y) :=

ˆ
Ω

H(∆y) dx. (2.3)

Here, H : Rd → R+ is of the form

H(v) = h(|v|) (2.4)

for v ∈ Rd, where h : R+ → R+ is defined as

h(s) :=

ˆ s

0

max{2σ, pσp−1} dσ. (2.5)

The definition of h ensures that H is uniformly convex and has p-growth. More precisely, we have

(H.1) H is uniformly convex and C1;
(H.2) Frame indifference: H(Q∆y) = H(∆y) in Ω for all y ∈ Yid and Q ∈ SO(d);

(H.3) |v|p ≤ H(v) ≤ C0|v|p and |DH(v)| ≤ C0|v|p−1
for all v ∈ Rd,

where DH(v) := (∂viH(v))di=1 = max{2, p|v|p−2}v is the gradient of H with respect to v. The mechanical
energy M : Yid → R+ is then defined as

M(y) :=Wel(y) +H(y). (2.6)

Besides the mechanical energy, we introduce a coupling energy Wcpl : Yid × L1
+(Ω)→ R given by

Wcpl(y, θ) :=

ˆ
Ω

W cpl(∇y, θ) dx, (2.7)

where W cpl : GL+(d)× R+ → R describes mutual interactions of mechanical and thermal effects, and satisfies

(C.1) W cpl is continuous, and C2 in GL+(d)× (0,∞);
(C.2) W cpl(QF, θ) = W cpl(F, θ) for all F ∈ GL+(d), θ ≥ 0, and Q ∈ SO(d);
(C.3) W cpl(F, 0) = 0 for all F ∈ GL+(d);

(C.4) |W cpl(F, θ)−W cpl(F̃ , θ)| ≤ C0(1 + |F |+ |F̃ |)|F − F̃ | for all F, F̃ ∈ GL+(d), and θ ≥ 0;
(C.5) For all F ∈ GL+(d) and θ > 0 it holds that

|∂2
FFW

cpl(F, θ)| ≤ C0, |∂2
FθW

cpl(F, θ)| ≤ C0(1 + |F |)
max{θ, 1}

,
1

C0
≤ −θ∂2

θθW
cpl(F, θ) ≤ C0.
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Notice that, by (C.3) and the second bound in (C.5), ∂FW
cpl can be continuously extended to zero temperatures

with ∂FW
cpl(F, 0) = 0. For F ∈ GL+(d) and θ ≥ 0, we define the total free energy potential

W (F, θ) := W el(F ) +W cpl(F, θ). (2.8)

Dissipation potential: The dissipation functional R : Yid ×H1(Ω;Rd)× L1
+(Ω)→ R+ is defined as

R(y, ỹ, θ) :=

ˆ
Ω

R(∇y,∇ỹ, θ) dx, (2.9)

where R : Rd×d × Rd×d × R+ → R+ is the potential of dissipative forces satisfying

(D.1) R(F, Ḟ , θ) := 1
2D(C, θ)[Ċ, Ċ] := 1

2 Ċ : D(C, θ)Ċ, where C := FTF , Ċ := ḞTF + FT Ḟ , and D ∈
C(Rd×dsym × R+;Rd×d×d×d) with Dijkl = Djikl = Dklij for 1 ≤ i, j, k, l ≤ d;

(D.2) 1
C0
|Ċ|2 ≤ Ċ : D(C, θ)Ċ ≤ C0|Ċ|2 for all C, Ċ ∈ Rd×dsym and θ ≥ 0.

Notice that Assumption (D.1) implies that the viscous stress ∂ḞR(F, Ḟ , θ) is linear in the time derivative Ċ as
well as (see e.g. [2, (2.8)])

∂ḞR(F, Ḟ , θ) = 2F (D(C, θ)Ċ). (2.10)

We also define the associated dissipation rate ξ : Rd×d × Rd×d × R+ → R+ as

ξ(F, Ḟ , θ) := ∂ḞR(F, Ḟ , θ) : Ḟ = 2R(F, Ḟ , θ), (2.11)

where the second identity follows from (2.10) and Assumption (D.1), see also [2, (2.9)].
Below, for technical reasons explained in (1.4), we will also consider a regularized version of the dissipation

Rε : Yid ×H3(Ω;Rd)× L1
+(Ω)→ R+, defined as

Rε(y, ỹ, θ) :=

ˆ
Ω

R(∇y,∇ỹ, θ) dx+
ε

2

ˆ
Ω

|∇∆ỹ|2 dx (2.12)

for a small regularization parameter ε > 0.
Heat conductivity: The map K : R+ → Rd×dsym denotes the heat conductivity tensor of the material in the
deformed configuration. We require that K is continuous, symmetric, uniformly positive definite, and bounded.
More precisely, for all θ ≥ 0 it holds that

1

C0
≤ K(θ) ≤ C0, (2.13)

where the inequalities are meant in the eigenvalue sense. We define the pull-back K : GL+(d)× R+ → Rd×dsym of
K into the reference configuration by (see [35, (2.24)])

K(F, θ) := det(F )F−1K(θ)F−T .

Thermal energy and total internal energy: Following [2, 4, 35], the (thermal part of the) internal energy
W in : GL+(d)× (0,∞)→ R is defined as

W in(F, θ) := W cpl(F, θ)− θ∂θW cpl(F, θ). (2.14)

Using (C.3) and the third bound in (C.5), we see that W in can be continuously extended to zero temperatures
by setting W in(F, 0) = 0 for all F ∈ GL+(d). Furthermore, by the third bound in (C.5) we have that

∂θW
in(F, θ) = −θ∂2

θθW
cpl(F, θ) ∈ [C−1

0 , C0] for all F ∈ GL+(d) and θ > 0.

Along with (C.3) this shows that the internal energy is controlled by the temperature in the sense that

1

C0
θ ≤W in(F, θ) ≤ C0θ. (2.15)

Finally, we define total internal energy functional E : Yid × L1
+(Ω)→ R+ by

E(y, θ) :=M(y) +W in(y, θ) with W in(y, θ) :=

ˆ
Ω

W in(∇y, θ) dx. (2.16)

We remark that the above assumptions on the potentials coincide with the ones in [2, Section 2.1], up to the
fact that, differently to [2, (2.4)], we only allow the potential of the strain-gradient energy to depend on the
norm of the diagonal ∆y of ∇2y. Moreover, for d = 3, the range of p ∈ (3, 6) is restricted as we need the
Sobolev embedding H3(Ω;Rd) ⊂⊂ W 2,p(Ω;Rd). Eventually, in contrast to [2], in the definition of admissible
deformations, see (2.1), we need to impose Dirichlet conditions on the entire boundary ∂Ω as this allows us to
apply elliptic regularity results. We refer to [35, Examples 2.4 and 2.5] for a class of potentials satisfying all
assumptions above.
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2.3. Equations of nonlinear thermoviscoelasticity with inertia: Existence of weak solutions. Let
I := [0, T ] where T > 0 denotes a time horizon, let ρ > 0 be a constant mass density in the reference
configuration, let κ ≥ 0 be a constant heat-transfer coefficient, let f ∈ W 1,1(I;L2(Ω;Rd)) be a time-dependent
dead force, and let θ[ ∈ W 1,1(I;L2

+(∂Ω)) be an external temperature. Moreover, let ε ≥ 0 be a regularization
parameter, where ε = 0 corresponds to the setting without regularization. In the strong form, we study the
system

f = ρ∂2
tty − div

(
∂FW (∇y, θ) + ∂ḞR(∇y, ∂t∇y, θ)−∇(DH(∆y)) + ε∂t∇∆2y

)
, (2.17a)

−θ∂2
θθW

cpl(∇y, θ)∂tθ = div
(
K(∇y, θ)∇θ

)
+ ξ(∇y, ∂t∇y, θ) + θ∂2

FθW
cpl(∇y, θ) : ∂t∇y + ε|∂t∇∆y|2 , (2.17b)

coupled with the boundary conditions

y = id in I × ∂Ω, (2.18a)

DH(∆y) = 0 in I × ∂Ω, (2.18b)

ε∂ν∆y = ε∆2y = 0 in I × ∂Ω, (2.18c)

K(∇y, θ)∇θ · ν + κθ = κθ[ in I × ∂Ω (2.18d)

and subject to the initial conditions

y(0) = y0, ∂ty(0) = y′0, θ(0) = θ0, (2.19)

for initial values y0 ∈ Yid, y′0 ∈ H1
0 (Ω;Rd), and θ0 ∈ L2

+(Ω). We refer to [35, Section 2] for a thorough
explanation of this model. We highlight that, compared to [35], we include inertial effects, i.e., the mechanical
equation features the term ρ∂2

tty. Moreover, for ε > 0 there are regularizing terms both in (2.17a) and (2.17b),
complemented with the additional natural boundary condition (2.18c). In the regularized setting, we will assume
stronger initial conditions for the deformations, namely y0,ε ∈ Yreg

id and y′0,ε ∈ H3(Ω;Rd) ∩H1
0 (Ω;Rd), where

Yreg
id :=

{
y ∈ Yid ∩H4(Ω;Rd) : ∂ν∆y(t) = ∆y(t) = 0 Hd−1-a.e. in ∂Ω

}
. (2.20)

We now first treat the case ε > 0 and afterwards we address the system without regularization.

Existence of weak solutions for the regularized system. We introduce the notion of weak solutions
related to (2.17a)–(2.18d) for ε > 0.

Definition 2.1 (Weak solutions to the regularized thermo-elastodynamic system for viscous solids). Let y0,ε ∈
Yreg
id , y′0,ε ∈ H3(Ω;Rd) ∩ H1

0 (Ω;Rd), θ0 ∈ L2
+(Ω), f ∈ W 1,1(I;L2(Ω;Rd)), and θ[ ∈ W 1,1(I;L2

+(∂Ω)). We say
that a pair (yε, θε) with

yε ∈ L∞(I;Yid) ∩H1
(
I;H3(Ω;Rd)

)
∩H2

(
I; (H3(Ω;Rd) ∩H1

0 (Ω;Rd))∗
)
,

θε ∈ L2(I;H1
+(Ω))

is a solution to the regularized thermo-elastodynamic system with initial conditions (y0,ε, y
′
0,ε, θ0) if yε(0) = y0,ε,

∂tyε(0) = y′0,ε, the internal energy wε := W in(∇yε, θε) lies in L2(I;H1(Ω)) ∩ H1(I; (H1(Ω))∗) and satisfies

wε(0) = w0,ε := W in(∇y0,ε, θ0), and the following equations are satisfied for every z ∈ C∞(I × Ω;Rd) with

z = 0 on I × ∂Ω and for every ϕ ∈ C∞(I × Ω):

0 =

ˆ
I

ˆ
Ω

∂FW (∇yε, θε) : ∇z dxdt+

ˆ
I

ˆ
Ω

DH(∆yε) ·∆z dxdt+ ε

ˆ
I

ˆ
Ω

∂t∇∆yε : ∇∆z dxdt

+

ˆ
I

ˆ
Ω

∂ḞR(∇yε, ∂t∇yε, θε) : ∇z dxdt+ ρ

ˆ
I

〈∂2
ttyε, z〉dt−

ˆ
I

ˆ
Ω

f · z dxdt ,

(2.21)

0 =

ˆ
I

ˆ
Ω

K(∇yε, θε)∇θε · ∇ϕdxdt+

ˆ
I

〈∂twε, ϕ〉dt− κ
ˆ
I

ˆ
∂Ω

(θ[ − θε)ϕdHd−1 dt

−
ˆ
I

ˆ
Ω

(
ξ(∇yε, ∂t∇yε, θε)) + ∂FW

cpl(∇yε, θε) : ∂t∇yε + ε|∂t∇∆yε|2
)
ϕdxdt,

(2.22)

where 〈·, ·〉 denotes the dual pairing of H3(Ω;Rd)∩H1
0 (Ω;Rd) and its dual or of H1(Ω) and its dual, respectively.

Following the lines of [35, (2.28)–(2.29)], one can show that (2.17a) together with (2.18a)–(2.18c) is equivalent
to (2.21). Besides the regularizing term, the only difference in (2.17a) compared to [35] is the presence of the
inertial term. Arguing as in [35, (2.16)–(2.17)], we can rewrite the heat-transfer equation (2.17b) in terms of
the internal energy wε as

∂twε = div
(
K(∇yε, θε)∇θε

)
+ ξ(∇yε, ∂t∇yε, θε) + ε|∂t∇∆yε|2 + ∂FW

cpl(∇yε, θε) : ∂t∇yε,
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where we have used (2.14) and the identity

∂twε = ∂FW
cpl(∇yε, θε) : ∂t∇yε − θε∂2

FθW
cpl(∇yε, θε) : ∂t∇yε − θε∂2

θθW
cpl(∇yε, θε)∂tθε .

Taking also (2.18d) into account, this yields the weak formulation (2.22).
The first main results of the paper read as follows.

Theorem 2.2 (Existence of weak solutions to the regularized system). Let p ∈ (2,+∞) if d = 2 or p ∈ (3, 6)
for d = 3. Assume that (W.1)–(W.3), (H.1)–(H.3), (C.1)–(C.5), (D.1)–(D.2), and (2.13) hold true. Let ε > 0.
Let y0,ε ∈ Yreg

id , y′0,ε ∈ H3(Ω;Rd)∩H1
0 (Ω;Rd), θ0 ∈ L2

+(Ω), f ∈W 1,1(I;L2(Ω;Rd)), and θ[ ∈W 1,1(I;L2
+(∂Ω)).

Then, there exists a weak solution (yε, θε) to the regularized thermo-elastodynamic system with initial data
(y0,ε, y

′
0,ε, θ0) in the sense of Definition 2.1.

For weak solutions, we can derive energy balances and some regularity properties. Recall (2.6) and (2.16).

Theorem 2.3 (Regularity of solutions and total energy balance). In the setting of Theorem 2.2, we find weak
solutions (yε, θε) satisfying yε ∈ L∞(I;Yreg

id ). Moreover, for each t ∈ I, the system satisfies the mechanical
energy balance

M(yε(t)) +
ρ

2
‖∂tyε(t)‖2L2(Ω) +

ˆ t

0

ˆ
Ω

(
ξ(∇yε, ∂t∇yε, θε)) + ε|∂t∇∆yε|2 dx+ ∂FW

cpl(∇yε, θε) : ∂t∇yε
)

ds

=M(y0,ε) +
ρ

2
‖y′0,ε‖2L2(Ω) +

ˆ t

0

ˆ
Ω

f · ∂tyε dxds, (2.23)

the thermal energy balanceˆ
Ω

wε(t) dx =

ˆ
Ω

w0,ε dx+

ˆ t

0

ˆ
Ω

(
ξ(∇yε, ∂t∇yε, θε) + ε|∂t∇∆yε|2 + ∂FW

cpl(∇yε, θε) : ∂t∇yε
)

dxds (2.24)

+ κ

ˆ t

0

ˆ
∂Ω

(θ[ − θε) dHd−1 ds ,

and the total energy balance

E(yε(t), θε(t)) +
ρ

2
‖∂tyε(t)‖2L2(Ω)

= E(y0,ε, θ0) +
ρ

2
‖y′0,ε‖2L2(Ω) +

ˆ t

0

ˆ
∂Ω

κ(θ[ − θε) dHd−1 ds+

ˆ t

0

ˆ
Ω

f · ∂tyε dxds.
(2.25)

We emphasize that the energy balances are well-defined pointwise for each t ∈ I since the regularity of the
deformation and the temperature imply yε ∈ C(I;W 2,p(Ω;Rd)), ∂tyε ∈ C(I;L2(Ω;Rd)), and wε ∈ C(I;L2(Ω)),
where we use that p < 2∗ and [39, Lemma 7.3]. The total energy balance (2.25) arises by summing (2.23) and
(2.24). In particular, we observe that the system is closed for κ = 0 and f = 0. Still, an exchange of mechanical
energy and thermal energy is possible due to the (regularized) dissipation rate ξ(∇yε, ∂t∇yε, θε)) + ε|∂t∇∆yε|2
and the adiabatic heat source ∂FW

cpl(∇yε, θε) : ∂t∇yε which cancel out in the summation of (2.23) and (2.24).

Existence of weak solutions for the system without regularization. Our goal is to remove the regular-
ization by passing to the limit ε → 0 for weak solutions (yε, θε) in the sense of Definition 2.1. Unfortunately,
the available a priori bounds and compactness results yielding a limit (y, θ), see Lemma 5.1 below, are not
strong enough as they guarantee convergence of all terms in (2.21)–(2.22) except for the acceleration ∂2

ttyε in
(2.21) and the dissipation rate ξ(∇yε, ∂t∇yε, θε) in (2.22). Accordingly, also the validity of the mechanical and
thermal energy balances (2.23)–(2.24) cannot be expected in the limit ε→ 0 as

lim inf
ε→0

ˆ t

0

ˆ
Ω

ξ(∇yε, ∂t∇yε, θε) dxds >

ˆ t

0

ˆ
Ω

ξ(∇y, ∂t∇y, θ) dxds

is possible under the available compactness results. In [2, Lemma 4.5] and [35, Propositions 5.1 and 6.6], equality
was guaranteed by a chain rule for the mechanical energy (see [35, Proposition 3.6]) which also allowed to derive
a mechanical energy balance. Due to the presence of the inertial term, it appears to be impossible to adapt this
strategy to the current setting.

We overcome this difficulty by appealing to a weaker formulation of the mechanical and the heat-transfer
equation. In (2.21), it suffices to perform an integration by parts in time to deal with the term ∂2

ttyε. The
passage to a weaker form of (2.22) is based on the observation that the delicate dissipation term cancels in the
summation of (2.23) and (2.24). More precisely, this passage is achieved by testing (2.21) with z = ∂tyϕ and
adding the result to (2.22). This leads to the following notion of weak solution whose form will be explained in
more detail by a formal computation in (2.29)–(2.33) below.
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Definition 2.4 (Weak solutions to thermo-elastodynamic system for viscous solids). Let y0 ∈ Yid, y′0 ∈
H1(Ω;Rd), θ0 ∈ L2

+(Ω), f ∈W 1,1(I;L2(Ω;Rd)), and θ[ ∈W 1,1(I;L2
+(∂Ω)). We say that a pair (y, θ) with

y ∈ L∞(I;Yid) ∩H1(I;H1(Ω;Rd)), θ ∈ L1(I;W 1,1
+ (Ω))

is a solution to the thermo-elastodynamic system with initial conditions (y0, y
′
0, θ0) if the following equations

are satisfied for every z ∈ C∞(I × Ω;Rd) with z = 0 on I × ∂Ω and z(T ) = 0, and for every ϕ ∈ C∞(I × Ω)
with ϕ(T ) = 0:

0 =

ˆ
I

ˆ
Ω

∂FW (∇y, θ) : ∇z dxdt+

ˆ
I

ˆ
Ω

DH(∆y) ·∆z dx dt (2.26)

+

ˆ
I

ˆ
Ω

∂ḞR(∇y, ∂t∇y, θ) : ∇z dx dt− ρ
ˆ
I

ˆ
Ω

∂ty · ∂tz dxdt−
ˆ
I

ˆ
Ω

f · z dxdt− ρ
ˆ

Ω

y′0 · z(0) dx ,

0 =

ˆ
I

ˆ
Ω

K(∇y, θ)∇θ · ∇ϕdx dt− κ
ˆ
I

ˆ
∂Ω

(θ[ − θ)ϕdHd−1 dt−
ˆ
I

ˆ
Ω

ϕf · ∂ty dxdt

−
ˆ
I

ˆ
Ω

(
W el(∇y) +H(∆y) + w +

ρ

2
|∂ty|2

)
∂tϕdxdt−

ˆ
Ω

(
W el(∇y0) +H(∆y0) + w0 +

ρ

2
|y′0|2

)
ϕ(0) dx

+

ˆ
I

ˆ
Ω

(
∂FW (∇y, θ) + ∂ḞR(∇y,∇∂ty, θ)

)
: (∂ty ⊗∇ϕ) dxdt

−
ˆ
I

ˆ
Ω

DH(∆y) · ∂ty∆ϕ dxdt− 2

ˆ
I

ˆ
Ω

∇(DH(∆y)) : (∂ty ⊗∇ϕ) dx dt, (2.27)

where for shorthand we set w := W in(∇y, θ) and w0 := W in(∇y0, θ0).

