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Abstract. We study a nonlocal Cahn-Hilliard model for a multicomponent mixture with cross-
diffusion effects and degenerate mobility. The nonlocality is described by means of a symmetric

singular kernel. We define a notion of weak solution adapted to possible degeneracies and prove, as

our first main result, its global-in-time existence. The proof relies on an application of the formal
gradient flow structure of the system (to overcome the lack of a-priori estimates), combined with an

extension of the boundedness-by-entropy method, in turn involving a careful analysis of an auxiliary
variational problem. This allows to obtain solutions to an approximate, time-discrete system. Letting

the time step size go to zero, we recover the desired nonlocal weak solution where, due to their low

regularity, the Cahn-Hilliard terms require a special treatment. Finally, we prove convergence of
solutions for this class of nonlocal Cahn-Hilliard equations to their local counterparts.

1. Introduction

In this work we study a nonlocal Cahn-Hilliard model with degenerate mobility for a multicomponent
mixture where cross-diffusion effects between the different species of the system are taken into account,
and where the species do separate from each other. The motivation for considering such a model
stems from multiphase systems modelling isothermal phase separation of miscible entities occupying
an isolated region Ω ⊂ Rd (d = 1, 2, 3), cf. [21] and the references therein. We consider a cross-diffusion
system that models the interactions between n + 1 species, n ∈ N \ {0}, in which all the species do
separate from the others in a nonlocal way. More precisely, let Ω be the d-dimensional flat torus of
Rd, d = 2, 3 (which corresponds to imposing periodic boundary conditions), and let T > 0 be some
final time. We assume that the n+ 1 species in the mixture occupy the spatial domain Ω and for all
i = 0, . . . , n, we denote by ui(t, x) the volume fraction of the ith species at time t ∈ [0, T ] and point
x ∈ Ω and set u := (u0, u1, . . . , un). Given a small parameter ε > 0 which accounts for the radius of
the nonlocal interactions, we denote by uε = (uε,0, . . . , uε,n) the nonlocal counterpart to u.

We are then interested in the existence of weak solutions to the following system of cross-diffusion
equations with nonlocal Cahn-Hilliard interactions

∂tuε = div (M(uε)∇µε) , (1.1)

such that

0 ≤ uε,i(t, x) ≤ 1 for every i = 0, . . . , n and

n∑
i=0

uε,i(t, x) = 1 for a.e. (t, x) ∈ [0, T ]× Ω.

Here, for all uε ∈ Rn+1
+ , M(uε) ∈ R(n+1)×(n+1) is a degenerate mobility matrix whose precise expres-

sion is given in Section 2, while µε is the chemical potential, defined as

µε = DuεENL(uε),

for ENL given by

ENL(uε) :=

n∑
i=0

∫
Ω

ui lnuε,i−uε,i+1 dx+
1

4

n∑
i,j=0

∫
Ω

∫
Ω

cijKε(x, y)(uε,i(x)−uε,i(y))(uε,j(x)−uε,j(y)) dxdy,

(1.2)
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where Kε are L1 and symmetric convolution kernels and C = (cij)ij ∈ R(n+1)×(n+1) is a positive
semidefinite matrix, see Section 2 for their definitions. Note that the logarithmic terms in this energy
functional account for diffusion while the second integral is responsible for nonlocal phase separation.
In the case when Kε ≡ 0, system (1.1) boils down to a multi-species degenerate cross-diffusion system
with size exclusion that was studied for example in [9, 3, 5, 12]. The local counterpart to (1.1), namely
system

∂tu = div (M(u)∇µ) , (1.3)

is driven by the local energy functional EL given by

EL(u) :=

n∑
i=0

∫
Ω

ui lnuε,i − uε,i + 1 dx+
1

2

n∑
i,j=0

∫
Ω

cij∇ui · ∇uj dx. (1.4)

Indeed, as ε→ 0, it formally holds that

1

4

n∑
i,j=0

∫
Ω

∫
Ω

cijKε(x, y)(ui(x)− ui(y))(uj(x)− uj(y)) dxdy → 1

2

n∑
i,j=0

∫
Ω

cij∇ui · ∇uj dx.

The main goals of our paper are to show existence of solution to the non-local system (1.1) as well
as convergence of the non-local to the local equations. Before we proceed, let us put our work into
perspective with respect to previous results.

Cross-diffusion systems with size exclusion. Systems of partial differential equations with cross-diffusion
have gained a lot of interest in recent years [27, 13, 14, 28, 23] and appear in many applications, for
instance the modeling of population dynamics of multiple species [10] or cell sorting or chemotaxis-like
applications [31, 32]. One major difficulty in the analysis of such strongly coupled systems is the lack of
a priori estimates, an issue that can be overcome by the boundedness-by entropy method if the system
has the so called formal gradient flow structure, see [9, 23] for a more detailed presentation.

Cross-diffusion systems with Cahn-Hilliard contributions. These kind of systems has been recently
studied in [19], see also [23] for a different choice of mobility, and describes the evolution of a multi-
component mixture where cross-diffusion effects between the different species are taken into account,
and (in this particular case) where only one species does separate from the others. This is motivated
by multiphase systems where miscible entities may coexist in one single phase, see [26, 36] for exam-
ples. Within this phase, cross-diffusion between the different species is taken into account in order to
correctly account for finite size effects that may occur at high concentrations.

Nonlocal Cahn-Hilliard equations. A nonlocal model for phase separation was originally proposed in
[22]. Ever since the works [29, 17], the literature on nonlocal-to-local convergence of Cahn-Hilliard
models has bloomed. We refer to [16, 1, 20] for an overview of the most recent developments.

Nonlocal cross-diffusion equations. Nonlocal interaction equations are continuum models for large sys-
tems of particles where every single particle can interact not only with its immediate neighbors but
also with particles far away. These equations have a wide range of applications. In biology they are
used to model the collective behavior of a large number of individuals [30], in physics they are used in
models describing the evolution of vortex densities in superconductors [35], and they appear in sim-
plified inelastic interaction models for granular media [4]. In their simplest form, nonlocal interaction
equations can be written as

∂σ

∂t
+ div(σr) = 0, r = −∇W ∗ σ, (1.5)

where σ(t, x) is the probability or a mass density of particles at time t and at location x ∈ RN ,
W : RN → R is the interaction potential and r(t, x) is the velocity of the particles. It is by now well
understood, see for example [2], that equation (1.5) is a gradient flow of the interaction energy

E(σ) =
1

2

∫∫
RN×RN

W (x− y) dσ(x)dσ(y)
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with respect to the 2-Wasserstein distance. Thus, stable steady states of (1.5) are expected to be local
minimizers of the interaction energy. Much less is known however in the case of multi-species systems,
which received most attention only recently. With different species, the modeling leads to nonlinear
degenerate cross-diffusion systems for the densities of all species, again with some nonlocal terms. First
rigorous studies of stationary problems show interesting phase separation phenomena, whose dynamics
seems rather unexplored so far [11, 15]. In [6] the authors study a nonlocal cross-diffusion model for
two species, which can be derived from a lattice-based microscopic model with size exclusion. In order
to see the inherent phase separation in their model, they rewrite it as a system of nonlocal Cahn-
Hilliard equations by means of a nonlocal Laplacian defined as a negative semidefinite operator. For
the complementary setting in which the diffusion is driven by a local operator but further nonlocalities
arising, e.g., in the mean-field limit of stochastic PDEs in the neurosciences, we refer to the two recent
contributions [24, 25].

Degenerate cross-diffusion systems with nonlocal terms. Concerning nonlinear degenerate systems with
non-local terms, very little is known on the dynamics, which seems rather unexplored so far [11, 15].
In [6] the authors study a nonlocal cross-diffusion model for two species, which can be derived from a
lattice-based microscopic model with size exclusion. In order to see the inherent phase separation in
their model, they rewrite it as a system of nonlocal Cahn-Hilliard equations by means of a nonlocal
Laplacian defined as a negative semidefinite operator.

Contribution and structure of the paper. In this article we combine ideas mainly coming from
[17] and [19] and prove the existence of global weak solutions to system (1.1) with energy (1.2) and
supplemented with appropriate initial- and boundary conditions and then show that this solution, in
the limit ε→ 0, converges to a solution to the local counterpart of (1.1).

The novelty of our work is threefold.

(a) This is, to the best of our knowledge, the first attempt to combine degenerate cross-diffusion
system with non-local Cahn-Hilliard contributions.

(b) We are able to treat an energy that involves non-local Cahn-Hilliard terms acting on all species.
Note that this requires an appropriate definition of weak solutions and a careful analysis when
performing the limit of an approximate time-discrete non-local system, as the non-local terms
yield less regularity in the a-priori estimates than their local counterparts.

(c) We apply the generalzed boundedness-by-entropy method exploited in [19] to this non-local
context.

This manuscript is organized as follows. In Section 2, we provide the setting of the problem,
introduce our notion of weak solutions and state the main existence theorems. The proof in the non-
local case is based on the introduction of a regularized time discrete approximate problem, depending
on a positive time step τ , which is presented in Section 3. We derive a priori estimates and prove the
existence of time-discrete iterates via a Schauder fixed point argument. Then we recover some regularity
properties and exploit them to pass to the limit as the time step τ → 0 and obtain a solution to the
nonlocal system (1.1). Then, in Section 4 we show that the a-priori estimates previously obtained
actually do not depend on the non-local parameter ε, which gives us enough regularity to pass to the
limit as ε→ 0 and recover a solution to the local system (1.3).

