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Abstract. An energy functional for the obstacle problem in linear elasticity is obtained as
a variational limit of nonlinear elastic energy functionals describing a material body subject
to pure traction load under a unilateral constraint representing the rigid obstacle. There
exist loads pushing the body against the obstacle, but unfit for the geometry of the whole
system body-obstacle, so that the corresponding variational limit turns out to be different
from the classical Signorini problem in linear elasticity. However, if the force field acting on
the body fulfils an appropriate geometric admissibility condition, we can show coincidence
of minima. The analysis developed here provides a rigorous variational justification of the
Signorini problem in linear elasticity, together with an accurate analysis of the unilateral
constraint.
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1. Introduction

In its original formulation (see [55]) the Signorini problem in linear elastostatics consists in
finding the equilibrium configuration of an elastic body Ω resting on a frictionless rigid support
E ⊂ ∂Ω in its natural configuration and subject to body forces and surface forces acting on
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∂Ω\E; precisely, if u : Ω → R3 denotes the displacement field of the body, C represents the
classical linear elasticity tensor and E denotes the linear strain tensor, we assume that

Q(x,E) :=
1

2
ETC(x)E

is the corresponding strain energy density (see [28]) and that the body is subject to a load
system of forces f : Ω→ R3 and g : ∂Ω\E → R3 such that

(1.1) L(u) :=

∫
Ω
f · u dx +

∫
∂Ω\E

g · u dH2

is the load potential, where H2 is the two-dimensional Hausdorff measure. Assuming that
H2(E)>0, the variational formulation of the Signorini problem consists in finding a minimizer
of the functional

(1.2) E(u) :=

∫
Ω
Q
(
x,E(u)

)
dx− L(u)

among all u in the Sobolev space H1(Ω;R3) such that u · ν ≥ 0 H2- a.e. on E, where ν
is the inward unit vector normal to ∂Ω. A classical result (see [23]) states that a solution
of (1.2) exists if the following condition is verified: every infinitesimal rigid displacement v
fulfills L(v)≤ 0 if v · ν ≥ 0 H2- a.e. on E and L(v) = 0 if and only if v · ν ≡ 0 H2- a.e. on
E. Moreover if E is planar, that is E ⊂ ∂Ω∩{x3 = 0}, and if L(e3) < 0, f ∈ C0,α(Ω;R3) and
g ∈ L2(∂Ω \ E;R3) then a minimizer of (1.2) exists if and only if the above condition holds
(see [23] Theorem XXXII and [10]): in particular if Ω is the cylinder

Ω := {x : (x1 − ax3)2 + x2
2 < R2, 0 < x3 < H}

E := {x : x2
1 + x2

2 < R2, x3 = 0}
with a ≥ 0, R > 0, H > 0, and f =−e3, g = 0, then a minimum is attained if and only if
aH < 2R that is 0 ≤ ϑ := arctan a < arctan 2R/H where ϑ is the inclination of the cylinder
with respect to the x3-axis.
More recent formulations of constrained problems in the Calculus of Variations use the notion
of capacity (see Section 2 for details) leading to consider more general geometries since any set
of null capacity has null H2 measure (see [57], Theorem 4 p.156) but there exist sets of null H2

measure and strictly positive capacity (see [1] Theorem 5.4.1). Indeed, a proper generalization
of the latter case is to assume that the set E ⊂ {x3 ≥ 0} has positive capacity and accordingly
modify the obstacle condition by requiring x3 + u3(x) ≥ 0 on E up to a set of null capacity
(shortly, q.e. on E): the existence of minimizers for this general setting was proved by [12]
(Theorem 4.5). Although the original obstacle formulation given in [55] may look different
from the generalized notion exploited in this work, it can be shown (see Remark 2.3) that if
the set E⊂∂Ω is regular in an appropriate sense (see Remark 2.3) then the two frameworks
coincide.
Like in the analysis of many problems in linear elastostatics, it is quite natural to ask whether
there exists a sequence of functionals in finite elasticity whose minimizing sequences converge
to a minimizer of (1.2), possibly under suitable compatibility conditions on the functional L:
such an approach provides a variational justification of the linearized theory and could help
finding other reasonable models rigorously deduced.
In this paper we show sharp conditions on L entailing that a wide class of energy functionals in
finite elasticity fulfill this variational property in the context of obstacle problems; in addition
we also show examples of loads leading to the failure of this convergence. In this perspective,
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denoting by y : Ω → R3 the deformation field and by h > 0 an adimensional parameter, we
introduce a family of energy functionals defined by

(1.3) Fh(y) := h−2

∫
Ω
W
(
x,∇y(x)

)
dx− h−1L(y − x)

where L is defined as in (1.1) andW : Ω×R3×3 → [0,+∞] is the strain energy density. For ev-
ery x ∈ Ω, the function W(x, ·) is assumed to be frame indifferent and attaining its minimum
value 0 at rigid deformations only. We also assume that W is C2-regular in a neighborhood
of rigid deformations and satisfies a natural coercivity condition, see (2.22).
According to a standard approach in the deduction of linearized theories in Continuum Me-
chanics, if yh is a minimizing sequence of Fh (see (2.40)) in a classAh of deformations satisfying
a suitable obstacle constraint, we aim to investigate whether F(yh) converges, as h goes to
0, to the minimum of E (with C = D2W(x, I)) among displacements fulfilling u3(x) + x3 ≥ 0
q.e. on E. Since here the aim is the deduction of the Signorini problem in linear elasticity, it
is natural to assume that the unilateral constraint in nonlinear approximating problems takes
the form x3 + h−1(yh,3 − x3) ≥ 0 on E that is

(1.4) yh,3 ≥ (1− h)x3 on E .

We define the functionals Gh coupling the energies Fh with the unilateral constraint due to
rigid obstacle:

(1.5) Gh(y) =

{ Fh(y) if y3≥(1− h)x3 on E
+∞ else,

where E, the portion of the elastic body sensitive to the obstacle, has an horizontal projection
with non negligible capacity. Moreover we have to assume that

(1.6) L(y − x) ≤ 0

for every deformation y = y(x) fulfilling (1.4) and such that

(1.7)
∫

Ω
W(x,∇y) dx = 0.

On the contrary, if y satisfied (1.4) and (1.7) but L(y − x) > 0 then we would obtain

Gh(y) = −h−1L(y − x)→ −∞ as h→ 0+.

Under our assumptions on W, equation (1.7) holds true if and only if y is rigid deformation,
i.e. y(x) = Rx + c for some R∈SO(3) and c ∈ R3, while (1.4) is fulfilled by these y if and
only if (Rx)3 + c3 ≥ (1− h)x3 on E, a condition which is satisfied for every h>0 if and only
if

(1.8) c3 ≥ − ((R− I)x)3 on E .

Thus, due to (1.6) we have to assume this geometrical compatibility between load and obstacle

(1.9) L((R− I)x + c) ≤ 0 ∀R ∈ SO(3) , ∀c ∈ R3 verifying (1.8).

Nevertheless though (1.9) entails the compatibility assumptions of Theorem 4.5 in [12] and
though compatibility assumptions of Theorem 4.5 in [12] entail the existence of minimizers
of the Signorini functional in linear elasticity, these compatibility assumptions alone do not
warrant the equiboundedness from below of approximating functionals Gh (see Example 3.6
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below). In the main result of this paper (Theorem 2.4) we show that if L satisfies the necessary
condition (1.9) together with L(e3) < 0 and

(1.10) L ( (Rx− x)1 e1 + (Rx− x)2 e2 ) ≤ 0 ∀R ∈ SO(3),

then, under some natural capacitary assumptions on E (see (2.13)), we have

(1.11) lim
h→0

(inf Gh) = minG ,

where

(1.12) G(u) :=


∫

Ω
Q(x,E(u)) dx−max

SL,E
L(Ru) if x3 + u3≥0 on E

+∞ else,

Q(x,F) :=
1

2
FT D2W(x, I)F, F ∈ R3×3, x ∈ Ω,

SL,E =

{
R ∈ SO(3) : L ((R− I)x) − min

x∈Eess

(
(Rx)3 − x3

)
L(e3) = 0

}
.

Along this paper Eess denotes the essential part of E with respect to the capacity (see definition
(2.9)), a closed canonical subset of E such that E \ Eess has null capacity.
Under the hypotheses detailed previously we will show (see Lemma 3.8) that either SL,E ≡ {I}
or SL,E = {R ∈ SO(3) : Re3 = e3} . If SL,E ≡{I} then clearly G ≡E , hence in this case the
minimum of Signorini problem in linearized elasticity is the limit of the inf Gh but, quite
surprisingly, the second alternative is much more subtle and indeed we are able to exhibit
examples such that

(1.13) minG < min E ,

namely a gap between limh→0(inf Gh) and min E may appear (see Section 5). However the
coincidence of minimizers of G and E may hold true even if SL,E is not reduced to the identity
matrix: in particular, if Ω is contained in the upper half-space, E is either Ω or ∂Ω, the load

L(v) :=

∫
Ω
f v3 dx +

∫
∂Ω
g v3 dH2

satisfies condition (1.9) and L(e3) < 0, then L(v) = L(Rv) for every R ∈ SL,E hence
minG = min E , say the energy of minimizing sequences for Gh converges to the minimum
energy of E . On the other hand, it is always possible to rotate the external forces in such a
way that GR and ER (the functionals obtained replacing the load functional L with LR defined
by LR(v) := L(Rv)) have the same minimum as shown in Theorem 5.5.
For several contributions facing issues strictly connected with the context of the present paper
we refer to [3, 4, 5, 6, 9, 14, 15, 16, 17, 18, 19, 20, 27, 22, 33, 36, 37, 38, 39, 40, 41, 42, 43, 46,
47, 48, 49, 50, 51].

2. Notation and Main Results

We set a+ := max{a, 0}, a− := max{−a, 0} for every a ∈ R; notations x = (x1, x2, x3) and
y = (y1, y2, y3) represent generic points in R3; ej , j = 1, 2, 3 denote the unitary basis vectors of
R3, R3×3 is the set of 3×3 real matrices, endowed with the Euclidean norm |F| =

√
Tr(FTF).

R3×3
sym (resp. R3×3

skew) denotes the subset of symmetric (resp. skew-symmetric) matrices. For
every F ∈ R3×3 we define symF := 1

2(F+FT ), SO(3) will denote the special orthogonal group
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and for every R∈SO(3) there exist ϑ ∈ [0, 2π] and a ∈ R3, |a| = 1 such that the following
Euler-Rodrigues representation formula holds

(2.1) Rx = x + sinϑ (a ∧ x) + (1− cosϑ) (a ∧ (a ∧ x)) ∀x ∈ R3.

For every compact set K⊂RN we define the capacity of K by setting (see [1] Definition 2.2.1.)

(2.2) capK=inf
{
‖w‖2H1(RN ) : w∈C∞0 (RN ), w ≥ 1 onK

}
.

If G ⊂ RN is open we define (see [1] Definition 2.2.2.)

(2.3) capG := sup{capK : K compact, K ⊂ G}
and, since (see [1] Proposition 2.2.3.)

(2.4) capK = inf{capG : G open, K ⊂ G} ∀K compact ,

we may extend the above definitions to an arbitrary set by setting (see [1] Definition 2.2.4.)

(2.5) capE := inf{capG : G open, E ⊂ G} ∀E ⊂ RN .
A straightforward consequence of (2.3) and (2.5) is that

(2.6) capE1 ≤ capE2 ∀ E1 ⊂ E2 ⊂ RN .
On the other hand, for every E ⊂ RN the Bessel capacity is defined as (see [1] Definition
2.3.3)

(2.7) CapE := inf
{
‖f‖2L2(RN ) : f ≥ 0, a.e. onRN , (f ∗ g1)(x) ≥ 1 ∀x ∈ E

}
where g1∈L1(R3) is the first-order Bessel kernel in RN defined as the inverse Fourier transform
of (1 + |ξ|2)−1/2, say

g1(x) := (2π)−N
∫
R3

(1 + |ξ|2)−1/2eix·ξ dξ =
1

2π

∫ ∞
0

t−(N+1)/2e−π|x|
2/te−t/(4π) dt.

Notice that since f ≥ 0 a.e. we have that f ∗g1 is everywhere defined if we allow it to take the
value +∞ (see [1] Definition 2.3.1) and that f ∗ g1 is l.s.c. by Proposition 2.3.2 of [1]. Thus
inequality (f ∗ g1)(x) ≥ 1 for every x ∈ E appearing in formula (2.7) has a precise meaning.
In addition it is possible to show that there exist two constants α, β > 0 such that

(2.8) αCapE ≤ capE ≤ β CapE ∀E ⊂ RN

(see [1] Definition 2.2.6 and Proposition 2.3.13).
A property is said to hold quasi-everywhere (q.e. for short) if it holds true outside a set of
zero capacity. It is convenient to introduce (see [12]) a canonical representative of the set E,
called the essential part of E and denoted by Eess, which nevertheless coincides with E itself
whenever it is a smooth closed manifold or the closure of an open subset of RN .
For every set E ⊂ R3 we define the essential part Eess of E (with respect to the capacity) by

(2.9) Eess :=
⋂
{C : C is closed and cap(E\C) = 0 }.

It has been shown in [12] that

(2.10) Eess is a closed subset of E,

(2.11) cap(E\Eess) = 0,

(2.12) capE = 0 if and only if Eess = ∅.
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In the sequel coA, aff A, riA, ri ∂A and projA denote respectively, the closed convex hull
of the set A ⊂ R3 (say, the intersection of all closed convex sets containing A), the affine
hull of the set A (say, the smallest affine space containing A), the relative interior of A (say,
the interior part of A with respect to the relative topology of affine hull of A), the relative
boundary of A (say, the boundary of A with respect to the affine hull of A: ri ∂A = A \ riA)
and the projection of A onto the horizontal plane {x3 = 0}.
Throughout the paper we will assume that

(2.13) cap(proj(coEess)) > 0 .