In particular, we observe that, due to the lack of regularity of ∂2
tty and ∂tw, the initial conditions of ∂ty and

w are given implicitly in a weak form, relying on an integration by parts in time. An important aspect of the
weak formulation (2.27) is that it directly guarantees the total energy balance. Indeed, for each t ∈ I such that

lim
δ→0
−
ˆ t+δ

t−δ

ˆ
Ω

y dxds =

ˆ
Ω

y(t, x) dx ∈W 2,p(Ω;Rd), lim
δ→0
−
ˆ t+δ

t−δ

ˆ
Ω

∂ty dxds =

ˆ
Ω

∂ty(t, x) dx ∈ L2(Ω;Rd),

lim
δ→0
−
ˆ t+δ

t−δ

ˆ
Ω

w dxds =

ˆ
Ω

w(t, x) dx ∈ L1(Ω)

(and thus for a.e. t ∈ I), we can test (2.27) with ϕ given by ϕ ≡ 1 on (0, t− δ), ϕ ≡ 0 on (t+ δ, T ) and ϕ′ ≡ − 1
2δ

on (t− δ, t+ δ). In the limit δ → 0, after rearranegment, this yields
ˆ

Ω

(
W el(∇y(t)) +H(∆y(t)) + w(t) +

ρ

2
|∂ty(t)|2

)
dx

=

ˆ
Ω

(
W el(∇y0) +H(∆y0) + w0 +

ρ

2
|y′0|2

)
dx+ κ

ˆ t

0

ˆ
∂Ω

(θ[ − θ) dHd−1 ds+

ˆ t

0

ˆ
Ω

f · ∂ty dxds (2.28)

which is exactly the total energy balance, cf. also (2.25). Whereas a total energy balance still holds, the
respective form of (2.23) and (2.24) may become inequalities. In some sense, this weaker form based on a
replacement is inspired by fluid-mechanics for compressible heat conduction fluids, where the conservation of
the total energy is guaranteed by transferring the heat equation into an inequality for the entropy [22, 21].

Theorem 2.5 (Existence and regularity of weak solutions). Let p ∈ (2,+∞) if d = 2 or p ∈ (3, 6) for
d = 3. Assume that (W.1)–(W.3), (H.1)–(H.3), (C.1)–(C.5), (D.1)–(D.2), and (2.13) hold true. Let y0 ∈ Yid,
y′0 ∈ H1

0 (Ω;Rd), θ0 ∈ L2
+(Ω), f ∈ W 1,1(I;L2(Ω;Rd)), and θ[ ∈ W 1,1(I;L2

+(∂Ω)). Then, there exists a weak
solution (y, θ) to the thermo-elastodynamic system with initial data (y0, y

′
0, θ0) in the sense of Definition 2.4.

The weak solution satisfies y ∈ L2(I;H3(Ω;Rd)) and (1 + |∆y|)
p−2
2 |∇∆y|2 ∈ L2(I × Ω).

Note that (2.28) holds and (2.18b) is satisfied in the sense of traces.

Formal derivation of the weak formulation. Let us close this section with a formal derivation of equation
(2.27) which will be made precise below in Proposition 5.3 for the regularized system. Assuming sufficient
regularity for y and θ, let us check that the formulations in (2.27) and (2.22) (for ε = 0) coincide. First, an
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integration by parts in time shows that, for ε = 0, (2.22) is equivalent to

0 =

ˆ
I

ˆ
Ω

K(∇y, θ)∇θ · ∇ϕ dxdt−
ˆ
I

ˆ
Ω

(
ξ(∇y, ∂t∇y, θ) + ∂FW

cpl(∇y, θ) : ∂t∇y
)
ϕ dx dt

+ κ

ˆ
I

ˆ
∂Ω

(θ − θ[)ϕ dHd−1 dt−
ˆ
I

ˆ
Ω

w∂tϕdxdt−
ˆ

Ω

w0ϕ(0) dx

(2.29)

for every ϕ ∈ C∞(I ×Ω) with ϕ(T ) = 0. Now, we test (2.21) with z := ∂tyϕ for ϕ ∈ C∞(I ×Ω) with ϕ(T ) = 0.
Using (2.8), (2.11), expanding ∇(∂tyϕ), and rearranging the terms, we obtain

−
ˆ
I

ˆ
Ω

ξ(∇y, ∂t∇y, θ)ϕdx dt−
ˆ
I

ˆ
Ω

∂FW
cpl(∇y, θ) : ∂t∇yϕdx dt

=

ˆ
I

ˆ
Ω

∂FW
el(∇y, θ) : ∂t∇yϕdxdt+

ˆ
I

ˆ
Ω

∂FW (∇y, θ) : (∂ty ⊗∇ϕ) dx dt

+

ˆ
I

ˆ
Ω

∂ḞR(∇y, ∂t∇y, θ) : (∂ty ⊗∇ϕ) dxdt+

ˆ
I

ˆ
Ω

DH(∆y) ·∆(∂tyϕ) dxdt

−
ˆ
I

ˆ
Ω

f · ∂tyϕdxdt+ ρ

ˆ
I

ˆ
Ω

ϕ∂2
tty · ∂ty dxdt.

(2.30)

By the chain rule, the fundamental theorem of calculus, and ϕ(T ) = 0 we getˆ
I

ˆ
Ω

ϕ∂2
tty · ∂ty dxdt =

1

2

ˆ
I

ˆ
Ω

d

dt

(
ϕ|∂ty|2

)
dxdt− 1

2

ˆ
I

ˆ
Ω

∂tϕ|∂ty|2 dxdt

= −1

2

ˆ
Ω

|y′0|2ϕ(0)− 1

2

ˆ
I

ˆ
Ω

∂tϕ|∂ty|2 dxdt. (2.31)

Moreover, by integration by parts in Ω and since ∂ty = 0 in I × ∂Ω (recall that y(t) ∈ Yid), we have thatˆ
I

ˆ
Ω

DH(∆y) ·∆(∂tyϕ) dx dt =

ˆ
I

ˆ
Ω

DH(∆y) :
(
ϕ∂t∆y + 2∂t∇y∇ϕ+ ∂ty∆ϕ

)
dxdt (2.32)

=

ˆ
I

ˆ
Ω

DH(∆y) : ∂t∆yϕdxdt−
ˆ
I

ˆ
Ω

DH(∆y) : ∂ty∆ϕdxdt− 2

ˆ
I

ˆ
Ω

∇(DH(∆y)) : (∂ty ⊗∇ϕ) dx dt.

Eventually, by the chain rule and by integration by parts with ϕ(T ) = 0 we getˆ
I

ˆ
Ω

ϕ
(
∂FW

el(∇y) : ∂t∇y +DH(∆y) · ∂t∆y
)

dxdt =

ˆ
I

ˆ
Ω

ϕ
d

dt

(
W el(∇y) +H(∆y)

)
dx dt

= −
ˆ

Ω

ϕ(0)
(
W el(∇y0) +H(∆y0)

)
dx−

ˆ
I

ˆ
Ω

∂tϕ
(
W el(∇y) +H(∆y)

)
dxdt . (2.33)

Combining (2.29)–(2.33) we infer (2.27).

Outline. The rest of the paper is structured as follows. In Section 3 we consider a time-delayed parabolic
system for a time-delay h > 0 whose existence is established by a minimizing movement scheme with time
discretization τ > 0. In Section 4 we pass to the limit h→ 0 and prove existence of solutions to the regularized
system, see Theorem 2.2. Eventually in Section 5 we pass to the limit ε→ 0 and show Theorem 2.5. Importantly,
all relevant a priori estimates are established already on the level τ > 0 in Section 3 and immediately transfer
to the limits τ → 0, h→ 0, and ε→ 0.

3. Minimizing movements for time-delayed parabolic system

We fix a regularization parameter ε > 0 and a time-delay h > 0. For convenience, without further notice, we
assume that T/h ∈ N. In this section, we include the ε-dependent regularizing term in (2.17) and we suppose
more regular initial conditions y0, y′0, denoted by y0,ε, y

′
0,ε. As done in [5], by replacing the acceleration term

ρ∂2
tty by a discrete difference ρ∂ty−∂ty(·−h)

h , we turn the hyperbolic problem (2.17a) into a parabolic one. The
main goal of this section is to prove the following existence result for the resulting problem, where for convenience
we use the notation Ih := [−h, T ].

Theorem 3.1 (Weak solutions of the time-delayed regularized problem). Let T, h, ε > 0, y0,ε ∈ Yreg
id ,

y′0,ε ∈ H3(Ω;Rd) ∩H1
0 (Ω;Rd), and θ0 ∈ L2

+(Ω). Then, there exist yh ∈ L∞(I;Yreg
id ) ∩H1(Ih;H3(Ω;Rd)) with

yh(t) = y0,ε + ty′0,ε for all t ∈ [−h, 0] and θh ∈ L2(I;H1
+(Ω)) such that wh := W in(∇yh, θh) ∈ L2(I;H1(Ω)) ∩
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H1(I; (H1(Ω))∗) with wh(0) = w0,ε := W in(∇y0,ε, θ0) and the following holds true: For all z ∈ C∞(I × Ω;Rd)
satisfying z = 0 on I × ∂Ω we haveˆ

I

ˆ
Ω

(
∂FW (∇yh, θh) + ∂ḞR(∇yh, ∂t∇yh, θh)

)
: ∇z +DH(∆yh) ·∆z + ε∂t∇∆yh : ∇∆z dxdt

=

ˆ
I

ˆ
Ω

f · z dx dt− ρ

h

ˆ
I

ˆ
Ω

(∂tyh(t)− ∂tyh(t− h)) · z dxdt,

(3.1a)

and for all ϕ ∈ C∞(I × Ω) it holds thatˆ
I

ˆ
Ω

K(∇yh, θh)∇θh · ∇ϕ−
(
ξ(∇yh, ∂t∇yh, θh) + ∂FW

cpl(∇yh, θh) : ∂t∇yh
)
ϕdx dt

− ε
ˆ T

0

ˆ
Ω

|∂t∇∆yh|2ϕdxdt+

ˆ
I

〈∂twh, ϕ〉dt = κ

ˆ
I

ˆ
∂Ω

(θ[ − θh)ϕdHd−1 dt,

(3.1b)

where 〈·, ·〉 denotes the dual pairing between H1(Ω) and (H1(Ω))∗.

A similar notion of weak solutions has already been considered in [35, 2]. The main differences of the above
equations (3.1a)–(3.1b) to, e.g., [2, (2.19)-(2.20)] is the presence of the additional h-dependent terms arising
from the time-discretization of the acceleration as well as the regularizing terms depending on ε, which induce
better regularity properties of the solutions. The solutions also depend on ε, which we however do not include
in the notation for simplicity. The proof of existence follows along the lines of the reasoning from [2, Sections 3
and 4] and is based on a minimizing movement scheme. To keep the presentation concise, many proofs in this
section will only be sketched, highlighting primarily the differences to the arguments in [2].

3.1. Staggered minimizing movement scheme and its well-definedness. We introduce a discrete time-
step τ ∈ (0, h) and without further notice we assume that h/τ ∈ N. This also implies T/τ ∈ N. If not stated
otherwise, all constants encountered in this section are independent of τ , h, and ε. Given any sequence (ak)k∈Z,
we introduce the notation for discrete differences as

δτak :=
ak − ak−1

τ
, k ∈ Z. (3.2)

Theorem 3.1 will be shown via a staggered minimizing movements scheme. Let y0,ε ∈ Yreg
id , y′0,ε ∈ H3(Ω;Rd) ∩

H1
0 (Ω;Rd), and θ0 ∈ L2

+(Ω). We first define the initial conditions of the scheme by

y(k)
τ := y0,ε + kτy′0,ε for k ∈ {−h/τ, . . . , 0} and θ(0)

τ := θ0.

Note that the time-discrete deformation is also defined for negative times, which will allow us to prove that the
solution yh in (3.1a)–(3.1b) satisfies yh(t) = y0,ε + ty′0,ε for all t ∈ [−h, 0].

Now, suppose that for k ∈ {1, . . . , T/τ} we have already constructed (y
(0)
τ , θ

(0)
τ ), . . . , (y

(k−1)
τ , θ

(k−1)
τ ). (The

solutions also depend on h and ε, which we do not include in the notation for simplicity.) Let f
(k)
τ :=

−́
kτ

(k−1)τ
f(t) dt := τ−1

´ kτ
(k−1)τ

f(t) dt, and for shorthand we denote by (·, ·)2 the scalar product in L2(Ω;Rd).

Recalling also (2.6), (2.7), and (2.9), the next deformation y
(k)
τ is defined as a solution of the minimization

problem

min
y∈Yid∩H3(Ω;Rd)

{
M(y) +Wcpl

(
y, θ(k−1)

τ ) +
1

τ
R
(
y(k−1)
τ , y − y(k−1)

τ , θ(k−1)
τ

)
+

ε

2τ
‖∇∆y −∇∆y(k−1)

τ ‖2L2(Ω) − (f (k)
τ , y)2 +

ρτ

2h

∥∥∥y − y(k−1)
τ

τ
− δτy(k−h/τ)

τ

∥∥∥2

L2(Ω)

}
.

(3.3)

Supposing that y
(k)
τ exists, we define θ

(k)
τ as a solution to the minimization problem

min
θ∈H1

+(Ω)

{ˆ
Ω

ˆ θ

0

1

τ

(
W in(∇y(k)

τ , s)−W in(∇y(k−1)
τ , θ(k−1)

τ )
)

dsdx+
1

2

ˆ
Ω

K(∇y(k−1)
τ , θ(k−1)

τ )∇θ · ∇θ dx

−
ˆ

Ω

(
∂FW

cpl(∇y(k−1)
τ , θ(k−1)

τ ) : δτ∇y(k)
τ + ξ(∇y(k−1)

τ , δτ∇y(k)
τ , θ(k−1)

τ ) + ε|δτ∇∆y(k)
τ |2 ∧ τ−1

)
θ dx

+
κ

2

ˆ
∂Ω

(θ − θ(k)
[,τ )2 dHd−1

}
, (3.4)

where θ
(k)
[,τ

:= −́
kτ

(k−1)τ
θ[(t) dt.
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The minimization problem (3.3) differs from the one used in [5] due to the presence of the additional ε-
regularizing term and a different discretization of the acceleration term. In [5, Definition 3.3, Theorem 3.5], the
term

ρτ

2h

∥∥∥y − y(k−1)
τ

τ
−−
ˆ kτ

(k−1)τ

v dt
∥∥∥2

L2(Ω)

for a generic v ∈ L2(0, h) is used. By replacing v with ∂ty(·−h), one can then construct a τ -discretized solution
in the small time interval (0, h). Then, a successive repetition of the argument yields a time-discrete solution

on [0, T ]. Here, instead, we simply use the discretized solution δτy
(k−h/τ)
τ which directly allows us to construct

time-discrete solutions in the entire time horizon [0, T ]. The minimization problem (3.4) coincides with the

thermal step used in [2], except for the regularizing term ε|δτ∇∆y
(k)
τ |2 ∧ τ−1. In this context, the truncation

by τ−1 is necessary to guarantee well-posedness of the problem, see Proposition 3.4 below.
We now show the well-definedness of the above minimization problems. In this regard, the following properties

of the mechanical energy are useful.

Lemma 3.2 (Coercivity of M). Given M > 0 there exists a constant CM > 0 such that for all y ∈ Yid with
M(y) ≤M it holds that

‖y‖W 2,p(Ω) ≤ CM , ‖y‖C1,1−d/p(Ω) ≤ CM , ‖(∇y)−1‖C1−d/p(Ω) ≤ CM , det(∇y) ≥ 1

CM
in Ω. (3.5)

Proof. By the definition of H, the first inequality in (H.3) and (W.3) we see that

−C0|Ω|+
ˆ

Ω

|∆y|p dx ≤M(y) ≤M,

and hence
‖∆y‖pLp(Ω) ≤M + C0|Ω| =: M̃.

As y − id ∈W 2,p(Ω;Rd) ∩W 1,p
0 (Ω;Rd) by the definition of Yid, we then derive from [30, Lemma 9.17] and the

regularity of ∂Ω that
‖y − id‖W 2,p(Ω) ≤ C‖∆y‖Lp(Ω) ≤ CM̃1/p

for a constant C independent of M . Our choice of the elastic potential W el satisfies all assumptions imposed
in [35]. Consequently, [35, Theorem 3.1] applies which directly leads to (3.5). �

Proposition 3.3 (Existence of the mechanical step). For any M > 0 there exists τ0 ∈ (0, 1] such that for all

τ ∈ (0, τ0) and k ∈ {1, . . . , T/τ} the following holds: Let y
(k−1)
τ ∈ Yid ∩H3(Ω;Rd) satisfy M(y

(k−1)
τ ) ≤M and

let θ
(k−1)
τ ∈ H1

+(Ω). Then, the minimization problem (3.3) attains a solution y
(k)
τ ∈ Yid ∩H3(Ω;Rd) solving the

corresponding Euler-Lagrange equation, i.e., for all z ∈ H3(Ω;Rd) ∩H1
0 (Ω;Rd) it holds thatˆ

Ω

(
∂FW (∇y(k)

τ , θ(k−1)
τ ) + ∂ḞR(∇y(k−1)

τ , δτ∇y(k)
τ , θ(k−1)

τ )
)

: ∇z +DH(∆y(k)
τ ) ·∆z + εδτ∇∆y(k)

τ : ∇∆z dx

=

ˆ
Ω

f (k)
τ · z dx− ρ

h

ˆ
Ω

(δτy
(k)
τ − δτy(k−h/τ)

τ ) · z dx. (3.6)

Moreover, there exists a constant CM > 0, possibly depending on M , such that

M(y(k)
τ ) +

τ

CM
‖δτ∇y(k)

τ ‖
2
L2(Ω) +

ετ

2
‖δτ∇∆y(k)

τ ‖2L2(Ω) ≤ CM (1 + ‖f‖2L2(I×Ω)) +
ρτ

h
‖δτy(k−h/τ)

τ ‖2L2(Ω). (3.7)

Proof. The proof is similar to the one in [2, Proposition 3.5]. We start by showing compactness. To this end,

let (yn)n ⊂ Yid ∩H3(Ω;Rd) be a minimizing sequence for the minimization problem in (3.3). Using y
(k−1)
τ as

a competitor in (3.3), we may suppose that each yn satisfies

M(yn) +Wcpl(yn, θ
(k−1)
τ ) +

1

τ
R(y(k−1)

τ , yn − y(k−1)
τ , θ(k−1)

τ ) +
ε

2τ
‖∇∆yn −∇∆y(k−1)

τ ‖2L2(Ω)

− (f (k)
τ , yn)2 +

ρτ

2h

∥∥∥yn − y(k−1)
τ

τ
− δτy(k−h/τ)

τ

∥∥∥2

L2(Ω)

≤M(y(k−1)
τ ) +Wcpl(y(k−1)

τ , θ(k−1)
τ )− (f (k)

τ , y(k−1)
τ )2 +

ρτ

2h
‖δτy(k−h/τ)

τ ‖2L2(Ω).

As the mechanical energy M satisfies the same coercivity properties as the one in [2], see Lemma 3.2, we can
apply the generalized Korn’s inequality in the form [35, Corollary 3.4] (see also [36] for its original formulation).
Consequently, reasoning similarly to the proof of [2, Proposition 3.5] for the terms involving M, Wcpl, R, and
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f
(k)
τ , see [2, Equation (3.9)], we can find CM > 0 and τ0 ∈ (0, 1), possibly depending on M , such that for
τ ∈ (0, τ0)

(1− CMτ)M(yn) +
1

CMτ
‖∇yn −∇y(k−1)

τ ‖2L2(Ω) +
ε

2τ
‖∇∆yn −∇∆y(k−1)

τ ‖2L2(Ω)

+
ρτ

2h

∥∥∥yn − y(k−1)
τ

τ
− δτy(k−h/τ)

τ

∥∥∥2

L2(Ω)

≤ (1 + CMτ)M(y(k−1)
τ ) + CMτ

(
1 + ‖f (k)

τ ‖2L2(Ω)

)
+
ρτ

2h
‖δτy(k−h/τ)

τ ‖2L2(Ω).

By the definition of f
(k)
τ and Jensen’s inequality we see that

τ‖f (k)
τ ‖2L2(Ω) = τ

ˆ
Ω

∣∣∣−ˆ kτ

(k−1)τ

f dt
∣∣∣2 dx ≤ τ

ˆ
Ω

−
ˆ kτ

(k−1)τ

|f |2 dtdx ≤ ‖f‖2L2(I×Ω).

