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Abstract. We study the H-convergence problem for a class of nonlocal linear operators in
fractional divergence form, where the oscillations of the matrices are prescribed outside the
reference domain. Our compactness argument bypasses the failure of the classical localisation
techniques, that mismatch with the nonlocal nature of the operators involved. If symmetry
is also assumed, we show that the H-compactness can be equivalently obtained through the
Γ-convergence of the associated energies.

1. Introduction

At the beginning of the ’70s the French school of J.-L. Lions set the stage for the mathematical
theory of the homogenisation of composite materials, made by the superposition of sheets of
different materials, or considering homogeneous materials with holes filled by another material.
For a given source term f , this problem is mathematically modelled by a symmetric matrix-
valued function A(x), identifying the different materials at each point x, and expressed through
partial differential equations in divergence form

(1.1) −div(A(x)∇u(x)) = f(x).

An equivalent statement of the problem (1.1) considers the momentum p(x) := A(x)∇u(x) and
is formulated as

−div(p(x)) = f(x).

Such equations appear in many applications in physics and engineering: in the equation of
the electrostatics, u is the electric potential, p is the electric displacement, and A is the dielectric
constant, while, in the equation of magnetostatics, u is the magnetic potential, p is the magnetic
induction, and A is the magnetic permeability. Other examples are the equation of the time-
independent heat transfer, where u is the temperature, p is the heat flux, and A represents
the thermal conductivity and, in the vectorial case, the equation of the linear elasticity for
composite materials, where u is the displacement field, p (usually denoted by σ) is the Cauchy
stress tensor, and A represents the elasticity tensor.

From a numerical point of view, when the coefficients of the matrix A oscillate too fast, it
can be very difficult to deal with the above equations, for example when the heterogeneous
material has a periodic structure. A possible way to overcome this problem is to approximate
the solutions by the (unique) solution of a limit problem, much easier to deal with numerically,
in which the matrix A is independent on x, the so-called homogenised problem.

The first relevant contributions to this theory are by Sánchez-Palencia [28, 29, 30], through
applications of the asymptotic expansions method, consisting in approximating solutions of (1.1)
with a series depending on the layers of the material, and then estimating the resulting error.

A more general approach, introduced by Spagnolo in the pioneering works [36, 37, 38], is the
so-called G-convergence of linear partial differential equations of the form

(1.2) −div(Ah(x)∇u(x)) = f(x), h ∈ N.

The G-convergence theory studies the asymptotic behaviour of the solutions of problems (1.2),
assuming very mild hypotheses on the coefficients of any matrix Ah, and it is based on the
distributional nature of the problems (1.2) and some standard tools of functional analysis.
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Nevertheless, at its early stage it was not clear what properties the limit with respect to the
G-convergence would have satisfied. A first characterisation of the limit operator (the so-called
G-limit) was only later obtained by De Giorgi and Spagnolo [17], who show that the G-limit still
acts as a divergence form operator depending on a limit homogenised matrix A∞ (sometimes
called effective matrix and denoted by Aeff). We underline that, whenever Ah(x) = A(hx), we
recover the former theory of the homogenisation of composite materials but, differently from it,
the limit matrix of the G-convergence, A∞ = A∞(x), may in general still be x-dependent.

By its very nature, the G-convergence is sensible according to the class of operators considered
and, without further requirements, it appears incomplete when dealing with non-symmetric
matrices, needed in applications involving e.g. porous media. Tartar observes in [41] that the
divergence operator does not in fact recognise perturbations from skew-symmetric matrices
leading, in this case, to the non-uniqueness of A∞.

This lack of uniqueness is bypassed by Tartar [40] and Murat [25, 26] at the end of the ’70s,
and this theory in nowadays called H-convergence, where H stands for homogenisation. The
main difference with the former G-convergence naturally appears in the non-symmetric case:
the uniqueness of the homogenised matrix A∞ is now guaranteed, whenever the sequence of the
momenta ph = Ah∇uh converges (in the weak topology) to the momentum of the limit solution
p∞ = A∞∇u∞.