2. Setting of the problem and main results

In this section we specify our setting, provide the notions of non-local and local weak solutions, and
state the main results.

2.1. Formulation of the model. Let Ω ⊂ Rd, d = 2, 3, be the d-dimensional flat torus (this corre-
sponds to imposing periodic boundary conditions) and let ui = ui(t, x), i = 0, 1, . . . , n, be the volume
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fractions of different atomic species that occupy the volume of Ω at the time t > 0. Furthermore, for
every ε > 0 we consider the following family of convolution kernels,

Kε(x, y) :=
ρε(|x− y|)
|x− y|2

, (2.1)

where (ρε)ε ⊂ L1
loc(0,+∞) is a suitable sequence of C∞-maps satisfying the following properties (see

[34, 33]): ρε : R → [0,+∞) is defined as ρε(r) :=
1
εd
ρ(r/ε), with ρ ∈ C∞

c (0,diam(Ω)) such that∫ +∞

0

ρ(r)rd−3 dr < +∞,

∫ +∞

0

ρ(r)rd−1 dr =
2∫

Sd−1 |σ · e1| dHd−1(σ)
.

Note that under these assumptions Kε ∈ L1(Ω×Ω) and Kε(x, y) = Kε(y, x) for almost every x, y ∈ Ω.
Set uε = uε(t, x) := (uε,0, uε,1, . . . , uε,n). We are interested in the existence of weak solutions to

the following system

∂tuε = div (M(uε)∇µε) , (2.2)

where the above expression is to be understood in the sense that ∂tuε,i = div(M(uε)∇µε)i for i =
0, . . . , n, and such that

0 ≤ ui,ε(t, x) ≤ 1 and

n∑
i=0

ui,ε(t, x) = 1 for all i = 0, . . . , n and a.e. (t, x) ∈ [0, T ]× Ω. (2.3)

Note that M(·)∈ R(n+1)×(n+1) in (2.2) is a degenerate mobility matrix with components

Mij(uε) := −Lijuε,iuε,j ∀ i ̸= j = 0, . . . , n,

Mii(uε) :=
∑

0≤j ̸=i≤n

Lijuε,iuε,j ∀ i = 0, . . . , n, (2.4)

with Lij > 0 such that Lij = Lji, for all i ̸= j = 0, . . . , n, while µε is the chemical potential, defined
formally as

µε := DuεENL(uε),

where Duε
ENL(uε) denotes the variational derivative of the functional

ENL(uε) :=

∫
Ω

F (uε) dx+
1

4

n∑
i,j=0

∫
Ω

∫
Ω

cijKε(x, y)(uε,i(x)− uε,i(y))(uε,j(x)− uε,j(y)) dxdy, (2.5)

with

F (uε) =
n∑

i=0

(uε,i lnuε,i − uε,i + 1).

This in particular gives

µε,i = Duε,i
E(uε) = lnuε,i +

n∑
j=0

cij
(
(Kε ∗ 1)uε,j −Kε ∗ uε,j

)
=: lnuε,i +

n∑
j=0

cijBε(uε,j),

(2.6)

for all i = 0, . . . , n, so that µε = (µε,0, . . . , µε,n), while the properties of the operator Bε(v) =
(Kε ∗ 1)v −Kε ∗ v are as in [17, Section 2.2]. Note that we set

(Kε ∗ 1)(x) =
∫
Ω

Kε(x, y) dy as well as (Kε ∗ v)(x) =
∫
Ω

Kε(x, y)v(y) dy.

Under the previous assumptions on the interaction kernels, it was shown in [17, Proof of Theorem
2.2] that the following result holds true.
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Lemma 2.1. Let (vε)ε ⊂ H1(0, T ; (H1)(Ω)′) ∩ L2(0, T ;H1(Ω)) be such that

∥vε∥H1(0,T ;(H1)(Ω)′)∩L2(0,T ;H1(Ω)) + ∥Bε(vε)∥L2(0,T ;(H1)(Ω)′) ≤ C.

Then, up to subsequences,

vε → v weakly in H1(0, T ; (H1)(Ω)′) ∩ L2(0, T ;H1(Ω)),

Bε(vε) → ∆v weakly in L2(0, T ; (L2)(Ω)).

Finally, the matrix C = (cij)i,j=0,...,n has the following properties

(i) C is symmetric and positive semidefinite;
(ii) cii > 0 for all i = 0, . . . , n;
(iii) There holds

(n− 1) sup
0≤j ̸=i≤n

|cij | ≪ min
0≤i≤n

cii. (2.7)

Then, system (2.2) can be written in the scalar form

∂tuε,i = div
(
(M(uε)∇µε)i

)
,

= div
( ∑

0≤j ̸=i≤n

Lijuε,iuεj∇(µε,i − µε,j)
)

= div
( ∑

0≤j ̸=i≤n

Lij

[
uε,j∇uε,i − uε,i∇uε,j + uε,iuε,j∇

( n∑
k=0

cikBε(uε,k)−
n∑

l=0

cjlBε(uε,j)
)])

= div
( ∑

0≤j ̸=i≤n

Lij

[
uε,j∇uε,i − uε,i∇uε,j + uε,iuε,j∇(qi(uε)− qj(uε))

])
,

for all i = 0, . . . , n, where

qi(uε) :=

n∑
k=0

cikBε(uε,k) ∀ i = 0, . . . , n. (2.8)

For all i ̸= j = 0, . . . , n we denote the part of the flux caused by the non-local contributions as

Jε,ij := uε,iuε,j∇(qi(uε)− qj(uε)),

and set Jε := (Jε,ij)ij . Finally, let u
0
ε = (u0ε,0, . . . , u

0
ε,n) be an initial condition such that

u0ε,i(x) ≥ 0 for all i = 0, . . . , n,

n∑
i=0

u0ε,i(x) = 1, a.e. in Ω. (2.9)

For every ε > 0, we then look for a solution (uε, Jε) to the following problem

∂tuε,i = div
( ∑

0≤j ̸=i≤n

Lij

[
uε,j∇uε,i − uε,i∇uε,j + Jε,ij

])
in Ω× (0, T ),

n∑
i=0

uε,i = 1 in Ω× (0, T ),

Jε,ij = uε,iuε,j∇(qi(uε)− qj(uε)) in Ω× (0, T ),

uε,i(· , 0) = u0ε,i in Ω,

(2.10)

for all i = 0, . . . , n. Similarly, for the local system, if u0 is an initial condition such that

u0i (x) ≥ 0 for all i = 0, . . . , n,

n∑
i=0

u0i (x) = 1 a.e. in Ω,
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by u we indicate a solution to the following local problem

∂tui = div
( ∑

0≤j ̸=i≤n

Lij

[
uj∇ui − ui∇uj + uiuj∇(∆ui −∆uj)

])
in Ω× (0, T ),

n∑
i=0

ui = 1 in Ω× (0, T ),

ui(· , 0) = u0i in Ω.

(2.11)

2.2. Notions of weak solution and statement of main results. In this subsection we state the
main results of the paper. The idea is to pursue the following goals:

(1) To show that system (2.10) admits at least a weak solution uε in a suitable sense that will be
specified below;

(2) To show that, since (Kε ∗ 1)v − (Kε ∗ v) → −∆v as ε → 0+, solutions to (2.10) converge to
solutions to (2.11).

Definition 2.2 (Solution to the nonlocal system). Let ε > 0 and T > 0 be fixed and let u0
ε ∈ H1(Ω)

be an initial condition satisfying (2.9). We say that (uε, Jε) =
(
(uε,i)i∈{0,...,n}, (Jε,ij)ij∈{0,...,n}

)
is a

solution to the nonlocal system (2.10) if

(1NL) 0 ≤ uε,i ≤ 1 for all i = 0, . . . , n and

n∑
i=0

uε,i = 1 a.e. in Ω× (0, T );

(2NL) uε,i ∈ L2(0, T ;H1(Ω)) and ∂tuε,i ∈ L2(0, T ;H1(Ω)′) for all i = 0, . . . , n;
(3NL) uε,i(· , 0) = u0ε,i for all i = 0, . . . , n;

(4NL) Jε,ij ∈ L2((0, T )× Ω)d;
(5NL) Jε,ij = uε,iuε,j∇(qi(uε)− qj(uε)) in the following weak sense∫ T

0

∫
Ω

Jε,ij · η dxdt = −
∫ T

0

∫
Ω

div(uε,iuε,jη)(qi(uε)− qj(uε)) dxdt

for every η ∈ L2(0, T ;H1(Ω)d) ∩ L∞((0, T )× Ω;Rd), with η · n = 0 on ∂Ω;
(6NL) for every i = 0, . . . , n and every φi ∈ L2(0, T ;H1(Ω)) there holds∫ T

0

⟨∂tuε,i, φi⟩H1(Ω)′,H1(Ω) dt = −
∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Lij

[
uε,j∇uε,i − uε,i∇uε,j + Jε,ij

]
· ∇φi dxdt.

Our first result is to show global-in-time existence of such solutions.

Theorem 2.3. Let u0
ε ∈ L∞(Ω)n+1 be such that u0ε,i ≥ 0 for all i = 0, . . . , n and

n∑
i=0

u0ε,i ≤ 1. Then,

there exists a solution (uε, Jε) to (2.10) in the sense of Definition 2.2.

For the proof of Theorem 2.3 we refer to Section 3 below.