Notice that capE>0 does not imply (2.13) whereas the converse is true: indeed if capE=0
then by (2.12) we get Eess=∅ so proj(coEess)= ∅ and cap(proj(coEess))=0, a contradiction
to (2.13).
From now on Ω denotes the reference configuration of an elastic body and it is always assumed
to be a nonempty, bounded, connected, Lipschitz open set in R3 and E ⊂ Ω ⊂ {x3 ≥ 0} .
We need to show that any function in the Sobolev space H1(Ω;R3) actually has a precise
representative defined quasi-everywhere on the whole Ω with respect to the capacity. Indeed,
if u ∈H1(Ω;R3) and v ∈H1(R3;R3) is a Sobolev extension of u, it is well known (see [1],
Prop. 6.1.3.) that the limit

(2.14) v∗(x) := lim
r↓0

1

|Br(x)|

∫
Br(x)

v(ξ) dξ

exists for q.e.x∈R3. The function v∗ is called the precise representative of v and is a qua-
sicontinuous function in R3, that is to say, for every ε > 0 there exists an open set V ⊂ R3

such that capV < ε and v∗ is continuous in R3\V . We claim that if v1, v2 are two distinct
Sobolev extensions of u then

(2.15) v∗1(x) = v∗2(x) q.e. x ∈ Ω.

The claim is trivial for q.e. x ∈ Ω , thus we are left to show (2.15) for q.e. x ∈ ∂Ω.
Ler R > 0 such that Ω ⊂ BR(0) and let ΩR := BR(0) \ Ω. Since Ω has Lipschitz boundary it
is well known (see [2]) that

(2.16) lim
r↓0

|Br(x) ∩ ΩR|
|Br(x)|

=
1

2
H2 a.e.x ∈ ∂Ω

and

(2.17) u(x) = lim
r↓0

2

|Br(x)|

∫
Br(x)∩ΩR

v1(ξ) dξ = lim
r↓0

2

|Br(x)|

∫
Br(x)∩ΩR

v2(ξ) dξ H2 a.e.x ∈∂Ω

where we have denoted again with u the trace of u on ∂Ω. Hence

1

|Br(x)|

∫
Br(x)∩ΩR

(v1(ξ)− v2(ξ)) dξ = 0 H2 a.e. x ∈ ∂Ω

so, by taking account ∂Ω ⊂ ∂ΩR and by recalling that ∂Ω is Lipschitz, we may apply Theorem
2.1 of [21] to v1 − v2 ∈ H1(ΩR;R3) and we get

1

|Br(x)|

∫
Br(x)∩ΩR

(v1(ξ)− v2(ξ)) dξ = 0 q.e. x ∈ ∂Ω .
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Since v1 = v2 = u a.e. in Br(x)\ΩR the claim follows easily by (2.14). Therefore if u ∈
H1(Ω;R3) we may define its precise representative for quasi-every x on Ω by

(2.18) u∗(x) = lim
r↓0

1

|Br(x)|

∫
Br(x)

v(ξ) dξ q.e. x ∈ Ω,

where v is any Sobolev extension of u.
The function u∗ is pointwise quasi-everywhere defined by (2.18) and is quasicontinuous on Ω
i.e. for every ε > 0 there exists a relatively open set V ⊂ Ω such that capV < ε and u∗ is
continuous in Ω \ V .

2.1. The elastic energy density. Let L3 and B3 denote respectively the σ-algebras of
Lebesgue measurable and Borel measurable subsets of R3 and let W : Ω×R3×3 → [0,+∞] be
L3×B9- measurable satisfying the following assumptions, see also [3, 45]:

(2.19) W(x,RF) =W(x,F) ∀R∈SO(3), ∀ F∈R3×3, for a.e. x∈Ω,

(2.20) min
F
W(x,F) =W(x, I) = 0 for a.e. x ∈ Ω

and as far as it concerns the regularity ofW, we assume that there exist an open neighborhood
U of SO(3) in R3×3, an increasing function ω : R+ → R satisfying limt→0+ ω(t) = 0 and a
constant K > 0 such that for a.e. x ∈ Ω

(2.21)
W(x, ·) ∈ C2(U), |D2W(x, I)| ≤ K and

|D2W(x,F)−D2W(x,G)| ≤ ω(|F−G|) ∀ F,G ∈ U .
Moreover we assume that there exists C > 0 such that for a.e. x ∈ Ω

(2.22) W(x,F) ≥ C(d(F, SO(3)))2 ∀F ∈ R3×3,

where d( · , SO(3)) denotes the Euclidean distance function from the set of rotations.
The frame indifference assumption (2.19) implies that there exists a function V such that

(2.23) W(x,F) = V(x, 1
2(FTF− I)) for a.e. x ∈ Ω , ∀F ∈ R3×3.

By (2.19)-(2.21), for a.e. x ∈ Ω, we have W(x,R) = DW(x,R) = 0 for any R ∈ SO(3). By
(2.23), for a.e. x ∈ Ω, given B ∈ R3×3 and h > 0 we have W(x, I + hB) = V(x, h symB +
1
2h

2BTB) and (2.20), (2.21) together imply

lim
h→0

h−2W(x, I + hB) =
1

2
symBD2V(x,0) symB =

1

2
BTD2W(x, I)B, ∀B ∈ R3×3.

Hence, by (2.22) and polar decomposition ([28]), we obtain, for a.e. x∈Ω and every B∈R3×3,
eventually as h→ 0+ (since det(I + hB)>0 for small h)

1

2
BTD2W(x, I)B = lim

h→0
h−2W(x, I + hB) ≥ lim sup

h→0
Ch−2 d2(I + hB, SO(3)) =

= lim sup
h→0

Ch−2

∣∣∣∣√(I + hB)T (I + hB)− I

∣∣∣∣2 = C|symB|2.

Moreover, as noticed also in [44], by expressing the remainder of Taylor’s expansion in terms
of the x-independent modulus of continuity ω of D2W(x, ·) on the set U from (2.21), we have

(2.24)
∣∣∣∣W(x, I + hB)− h2

2
symBD2W(x, I) symB

∣∣∣∣ ≤ h2ω(h|B|)|B|2
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for any small enough h (such that hB ∈ U). Similarly, V(x, ·) is C2 in a neighborhood of the
origin in R3×3, with an x-independent modulus of continuity η : R+ → R, which is increasing
and such that limt→0+ η(t) = 0, and we have

(2.25)
∣∣∣∣V(x, hB)− h2

2
symBD2V(x,0) symB

∣∣∣∣ ≤ h2η(h|B|)|B|2

for any small enough h.
We mention a general class of energy densities W (the Yeoh materials) fulfilling the assump-
tions above (2.19)-(2.22) and for which the main result of the present paper (see Theorem 2.4
below) applies.

Example 2.1. For simplicity, we consider the homogeneous case and assume that a standard
isochoric-volumetric decomposition of elastic energy density by setting

(2.26) W(F) :=

 Wiso

(
F

(detF)1/3

)
+Wvol(F) if detF > 0 ,

+∞ if detF ≤ 0 ,

where Wiso is an energy density of Yeoh type which is defined by choosing

(2.27) Wiso(F) :=

3∑
k=1

ck(|F|2 − 3)k

with coefficients ck > 0 and Wvol(F) = g(detF) for some convex g ∈ C2(R+) such that
(2.28)

g(t) ≥ 0 for all t > 0, g(t) = 0 if and only if t = 1,

g′′(1) > 0, limt→0+ g(t) = +∞,
there exists C ′ > 0 and r ≥ 2 such that g(t) ≥ C ′tr, for t > 0 sufficiently large.

It is easy to check that with this choice the energy density satisfies all assumptions from (2.19)
to (2.21) while inequality (2.22) has been proven in [43].

It is worth noticing that when material constants are suitably chosen then also Ogden-type
energies may fulfil assumptions (2.19)-(2.22) and we refer to [43] for all details.

2.2. External forces. We introduce a body force field f ∈ L6/5(Ω,R3) and a surface force
field g ∈ L4/3(∂Ω,R3). From now on, f and g will always be understood to satisfy these
summability assumptions. The load functional is the following linear functional

(2.29) L(v) :=

∫
Ω
f · v dx +

∫
∂Ω

g · v dH2(x), v ∈ H1(Ω,R3).

We note that since Ω is a bounded Lipschitz domain, the Sobolev embedding H1(Ω,R3) ↪→
L6(Ω,R3) and the Sobolev trace embedding H1(Ω,R3) ↪→ L4(∂Ω,R3) imply that L is a
bounded functional over H1(Ω,R3) and throughout the paper we denote its norm with ‖L‖∗.
For every R∈SO(3) we set

(2.30) CR := {c : c3 ≥ − min
x∈Eess

((Rx)3 − x3)}

and, as we have observed in the Introduction, we must assume the following geometrical
compatibility between load and obstacle

(2.31) L((R− I)x + c) ≤ 0 ∀R ∈ SO(3), ∀c ∈ CR
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together with

(2.32) L ((Rx− x)α eα) ≤ 0 ∀R ∈ SO(3),

the summation convention over repeated index α = 1, 2 being understood all along this paper.
It can be shown that condition (2.31) is equivalent to (see Remark 3.4 below)

(2.33) L(e3) ≤ 0 = L(e1) = L(e2) , Φ(R, E,L) ≤ 0 ∀R∈SO(3) ,

where we have set

Φ(R, E,L) := L((R− I)x) − L(e3) min
x∈Eess

{((Rx)3 − x3)}

and from now on we will use (2.33) in place of (2.31). On the other hand Remark 4.6 below
will show that also condition (2.32) is in fact unavoidable.

2.3. Energy functionals. If E ⊂Ω⊂ {x : x3 ≥ 0}, the classical Signorini problem in linear
elasticity can be described as the minimization of the functional E : H1(Ω,R3)→ R∪ {+∞}
defined by

(2.34) E(u) :=


∫

Ω
Q(x,E(u)) dx− L(u) if u ∈ A

+∞ otherwise in H1(Ω,R3)

where E(u) := sym∇u, Q(x,F) = 1
2 F

TCF with C = D2W(x, I) and A denotes the set of
admissible displacements, defined by

(2.35) A :=
{
u ∈ H1(Ω;R3) : u∗3(x) + x3 ≥ 0 q.e x∈E

}
.

The meaning of such constraint is that the deformed configuration of E is constrained to
remain in the upper half-space, say {y(x) := x + u(x), x∈E} ⊂ {y3 ≥ 0}.
For every y ∈ H1(Ω,R3) we introduce the set

(2.36) M(y) := argmin

{∫
Ω
|∇y −R|2 dx : R ∈ SO(3)

}
.

Thus, due to the rigidity inequality of [25], there exists a constant C = C(Ω) > 0 such that
for every y ∈ H1(Ω,R3) and every R ∈M(y)

(2.37)
∫

Ω

(
d
(
∇y, SO(3)

))2
dx ≥ C

∫
Ω
|∇y −R|2 dx ,

where d
(
F, SO(3)

)
:= min{|F−R| : R ∈ SO(3)}.

We introduce the set of admissible deformations Ah as

(2.38) Ah : = {y∈H1(Ω,R3) : y∗3(x)− x3 ≥ −hx3 q.e. x∈E }
and the rescaled finite elasticity functionals Gh : H1(Ω,R3)→ R ∪ {+∞} by setting

(2.39) Gh(y) =


h−2

∫
Ω
W(x,∇y) dx− h−1L(y − x) if y ∈ Ah

+∞ otherwise.

It is readily seen that, for every R ∈ SO(3) and for every c ∈ R3 such that

c3 ≥ −min
Eess

((Rx)3 − x3)
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the map y(x) := Rx + c belongs to Ah for every h > 0. In the sequel we use the short
notations Gj := Ghj and Aj := Ahj whenever {hj}j∈N is a sequence of strictly positive real
numbers such that hj → 0+ as j → +∞.
Since inf Gj >−∞ for every j ∈N , as shown by Lemma 4.1 below, we can define minimizing
sequence of the sequence of functionals Gj any sequence(yj)j∈N⊂H1(Ω,R3) fulfilling

(2.40) lim
j→+∞

(
Gj(yj) − inf

H1(Ω,R3)
Gj
)

= 0 .

The main focus of the paper is to investigate whether minimizers of (2.34) can be approximated
by minimizing sequences of the sequence of functionals Gj , as defined by (2.39) and (2.40).
To this end we introduce the functionals I, G̃, G : H1(Ω,R3)→ R ∪ {+∞} defined by

(2.41) I(u) := min
b∈R2

∫
Ω
Q
(
x,E(u) +

1

2
bα(eα ⊗ e3 + e3 ⊗ eα)

)
dx,

(2.42) G̃(u) :=

{ I(u)− max
R∈SL,E

L(Ru) if u ∈ A

+∞ otherwise in H1(Ω,R3),

and

(2.43) G(u) :=


∫

Ω
Q(x,E(u) dx− max

R∈SL,E
L(Ru) if u ∈ A

+∞ otherwise in H1(Ω,R3)

where

(2.44) SL,E = {R ∈ SO(3) : Φ(R, E,L) = 0} .

Remark 2.2. It is worth noticing that G ≤ E , since I ∈ SL,E and it is straightforward
checking that I, G̃, G are all continuous with respect to the strong convergence in H1(Ω;R3)

Before stating the main result in Theorem 2.4, we show the next Remark with some insight
on technicalities implied by precise obstacle formulation in the Sobolev space H1(Ω).

Remark 2.3. If w ∈ H1(Ω) then w− ∈ H1(Ω) too. Moreover, both (w−)∗ and (w∗)− are
quasicontinuous in Ω and (w−)∗ = (w∗)− = w− a.e. in Ω. Then, by [30], (w−)∗ = (w∗)− q.e.
in Ω. Therefore the condition (w−)∗ = 0 q.e. in Eess is equivalent to w∗ ≥ 0 q.e. in Eess.
In particular we claim that

(2.45) (w−)∗ = 0 q.e. in Ω

is equivalent to

(2.46) w ≥ 0 a.e. in Ω and w ≥ 0 H2 a.e. on ∂Ω.