In the last decade there has been an increasing interest in extending these results to a nonlocal
framework, motivated by the huge number of applications in fluid mechanics, image denoising,
nonlinear elasticity, nonlocal minimal surfaces, anomalous diffusion, and stable Lévy processes.
First attempts to deal with nonlocal H-convergence appear in [18], where the authors study
scalar perturbations of the fractional p-Laplace operator in the linear and superlinear cases, and
in [8], regarding the H-convergence of fractional powers of elliptic operators in divergence form.
We also mention [5, 19, 27] for the homogenisation of more general nonlocal energies and [9, 10]
for other applications involving nonlocal operators.

All the aforementioned contributions in nonlocal H-convergence consider, however, only the
case of scalar weights, in contrast to the classical results by Tartar [41]. On the other hand,
the case of matrix weights is of great interest in applications, as it allows to study anisotropic
heterogeneous materials. We observe that it is not immediately clear how to get a momentum
operator in problems involving Gagliardo seminorms, since the latters are defined via integration
of scalar energies.

We hence wonder whether it might be possible to formulate a nonlocal H-convergence-type
problem à la Tartar. To this aim, we exploit a suitable notion of fractional-order divergence divs

and fractional-order gradient ∇s (see Definition 2.2), in a way that the fractional divergence acts
on the nonlocal momentum p(x) = A(x)∇su(x). The construction of this class of fractional-
order operators is explained in details in Section 2, and relies on the pioneering contributions
by Shieh and Spector [33, 34], Šilhavý [42], and the subsequent works [7, 11, 12, 13].

This leads to the study of the H-convergence of the following sequence of elliptic problems

(P f
h )

{
−divs(Ah∇suh) = f in Ω,

uh = 0 in Rn \ Ω,

h ∈ N, on the same spirit of Tartar and Murat.

When dealing with the asymptotics of problems (P f
h ), there are two main issues to be

taken into account. The first one is to overcome the localisation techniques needed in the
H-convergence (see e.g. [41] for a deep discussion on this topic), and this is done by exploiting

the distributional nature of (P f
h ) and using a suitable Leibniz rule (see Proposition 2.7).

The second question concerns the behaviour of the matrices Ah(x) outside the reference
domain Ω. Indeed, differently from the local scenario, since the fractional gradient ∇s must be
defined on the whole space Rn, then the fractional divergence divs acts on vector fields globally
defined over Rn (see Definition 2.2). Hence, the matrix-valued functions Ah(x) must be defined
on the whole space Rn.
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On the other hand, −divs(Ah∇suh) is bounded only in Ω, and so we cannot hope to obtain
compactness of (Ah)h outside the reference domain. In order to tackle this lack of compactness,
the values of any matrix Ah(x) are prescribed outside Ω by a fixed matrix A0(x) which satisfies
standard growth conditions.

In details, we study the limiting behaviour, in the sense of the H-convergence, of the class of
matrix-valued functions

M(λ,Λ,Ω, A0) := {A ∈ M(λ,Λ,Rn) : A = A0 a.e. in Rn \ Ω}

for positive constants λ ≤ Λ and A0 ∈ M(λ,Λ,Rn), where M(λ,Λ,Rn) denotes the class of
matrix-valued measurable functions A : Rn → Rn×n satisfying the growth conditions

A(x)ξ · ξ ≥ λ|ξ|2 for all ξ ∈ Rn and for a.e. x ∈ Rn,

A(x)ξ · ξ ≥ Λ−1|A(x)ξ|2 for all ξ ∈ Rn and for a.e. x ∈ Rn.

Our first main result Theorem 3.1 is the H-compactness of the class M(λ,Λ,Ω, A0), with
respect to a suitable notion of nonlocal H-convergence, which is Definition 2.13. More precisely,
we prove that any sequence of matrix-valued functions (Ah)h in M(λ,Λ,Ω, A0) admits, up to
a subsequence, a limit matrix A∞ such that (Ah)h H-converges to A∞. Moreover, A∞ still
belongs to M(λ,Λ,Ω, A0), leading to the compactness of the class.