Definition 2.4 (Solution to the local system). Let T > 0 be fixed and let u0 ∈ H1(Ω) be an initial
condition. We say that u = (u0, . . . , un) is a solution to the local system (2.11) if

(1L) 0 ≤ ui ≤ 1 for all i = 0, . . . , n and

n∑
i=0

ui = 1 a.e. in Ω× (0, T );

(2L) ui ∈ L2(0, T ;H2(Ω)), ∂tui ∈ L2(0, T ;H2(Ω)′) as well as

uiuj∇(∆ui −∆uj) ∈ L2(0, T ;L2(Ω))

for all i, j = 0, . . . , n;
(3L) ui(· , 0) = u0i for all i = 0, . . . , n;
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(4L) for every i = 0, . . . , n and every φi ∈ L2(0, T ;H1(Ω)) there holds∫ T

0

⟨∂tui, φi⟩H2(Ω)′,H2(Ω) dt

= −
∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Lij

[
uj∇ui − ui∇uj + uiuj∇(∆ui −∆uj)

]
· ∇φi dxdt.

(2.12)

Our second main result concerns nonlocal-to-local convergence of solutions.

Theorem 2.5. Let ε > 0, and let u0
ε ∈ H1(Ω) be such that u0

ε satisfies (1NL) in Definition 2.2
and u0

ε → u0 in H2(Ω)′, with u0 ∈ H1(Ω). Let uε be a solution to the nonlocal system in the
sense of Definition 2.2 and such that (4.1)–(4.5) are satisfied. Then, up to subsequences, there exists
u ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)′), with u(0, x) = u0 and such that

uε,i → ui weakly in L2(0, T ;H1(Ω)) and weakly in H1(0, T ;H1(Ω)′) (2.13)

Bε(uε,i) → ∆ui weakly in L2(0, T ;L2(Ω)) (2.14)

and ui is a solution to the local system in the sense of Definition 2.4.

The proof of Theorem 2.5 is the focus of Section 4.

3. Existence of nonlocal solutions

This section is devoted to the proof of Theorem 2.3 whose starting point is a, still non-linear, regu-
larized time-discrete scheme. Existence of iterates is guaranteed by a fixed-point argument involving
the chemical potentials as unknowns. Finally, using the fact that the formal gradient flow structure of
the system is preserved in the discrete scheme, we obtain a-priori estimates on the iterates which are
sufficient to pass to the limit as τ → 0+ and recover the desired weak solution.

Let us emphasize the fact that a key role is played by Lemma 3.11, in which we treat the convergence
of the least regular terms of our system. To obtain the desired convergence, we will need to use a careful
truncation argument along with the strong convergence in L2(0, T ;L2(Ω)) as well as the continuity
properties of the operator Bε.

3.1. Time-discrete approximation. We start by considering the closed, convex and non-empty
subset of L2(Ω)n+1 given by

A =

{
u ∈ L2(Ω)n+1 : ui ≥ 0, i = 0, . . . , n, and

n∑
i=0

ui = 1 a.e. in Ω

}
endowed with the L2-topology. Note that in particular if u ∈ A, then for every i = 0, . . . , n it holds
0 ≤ ui ≤ 1 almost everywhere.

We first prove an existence result for iterates of a regularized, time-discrete approximation of (2.12).

Proposition 3.1. Let τ > 0 be a discrete time step, let p ∈ N and let up
ε ∈ A. Then, there exists

a solution (up+1
ε ,µp+1

ε ) ∈ A ×H2(Ω)n+1 to the following coupled system: for every i = 0, . . . , n and
φi ∈ H2(Ω),∫

Ω

up+1
ε,i − upε,i

τ
φi dx = −

∫
Ω

( ∑
0≤j ̸=i≤n

Liju
p+1
ε,i u

p+1
εj ∇(µp+1

ε,i − µp+1
ε,j )

)
· ∇φi dx

− τ⟨µp+1
ε,i , φi⟩H2(Ω), (3.1)

and for every ϕi ∈ L∞(Ω),

n∑
i=0

∫
Ω

(
lnuε,i +

n∑
k=0

cikBε(uε,k)
)
ϕi dx =

n∑
i=0

∫
Ω

µε,iϕi dx. (3.2)
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Additionally, there exists δp > 0 such that

upε,i ≥ δp for all i = 0, . . . , n, a.e. in Ω× (0, T ).

The idea of the proof is to first linearize (3.1), with respect to the unknowns µε,i, by replacing up+1
ε

by a given ũ ∈ A. This gives rise to an operator

S1 : A ⊂ L2(Ω)n+1 → H2(Ω)n+1, S1(ũ) = µ,

which we show to be well-defined. Next, using variational methods, we establish that for every given
µ there exists a solution u to (3.2) defining an operator

S2 : H
2(Ω)n+1 → A, S2(µ) = u.

A fixed point of the composed operator S2 ◦ S1 is then a weak solution to (3.1) and its existence will
be a consequence of Schauder’s fixed point theorem.

We will structure the proof in several lemmas below, starting with the linearized version of (3.1).

Lemma 3.2. Let ũ ∈ A. Then, there exists a unique solution µ ∈ H2(Ω)n+1 to∫
Ω

ũi − upε,i
τ

φi dx = −
∫
Ω

( ∑
0≤j ̸=i≤n

Lij ũiũj∇(µi − µj)
)
· ∇φi dx− τ⟨µi, φi⟩H2(Ω) (3.3)

for every i = 0, . . . , n and every φi ∈ H2(Ω). Moreover, there exists C1 = C1(n, τ,Ω) > 0 such that

∥µ∥(H2(Ω))n+1 ≤ C1. (3.4)

Proof. Thanks to (2.4), system (3.3) can be written in matrix form as follows

−1

τ

∫
Ω

(ũ− up
ε) · φ dx =

∫
Ω

∇φ ·M(ũ)∇µ dx+ τ⟨φ,µ⟩H2(Ω)n+1 , (3.5)

for every φ ∈ H2(Ω)n+1. Moreover,

0 ≤M(ũ) ≤ (n+ 1)LIn+1 a.e. in Ω (3.6)

in the sense of symmetric matrices, where L = max
0≤j ̸=i≤n

Lij and In+1 is the identity matrix of

R(n+1)×(n+1). Then, existence and uniqueness to (3.5) is a consequence of the Lax-Milgram’s the-
orem, [8]. Choosing φ = µ in (3.5) and using the semidefiniteness of M as well as Hölder inequality
gives

τ∥µ∥2H2(Ω)n+1 ≤ 1

τ

n∑
i=0

∥ũi − upε,i∥L2(Ω)∥µi∥L2(Ω) ≤
C

τ

( n∑
i=0

∥ũi − upε,i∥L2(Ω)

)
∥µ∥H2(Ω)n+1 .

Since ũ,up ∈ A it follows that

∥µ∥(H2(Ω))n+1 ≤ C

τ2
2(n+ 1)|Ω|1/2,

and therefore (3.4) is satisfied. □

This result shows that the operator S1 : A ⊂ L∞(Ω)n+1 → H2(Ω)n+1 which associates to any ũ ∈ A
the unique solution µ to (3.3) is well-defined. The following result guarantees its continuity and as it
follows almost verbatim as in [19, Lemma 3.5], we omit its proof here. Note that the set A here is
endowed with the L2-topology whereas in [19, Lemma 3.5] it is considered as a subset of L∞(Ω)n+1.
Nevertheless, arguing as in the proof of [19, Lemma 3.5] yields Lemma 3.3 below.

Lemma 3.3. The map S1 : A → H2(Ω)n+1 is continuous.

As next step we now aim to recover u ∈ A from a given µ ∈ H2(Ω)n+1 by means of (3.2). We
will tackle this problem by using a variational approach. To be precise, we will identify u ∈ A as the
unique solution to the minimization problem

min
w∈A

Fµ(w), (3.7)
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where Fµ : A → R is defined by

Fµ(w) =

n∑
i=0

∫
Ω

wi lnwi +

n∑
k=0

cikBε(wk)wi − µiwi dx.

We first show that this problem indeed admits a unique minimum.

Lemma 3.4. Let µ ∈ H2(Ω)n+1. Then, there exists a unique solution u to (3.7).

Proof. Existence. We use the direct methods of the Calculus of Variations. First of all, given u ∈ A
we show that Fµ is bounded from below. Indeed, we use the definition of A, the fact that x lnx ≥ 1/e
in [0, 1], a Young’s inequality in the nonlocal terms and µ ∈ H2(Ω)n+1 ⊂ L∞(Ω)n+1 to infer

Fµ(w) ≥ n

e
|Ω| − 2n max

0≤i,k≤n
|cik|∥Kε∥L1(Ω2) −

n∑
i=0

∥µi∥L∞(Ω)|Ω| > −∞.

Observe further that the function w∗ defined as

w∗
i =

e−|x|2

1 +

n∑
i=0

e−|x|2
for every i = 0, . . . , n.

is an element of A and satisfies Fµ(w
∗) < +∞. Thus, it holds that

−∞ < inf
A
Fµ ≤ Fµ(w

∗) < +∞

which implies the existence of a minimizing sequence (um)m∈N ⊂ A such that

lim
m→∞

Fµ(u
m) = inf

A
Fµ.

Moreover, the L∞-bounds arising from the fact that um belongs to A imply the existence of u ∈ A
such that umi ⇀ ui weakly in L2(Ω) for any i = 0, . . . , n. By convexity it follows that∫

Ω

ui lnui dx ≤ lim inf
m→∞

∫
Ω

umi lnumi dx for all i = 0, . . . , n.