Indeed if w ≥ 0 a.e. in Ω then (w−)∗ = 0 a.e. in Ω and hence (w−)∗ = 0 q.e. in Ω.
If w ≥ 0 H2 a.e. on ∂Ω and v is a Sobolev extension of w− then

lim
r↓0

1

|Br(x)∩Ω|

∫
Br(x)∩Ω

v(ξ) dξ = lim
r↓0

1

|Br(x)\Ω|

∫
Br(x)\Ω

v(ξ) dξ = 0 H2 a.e.x∈∂Ω.

and by taking (2.16) into account we get

lim
r↓0

2

|Br(x)|

∫
Br(x)∩Ω

v(ξ) dξ = lim
r↓0

2

|Br(x)|

∫
Br(x)\Ω

v(ξ) dξ = 0 H2 a.e.x∈∂Ω.
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By recalling that Ω is a Lipschitz set, it is easily checked that ∂Ω is Ahlfors 2-regular, that is
there are constants c1, c2 > 0 such that

(2.47) c1r
2 ≤ H2(∂Ω ∩Br(x)) ≤ c2r

2

for every 0 < r < diam(∂Ω) and for every x ∈ ∂Ω. Therefore if we choose R > 0 such that
Ω⊂BR(0) we may apply Proposition 6.1.3. of [1] and Theorem 2.1 of [21] both in H1(Ω) and
in H1(BR(0) \ Ω) and we get

lim
r↓0

2

|Br(x)|

∫
Br(x)∩Ω

v(ξ) dξ = lim
r↓0

2

|Br(x)|

∫
Br(x)\Ω

v(ξ) dξ = 0 q.e. x ∈ ∂Ω,

that is (2.46) implies (2.45).
Conversely if (2.45) holds then (w−)∗ = 0 a.e. in Ω and H2 a.e. on ∂Ω. Therefore w ≥ 0
a.e. in Ω and by recalling again that the negative part of the trace of w and the trace of its
negative part coincide H2 a.e. on ∂Ω we get w ≥ 0 H2 a.e. on ∂Ω thus proving (2.46) and
the claim.
Similarly, again by Theorem 2.1 of [21], if Eess ⊂ ∂Ω is Ahlfors 2-regular then the condition
w ≥ 0 q.e. on E is equivalent to w ≥ 0 H2 a.e. on E, so the classical framework of [12],[55]
and [31] is equivalent to ours in this case as it was claimed in the Introduction.

2.4. The convergence result. The convergence result is stated in the next theorem, referring
to the definitions (2.36) and (2.40).

Theorem 2.4. Assume (2.13), (2.19)-(2.22), (2.32)-(2.33) and L(e3) < 0. Let hj → 0+ as
j → +∞ and let (yj)j∈N ⊂ H1(Ω,R3) be a minimizing sequence of Gj. If Rj ∈M(yj) for
every j ∈ N, then there are cj∈R3 such that the sequence

(2.48) uj(x) := hj
−1RT

j

{(
yj − cj −Rjx

)
α
eα + (yj,3 − x3)e3

}
is weakly compact in H1(Ω,R3); moreover, up to subsequences uj ⇀ u in H1(Ω,R3) and

(2.49) Gj(yj)→ G̃(u) = min
H1(Ω,R3)

G̃ = min
H1(Ω,R3)

G as j → +∞.

Remark 2.5. Since G̃ ≤ G then equality min G̃ = minG is equivalent to argminG ⊂ argmin G̃
with possible strict inclusion (see Remark 5.6), thus in general u may not belong to argminG.
Remark 2.6. Conditions (2.32) and (2.33) are compatible. Indeed set

(2.50)
Ω := {x : x2

1 + x2
2 < 1, 0 < x3 < 1},

E := {x : x2
1 + x2

2 < 1, x3 = 0}
and f = 0, g=−e31E . It is readily seen that L(e3) < 0 = L(e1) = L(e2) and

L((Rx− x)αeα) = 0, Φ(R, E,L) = −π
√

1−R2
33 ≤ 0 ∀R ∈ SO(3),

thus both (2.32) and (2.33) are fulfilled.
On the other hand condition (2.32) does not entail (2.33). Indeed if Ω and E are as in (2.50),
f = −e3, g= 0 then (2.32) holds true while (2.33) fails, since if R = e1⊗e1−e2⊗e2−e3⊗e3

a direct calculation yields

(2.51) Φ(R, E,L) = 2

∫
Ω
x3 dx + |Ω|min

Eess
(−2x3) = π > 0.

Eventually (2.33) does not imply (2.32) , see Remark 4.6.
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Example 2.7. Here we show an example fulfilling all the assumptions in Theorem 2.4 con-
cerning the geometry of the material body Ω and of its portion E sensitive to the constraint
together with their compatibility with the loads. Set

(2.52) Ω := {x∈R3 : x2
1 + x2

2<1, 0<x3<1}, E :=Ω,

(2.53) f := p e3, g ≡ 0, p < 0.

Then L(u) =
∫

Ω f · u dx, condition (2.33) is satisfied and SL,E = {R ∈ SO(3) : Re3 = e3}.
Indeed it is readily seen that L(e3) = p|Ω| < 0 = L(e1) = L(e2); moreover if R ∈ SO(3) and
we denote its entries as Rij i, j = 1, 2, 3 then, taking into account p < 0 we get

(2.54)

Φ(R, E,L) = π (R11 +R22 − 2)− p π min
Ω

{
R31x1 +R32x2 + (R33 − 1)x3

}
=

=
πp

2
(R33 − 1) + pπ

√
R2

31 +R2
32 + pπ(1−R33)+

=
πp

2
(1−R33) + pπ

√
1−R2

33 ≤ 0

and Φ(R, E,L) = 0 if and only if R33 = 1 that is Re3 = e3 as claimed.
Both conditions (2.13) and (2.32) are trivially fulfilled.
We emphasize that the above claims still hold true if the assumption on E in (3.21) is weakened
by allowing any E ⊂ Ω such that E fulfills coEess = Ω.

3. Properties of admissible loads

This section makes explicit the properties of admissible loads by exploiting the conditions
stated by (2.32) and (2.33).

Lemma 3.1. Assume that (2.32) holds. Then

(3.1) L((a ∧ x)α eα) = 0 and L((a ∧ (a ∧ x))α eα) ≤ 0 ∀a ∈ R3.

Proof. By the Euler-Rodrigues formula (2.32) entails

(3.2) L
(

sinϑ

ϑ
(a ∧ x)αeα +

1− cosϑ

ϑ
(a ∧ (a ∧ x))αeα

)
≤ 0

for every ϑ ∈ (0, 2π) and by letting ϑ→ 0+ we get L((a ∧ x)αeα) ≤ 0 for every a ∈ R3 hence
L((a ∧ x)αeα) = 0 for every a ∈ R3. The second inequality in (3.1) follows by the previous
one.

Remark 3.2. It is worth noticing that, by inserting a = e1 or a = e2, the condition (3.1)
entails L(x3e2) = 0 and L(x3e1) = 0 respectively.

Lemma 3.3. Assume (2.13) and (2.31). Then
(1) L(e1) = L(e2) = 0 and L(e3) ≤ 0 ;

(2) L(e3 ∧ x) = 0 ;

(3) L
(
e3 ∧ (e3 ∧ x)

)
≤ 0 ;

(4) there exists xL ∈ ri coEess such that L
(
a ∧ (x− xL)

)
= 0 ∀a ∈ R3 .
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Proof. By choosing R = I in (2.31) we get L(c) ≤ 0 for every c ∈ CI = {c ∈ R3 : c3 ≥ 0}.
Since c1 e1 + c2 e2 ∈ CI for every c1, c2 ∈ R, we get L(e1) = L(e2) = 0. Moreover c3 e3 ∈ CI

for c3 ≥ 0 entails L(e3) ≤ 0. Thus (1) is proved and (2.31) entails

(3.3) Φ(R, E,L) := L((R− I)x) − L(e3) min
x∈Eess

{((Rx)3 − x3)} ≤ 0 ∀R∈SO(3)

that is by the Euler-Rodrigues formula

ϕa(ϑ) := L
(

sinϑ (a ∧ x) + (1− cosϑ)a ∧ (a ∧ x)
)

(3.4)

− min
x∈Eess

(
sinϑ (a ∧ x)3 + (1− cosϑ)a ∧ (a ∧ x)3

)
L(e3) ≤ 0

∀a ∈ R3, |a| = 1, ∀ϑ ∈ [0, 2π].

If a=e3 then Re3 =e3 and (3.4) reads

(3.5) ϕ(ϑ) := L
(

sinϑ (e3 ∧ x) + (1− cosϑ) e3 ∧ (e3 ∧ x)
)
≤ 0 ∀ϑ ∈ [0, 2π] .

By ϕ(0) = ϕ(2π) = 0 and ϕ(ϑ) ≤ 0 we get 0 ≥ ϕ′(0) = L(e3 ∧ x) = ϕ′(2π) ≥ 0. Thus (2) is
proved. By (2) and (3.5) we get L

(
e3 ∧ (e3 ∧ x)

)
≤ 0, say (3). In order to show (4), first we

notice that L(e1) = L(e2) = 0 entail for every ξ ∈ R3

(3.6)

L(a ∧ ξ) = L
(∑3

j=1 ajej ∧ ξ
)

=
∑3

j=1 aj L(ej ∧ ξ) =

= a1 L(−ξ3e2 + ξ2e3 ) + a2 L( ξ3e1 − ξ1e3 ) + a3 L(−ξ2e1 + ξ1e2 ) =

= a · ( ξ2e1 − ξ1e2 )L(e3) = (a ∧ ξ)3L(e3) ,

moreover, L(e3 ∧ x) = 0 entails

(3.7) L(a ∧ x) = a1 L(e1 ∧ x) + a2 L(e2 ∧ x) ∀a ∈ R3 .

Let us assume first that L(e3) < 0. In this case we can set

(3.8) x̃1 = − L(e2 ∧ x)

L(e3)
, x̃2 =

L(e1 ∧ x)

L(e3)
,

hence, by (3.6),(3.7),(3.8)

L(a ∧ x̃) = (a ∧ x̃)3 L(e3) = (a1x̃2 − a2x̃1)L(e3) = a1 L(e1 ∧ x) + a2 L(e2 ∧ x) = L(a ∧ x)

say

(3.9) L(a ∧ x) = L(a ∧ x̃) ∀a ∈ R3, ∀ x̃ ∈ {(x̃1, x̃2, z) : z ∈ R}.

Since ϕa(0) = ϕa(2π) = 0 and ϕa(ϑ) ≤ 0 for every a ∈ R3, |a| = 1 and for every ϑ ∈ [0, 2π],
(3.4) entails

(3.10) 0 ≥ lim sup
ϑ→0+

ϕa(ϑ)

ϑ
= L(a ∧ x)− min

x∈Eess
(a ∧ x)3 L(e3) ∀ |a| = 1,

(3.11) 0 ≤ lim inf
ϑ→2π−

ϕa(ϑ)

ϑ− 2π
= L(a ∧ x)− max

x∈Eess
(a ∧ x)3 L(e3) ∀ |a| = 1.

Hence
max
x∈Eess

(a ∧ x)3 L(e3) ≤ L(a ∧ x) ≤ min
x∈Eess

(a ∧ x)3 L(e3)
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so, by (3.6), (3.8) and (3.9),

(3.12) max
x∈Eess

(a ∧ x)3 L(e3) ≤ (a ∧ x̃)3 L(e3) ≤ min
x∈Eess

(a ∧ x)3 L(e3) .

By taking account of L(e3) < 0 we find

min
x∈Eess

(a ∧ x)3 ≤ (a ∧ x̃)3 ≤ max
x∈Eess

(a ∧ x)3 ∀a ∈ R3 : |a| = 1

hence, by linearity and by homogeneity,

(3.13) min
x∈coEess

(a ∧ x)3 ≤ (a ∧ x̃)3 ≤ max
x∈coEess

(a ∧ x)3 ∀a ∈ R3 .

By subtracting (a ∧ x̃)3 on each term of inequality (3.13) we get

min
y∈ coEess−x̃

(a ∧ y)3 ≤ 0 ≤ max
y∈ coEess−x̃

(a ∧ y)3

for every a ∈ R3 and for every x̃ ∈ {(x̃1, x̃2, z) : z ∈ R}.
We claim that at least one of the above inequalities is strict for every a ∈ R3 such that
a 2

1 + a 2
2 6= 0. Indeed, if by contradiction there was a = (a1, a2, a3) with a 2

1 + a 2
2 6= 0 such that

min
x∈ coEess−x̃

(a ∧ x)3 = max
x∈ coEess−x̃

(a ∧ x)3 = 0 ∀ x̃ ∈ {(x̃1, x̃2, z), z ∈ R} ,

then (
coEess − x̃

)
⊂
{
x : a1x2 − a2x1 = 0

}
.

Since the plane {a1x2 − a2x1 = 0} is orthogonal to {x3 = 0} we obtain

cap
(

proj{x ∈ R3 : a1x2 − a2x1 = 0 }
)

= 0,

hence
0 = cap

(
proj

(
coEess − x̃

))
= cap

(
proj(coEess)

)
which contradicts (2.13).
Without loss of generality we can proceed by assuming that the first inequality is strict, say

min
x∈ coEess−x̃

(a ∧ x)3 < 0

for every a ∈ R3 such that a 2
1 + a 2

2 6= 0 and for every x̃ ∈ {(x̃1, x̃2, z), z ∈ R}. Hence, by
setting T := proj(coEess − x̃), we get

(3.14) min
x∈T

(a ∧ x)3 < 0

for every a ∈ R3 such that a 2
1 + a 2

2 6= 0. For every (a1, a2) ∈ R2 such that a 2
1 + a 2

2 6= 0 we set

Γ(a1, a2) :=
{

(x1, x2) ∈ R2 : a1x2 − a2x1 ≥ min
(x1,x2)∈T

(a1x2 − a2x1)
}
,

then
{

Γ(a1, a2) : a 2
1 + a 2

2 = 1
}
is the set of half-planes supporting T . Since T is closed and

convex, we get
T =

⋂
a 2
1 +a 2

2 =1

Γ(a1, a2) .

By (3.14) we get dist
(

(0, 0) , ∂Γ(a1, a2)
)

= |minx∈T (a1x2 − a2x1) | > 0. Hence we deduce
the existence of (ã1, ã2) : ã 2

1 + ã 2
2 = 1 such that

min
ã 2
1 +ã 2

2 =1
dist

(
(0, 0) , ∂Γ(a1, a2)) = |min

x∈T

(
ã1x2 − ã2x1

)
| > 0 ,
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so (0, 0) ∈ riT that is (x̃1, x̃2, 0) ∈ ri proj(coEess).
We are left to show that there exists x̃3 such that xL := (x̃1, x̃2, x̃3)∈ri coEess. To this aim it
is readily seen that by taking account of cap(proj(coEess)) > 0 we get aff(proj(coEess))) =
{x3 = 0} so there exists r > 0 such that{

(x1, x2) : |x1 − x̃1|2 + |x2 − x̃2|2 < r2
}
⊂ proj(coEess)).