We point out that our H-limit A∞ coincides within the reference domain with its local
counterpart, showing a consistency between the local and nonlocal H-convergence. As a by-
product, in Theorem 3.2 we show that also the subclass of symmetric matrices, here denoted
by Msym(λ,Λ,Ω, A0), is H-compact, i.e. if (Ah)h is in Msym(λ,Λ,Ω, A0), then A∞ belongs to
Msym(λ,Λ,Ω, A0).

In the second part of this paper, we focus exclusively on the symmetric case and prove
the Γ-compactness of the class of nonlocal energies associated with Msym(λ,Λ,Ω, A0), which is
Theorem 3.3. Similarly to before, this is achieved by exploiting the classical local Γ-compactness
result for quadratic functionals and using the properties of the Riesz potential to pass to the
nonlocal scenario. A very non-exhaustive list of recent references about the Γ-convergence of
fractional quadratic energies is given by [1, 6, 31, 35]. In particular, in [6], the Γ-compactness
is obtained using the Beurling-Deny criteria for Dirichlet forms, which are unfortunately not
available in our setting since it is not known whether quadratic forms of the fractional gradient
are Dirichlet forms.

In the last part of the paper, we present an alternative variational characterization of the H-
compactness of Msym(λ,Λ,Ω, A0) (Theorem 3.2) via Γ-convergence. First, in Proposition 3.4,
we prove that the convergence of momenta, required in the H-convergence, can be obtained
through Γ-convergence. Finally, we use the aforementioned Γ-compactness result (Theorem 3.3)
to recover the H-compactness of Msym(λ,Λ,Ω, A0).

The paper is structured as follows. In Section 2, all the preliminaries are provided and
discussed in details. In Section 3, we first state and prove our main H-compactness results for
nonlocal linear operators both in the general case and in the case of symmetric matrices, which
are Theorem 3.1 and Theorem 3.2, respectively. Later, we focus on the symmetric case and
prove the Γ-compactness Theorem 3.3. Finally, we prove that the H-compactness Theorem 3.2
can be equivalently obtained as a consequence of the previous Γ-compactness Theorem 3.3 and
the (variational) convergence of the momenta Proposition 3.4. Finally, a list of some open
problems and new research directions drawn from this work is presented in Section 4.

2. Preliminaries

2.1. Notation. We assume that s ∈ (0, 1), n ≥ 2, and that Ω is a bounded open subset of Rn.
The space of n× n real matrices is denoted by Rn×n, and the subspace of symmetric matrices
is denoted by Rn×n

sym . We adopt standard notation for Lebesgue spaces on measurable subsets
E ⊆ Rn and Sobolev spaces on open subsets O ⊆ Rn. The norm of a generic Banach space X is
denoted by ∥ · ∥X . We denote by X ′ the dual space of X, and by ⟨·, ·⟩X′×X the duality product
between X ′ and X.
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2.2. The functional setting. For any α ∈ (0, n), the α-Riesz potential of a measurable func-
tion f : Rn → R is defined as

Iαf(x) :=
1

γα

∫
Rn

f(y)

|x− y|n−α
dy, with γα := 2απ

n
2

Γ(α2 )

Γ(n−α
2 )

.

Notice that Iα is a Fourier multiplier that acts in the Fourier space as

F (Iαf) (ξ) = |ξ|−αF (f) (ξ),

being F the Fourier transform. Moreover, as shown in [39, Theorem 1, pag. 119], we have the
following result.

Proposition 2.1. Let α ∈ (0, n) and p ∈
(
1, nα

)
. For all f ∈ Lp(Rn), the α-Riesz potential Iαf

is well-defined and there exists a positive constant C, depending only on α, n, and p, such that

∥Iαf∥Lp∗α (Rn) ≤ C ∥f∥Lp(Rn) ,

where p∗α := np
n−αp .

Let us recall the notions of fractional divergence and fractional gradient that will be used to
introduce the H-convergence problem in our framework.

Definition 2.2. Let ψ ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn) be fixed. We define the s-fractional
gradient ∇sψ and the s-fractional divergence divs ϕ, respectively, as

∇sψ(x) :=
n− 1 + s

γ1−s

∫
Rn

(ψ(x)− ψ(y))(x− y)

|x− y|n+s+1
dy for all x ∈ Rn,

divs ϕ(x) :=
n− 1 + s

γ1−s

∫
Rn

(ϕ(x)− ϕ(y)) · (x− y)

|x− y|n+s+1
dy for all x ∈ Rn.