Concerning the nonlocal terms we first observe that
n∑

i,k=0

∫
Ω

cikBε(uk)ui dx =

n∑
i,k=0

∫
Ω

cik((Kε ∗ 1)uk −Kε ∗ uk)ui dx

=

n∑
i,k=0

∫
Ω

∫
Ω

cikKε(x, y)(uk(x)− uk(y))(ui(x)− ui(y)) dxdy

=

∫
Ω

∫
Ω

Kε(x, y)(u(x)− u(y))tC(u(x)− u(y)) dxdy,

and in turn the positive semidefiniteness of the matrix C implies the convexity of the above term. This
allows us to conclude that∫

Ω

∫
Ω

Kε(x, y)(u(x)− u(y))tC(u(x)− u(y)) dxdy

≤ lim inf
m→∞

∫
Ω

∫
Ω

Kε(x, y)(u
m(x)− um(y))tC(um(x)− um(y)) dxdy.

Finally, for the last term we have∫
Ω

µiu
m
i dx→

∫
Ω

µiui dx for all i = 0, . . . , n.

Summarizing gives
Fµ(u) ≤ lim inf

m→∞
Fµ(u

m) = inf
A
Fµ,

from which we infer that u is a minimizer of Fµ on A.
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Uniqueness. Let us now assume that u and u are two solutions to (3.7), that is, they solve (3.2) for

every ϕ ∈ L∞(Ω)n+1. Taking the difference of the corresponding equations and choosing ϕ = u − u
gives

n∑
i=0

∫
Ω

(lnui − lnui)(ui − ui) +

n∑
k=0

cik(Bε(uk)−Bε(uk))(ui − ui) dx = 0. (3.8)

Since C is positive semidefinite we deduce
n∑

i,k=0

∫
Ω

cik(Bε(uk)−Bε(uk))(ui − ui) dx

=

n∑
i,k=0

∫
Ω

cik
[(
(Kε ∗ 1)uk −Kε ∗ uk

)
−
(
(Kε ∗ 1)uk −Kε ∗ uk

)]
(ui − ui) dx

=

n∑
i,k=0

∫
Ω

∫
Ω

Kε(x, y)cik
[
(uk − uk)(x)− (uk − uk)(y)

][
(ui − ui)(x)− (ui − ui)(y)

]
dx

=

∫
Ω

∫
Ω

Kε(x, y)
(
(u− u)(x)− (u− u)(y)

)t
C
(
(u− u)(x)− (u− u)(y)

)
dx ≥ 0, (3.9)

which, together with the strict monotonicity of the logarithm implies that from (3.8) we have

ui = ui for all i = 0, . . . , n,

which, in turn, yields the assertion. □

In order to identify (3.2) as the Euler-Lagrange equation to (3.7), and to obtain that minimizers of
Fµ are weak solutions to (3.2), we need to be able to construct perturbations in such a way that we
do not leave the set A. This will be possible due to pointwise bounds of the minimizers which only
depend on µ through its H2-norm as the following result shows.

Lemma 3.5. For every µ ∈ H2(Ω)n+1 there exists δµ > 0 such that for any minimizer u to Fµ in A
there holds

ui ≥ δµ for all i = 0, . . . , n and almost everywhere in Ω.

Additionally, for all N > 0, there exists δ > 0 which only depends on N, max
0≤i,j≤n

|cij |, ∥Kε∥L1(Ω2), such

that for all µ ∈ H2(Ω)n+1 with ∥µ∥H2(Ω)n+1 ≤ N and for any minimizer u to Fµ there holds

ui ≥ δ for all i = 0, . . . , n and almost everywhere in Ω.

Proof. Let µ ∈ H2(Ω)n+1 ⊂ L∞(Ω)n+1 and let u be a minimizer of Fµ on A. We aim to show that
there exists δ > 0 such that δ ≤ ui almost everywhere in Ω for all i = 0, . . . , n. The precise dependence
of δ on the data will be specified later in the proof.
To fix the ideas, we will show the result for u0, being understood that the same reasoning applies to
the other components. We reason by contradiction and assume that the Lebesgue measure of the set
Mδ := {x ∈ Ω : u0(x) < δ} is positive. Now, let us define

uδ0 := max(u0, δ) as well as uδi := ui − (uδ0 − u0)
ui

1− u0
, i = 1, . . . , n, (3.10)

and set uδ := (uδ1, . . . , u
δ
n). In (3.10), since 1− u0 =

n∑
j=1

uj ≥ ui ≥ 0, the function ui

1−u0
is well-defined

almost everywhere using the convention that ui

1−u0
= 0 as soon as ui = 0. By definition, we have

1 ≥ uδ0 ≥ 0 and uδ0 +
n∑

i=1

uδi = 1. Furthermore, uδi (x) = 0 for all x ∈ Ω such that ui(x) = 0. For all

x ∈ Ω such that ui(x) > 0, it follows that 1− u0(x) ≥ ui(x) > 0 and

uδi (x) = ui(x)

(
1− uδ0(x)− u0(x)

1− u0(x)

)
≥ 0, since

uδ0(x)− u0(x)

1− u0(x)
≤ 1− u0(x)

1− u0(x)
= 1.
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As a consequence, uδ ∈ A and uδ0 = 1−
n∑

i=1

uδi . We now prove that for δ sufficiently small, Fµ(u
δ) <

Fµ(u). Using the fact that uδi = ui on Mc
δ = {x ∈ Ω : u0(x) ≥ δ} yields

Fµ(u
δ)− Fµ(u)

≤
n∑

i=0

∫
Mδ

(
uδi lnu

δ
i − ui lnui

)
+

n∑
k=0

cik
(
Bε(u

δ
k)u

δ
i −Bε(uk)ui

)
− µi(u

δ
i − ui) dx. (3.11)

For the nonlocal terms, we find

n∑
i,k=0

∫
Mδ

cik
(
Bε(u

δ
k)u

δ
i −Bε(uk)ui

)
dx

=

∫
Mδ

c00
(
Bε(u

δ
0)u

δ
0 −Bε(u0)u0

)
dx+

n∑
k=1

∫
Mδ

c0k
(
Bε(u

δ
k)u

δ
0 −Bε(uk)u0

)
dx

+

n∑
i=1

∫
Mδ

ci0
(
Bε(u

δ
0)u

δ
i −Bε(u0)ui

)
dx+

n∑
i,k=1

∫
Mδ

cik
(
Bε(u

δ
k)u

δ
i −Bε(uk)ui

)
dx.

We estimate only the first term on the right-hand side of the equality above, because the other terms
can be bounded in a similar fashion, with the additional information (3.10). Using the definition in
(2.6) gives ∫

Mδ

c00
(
Bε(u

δ
0)u

δ
0 −Bε(u0)u0

)
dx

=

∫
Mδ

c00

[(
(Kε ∗ 1)uδ0 −Kε ∗ uδ0

)
uδ0 −

(
(Kε ∗ 1)u0 −Kε ∗ u0

)
u0

]
dx

=

∫
Mδ

c00

[
(Kε ∗ 1)

(
(uδ0)

2 − u20
)
−

(
(Kε ∗ uδ0)uδ0 − (Kε ∗ u0)u0

)]
dx

≤ c00

(
2∥Kε ∗ 1∥L∞(Ω) + ∥Kε ∗ uδ0∥L∞(Ω) + ∥Kε ∗ u0∥L∞(Ω)

)∫
Mδ

(uδ0 − u0) dx

≤ 4c00∥Kε∥L1(Ω2)

∫
Mδ

(uδ0 − u0) dx,

where in the last step we used Young’s inequality for convolution and the fact that both uδ0, u0 ≤ 1.
Repeating a similar argument for the other terms gives eventually

n∑
i,k=0

∫
Mδ

cik
(
Bε(u

δ
k)u

δ
i −Bε(uk)ui

)
dx ≤ C

∫
Mδ

(uδ0 − u0) dx, (3.12)

where C > 0 is a constant depending on n, ∥Kε∥L1(Ω2) and maxi,k=0,...,n |cik|.
The last terms in (3.11) are easily estimated by means of (3.10) while for the logarithmic terms we

follow the proof of [19, Lemma 3.7] so that (3.11) reduces to

Fµ(u
δ)− Fµ(u) ≤ (ln δ + C)

∫
Mδ

(uδ0 − u0) dx,

where C > 0 is a constant depending on the data but not on δ. Moreover, note that

∫
Mδ

(uδ0−u0) dx >

0, because the function uδ0−u0 > 0 on Mδ, which has positive measure. Therefore, if δ is chosen small
enough to guarantee that ln δ + C < 0, it follows that

Fµ(u
δ)− Fµ(u) < 0,

which contradicts the fact that u is a minimizer to Fµ.
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Since the same argument applies to all the remaining components, we can conclude that for every
minimizer u ∈ A to Fµ there exists δµ > 0 such that

ui ≥ δµ for all i = 0, . . . , n.