Let now
J := {z : (x1, x2, z) ∈ coEess} 6= ∅

and assume that (x1, x2, z) ∈ (coEess)\ (ri coEess) for every z ∈ J . Then
Br(x1, x2, z) ∩ coEess 6= ∅, Br(x1, x2, z) ∩

(
(aff coEess)\(coEess) ) 6= ∅

for every z ∈ J and for every r > 0, therefore by recalling that aff proj coEess = {x3 = 0}
projBr(x1, x2, z) ∩ proj coEess 6= ∅,

projBr(x1, x2, z) ∩ ({x3 = 0} \ proj coEess) 6= ∅
for every r > 0. This is a contradiction since

projBr(x1, x2, z) ⊂
{

(x1, x2) : |x1 − x̃1|2 + |x2 − x̃2|2 < r2
}
⊂ proj(coEess)

for some r > 0 thus (4) is proved in this case since by construction L(a ∧ (x − xL) = 0 for
every a ∈ R3. Eventually if L(e3) = 0 (2.33) reduces to

L((R− I)x) ≤ 0 ∀R∈SO(3) ,

say sinϑL(a∧x)+(1−cosϑ)L
(
a∧ (a∧x)

)
≤ 0 for all a ∈ R3, thus, by repeating the analysis

made on (3.5), we get
L(a∧x) = 0 ∀a ∈ R3

and, since ri proj coEess 6= ∅ due to (2.13), by exploiting identity (3.6) with ξ = x̃ we obtain,
for whatever choice of x̃ ∈ ri proj coEess

L(a ∧
(
x− x̃)

)
= −L(a ∧ x̃) = −(a ∧ x̃)3 L(e3) = 0 ∀a ∈ R3

that is (4) is proven also in this case.

Remark 3.4. Conditions (2.31) and (2.33) are equivalent as claimed in Subsection 2.2.
Indeed, as it has been pointed out in the proof of Lemma 3.3, condition (2.31) implies that
L(e3) ≤ 0, L(e1) = L(e2) = 0 and

(3.15) Φ(R, E,L) := L((R− I)x) − L(e3) min
x∈Eess

((Rx)3 − x3) ≤ 0 ∀R∈SO(3).

Conversely if the latter condition holds and L(e3) ≤ 0, L(e1) = L(e2) = 0 then

L((R− I)x + c) = L((R− I)x + c3e3) ≤ 0

for every c ∈ R3 such that c3 ≥ −minx∈Eess((Rx)3 − x3)}.

Remark 3.5. We emphasize that conditions (1) and (4) in Lemma 3.3 together with (2.13)
and L(e3) < 0 coincide with conditions (4.9)-(4.11) of Theorem 4.5 of [12], which provides the
solution to Signorini problem in linear elasticity.

The whole set of conditions (1),(2),(3),(4) appearing in the claim of Lemma 3.3 together with
condition (2.13) on the set E is not equivalent to admissibility of the loads as expressed by
(2.33): this phenomenon is made explicit by subsequent Example 3.6.



16

Example 3.6. Let Ω = {x : x2
1 + x2

2 < 1, 0<x3<H}, E=Eess={ (x1, x2, 0) : x2
1 + x2

2≤1}
and L(v) =

∫
Ω p v3 dx with p < 0, say f = p e3, g = 0 .

Then E fulfills (2.13), since capE > 0 and proj( coEess) = Eess ⊂ Ω ∩ {x3 = 0}; moreover
all claims (1),(2),(3),(4) of Lemma 3.3 hold true: indeed

L(e1) = L(e2) = 0, L(e3) = p|Ω| < 0,

L(e3 ∧ x) =

∫
Ω

(−e3) · (e3 ∧ x)dx = 0,

L(e3 ∧ (e3 ∧ x) =

∫
Ω

(−e3) ·
(
e3 ∧ (e3 ∧ x)

)
dx = 0,

eventually, by choosing xL = (0, 0, 0) ∈ ri (coEess) = E and by taking the symmetry of Ω
into account, we get

L
(
a ∧ (x− xL)

)
= L(a ∧ x) =

∫
Ω
(−e3) · (a ∧ x) dx = a ·

∫
Ω

(−x2e1 + x1e2) dx = 0 .

Nevertheless, condition (2.33) is violated, since we can consider the π radians rotation around
axis e1 which keeps E above the horizontal plane (obstacle boundary) but capsizes the body
below the horizontal plane, namely R̃ ∈ SO(3) defined by R̃x = x1e1 − x2e2 − x3e3. Thus

L
(
(R̃− I)x

)
− L(e3) min

Eess

(
(R̃x)3 − x3

)
= −2p

∫
Ω
x3 dx− p|Ω|min

Eess
(−2x3) = −pπH2 > 0 .

The assumptions in Lemma 3.3 and in Theorem 2.4 cannot be weakened by assuming only
capE > 0 in place of (2.13) as it is shown in the next example, thus proving that Theorem
2.4 is a sharp result with respect to the sets E subject to the constraint that are admissible.

Example 3.7. Choose f = −e3, g = 0 and

Ω = {x : x2
1 + x2

2 < 1, x2 > 0, 0 < x3 < 1},

E = Eess = {(x1, x2, x3) ∈ Ω : x2 = 0} .
It is readily seen that condition (2.32) is fulfilled since L((Rx − x)αeα) = 0 moreover, since
L(e3) < 0 = L(e1) = L(e2),

Φ(R, E,L) = −2

3
R32 +

π

2
(1−R33) + min

Eess
{R31x1 +R32x2 + (R33 − 1)x3} |Ω| =

= −π|R31| − π(R32)− − 2

3
R32 +

π

2
(R33 − 1) =

= −π|R31| −
π

2
|R32|+

(
π

2
− 2

3

)
R32 +

π

2
(R33 − 1) ≤ 0

for every R ∈ SO(3), then also condition (2.33) is satisfied. Nevertheless it can be easily
checked that capE > 0 but cap

(
proj( coEess )

)
= 0, thus E does not fulfil (2.13).

If there was x ∈ ri coEess such that L(a ∧ (x− x)) = 0 for every a ∈ R3 then we get

L(a ∧ x) = L(a ∧ x) = −
∫

Ω
e3 · (a ∧ x) dx = −

∫
Ω

(a1x2 − a2x1) dx = −2

3
a1 ;
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then, since L(e1) = L(e2) = 0, we could apply (3.6) and find

−2

3
a1 = L(a ∧ x) = (a ∧ x)3 L(e3) = −π(a1x2 − a2x1) ∀a ∈ R3 ,

hence x1 = 0, x2 = 2
3π , thus x 6∈ ri coEess = {(x1, x2, x3) ∈ Ω : x2 = 0}, a contradiction.

Thus claim (4) of Lemma 3.3 cannot hold true in this case.
Moreover if we set wk(x) := −k (x2 e3 − x3 e2 ), then E(wk) = 0, wk,3 + x3 ≡ x3 ≥ 0 on E
whence wk ∈ A and it is readily seen that

(3.16) L(Rv) = L(v) ∀ R ∈ SL,E

hence

G(wk) = −L(wk) =

∫
Ω
e3 ·wk dx = −k

∫
Ω
x2 dx = −2

3
k → −∞ as k→+∞

that is infA G = −∞ so the convergence of the energies claimed in Theorem 2.4 fails to be
true in this case thus showing sharpness of condition (2.13).

Lemma 3.8. Assume that (2.13), (2.33) hold and that L(e3) < 0. Then

(3.17) either SL,E = { I } or SL,E = {R ∈ SO(3) : Re3 = e3 }.

Proof. First, we prove the inclusion

SL,E ⊂ {R ∈ SO(3) : Re3 = e3 }.

Indeed if R belongs to SL,E and a is a rotation axis of R with |a| = 1, then

(3.18)
ϕa(ϑ) := Φ(R, E,L) = L

(
sinϑ(a ∧ x) + (1− cosϑ)

(
a ∧ (a ∧ x)

))
−min
Eess

{
sinϑ(a ∧ x)3 + (1− cosϑ)

(
a ∧ (a ∧ x)

)
3

}
L(e3) = 0

for every ϑ ∈ [0, 2π]. By arguing now as in the proof of (4) of Lemma 3.3 we get

(3.19)
0 ≥ limϑ→0+

ϕa(ϑ)
ϑ = L(a ∧ x)−minx∈Eess(a ∧ x)3 L(e3) ≥

≥ limϑ→2π−
ϕa(ϑ)
ϑ−2π = L(a ∧ x)−maxx∈Eess(a ∧ x)3 L(e3) ≥ 0

and, since L(e3) < 0, we get

(3.20) min
x∈Eess

(a ∧ x)3 = max
x∈Eess

(a ∧ x)3

that is the function x → (a ∧ x)3 = a1x2 − a2x1 is constant on Eess hence it is constant in
co(Eess) thus cap proj coEess > 0 entails a1 = a2 = 0 that is Re3 = e3 as claimed.
We notice that I ∈ SL,E and, the other hand, if SL,E 6≡ { I } then there is R̃ ∈ SL,E ⊂ {R ∈
SO(3) : Re3 = e3 } such that R̃ 6= I and

R̃x = x + sin ϑ̃ (e3 ∧ x) +
(
1− cos ϑ̃

) (
e3 ∧ (e3 ∧ x)

)
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for every x ∈ R3 and for some suitable ϑ̃ ∈ (0, 2π). By taking (2) of Lemma 3.3 into account
we get

0 = Φ(R̃, E,L) = L
(

(R̃− I)x
)
− L(e3) min

x∈Eess

(
(R̃− I)x)

)
3

=

= L
(

(R̃− I)x
)

= sin ϑ̃L(e3 ∧ x) +
(
1− cos ϑ̃

)
L
(
e3 ∧ (e3 ∧ x)

)
=

=
(
1− cos ϑ̃

)
L
(
e3 ∧ (e3 ∧ x)

)
,

thus L
(
e3 ∧ (e3 ∧ x)

)
= 0.

Therefore for any other R ∈ SO(3), R 6= I such that Re3 = e3 there is ϑ ∈ (0, 2π) such that

Rx = x + sinϑ (e3 ∧ x) +
(
1− cosϑ

) (
e3 ∧ (e3 ∧ x)

)
∀x ∈ R3 ,

thus, by taking again (2) of Lemma 3.3 into account , we get

L
(

(R− I)x
)
− L(e3) min

x∈Eess

(
(R− I)x)

)
3

=

= L
(

(R− I)x
)

= sinϑL(e3 ∧ x) +
(
1− cosϑ

)
L
(
e3 ∧ (e3 ∧ x)

)
=

=
(
1− cosϑ

)
L
(
e3 ∧ (e3 ∧ x)

)
= 0

that is R belongs to SL,E thus concluding the proof of the Lemma.

Remark 3.9. It is possible to show that both alternatives in Lemma 3.8 can actually occur.
Indeed in Example 2.7 we have exhibited an example in which SL,E = {R ∈ SO(3) : Re3 = e3}
and we show here that also the other alternative may occur. Indeed set

(3.21) Ω := {x∈R3 : x2
1 + x2

2<1, 0<x3<1}, E :=Ω,

(3.22) f = −e3, g = 1∂lΩn

where ∂lΩ is the lateral boundary of Ω and n the unit outward vector normal to ∂lΩ. If
R ∈ SO(3) and we denote its entries as Rij i, j = 1, 2, 3, then

L ((Rx− x)α eα) =
∑
i=1,2

(Rii − 1)

∫
∂lΩ

x2
i dH2 ≤ 0 ,

that is condition (2.32) is satisfied. Moreover due to L(e3) = −|Ω| < 0 = L(e1) = L(e2) ,

(3.23)

Φ(R, E,L) = L ((Rx− x)α eα) + π (R11 +R22 − 2)+

π min
Ω

{
R31x1 +R32x2 + (R33 − 1)x3

}
=

= −π
2

(R33 − 1)− π
√
R2

31 +R2
32 − π(1−R33)+

∑
i=1,2

(Rii − 1)

∫
∂lΩ

x2
i dH2

= −π
2

(1−R33)− π
√

1−R2
33 +

∑
i=1,2

(Rii − 1)

∫
∂lΩ

x2
i dH2 ≤ 0

and the fact that equality holds if and only if R11 = R22 = R33 = 1, we can conclude that
condition (2.33) is satisfied and SL,E ≡ {I} as claimed.
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Lemma 3.10. Assume (2.13), (2.33) and L(e3) < 0. Let Rj ∈ SO(3) be a sequence of
rotations such that Rje3 6= e3, Rje3 → e3 as j → +∞. Then

(3.24) lim sup
j→+∞

Φ(Rj , E,L)

|Rje3 − e3| |L(e3)|
< 0 .

Proof. Φ(Rj , E,L) ≤ 0, by (2.33). Hence the lim sup in (3.24) cannot be strictly positive.
We assume by contradiction

(3.25) lim sup
j→+∞

Φ(Rj , E,L)

|Rje3 − e3| |L(e3)|
= 0 .

By Euler-Rodrigues formula there are sequences aj ∈ R3 and ϑj ∈ [0, 2π], such that |aj | = 1
and

(3.26) Rjx = x + (sinϑj)(aj ∧ x) + (1− cosϑj)
(
(aj ∧ (aj ∧ x)

)
∀x ∈ R3,

thus a direct computation yields

(3.27) |Rje3 − e3| =
√
a 2

1,j + a 2
2,j

√
2 (1− cosϑj) .

By taking account of Rje3 6=e3 and of Rje3 → e3 as j→+∞, we get aj 6= e3, ϑj∈(0, 2π) and
therefore, up to subsequences, we may assume: that aj → a, ϑj → ϑ ∈ [0, 2π], that either
ϑ ∈ {0, 2π} or a3 = 1 and that µj ai,j → αi, i = 1, 2 with α2

1 + α2
2 = 1, where we have set

µj := (a 2
1,j + a 2

2,j)
− 1

2 . For every x ∈ Ω and v ∈ R2, |v| = 1, set

(3.28)
pv(x) =

(
(x1 − x̃1)e1 + (x2 − x̃2)e2 + (x3 − x̃3)e3

)
∧ (−v1e2 + v2e1) =

= (v1(x1 − x̃1) + v2(x2 − x̃2)) e3 + (x3 − x̃3)(v1e1 + v2e2)

where (x̃1, x̃2, x̃3) = xL ∈ ri coEess is chosen as in the proof of (4) in Lemma 3.3. Hence, by
taking account of (1) and (4) of Lemma 3.3, we have

0 = L
(
pv

)
= L

(
(v1x1 + v2x2) e3

)
− (v1x̃1 + v2x̃2)L(e3) + L

(
x3(v1e1 + v2e2)

)
that is

(3.29) (v1x̃1 + v2x̃2)L(e3) = L
(
(v1x1 + v2x2)e3

)
+ L

(
x3(v1e1 + v2e2)

)
.