Then, choosing τ0 small enough such that CMτ0 ≤ 1
2 and using M(y

(k−1)
τ ) ≤ M , we see that, after possibly

increasing CM , it follows

M(yn) +
1

CMτ
‖∇yn −∇y(k−1)

τ ‖2L2(Ω) +
ε

2τ
‖∇∆yn −∇∆y(k−1)

τ ‖2L2(Ω) +
ρτ

2h

∥∥∥yn − y(k−1)
τ

τ
− δτy(k−h/τ)

τ

∥∥∥2

L2(Ω)

≤ CM (1 + ‖f‖2L2(I×Ω)) +
ρτ

h
‖δτy(k−h/τ)

τ ‖2L2(Ω). (3.8)

By Young’s inequality with power 2 and constant λ ∈ (0, 1) we derive that

‖∇∆yn −∇∆y(k)
τ ‖2L2(Ω) = ‖∇∆yn‖2L2(Ω) − 2

ˆ
Ω

∇∆yn : ∇∆y(k−1)
τ dx+ ‖∇∆y(k−1)

τ ‖2L2(Ω)

≥ (1− λ)‖∇∆yn‖2L2(Ω) − (−1 + 1/λ)‖∇∆y(k−1)
τ ‖2L2(Ω).

Choosing λ = 1/2 above and combining with (3.8) this leads to

M(yn) +
ε

4τ
‖∆∇yn‖2L2(Ω) ≤ +CM (1 + ‖f‖2L2(I×Ω)) +

ε

2τ
‖∇∆y(k−1)

τ ‖2L2(Ω) +
ρτ

h
‖δτy(k−h/τ)

τ ‖2L2(Ω).

This implies supn∈N ‖∇∆yn‖L2(Ω) <∞ and, in view of (H.3), in particular shows supn∈N ‖∆yn‖H1(Ω) <∞. As

Ω was assumed to have a C5-boundary and (yn)n ⊂ Yid, elliptic regularity for the operator ∆ implies

‖yn − id‖H3(Ω) ≤ C‖∆yn‖H1(Ω),

and thus supn∈N ‖yn‖H3(Ω) < ∞. Consequently, as p < 2∗, we can select a subsequence (without relabeling)

such that yn → y strongly in W 2,p(Ω;Rd) as well as yn ⇀ y weakly in H3(Ω;Rd).
Existence of minimizers then follows by standard lower semicontinuity arguments. Also, recalling (3.2), the

derivation of the Euler-Lagrange equation (3.6) is standard, see the proof of [2, Proposition 3.5] for some details.
Eventually, estimate (3.7) directly follows from (3.8), after passing to the limit n→∞ and using standard lower
semicontinuity arguments. �

Proposition 3.4 (Existence of the thermal step). For any M > 0 there exists τ0 ∈ (0, 1] such that for all

τ ∈ (0, τ0) and k ∈ {1, . . . , T/τ} the following holds: Let y
(k−1)
τ , y

(k)
τ ∈ Yid be such that M(y

(k−1)
τ ) ≤ M

and let θ
(k−1)
τ ∈ H1

+(Ω). Then, the minimization problem (3.4) attains a solution θ
(k)
τ ∈ H1

+(Ω) solving the
corresponding Euler-Lagrange equation, i.e., for all ϕ ∈ H1(Ω) it holds that

0 =

ˆ
Ω

δτw
(k)
τ ϕdx+

ˆ
Ω

K(∇y(k−1)
τ , θ(k−1)

τ )∇θ(k)
τ · ∇ϕdx+ κ

ˆ
∂Ω

(θ(k)
τ − θ

(k)
[,τ )ϕdHd−1 (3.9)

−
ˆ

Ω

(
∂FW

cpl(∇y(k−1)
τ , θ(k−1)

τ ) : δτ∇y(k)
τ + ξ(∇y(k−1)

τ , δτ∇y(k)
τ , θ(k−1)

τ ) + ε|δτ∇∆y(k)
τ |2 ∧ τ−1

)
ϕdx ,

where we shortly write w
(k−1)
τ := W in(∇y(k−1)

τ , θ
(k−1)
τ ), w

(k)
τ := W in(∇y(k)

τ , θ
(k)
τ ), and δτw

(k)
τ :=

w(k)
τ −w

(k−1)
τ

τ .

Proof. The thermal step differs from the one used in [2] only by the regularization of the dissipation term

ξ(∇y(k−1)
τ , δτ∇y(k)

τ , θ
(k−1)
τ ) by ε|δτ∇∆y

(k)
τ |2∧τ−1. Therefore, the statement immediately follows from [2, Propo-

sition 3.8] since an inspection of its proof shows that for the existence of θ
(k)
τ it is enough that the dissipation

term lies in L∞(Ω) (see Steps 1 and 2) and for nonnegativity of θ
(k)
τ it is enough that the dissipation is larger

than c|(δτ∇y(k)
τ )T∇y(k−1)

τ + (∇y(k−1)
τ )T δτ∇y(k)

τ |2, see [2, Remark 3.9] and (D.1). �
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3.2. Existence of time-discrete solutions. In the previous subsection, we focused on one step in the stag-
gered scheme. Our next goal is to prove the existence of time-discrete solutions and to derive first a priori
bounds independent of τ , h, and ε. We set

Cf := ‖f‖W 1,1(I;L2(Ω)), (3.10)

and note that by the fundamental theorem of calculus it holds that

‖f(t)‖L2(Ω) ≤ CTCf for all t ∈ I, (3.11)

where here and in the following CT denotes a constant possibly depending on T .

Given the sequences y
(0)
τ , . . . , y

(k)
τ and θ

(0)
τ , . . . , θ

(k)
τ for some k ∈ {1, . . . , T/τ}, as described in Subsec-

tion 3.1, for l ∈ {0, . . . , k} we define

F (l) := E(y(l)
τ , θ(l)

τ )− (f(lτ), y(l)
τ )2,

where the total internal energy E is defined in (2.16). Then, using (W.3) we find

|(f(lτ), y(l)
τ )2| ≤ min{F (l), E(y(l)

τ , θ(l)
τ )}+ CTC

2
f + C(1 + C0), (3.12)

see also [2, Lemma 3.10]. Finally, for l ∈ {0, . . . , k} we also define

G(l) := F (l) +
ρ

2

τ

h

l∑
m=l−h/τ+1

‖δτy(m)
τ ‖2L2(Ω), (3.13)

which corresponds to adding also a suitably averaged kinetic energy. The main result of this subsection reads
as follows.

Proposition 3.5 (Existence of time-discrete solutions). Let Cf be as in (3.10) and G(0) be as in (3.13). For

any T > 0, there exists a constant CT > 0, corresponding constants

M ′ := 2eCTCf
(
G(0) + CT (1 + C3

f ) + κ

ˆ
I

ˆ
∂Ω

θ[ dHd−1 dt
)
, M := 2M ′ + CTC

2
f ,

as well as a constant CM > 0 and scalar τ0 ∈ (0, h] only depending on M above such that the following holds

true: For each τ ∈ (0, τ0) such that h/τ ∈ N the sequences y
(0)
τ , . . . , y

(T/τ)
τ and θ

(0)
τ , . . . , θ

(T/τ)
τ constructed in

Subsection 3.1 exist, and for all k ∈ {0, . . . , T/τ} it holds that

E(y(k)
τ , θ(k)

τ ) +
ρ

2

τ

h

k∑
l=k−h/τ+1

‖δτy(l)
τ ‖2L2(Ω) ≤M, (3.14)

k∑
l=1

τ
(
‖δτ∇y(l)

τ ‖2L2(Ω) + ε‖δτ∇∆y(l)
τ ‖2L2(Ω)

)
≤ CM (M(1 + T ) + CTC

2
f ). (3.15)

The first estimate corresponds to a bound on the total energy and the second one is a bound on the (regu-
larized) strain rate. The proof relies on the following two lemmas.

Lemma 3.6 (Inductive bound on the total energy). For any M, T > 0 there exist constants CM > 0 and
CT > 0 only depending on M and T , respectively, such that the following holds true: Suppose τ ∈ (0, 1) is

chosen such that for k ∈ {1, . . . , T/τ} the sequences y
(0)
τ , . . . , y

(k)
τ and θ

(0)
τ , . . . , θ

(k)
τ constructed in Subsection

3.1 exist. Moreover, assume that G(l) ≤M for all l ∈ {0, . . . , k − 1} with G(l) as in (3.13). Then, it holds that

G(k) ≤ G(0) + CMτVk + CT (1 + C3
f ) + κ

ˆ kτ

0

ˆ
∂Ω

θ[ dHd−1 dt+ C

k∑
l=0

G(l)

ˆ (l+1)τ

(l−1)τ

‖∂tf(t)‖L2(Ω) dt,

where C > 0 is a universal constant, and

Vk :=

k∑
m=1

τ

ˆ
Ω

|δτ∇y(m)
τ |2 dx. (3.16)

Lemma 3.7 (Inductive bound on the strain rates). Given M, T > 0, there exist a constant CM > 0 and
τ0 ∈ (0, 1] only depending on M , and a constant CT > 0 only depending on T such that for τ ∈ (0, τ0)

the following holds: Suppose that the sequences y
(0)
τ , . . . , y

(k)
τ and θ

(0)
τ , . . . , θ

(k)
τ for some k ∈ {1, . . . , T/τ}
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constructed in Subsection 3.1 exist. Moreover, suppose that G(l) ≤ M for all l ∈ {0, . . . , k − 1} with G(l) as
defined in (3.13). Then,

k∑
l=1

τ
(
‖δτ∇y(l)

τ ‖2L2(Ω) + ε‖δτ∇∆y(l)
τ ‖2L2(Ω)

)
≤ CM

(
M(y0,ε) +

ρ

2
‖y′0,ε‖2L2(Ω) + CTC

2
f

)
+ CMτ

k−1∑
l=0

(
1 +M(y(l)

τ )
)
.

(3.17)

Proof of Proposition 3.5. Once Lemmas 3.6–3.7 are proved, the proof of Proposition 3.5 follows by an inductive
argument using the discrete Gronwall’s inequality and Propositions 3.3–3.4. We refer to [2, Theorem 3.13] for
all details (cf. also [2, Lemma 3.11, Lemma 3.12]). �

We now proceed with the proof of the lemmas. As an auxiliary result, we show Λ-convexity of W el and W cpl.
The result is closely related to the estimate in [14, Subsection 2.3], which improved upon [35, Proposition 3.2],
where local Λ-convexity has been shown.

Lemma 3.8 (Λ-convexity of W el and W cpl). For any M > 0 there exists a constant CM > 0 such that for all
y1, y2 ∈ Yid with M(y1),M(y2) ≤M and θ ∈  L1(Ω), we haveˆ

Ω

W el(y2) dx ≥
ˆ

Ω

W el(y1) dx+

ˆ
Ω

∂FW
el(∇y1) :

(
∇y2 −∇y1

)
dx− CM‖∇y2 −∇y1‖2L2(Ω).

ˆ
Ω

W cpl(y2, θ) dx ≥
ˆ

Ω

W cpl(y1, θ) dx+

ˆ
Ω

∂FW
cpl(∇y1, θ) :

(
∇y2 −∇y1

)
dx− CM‖∇y2 −∇y1‖2L2(Ω).

Proof. We first prove the statement for W el. By Lemma 3.2 there exists a constant C∗M depending on M such
that for all x ∈ Ω and l ∈ {1, 2} it holds that

|∇yl(x)| ≤ C∗M , det(∇yl(x)) ≥ 1

C∗M
. (3.18)

By the continuity of the determinant we can find δM > 0 such that for all λ ∈ (0, 1) and F1, F2 ∈ GL+(d) with
|F1|, |F2| ≤ C∗M , det(F1), det(F2) ≥ 1

C∗M
and |F1−F2| ≤ δM we have that det(λF1 + (1−λ)F2) ≥ 1

2C∗M
. The set

K :=

{
F ∈ GL+(d) : |F | ≤ C∗M , det(F ) ≥ 1

2C∗M

}
is a compact subset of GL+(d). Hence, by the C2-regularity of W el it follows that

CM := sup
F∈K

|∂2
FFW

el(F )| <∞.

With δM as above, let us define the set G := {x ∈ Ω: |∇y2(x) − ∇y1(x)| ≤ δM}. Moreover, we define
yt = (1− t)y1 + ty2 for t ∈ [0, 1]. By the previous reasoning, for every x ∈ G it holds that ∇yt(x) ∈ K and

|∂FW el(∇yt(x))− ∂FW el(∇y1(x))| ≤ CM |∇yt(x)−∇y1(x)| ≤ CM |∇y2(x)−∇y1(x)|. (3.19)

On the one hand, by the Gateaux differentiability of Wel (see [35, Proposition 3.2]) and the chain rule we have
that ˆ

G

W el(∇y2) dx−
ˆ
G

W el(∇y1) dx =

ˆ 1

0

ˆ
G

∂FW
el(∇yt) :

(
∇y2 −∇y1

)
dxdt.

On the other hand, using (3.19) we can estimate∣∣∣∣∣
ˆ 1

0

ˆ
G

∂FW
el(∇yt) :

(
∇y2 −∇y1

)
dxdt−

ˆ 1

0

ˆ
G

∂FW
el(∇y1) :

(
∇y2 −∇y1

)
dxdt

∣∣∣∣∣ ≤ CM‖∇y2 −∇y1‖2L2(Ω).

By the definition of G we also see that, by possibly increasing CM , it holds∣∣∣ ˆ
Ω\G

W el(∇y2) dx−
ˆ

Ω\G
W el(∇y1) dx−

ˆ
Ω\G

∂FW
el(∇y1) :

(
∇y2 −∇y1

)
dx
∣∣∣

≤
ˆ

Ω\G

|W el(∇y1)|+ |W el(∇y2)|+ δM |∂FW el(∇y1)|
δ2
M

|∇y2 −∇y1|2 dx ≤ CM‖∇y2 −∇y1‖2L2(Ω), (3.20)
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where we used that W el(∇y1), W el(∇y2), and |∂FW el(∇y1)| are uniformly bounded by (3.18). The combination
of the last three estimates gives the statement for W el.

The argument for W cpl is similar. However, the bounds in (3.19) and (3.20) do not follow immediately from
the compactness of K due to the presence of the temperature θ ∈ L1(Ω). To obtain the analogous bounds, we
use (C.4), the first inequality in (C.5), and (3.18). �

As a second auxiliary result, we establish a bound on the mechanical energy.

Lemma 3.9 (Mechanical energy bound in the time-discrete setting). Given M > 0, there exists a constant
CM > 0 such that the following holds: Suppose that for τ ∈ (0, τ0) and k ∈ {1, . . . , T/τ} the sequences

y
(0)
τ , . . . , y

(k)
τ and θ

(0)
τ , . . . , θ

(k)
τ constructed in Subsection 3.1 exist, and that G(l) ≤M for all l ∈ {0, . . . , k−1}.

Then, it holds that

M(y(k)
τ ) +

ρτ

2h

k∑
l=k−h/τ+1

‖δτy(l)
τ ‖2L2(Ω) +

k∑
l=1

τ
(

2Rε(y(l−1)
τ , δτy

(l)
τ , θ(l−1)

τ ) +
ρ

2h
‖δτy(l)

τ − δτy(l−h/τ)
τ ‖2L2(Ω)

)

≤M(y0,ε) +
ρ

2
‖y′0,ε‖2L2(Ω) − τ

k∑
l=1

ˆ
Ω

∂FW
cpl(∇y(l−1)

τ , θ(l−1)
τ ) : δτ∇y(l)

τ dx+ τ

k∑
l=1

(f (l)
τ , δτy

(l)
τ )2 + CMτVk,

where Rε is given in (2.12) and Vk in (3.16).

Proof. Using Proposition 3.3 for l in place of k, (2.11), and testing (3.6) with z = δτy
(l)
τ it follows that

0 =

ˆ
Ω

∂FW (∇y(l)
τ , θ(l−1)

τ ) : δτ∇y(l)
τ +DH(∆y(l)

τ ) · δτ∆y(l)
τ + εδτ∇∆y(l)

τ : δτ∇∆y(l)
τ dx (3.21)

+

ˆ
Ω

ξ(∇y(l−1)
τ , δτ∇y(l)

τ , θ(l−1)
τ ) dx−

ˆ
Ω

f (l)
τ · δτy(l)

τ dx+
ρ

h

ˆ
Ω

(
δτy

(l)
τ − δτy(l−h/τ)

τ

)
· δτy(l)

τ dx.

By the convexity of H (see (H.1)) it follows for l ∈ {1, . . . , k} that

H(∆y(l−1)
τ ) ≥ H(∆y(l)

τ ) +

ˆ
Ω

DH(∆y(l)
τ ) · (∆y(l−1)

τ −∆y(l)
τ ) dx = H(∆y(l)

τ )− τ
ˆ

Ω

DH(∆y(l)
τ ) · δτ∆y(l)

τ dx,

(3.22)

where we recall the notation in (2.3). We now perform a similar argument for the elastic energy. Using (3.10),
(3.12)–(3.13), and G(l) ≤M for l ∈ {0, . . . , k − 1}, we get

M(y(l−1)
τ ) ≤ G(l−1) + (f((l − 1)τ), y(l−1)

τ )2 ≤ 2G(l−1) + C + CTC
2
f ≤ 2M + C + CTC

2
f (3.23)

for all l ∈ {1, . . . , k}. Thus, we can apply Proposition 3.3 for all l ∈ {1, . . . , k}, where now CM may also
depend on T and f . Then, using again G(l) ≤ M for l ∈ {0, . . . , k − 1}, by (3.7) we find for all l ∈ {1, . . . , k}
that

M(y(l)
τ ) ≤ CM

(
1 + ‖f‖2L2(I×Ω)

)
+ 2G(l−1) ≤ 2M + CM (1 + CTC

2
f ). (3.24)

Consequently, by (3.2), (3.23)–(3.24), and Lemma 3.8 applied for y1 = y
(l)
τ and y2 = y

(l−1)
τ we find

τ

ˆ
Ω

∂FW
el(∇y(l)

τ ) : δτ∇y(l)
τ dx ≥ Wel(y(l)

τ )−Wel(y(l−1)
τ )− CMτ2

ˆ
Ω

|δτ∇y(l)
τ |

2
dx (3.25)

for a possibly larger CM , where we recall the definition in (2.2). Multiplying (3.21) by τ , using (3.22) and
(3.25), and summing over l ∈ {1, . . . , k}, we conclude

M(y(k)
τ ) +

τρ

h

k∑
l=1

ˆ
Ω

(
δτy

(l)
τ − δτy(l−h/τ)

τ

)
· δτy(l)

τ dx

+

k∑
l=1

τ
(ˆ

Ω

ξ(∇y(l−1)
τ , δτ∇y(l)

τ , θ(l−1)
τ ) dx+ ε‖δτ∇∆y(l)

τ ‖2L2(Ω)

)
≤M(y0,ε)− τ

k∑
l=1

ˆ
Ω

∂FW
cpl(∇y(l)

τ , θ(l−1)
τ ) : δτ∇y(l)

τ dx+ τ

k∑
l=1

(f (l)
τ , δτy

(l)
τ )2 + CMτVk, (3.26)

where we employed the definitions in (2.6) and (3.16). Using the identity

Πl :=

ˆ
Ω

(
δτy

(l)
τ − δτy(l−h/τ)

τ

)
· δτy(l)

τ dx =
1

2
(‖δτy(l)

τ ‖2L2(Ω) − ‖δτy
(l−h/τ)
τ ‖2L2(Ω) + ‖δτy(l)

τ − δτy(l−h/τ)
τ ‖2L2(Ω)),
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summing over l ∈ {1, . . . , k}, and recalling the definition y
(m)
τ = y0,ε +mτy′0,ε for m ∈ {−h/τ, . . . , 0} we derive

that

k∑
l=1

2τΠl =

k∑
l=1

τ‖δτy(l)
τ − δτy(l−h/τ)

τ ‖2L2(Ω) +

k∑
l=k−h/τ+1

τ‖δτy(l)
τ ‖2L2(Ω) −

0∑
l=−h/τ+1

τ‖δτy(l)
τ ‖2L2(Ω)

=

k∑
l=1

τ‖δτy(l)
τ − δτy(l−h/τ)

τ ‖2L2(Ω) +

k∑
l=k−h/τ+1

τ‖δτy(l)
τ ‖2L2(Ω) − h‖y

′
0,ε‖2L2(Ω). (3.27)

We apply Lemma 3.8 first for y1 = y
(l−1)
τ and y2 = y

(l)
τ , then for y1 = y

(l)
τ and y2 = y

(l−1)
τ , and sum the

equations to get

0 ≥
ˆ

Ω

(
∂FW

cpl(∇y(l)
τ , θ(l−1)

τ )− ∂FW cpl(∇y(l−1)
τ , θ(l−1)

τ )
)

:
(
∇y(l−1)

τ −∇y(l)
τ

)
dx− 2CMτ

2

ˆ
Ω

|δτ∇y(l)
τ |

2
dx.