Arguing as in the proof of [19, Lemma 3.7], end of Step 1, we see that δ can be chosen to be dependent
only on the data, as soon as µ is assumed to satisfy ∥µ∥H2(Ω)n+1 ≤ N , thanks to the compact

embedding H2(Ω) ↪→ L∞(Ω). This concludes the proof of the lemma. □

Lemma 3.6. Let u ∈ A be the unique minimizer of Fµ. Then, u is a weak solution to (3.2). In
particular,

lnui +

n∑
k=0

cikBε(uk)− µi = 0 a.e. in Ω for all i = 0, . . . , n. (3.13)

Proof. Since u minimizes Fµ it follows that ⟨F ′
µ(u),ϕ⟩ = 0 for any ϕ ∈ L∞(Ω)n+1, which implies that

(3.2) is satisfied. The arbitrariness of ϕ then gives that (3.13) is satisfied as well. □

Let now S2 : H
2(Ω)n+1 → A be the map that associates each µ ∈ H2(Ω)n+1 to the unique minimizer

of Fµ in A, that is, the unique weak solution u ∈ A to (3.2). We have the following regularity result.

Lemma 3.7. The operator S2 : H
2(Ω)n+1 → A is continuous.

Proof. Let (µm)m∈N ⊂ H2(Ω)n+1 be such that µm → µ strongly in H2(Ω)n+1. Set um = S2(µ
m) as

well as u = S2(µ). We want to show that S2(µ
m) → S2(µ) strongly in L2(Ω)n+1 as m → ∞. We

argue as in the existence step of the proof of Lemma 3.4 and consider test functions ϕi = umi − ui,
i = 0, . . . , n.

Exploiting the positive semidefiniteness of C as in equation (3.9), and from the definition of A and
the consequent boundedness of its elements, we infer∫

Ω

(lnumi − lnui)(u
m
i − ui) dx ≤ 2

∫
Ω

|µm
i − µi| dx.

We proceed by splitting the left-hand side of the above inequality into four regions.
Fix δ > 0, and assume first that x ∈ Ω is such that umi (x)− ui(x) ≥ δui(x). Then,

lnumi (x)− lnui(x) = ln

(
1 +

umi (x)− ui(x)

ui(x)

)
≥ ln(1 + δ),

so that

ln(1 + δ)

∫
{x∈Ω:um

i (x)−ui(x)≥δui(x)}
umi (x)− ui(x) dx ≤ 2

∫
Ω

|µm
i − µi| dx. (3.14)

Analogously, assuming that umi (x)− ui(x) ≤ −δui(x) gives

ln(1 + δ)

∫
{x∈Ω:ui(x)−um

i (x)≥δui(x)}
ui(x)− umi (x) dx ≤ 2

∫
Ω

|µm
i − µi| dx. (3.15)

Finally, for the remainder, using that u ∈ A, we have∫
{x∈Ω: |um

i (x)−ui(x)|≤δui(x)}
|ui(x)− umi (x)| dx ≤ δ|Ω|. (3.16)

By combining (3.14)–(3.16), using again the definition of A and by the convergence of the chemical
potentials we deduce

lim sup
m→∞

∫
Ω

|umi − ui| dx ≤ δ|Ω|+ lim sup
m→∞

4

ln(1 + δ)

∫
Ω

|µm
i − µi| dx = δ|Ω|.

In view of the arbitrariness of δ we conclude that umi → ui strongly in L1(Ω) for every i ∈ {0, . . . , n}.
Since um,u ∈ A, by the Dominated Convergence Theorem we also find umi → ui strongly in Lr(Ω)
for every i ∈ {0, . . . , n} and for every r ∈ [1,∞). □

We now have all the necessary ingredients at hand to prove the existence of iterates.
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Proof of Proposition 3.1. By the results of Lemmas 3.2, 3.3, 3.4 and 3.7, together with the compact
embedding of H2(Ω) into L2(Ω) for d ≤ 3, it follows that the operator S := S2 ◦ S1 : A → A is both
compact and continuous and thus, by Schauder’s fixed point theorem, it admits a fixed point up+1

ε

which is the solution to (3.1). □

3.2. A-priori estimates. In view of Proposition 3.1, we deduce that for any initial datum u0
ε ∈ A

and any τ ∈ (0, 1) there exists a sequence (up
ε , µ

p
ε)p ⊂ A×H2(Ω)n+1, defined recursively as solutions

to (3.1) and (3.2) for every p ∈ N.
We then define several piecewise-constant-in-time functions as follows: for all p ∈ N \ {0}, for all

i = 0, . . . , n and all t ∈ (tp−1, tp], we set

u(τ)
ε (t) = up

ε , u
(τ)
ε,i (t) = upε,i,

µ
(τ)
ε,i = µp

ε,i = lnupε,i +

n∑
j=0

cij
(
(Kε ∗ 1)upε,j −Kε ∗ upε,j

)
= lnupε,i +

n∑
j=0

cijBε(u
p
ε,j).

(3.17)

At time t = 0 we define u(τ)(0) = u0. Let P (τ) ∈ N \ {0} be the lowest integer such that tP (τ) ≥ T .

We additionally introduce the time-shifted solution στu
(τ)
ε as

στu
(τ)
ε (t) = up−1

ε for all t ∈ (tp−1, tp], p ∈ N \ {0},

whose components are given by (στu
(τ)
ε,0 , . . . , στu

(τ)
ε,n). For all uε = (uε,0, uε,1, . . . , uε,n) ∈ A, for all

τ > 0 and t > 0 we define the (convex) entropy functional

E
(τ)
NL(t) :=

n∑
i=0

∫
Ω

u
(τ)
i (t) lnu

(τ)
i (t) dx+

1

4

n∑
i,j=0

∫
Ω

∫
Ω

cijKε(x, y)(u
(τ)
ε,i (t, x)−u

(τ)
ε,i (t, y))(u

(τ)
ε,j (t, x)−u

(τ)
ε,j (t, y)) dxdy,

so that, for all p ∈ N,

E
(τ)
NL(tp+1) =

n∑
i=0

∫
Ω

up+1
i lnup+1

i dx+
1

4

n∑
i,j=0

∫
Ω

∫
Ω

cijKε(x, y)(u
p+1
ε,i (x)−up+1

ε,i (y))(up+1
ε,j (x)−up+1

ε,j (y)) dxdy.

The main contribution of this subsection is to establish some a-priori bounds on the interpolants

(u
(τ)
ε,i , µ

(τ)
ε,i ), with constants independent of τ and ε.

Remark 1. Note that the energy functional ENL in (2.5) is bounded from below, since the matrix C is
positive semidefinite and the function x 7→ x lnx− x+ 1 is bounded from below in [0, 1].

We begin this subsection by stating the monotonicity of ENL.

Lemma 3.8. Let (up
ε)p∈N be a sequence of solutions to (3.1). Then, the sequence (E

(τ)
NL(tp))p∈N is

decreasing. Moreover, there exists a constant C > 0 such that

1

4

∫
Ω

∫
Ω

Kε(x, y)(u
(τ)
ε,i (x)− u

(τ)
ε,i (y))(u

(τ)
ε,j (x)− u

(τ)
ε,j (y)) dxdy ≤ C for all τ > 0, t > 0, i, j = 0, . . . , n.

Proof. We reason as in [19, Lemma 4.3]. We test each equation of (3.1) with φi = µp+1
ε,i and then sum

for i = 0, . . . , n to have

n∑
i=0

∫
Ω

up+1
ε,i − upε,i

τ
µp+1
ε,i dx = −

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

Lij

[
up+1
ε,j ∇up+1

ε,i − up+1
ε,i ∇up+1

ε,j + Jij

]
· ∇µp+1

ε,i dx

− τ

n∑
i=0

∥µp+1
ε,i ∥2H2(Ω). (3.18)
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For the right-hand side, we exploit the fact the mobility M is positive semidefinite, see [19, Remark
4.1], to have

−
n∑

i=0

∫
Ω

∑
0≤j ̸=i≤n

Lij

[
up+1
ε,j ∇up+1

ε,i − up+1
ε,i ∇up+1

ε,j + Jij

]
· ∇µp+1

ε,i dx− τ

n∑
i=0

∥µp+1
ε,i ∥2H2(Ω)

≤ −
n∑

i=0

∫
Ω

( ∑
0≤j ̸=i≤n

Liju
p+1
ε,i u

p+1
ε,j ∇(µp+1

ε,i − µp+1
ε,j )

)
· ∇µp+1

ε,i dx

≤ −(∇µp+1
ε )TM(up+1

ε )∇µp+1
ε ≤ 0. (3.19)

On the left-hand side we use (2.6) together with the convexity of the energy to get

n∑
i=0

∫
Ω

up+1
ε,i − upε,i

τ
µp+1
ε,i dx =

1

τ

n∑
i=0

∫
Ω

(up+1
ε,i − upε,i)Dup+1

ε,i
ENL(u

p+1) dx ≥ 1

τ

(
ENL(u

p+1
ε )− ENL(u

p
ε)
)
.

(3.20)

From (3.18)-(3.20) we infer

1

τ

(
ENL(u

p+1
ε )− ENL(u

p
ε)
)
≤ 0,

that is, the sequence (ENL(u
p
ε))p∈N is non-increasing. In particular, there exists C > 0 such that

ENL(u
p+1
ε ) ≤ ENL(u

0
ε) ≤ C which, taking (2.5) into account, entails

1

4

∫
Ω

∫
Ω

Kε(x, y)(u
p+1
ε,i (x)− up+1

ε,i (y))2dxdy ≤ C.

This completes the proof. □

We now exploit this property to establish some a-priori estimates which play a central role in order
to pass to the limit as τ → 0+.