By (2) of Lemma 3.3 we know L(e3 ∧ x) = 0, then (3.8) entails

(3.30) µj L(aj ∧ x) = a1,jµj L(e1 ∧ x) + a2,jµj L(e2 ∧ x)→ (α1x̃2 − α2x̃1)L(e3)

and by (3) of Lemma 3.3 we have

0 ≥ L
(
e3 ∧ (e3 ∧ x)

)
= L(x3e3 − x) = −L(x1e1 + x2e2).

By taking (3.29) into account and by recalling that either ϑ ∈ {0, 2π} or a3 = 1 we get

µj L
(
aj ∧ (aj ∧ x)

)
sin

ϑj
2

= µj L
(
(aj · x)aj − x

)
sin

ϑj
2

=

= µj sin
ϑj
2

(
a1,j L

(
(aj · x) e1

)
+ a2,j L

(
(aj · x) e2

)
+ L

(
(a 2

3,j − 1)x3 e3

)
−L(x1e1 + x2e2)

)
≤

≤ L
(
α1x3e1 + α2x3e2 + (α1x1 + α2x2) e3

)
sin

ϑ

2
+ o(1)

= (α1x̃1 + α2x̃2) sin
ϑ

2
L(e3) + o(1)
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that is

(3.31) lim sup
j→+∞

µj L
(
aj ∧ (aj ∧ x)

)
sin

ϑj
2
≤ (α1x̃1 + α2x̃2) sin

ϑ

2
L(e3) .

Let now η ∈ C([0, 2π]) such that η(ϑ) = (2(1− cosϑ))−
1
2 sin(ϑ) for every ϑ ∈ (0, 2π).

By recalling that either a3 = 1 or ϑ ∈ {0, 2π} we get

(3.32) µj(aj ∧ x)3 −→ α1x2 − α2x1 , µj(aj ∧ (aj ∧ x))3 sin
ϑj
2
−→ (α1x1 + α2x2) sin

ϑ

2

so, by taking (3.30)-(3.32) into account we obtain

0 = lim sup
j→+∞

Φ(Rj , E,L)

|Rje3 − e3| |L(e3)|
=

= lim sup
j→+∞

µj
|L(e3)|

{
η(ϑj)L(aj ∧ x) + L (aj ∧ (aj ∧ x)) sin

ϑj
2

+

− min
x∈Eess

{
η(ϑj)(aj ∧ x)3 + sin

ϑj
2

(aj ∧ (ah ∧ x))3

}
L(e3)

}
≤

≤ min
x∈Eess

{
η(ϑ)(α1x2 − α2x1) + (α1x1 + α2x2) sin

ϑ

2

}
+

−η(ϑ)(α1x̃2 − α2x̃1)− (α1x̃1 + α2x̃2) sin
ϑ

2
=

min
x∈co(Eess)

{
η(ϑ)(α1(x2 − x̃2)− α2(x1 − x̃1)) +

(
α1(x1 − x̃1) + α2(x2 − x̃2)

)
sin

ϑ

2

}
≤ 0

since (x̃1, x̃2, x̃3) ∈ ri coEess. Therefore the function

g(x1, x2) := η(ϑ)(α1(x2 − x̃2)− α2(x1 − x̃1)) +
(
α1(x1 − x̃1) + α2(x2 − x̃2)

)
sin

ϑ

2

attains its minimum on proj(coEess) at (x̃1, x̃2) ∈ ri(proj(coEess)) hence, by taking into
account of aff(proj(coEess)) = {x3 = 0}, we get

0 = |∇g(x̃1, x̃2)|2 =

(
η(ϑ)α1 + α2 sin

ϑ

2

)2

+

(
α1 sin

ϑ

2
− α2η(ϑ)

)2

= 2

(
η2(ϑ) + sin2 ϑ

2

)
> 0,

a contradiction. Thus

lim sup
j→+∞

Φ(Rj , E,L)

|Rje3 − e3| |L(e3)|
< 0

and the proof is achieved.

Remark 3.11. If cap(proj(coEess)) = 0 then the claim of Lemma 3.10 may be false even if
capE > 0. For instance, set for every j ∈ N \ {0}

Rj := e1 ⊗ e1 + (1− j−1)(e2 ⊗ e2 + e3 ⊗ e3) +
√

2 j−1 − j−2 (e3 ⊗ e2 − e2 ⊗ e3),

let
Ω := {x : x2

1 + x2
2 < 1, 0 < x3 < 1}
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E := Ω ∩ {x2 = 0, 0 < x3 <
1

2
},

and f := −e3, g = 0. It is straightforward checking that Rje3 6= e3, Rj → I, moreover since
L(e3) < 0 = L(e1) = L(e2),

(3.33) L((R− I)x)− min
x∈Eess

((Rx)3 − x3)}L(e3) = −π |R31| ≤ 0 ∀R ∈ SO(3)

and

(3.34) L((R− I)x)αeα) = 0 ∀R ∈ SO(3),

conditions (2.32) (2.33) are satisfied. Nevertheless

(3.35) L((Rj − I)x)−min
Eess

((Rj − I)x)3)L(e3) = 0

and the claim of Lemma 3.10 cannot be true in this case.

4. Proof of the variational convergence result

This section contains the proof of our main result. We start by showing that sequences
of deformations with equibounded energy correspond (up to suitably tuned rotations and
translations of the horizontal components) to displacements that are equibounded in H1.

Lemma 4.1. (compactness) Assume that E, L and W fulfil (2.13),(2.19)–(2.22),(2.33) and
L(e3)<0. If 0 < hj → 0+ as j → +∞ then for every yj ∈ H1(Ω;R3) with Gj(yj) ≤M < +∞
there are Rj ∈ SO(3), cj ∈ CRj such that

(4.1) Rj → R ∈ SL,E

and the sequence

(4.2) hj
−1
(
yj − Rjx − cj

)
α
eα + hj

−1(yj,3 − x3)e3 is bounded in H1(Ω;R3) .

Proof. Referring to (2.36) we can choose Rj ∈ M(yj) in such a way that, up to subsequence
and without relabelling, Rj → R. Then we define cj = (cj,1, cj,2, cj,3) by

(4.3) cj,α = |Ω|−1

∫
Ω

(yj(x)−Rjx)α dx α = 1, 2,

(4.4) cj,3 = − min
x∈Eess

((Rj − I)x)3.

By the rigidity inequality ([25]) there exists a constant C = C(Ω) > 0 such that

(4.5)
M ≥ Gj(yj) ≥ C h−2

j

∫
Ω
|∇yj −Rj |2 dx− h−1

j L(yj − x) =

= C h−2
j

∫
Ω
|∇yj −Rj |2 dx− h−1

j L(yj −Rjx− cj)− h−1
j L(Rjx− x + cj) .

Thus, by (2.33) and the definition of cj,3, we get

(4.6) M ≥ C h−2
j

∫
Ω
|∇yj −Rj |2 dx− h−1

j L(yj −Rjx− cj)
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and Poincaré inequality entails, for every ε>0,

(4.7)

h−1
j

2∑
α=1

L
(

(yj −Rjx− cj)α eα
)
≤ h−1

j CP ‖L‖∗
( 2∑
α=1

∫
Ω
| (∇yj −Rj)α |2 dx

)1/2
≤

≤ CP ‖L‖2∗
2ε

+
ε h−2

j CP

2

2∑
α=1

∫
Ω
|(∇yj −Rj)α|2 dx.

Estimates (4.6) and (4.7) together with Young inequality provide

M ≥ h−2
j

(
C − εCP

2

)∫
Ω
|∇yj−Rj |2dx−

CP ‖L‖2∗
2 ε

− h−1
j L
(
(yj −Rjx− cj)3 e3

)
≥(4.8)

≥ h−2
j

(
C − εCP

2

)∫
Ω
|∇yj−Rj |2 dx−

CP ‖L‖2∗
2 ε

−h−1
j ‖L‖∗

(
‖(yj −Rjx− cj)3‖L2(Ω) + ‖∇(yj −Rjx)3‖L2(Ω)

)
≥

≥ h−2
j

(
C − εCP

2
− ε

2

)∫
Ω
|∇yj−Rj |2 dx−

(
CP
2 ε

+
1

2 ε

)
‖L‖2∗

−h−1
j ‖L‖

2
∗
(
‖(yj −Rhx− cj)3‖L2(Ω) .

By choosing ε = C/(CP + 1) we get

h−2
j

C

2

∫
Ω
|∇yj−Rj |2 dx ≤(4.9)

≤ M +
(CP + 1)2

2C
‖L‖2∗ + h−1

j ‖L‖
2
∗ ‖(yj −Rjx− cj)3‖L2(Ω) .

Thus, if we show that h−1
j ‖(yj−Rjx−cj)3‖L2(Ω) is uniformly bounded then , due to estimate

(4.9), ‖h−1
j (∇yj−Rj)‖L2(Ω) is uniformly bounded too and Poincarè inequality entails uniform

boundedness of h−1
j ‖yj −Rjx− cj‖H1(Ω;R3).

To this aim we assume by contradiction that, up to subsequences,

(4.10) tj := h−1
j ‖ (yj −Rjx− cj)3 ‖L2(Ω) → +∞

and set wj := t−1
j h−1

j (yj −Rjx− cj)3. Then

(4.11) ‖wj‖L2(Ω) = 1, |∇yj−Rj |2 =
2∑

α=1

| ∇(yj−Rjx)α |2 + h 2
j t

2
j |∇wj |2 .
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By exploiting (4.6) and (4.11) we get

Ct 2
j

∫
Ω
|∇wj |2 dx − tj L(wj e3) ≤(4.12)

≤ M − C h−2
j

2∑
α=1

∫
Ω
| ∇(yj−Rjx)α |2 dx + h−1

j

2∑
α=1

L
(

(yj−Rjx− cj)α eα
)
≤

≤ M − C h−2
j

2∑
α=1

∫
Ω
| ∇(yh−Rjx)α |2 dx +

CP ‖L‖2∗
2 ε

+

+
h−2
j εCP

2

2∑
α=1

∫
Ω
|∇(yj−Rjx)α |2 dx

and by choosing ε = 2C/CP in (4.12) we get

(4.13) C t 2
j

∫
Ω
|∇wj |2 dx − tj L(wj e3) ≤

C2
P ‖L‖2∗
4C

+M

while, by choosing ε = C/CP , (4.12) yields

1

2
C h−2

j

2∑
α=1

∫
Ω
| ∇(yh−Rjx)α |2 dx + C t 2

j |∇wj |2 − tj L(wh e3) ≤(4.14)

≤
C2
P

2C
‖L‖2∗ +M.

Thus

(4.15)
1

2
C
h−2
j

t 2
j

2∑
α=1

∫
Ω
| ∇(yj−Rjx)α |2 dx ≤

1

tj
L(wj e3) +

1

tj 2

C2
P

2C
‖L‖2∗ +

M

t2j
.

Normalization ‖wj‖L2 = 1 entails, for every ε > 0,

L
(
wj e3

)
≤ ‖L‖∗

(
‖wj‖L2 + ‖∇wj‖L2

)
= ‖L‖∗

(
1 + ‖∇wj‖L2

)
≤(4.16)

≤ ‖L‖∗ +
‖L‖2∗
2 ε

+
ε

2
‖∇wj‖2L2

and choosing ε = C t2j therein, by (4.13) we get eventually in j

(4.17)
C

2
t2j

∫
Ω
|∇wj |2 dx ≤ tj ‖L‖∗ +

‖L‖2∗
2C tj

+M .

Thus
∫

Ω |∇wj |
2 dx → 0 and by (4.11) wj → w in H1(Ω;R3) with ∇w = 0 a.e. in Ω, that is

w is a constant function since Ω is a connected open set.
Combining estimates (4.15)-(4.17) we get

1

2
C
h−2
j

t 2
j

2∑
α=1

∫
Ω
| ∇(yj−Rjx)α |2 dx ≤(4.18)

≤ 1

tj

(
‖L‖2∗ +

‖L‖2∗
2

+
1

2
‖∇wj‖2L2

)
+

1

tj 2

C2
P

2CR C
‖L‖2∗ +

M

t2j
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hence

(4.19)
1

hj tj
∇
(
yj −Rjx

)
α
→ 0 in L2(Ω) if α = 1, 2

and

(4.20) h−1
j t−1

j (yj −Rjx− cj) → w e3 q.e. x ∈ E .

Moreover, by (4.13), we get

L(wj e3) ≥ − 1

tj

(
C 2
P

4C
‖L‖2∗ +M

)
.

Hence, due to L(wj e3) → L(w e3) = wL(e3), we have wL(e3) ≥ 0, thus, by taking into
account of L(e3) < 0, we get w ≤ 0 and eventually, by ‖wj‖L2 = 1, we obtain w < 0.
We notice now that if we set L := lim inf hjtj then either L ∈ (0,+∞] or L = 0. Assume first
that L ∈ (0,+∞) so, due to Rj → R, we have for q.e. x∈Eess and up to subsequences

(4.21)

y∗j,3 − x3

hj tj
=

y∗j,3 − (Rjx)3 − cj,3

hj tj
+

(Rjx)3 − x3 + cj,3
hj tj

→

w + L−1{(Rx)3 − x3 −min
Eess

((Rx)3 − x3)}.

Since

min
Eess

{
(Rx)3 − x3 −min

Eess
((Rx)3 − x3)

}
= 0

then if x0 is a minimum point then (Rx)3 − x3 −minEess((Rxx)3 − x3) < −wL
2 in a suitable

neighbourhood B%(x0); since x0∈Eess there exists E′ ⊂ Eess ∩B%(x0) with capE′ > 0 and

(Rx)3 − x3 −min
Eess

((Rxx)3 − x3) < −wL
2

on E′ .