Rearranging and summing over l ∈ {1, . . . , k} yields

τ

k∑
l=1

ˆ
Ω

(
∂FW

cpl(∇y(l)
τ , θ(l−1)

τ )− ∂FW cpl(∇y(l−1)
τ , θ(l−1)

τ )
)

: δτ∇y(l)
τ dx ≥ −2CMτVk. (3.28)

Eventually, recalling (2.11)–(2.12), the combination of (3.26), (3.27), and (3.28) concludes the proof. �

We now proceed with the proofs of Lemma 3.6 and Lemma 3.7.

Proof of Lemma 3.6. Recalling the argument in (3.23), we observe that Proposition 3.4 is applicable by passing
to a larger value of M . We test (3.9) (for l in place of k) with ϕ = 1 to obtain

0 =

ˆ
Ω

(
δτw

(l)
τ − ∂FW cpl(∇y(l−1)

τ , θ(l−1)
τ ) : δτ∇y(l)

τ − ξ(∇y(l−1)
τ , δτ∇y(l)

τ , θ(l−1)
τ ) dx− ε|δτ∇∆y

(τ)
k |

2 ∧ τ−1
)

dx

+ κ

ˆ
∂Ω

(θ(l)
τ − θ

(l)
[,τ ) dHd−1.

Multiplying this equation by τ , summing over l ∈ {1, . . . , k}, and adding to the estimate in Lemma 3.9, by
(2.11)–(2.12) we discover that

M(y(k)
τ ) +

ρτ

2h

k∑
l=k−h/τ+1

‖δτy(l)
τ ‖2L2(Ω) +

ˆ
Ω

w(k)
τ dx

≤M(y0,ε) +

ˆ
Ω

w0,ε dx+
ρ

2
‖y′0,ε‖2L2(Ω) + τ

k∑
l=1

(f (l)
τ , δτy

(l)
τ )2 + τ

k∑
l=1

κ

ˆ
∂Ω

(θ
(l)
[,τ − θ

(l)
τ ) dHd−1 + CMτVk,

where w0,ε = W in(∇y0,ε, θ0). Recalling the definition of E in (2.16), we conclude that

E(y(k)
τ , θ(k)

τ ) +
ρτ

2h

k∑
l=k−h/τ+1

‖δτy(l)
τ ‖2L2(Ω)

≤ E(y0,ε, θ0) +
ρ

2
‖y′0,ε‖2L2(Ω) + CMτVk + τ

k∑
l=1

(f (l)
τ , δτy

(l)
τ )2 + τ

k∑
l=1

κ

ˆ
∂Ω

(θ
(l)
[,τ − θ

(l)
τ ) dHd−1. (3.29)

Now, we estimate the last two terms on the right-hand side of (3.29). By the nonnegativity of θ
(l)
τ and the

definition of θ
(l)
[,τ we can bound

τ

k∑
l=1

κ

ˆ
∂Ω

(θ
(l)
[,τ − θ

(l)
τ ) dHd−1 ≤ τ

k∑
l=1

κ

ˆ
∂Ω

θ
(l)
[,τ dHd−1 = κ

ˆ kτ

0

ˆ
∂Ω

θ[ dHd−1 dt. (3.30)
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We define the piecewise affine function ŷτ (t) = t−(l−1)τ
τ y

(l)
τ + lτ−t

τ y
(l−1)
τ for t ∈ [(l − 1)τ, lτ ] and l ∈ {1, . . . , k},

and note that δτy
(l)
τ = ∂tŷτ (t) for t ∈ ((l − 1)τ, lτ). Consequently, integration by parts yields

k∑
l=1

τ(f (l)
τ , δτy

(l)
τ )2 =

ˆ kτ

0

(f(t), ∂tŷτ (t))2 dt = (f(kτ), ŷτ (kτ))2 − (f(0), y0,ε)2 −
ˆ kτ

0

(∂tf(t), ŷτ (t))2 dt

≤ (f(kτ), ŷτ (kτ))2 − (f(0), y0,ε)2 +

ˆ kτ

0

‖∂tf(t)‖L2(Ω)‖ŷτ (t)‖L2(Ω) dt. (3.31)

By Poincaré’s inequality and (W.3) we have for every t ∈ ((l − 1)τ, lτ) that

‖ŷτ (t)‖2L2(Ω) ≤ C(‖∇y(l−1)
τ ‖2L2(Ω) + ‖∇y(l)

τ ‖2L2(Ω)) ≤ C
(
1 +Wel(y(l−1)

τ ) +Wel(y(l)
τ )
)
.

Therefore, by (3.11), (3.12), the definition of G(l) in (3.13), and
√
s ≤ 1 + s for all s ≥ 0 we get

ˆ kτ

0

‖∂tf(t)‖L2(Ω)‖ŷτ (t)‖L2(Ω) dt ≤ C
k∑
l=1

(
1 +Wel(y(l−1)

τ ) +Wel(y(l)
τ )
)ˆ lτ

(l−1)τ

‖∂tf(t)‖L2(Ω) dt

≤ C
k∑
l=1

((
G(l−1) + G(l)

)ˆ lτ

(l−1)τ

‖∂tf(t)‖L2(Ω) dt
)

+ CT (Cf + C3
f ).

Then, using an index shift and Cf ≤ 2
3 + 1

3C
3
f we get

ˆ kτ

0

‖∂tf(t)‖L2(Ω)‖ŷτ (t)‖L2(Ω) dt ≤ C
k∑
l=0

(
G(l)

ˆ lτ

(l−1)τ

(
‖∂tf(t)‖L2(Ω) + ‖∂tf(t+ τ)‖L2(Ω)

)
dt
)

+ CT (1 + C3
f )

for a possibly larger CT > 0. Plugging this into (3.31) and using (3.30) to estimate the terms on the right-hand
side of (3.29), we conclude the proof by the definition of G(l) in (3.13). �

Proof of Lemma 3.7. Applying Lemma 3.9 and using the nonnegativity of M we get

k∑
l=1

τ
(ˆ

Ω

ξ(∇y(l−1)
τ , δτ∇y(l)

τ , θ(l−1)
τ ) dx+ ε‖δτ∇∆y(l)

τ ‖2L2(Ω)

)
(3.32)

≤M(y0,ε) +
ρ

2
‖y′0,ε‖2L2(Ω) − τ

k∑
l=1

ˆ
Ω

∂FW
cpl(∇y(l−1)

τ , θ(l−1)
τ ) : δτ∇y(l)

τ dx+ τ

k∑
l=1

(f (l)
τ , δτy

(l)
τ )2 + CMτVk.

As M(y
(l−1)
τ ) ≤ 2M +C +CTC

2
f for all l ∈ {1, . . . , k}, see the argument in (3.23), employing also Lemma 3.2

we can apply the generalized Korn’s inequality in the form [35, Corollary 3.4], leading to

ˆ
Ω

ξ(∇y(l−1)
τ , δτ∇y(l)

τ , θ(l−1)
τ ) dx ≥ 1

CM
‖δτ∇y(l)

τ ‖2L2(Ω), (3.33)

for a constant CM depending on M , T , and f . By Hölder’s inequality, Poincaré’s inequality, and Young’s
inequality with constant λ ∈ (0, 1) we derive that

|(f (l)
τ , δτy

(l)
τ )2| ≤ C‖f (l)

τ ‖L2(Ω)‖δτ∇y(l)
τ ‖L2(Ω) ≤

C

λ
‖f (l)
τ ‖2L2(Ω) + λ‖δτ∇y(l)

τ ‖2L2(Ω). (3.34)

Choosing λ < 1
2CM

above, summing over l ∈ {1, . . . , k} in (3.33)–(3.34), and plugging into (3.32), we find

1

2CM
Vk +

k∑
l=1

τε‖δτ∇∆y(l)
τ ‖2L2(Ω) =

1

2CM

k∑
l=1

τ‖δτ∇y(l)
τ ‖2L2(Ω) +

k∑
l=1

τε‖δτ∇∆y(l)
τ ‖2L2(Ω) (3.35)

≤M(y0,ε) +
ρ

2
‖y′0,ε‖2L2(Ω) − τ

k∑
l=1

ˆ
Ω

∂FW
cpl(∇y(l−1)

τ , θ(l−1)
τ ) : δτ∇y(l)

τ dx+ CMτVk + CMCTC
2
f ,
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where we also used (3.11). Since |∂FW cpl(F, θ)| ≤ 2C0(1 + |F |) ≤ 2C0(2 + |F |2) for all F ∈ GL+(d) and θ > 0,
see [2, Lemma 3.4], applying Young’s inequality, (W.3), and (2.6) we get for some C∗M > 0 that

τ

k∑
l=1

ˆ
Ω

∂FW
cpl(∇y(l−1)

τ , θ(l−1)
τ ) : δτ∇y(l)

τ dx ≤ 1

8CM

k∑
l=1

τ‖δτ∇y(l)
τ ‖2L2(Ω) + C∗Mτ

k∑
l=1

ˆ
Ω

(1 + |∇y(l−1)
τ |2) dx

≤ 1

8CM
Vk + C∗Mτ

k∑
l=1

(
1 +M(y(l−1)

τ )
)
.

Plugging this into (3.35), and possibly decreasing τ0 such that C2
Mτ0 ≤ 1

8 holds true, we get

1

4CM
Vk +

k∑
l=1

τε‖δτ∇∆y(l)
τ ‖2L2(Ω) ≤M(y0,ε) +

ρ

2
‖y′0,ε‖2L2(Ω) + CMτ

k∑
l=1

(
1 +M(y(l−1)

τ )
)

+ CMCTC
2
f

for CM > 0 sufficiently large. Multiplying both sides with 4CM then leads to the desired estimate (3.17). �

3.3. A priori bounds, compactness, and regularity. Given y
(0)
τ , . . . , y

(T/τ)
τ and θ

(0)
τ , . . . , θ

(T/τ)
τ from Propo-

sition 3.5, we define the following interpolations: for k ∈ {−h/τ, . . . , T/τ}, let yτ (kτ) = y
τ
(kτ) = ŷτ (kτ) := y

(k)
τ

and for t ∈ ((k − 1)τ, kτ) let

yτ (t) := y(k)
τ , y

τ
(t) := y(k−1)

τ , ŷτ (t) :=
kτ − t
τ

y(k−1)
τ +

t− (k − 1)τ

τ
y(k)
τ . (3.36)

A similar notation is employed for θτ , θτ , and θ̂τ , for wτ , wτ , and ŵτ , and for fτ . The next proposition lists
several a priori bounds for the sequences of interpolations.

Proposition 3.10 (A priori bounds and compactness). Let T, h, ε > 0 and τ0 be as in Proposition 3.5. Then,
there exists a constant C only depending on T , y0,ε, y

′
0,ε, θ0, f , and θ[ such that for all τ ∈ (0, τ0) with T/h ∈ N

and h/τ ∈ N the following bounds hold true:

‖yτ‖L∞(Ih;W 2,p(Ω)) + ‖det(∇yτ )−1‖L∞(Ih×Ω) ≤ C, (3.37a)

‖ŷτ‖H1(Ih;H1(Ω)) + sup
t∈[0,T ]

−
ˆ t

t−h
‖∂tŷτ (s)‖2L2(Ω) ds+

√
ε‖∂tŷτ‖L2(Ih;H3(Ω)) ≤ C, (3.37b)

‖θτ‖L∞(I;L1(Ω)) + ‖wτ‖L∞(I;L1(Ω)) ≤ C. (3.37c)

Moreover, for each q ∈ [1, d+2
d ) and r ∈ [1, d+2

d+1 ) we can find constants Cq > 0 and Cr > 0 such that

‖θτ‖Lq(I×Ω) + ‖wτ‖Lq(I×Ω) ≤ Cq, (3.37d)

‖∇θτ‖Lr(I×Ω) + ‖∇wτ‖Lr(I×Ω) ≤ Cr. (3.37e)

Moreover, there exist yh ∈ C(Ih;Yid)∩H1(Ih;H3(Ω;Rd)) and θh ∈ L1(I;W 1,1(Ω)) with yh(t) = y0,ε + ty′0,ε for
all t ∈ [−h, 0] and θ ≥ 0 a.e. such that, up to taking subsequences (not relabeled), as τ → 0 it holds that

ŷτ ⇀ yh weakly in H1(Ih;H3(Ω;Rd)), (3.38a)

yτ → yh strongly in L∞(Ih;W 1,∞(Ω;Rd)) and strongly in L∞(Ih;W 2,p(Ω;Rd)), (3.38b)

θτ ⇀ θh and wτ ⇀ wh weakly in Lr(I;W 1,r(Ω)) for any r ∈ [1, d+2
d+1 ), (3.38c)

θτ → θh and wτ → wh strongly in Ls(I × Ω) for any s ∈ [1, d+2
d ), (3.38d)

where wh := W in(∇yh, θh). Note that the convergence in (3.38b) also hold true for y
τ

or ŷτ instead of yτ .

Moreover, the convergences in (3.38c) and (3.38d) remain true after replacing θτ (wτ ) with θτ (wτ ) or θ̂τ (ŵτ ),
respectively.

Proof. Except for the estimate on ‖∂tŷτ‖L2(Ih;H3(Ω)), the bounds (3.37a)–(3.37c) are a direct consequence of
the a priori bounds (3.14)–(3.15) from Proposition 3.5, Lemma 3.2, (2.15), and our definition of the different
interpolations in time, where we particularly use that ŷτ (t) = y0,ε+ty′0,ε for t ∈ (−h, 0). The remaining estimate
in (3.37b) is based on the bound

‖∂t∇ŷτ‖L2(Ih×Ω) +
√
ε‖∂t∇∆ŷτ‖L2(Ih×Ω) ≤ C (3.39)
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provided by (3.15). Elliptic regularity for the operator ∆ and the fact that ∂tŷτ = 0 on Ih × ∂Ω imply

‖∂tŷτ‖L2(Ih;H3(Ω)) ≤ C‖∂t∆ŷτ‖L2(Ih;H1(Ω)). (3.40)

Eventually, we use the interpolation inequality ‖∆v‖L2(Ω) ≤ C‖∇∆v‖L2(Ω) +C‖∇v‖L2(Ω) for all v ∈ H3(Ω;Rd)
which can be shown by the standard contradiction-compactness argument. This along with (3.39)–(3.40) indeed
yields the remaining bound in (3.37b).

The proof of (3.37d)–(3.37e) relies on a proof of a weighted L2-bound on the temperature gradient, namelyˆ T

0

ˆ
Ω

η

(1 + wτ )1+η
|∇wτ |2 dxdt ≤ C (3.41)

for any η ∈ (0, 1), where C is a constant only depending on T . We refer to e.g. [2, Theorem 3.20] for further
details. It thus remains to show (3.41). As noticed in the proof of Proposition 3.4, our thermal step coincides

with the one from [2] up to adding the term ε|δτ∇∆y
(k)
τ |2 ∧ τ−1 to the dissipation ξ(∇y(k−1)

τ , δτ∇y(k)
τ , θ

(k−1)
τ ).

The proof of the weighted L2-bound (3.41) in [2, Lemma 3.19] relies only on a uniform L1-bound on the
dissipation. In view of (3.37b), a uniform L1-bound (in τ , h, and ε) is still available in the current setting and
the arguments in [2, Lemma 3.19] also apply here.

The a priori bounds along with a diagonal sequence argument show (3.38a)–(3.38d). More precisely, the
convergence (3.38a) is a straightforward consequence of the a priori bound (3.37b) and Banach’s selection
principle. The convergences in (3.38b) follow from the embeddingsH3(Ω;Rd) ⊂⊂W 2,p(Ω;Rd) ⊂⊂W 1,∞(Ω;Rd)
(recall that p ∈ (3, 6) for d = 3), and (3.37b) along with the Aubin-Lions’ lemma. Next, (3.38c) follows from
(3.37d)–(3.37e). Eventually, the convergence in (3.38d) and the identification wh = W in(∇yh, θh) can be shown
using the bounds (3.37d)–(3.37e), the Aubin-Lions’ lemma, and interpolation with the bound in (3.37c). For
further details we refer, e.g., to [2, Lemma 4.2]. �

We proceed with further regularity results for ŷτ which hinge on a special case of elliptic regularity, see
Lemma A.1 in the appendix. This will allow us to prove better regularity for the temperature variable, see
Corollary 3.13 below, and it will also be instrumental for the passage ε→ 0 in Section 5.

Proposition 3.11 (Higher regularity of the deformation). Let T, h, ε > 0 and τ ∈ (0, τ0) be as in Proposi-
tion 3.5. Then, ŷτ ∈ L2(I;H4(Ω;Rd)), ∂tŷτ ∈ L2(I;H5(Ω;Rd)), and for each t ∈ I the time derivative ∂tŷτ
satisfies the boundary conditions

∂ν∆∂tŷτ (t) = ∆∂tŷτ (t) = ∆2∂tŷτ (t) = 0 Hd−1-a.e. in ∂Ω. (3.42)

Note that ŷτ only has H4-regularity in space due to the regularity of the initial condition y0,ε, see (2.20). The
next lemma provides some useful bounds on ∆ŷτ and on ∆2ŷτ , which will be particularly crucial for passing to
the limit ε→ 0 in Section 5. Define

% =
2p

4p− (p− 2)d
(3.43)

and note that % ∈ ( 1
2 , 1) since p > 2 for d = 2 and p ∈ (3, 6) for d = 3.

Lemma 3.12 (Bounds from regularity). Let T, h, ε > 0. Then, for τ0 sufficiently small depending on ε and h
such that Proposition 3.5 is applicable and for τ ∈ (0, τ0), there exists a constant C > 0 only depending on T ,
y0,ε, y

′
0,ε, θ0, f , and θ[ such that

‖∆yτ‖L2(I;H1(Ω)) + ‖|∆yτ |
p−2
2 ∇(∆yτ )‖L2(I×Ω) ≤ C

(
1 +
√
ε‖y0,ε‖H4(Ω) + ‖y′0,ε‖H1(Ω)

)
, (3.44)

‖∆2ŷτ‖L2(I×Ω) ≤ Cε−1/2
(
1 +
√
ε‖y0,ε‖H4(Ω) + ‖y′0,ε‖H1(Ω)

)
, (3.45)

‖∇DH(∆yτ )‖L2(I;Lp′ (Ω)) ≤ C
(
1 +
√
ε‖y0,ε‖H4(Ω) + ‖y′0,ε‖H1(Ω)

)
, (3.46)

‖∆∂tŷτ‖L2(I;H2(Ω)) ≤ Cε−
1+%
2

(
1 + 4
√
ε‖y0,ε‖H4(Ω) + ‖y′0,ε‖H1(Ω)

)
. (3.47)

We postpone the proofs of the two results to the end of the subsection and first present the following
consequence.

Corollary 3.13 (Further a priori bounds). Let T, h, ε > 0 and τ0 be as in Proposition 3.5. Then, there exists
a constant Cε > 0 only depending on T , ε, y0,ε, y

′
0,ε, θ0, f , and θ[ such that for all τ ∈ (0, τ0) with T/h ∈ N

and h/τ ∈ N the following bounds hold true:

‖θτ‖L2(I;H1(Ω)) + ‖wτ‖L2(I;H1(Ω)) ≤ Cε, (3.48)

‖ŵτ‖H1(I;(H1(Ω))∗) ≤ Cε, (3.49)

‖ŷτ‖L2(I;H4(Ω)) ≤ Cε. (3.50)
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In particular, θh and wh from Proposition 3.10 satisfy θh, wh ∈ L2(I;H1(Ω)) and wh ∈ H1(I; (H1(Ω))∗) with
wh(0) = W in(∇y0,ε, θ0). Moreover, yh lies in L∞(I;Yreg

id ).

Proof. First, by elliptic regularity along with the boundary conditions ŷτ = id and ∆ŷτ = 0 on Ih × ∂Ω (see
(2.1), (2.20), and (3.42)), and the fact that Ω has C5-boundary, we get

‖ŷτ (t)‖H4(Ω) ≤ C‖∆ŷτ (t)‖H2(Ω), ‖∆ŷτ (t)‖H2(Ω) ≤ C‖∆2ŷτ (t)‖L2(Ω)

for a.e. t ∈ Ih. This along with (3.45) shows (3.50). Moreover, yh ∈ L∞(I;Yreg
id ) (see (2.20)) follows from

(3.37b), (3.42), (3.47), and the fact that y0,ε ∈ Yreg
id .