Proposition 3.9. Let (up
ε)p∈N be a sequence of solutions to (3.1). Then, there exists a constant C > 0

such that

n∑
i=0

∫ T

0

∫
Ω

|∇u(τ)ε,i |2

u
(τ)
ε,i

dxdt ≤ C, (3.21)

n∑
i=0

∫ T

0

∫
Ω

∫
Ω

ciiKε(x, y)|∇u(τ)ε,i (x)−∇u(τ)ε,i (y)|
2 dxdydt ≤ C, (3.22)

n∑
i=0

∑
0≤j ̸=i≤n

∫ T

0

∫
Ω

|u(τ)ε,i u
(τ)
ε,j∇(qi(u

(τ)
ε )− qj(u

(τ)
ε ))|2 dxdt ≤ C, (3.23)

τ

n∑
i=0

∫ T

0

∥µ(τ)
ε,i ∥

2
H2(Ω) dt ≤ C. (3.24)

Proof. We use an argument already exploited in [19]. We first test each equation in (3.1) with φi = µp+1
ε,i

and sum for i = 0, . . . , n. This gives

n∑
i=0

∫
Ω

up+1
ε,i − upε,i

τ
µp+1
ε,i dx = −

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

Liju
p+1
ε,i u

p+1
ε,j ∇(µp+1

ε,i − µp+1
ε,j ) · ∇µp+1

ε,i dx

− τ

n∑
i=0

∥µp+1
ε,i ∥2H2(Ω).
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The left-hand side can be handled as in Lemma the proof of 3.8, cf. (3.20). Concerning the right-hand
side, we first set ℓ := min

0≤i,j≤n

i̸=j

Lij . We have

−
n∑

i=0

∫
Ω

∑
0≤j ̸=i≤n

Liju
p+1
ε,i u

p+1
ε,j ∇(µp+1

ε,i − µp+1
ε,j ) · ∇µp+1

ε,i dx− τ

n∑
i=0

∥µp+1
ε,i ∥2H2(Ω) (3.25)

= −
n∑

i=0

∫
Ω

∑
0≤j ̸=i≤n

(Lij − ℓ)up+1
ε,i u

p+1
ε,j ∇(µp+1

ε,i − µp+1
ε,j ) · ∇µp+1

ε,i dx

− ℓ

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,i u

p+1
ε,j ∇(µp+1

ε,i − µp+1
ε,j ) · ∇µp+1

ε,i dx− τ

n∑
i=0

∥µp+1
ε,i ∥2H2(Ω).

The first term reads as

−
n∑

i=0

∫
Ω

∑
0≤j ̸=i≤n

(Lij − ℓ)up+1
ε,i u

p+1
ε,j ∇(µp+1

ε,i − µp+1
ε,j ) · ∇µp+1

ε,i dx (3.26)

= −
∫
Ω

(∇µp+1
ε )T M̃(up+1

ε )∇µp+1
ε ≤ 0,

where M̃(up+1
ε ) is given as in (2.4), but with the coefficients Lij replaced by Lij − ℓ. Using (2.6), the

second term reads as follows

− ℓ

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,i u

p+1
ε,j ∇(µp+1

ε,i − µp+1
ε,j ) · ∇µp+1

ε,i dx (3.27)

= −ℓ
n∑

i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,i u

p+1
ε,j ∇(lnup+1

ε,i − lnup+1
ε,j ) · ∇ lnup+1

ε,i dx

− ℓ

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,i u

p+1
ε,j ∇(lnup+1

ε,i − lnup+1
ε,j ) · ∇qi(up+1) dx

− ℓ

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,i u

p+1
ε,j ∇ lnup+1

ε,i · ∇(qi(u
p+1)− qj(u

p+1)) dx

− ℓ

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,i u

p+1
ε,j ∇(qi(u

p+1)− qj(u
p+1)) · ∇qi(up+1) dx.

We are going to estimate the several terms in the above equation separately. First of all, using the
constraint (2.3) gives

− ℓ

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,i u

p+1
ε,j ∇(lnup+1

ε,i − lnup+1
ε,j ) · ∇ lnup+1

ε,i dx = −ℓ
n∑

i=0

∫
Ω

|∇up+1
ε,i |2

up+1
ε,i

dx.
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For the second term we reason as in [17, inequality after (3.14)] to have

− ℓ

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

Liju
p+1
ε,i u

p+1
ε,j ∇(lnup+1

ε,i − lnup+1
ε,j ) · ∇qi(up+1

ε ) dx

= −ℓ
n∑

i=0

∫
Ω

∇up+1
ε,i · ∇

( n∑
k=0

cikBε(u
p+1
ε,k )

)
= −

n∑
i,k=0

∫
Ω

cik∇up+1
ε,i ·Bε(∇up+1

ε,k ) dx

= − ℓ

2

n∑
i=0

∫
Ω

∫
Ω

ciiKε(x, y)|∇up+1
ε,i (x)−∇up+1

ε,i (y)|2 dxdy

− ℓ

2

n∑
i=0

∑
0≤k ̸=i≤n

∫
Ω

∫
Ω

cikKε(x, y)∇(up+1
ε,i (x)− up+1

ε,i (y)) · ∇(up+1
ε,k (x)− up+1

ε,k (y)) dxdy

≤ − ℓ

2

n∑
i=0

∫
Ω

∫
Ω

ciiKε(x, y)|∇up+1
ε,i (x)−∇up+1

ε,i (y)|2 dxdy

+
ℓ

4

n∑
i=0

∑
0≤k ̸=i≤n

∫
Ω

∫
Ω

|cik|Kε(x, y)|∇up+1
ε,i (x)−∇up+1

ε,i (y)|2 dxdy

+
ℓ

4

n∑
i=0

∑
0≤k ̸=i≤n

∫
Ω

∫
Ω

|cik|Kε(x, y)|∇up+1
ε,k (x)−∇up+1

ε,k (y)|2 dxdy

≤ −C̃
n∑

i=0

∫
Ω

∫
Ω

ciiKε(x, y)|∇up+1
ε,i (x)−∇up+1

ε,i (y)|2 dxdy,

with C̃ > 0 thanks to (2.7). For the third term, we first multiply and divide by (up+1
ε,i )1/2 and then

apply a Young’s inequality to have

− ℓ

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,i u

p+1
ε,j ∇ lnup+1

ε,i · ∇(qi(u
p+1
ε )− qj(u

p+1
ε )) dx

= −ℓ
n∑

i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,j ∇up+1

ε,i · ∇(qi(u
p+1
ε )− qj(u

p+1
ε )) dx

≤ ℓ

2

n∑
i=0

∑
0≤j ̸=i≤n

∫
Ω

up+1
ε,i u

p+1
ε,j |∇(qi(u

p+1
ε )− qj(u

p+1
ε ))|2 dx+

ℓ

2

n∑
i=0

∑
0≤j ̸=i≤n

∫
Ω

up+1
ε,j

|∇up+1
ε,i |2

up+1
ε,i

dx

≤ ℓ

2

n∑
i=0

∑
0≤j ̸=i≤n

∫
Ω

up+1
ε,i u

p+1
ε,j |∇(qi(u

p+1
ε )− qj(u

p+1
ε ))|2 dx+

ℓ

2

n∑
i=0

∫
Ω

|∇up+1
ε,i |2

up+1
ε,i

dx,

while exploiting symmetries in the last term gives

− ℓ

n∑
i=0

∫
Ω

∑
0≤j ̸=i≤n

up+1
ε,i u

p+1
ε,j ∇(qi(u

p+1
ε )− qj(u

p+1
ε )) · ∇qi(up+1

ε ) dx

= −ℓ
n∑

i=0

∑
0≤j ̸=i≤n

∫
Ω

up+1
ε,i u

p+1
ε,j |∇

(
qi(u

p+1
ε )− qj(u

p+1
ε )

)
|2 dx.



CROSS-DIFFUSION EQUATION WITH NONLOCAL CAHN-HILLIARD TERMS 17

Thus, recalling again (3.20), we obtain

1

τ

(
E(up+1

ε )− E(up
ε)
)

≤ − ℓ

2

n∑
i=0

∫
Ω

|∇up+1
ε,i |2

up+1
ε,i

dx− ℓ

n∑
i=0

∫
Ω

∫
Ω

ciiKε(x, y)|∇up+1
ε,i (x, s)−∇up+1

ε,i (y, s)|2 dxdy

− ℓ

2

n∑
i=0

∑
0≤j ̸=i≤n

∫
Ω

up+1
ε,i u

p+1
ε,j |∇

(
qi(u

p+1
ε )− qj(u

p+1
ε )

)
|2 dx− τ

n∑
i=0

∥µp+1
ε,i ∥2H2(Ω).

We then multiply this expression by τ , sum for 0 ≤ p ≤ P (τ) − 1 and use Remark 1 to obtain

ℓ

2

n∑
i=0

∫ T

0

∫
Ω

|∇u(τ)ε,i |2

u
(τ)
ε,i

dxdt+ ℓ

n∑
i=0

∫ T

0

∫
Ω

∫
Ω

ciiKε(x, y)|∇u(τ)ε,i (x)−∇u(τ)ε,i (y)|
2 dxdydt

+
ℓ

2

n∑
i=0

∑
0≤j ̸=i≤n

∫ T

0

∫
Ω

u
(τ)
ε,i u

(τ)
ε,j |∇

(
qi(u

(τ)
ε )− qj(u

(τ)
ε )

)
|2 dxdt+ τ

n∑
i=0

∫ T

0

∥µ(τ)
ε,i ∥

2
H2(Ω) dt

≤ C(T + 1) + E(u0
ε).