Hence, by (4.21)

(4.22)
y∗j,3 − x3

hj tj
→ w + L−1{(Rx)3 − x3 −min

Eess
(Rx)3 − x3)} < w

2
< 0 on x ∈ E′ ,

a contradiction since h−1
j t−1

j (y∗j,3 − x3) ≥ t−1
j x3 and x3 ≥ 0 for q.e. x ∈ E.

If L = +∞ then by arguing as in estimate (4.21) we easily get h−1
j t−1

j (y∗j,3− x3)→ w < 0 for
q.e. x ∈ E′ which is again a contradiction.
Therefore we are left to assume that the whole sequence hjtj → 0 : in this case estimate (4.13)
and condition (2.33) entail

(4.23) − hj
C2
P ‖L‖2∗
4C

−Mhj − hjtj L(wj e3) ≤ L(Rjx− x + cj,3e3) = Φ(Rj , E,L) ≤ 0 ,

that is for some suitable K > 0 we obtain eventually in j

(4.24) −Khjtj ≤ Φ(Rj , E,L) ≤ 0 .

Thus, by taking account of Rj → R, we get Φ(Rj , E,L) → Φ(R, E,L) = 0 thus R ∈ SL,E
and (4.1) is proven.
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We notice that either Rje3 6= e3 for j large enough or Rje3 = e3 for infinitely many j.
In the first case, by taking account of L(e3) < 0, Lemma 3.10 entails

(4.25) lim sup
j→+∞

Φ(Rj , E,L)

|Rje3 − e3| |L(e3)|
< 0 .

By (4.24) we get

(4.26) γ := lim inf
j→+∞

hjtj
|Rje3 − e3|

> 0

and for large enough j (4.26) yields

(4.27) |Rje3 − e3| ≤
2hjtj
γ

.

Therefore if xj ∈ argminEess{(Rjx)3 − x3}, thus we may assume that, up to subsequences,
xj → x ∈ Eess and since

(4.28)

(Rjx)3 − x3 −min
Eess

((Rjx)3 − x3) = (Rj(x− xj))3 − (x− xj)3 ≤

|x− xj ||RT
j e3 − e3| ≤

2hjtj
γ
|x− xj |

we get for j large enough and for every x ∈ E′′ := B γ|w|
16

(x) ∩ Eess

(4.29) θj(x) := (Rjx)3 − x3 −min
Eess

((Rjx)3 − x3) ≤ 4hjtj
γ
|x− x| ≤ hjtj

4
|w|.

Hence, by taking account of wj → w in H1(Ω;R3) we get for q.e. x ∈ Eess
(4.30) y∗j,3 − x3 + hjx3 = hjtjwj + θj(x) + hjx3 = hjtjw + θj(x) + hjx3 + ωj

with h−1
j t−1

j ωj → 0 in H1(Ω;R3) hence, up to subsequences, cap quasi uniformly in Ω. Since
capE′′ > 0 we may assume that there exists E′′′ ⊂ E′′, capE′′′ > 0 such that h−1

j t−1
j ωj → 0

uniformly in E′′′. Hence for j large enough

w + h−1
j t−1

j ωj <
w

2
q.e. x ∈ E′′′.

Therefore by (4.28) (4.29) (4.30) and w < 0 we get for j large enough

(4.31)

y∗j,3 − x3 + hjx3 ≤ hjtj(w + h−1
j t−1

j θj(x) + h−1
j t−1

j ωj) + hjx3

< hjtj(
w

4
+
x3

tj
) < 0 q.e. x ∈ E′′′,

a contradiction since y∗j,3 ≥ (1− hj)x3 for q.e. x ∈ Eess. Therefore in this case the sequence
{tj} is bounded so h−1

j (yj −Rjx− cj) is equibounded in H1(Ω;R3).
In the second case we may assume that Rje3 = e3 for every j so cj,3 = 0 for every j. By
arguing as before we may assume that

tj := h−1
j ‖ (yj −Rjx− cj)3 ‖L2(Ω) = h−1

j ‖yj,3 − x3‖L2(Ω) → +∞

and by setting wj := t−1
j h−1

j (yj,3 − x3) we get wj → w < 0 as before which is again a
contradiction, so {tj} is a bounded sequence.
Therefore in order to complete the proof we have to show that, when Rje3 6= e3 for j large
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enough, h−1
j (yj,3 − x3) is equibounded in H1(Ω;R3). By taking account of 0 ≤ tj ≤M ′ for a

suitable M ′ > 0 , (4.26) entails

|Rje3 − e3| ≤
2hjM

′

γ

for j large enough, hence

(4.32)

∣∣∣h−1
j (yj,3 − x3)

∣∣∣ ≤
≤
∣∣∣h−1
j (yj,3 − (Rjx)3 − cj,3)

∣∣∣+ h−1
j |(Rjx)3 − x3| ≤

≤
∣∣∣h−1
j (yj,3 − (Rjx)3 − cj,3)

∣∣∣+ h−1
j |Rje3 − e3||x| ≤

≤
∣∣∣h−1
j (yj,3 − (Rjx)3 − cj,3)

∣∣∣+
2M ′

γ
sup

Ω
|x|

and

(4.33)

∣∣∣h−1
j ∇(yj,3 − x3)

∣∣∣ ≤
≤ h−1

j

∣∣∇yTj · e3 −RT
j e3

∣∣+ h−1
j |R

T
j e3 − e3| ≤

≤ h−1
j |∇yj −Rj |+

2M ′

γ
.

Therefore

(4.34)

∥∥∥h−1
j (yj,3 − x3)

∥∥∥2

H1(Ω;R3)
≤

≤
∥∥∥h−1

j (yj,3 − (Rjx)3 − cj,3)
∥∥∥2

H1(Ω;R3)
+

16M ′2

γ2

(
1 + sup

Ω
|x|2

)
|Ω|

thus showing that h−1
j (yj,3 − x3) is equibounded in H1(Ω;R3) and proving the claim.

Corollary 4.2. Assume that E, L and W fulfil (2.13),(2.19)–(2.22),(2.33) and L(e3) < 0 .
Then the functionals are equibounded from below: inf

j
inf Gj > −∞ .

Proof. If infj inf Gj = −∞ then there exists a sequence yj ∈ Aj such that Gj(yj) → −∞
hence Gj(yj) ≤ 0 for j large enough so, as we have proved in previous Lemma, there exists
Rj ∈ SO(3) and cj ∈ R3 such that, up to subsequences,

vj := h−1
j (yj −Rjx− cj) ⇀ v

weakly in H1(Ω;R3). Thus, by (2.33) we deduce

lim inf
j→+∞

Gj(yj) ≥ − lim sup
j→+∞

L(vj) = −L(v) > −∞,

which is a contradiction.
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Remark 4.3. If cap(proj(coEess)) = 0, the claim of Lemma 4.1 may fail even if capE > 0.
Indeed, choose Ω, E, f ,g,Rj as in Remark 3.11 and set hj = j−1. Thus both (2.32) and (2.33)
are satisfied but (2.13) is not. It is readily seen that yj(x) := Rjx belongs to Aj since
yj,3 = (1− j−1)x3 on E and that Gj(yj) = π|Ω|/2 for every j, but

j (yj,3 − x3) = j (x2

√
2j−1 − j−2 − x3j

−1)

is not equibounded in H1(Ω;R3) as j→+∞: thus claim of Lemma 4.1 fails in this case.

Lemma 4.4. Assume that E, L and W fulfil conditions (2.13), (2.19)-(2.22), (2.33) and
L(e3) < 0. Choose yj , Rj as in Lemma 4.1 and set

(4.35) zj(x) := h−1
j {(Rjx)3 − x3)− min

x∈Eess

(
(Rjx)3 − x3

)
}e3.

Then there exist b1, b2, b3 ∈ R such that by setting

(4.36) z(x) := (b1x1 + b2x2 + b3)e3

we have, up to subsequences, zj ⇀ z in w∗ −W 1,∞(Ω;R3).

Proof. We may assume that Rje3 6= e3 for infinitely many j otherwise zj ≡ 0 for j large
enough and thesis is obvious. Therefore by Euler-Rodrigues formula, there are sequences
aj ∈ R3 and ϑj ∈ (0, 2π), s.t. |aj | = 1, aj 6= e3 and

(4.37) Rjx = x + (sinϑj)(aj ∧ x) + (1− cosϑj)
(
(aj ∧ (aj ∧ x)

)
∀x ∈ R3.

By recalling Lemma 3.8 and (4.1) we have, up to subsequences, Rje3 → e3. Then, up to
subsequences, we may assume: that aj → a, ϑj → ϑ ∈ [0, 2π], that either ϑ ∈ {0, 2π} or
a3 = 1 and that µj ai,j → αi, i = 1, 2 with α2

1 + α2
2 = 1, where we set µj := (a 2

1,j + a 2
2,j)
− 1

2 .
By recallling (4.27) we may assume that, up to subsequences,

h−1
j min

x∈Eess

(
(Rjx)3 − x3

)
→ β

for some β ∈ R. Moreover by exploiting (3.27), (4.37) we get

(4.38)

h−1
j ((Rjx)3 − x3) =

=
µj√

2 (1− cosϑj)

(
sinϑj(aj ∧ x)3 + (1− cosϑj)

(
(aj ∧ (aj ∧ x)3

)) |Rje3 − e3|
hj

=

=

(
µjη(ϑj)(aj ∧ x)3 + µj

(
(aj ∧ (aj ∧ x)

)
3

sin
ϑj
2

)
|Rje3 − e3|

hj

where η ∈ C([0, 2π]) is such that η(ϑ) = (2(1− cosϑ))−
1
2 sinϑ for every ϑ ∈ (0, 2π).

By arguing as in (3.32) and by taking (4.27) into account we get, up to subsequences,

(4.39) h−1
j ((Rjx)3 − x3)→ λ

(
η(ϑ)(α1x2 − α2x1) + (α1x1 + α2x2) sin

ϑ

2

)
∀x ∈ Ω

for some λ ≥ 0. On the other hand ∇zj = h−1
j (Rje3 − e3) and (4.27) entail ‖∇zj‖∞ ≤ C

for some C > 0 so zj ⇀ z in w∗ −W 1,∞(Ω : R3) whenever b1 = λ(−α2η(ϑ) + α1 sin ϑ
2 ), b2 =

λ(α1η(ϑ) + α2 sin ϑ
2 ), b3 = −β.
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Lemma 4.5. (Lower bound) Assume that E, L,W fulfil the conditions (2.13)-(2.22), (2.32)-
(2.33) and L(e3) < 0. If hj → 0+ as j → +∞ then, for every sequence of deformations
yj ∈ H1(Ω;R3) such that Gj(yj) ≤M < +∞ and for every Rj ∈M(yj) there exist cj ∈ CRj

such that by setting

(4.40) uj(x) := hj
−1RT

j

{(
yj − cj −Rjx

)
α
eα + (yj,3 − x3)e3

}
,

there is u ∈ A such that up to subsequences uj ⇀ u weakly in H1(Ω;R3) and

(4.41) lim inf
j→+∞

Gj(yj) ≥ G̃(u).

Proof. Due to Lemma 4.1, the sequence defined in (4.40) is equibounded in H1(Ω;R3) hence
there exists u ∈ H1(Ω;R3) such that up to subsequences uj ⇀ u in H1(Ω;R3). By recalling
Lemma A1 of [12] we get, again up to subsequences, u∗j (x)→ u∗(x) for q.e. x ∈ E hence by
taking account of

u∗j,3 = hj
−1(y∗j,3 − x3) ≥ hj−1(x3 − hjx3 − x3) = −x3 for q.e. x ∈ E

we get u∗3 ≥ −x3 for q.e. x ∈ E that is u ∈ A.
By taking account of Gj(yj)≤M and arguing as in Lemma 4.1, the sequence h−1

j (yj−Rj−cj)
is bounded in H1(Ω;R3) and, up to subsequences, Rj → R ∈ SL,E .
By defining zj as in Lemma 4.4 and by setting

Dj := E(uj) + 1
2hj∇u

T
j ∇uj , Fj := E(RT

j zj) + 1
2hj∇(RTj zj)

T∇(RTj zj)

a straightforward calculation shows that

(4.42) ∇yTj ∇yj − I = 2hj(Dj + Fj).

If now

Bj := {x ∈ Ω :
√
hj |∇uj | ≤ 1},

we immediately notice that, by Tchebycheff inequality, |Ω \Bj | → 0 as j → +∞ and that for
large enough j

(4.43) hj |Dj | ≤
√
hj

(√
hj |∇vj |+ 1

2h
3/2
j |∇v

T
j ||∇vj |

)
≤ 2
√
hj on Bj .

Moreover by Lemma 4.4 there exists C > 0 such that

(4.44) hj |Fj | ≤ Chj in Ω

hence by defining z as in (4.36) and by taking account of Rj → R ∈ SL,E we get

(4.45) Fj ⇀ E(z) w∗ − L∞(Ω;R3×3).

By taking account of L(eα) = 0 for α = 1, 2, (2.32) entails

(4.46)
L(yj − x) = L((yj,3 − x3)e3) + L((yj −Rjx− cj)αeα)+

+L((Rjx− x)αeα) ≤ hjL(Rjuj)
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thus, by (2.21),(2.22),(2.23),(2.25),(4.42),(4.43), (4.44), (4.45), since η is increasing, we get for
large j

(4.47)

Gj(yj) ≥
1

h2
j

∫
Bj

V(x, hjDj + hjFj) dx− L(Rjuj) ≥

≥
∫
Bj

Q(x,Dj + Fj) dx−
∫
Bj

η(hjDj + hjFj)|Dj + Fj |2 dx− L(Rjuj)

≥
∫

Ω
Q(x,1Bj (Dj + Fj)) dx− η(3

√
hj)

∫
Ω
|1Bj (Dj + Fj)|2 dx− L(Rjuj).

Since hj∇uTj ∇uj → 0 a.e. in Ω and |1Bjhj∇uTj ∇uj | ≤ 1, by taking account of |Ω\Bj | → 0 as
j → +∞ we get 1Bjhj∇uTj ∇uj ⇀ 0 weakly in L2(Ω,R3×3). By taking account of 1Bj∇uj ⇀
∇u weakly in L2(Ω,R3×3) and of (4.45), we then obtain

(4.48) 1Bj (Dj + Fj) ⇀ E(u) + E(z) = E(u) +
1

2
bα(eα ⊗ e3 + e3 ⊗ eα) (α = 1, 2)

weakly in L2(Ω,R3×3). Since Rj → R ∈ SL,E then

lim
j→+∞

L(−Rjuj) = −L(Ru)

and by (2.21), (4.47) the weak L2(Ω,R3×3) lower semicontinuity of the mapB 7→
∫

ΩQ(x,B)dx
entails

lim inf
j→+∞

Gj(yj) ≥
∫

Ω
Q(x,E(u) + E(z)) dx− L(Ru) ≥ G̃(u)

which, by recalling (4.36), ends the proof.