Due to (3.47), we find that ε|∂t∇∆ŷτ |2 is bounded in L2(Ih;L2(Ω)) for a bound depending on ε, but indepen-
dent of τ and h. Therefore, the term ∂FW

cpl(∇y
τ
, θτ ) : ∂t∇ŷτ+ξ(∇y

τ
, ∂t∇ŷτ , θτ )+ε|∂t∇∆ŷτ |2∧τ−1 appearing

in the second line of (3.9) is bounded in L2(Ih;L2(Ω)) for a bound depending on ε, but independent of τ and h.
This regularity allows us to apply the a priori estimates in [35, Proposition 4.2]. This yields (3.48)–(3.49), and
then the regularity of the limits θh and wh is a direct consequence of weak compactness. By [4, Lemma 4.5(iii)]
we get θh, wh ∈ C(I;L2(Ω)) which along with (C.1) and yh ∈ C(Ih;Yid) also shows wh(0) = W in(∇y0,ε, θ0).
This concludes the proof. �

We now come to the proofs of Proposition 3.11 and Lemma 3.12. As they are purely of technical nature, the
reader might want to skip these proofs on first reading of the paper.

Proof of Proposition 3.11. We recall the notation in (3.36) and for convenience we drop the index τ in the entire
proof. As a preliminary step, we first show ŷ ∈ H1(I;H4(Ω;Rd)), and afterwards the statement.

Step 1 (ŷ ∈ H1(I;H4(Ω;Rd))): We show that, if y ∈ L2(I;W 2,q(Ω;Rd)) for some q ∈ [p, 2(p− 1)], then

ŷ ∈ H1(I;W 4, q
p−1 (Ω;Rd)), y ∈ L2(I;W 2,q(1+η)(Ω;Rd)), (3.51)

where η :=∞ for d = 2 and η := 5
p−1 − 1 > 0 for d = 3, as well as

∂ν∆∂tŷ(t) = 0 Hd−1-a.e. on ∂Ω. (3.52)

Once this has been shown, this argument can first be applied for q = p by (3.37a), and then by a bootstrapping
argument, after a finite number of repetitions depending on η, we get ŷ ∈ H1(I;H4(Ω;Rd)).

Let us show (3.51)–(3.52). Suppose that y ∈ L2(I;W 2,q(Ω;Rd)) for some q ∈ [p, 2(p − 1)]. For t ∈ I, we

define g3rd(t) ∈ X∗q in the dual space of Xq := W 2,( q
p−1 )′(Ω;Rd) ∩H1

0 (Ω;Rd) by

〈g3rd(t), z〉 :=

ˆ
Ω

DH(∆y(t)) ·∆z +
(
∂FW (∇y(t), θ(t)) + ∂ḞR(∇y(t), ∂t∇ŷ(t), θ(t))

)
: ∇z dx

−
ˆ

Ω

f(t) · z dx+
ρ

h

ˆ
Ω

(∂tŷ(t)− ∂tŷ(t− h)) · z dx (3.53)

for all z ∈ Xq. By (H.3) and the assumption y ∈ L2(I;W 2,q(Ω;Rd)) we get DH(∆y) ∈ L2(I;L
q
p−1 (Ω;Rd)) and

thus g3rd ∈ L2(I;X∗q ) by the bounds from Proposition 3.10. Fixing z ∈ Xq ∩H3(Ω;Rd) and using z as a test
function in (3.6), we derive that

− ε
ˆ

Ω

∇∆∂tŷ(t) : ∇∆z dx = 〈g3rd(t), z〉, (3.54)

i.e., g3rd represents the regularization of third order. Due to (3.54), for every t ∈ I we can apply Lemma A.1(a)

for u := ∂tŷ(t). With (A.2)–(A.3) this shows ∂tŷ ∈ L2(I;W 4, q
p−1 (Ω;Rd)) as well as (3.52). As y0,ε ∈ Yreg

id , the

above statements together with (2.20) directly lead to ŷ ∈ H1(I;W 4, q
p−1 (Ω;Rd)). By Sobolev embedding we

get that y ∈ L2(I;W 2,r(Ω;Rd)), where r = ( q
p−1 )∗∗. Since q ≥ p and thus q

p−1 ≥
6
5 , we get r = ∞ for d = 2

and for d = 3 we have r = (3 q
p−1 )(3− 2 q

p−1 )−1 ≥ 5q
p−1 = q(1 + η). This concludes the proof of (3.51).

Step 2 (Proof of the statement): From now on we can suppose that ŷ ∈ H1(I;H4(Ω;Rd)). Due to this
improved regularity of ŷ, we have for each t ∈ I and any z ∈ C∞c (Ω;Rd) thatˆ

Ω

DH(∆y(t)) ·∆z dx = −
ˆ

Ω

∇(DH(∆y(t))) : ∇z dx. (3.55)

Recalling (2.4)–(2.5), an elementary computation for a general v ∈ H4(Ω;Rd) yields that pointwise a.e. in Ω it
holds that

∇(DH(∆v)) =

{
2∇∆v if p|∆v|p−2 ≤ 2,

p(p− 2)|∆v|p−4∆v ⊗
(
(∇∆v)T∆v

)
+ p|∆v|p−2∇∆v else.

(3.56)
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Taking the Frobenius norm on both sides of (3.56) we see a.e. in Ω that

|∇(DH(∆v))| ≤

{
2|∇∆v| if p|∆v|p−2 ≤ 2,

p(p− 1)|∆v|p−2|∇∆v| else.
(3.57)

By Sobolev embedding we have that H2(Ω;Rd) ⊂ L∞(Ω;Rd) for d = 2, 3. Hence, ∆y ∈ L∞(I × Ω;Rd).
In particular, this shows ∇(DH(∆y)) ∈ L2(I × Ω;Rd×d) and therefore, recalling the definition in (3.53) and
(3.55), we derive g3rd ∈ L2(I;H−1(Ω;Rd)) by arbitrariness of z, where we have used that C∞c (Ω;Rd) is dense
in H1

0 (Ω;Rd). (Now, 〈·, ·〉 stands for the dual pairing between H1
0 (Ω;Rd) and H−1(Ω;Rd).) By Lemma A.1(b),

(3.52), and the bounds from Proposition 3.10 we derive that ∂tŷ ∈ L2(I;H5(Ω;Rd)) and that ∂tŷ satisfies

‖∂tŷ‖L2(I;H5(Ω)) ≤ Cε,h (3.58)

for a constant Cε,h depending on ε and h. Moreover, we have the boundary condition

∆2∂tŷ(t) = 0 Hd−1-a.e. on ∂Ω for t ∈ I. (3.59)

To conclude the proof, it remains to show ∆∂tŷ(t) = 0 Hd−1-a.e. on ∂Ω for t ∈ I. Defining for z ∈ H :=
H3(Ω;Rd) ∩H1

0 (Ω;Rd)

〈g2nd(t), z〉 := −ε
ˆ

Ω

∇∆∂tŷ(t) : ∇∆z dx−
ˆ

Ω

(
∂FW (∇y(t), θ(t)) + ∂ḞR(∇y(t), ∂t∇ŷ(t), θ(t))

)
: ∇z dx

+

ˆ
Ω

f(t) · z dx− ρ

h

ˆ
Ω

(∂tŷ(t)− ∂tŷ(t− h)) · z dx,

we can rewrite (3.53)–(3.54) as ˆ
Ω

DH(∆y(t)) ·∆z dx = 〈g2nd(t), z〉 (3.60)

for t ∈ I, i.e., g2nd represents the term with second derivative. Using the improved regularity of ∂tŷ and the
boundary conditions (3.52) and (3.59), the first integral in the definition of g2nd(t) can be written asˆ

Ω

∇∆∂tŷ(t) : ∇∆z dx = −
ˆ

Ω

∆2∂tŷ(t) ·∆z dx+

ˆ
∂Ω

∂ν∆∂tŷ(t) ·∆z dHd−1

=

ˆ
Ω

∇∆2∂tŷ(t) : ∇z dx−
ˆ
∂Ω

∆2∂tŷ(t) · ∂νz dHd−1 =

ˆ
Ω

∇∆2∂tŷ(t) : ∇z dx

for each z ∈ H. As ∂tŷ ∈ L2(I;H5(Ω;Rd)), this shows g2nd(t) ∈ H−1(Ω;Rd) for each t ∈ I. Now, it is
standard to find v(t) ∈ H1

0 (Ω;Rd) such that 〈g2nd(t), z〉 =
´

Ω
v(t) · ∆z dx for all z ∈ H2(Ω;Rd) ∩ H1

0 (Ω;Rd),
see (A.16)–(A.18) below for details. Given an arbitary ϕ ∈ L2(Ω;Rd) and choosing z ∈ H2(Ω;Rd) ∩H1

0 (Ω;Rd)
with ∆z = ϕ, this along with (3.60) showsˆ

Ω

(
DH(∆y(t))− v(t)

)
· ϕdx = 0.

This yields DH(∆y(t)) = v(t) a.e. in Ω and thus it holds that DH(∆ȳ(t)) = 0 Hd−1-a.e. on ∂Ω for t ∈ I. Since

DH(v) = max{2, p|v|p−2}v = 0 ⇔ v = 0 ∈ Rd

and y0,ε ∈ Yreg
id , this concludes the proof of (3.42). �

Proof of Lemma 3.12. For notational convenience, we define the weighted Bochner space

‖ · ‖L2
T (I;Lq(Ω)) := ‖

√
T − t · ‖L2(I;Lq(Ω)),

and employ a similar notation for Sobolev spaces. We first note that it is not restrictive to establish the
bounds (3.44)–(3.47) only for the weighted space. Indeed, by extending θ[ and f suitably on the time interval
[T, T + η] for some η > 0 small, we can establish time-discrete solutions on the time interval [−h, T + η], see
Proposition 3.5. Then, a control on ‖ · ‖L2

T+η([0,T+η];Lq(Ω)) will directly imply a control on ‖ · ‖L2(I;Lq(Ω)) for a

constant additionally depending on η. To simplify notation, we use the interval I = [0, T ] instead of [0, T + η]
in the sequel. As in the proof of Proposition 3.11, we omit the index τ .

Step 1 (Proof of (3.44) and (3.45)): As ∂tŷ ∈ L2(I;H4(Ω;Rd)) with ∂ν∆∂tŷ(t) = 0 Hd−1-a.e. on ∂Ω for
t ∈ I by Proposition 3.11, by an integration by part we can rewrite the ε-dependent term in (3.6) asˆ

Ω

ε∇∆∂tŷ : ∇∆z dx = −
ˆ

Ω

ε∆2∂tŷ : ∆z dx+

ˆ
∂Ω

ε∂ν∆∂tŷ : ∆z dHd−1 = −
ˆ

Ω

ε∆2∂tŷ : ∆z dx (3.61)
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for each t ∈ ((k − 1)τ, kτ) and z ∈ H3(Ω;Rd) ∩ H1
0 (Ω;Rd). Thus, by approximation we can test (3.6) with

functions in H2(Ω;Rd) ∩ H1
0 (Ω;Rd). As ∆ŷ ∈ L2(I;H2(Ω;Rd)) with ∆ŷ(t) = 0 Hd−1-a.e. on ∂Ω for t ∈ I

by Proposition 3.11 and the fact that y0,ε ∈ Yreg
id (see (2.20)), we discover that z(t, x) := (T − t)∆ŷ(t, x) for

t ∈ ((k−1)τ, kτ) is a valid test function in (3.6). After summation and rearranging terms, and employing (3.61)
this yields

ε

ˆ
I

ˆ
Ω

∆2∂tŷ : ∆2ŷ(T − t) dxdt−
ˆ
I

ˆ
Ω

DH(∆y) ·∆2ŷ(T − t) dxdt

=

ˆ
I

ˆ
Ω

(
∂FW (∇y, θ) + ∂ḞR(∇y, ∂t∇ŷ, θ)

)
: ∇∆ŷ(T − t) dxdt

−
ˆ
I

ˆ
Ω

f ·∆ŷ(t)(T − t) dxdt+
ρ

h

ˆ
I

ˆ
Ω

(
∂tŷ(t)− ∂tŷ(t− h)

)
·∆ŷ(t)(T − t) dx dt.

(3.62)

(The advantage of multiplying with (T − t) will become apparent in (3.68) below.) Using (3.42) and y0,ε ∈ Yreg
id

we integrate by parts in the second term on the left-hand side above, which leads to

−
ˆ
I

ˆ
Ω

DH(∆y) ·∆2ŷ(T − t) dxdt

=

ˆ
I

ˆ
Ω

∇(DH(∆y)) : ∇∆ŷ(T − t) dx dt−
ˆ
I

ˆ
∂Ω

DH(∆y) · ∂ν∆ŷ(T − t) dHd−1 dt

≥
ˆ
I

ˆ
Ω

∇(DH(∆y)) : ∇∆y(T − t) dx dt− Cτ‖∇(DH(∆y))‖L2(I×Ω)‖∇∆∂tŷ‖L2(I×Ω),

where in the last step we exploited the definition in (3.36). In view of (3.56), we get thatˆ
I

ˆ
Ω

∇(DH(∆y)) : ∇∆y(T − t) dxdt

=

ˆ
I

ˆ
Ω

max{2, p|∆y|p−2}|∇∆y|2(T − t) dxdt+

ˆ
I

ˆ
Ω

1{p|∆y|p−2≥2}p(p− 2)|(∇∆y)T∆y|2|∆y|p−4(T − t) dx dt

≥
ˆ
I

ˆ
Ω

max{2, p|∆y|p−2}|∇∆y|2(T − t) dxdt.

By y0,ε ∈ Yreg
id and (3.58) we find ‖∆y‖L∞(I;L∞(Ω)) ≤ Cε,h and ‖y‖L2(I;H3(Ω)) ≤ Cε,h. Then, again using

(3.56)–(3.57) and (3.37b) we eventually find

−
ˆ
I

ˆ
Ω

DH(∆y) ·∆2ŷ(T − t) dx dt ≥
ˆ
I

ˆ
Ω

max{2, p|∆y|p−2}|∇∆y|2(T − t) dx dt− τCε,h. (3.63)

By the chain rule we writeˆ
I

ˆ
Ω

∆2∂tŷ ·∆2ŷ(T − t) dx dt =

ˆ
I

d

dt

(1

2

ˆ
Ω

|∆2ŷ|2(T − t) dx
)

dt+
1

2

ˆ
I

ˆ
Ω

|∆2ŷ|2 dxdt

=
1

2

ˆ
I

ˆ
Ω

|∆2ŷ|2 dxdt− T

2
‖∆2y0,ε‖2L2(Ω) . (3.64)

By the definition of Yid and ŷ ∈ L∞(Ih;Yid), it follows that ∂tŷ(t) = 0 Hd−1-a.e. in ∂Ω for t ∈ I. Hence,
integrating by parts leads toˆ

I

ˆ
Ω

(∂tŷ(t)− ∂tŷ(t− h)) ·∆ŷ(t)(T − t) dx dt = −
ˆ
I

ˆ
Ω

(∂t∇ŷ(t)− ∂t∇ŷ(t− h)) : ∇ŷ(t)(T − t) dxdt.

Now, using the substitution t 7→ t− h we derive

ρ

h

ˆ
I

ˆ
Ω

(∂tŷ(t)− ∂tŷ(t− h)) ·∆ŷ(t)(T − t) dx dt = Π + ρ

ˆ
Ω

∇y′0,ε : −
ˆ h

0

∇ŷ(t)(T − t) dtdx (3.65)

− ρ−
ˆ T

T−h

ˆ
Ω

∂t∇ŷ(t) : ∇ŷ(t)(T − t) dxdt,

where

Π := ρ

ˆ T−h

0

(T − t)
ˆ

Ω

∂t∇ŷ(t) :
∇ŷ(t+ h)−∇ŷ(t)

h
dxdt− ρ

ˆ T−h

0

ˆ
Ω

∂t∇ŷ(t) : ∇ŷ(t+ h) dxdt.

Using that ∇ŷ(t+h)−∇ŷ(t)
h = −́

t+h

t
∂t∇ŷ(s) ds and applying Hölder’s inequality, we can check that

|Π| ≤ C‖∂t∇ŷ‖2L2(I×Ω) + C‖∂t∇ŷ‖L2(I×Ω)‖∇ŷ‖L2(I×Ω) ≤ C‖∇ŷ‖2H1(I;L2(Ω)).
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Combining (3.62)–(3.65) then leads to
ˆ
I

ˆ
Ω

max{2, p|∆y|p−2}|∇∆y|2(T − t) dxdt+
ε

2

ˆ
I

ˆ
Ω

|∆2ŷ|2 dxdt− Tε

2
‖∆2y0,ε‖2L2(Ω)

≤
ˆ
I

ˆ
Ω

(
∂FW (∇y, θ) + ∂ḞR(∇y, ∂t∇ŷ, θ)

)
: ∇∆ŷ(T − t) dx dt−

ˆ
I

ˆ
Ω

f ·∆ŷ(T − t) dxdt

+ τCε,h + C‖∇ŷ‖2H1(I;L2(Ω)) + ρ

ˆ
Ω

∇y′0,ε : −
ˆ h

0

∇ŷ(t)(T − t) dtdx

− ρ−
ˆ T

T−h

ˆ
Ω

∂t∇ŷ(t) : ∇ŷ(t)(T − t) dxdt.

(3.66)

In view of the bounds (3.37a)–(3.37e), we have that

sup
h>0, ε∈(0,1)

‖∂FW (∇y, θ) + ∂ḞR(∇y, ∂t∇ŷ, θ)‖L2(I×Ω) < +∞ ,

sup
h>0, ε∈(0,1)

‖y‖L∞(I;W 2,p(Ω)) + ‖ŷ‖H1(I;H1(Ω)) < +∞ , (3.67)

where we use (W.1), (C.4), and (D.1). Moreover, we choose τ0 small enough such that τ0Cε,h ≤ 1. Hence, by
Hölder’s inequality, the weighted Young’s inequality, and by the boundary condition ∆ŷ(t) = 0 for a.e. t ∈ [0, T ]
and Hd−1-a.e. in ∂Ω (see (2.20) and Proposition 3.11), we infer from (3.66) that

√
ε‖∆2ŷ‖L2(I×Ω)+‖∆y‖L2

T (I;H1(Ω))+‖ |∆y|
p−2
2 ∇(∆y)‖L2

T (I;L2(Ω)) ≤ C
(
1+
√
ε‖y0,ε‖H4(Ω)+‖y′0,ε‖H1(Ω)

)
(3.68)

for some constant C > 0 independent of ε ∈ (0, 1) and h > 0, where the notation L2
T (I;H1(Ω)) has been

introduced at the beginning of the proof. Here, the factor (T − t) guarantees that the last term on the right-
hand side of (3.67) can be controlled uniformly in h. This shows (3.44) and (3.45).

Step 2 (Proof of (3.46)): We proceed with (3.46). In view of (3.57), it holds that

| ∇(DH(∆y))| ≤ C
(
1 + |∆y|

) p−2
2

∣∣∣(1 + |∆y|
) p−2

2 ∇∆y
∣∣∣

a.e. in Ω. By using Hölder’s inequality for p′

2 + p−2
2(p−1) = 1 we estimate

‖∇DH(∆y)‖2
L2
T (I;Lp′ (Ω))

≤ C
ˆ
I

(ˆ
Ω

(
1 + |∆y|

) (p−2)p
2(p−1)

(√
T − t

(
1 + |∆y|

) p−2
2 |∇∆y|

)p′
dx

) 2
p′

dt

≤ C‖1 + |∆y|‖p−2
L∞(I;Lp(Ω))‖(1 + |∆y|)

p−2
2 ∇∆y‖2L2

T (I;L2(Ω)). (3.69)

Note that |∆y| is uniformly bounded in L∞(I;Lp(Ω;Rd)) by (3.37a). Hence, (3.46) follows from (3.68).
Step 3 (Proof of (3.47)): Finally, we prove (3.47). In view of Corollary 3.11, we may test the mechanical

equation (3.6) with z = (T − t)∂t∆ŷ(t) for t ∈ ((k−1)τ, kτ). After summation and rearranging terms this yields

− ε
ˆ
I

ˆ
Ω

∂t∇∆ŷ : ∂t∇∆2ŷ(T − t) dx dt−
ˆ
I

ˆ
Ω

DH(∆y) · ∂t∆2ŷ(T − t) dx dt

=

ˆ
I

ˆ
Ω

(
∂FW (∇y, θ) + ∂ḞR(∇y, ∂t∇ŷ, θ)

)
: ∂t∇∆ŷ(T − t) dxdt

−
ˆ
I

ˆ
Ω

f · ∂t∆ŷ(T − t) dxdt+
ρ

h

ˆ
I

ˆ
Ω

(∂tŷ(t)− ∂tŷ(t− h)) · ∂t∆ŷ(t)(T − t) dxdt.