Since all the quantities on the left-hand side are nonnegative, the bounds (3.21), (3.22) and (3.24) are

satisfied, while the bound (3.23) follows by noticing that, since u
(τ)
ε,i , u

(τ)
ε,j ∈ (0, 1), then∫ T

0

∫
Ω

|u(τ)ε,i u
(τ)
ε,j∇

(
qi(u

(τ)
ε )− qj(u

(τ)
ε )

)
|2 dxdt ≤

∫ T

0

∫
Ω

u
(τ)
ε,i u

(τ)
ε,j |∇

(
qi(u

(τ)
ε )− qj(u

(τ)
ε )

)
|2 dxdt,

for all i = 0, . . . , n and all j ̸= i = 0, . . . , n. This ends the proof. □

Lemma 3.10. There exists C > 0, independent of τ > 0 and ε > 0, such that∫ T

0

∥∥∥u(τ)ε,i − στu
(τ)
ε,i

τ

∥∥∥2
H2(Ω)′

dt ≤ C for all i = 0, . . . , n.

Proof. It works as in [19, Lemma 4.7]. □

3.3. The limit as τ → 0+. In this subsection we will recover a weak solution to (2.10) in the sense

of Definition 2.2 as the weak limit of some extracted subsequence (u
(τ)
ε )τ>0 as τ → 0+.

After interpolation, (3.1) reads as∫ T

0

∫
Ω

u
(τ)
ε,i − στu

(τ)
ε,i

τ
φi dxdt

= −
∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Lij

[
u
(τ)
ε,j∇u

(τ)
ε,i − u

(τ)
ε,i ∇u

(τ)
ε,j + u

(τ)
ε,i u

(τ)
ε,j∇

( n∑
k=0

cikBε(u
(τ)
ε,k)−

n∑
l=0

cjlBε(u
(τ)
ε,l )

)]
· ∇φi dxdt

− τ

∫ T

0

⟨µ(τ)
ε,i , φi⟩H2(Ω) dt, (3.28)

for every φi ∈ L2(0, T ;H2(Ω)). The estimates collected in the previous section imply the existence of
a function uε ∈ L2(0, T ;H1(Ω))n+1 such that, up to the extraction of a subsequence,

u
(τ)
ε,i ⇀ uε,i weakly in L2(0, T ;H1(Ω)) as well as weak- ∗ in L∞(0, T ;L∞(Ω)), (3.29)

u
(τ)
ε,i − στu

(τ)
ε,i

τ
⇀ ∂tuε,i weakly in L2(0, T ;H2(Ω)′). (3.30)

Taking the compact embedding H1(Ω) ↪→ L2(Ω) into account, [18, Theorem 1] implies that

u
(τ)
ε,i → uε,i L2(0, T ;L2(Ω)), (3.31)
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while the uniform bound of (uτε,i)τ>0 in L
∞(0, T ;L∞(Ω)) implies that u

(τ)
ε,i → uε,i strongly in L

r(0, T ;Lr(Ω)),

for any r ∈ [1,∞) and for any i = 0, . . . , n.
From [17, Lemma 2] we know that∫ T

0

∥Bε(u
(τ)
ε,i )∥H1(Ω)′ dt ≤ C

∫ T

0

∥∇u(τ)ε,i ∥
2
L2(Ω) dt ≤ C, (3.32)

which implies the existence of ψ ∈ L2(0, T ;H1(Ω)′) such thatBε(u
(τ)
ε,i )⇀ ψi weakly in L2(0, T ;H1(Ω)′).

Let now φi ∈ L2(0, T ;C∞
c (Ω)). We have

⟨Bε(u
(τ)
ε,i ), φi⟩L2(Ω),L2(Ω) =

1

2

∫ T

0

∫
Ω

∫
Ω

Kε(x, y)(u
(τ)
ε,i (x)− u

(τ)
ε,i (y))(φi(x)− φi(y)) dxdydt.

Since (uτε,i)τ>0 is uniform bounded in L∞(0, T ;L∞(Ω)) while Kε(x, y)(φi(x)−φi(y)) ∈ L1(Ω2) thanks
to [7, Theorem 1], by (3.31) it follows by dominated convergence that

⟨Bε(u
τ
ε,i), φi⟩L2(Ω),L2(Ω) → ⟨Bε(uε,i), φi⟩L2(Ω),L2(Ω).

In particular, we infer that Bε(u
τ
ε,i) → Bε(uε,i) weakly in L2(0, T ;L2(Ω)).

Next we prove that √
τµ

(τ)
ε,i → 0 weakly in L2(0, T ;H2(Ω)). (3.33)

From (3.24) we have that
(√
τµ

(τ)
ε,i

)
τ>0

is bounded in L2(0, T ;H2(Ω)). Additionally, from (2.6) and

Lemma 3.5 we infer that µ
(τ)
ε,i is bounded in L2(0, T ;H1(Ω)′). As a result, in the limit as τ → 0 this

gives (3.33).
These convergences enable us to pass to the limit in (3.28) as τ → 0. Indeed, for all i = 0, . . . , n

and as τ → 0, up to the extraction of subsequences we have∫ T

0

∫
Ω

u
(τ)
ε,i − στu

(τ)
ε,i

τ
φi dxdt→

∫ T

0

⟨∂tuε,i, φi⟩H2(Ω)′,H2(Ω) dt,∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Lij

[
u
(τ)
ε,j∇u

(τ)
ε,i − u

(τ)
ε,i ∇u

(τ)
ε,j

]
· ∇φi dxdt

→
∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Lij

[
uε,j∇uε,i − uε,i∇uε,j

]
· ∇φi dxdt,

τ

∫ T

0

⟨µ(τ)
ε,i , φi⟩H2(Ω) dt→ 0. (3.34)

Passing to the limit in the term∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Liju
(τ)
ε,i u

(τ)
ε,j∇

( n∑
k=0

cikBε(u
(τ)
ε,k)−

n∑
l=0

cjlBε(u
(τ)
ε,l )

)
· ∇φi dxdt

=

∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Liju
(τ)
ε,i u

(τ)
ε,j∇

(
qi(u

(τ)
ε )− qj(u

(τ)
ε

))
· ∇φi dxdt

is more delicate and will be treated in details in the following lemma.

Lemma 3.11. For all i ̸= j = 0, . . . , n there exists Jε,ij ∈ L2(0, T ;L2(Ω)d) such that Jε,ij =
uε,iuε,j∇(qi(uε)− qj(uε)) holds in the weak sense, that is,∫ T

0

∫
Ω

Jε,ij · η dxdt = −
∫ T

0

∫
Ω

(qi(uε)− qj(uε)) div(uε,iuε,jη) dxdt,

for every η ∈ L2(0, T ;H1(Ω)d) ∩ L∞((0, T ) × Ω;Rd), with η · n = 0 on ∂Ω and such that, up to the
extraction of a subsequence,

u
(τ)
ε,i u

(τ)
ε,j∇(qi(u

(τ)
ε )− qj(u

(τ)
ε )) → Jε,ij weakly in L2(0, T ;L2(Ω)d).
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Proof. Fix i, j ∈ {0, . . . , n} such that j ̸= i and set, for simplicity,

J
(τ)
ε,ij := u

(τ)
ε,i u

(τ)
ε,j∇(qi(u

(τ)
ε )− qj(u

(τ)
ε )). (3.35)

Estimate (3.23) implies the existence of Jε,ij ∈ L2(0, T ;L2(Ω)d) such that

J
(τ)
ε,ij ⇀ Jε,ij weakly in L2(0, T ;L2(Ω)d). (3.36)

For every κ > 0 we split

J
(τ)
ε,ij = χ{u(τ)

ε,i u
(τ)
ε,j>κ}J

(τ)
ε,ij + χ{u(τ)

ε,i u
(τ)
ε,j≤κ}J

(τ)
ε,ij . (3.37)

Let us consider the first term on the right-hand side of (3.37). Thanks to (3.36) and the strong
convergence χ{u(τ)

ε,i u
(τ)
ε,j>κ} → χ{uε,iuε,j≥κ} in L2(0, T ;L2(Ω)) we have further that

χ{u(τ)
ε,i u

(τ)
ε,j>κ}J

(τ)
ε,ij ⇀ χ{uε,iuε,j≥κ}Jε,ij weakly in L2(0, T ;L2(Ω)d). (3.38)

We now claim that

χ{uε,iuε,j≥κ}Jε,ij = χ{uε,iuε,j≥κ}uε,iuε,j∇(qi(uε)− qj(uε)) a.e. and for all κ > 0. (3.39)

Indeed, from (3.35) we find

χ{u(τ)
ε,i u

(τ)
ε,j>κ}∇(qi(u

(τ)
ε )− qj(u

(τ)
ε )) = χ{u(τ)

ε,i u
(τ)
ε,j>κ}

J
(τ)
ε,ij

u
(τ)
ε,i u

(τ)
ε,j

. (3.40)

Thanks to (3.38), (3.35) and the fact that u
(τ)
ε,i u

(τ)
ε,j → uε,iuε,j strongly in L2(0, T ;L2(Ω)) we have

χ{u(τ)
ε,i u

(τ)
ε,j>κ}

J
(τ)
ε,ij

u
(τ)
ε,i u

(τ)
ε,j

⇀ χ{uε,iuε,j≥κ}
Jε,ij
uε,iuε,j

.