Remark 4.6. If condition (2.32) is not satisfied then the thesis of Lemma 4.5 may fail. Indeed
let f := −e3 + 6(x3 − 1

2)e1, g = 0 and

E = Ω := {x : x2
1 + x2

2 < 1, 0 < x3 < 1}.

It is straightforward checking that L(e3) < 0 = L(e1) = L(e2) and

(4.49)

L((R− I)x)− min
x∈Eess

((Rx)3 − x3)}L(e3) =

=
π

2
R13 −

π

2
(1−R33)− π

√
1−R2

33 ≤

≤ π

2

√
1−R2

33 −
π

2
(1−R33)− π

√
1−R2

33 =

= −π
2

√
1−R33

{√
1−R33 +

√
1 +R33

}
≤ −π

√
2

2

√
1−R33 ≤ 0

for every R ∈ SO(3). On the other hand if R13 > 0 we have

L((Rx− x)αeα) =
π

2
R13 > 0

so (2.33) is satisfied while (2.32) is not. Choose now hj := j−1,

Rj := e2 ⊗ e2 + (1− j−2)(e1 ⊗ e1 + e3 ⊗ e3) + j−1
√

2− j−2 (−e3 ⊗ e1 + e1 ⊗ e3)
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and set yj := Rjx + j−1
√

2− j−2e3. It is readily seen that

(4.50)
yj,3 = −j−1

√
2− j−2x1 + (1− j−2)x3 + j−1

√
2− j−2 ≥

≥ (1− j−2)x3 ≥ x3 − j−1x3

hence yj ∈ Aj and by taking (4.3) into account we get (yj − Rjx − cj)α ≡ 0, α = 1, 2.
Therefore bearing in mind that RT

j → I we have

uj = jRT
j ((yj,3 − x3)e3) = RT

j

{
(
√

2− j−2(1− x1) + j−1x3)e3

}
→ u :=

√
2(1− x1)e3

and by Lemma 3.8 we get Ru = u for every R ∈ SL,E , hence

G̃(u) ≥ − max
R∈SL,E

L(Ru) = −L(u) = π
√

2.

On the other hand by taking account of

yj,1 − x1 = −j−2x1 + j−1
√

2− j−2x3, yj,2 − x2 = 0

and of
yj,3 − x3 = j−1

√
2− j−2(1− x1) + j−2x3

it is straightforward checking that

Gj(yj) = −jL(yj − x) = π
√

2− j−2 + πj−1 − π

2

√
2− j−2 → π

√
2

2
< G̃(u)

thus proving that the claim of Lemma 4.5 fails in this case.

Lemma 4.7. (Upper bound) Assume (2.13),(2.19)-(2.22), (2.32), (2.33),L(e3)<0 and let
0 < hj → 0+ as j → +∞. For every u ∈ C1(Ω,R3) there exists ỹj ∈ C1(Ω,R3) such that

lim sup
j→+∞

Gj(ỹj) ≤ G̃(u).

Proof. We assume without loss of generality that u ∈ A and let

b∗ ∈ argmin

{∫
Ω
Q(x,E(u) +

1

2
bα(eα ⊗ e3 + e3 ⊗ eα)) dx : b ∈ R2

}
,

(4.51) ũ(x) := u(x) + x3(b∗1e1 + b∗2e2).

It is readily seen that ũ ∈ A, that E(ũ) = E(u) + 1
2b
∗
α(eα ⊗ e3 + e3 ⊗ eα) hence

(4.52) I(u) =

∫
Ω
Q(x,E(ũ)) dx.

Moreover by Lemma 3.8, (3.1) of Lemmas 3.1 and Remark 3.2 we obtain

(4.53) L(Rũ) = L(Ru) + L(x3(b∗1Re1 + b∗2Re2)) = L(Ru) ∀R ∈ SL,E .

Therefore by choosing
R̃ ∈ argmin {−L(Rũ) : R ∈ SL,E}

we get

G̃(u) =

∫
Ω
Q(x,E(ũ)) dx− L(R̃ũ).
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By setting ỹj := R̃(x + hjũ), taking account SL,E ⊂ {R : Re3 = e3} and Lemma 3.8, we get
L(R̃x− x) = 0 and for q.e. x ∈ E

ỹ∗j,3 = x3 + hj ũ3 ≥ (1− hj)x3.

Therefore ỹj ∈ Aj and by (2.24) we get

lim sup
j→+∞

|Ghj (yj)− G̃(u)| ≤ lim sup
j→+∞

∫
Ω

∣∣∣∣∣ 1

h2
j

W(x, I + hj∇ũ)−Q(x,E(ũ))

∣∣∣∣∣ dx = 0

which proves the Lemma.

We are now in a position to prove our main Theorem.

Proof of Theorem 2.4. If (yj)j∈N ⊂ H1(Ω,R3) is a minimizing sequence for Gj then
Gj(yj) ≤ Gj(x) = 0, moreover if Rj belong A(yj) and cj is defined by (4.3),(4.4), then
Lemma 4.1 entails that the sequence

uj(x) := hj
−1RT

j

{(
yj − Rjx − cj

)
α
eα + (yj,3 − x3)e3

}
is bounded in H1(Ω;R3). Therefore up to subsequences uj → u weakly in H1(Ω;R3), so, by
Lemma 4.5, we have u ∈ A and

lim inf
j→+∞

Gj(yj) ≥ G̃(u).

On the other hand, by Lemma 4.7, if u ∈ C1(Ω,R3) ∩ A then there exists a sequence yj ∈
C1(Ω,R3) such that

lim sup
j→+∞

Gj(yj) ≤ G̃(u).

Since

(4.54) Gj(yj) + o(1) = inf
H1(Ω,R3)

Gj ≤ Gj(yj) as j → +∞,

by passing to the limit as j → +∞ we get

(4.55) G̃(u) ≤ G̃(u) ∀u ∈ C1(Ω,R3) ∩ A.
Now fix a generic u ∈ A and denote again by u a Sobolev extension of u to the whole R3.
We claim that there exists uj ∈ C1(Ω,R3) ∩A such that uj → u in H1(Ω;R3): indeed, since
ũ3(x) + x3 ≥ 0 for q.e. x ∈ E, by Lemma 6.4 it is enough to choose u3,j := ηj − x3 where
ηj ∈ C1(R3), ηj ≥ 0 q.e. in E, ηj → u3 +x3 in H1(R3) (here u3 +x3 denotes also an extension
to the whole H1(R3) ) and uα,j := uα∗ρj , α = 1, 2 where ρj is a sequence of smooth mollifiers.
By (4.55) we have

G̃(u) ≤ G̃(uj)

whence by Remark 2.2

G̃(u) ≤ lim
j→+∞

G̃(uj) = G̃(u) ∀u ∈ A,

that is u ∈ argmin G̃.
We show that Gj(yj) → G̃(u): by Lemma 6.4 in the Appendix, for every ε > 0 there is
uε ∈ C1(Ω;R3)) ∩ A such that

G̃(uε) < G̃(u) + ε
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and by Lemma 4.7 there exists yj,ε ∈ C1(Ω;R3) such that by taking account of (4.54) we have

lim sup
j→+∞

Gj(yj) ≤ lim sup
j→+∞

Gj(yj,ε) ≤ G̃(uε) < G̃(u) + ε

for every ε > 0. Since by Lemma 4.5

lim inf
j→+∞

Gj(yj) ≥ G̃(u)

we get Gj(yj)→ G̃(u) as claimed.
We are only left to show that min G̃ = minG. To this aim we show first that for every u ∈ A
there exists u∗ ∈ A such that G(u∗) = G̃(u). Indeed if ũ is defined as in (4.51) then by (4.52)
and (4.53) we get

(4.56) G̃(u) = I(u)− max
R∈SL,E

L(Ru) =

∫
Ω
Q(x,E(ũ) dx− max

R∈SL,E
L(Rũ) = G(ũ)

as claimed. By recalling that G̃(u) = min G̃ ≤ inf G let us assume that inequality is strict.
Then by (4.56) there exists u∗ ∈ A such that G(u∗) = G̃(u) < inf G, a contradiction. Thus
again by (4.56) G(u∗) = G̃(u) = minG. �

5. The gap with Signorini problem

In this section we will exhibit a choice of energy density W, open set Ω, dead loads f ,g and
set E ⊂ Ω fulfilling all the assumptions of Theorem 2.4 but such that the minimum of the
limit functional G is strictly less than the minimum of the Signorini functional (see [45] for a
counterexample exhibiting an analogous gap for unconstrained pure traction problem).
We shall consider the energy density already defined in (2.26) by setting

(5.1) W(F) :=

 Wiso

(
F

(detF)1/3

)
+Wvol(F) if detF > 0 ,

+∞ if detF ≤ 0 ,

where Wiso is the energy density of Yeoh type defined in (2.27) with 2c1 = µ > 0 and
Wvol(F) = g(detF) where g : R+ → R is the convex C2 function (satisfying (2.28) with
r = 2) defined by

g(t) =
µ

6
(t2 − 1− 2 log t).

By recalling Example 2.1 it is readily seen that W satisfies (2.14)-(2.17) and by taking into
account of

det(I + hB) = 1 + hTrB + (h2/2)
(
(TrB)2 − TrB2

)
+ h3 detB

and of Tr(BTB)= |B|2 for every B ∈ R3×3, we obtain as h→ 0

|I + hB|2

det(I + hB)2/3
− 3 = h2

(
2 |B|2 − 2

3 |TrB|2
)

+ o(h2)

for every B ∈ R3×3
sym. Moreover by recalling (2.27) (with 2c1 = µ)

Wvol(I + hB) = g(det(I + hB)) =
h2

2
|TrB|2 + o(h2) =

µ

3
|TrB|2 h2 + o(h2) ,

Wiso(I + hB) =
µ

2
h2

(
2 |B|2 − 2

3
(TrB)2

)
+ o(h2)
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so

(5.2)
1

2
BD2W(I)B = µ |B|2.

Let

(5.3) Ω := {x ∈ R3 : x2
1 + x2

2 < 1, 0 < x3 < 1}, E := {x ∈ R3 : x2
1 + x2

2 < 1, x3 = 0}

and ϕ ∈ C2(E) such that

(5.4) ∆ϕ 6≡ 0 , ϕ(x1, x2) = φ(r) , r :=
√
x2

1 + x2
2 , φ(1)=φ′(1)=

∫ 1

0
r2φ′(r) dr = 0

(for instance φ(r) := 1− 6r2 + 9r4 − 4r6 fulfills (5.4)). It is readily seen that condition (2.13)
is fulfilled and that Eess = E. We define

(5.5)

R∗ := −e1 ⊗ e2 + e2 ⊗ e1 + e3 ⊗ e3,

L(u) :=

∫
Ω
uα∇αϕdx−

∫
E
u3(x1, x2, 0) dx1 dx2.

Condition (2.32) is satisfied since

L((Rx− x)αeα) = π (R11 +R22 − 2)

∫ 1

0
r2φ′(r) dr = 0 ∀R ∈ SO(3).

Moreover L(e1) = L(e2) = 0, L(e3) < 0 and

(5.6)

Φ(R, E,L) = π (R11 +R22 − 2)

∫ 1

0
r2φ′(r) dr+

π min
Eess

{
R31x1 +R32x2 + (R33 − 1)x3

}
= −π

√
R2

31 +R2
32 ≤ 0.

so (2.33) is fulfilled too. By taking account of R∗e3 = e3 we get

Φ(R∗, E,L) = −2π

∫ 1

0
r2φ′(r) dr = 0

whence R∗ ∈ SL,E and Lemma 3.8 entails SL,E = {R : Re3 = e3}. Since E fulfills (2.13),
W satisfies (2.14)-(2.17) and L satisfies (2.27) together with L(e3) < 0 then, by taking into
account of (5.2), Theorem 2.4 entails

(5.7) inf Gj → min
u∈A
G = min

{
µ

∫
Ω
|E(u)|2 dx− max

R∈SL,E
L(Ru) : u ∈ A

}
.

We set

(5.8) E(u) := µ

∫
Ω
|E(u)|2 dx− L(u)

and, for every R ∈ SL,E ,

(5.9) ER(u) := µ

∫
Ω
|E(u)|2 dx− L(Ru).

We aim to show

(5.10) min{ER∗(u) : u ∈ A} < min{E(u) : u ∈ A}
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so that, once (5.10) is proved, we deduce

(5.11) min
u∈A
G < min

u∈A
E .

In order to show inequality (5.10) we need some properties of minimizers of E which have been
essentially proven in [45]. In the following E(·) will denote the upper-left 2 × 2 submatrix of
E(·) and R ∈ SO(2) the upper-left 2× 2 submatrix of any R ∈ SL,E .

Lemma 5.1. Let u ∈ A and let

(5.12) v(x) := vα(x1, x2)eα + v3(x3)e3, α=1, 2

where

vα(x1, x2) :=

∫ 1

0
uα(x) dx3, α=1, 2, v3(x3) := π−1

∫
E
u3(x)dx1dx2.

Then v ∈ A and

(5.13) ER(u) ≥ JR(v) ∀R ∈ .SL,E
where v := vαeα, and

(5.14) JR(v) := µ

∫
E
|E(v)|2 dx1dx2 −

∫
E
R
T∇ϕ · v dx1dx2.

In particular if R = I then (5.13) reduces to E(u) ≥ J (v) having set J := JI.

Proof. Since u∗3 ≥ 0 q.e. on E = ∂Ω ∩ {x3 = 0} then by Remark 2.3 we get u3 ≥ 0 H2- q.o.
in E that is v3(0) ≥ 0 hence , again by Remark 2.3, v ∈ A. Moreover, by using the notation
u3,3 := ∂3u3, Jensen inequality entails

(5.15)

ER(u) ≥ µ

∫
E

∣∣∣∣∫ 1

0
E(u) dx3

∣∣∣∣2 dx1 dx2 + µπ

∫ 1

0

∣∣∣∣ 1π
∫
E
u3,3 dx1 dx2

∣∣∣∣2 dx3

−
∫
E
Rβα∇βϕ

(∫ 1

0
uα dz

)
dx1 dx2 +

∫
E
u3(x1, x2, 0) dx1 dx2

≥ JR(v) + µπ

∫ 1

0
|v̇3| 2 dx3 + πv3(0) ≥ JR(v).

thus proving the Lemma.