Integrating by parts the left-hand side and the last term on the right-hand side above, by the boundary condi-
tions ∂ν∆∂tŷ = 0 and ∂tŷ = 0 on ∂Ω for t ∈ I, we get that

ε

ˆ
I

ˆ
Ω

|∂t∆2ŷ|2(T − t) dxdt+

ˆ
I

ˆ
Ω

∇(DH(∆y)) : ∂t∇∆ŷ(T − t) dx dt

=

ˆ
I

ˆ
Ω

(
∂FW (∇y, θ) + ∂ḞR(∇y, ∂t∇ŷ, θ)

)
: ∂t∇∆ŷ(T − t) dxdt

−
ˆ
I

ˆ
Ω

f · ∂t∆ŷ(T − t) dxdt− ρ

h

ˆ T

0

ˆ
Ω

(∂t∇ŷ(t)− ∂t∇ŷ(t− h)) : ∂t∇ŷ(t)(T − t) dx dt.

(3.70)
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We denote the last term on the right-hand side of (3.70) (without negative sign) by ΠT . An expansion yields

ΠT =
ρ

2h

ˆ
I

(
‖∂t∇ŷ(t)‖2L2(Ω) − ‖∂t∇ŷ(t− h)‖2L2(Ω) + ‖∂t∇ŷ(t)− ∂t∇ŷ(t− h)‖2L2(Ω)

)
(T − t) dt

=
ρ

2

ˆ T−h

0

ˆ
Ω

|∂t∇ŷ(t)|2 dx dt+
ρ

2
−
ˆ T

T−h

ˆ
Ω

|∂t∇ŷ(t)|2(T − t) dx dt− ρ

2
‖∇y′0,ε‖2L2(Ω)−

ˆ h

0

(T − t) dt

+
ρ

2h

ˆ
I

ˆ
Ω

|∂t∇ŷ(t)− ∂t∇ŷ(t− h)|2(T − t) dx dt . (3.71)

Combining (3.70) and (3.71) and applying Hölder inequality, we deduce that

ε‖∂t∆2ŷ‖2L2
T (I;L2(Ω)) ≤ ‖∇(DH(∆y))‖L2

T (I;Lp′ (Ω))‖∂t∇∆ŷ‖L2
T (I;Lp(Ω))

+
√
T‖(∂FW (∇y, θ) + ∂ḞR(∇y, ∂t∇ŷ, θ))‖L2(I×Ω)‖∂t∇∆ŷ‖L2

T (I;L2(Ω))

+
√
T‖f‖L2(I×Ω)‖∂t∆ŷ‖L2

T (I;L2(Ω)) +
ρT

2
‖y′0,ε‖2H1(Ω) .

Then, by (3.67)–(3.69), Hölder’s inequality, and Poincaré’s inequality along with ∆∂tŷ = 0 on I × ∂Ω we derive

ε‖∂t∆2ŷ‖2L2
T (I;L2(Ω)) ≤ C(1 +

√
ε‖y0,ε‖H4(Ω) + ‖y′0,ε‖H1(Ω))‖∂t∇∆ŷ‖L2

T (I;Lp(Ω)) + C‖y′0,ε‖2H1(Ω). (3.72)

By the Gagliardo-Nirenberg interpolation inequality with θ = p−2
2p d (θ ∈ (0, 1) as p ∈ (3, 6) for d = 3), see

e.g. [39, Theorem 1.24]) for r = p, β = 0, k = 1, and p = q = 2, we get

‖∂t∇∆ŷ‖L2
T (I;Lp(Ω)) ≤ ‖∂t∇∆ŷ‖L2

T (I;L2(Ω)) + ‖∂t∇∆ŷ‖1−θ
L2
T (I;L2(Ω))

‖∂t∇2∆ŷ‖θL2
T (I;L2(Ω)).

By elliptic regularity for the operator ∆ and the fact that ∆∂tŷ = 0 on I × ∂Ω we get ‖∂t∇2∆ŷ‖L2
T (I;L2(Ω)) ≤

C‖∂t∆2ŷ‖L2
T (I;L2(Ω)). Then, using the weighted Young’s inequality for λ > 0 and exponent 2

θ we get

‖∂t∇∆ŷ‖L2
T (I;Lp(Ω)) ≤ ‖∂t∇∆ŷ‖L2

T (I;L2(Ω)) + C(ελ)−
θ

2−θ ‖∂t∇∆ŷ‖
2(1−θ)
2−θ

L2
T (I;L2(Ω))

+ Cελ‖∂t∆2ŷ‖2L2
T (I;L2(Ω)).

The bound
√
ε‖∂tŷ‖L2(I;H3(Ω)) ≤ C given by (3.37b) and the fact that 1

2−θ = % ∈ ( 1
2 , 1) (see (3.43)) yield

‖∂t∇∆ŷ‖L2
T (I;Lp(Ω)) ≤ Cε−1/2 + Cλε

− θ
2−θ ε−

1−θ
2−θ + Cελ‖∂t∆2ŷ‖2L2

T (I;L2(Ω)) ≤ Cλε
−% + Cελ‖∂t∆2ŷ‖2L2

T (I;L2(Ω)).

Multiplying inequality (3.72) by ε% and choosing λ sufficiently small we get

ε1+%‖∂t∆2ŷ‖2L2
T (I;L2(Ω)) ≤ C(1 +

√
ε‖y0,ε‖H4(Ω) + ‖y′0,ε‖H1(Ω)) + Cε%‖y′0,ε‖2H1(Ω)

for some constant C > 0 independent of ε ∈ (0, 1) and of h > 0. This concludes the proof of (3.47) by using
(3.42) and an elliptic regularity estimate. �

3.4. Proof of Theorem 3.1. In this subsection, we separately discuss the limiting passage τ → 0 for the
mechanical and the heat-transfer equation, leading to (3.1a) and (3.1b), respectively.

Lemma 3.14 (Convergence of the mechanical equation). Let (yh, θh) be as in Proposition 3.10. Then, for any
test function z ∈ C∞(I × Ω;Rd) satisfying z = 0 on I × ∂Ω we have that (3.1a) holds.

Proof. By (3.38a) we have that ∂tŷτ ⇀ yh weakly in L2(Ih;H3(Ω;Rd)) and by (3.38b) it holds that ŷτ (t), yτ (t),
y
τ
(t) → yh strongly in W 2,p(Ω;Rd) for a.e. t ∈ I. Moreover, (ŷτ )τ , (yτ )τ , and (y

τ
)τ are bounded in

L∞(I;W 2,p(Ω;Rd)) independently of τ and h. Hence, we deduce (3.1a) by testing (3.6) with z, summing
over k, and passing to the limit as τ → 0 using the generalized dominated convergence theorem. Here, we
crucially use that ∂ḞR is linear in the second entry, cf. (D.1). �

Before we concern ourselves with the limiting passage in the heat-transfer equation, we establish a mechanical
energy balance for (yh, θh).

Lemma 3.15 (Mechanical energy balance). Let (yh, θh) be as in Proposition 3.10 with yh(0, ·) = y0,ε satisfying
(3.1a). Then, for any t ∈ I we have the mechanical energy balance

M(yh(t)) +
ρ

2
−
ˆ t

t−h
‖∂tyh(s)‖2L2(Ω) ds+

ˆ t

0

2Rε(yh, ∂tyh, θh) ds+
ρ

2h

ˆ t

0

‖∂tyh(s)− ∂tyh(s− h)‖2L2(Ω) ds

=M(y0,ε) +
ρ

2
‖y′0,ε‖2L2(Ω) −

ˆ t

0

ˆ
Ω

∂FW
cpl(∇yh, θh) : ∂t∇yh dx ds+

ˆ t

0

ˆ
Ω

f · ∂tyh dxds. (3.73)
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Proof. By the regularity yh ∈ H1(Ih;H3(Ω;Rd)), using the chain rule for Λ-convex functionals (see [35, Proposi-
tion 3.6] and Lemma 3.8), we first observe that the mechanical energy defined in (2.6) satisfies that t 7→ M(yh(t))
lies in W 1,1(I) and that

d

dt
M(yh) =

ˆ
Ω

DH(∆yh) : ∂t∆yh dx+

ˆ
Ω

∂FW
el(∇yh) · ∂t∇yh dx for a.e. t ∈ I. (3.74)

We test the equation (3.1a) with z := ∂tyh1[0,t], and obtain by (2.11)

ˆ t

0

ˆ
Ω

(
∂FW

el(∇yh) + ∂FW
cpl(∇yh, θh)

)
: ∂t∇yh dxds+

ˆ t

0

ˆ
Ω

DH(∆yh) · ∂t∆yh dxds

−
ˆ t

0

ˆ
Ω

f · ∂tyh dxds+
ρ

h

ˆ t

0

ˆ
Ω

(
∂tyh(s)− ∂tyh(s− h)

)
· ∂tyh(s) dxds

= −
ˆ t

0

ˆ
Ω

2R(∇yh, ∂t∇yh, θh) dx ds− ε
ˆ t

0

ˆ
Ω

|∂t∇∆yh|2 dxds.

Applying the chain rule (3.74) we find

M(yh(t))−M(y0,ε) +

ˆ t

0

ˆ
Ω

∂FW
cpl(∇yh, θh) : ∂t∇yh dxds−

ˆ t

0

ˆ
Ω

f · ∂tyh dx ds (3.75)

= −
ˆ t

0

ˆ
Ω

(
2R(∇yh, ∂t∇yh, θh) + ε|∂t∇∆yh|2

)
dxds− ρ

h

ˆ t

0

ˆ
Ω

(
∂tyh(s)− ∂tyh(s− h)

)
· ∂tyh(s) dxds.

Denoting the last term on the right-hand side by Π (without negative sign), and expanding it as in (3.71), we
derive

Π =
ρ

2h

ˆ t

0

(
‖∂tyh(s)‖2L2(Ω) − ‖∂tyh(s− h)‖2L2(Ω) + ‖∂tyh(s)− ∂tyh(s− h)‖2L2(Ω)

)
ds

=
ρ

2
−
ˆ t

t−h
‖∂tyh(s)‖2L2(Ω) ds− ρ

2
−
ˆ 0

−h
‖∂tyh(s)‖2L2(Ω) ds+

ρ

2h

ˆ t

0

‖∂tyh(s)− ∂tyh(s− h)‖2L2(Ω) ds.

Plugging this into (3.75) and using (2.12) as well as ∂tyh(s) = y′0,ε for s ∈ (−h, 0), the proof of the mechanical
energy balance is concluded. �

Lemma 3.16 (Convergence of the heat-transfer equation). Let (yh, θh) be as in Proposition 3.10. Then, for
any test function ϕ ∈ C∞(I × Ω) equation (3.1b) is satisfied.

Proof. The essential point is to show strong convergence of the strain rates, namely

∇∂tŷτ → ∇∂tyh and ∇∆∂tŷτ → ∇∆∂tyh strongly in L2(I;L2(Ω;Rd×d)). (3.76)

Once this is achieved, using the convergences in (3.38a)–(3.38d), we can almost verbatim follow the proof of [2,
Proposition 4.6], recalling that the scheme for the heat-transfer equation differs from the one in [2] only by the
regularizing term ε|∂t∇∆ŷτ |2 ∧ τ−1, see (3.9) and [2, Equation (3.11)]. The only difference is that for the term

ˆ
Ω

∂tŵτϕdx

in (3.9) we do not perform an integration by parts in time, but directly pass to the limit using that ∂tŵτ ⇀ ∂twh
in L2(I; (H1(Ω))∗) by Corollary 3.13. This gives (3.1b).

The argument for showing (3.76) is along the lines of [2, Lemma 4.5] or [35, Proposition 5.1], and relies on
passing to the limit in the mechanical energy balance. We briefly sketch the argument. In view of the notation
in (3.36), we can write the discrete mechanical energy estimate in Lemma 3.9 as

M(yτ (T )) +
ρ

2
−
ˆ T

T−h
‖∂tŷτ (t)‖2L2(Ω) dt+

ˆ T

0

2Rε(yτ , ∂tŷτ , θτ ) dt+
ρ

2h

ˆ T

0

‖∂tŷτ (t)− ∂tŷτ (t− h)‖2L2(Ω) dt

≤M(y0,ε) +
ρ

2
‖y′0,ε‖2L2(Ω) −

ˆ T

0

ˆ
Ω

∂FW
cpl(y

τ
, θτ ) : ∂t∇ŷτ dx dt+

ˆ T

0

(
fτ (t), ∂tŷτ (t)

)
2

dt+ CMτVT/τ .



THERMO-ELASTODYNAMICS OF NONLINEARLY VISCOUS SOLIDS 26

Employing (3.38a)–(3.38d), standard lower semicontinuity arguments (see [2, Equation (4.15)] and also [23,
Theorem 7.5] for a general result) imply,

lim inf
τ→0

M(yτ (T )) ≥M(yh(T )), (3.77a)

lim inf
τ→0

ˆ T

0

ˆ
Ω

ξ(∇y
τ
, ∂t∇ŷτ , θτ ) dx dt ≥

ˆ T

0

ˆ
Ω

ξ(∇yh, ∂t∇yh, θh) dxdt, (3.77b)

lim inf
τ→0

ˆ T

0

ˆ
Ω

ε|∂t∇∆ŷτ |2 dxdt ≥
ˆ T

0

ˆ
Ω

ε|∂t∇∆yh|2 dxdt, (3.77c)

lim inf
τ→0

ρ

2
−
ˆ T

T−h
‖∂tŷτ (t)‖2L2(Ω) dt ≥ ρ

2
−
ˆ T

T−h
‖∂tyh(t)‖2L2(Ω) dt, (3.77d)

lim inf
τ→0

ρ

2h

ˆ T

0

‖∂tŷτ (t)− ∂tŷτ (t− h)‖2L2(Ω) dt ≥ ρ

2h

ˆ T

0

‖∂tyh(t)− ∂tyh(t− h)‖2L2(Ω) dt. (3.77e)

Since
´ T

0
(fτ (t), ∂tŷτ (t))2 dt →

´ T
0

´
Ω
f · ∂tyh dx dt, as well as

´ T
0

´
Ω
∂FW

cpl(y
τ
, θτ ) : ∂t∇ŷτ dx dt converges

to
´ T

0

´
Ω
∂FW

cpl(∇yh, θh) : ∂t∇yh dx dt by (3.38a)–(3.38d), and τVT/τ → 0 as τ → 0 by (3.37b), using the
mechanical energy balance (3.73), we find that all estimates (3.77a)–(3.77e) are actually equalities, see [2,
Equation (4.15)] for details on this argument. In particular, the convergence in (3.77b) implies the first part
of (3.76), by repeating the arguments in [2, Equation (4.16)ff.]. Eventually, the convergence in (3.77c) provides
the second part of (3.76). �

Proof of Theorem 3.1. The statement follows by collecting the regularity for yh, θh, and wh given in Proposi-
tion 3.10 and Corollary 3.13, and the identification of the limiting equations in Lemmas 3.14 and 3.16. �

4. Vanishing time-delay

We recall that for each T, h, ε > 0, Theorem 3.1 guarantees the existence of (yh, θh) such that yh ∈
L∞(I;Yreg

id ) ∩ H1(Ih;H3(Ω;Rd)), θh ∈ L2(I;H1
+(Ω)), and such that equations (3.1a)–(3.1b) hold. We also

recall that yh(t) = y0,ε + ty′0,ε for t ∈ [−h, 0]. The goal of this section is to pass to the limit h → 0 in
(3.1a)–(3.1b). We start by a compactness result.

Lemma 4.1 (Compactness). There exist yε ∈ L∞(I;Yreg
id ) ∩ H1(I;H3(Ω;Rd)) with yε(0) = y0,ε, and θε ∈

L2(I;H1
+(Ω)), as well as wε := W in(∇yε, θε) ∈ L2(I;H1(Ω)) ∩ H1(I; (H1(Ω))∗) with wε(0) = w0,ε such that,

up to selecting a subsequence (not relabeled), it holds that

yh ⇀ yε weakly in H1(I;H3(Ω;Rd)), (4.1a)

yh → yε strongly in C(I;W 1,∞(Ω;Rd)) and strongly in C(I;W 2,p(Ω;Rd)), (4.1b)

θh → θε and wh → wε strongly in Ls(I × Ω) for any s ∈ [1, d+2
d ), (4.1c)

θh ⇀ θε and wh ⇀ wε weakly in L2(I;H1(Ω)), (4.1d)

wh ⇀ wε weakly in H1(I; (H1(Ω))∗). (4.1e)

Proof. As the a priori bounds derived in Proposition 3.10 and Corollary 3.13 are independent of h, we see
by the lower semicontinuity of norms that the same bounds hold true for (yh, θh) in place of (yτ , θτ ). Then,
(4.1a)–(4.1c) can be obtained exactly as in the proof of Proposition 3.10, and (4.1d) –(4.1e) follow from the
bounds in Corollary 3.13 by weak compactness and the Aubin-Lions’ lemma, see also [35, Proposition 5.1]. �

We collect a priori bounds for the limits (yε, θε) which directly follow from Proposition 3.10, Lemma 3.12,
Lemma 4.1, and lower semicontinuity: for each q ∈ [1, d+2

d ) and r ∈ [1, d+2
d+1 ) we can find constants C, Cq, and

Cr independent of ε such that

‖yε‖L∞(I;W 2,p(Ω)) + ‖ det(∇yε)−1‖L∞(I×Ω) ≤ C, (4.2a)

‖yε‖H1(I×Ω) +
√
ε‖∂tyε‖L2(I;H3(Ω)) ≤ C, (4.2b)

‖θε‖L∞(I;L1(Ω)) + ‖wε‖L∞(I;L1(Ω)) ≤ C (4.2c)

‖θε‖Lq(I×Ω) + ‖wε‖Lq(I×Ω) ≤ Cq, (4.2d)

‖∇θε‖Lr(I×Ω) + ‖∇wε‖Lr(I×Ω) ≤ Cr. (4.2e)
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Furthermore, there exist % ∈ ( 1
2 , 1) and C > 0 independently of ε with

‖∆yε‖L2(I;H1(Ω)) + ‖|∆yε|
p−2
2 ∇(∆yε)‖L2(I×Ω) ≤ C

(
1 +
√
ε‖y0,ε‖H4(Ω) + ‖y′0,ε‖H1(Ω)

)
, (4.3a)

‖∇DH(∆yε)‖L2(I;Lp′ (Ω)) ≤ C
(
1 +
√
ε‖y0,ε‖H4(Ω) + ‖y′0,ε‖H1(Ω)

)
, (4.3b)

‖∆∂tyε‖L2(I;H2(Ω)) ≤ Cε−
1+%
2

(
1 + 4
√
ε‖y0,ε‖H4(Ω) + ‖y′0,ε‖H1(Ω)

)
. (4.3c)

Moreover, we have

∆yε(t) = ∂ν∆yε(t) = 0 on ∂Ω for a.e. t ∈ I, (4.4a)

∆∂tyε(t) = ∂ν∆∂tyε(t) = 0 on ∂Ω for a.e. t ∈ I. (4.4b)

In particular, (4.4b) follows from the boundary conditions deduced in Proposition 3.11, the estimates obtained
in Lemma 3.12 on (∂tyh)h, and a compactness argument, while (4.4a) is a consequence of (4.4b) and the fact
that y0,ε ∈ Yreg

id , see (2.20).
The rest of the section is devoted to the proof of Theorems 2.2 and 2.3. In particular, we show that (yε, θε) is

a solution to the regularized system (2.21)–(2.22). As the second bound in (3.37b) transfers uniformly to ∂tyh,
there exists y′T,ε ∈ L2(Ω;Rd) such that, as h→ 0,

−
ˆ T

T−h
∂tyh(s) ds ⇀ y′T,ε weakly in L2(Ω;Rd). (4.5)

Proposition 4.2 (Auxiliary mechanical equation). Let (yε, θε) be as in Lemma 4.1. Then, (yε, θε) satisfies

0 =

ˆ
I

ˆ
Ω

∂FW (∇yε, θε) : ∇z dxdt+

ˆ
I

ˆ
Ω

DH(∆yε) ·∆z dxdt+ ε

ˆ
I

ˆ
Ω

∂t∇∆yε : ∇∆z dxdt

−
ˆ
I

ˆ
Ω

f · z dxdt+

ˆ
I

ˆ
Ω

∂ḞR(∇yε, ∂t∇yε, θε) : ∇z dx dt− ρ
ˆ
I

ˆ
Ω

∂tyε · ∂tz dxdt

+ ρ

ˆ
Ω

(
y′T,ε · z(T )− y′0,ε · z(0)

)
dx,

(4.6)

for every z ∈ C∞(I × Ω;Rd) with z = 0 on I × ∂Ω.