The next result links the notions of fractional gradient and fractional divergence with the
classical ones. A proof can be found in [33, Theorem 1.2] and [11, Proposition 2.2].

Proposition 2.3. Let ψ ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn). It holds that

∇sψ = ∇(I1−sψ) = I1−s(∇ψ) in Rn,

divs ϕ = I1−s(div ϕ) = div(I1−sϕ) in Rn.

We now introduce the functional framework for our problems in fractional divergence form.

Definition 2.4. Let O ⊆ Rn be an open set. We denote by Hs
0(O) the Hilbert space defined as

the closure of C∞
c (O) with respect to the following norm

∥ · ∥Hs(Rn) :=
(
∥ · ∥2L2(Rn) + ∥∇s · ∥2L2(Rn;Rn)

)1/2

and, by H−s(O), the dual space of Hs
0(O). When O = Rn, we have that Hs

0(Rn) = Hs(Rn).

As a consequence of Proposition 2.3, one can immediately show, through Fourier transform,
that for all ψ ∈ C∞

c (Rn) and s, σ ∈ (0, 1) we have

(2.1) −divs(∇σψ) = (−∆)
s+σ
2 ψ.

Moreover, by Fubini’s Theorem, it holds that

(2.2)

∫
Rn

∇sψ(x) · ϕ(x) dx = −
∫
Rn

ψ(x) divs ϕ(x) dx

for all ϕ ∈ C∞
c (Rn;Rn) and ψ ∈ C∞

c (Rn).
If we extend the operators ∇s and divs respectively to Hs(Rn) and Hs(Rn;Rn), then (2.2)

holds for all ϕ ∈ Hs(Rn;Rn) and ψ ∈ Hs(Rn). In particular, we can define the operator
divs : L2(Rn;Rn) → H−s(Ω) as

⟨divs u, v⟩H−s(Ω)×Hs
0(Ω) := −

∫
Rn

u(x) · ∇sv(x) dx

for all u ∈ L2(Rn;Rn) and v ∈ Hs
0(Ω).
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The following two Propositions provide a useful connection between the Sobolev spaces
H1(Rn) and Hs(Rn). For the proof of the next Proposition we refer the interested reader
to [7, Lemma A.4].

Proposition 2.5. Let w ∈ H1(Rn) and set u := (−∆)
1−s
2 w. It holds that

u ∈ Hs(Rn) and ∇su = ∇w a.e. in Rn.

Moreover, there exists a positive constant C, depending only on n and s, such that the following
estimate holds true

(2.3) ∥u∥L2(Rn) ≤ C(n, s)∥w∥sL2(Rn)∥∇w∥
1−s
L2(Rn;Rn)

.

Proposition 2.6. Let u ∈ Hs(Rn) and set w := I1−su. It holds that

w ∈
{
v ∈ L2∗1−s(Rn) : ∇v ∈ L2(Rn)

}
and ∇w = ∇su a.e. in Rn,

where 2∗1−s =
2n

n−2+2s .

In particular, w ∈ H1
loc(Rn) and, for every open set O ⋐ Rn, there exists a positive constant

C, depending only on n, s and O, such that the following estimate holds true

(2.4) ∥w∥H1(O) ≤ C(n, s)∥u∥Hs(Rn).

Proof. If u ∈ C∞
c (Rn), the result is a consequence of Proposition 2.1 (with p = 2 and α = 1−s)

and of Proposition 2.3.
Let now (uh)h ⊂ C∞

c (Rn) be such that uh → u strongly in Hs(Rn). Then,

wh := I1−suh → w := I1−su strongly in L2∗1−s(Rn) as h→ ∞

and

∇wh = ∇suh → ∇su strongly in L2(Rn;Rn) as h→ ∞,

which gives the existence of ∇w = ∇su ∈ L2(Rn;Rn). Thus, the estimate (2.4) follows again in
virtue of Proposition 2.1. □

We conclude this subsection recalling some extensions of classical results to the framework
of fractional calculus, that will be used throughout the paper. They are a Leibniz-type rule for
the fractional gradient [12, Eq. (1.5), (1.6)] and [20, Eq. (2.11)], a Poincaré-type inequality [33,
Theorem 3.3], and a Rellich-type Theorem [34, Theorem 2.2].