We need now the following characterization of minimizers of J which has been given in [45]

Lemma 5.2. There exists Φ ∈ H2(E) such that

(5.16) min
u∈H1(E)

J (u) = J (∇Φ) ≥ min
Φ∈H2(E)

∫
E

(2µΦ2
,12 + µΦ2

,11 + µΦ2
,22 + Φ∆ϕ) dx1dx2

where we have used the notation Φ,αβ := ∂2
αβΦ.

A straightforward application of Lemma 5.1 ( with R = I) and Lemma 5.2 yields the following
precise calculation of the energy level of u ∈ argminA E .

Lemma 5.3. There holds

(5.17) min
u∈A
E(u) = min

Φ∈H2(E)

∫
E

(2µΦ2
,12 + µΦ2

,11 + µΦ2
,22 + Φ∆ϕ) dx1dx2
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Proof. It is readily seen that any displacement of the kind (∇Φ(x1, x2), v3(x3)) ∈ A if and
only if Φ ∈ H2(E), v3 ∈ H1(0, 1) and v3(0) ≥ 0. Therefore, by Lemma 5.1 and Lemma 5.2,
we get

min
u∈A
E(u) ≥ min

Φ∈H2(E)

∫
E

(2µΦ2
,12 + µΦ2

,11 + µΦ2
,22 + Φ∆ϕ) dx1dx2+

+ inf

{
µπ

∫ 1

0
|v̇3|2 dx3 + π v3(0) : v3 ∈ H1(0, 1), v3(0) ≥ 0

}
=

min
Φ∈H2(E)

∫
E

(2µΦ2
,12 + µΦ2

,11 + µΦ2
,22 + Φ∆ϕ) dx1dx2.

The opposite inequality follows by choosing v := (∇Φ, 0) with Φ ∈ H2(B) and by taking into
account of

min
u∈A
E(u) ≤ E(v)

for every choice of Φ ∈ H2(E).

Let now Φ ∈ H2(E). Then v := Φ,2e1 − Φ,1e2 ∈ A and a direct computation shows that

(5.18) min
A
ER∗ ≤ min

Φ∈H2(E)

∫
E

(2µΦ,12
2 +

µ

2
(Φ,22 − Φ,11)2 + Φ∆ϕ) dx1dx2

Therefore inequality (5.10) is an immediate consequence of the next Proposition.

Proposition 5.4. There holds

(5.19)

min
Φ∈H2(E)

∫
E

(2µΦ,12
2 +

µ

2
(Φ,22 − Φ,11)2 + Φ∆ϕ) dx1dx2 <

< min
Φ∈H2(E)

∫
E

(2µΦ2
,12 + µΦ2

,11 + µΦ2
,22 + Φ∆ϕ) dx1dx2.

Proof. The proof is the same of formula (5.14) of [45].

The previous explicit example shows that a gap phenomenon may actually develop. Never-
theless one can prove that whenever f , g satisfy (2.33) then they can be suitable rotated in
order to avoid the gap. In order to state such result, we introduce suitable notation: set

(5.20) LR(v) := L(Rv) =

∫
Ω
RT f · v dx +

∫
∂Ω

RTg · v dH2 ∀R ∈ SO(3) ,

say LR is the load functional associated to the external forces RT f ,RTg and let ER be the
functional defined by replacing L with LR in the definition of E .

Theorem 5.5. Assume (2.13),(2.33), L(e3) < 0 and R ∈ SL,E. Then the functional LR
fulfills (2.33) and SL,E ≡ SLR,E. Moreover, if u minimizes G over H1Ω,R3), R ∈ SL,E
attains the maximum in definition (2.42) of G(u) then u ∈ argmin ER and

(5.21) min
H1(Ω,R3)

G = min
H1(Ω,R3)

ER .
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Proof. By Lemma 3.8 we have either SL,E ≡ {I} or SL,E = {R : Re3 = e3}: in the first case
there is nothing to prove, in the second one by (2.33) we get

(5.22) 0 = Φ(R, E,L) = L((R− I)x).

Therefore for any other S ∈ SO(3) by taking account of Re3 = e3 and of (5.22) we have

(5.23) Φ(S, E,LR) = Φ(RS, E,L) ≤ 0

that is LR satisfies (2.33). By Remark 3.5 conditions (4.9)-(4.11) of Theorem 4.5 in [12] are
fulfilled hence ER achieves a finite minimum. Moreover since Re3 = e3 implies R2e3 = e3,
(5.23) together with Lemma 3.8 entails

(5.24) Φ(R, E,LR) = Φ(R2, E,L) = 0

whence R ∈ SLR,E whenever R ∈ SL,E . Then since LR(e3) = L(Re3) = L(e3) < 0 we get ,
again by Lemma 3.8, SLR,E 6≡ {I} hence SLR,E = {R : Re3 = e3} = SL,E as claimed.
We conclude by checking that if uminimizes G then it is also a minimizer of ER overH1(Ω,R3).
If u ∈ H1(Ω,R3) minimizes G and R attains the maximum then

min
H1(Ω,R3)

G = G(u) =

∫
Ω
Q(x,E(u)) dx− L(Ru) = ER(u).

Thus since G ≤ ER then (5.21) is proven.

Remark 5.6. By choosing W as in (5.1), Ω, E as in (5.3) we provide an example where the
inclusion argminG ⊂ argmin G̃ is strict. Indeed Lemma 5.1 shows that for every R ∈ SL,E
there exists w ∈ argmin ER such that w(x) = wα(x1, x2)eα. By Theorem 5.5 there exists u ∈
argminG ⊂ argmin G̃ such that u(x) = uα(x1, x2)eα. Then we can set u∗(x) := u(x) + x3e1.
By taking account of Lemma 3.1 and of Remark 3.2 we get L(Ru) = L(Ru∗) for every
R ∈ SL,E hence G̃(u) = G̃(u∗) and u∗ ∈ argmin G̃. Moreover, again by taking account of
Lemma 3.1 and of Remark 3.2, we have

G(u∗)− G(u) = µ

∫
Ω
|E(u∗)|2 dx− µ

∫
Ω
|E(u)|2 dx =

µ

2
|Ω| > 0

thus u∗ 6∈ argminG and the inclusion is strict in this case.

6. Appendix

For reader’s convenience and aiming to the precise formulation of unilateral constraint, in
this section we encompass some results about capacity theory which are essential to achieve
the results of present paper and somehow present in the literature, though they are spread in
several different contexts and not easy to find as stated in this form: in particular Propositions
6.1 and 6.2 can be proven as like as Proposition 5.8.3. and Proposition 5.8.4. in [7] although
the results seem slightly different.

Proposition 6.1. Let G an open bounded subset of RN . Then

(6.1) capG = inf
{
‖w‖2H1(RN ) : w∈C∞0 (RN ), w ≥ 1 on G

}
.

The above property can be generalized to every bounded subset of RN by the following
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Proposition 6.2. Let E a bounded subset of RN . Then

(6.2)

capE = inf
{
‖w‖2

H1(RN )
: w∈C∞0 (RN ), w ≥ 1 on a neighborhood ofE

}
=

= inf
{
‖w‖2H1(RN ) : w∈C∞0 (RN ; [0, 1]), w ≡ 1 on a neighborhood ofE

}
.

We state and prove some results which play a crucial role in the proof of our main theorem.
In the sequel Ω will denote an open bounded subset of RN with Lipschitz boundary and E
will denote a subset of Ω such that capE > 0.

Lemma 6.3. Let u ∈ H1(Ω), u ≥ 0 a.e. in Ω such that u∗(x) = 0 for q.e. x ∈ D, where D is
a closed subset of Ω. Then there is an extension v ∈ H1(RN ) of u such that spt v is compact,
v ≥ 0 a.e. in RN and

lim
r→0+

1

|Br(x)|

∫
Br(x)

v(ξ) dξ = 0

for q.e. x ∈ D.

Proof. We recall that u∗ is defined as

(6.3) u∗(x) = lim
r→0+

1

|Br(x)|

∫
Br(x)

w(ξ) dξ

for q.e. x ∈ Ω, where w is any Sobolev extension of u. Therefore the claim follows easily by
choosing a cut off function ϕ ∈ C∞0 (RN ), ϕ ≡ 1 on Ω and by setting v := w+ϕ which is a
Sobolev extension of u with compact support since v = u a.e. in Ω, and spt v ⊂ sptϕ.

Lemma 6.4. Let u ∈ H1(RN ) with compact support such that u ≥ 0 a.e. in RN and u∗(x) = 0
for q.e. x ∈ E. Then there exists a sequence uj ∈ C1(RN )∩H1(RN ), uj ≥ 0 in RN such that
uj(x) = 0 for q.e. x ∈ E and uj → u in H1(R3).

Proof. For every j ∈ N, j ≥ 1 let uj := min{u, j
1
4 } ∈ H1(RN ). By Theorem 3.11.6 and

Remark 3.11.7 of [57] there exists vj ∈ C1(RN )∩H1(RN ) with spt vj ⊂ {x : d(x, sptuj) ≤ j−1}
such that if Fj := {x : vj(x) 6= uj(x)} then

(6.4) CapFj <
1

j
, ‖vj − uj‖H1(RN ) <

1

j

so (2.8) entails

(6.5) capFj < βj−1.

By recalling that sptuj is compact we get that Fj is bounded so, by taking account of (6.2),
there exists wj ∈ C∞0 (RN ; [0, 1]), wj ≡ 1 in a neighbourhood Uj of Fj such that

(6.6) ‖wj‖2H1(RN ) < βj−1.

We define uj := (1 − wj)vj : it is readily seen that uj ∈ C1(RN ) ∩ H1(RN ), uj ≥ 0 in RN ,
that uj(x) = 0 for q.e. x ∈ E ∩ Uj and that uj ≡ uj(1 − wj) outside Uj , hence, by recalling
that uj∗(x) = u∗(x) = 0 for q.e. x ∈ E, we get uj(x) = 0 for q.e. x ∈ E \ Uj that is
uj(x) = 0 for q.e. x ∈ E. We claim that uj → u in H1(RN ): to this aim, by noticing that
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uj − u = vj − uj + uj − u− vjwj and that uj → u in H1(RN ), thanks to (6.4) we have only
to show that vjwj → 0 in H1(RN ). We first notice that by setting

Bj := {x : |wj(x)| ≥ j−
1
4 }

then by (6.6) and Tchebichev inequality we get |Bj | ≤ βj−
1
2 , therefore

(6.7)

∫
RN
|wj |2|vj |2 dx =

∫
Bj

|wj |2|vj |2 dx +

∫
R3\Bj

|wj |2|vj |2 dx

≤
∫
Bj

|vj |2 dx + j−
1
2

∫
RN\Bj

|vj |2 dx ≤

≤ 2

∫
Bj

|vj − uj |2 dx + 2

∫
Bj

|uj |2 dx+

+2j−
1
2

∫
RN
|vj − uj |2 dx + 2j−

1
2

∫
RN
|uj |2 dx→ 0

since

‖vj − uj‖H1(RN ) <
1

j
, uj → u in H1(RN ), |Bj | → 0.

Analogously by recalling (6.6), that wj ≡ 1 on Uj , that vj ≡ uj outside Uj and ‖uj‖2∞ ≤
√
j,

we get

(6.8)

∫
RN
|∇(wjvj)|2 dx ≤ 2

∫
RN
|wj |2|∇vj |2 dx + 2

∫
RN\Uj

|vj |2|∇wj |2 dx ≤

≤ 2

∫
RN
|wj |2|∇vj |2 dx + 2‖uj‖2∞

∫
RN\Uj

|∇wj |2 dx ≤

≤ 2

∫
RN\Bj

|wj |2|∇vj |2 dx + 2

∫
Bj

|wj |2|∇vj |2 dx + 2j−
1
2 → 0

as in (6.7) thus proving the Lemma.

Lemma 6.5. Let u ∈ H1(Ω) such that u∗(x) ≥ 0 for q.e. x ∈ E. Then there exists a sequence
uj ∈ C1(Ω) such that uj(x) ≥ 0 for q.e. x ∈ E and uj → u in H1(Ω)

Proof. We recall that by Remark 2.3 u∗(x) ≥ 0 for q.e. x ∈ E if and only if (u−)∗(x) = 0
for q.e. x ∈ Eess and that Eess is a closed subset of Ω. By Lemma 6.3 there exists a Sobolev
extension v of u− such that spt v is compact, v ≥ 0 a.e. in R3 and

lim
r→0+

1

|Br(x)|

∫
Br(x)

v(ξ) dξ = 0

for q.e. x ∈ Eess so, by Lemma 6.4, there exists a sequence vj ∈ C1(RN ) ∩ H1(RN ), vj ≥
0 in RN such that vj(x) = 0 for q.e. x ∈ Eess and vj → v in H1(RN ). Let now w be a Sobolev
extension of u+. We may assume without loss of generality that w ≥ 0 a.e. in RN and if ρj
is a sequence of smooth mollifiers then wj := w ∗ ρj ≥ 0 and wj → w in H1(RN ). Therefore
by setting uj := wj − vj we have uj ∈ C1(Ω), uj(x) ≥ 0 for q.e. x ∈ E and uj → u in H1(Ω)
thus proving the Lemma.
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Remark 6.6. If E is a non empty subset of Ω and u ∈ H1(Ω) we say that u ≥ 0 on E in
the sense of H1(Ω) if there exists a sequence uj ∈ C1(Ω) such that uj ≥ 0 on E and uj → u
in H1(Ω) (according to Definition 5.1, page 35 in [31]). We claim that (u−)∗ = 0 q.e. in E
(or equivalently u∗ ≥ 0 q.e. in E) if and only if u ≥ 0 on E in the sense of H1(Ω): indeed if
(u−)∗ = 0 q.e. in E then Lemma 6.5 provides a sequence uj ∈ C1(Ω) such that uj → u in
H1(Ω), uj ≥ 0 on E, while the converse follows easily by recalling that if uj → u in H1(Ω)
then , up to subsequences, uj(x)→ u∗(x) for q.e. x ∈ E.
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