Proof. Notice that by a change of variables we can rewrite (3.1a) for every z ∈ C∞(I × Ω;Rd) with z = 0 on
I × ∂Ω as ˆ

I

ˆ
Ω

DH(∆yh) ·∆z +
(
∂FW (∇yh, θh) + ∂ḞR(∇yh, ∂t∇yh, θh)

)
: ∇z dxdt

+ ε

ˆ
I

ˆ
Ω

∂t∇∆yh · ∇∆z dx dt− ρ
ˆ T−h

0

ˆ
Ω

∂tyh(t) · z(t+ h)− z(t)
h

dxdt

− ρ
ˆ

Ω

y′0,ε · −
ˆ h

0

z(t) dtdx+ ρ−
ˆ T

T−h

ˆ
Ω

∂tyh(t) · z(t) dxdt =

ˆ
I

ˆ
Ω

f · z dxdt.

By the smoothness of z and (4.5) it directly follows thatˆ
Ω

y′0,ε · −
ˆ h

0

z(t) dtdx→
ˆ

Ω

y′0,ε · z(0) dx −
ˆ T

T−h

ˆ
Ω

∂tyh(t) · z(t) dx dt→
ˆ

Ω

y′T,ε · z(T ) dx as h→ 0.

Moreover, the convergence in (4.1a) and the smoothness of z show by weak-strong convergenceˆ T−h

0

ˆ
Ω

∂tyh(t) · z(t+ h)− z(t)
h

dxdt→
ˆ T

0

ˆ
Ω

∂tyε · ∂tz dxdt as h→ 0.

By (4.1b), assumption (H.3), and the generalized dominated convergence theorem, we derive thatˆ
I

ˆ
Ω

DH(∆yh) ·∆z dxdt→
ˆ
I

ˆ
Ω

DH(∆yε) ·∆z dxdt as h→ 0.

Finally, by (4.1a)–(4.1c) the convergence of all remaining terms follows, leading to the desired equation (4.6). �

Proposition 4.3 (Mechanical equation). Let (yε, θε) be as in Lemma 4.1. Then, (yε, θε) satisfies (2.21).
Moreover, it holds that ∂2

ttyε ∈ L2(I; (H3(Ω;Rd) ∩ H1
0 (Ω;Rd))∗) with ‖∂2

ttyε‖L2(I;(H3(Ω)∩H1
0 (Ω))∗) ≤ C for a

constant C > 0 independent of ε. In particular, ∂tyε ∈ C(I;L2(Ω;Rd)) with ∂tyε(0) = y′0,ε and ∂tyε(T ) = y′T,ε.
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Proof. In view of (4.2a)–(4.2e), all time integrals in (4.6) except for ρ
´
I

´
Ω
∂tyε · ∂tz dxdt lie in L2(I; (H3(Ω)∩

H1
0 (Ω))∗), where for the nonlinear term

´
I

´
Ω
DH(∆y) · ∆z dx dt we particularly use (H.3), (4.2a), and the

fact that ∆z ∈ L2(I;Lp(Ω)) for each z ∈ L2(I;H3(Ω) ∩ H1
0 (Ω)) (p ∈ (3, 6) for d = 3). More precisely, the

corresponding operator norms are uniformly bounded independently of ε. Then, by definition of weak derivatives
we get that ∂2

ttyε ∈ L2(I; (H3(Ω;Rd) ∩ H1
0 (Ω;Rd))∗) exists and is bounded independently of ε. Moreover, an

integration by parts in time shows (2.21) for z ∈ C∞(I × Ω;Rd) with z = 0 on I × ∂Ω and z(0) = z(T ) = 0.
Then, by a density argument we observe that the assumption z(0) = z(T ) = 0 can be dropped. Eventually,
∂tyε ∈ C(I;L2(Ω;Rd)) follows from [39, Lemma 7.3], and ∂tyε(0) = y′0,ε as well as ∂tyε(T ) = y′T,ε follow by

integration by parts in time of (2.21) for general z ∈ C∞(I × Ω;Rd) and a comparison with (4.6). �

We proceed with a mechanical energy balance which is the analog to the one in (3.73). We note that the
balance can be formulated for each t ∈ I since yε ∈ C(I;W 2,p(Ω;Rd)) and ∂tyε ∈ C(I;L2(Ω;Rd)).

Lemma 4.4 (Mechanical energy balance). Let (yε, θε) be as in Lemma 4.1 satisfying (2.21). Then, for any
t ∈ I we have the mechanical energy balance (2.23).

Proof. Since ∂2
ttyε lies in L2(I; (H3(Ω;Rd) ∩H1

0 (Ω;Rd))∗), see Proposition 4.3, by an approximation argument
we can test (2.21) with z = ∂tyε1[0,t] and obtainˆ t

0

ˆ
Ω

(
∂FW

el(∇yε) + ∂FW
cpl(∇yε, θε)

)
: ∂t∇yε dxdt+

ˆ t

0

ˆ
Ω

DH(∆yε) : ∂t∆yε dx ds

= −
ˆ t

0

2Rε(yε, ∂tyε, θε) ds− ρ
ˆ t

0

〈∂2
ttyε, ∂tyε〉ds+

ˆ t

0

ˆ
Ω

f · ∂tyε dxds. (4.7)

Using the chain rule we find

ρ

ˆ t

0

〈∂2
ttyε, ∂tyε〉ds =

ρ

2

ˆ t

0

ˆ
Ω

d

dt
|∂tyε|2 dxds =

ρ

2
‖∂tyh(t)‖2L2(Ω) −

ρ

2
‖y′0,ε‖2L2(Ω).

Combining this with the chain rule in (3.74) (for yε in place of yh) and plugging into (4.7), the proof is concluded,
using again (2.11)–(2.12). �

Proposition 4.5 (Heat-transfer equation). Let (yε, θε) be as in Lemma 4.1. Then, (yε, θε) satisfies (2.22).

Proof. As in the proof of Lemma 3.16, the essential point is to show strong convergence of the strain rates,
namely

∇∂tyh → ∇∂tyε and ∇∆∂tyh → ∇∆∂tyε strongly in L2(I;L2(Ω;Rd×d)), (4.8)

as then one can pass to the limit in each term by using the convergences in (4.1a)–(4.1e). Rearranging the
terms in (3.73), dropping one nonnegative term, and passing to the liminf as h → 0, by the convergences in
Lemma 4.1 we get

lim inf
h→0

(
M(yh(T )) +

ρ

2
−
ˆ T

T−h
‖∂tyh(s)‖2L2(Ω) ds+

ˆ
I

2Rε(yh, ∂tyh, θh) dt
)

≤M(y0,ε) +
ρ

2
‖y′0,ε‖2L2(Ω) + lim

h→0

ˆ
I

ˆ
Ω

f · ∂tyh dx dt− lim
h→0

ˆ
I

ˆ
Ω

∂FW
cpl(∇yh, θh) : ∂t∇yh dxdt

=M(y0,ε) +
ρ

2
‖y′0,ε‖2L2(Ω) +

ˆ
I

ˆ
Ω

f · ∂tyε dxdt−
ˆ
I

ˆ
Ω

∂FW
cpl(∇yε, θε) : ∂t∇yε dx dt. (4.9)

By the convergences in Lemma 4.1 and standard lower semicontinuity arguments we get

lim inf
h→0

M(yh(T )) ≥M(yε(T )),

lim inf
h→0

ˆ
I

2Rε(yh, ∂tyh, θh) dt ≥
ˆ
I

2Rε(yε, ∂tyε, θε) dt,

lim inf
h→0

ρ

2
−
ˆ T

T−h
‖∂tyh(s)‖2L2(Ω) ds ≥ ρ

2
‖∂tyε(T )‖2L2(Ω). (4.10)

For the first two estimates we also refer to [2, Equation (4.15)] and the last one follows from (4.5) and Propo-
sition 4.3. Combining (4.9)–(4.10) with the mechanical energy balance in Lemma 4.4, we conclude that all
inequalities in (4.10) are actually equalities. Then, (4.8) follows exactly as in the final argument of the proof of
Lemma 3.16. �
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Proofs of Theorems 2.2 and 2.3. The weak formulation, the regularity properties of (yε, θε, wε), and the initial
conditions for yε, ∂tyε, wε follow from Lemma 4.1, Proposition 4.3, and Proposition 4.5. The mechanical energy
balance is given in Lemma 4.4.

Concerning (2.24), we observe that by density we can test (2.22) with functions ϕ ∈ W 1,1(I) which are
independent of the space variable x and satisfy ϕ(T ) = 0. For t ∈ (0, T ) fixed, we define the test function ϕ
with ϕ ≡ 1 on (0, t− δ), ϕ ≡ 0 on (t+ δ, T ), and ϕ′ ≡ − 1

2δ on (t− δ, t+ δ). Then, by an integration by parts in

time for the term
´
I
〈∂twε, ϕ〉dt, in the limit δ → 0, (2.22) yields

0 =

ˆ t

0

−
(
ξ(∇yε, ∂t∇yε, θε) + ∂FW

cpl(∇yε, θε) : ∂t∇yε + ε|∂t∇∆yε|2
)

dxdt

− κ
ˆ t

0

ˆ
∂Ω

(θ[ − θε) dHd−1 dt+ lim
δ→0

1

2δ

ˆ t+δ

t−δ

ˆ
Ω

wε dxdt−
ˆ

Ω

w0,ε dx.

As wε ∈ C(I;L2(Ω)) by Lemma 4.1 and [39, Lemma 7.3], we find limδ→0
1
2δ

´ t+δ
t−δ
´

Ω
wε dx ds =

´
Ω
wε(t, x) dx,

which concludes the proof of (2.24). Eventually, (2.25) follows by summation of (2.23) and (2.24). �

5. Vanishing regularization: Proof of Theorem 2.5

This section is devoted to the analysis of the limit of the regularized thermo-elastodynamic system (2.21)–
(2.22) as ε → 0. This will show existence of solutions to the system (2.26)–(2.27), i.e., Theorem 2.5. First,
given initial data y0 ∈ Yid and y′0 ∈ H1

0 (Ω;Rd), we consider suitable regularizations y0,ε ∈ Yreg
id (see (2.20)) and

y′0,ε ∈ H3(Ω;Rd) such that

y0,ε → y0 in W 2,p(Ω;Rd) and y′0,ε → y′0 in H1(Ω;Rd), (5.1)

lim sup
ε→0

4
√
ε‖y0,ε‖H4(Ω) < +∞ . (5.2)

This can be achieved by considering regularizations (ϕε)ε ⊂ C∞c (Ω;Rd) with ϕε → ∆y0 ∈ Lp(Ω;Rd), and
choosing y0,ε ∈ C∞(Ω;Rd) ∩ Yid as the solution to ∆y0,ε = ϕε. Then, ∂ν∆y0,ε = ∆y0,ε = 0 on ∂Ω holds by
construction and (5.1)–(5.2) can be achieved by the elliptic regularity estimate ‖y0,ε− y0‖W 2,p(Ω) ≤ C‖∆(y0,ε−
y0)‖Lp(Ω), see [30, Lemma 9.17].

For every ε > 0, in Theorem 2.2 we have shown the existence of a solution (yε, θε) to the regularized thermo-
elastodynamic system (2.21)–(2.22). In the following lemma, we summarize the compactness properties of such
sequences.

Lemma 5.1. Let (yε, θε) be a sequence of solutions to (2.21)–(2.22) with initial data (y0,ε, y
′
0,ε, θ0) given by

Theorem 2.2. Then, there exists (y, θ) ∈ (L∞(I;Yid) ∩H1(I;H1(Ω;Rd))) × L1(I;W 1,1
+ (Ω)) such that, up to a

subsequence, it holds for any q ∈ (1, 2∗) that

yε
∗
⇀ y weakly* in L∞(I;W 2,p(Ω;Rd)) and weakly in H1(I;H1(Ω;Rd)), (5.3a)

yε → y in L∞(I;W 1,∞(Ω;Rd)) and in L2(I;W 2,p(Ω;Rd)), (5.3b)

∂tyε → ∂ty in L2(I;Lq(Ω;Rd)), (5.3c)

θε ⇀ θ and wε ⇀ w weakly in Lr(I;W 1,r(Ω)) for any r ∈ [1, d+2
d+1 ), (5.3d)

θε → θ and wε → w in Ls(I × Ω) for any s ∈ [1, d+2
d ). (5.3e)

where w := W in(∇y, θ).

Proof. The convergences in (5.3a) and (5.3d)–(5.3e) as well as the first convergence in (5.3b) are obtained ar-
guing as in the proof of Proposition 3.10, relying on the estimates (4.2a)–(4.2e). As for (5.3c), we apply the
Aubin-Lions’ lemma as follows: by (4.2b) we have that ∂tyε is bounded in L2(I;H1(Ω;Rd)) and Proposition 4.3
yields that ∂2

ttyε is bounded in L2(I; (H3(Ω;Rd)∩H1
0 (Ω;Rd))∗). Hence, (5.3c) holds by the compact embedding

H1(Ω;Rd) ⊂⊂ Lq(Ω;Rd) for q < 2∗. The identification w = W in(∇y, θ) follows as in the proof of Proposi-
tion 3.10, cf. also [2, Lemma 4.2]. Note that by (4.3a) and elliptic regularity we follow that yε is bounded in
L2(I;H3(Ω;Rd)). Consequently, yet another application of the Aubin-Lions’ lemma using also the boundedness
of ∂tyε in L2(I × Ω;Rd) shows the second convergence in (5.3b). �
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5.1. The mechanical equation. We recall that the mechanical equation (2.21) is equivalent to the formulation
in (4.6).

Proposition 5.2. Let (y, θ) be as in Lemma 5.1. Then, (y, θ) satisfies (2.26).

Proof. We test (4.6) with z ∈ C∞(I × Ω;Rd) with z = 0 in I × ∂Ω and z(T ) = 0. Thanks to the convergences
in (5.3a)–(5.3e) and to assumptions ((W.1)), ((H.1)) and ((H.3)), ((C.1)), ((D.1)), and (5.1), we have that

ˆ
I

ˆ
Ω

∂FW (∇yε, θε) : ∇z dxdt→
ˆ
I

ˆ
Ω

∂FW (∇y, θ) : ∇z dxdt , (5.4a)

ˆ
I

ˆ
Ω

DH(∆yε) ·∆z dxdt→
ˆ
I

ˆ
Ω

DH(∆y) ·∆z dx dt , (5.4b)

ˆ
I

ˆ
Ω

∂ḞR(∇yε, ∂t∇yε, θε) : ∇z dxdt→
ˆ
I

ˆ
Ω

∂ḞR(∇y, ∂t∇y, θ) : ∇z dx dt , (5.4c)

ˆ
I

ˆ
Ω

∂tyε · ∂tz dxdt→
ˆ
I

ˆ
Ω

∂ty · ∂tz dxdt , (5.4d)

ˆ
Ω

y0,ε · z(0) dx→
ˆ

Ω

y0 · z(0) dx . (5.4e)

In particular, in (5.4b) we have used (5.3b) and in (5.4c) we have exploited the linear structure of ∂ḞR with
respect to ∂tyε. Finally, estimate (4.2b) implies that

ε

ˆ
I

ˆ
Ω

∂t∇∆yε : ∇∆z dxdt→ 0 .

Hence, the pair (y, θ) satisfies (2.26). �

5.2. The heat-transfer equation. We are left to consider the limit as ε → 0 in the heat-transfer equa-
tion (2.22). To this purpose, we now derive a weaker form of the regularized heat equation which is suitable for
the limit procedure. This relies on integration by parts and on the chain rule for the mechanical energy. For
notational convenience, for ψ ∈ C∞(Ω) we define

E(y, θ;ψ) =

ˆ
Ω

(
W el(∇y) +H(∆y) +W in(y, θ)

)
ψ dx. (5.5)

Notice that for the limiting passage we will also crucially use the bounds in (4.3).

Proposition 5.3. For every ε > 0, every ϕ ∈ C∞(I × Ω) of the form ϕ = ψη for ψ ∈ C∞(Ω) and η ∈ C∞(I)
with η(T ) = 0 it holds

0 =

ˆ
I

ˆ
Ω

ηK(∇yε, θε)∇θε · ∇ψ − κ
ˆ
I

ˆ
∂Ω

ηψ (θ[ − θε) dHd−1 dt−
ˆ
I

ˆ
Ω

ψη f · ∂tyε dxdt

−
ˆ
I

∂tη
(
E(yε, θε;ψ) +

ˆ
Ω

ρ

2
|∂tyε|2ψ dx

)
dt− η(0)

(
E(y0,ε, θ0;ψ) +

ˆ
Ω

ρ

2
|y′0,ε|2ψ dx

)
+

ˆ
I

ˆ
Ω

η
(
∂FW (∇yε, θε) + ∂ḞR(∇yε, ∂t∇yε, θε)

)
: (∂tyε ⊗∇ψ) dx dt

−
ˆ
I

ˆ
Ω

η DH(∆yε) · ∂tyε∆ψ dxdt− 2

ˆ
I

ˆ
Ω

η∇(DH(∆yε)) : (∂tyε ⊗∇ψ) dxdt

− ε
ˆ
I

ˆ
Ω

η ∂t∆
2yε ·

(
2∂t∇yε∇ψ + div(∂tyε ⊗∇ψ)

)
dx dt

+ ε

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∂t∇yε∆ψ dx dt− 2ε

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∂t∇yε∇2ψ dxdt. (5.6)

Note that except for the ε-dependent terms this formulation coincides with the one in (2.27).

Proof. For ε > 0, we define z := ηψ∂tyε and, by (4.2b), we note that z ∈ L2(I;H3(Ω;Rd)) and z = 0 in
I × ∂Ω. Recall that ∂2

ttyε ∈ L2(I; (H3(Ω;Rd) ∩ H1
0 (Ω;Rd))∗) by Proposition 4.3. Testing the heat-transfer
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equation (2.22) and performing an integration by parts in time we may write

Π :=

ˆ
I

ˆ
Ω

ηψ ξ(∇yε, ∂t∇yε, θε) dxdt+ ε

ˆ
I

ˆ
Ω

ηψ |∂t∇∆yε|2 dxdt+

ˆ
I

ˆ
Ω

ηψ ∂FW
cpl(∇yε, θε) : ∂t∇yε dxdt

=

ˆ
I

ˆ
Ω

(
ηK(∇yε, θε)∇θε · ∇ψ − ψwε∂tη

)
dx dt− κ

ˆ
I

ˆ
∂Ω

ηψ (θ[ − θε) dHd−1 dt−
ˆ

Ω

w0,εψη(0) dx. (5.7)

Our goal is to rewrite the terms on the left hand side, i.e., Π. To this end, we test the regularized mechanical
equation (2.21) with z = ηψ∂tyε: this yieldsˆ

I

ˆ
Ω

η
(
∂FW

el(∇yε) + ∂FW
cpl(∇yε, θε)

)
: ∇(ψ∂tyε) dx dt+

ˆ
I

ˆ
Ω

η∂ḞR(∇yε, ∂t∇yε, θε) : ∇(ψ∂tyε) dx dt

+ ε

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∇∆(ψ∂tyε) dx dt+

ˆ
I

ˆ
Ω

ηDH(∆yε) ·∆(ψ∂tyε) dxdt

=

ˆ
I

ˆ
Ω

ψη f · ∂tyε dxdt− ρ
ˆ
I

〈
∂2
ttyε, ∂tyε ηψ

〉
dt. (5.8)

We expand the terms on the left-hand side of (5.8) by expanding ∇(ψ∂tyε), ∇∆(ψ∂tyε), and ∆(ψ∂tyε). This
yieldsˆ
I

ˆ
Ω

η
(
∂FW

el(∇yε) + ∂FW
cpl(∇yε, θε)

)
: ∇(ψ∂tyε) dxdt =

ˆ
I

ˆ
Ω

ηψ ∂FW
cpl(∇yε, θε) : ∂t∇yε dxdt+ J0 + J1,

ˆ
I

ˆ
Ω

η∂ḞR(∇yε, ∂t∇yε, θε) : ∇(ψ∂tyε) dxdt =

ˆ
I

ˆ
Ω

ηψ ∂ḞR(∇yε, ∂t∇yε, θε) : ∂t∇yε dx dt+ J2,

ε

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∇∆(ψ∂tyε) dxdt = ε

ˆ
I

ˆ
Ω

ηψ |∂t∇∆yε|2 dxdt+ J3 + J4,

ˆ
I

ˆ
Ω

ηDH(∆yε) ·∆(ψ∂tyε) dxdt =

ˆ
I

ˆ
Ω

ηψDH(∆yε) · ∂t∆yε dx dt+ J5, (5.9)

where for brevity we have written

J0 :=

ˆ
I

ˆ
Ω

ηψ ∂FW
el(∇yε) : ∂t∇yε dxdt,

J1 :=

ˆ
I

ˆ
Ω

η
(
∂FW

el(∇yε) + ∂FW
cpl(∇yε, θε)

)
: (∂tyε ⊗∇ψ) dx dt,

J2 :=

ˆ
I

ˆ
Ω

η ∂ḞR(∇yε, ∂t∇yε, θε) : (∂tyε ⊗∇ψ) dxdt,

J3 := ε

ˆ
I

ˆ
Ω

η ∂t∇∆yε : (∂t∆yε ⊗∇ψ) dxdt,

J4 := ε

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∇(∂t∇yε∇ψ) dx dt+ ε

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∇(div(∂tyε ⊗∇ψ)) dxdt,

J5 :=

ˆ
I

ˆ
Ω

η DH(∆yε) · ∂tyε∆ψ dxdt+ 2

ˆ
I

ˆ
Ω

η DH(∆yε) · ∂t∇yε∇ψ dx dt. (5.10)

Recalling (2.11), we see that the first three terms on the right-hand sides of (5.9) correspond to the terms in
(5.7) whose sum is denoted by Π. This along with (5.8) yields

Π +

4∑
i=0

Ji =

ˆ
I

ˆ
Ω

ψη f · ∂tyε dxdt−
ˆ
I

ˆ
Ω

ηDH(∆yε) ·∆(ψ∂tyε) dxdt− ρ
ˆ
I

〈
∂2
ttyε, ∂tyε ηψ

〉
dt.