Proposition 2.7 (Leibniz rule). Let φ ∈ C1
c (Ω) and u ∈ Hs(Rn). Then, φu ∈ Hs

0(Ω) and

∇s(φu) = φ∇su+ u∇sφ+∇s
NL(φ, u)

where, for every x ∈ Rn, the remainder term ∇s
NL(φ, u)(x) is

∇s
NL(φ, u)(x) :=

n− 1 + s

γ1−s

∫
Rn

(φ(x)− φ(y))(u(x)− u(y))(x− y)

|x− y|n+s+1
dy.

Moreover, there exists a positive constant C, depending only on n and s, such that

∥∇s
NL(φ, u)∥L2(Rn;Rn) ≤ C∥u∥L2(Rn)∥φ∥1−s

L∞(Ω)∥∇φ∥
s
L∞(Ω;Rn).

Proposition 2.8 (Poincaré inequality). For every set O ⋐ Rn there exists a positive constant
C, depending only on n, s and O, such that

∥u∥L2(O) ≤ C∥∇su∥L2(Rn;Rn) for all u ∈ Hs(Rn).

Proposition 2.9 (Rellich Theorem). For every set O ⋐ Rn the space Hs
0(O) is compactly

embedded into L2(O).
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2.3. The H-convergence problem. We now want to introduce our notion of H-convergence
associated with the nonlocal operators introduced above. As in the local counterpart (see
e.g. [41]), we begin by defining the class of matrices in which we are interested.

Definition 2.10. Given 0 < λ ≤ Λ <∞ and a measurable subset E of Rn, we define M(λ,Λ, E)
as the collection of all matrix-valued measurable functions A : E → Rn×n satisfying

A(x)ξ · ξ ≥ λ|ξ|2 for all ξ ∈ Rn and for a.e. x ∈ E,(2.5)

A(x)ξ · ξ ≥ Λ−1|A(x)ξ|2 for all ξ ∈ Rn and for a.e. x ∈ E.(2.6)

We also set

Msym(λ,Λ, E) := {A ∈ M(λ,Λ, E) : A = AT a.e. in E}.

The estimate (2.6) above is needed to obtain the compactness of the class M(λ,Λ,Ω) with
respect to the H-convergence topology, even in the local setting. More precisely, it is well-
known that the H-limit of sequences of non-symmetric matrices satisfying the standard growth
condition

λ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2 for all ξ ∈ Rn and for a.e. x ∈ Ω,(2.7)

instead of (2.5) and (2.6), may belong to a wider class M(λ,Λ′,Ω) with Λ′ ≥ Λ (see e.g. the
observations of Tartar in [41, Chapter 6, Pag. 81]).

We also point out that, in the symmetric case A = AT , conditions (2.5)–(2.6) are actually
equivalent to (2.7), as shown in the following result.

Lemma 2.11. Given 0 < λ ≤ Λ <∞, let B ∈ Rn×n satisfy

Bξ · ξ ≥ λ|ξ|2 for all ξ ∈ Rn.(2.8)

Then, B is invertible and condition

Bξ · ξ ≥ Λ−1|Bξ|2 for all ξ ∈ Rn(2.9)

is equivalent to

B−1ξ · ξ ≥ Λ−1|ξ|2 for all ξ ∈ Rn.(2.10)

In particular, B satisfies

(2.11) Bξ · ξ ≤ Λ|ξ|2 for all ξ ∈ Rn.

Moreover, if B is symmetric (B = BT ), then conditions (2.9), (2.10) and (2.11) are all equiv-
alent.

Proof. Let B ∈ Rn×n satisfy (2.8). By Lax-Milgram Theorem, for all η ∈ Rn there exists a
unique vector ξ ∈ Rn such that Bξ = η, i.e. B is invertible. Hence, (2.9) implies

Λ−1|ξ|2 = Λ−1|BB−1ξ|2 ≤ BB−1ξ ·B−1ξ = B−1ξ · ξ for all ξ ∈ Rn.