On the other hand, taking the continuity of the operator Bε as well as (2.8) into account gives

∇(qi(u
(τ)
ε )− qj(u

(τ)
ε ))⇀ ∇(qi(uε)− qj(uε)) weakly in L2(0, T ;H−1(Ω)).

Therefore, taking the limit as τ → 0+ in (3.40) implies the claim (3.39).
We now consider the case then the product uε,iuε,j vanishes which is captured by the second term

on the right-hand side of (3.37). Thanks to (3.23), there holds∫ T

0

∥χ{u(τ)
ε,i u

(τ)
ε,j≤κ}J

(τ)
ε,ij∥L2(Ω) dt ≤

∫ T

0

∥J (τ)
ε,ij∥L2(Ω) dt ≤ C, (3.41)

therefore there exists gκ ∈ L2(0, T ;L2(Ω)d) such that

χ{u(τ)
ε,i u

(τ)
ε,j≤κ}J

(τ)
ε,ij ⇀ gκ weakly in L2(0, T ;L2(Ω)d).

By (3.41) we infer that ∥gκ∥L2(0,T ;L2(Ω)d) ≤ C, which gives the existence of g ∈ L2(0, T ;L2(Ω)d) such
that

gκ → g weakly in L2(0, T ;L2(Ω)d).

We claim that g ≡ 0, and in particular∫ T

0

∫
Ω

g · ∇ϕ dxdt = 0 for all ϕ ∈ L2(0, T ;H1(Ω)). (3.42)

To this end, fix ϕ ∈ L2(0, T ;H1(Ω)) and let (ϕn)n∈N ⊂ L∞(0, T ;C∞(Ω)) be such that

∥ϕn − ϕ∥L2(0,T ;H1(Ω)) <
1

n
for all n ∈ N.



20 E.DAVOLI, G.MARINO, AND J.-F. PIETSCHMANN

We have∣∣∣ ∫ T

0

g · ∇ϕ dxdt
∣∣∣ ≤ lim

κ→0

∣∣∣ ∫ T

0

∫
Ω

gκ · ∇ϕ dxdt
∣∣∣

≤ lim
κ→0

lim
τ→0

∣∣∣ ∫ T

0

∫
Ω

χ{u(τ)
ε,i u

(τ)
ε,j≤κ}J

(τ)
ε,ij · ∇ϕ dxdt

∣∣∣ ≤ lim
κ→0

lim
τ→0

∫ T

0

∫
{u(τ)

ε,i u
(τ)
ε,j≤κ}

|J (τ)
ε,ij · ∇ϕ| dxdt

≤ lim
κ→0

lim
τ→0

(∫ T

0

∫
{u(τ)

ε,i u
(τ)
ε,j≤κ}

|J (τ)
ε,ij · ∇(ϕ− ϕn)| dxdt+

∫ T

0

∫
{u(τ)

ε,i u
(τ)
ε,j≤κ}

|J (τ)
ε,ij · ∇ϕn| dxdt

)
≤ lim

κ→0
lim
τ→0

(∫ T

0

∫
{u(τ)

ε,i u
(τ)
ε,j≤κ}

u
(τ)
ε,i u

(τ)
ε,j |∇(qi(u

(τ)
ε )− qj(u

(τ)
ε ))|2 dxdt

)1/2

∥∇(ϕ− ϕn)∥L2(0,T ;L2(Ω))

+ lim
κ→0

lim
τ→0

∥∇ϕn∥L∞(0,T ;L∞(Ω))

∫ T

0

∫
{u(τ)

ε,i u
(τ)
ε,j≤κ}

√
u
(τ)
ε,i u

(τ)
ε,j

(√
u
(τ)
ε,i u

(τ)
ε,j |∇(qi(u

(τ)
ε )− qj(u

(τ)
ε ))|

)
dxdt

≤ C

n
+ lim

κ→0
lim
τ→0

∥∇ϕn∥L∞(0,T ;L∞(Ω))

(∫ T

0

∫
{u(τ)

ε,i u
(τ)
ε,j≤κ}

u
(τ)
ε,i u

(τ)
ε,j dxdt

)1/2

× ∥u(τ)ε,i u
(τ)
ε,j∇(qi(u

(τ)
ε )− qj(u

(τ)
ε ))∥L2(0,T ;L2(Ω))

≤ C

n
+ lim

κ→0

√
κC∥∇ϕn∥L∞(0,T ;L∞(Ω))

≤ C

n
.

Taking the limit as n→ ∞ in the previous inequality yields (3.42).
We now consider again (3.37). Passing to the limit as τ → 0 and κ → 0 and taking into account

what discussed so far gives from (3.39) that

Jε,ij = uε,iuε,j∇(qi(uε)− qj(uε)) a.e. in Ω× (0, T ).

The proof is thus complete. □

Proof of Theorem 2.3. In order to obtain the desired result, it remains to pass to the limit as τ → 0
in (3.28) using the convergences in (3.34) and the result of Lemma 3.11.

It follows that there exists uε ∈ L2(0, T ;H1(Ω))n+1 with ∂tuε ∈ L2(0, T ;H2(Ω)′)n+1 such that∫ T

0

⟨∂tuε,i, φi⟩H2(Ω)′,H2(Ω) dt

= −
∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Lij

[
uε,j∇uε,i − uε,i∇uε,j + uε,iuε,j∇

( n∑
k=0

cikBε(uε,k)−
n∑

l=0

cjlBε(uε,l)
)]

· ∇φi dxdt,

for all i = 0, . . . , n and for all φi ∈ L2(0, T ;H2(Ω)). The previous weak formulation implies that
∂tuε,i ∈ L2(0, T ;H1(Ω)′) and therefore by density we can extend the whole formulation to any φi ∈
L2(0, T ;H1(Ω)) as follows∫ T

0

⟨∂tuε,i, φi⟩H1(Ω)′,H1(Ω) dt

= −
∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Lij

[
uε,j∇uε,i − uε,i∇uε,j + uε,iuε,j∇

( n∑
k=0

cikBε(uε,k)−
n∑

l=0

cjlBε(uε,l)
)]

· ∇φi dxdt.

Finally, we have that necessarily it holds uε,i(0, x) = u0ε,i(x), reasoning as in [19]. Therefore, it turns out
that (uε, Jε) is a weak solution to (2.10) in the sense of Definition 2.2. The proof is thus complete. □
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4. From nonlocal to local

In this section we perform the limit as ε → 0. We start by collecting some estimates coming from
the results obtained in the previous section.

Lemma 4.1. There exists a constant C > 0, independent of ε, such that for any i = 0, . . . , n it holds∫ T

0

∥∂tuε,i∥2H2(Ω)′ dt ≤ C, (4.1)∫ T

0

∫
Ω

|∇uε,i|2 dxdt ≤ C, (4.2)

∥Bε(uε,i)∥L2(0,T ;H1(Ω)′) ≤ C, (4.3)∫ T

0

∫
Ω

∫
Ω

ciiKε(x, y)|∇uε,i(x)−∇uε,i(y)|2 dxdydt ≤ C, (4.4)

∑
0≤j ̸=i≤n

∫ T

0

∫
Ω

|Jε,ij |2 dxdt ≤ C. (4.5)

Proof. Property (4.1) follows from Lemma 3.10 and (3.30). Estimates (3.21) and (3.29) imply (4.2).
Equation (3.32) gives (4.3). Equations (3.22) and (3.29) yield (4.4). From Lemma 3.11 and equation
(3.23) we infer (4.5). □

We are finally in a position to prove Theorem 2.5.

Proof of Theorem 2.5. In view of (4.1) and (4.2) we infer (2.13), while (2.14) follows from (4.3) and
Lemma 2.1.

It remains to show that such u actually satisfies the requirements in Definition 2.4.
We first observe that, thanks to (2.13), there holds

uε,i → ui strongly in L2(0, T ;L2(Ω)), (4.6)

while (4.4) and [17, Lemma 4] imply that

uε,i → ui strongly in L2(0, T ;H1(Ω)). (4.7)

This implies that (1L) and (2L) are satisfied. Condition (3L) follows from (2.13) and the Aubin-Lions’
lemma. In order to verify condition (4L) we note the following: for every φi ∈ H1(Ω), thanks to (2.13)
there holds ∫ T

0

⟨∂tuε,i, φi⟩H1(Ω)′,H1(Ω) dt→
∫ T

0

⟨∂tui, φi⟩H1(Ω)′,H1(Ω) dt.

Moreover, using again (2.13) gives∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Lij(uε,j∇uε,i−uε,i∇uε,j) ·∇φi dxdt→
∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

Lij(uj∇ui−ui∇uj) ·∇φi dxdt.

Concerning the last term in (2.12), thanks to Lemma 3.11 we have∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

LijJε,ij · ∇φi = −
∫ T

0

∫
Ω

div(uε,iuε,j∇φi)(qi(uε)− qj(uε)).

Combining (4.6), (4.7) and (2.14) and from the uniform boundedness of uε,i in L∞((0, T ) × Ω), it
follows that ∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

LijJε,ij · ∇φi →
∫ T

0

∫
Ω

∑
0≤j ̸=i≤n

LijJij · ∇φi,

with
Jij = uiuj∇(∆ui −∆uj),

and Jij ∈ L2(0, T ;L2(Ω)), due to (4.5). This completes the proof of (4L) and of the theorem. □
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[13] L. Chen and A. Jüngel. Analysis of a multidimensional parabolic population model with strong cross-diffusion.

SIAM J. Math. Anal., 36(1):301–322 (electronic), 2004.
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burg, Germany and Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augs-
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