Using the last equation in (5.9) and the definition of J0, we get

Π +

5∑
i=1

Ji =

ˆ
I

ˆ
Ω

ψη
(
f · ∂tyε − ∂FW el(∇yε) : ∂t∇yε −DH(∆yε) · ∂t∆yε

)
dxdt− ρ

ˆ
I

〈
∂2
ttyε, ∂tyε ηψ

〉
dt .

(5.11)

Using the chain rule and η(T ) = 0, we rewrite the last term on the right-hand side as

ρ

ˆ
I

〈
∂2
ttyε, ∂tyεψη

〉
dt =

ρ

2

ˆ
I

ˆ
Ω

d

dt
(|∂tyε|2η)ψ dxdt− ρ

2

ˆ
I

ˆ
Ω

ψ|∂tyε|2∂tη dxdt (5.12)

= −ρ
2

ˆ
Ω

ψη(0) |y′0,ε|2 dx− ρ

2

ˆ
I

ˆ
Ω

ψ|∂tyε|2∂tη dxdt.
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By the chain rule for the mechanical energy, see (3.74) (for yε in place of yh), and integration by parts we haveˆ
I

ˆ
Ω

ηψ
(
∂FW

el(∇yε) : ∂t∇yε +DH(∆yε) · ∂t∆yε
)

dx dt =

ˆ
I

η
d

dt

ˆ
Ω

ψ
(
W el(∇yε) +H(∆yε)

)
dxdt

= −
ˆ

Ω

η(0)ψ
(
W el(∇y0,ε) +H(∆y0,ε)

)
dx−

ˆ
I

ˆ
Ω

∂tη ψ
(
W el(∇yε) +H(∆yε)

)
dx dt. (5.13)

Next, we manipulate J3, J4, J5. Recall that ∆yε = 0 and ∂tyε = 0 on ∂Ω for a.e. t ∈ I (see (4.4)) and DH(0) = 0
by (2.4)–(2.5). We perform an integration by parts in J5 to get

J5 =

ˆ
I

ˆ
Ω

η DH(∆yε) · ∂tyε∆ψ dxdt− 2

ˆ
I

ˆ
Ω

η∇(DH(∆yε)) : (∂tyε ⊗∇ψ) dxdt

− 2

ˆ
I

ˆ
Ω

η DH(∆yε) · ∂tyε∆ψ dxdt

= −
ˆ
I

ˆ
Ω

η DH(∆yε) · ∂tyε∆ψ dxdt− 2

ˆ
I

ˆ
Ω

η∇(DH(∆yε)) : (∂tyε ⊗∇ψ) dx dt. (5.14)

By integrating by parts and recalling the boundary conditions ∆∂tyε = ∂ν∆∂tyε = 0 on ∂Ω for a.e. t ∈ I (see
(4.4)), we rewrite J4 as

J4 = −ε
ˆ
I

ˆ
Ω

η ∂t∆
2yε ·

(
∂t∇yε∇ψ + div(∂tyε ⊗∇ψ)

)
dxdt, (5.15)

and, by elementary but tedious computations, J3 can be written as

1

ε
J3 =

ˆ
I

ˆ
Ω

η ∂t∇∆yε : (∂t∆yε ⊗∇ψ) dx dt = −
ˆ
I

ˆ
Ω

η ∂t∆yε ·
(
(∂t∇∆yε∇ψ) + ∂t∆yε∆ψ

)
dxdt

=

ˆ
I

ˆ
Ω

η ∂t∇∆yε :
(
∂t∇2yε∇ψ + ∂t∇yε∆ψ

)
dx dt+

ˆ
I

ˆ
Ω

η ∂t∆yε ·
(
∂t∇2yε∇2ψ + ∂t∇yε∇∆ψ

)
dxdt

= −
ˆ
I

ˆ
Ω

η ∂t∆
2yε · (∂t∇yε∇ψ) dxdt+

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∂t∇yε∆ψ dxdt

− 2

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∂t∇yε∇2ψ dxdt . (5.16)

Recalling the definition in (5.5) and combining (5.7) with (5.10)–(5.16) we obtain the statement. More precisely,
(5.12) and (5.13) contribute to the second line in (5.6), the third line corresponds to J1 + J2 (see (5.10)) and
the last three lines correspond to J3 + J4 + J5 (see (5.14)–(5.16)). �

We are now in a position to pass to the limit as ε→ 0 in the modified heat-transfer equation (5.6). This will
conclude the proof of Theorem 2.5.

Proposition 5.4. Let (y, θ) be given by Lemma 5.1. Then, (y, θ) satisfies (2.27).

Proof. In order to show (2.27), by a density argument it suffices to consider test functions of the form ϕ = ψη
for ψ ∈ C∞(Ω) and η ∈ C∞(I) with η(T ) = 0. We test (5.6) with ϕ and pass to the limit term by term.

Thanks to the convergences stated in Lemma 5.1, the estimates (4.2)–(4.3), and the assumptions (W.1)–
(W.3), (H.1)–(H.3), (C.1)–(C.5), (D.1)–(D.2), and (5.1), we have that each of the terms in the first three lines
of (5.6) converges to the respective term in the first three lines of (2.27) (with ηψ in place of ϕ). Here, we
againg exploit that ∂ḞR is linear in the second entry, cf. (D.1). Therefore, it suffices to show

lim
ε→0

( ˆ
I

ˆ
Ω

η DH(∆yε) · ∂tyε∆ψ dxdt+ 2

ˆ
I

ˆ
Ω

η∇(DH(∆yε)) : (∂tyε ⊗∇ψ) dx dt
)

=

ˆ
I

ˆ
Ω

η DH(∆y) · ∂ty∆ψ dxdt+ 2

ˆ
I

ˆ
Ω

η∇(DH(∆y)) : (∂ty ⊗∇ψ) dxdt, (5.17)

lim
ε→0

ε

ˆ
I

ˆ
Ω

η ∂t∆
2yε ·

(
2∂t∇yε∇ψ + div(∂tyε ⊗∇ψ)

)
dxdt = 0, (5.18)

lim
ε→0

(
ε

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∂t∇yε∆ψ dx dt− 2ε

ˆ
I

ˆ
Ω

η ∂t∇∆yε : ∂t∇yε∇2ψ dxdt
)

= 0. (5.19)
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We start with (5.17). Recalling that ∂tyε converges strongly in L2(I;Lp(Ω;Rd)) by (5.3c) (recall p < 6 for
d = 3), the key point is to show the strong (resp. weak) convergence of DH(∆yε) (resp. ∇(DH(∆yε))) in

L2(I;Lp
′
(Ω)). Since yε → y in L2(I;W 2,p(Ω;Rd)) (cf. (5.3b)), we infer by (H.3) that

η DH(∆yε) → ηDH(∆y) in L2(I;Lp
′
(Ω;Rd)). (5.20)

In view of (4.3b), by weak compactness we also have that

η∇(DH(∆yε)) ⇀ η∇(DH(∆y)) in L2(I;Lp
′
(Ω;Rd×d)). (5.21)

Now, (5.20)–(5.21) along with (5.3c) show (5.17).
Eventually, by Hölder’s inequality, we get that∣∣∣∣ ˆ

I

ˆ
Ω

η ∂t∆
2yε ·

(
2∂t∇yε∇ψ + div(∂tyε ⊗∇ψ)

)
dx dt

∣∣∣∣
≤ C‖∂t∆2yε‖L2(I×Ω)

(
‖η∇ψ‖L∞(Ω) + ‖η∇2ψ‖L∞(Ω)

)(
‖∂tyε‖L2(I×Ω) + ‖ ∂t∇yε‖L2(I×Ω)

)
,∣∣∣∣ˆ

I

ˆ
Ω

η ∂t∇∆yε :
(
2∂t∇yε∇2ψ − ∂t∇yε∆ψ) dx dt

∣∣∣∣
≤ C‖∂t∇∆yε‖L2(I×Ω)‖η∇2ψ‖L∞(Ω)‖∂t∇yε‖L2(I×Ω) .

Thus, we infer from (4.2b) and (4.3c) (recall % < 1) that (5.18)–(5.19) hold. This concludes the proof. �

Proof of Theorem 2.5. The weak formulation follows from Propositions 5.2 and 5.4. We deduce the regularity

y ∈ L2(I;H3(Ω;Rd)) and (1 + |∆y|)
p−2
2 |∇∆y|2 ∈ L2(I × Ω) by the bound (4.3a) and lower semicontinuity of

norms as ε→ 0, again applying an elliptic regularity estimate. �
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Appendix A. A special case of elliptic regularity

We formulate and prove the lemma used in Subsection 3.3.

Lemma A.1 (A special case of elliptic regularity). Consider the Banach space X := W 2,q(Ω;Rd) ∩H1
0 (Ω;Rd)

for some q > 1. Moreover, let u ∈ H3(Ω;Rd) ∩H1
0 (Ω;Rd) and g ∈ X∗ be such that for all z ∈ C∞(Ω;Rd) with

z = 0 on ∂Ω it holds that ˆ
Ω

∇∆u : ∇∆z = 〈g, z〉, (A.1)

where 〈·, ·〉 denotes the dual pairing between X and X∗. Then, the following holds true:

(a) We have that u ∈W 4,q′(Ω;Rd) with

‖u‖W 4,q′ (Ω) ≤ C‖g‖X∗ + C|µ| (A.2)

for a constant C > 0 only depending on Ω, where µ := −́
Ω

∆udx. Moreover, the following boundary
condition holds true:

∂ν∆u = 0 Hd−1-a.e. on ∂Ω. (A.3)
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(b) If we additionally have g ∈ H−1(Ω;Rd), then u ∈ H5(Ω;Rd) with

‖u‖H5(Ω) ≤ C‖g‖H−1(Ω) + C|µ|, (A.4)

satisfying the boundary condition

∆2u = 0 Hd−1-a.e. on ∂Ω. (A.5)

Proof. Step 1 (W 4,q′-regularity): Using (A.1) and integrating by parts we see that for all z ∈ C∞(Ω;Rd) with
z = ∂ν∆z = 0 on ∂Ω it holds that

〈g, z〉 =

ˆ
Ω

∇∆u : ∇∆z dx = −
ˆ

Ω

∆u ·∆2z dx+

ˆ
∂Ω

∆u · ∂ν∆z dHd−1 = −
ˆ

Ω

∆u ·∆2z dx. (A.6)

By representation of the dual space we find G,Gj , Gij ∈ Lq
′
(Ω;Rd) such that

〈g, z〉 =

ˆ
Ω

G · z dx+

d∑
j=1

Gj · ∂jz dx+

d∑
i,j=1

Gij · ∂2
ijz dx (A.7)

with ‖G‖Lq′ (Ω)+
∑d
j=1 ‖Gj‖Lq′ (Ω)+

∑d
i,j=1 ‖Gij‖Lq′ (Ω) ≤ C‖g‖X∗ . We approximateG, Gj , andGij by sequences

Gk, Gkj , G
k
ij ∈ C∞c (Ω;Rd) converging to the respective functions in Lq

′
(Ω;Rd). We set

gk := Gk −
d∑
j=1

∂jG
k
j +

d∑
i,j=1

∂2
ijG

k
ij ,

and let vk ∈ H1
0 (Ω;Rd) be the weak solution to{−∆vk = gk in Ω,

vk = 0 on ∂Ω.

In particular, by integration by parts, for all z ∈ C∞(Ω;Rd) with z = 0 on ∂Ω it holds that

ˆ
Ω

vk ·∆z dx = −
ˆ

Ω

gk · z dx = −
ˆ

Ω

(
Gk · z +

d∑
j=1

Gkj · ∂jz +

d∑
i,j=1

Gkij · ∂2
ijz
)

dx. (A.8)

Moreover, let wk ∈ H1
0 (Ω;Rd) be the weak solution to{

∆wk = |vk|
2−q
q−1 vk in Ω,

wk = 0 on ∂Ω.

As Ω has C5-boundary, by elliptic regularity we see that wk ∈W 2,q(Ω;Rd) with

‖wk‖W 2,q(Ω) ≤ C‖|vk|
2−q
q−1 vk‖Lq(Ω) = C‖vk‖1/(q−1)

Lq′ (Ω)
,

where the constant C only depends on Ω. With (A.8), this shows

‖vk‖q
′

Lq′ (Ω)
=

ˆ
Ω

vk ·∆wk dx = −
ˆ

Ω

gk · wk dx

≤ C
(
‖Gk‖Lq′ (Ω) +

d∑
j=1

‖Gkj ‖Lq′ (Ω) +

d∑
i,j=1

‖Gkij‖Lq′ (Ω)

)
‖wk‖W 2,q(Ω)

≤ C‖g‖X∗‖vk‖1/(q−1)

Lq′ (Ω)
. (A.9)

Consequently, there exists v ∈ Lq′(Ω;Rd) such that, up to selecting a subsequence, vk ⇀ v weakly in Lq
′
(Ω;Rd).

Passing to the limit k →∞ in (A.8) and (A.9), and recalling (A.7), we discover that v satisfiesˆ
Ω

v ·∆z dx = −〈g, z〉, (A.10)

‖v‖Lq′ (Ω) ≤ C‖g‖X∗ , (A.11)

for all z ∈ C∞(Ω;Rd) with z = 0 on ∂Ω. Now, let w ∈ H1(Ω;Rd) with −́
Ω
w dx = 0 be the weak solution to{

∆w = v −m in Ω,

∂νw = 0 on ∂Ω,
(A.12)
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with m := −́
Ω
v dx, i.e.,

´
Ω
w dx = 0 and −

´
Ω
∇w : ∇z dx =

´
Ω

(v −m) · z dx for all z ∈ H1(Ω;Rd). As Ω has

C5-boundary and v ∈ Lq′(Ω;Rd), by elliptic regularity (see for instance [34, Chapter 2, Section 5]) and (A.11)

we derive that w ∈W 2,q′(Ω;Rd) (i.e., (A.12) holds in a pointwise sense) and

‖w‖W 2,q′ (Ω) ≤ C‖v −m‖Lq′ (Ω) ≤ C‖g‖X∗ . (A.13)

Consequently, for z with z = ∂ν∆z = 0 on ∂Ω we derive, due to ∂νw = 0 for Hd−1-a.e. point in ∂Ω, (A.10),
and (A.12) thatˆ

Ω

w ·∆2z dx = −
ˆ

Ω

∇w : ∇∆z dx+

ˆ
∂Ω

w · ∂ν∆z dHd−1 =

ˆ
Ω

∆w ·∆z dx−
ˆ
∂Ω

∂νw ·∆z dHd−1

=

ˆ
Ω

v ·∆z dx−
ˆ

Ω

m ·∆z dx = −〈g, z〉 −
ˆ

Ω

m ·∆z dx .

Using (A.6) we get ˆ
Ω

(∆u− w) ·∆2z dx = 0 (A.14)

for all z ∈ C∞(Ω;Rd) with z = ∂ν∆z = 0 at Hd−1-a.e. point in ∂Ω and −́
Ω

∆z dx = 0. We now show that ∆u−w
constant a.e. in Ω. To this end, let ϕ ∈ C∞(Ω;Rd) with −́

Ω
ϕdx = 0 be arbitrary. As Ω has C5-boundary, by

elliptic regularity we can find z̃ ∈ H2(Ω;Rd) such that −́
Ω
z̃ dx = 0 and{−∆z̃ = ϕ in Ω,

∂ν z̃ = 0 on ∂Ω,

and, subsequently, we can find z ∈ H4(Ω;Rd) satisfying{−∆z = z̃ in Ω,

z = 0 on ∂Ω.

Consequently, with (A.14) this leads to
´

Ω
(∆u−w) ·ϕdx = 0, and by the arbitrariness of ϕ to ∆u−w constant

a.e. in Ω. As −́
Ω
w dx = 0, we get ∆u − w = µ = −́

Ω
∆udx. We let ν ∈ H1

0 (Ω;Rd) such that ∆ν = µ. As by

assumption u ∈ H1
0 (Ω;Rd) and Ω has C5-boundary, and since w ∈ W 2,q′(Ω;Rd), by elliptic regularity we see

that u ∈W 4,q′(Ω;Rd) and

‖u− ν‖W 4,q′ (Ω) ≤ C‖∆u− µ‖W 2,q′ (Ω) = C‖w‖W 2,q′ (Ω).

This along with (A.13) and the elliptic regularity estimate ‖ν‖W 4,q′ (Ω) ≤ C‖∆ν‖W 2,q′ (Ω) ≤ C|µ| shows (A.2).

Finally, (A.3) directly follows from ∆u− w constant and (A.12). This concludes the proof of (a).
Step 2 (H5-regularity): From now on, we assume that g ∈ H−1(Ω;Rd). Since then also g ∈ H∗, Step 1 yields

u ∈W 4,q′(Ω;Rd). Thus, we can integrate by parts in (A.1) and use (A.3) to derive

− 〈g, z〉 = −
ˆ

Ω

∇∆u : ∇∆z dx =

ˆ
Ω

∆2u : ∆z dx−
ˆ
∂Ω

∂ν∆u ·∆z dHd−1 =

ˆ
Ω

∆2u : ∆z dx (A.15)

for all z ∈ C∞(Ω;Rd) with z = 0 on ∂Ω, where 〈·, ·〉 now denotes the dual pairing between H1
0 (Ω;Rd) and

H−1(Ω;Rd). Let v ∈ H1
0 (Ω;Rd) be the weak solution to{−∆v = g in Ω,

v = 0 on ∂Ω.
(A.16)

In particular, we have with Poincaré’s inequality that

‖v‖2H1(Ω) ≤ C‖∇v‖
2
L2(Ω) = 〈g, v〉 ≤ ‖g‖H−1(Ω)‖v‖H1(Ω). (A.17)

Furthermore, for all z ∈ C∞(Ω;Rd) with z = 0 on ∂Ω it holds that

−〈g, z〉 = −
ˆ

Ω

∇v : ∇z dx =

ˆ
Ω

v ·∆z −
ˆ
∂Ω

v · ∂νz dHd−1 =

ˆ
Ω

v ·∆z. (A.18)

Subtracting this from (A.15), we arrive at ˆ
Ω

(∆2u− v) ·∆z dx = 0

for all z ∈ C∞(Ω;Rd) with z = 0 on ∂Ω. By an argument similar to the one from Step 1 this leads to ∆2u = v
a.e. in Ω. This also shows

´
Ω
v dx =

´
∂Ω
∂ν∆udHd−1 = 0 by (A.3). Then, in view of (A.3) and (A.17), we derive
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by elliptic regularity for Neumann problems (see for instance [34, Chapter 2, Section 5]) that ∆u ∈ H3(Ω;Rd)
such that

‖∆u− µ‖H3(Ω) ≤ C‖v‖H1(Ω) ≤ C‖g‖H−1(Ω),

where as before µ = −́
Ω

∆udx. Hence, as u = 0 for Hd−1-a.e. point on ∂Ω and Ω has C5-boundary, yet another

application of elliptic regularity leads to u ∈ H5(Ω;Rd) and the bound (A.4). Then, (A.5) follows from ∆2u = v
a.e. in Ω and (A.16). �
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