Conversely, by (2.10), we get

Λ−1|Bξ|2 ≤ B−1Bξ ·Bξ = Bξ · ξ for all ξ ∈ Rn.

Assume now that B satisfies condition (2.9). By Cauchy-Schwartz inequality, we get

Λ−1|Bξ|2 ≤ Bξ · ξ ≤ |Bξ||ξ| for all ξ ∈ Rn,

leading to

(2.12) |Bξ| ≤ Λ|ξ|.

Therefore, by applying again Cauchy-Schwartz inequality, we get

Bξ · ξ ≤ |Bξ||ξ| ≤ Λ|ξ|2 for all ξ ∈ Rn

and so condition (2.9) implies (2.11).
6



Finally, assume that B is symmetric. It is enough to show that (2.11) implies (2.9). We start
by observing that, by the symmetry of B, the bilinear form (ξ, η) 7→ (Bξ, η) is a scalar product
in Rn, in virtue of (2.11). Hence, by Cauchy-Schwartz inequality and (2.11), it holds that

|Bξ · η|2 ≤ (Bξ · ξ)(Bη · η) ≤ (Bξ · ξ)Λ|η|2 for all ξ, η ∈ Rn.

In particular, for η = Bξ, we get

|Bξ|4 = |Bξ ·Bξ|2 ≤ (Bξ · ξ)Λ|Bξ|2 for all ξ ∈ Rn,

which implies (2.9). □

From now on, we fix 0 < λ ≤ Λ < ∞. Given a sequence of matrices (Ah)h ⊂ M(λ,Λ,Rn),
for all f ∈ H−s(Ω) and h ∈ N we consider the following elliptic problems

(P f
h )

{
−divs(Ah∇suh) = f in Ω,

uh = 0 in Rn \ Ω,

where divs and ∇s are the fractional differential operators introduced in Definition 2.2. The

following result ensures that the problem (P f
h ) is well-defined.

Lemma 2.12. Let A ∈ M(λ,Λ,Rn). For every f ∈ H−s(Ω) there exists a unique (weak)
solution u ∈ Hs

0(Ω) of the elliptic problem{
−divs(A∇su) = f in Ω,

u = 0 in Rn \ Ω,

i.e. satisfying∫
Rn

A(x)∇su(x) · ∇sv(x) dx = ⟨f, v⟩H−s(Ω)×Hs
0(Ω) for all v ∈ Hs

0(Ω).

Moreover, the solution u satisfies the following estimate

∥∇su∥L2(Rn;Rn) ≤ λ−1∥f∥H−s(Ω).

Proof. The proof is a direct application of Lax-Milgram Theorem and Proposition 2.8. Indeed,
the bilinear form a : Hs

0(Ω)×Hs
0(Ω) → R, defined as

a(u, v) :=

∫
Rn

A(x)∇su(x) · ∇sv(x) dx for any u, v ∈ Hs
0(Ω),

is continuous and coercive, being A ∈ M(λ,Λ,Rn). □

The notion of nonlocal H-convergence of (Ah)h ⊂ M(λ,Λ,Rn) we propose consists in finding
a limit matrix A∞ ∈ M(λ′,Λ′,Rn), with 0 < λ′ ≤ λ ≤ Λ ≤ Λ′ < ∞, such that the sequence of

problems (P f
h )h is related to the limit problem

(P f
∞)

{
−divs(A∞∇su∞) = f in Ω,

u∞ = 0 in Rn \ Ω,

in the sense of the next definition. In what follows, we denote by uh = uh(f) ∈ Hs
0(Ω), h ∈ N,

and by u∞ = u∞(f) ∈ Hs
0(Ω) the unique weak solutions of (P f

h ) and (P f
∞), respectively.

Definition 2.13 (Nonlocal H-convergence). Let 0 < λ′ ≤ λ ≤ Λ ≤ Λ′ < ∞ and consider
(Ah)h ⊂ M(λ,Λ,Rn) and A∞ ∈ M(λ′,Λ′,Rn). We say that

(Ah)h H-converges to A∞ in Hs
0(Ω)

if for all f ∈ H−s(Ω) the following convergences simultaneously hold as h→ ∞:

convergence of solutions: uh → u∞ weakly in Hs
0(Ω),(2.13)

convergence of momenta: Ah∇suh → A∞∇su∞ weakly in L2(Rn;Rn).(2.14)
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Definition 2.13 is the natural counterpart in the nonlocal setting of the local H-convergence,
see e.g. [41, Definition 6.4]. For the readers’ convenience, we recall such a notion in what follows.

Let (Bh)h ⊂ M(λ,Λ,Ω) be fixed. For all h ∈ N and g ∈ H−1(Ω), we consider the following
sequence of elliptic problems

(Qg
h)

{
−div(Bh∇wh) = g in Ω,

wh = 0 on ∂Ω.

Given B∞ ∈ M(λ′,Λ′,Ω), for some 0 < λ′ ≤ λ ≤ Λ ≤ Λ′ <∞, we also consider the problem

(Qg
∞)

{
−div(B∞∇w∞) = g in Ω,

w∞ = 0 on ∂Ω,

and denote by wh = wh(g) ∈ H1
0 (Ω), h ∈ N, and by w∞ = w∞(g) ∈ H1

0 (Ω) the unique weak
solutions of (Qg

h) and (Qg
∞), respectively.

Definition 2.14 (Local H-convergence). Let 0 < λ′ ≤ λ ≤ Λ ≤ Λ′ < ∞, and consider
(Bh)h ⊂ M(λ,Λ,Ω) and B∞ ∈ M(λ′,Λ′,Ω). We say that

(Bh)h H-converges to B∞ in H1
0 (Ω),

if for all g ∈ H−1(Ω) the following convergences simultaneously hold as h→ ∞:

convergence of solutions: wh → w∞ weakly in H1
0 (Ω),(2.15)

convergence of momenta: Bh∇wh → B∞∇w∞ weakly in L2(Ω;Rn).(2.16)

We recall that the class M(λ,Λ,Ω) is compact with respect to the local H-convergence in
H1

0 (Ω). A proof of this classical result can be found e.g. in [41, Theorem 6.5].

Proposition 2.15 (Local H-compactness). For any (Bh)h ⊂ M(λ,Λ,Ω), there exist a not
relabeled subsequence and a matrix-valued function B∞ ∈ M(λ,Λ,Ω) such that

(Bh)h H-converges to B∞ in H1
0 (Ω).

We also recall that the local H-convergence is stable with respect to the transpose operation.
More precisely, we have the following result, due to Tartar, whose proof can be found in [41,
Lemma 10.2].

Proposition 2.16 (H-convergence of the transpose). Let Bh, B∞ ∈ M(λ,Λ,Ω), h ∈ N, and
assume that

(Bh)h H-converges to B∞ in H1
0 (Ω).

Then,
(BT

h )h H-converges to BT
∞ in H1

0 (Ω).

The first goal of this paper is to show that suitable subclasses of M(λ,Λ,Rn) are compact
with respect to the nonlocal H-convergence. The classes of matrices we are interested in are
defined as follows.

Definition 2.17. Fix 0 < λ ≤ Λ <∞ and A0 ∈ M(λ,Λ,Rn). We define

M(λ,Λ,Ω, A0) := {A ∈ M(λ,Λ,Rn) : A = A0 a.e. in Rn \ Ω} .
For A0 ∈ Msym(λ,Λ,Rn), we also set

Msym(λ,Λ,Ω, A0) := {A ∈ M(λ,Λ,Ω, A0) : A = AT a.e. in Rn}.

In the next section we show that any sequence (Ah)h in M(λ,Λ,Ω, A0) (respectively in
Msym(λ,Λ,Ω, A0)), for a fixed matrix A0 ∈ M(λ,Λ,Rn) (respectively in Msym(λ,Λ,Rn)),
admits a not relabeled subsequence and a limit matrix A∞ in M(λ,Λ,Ω, A0) (respectively in
Msym(λ,Λ,Ω, A0)) such that

(Ah)h H-converges to A∞ in Hs
0(Ω)

in the sense of Definition 2.13. In particular, the H-limit A∞ satisfies (2.5)–(2.6) with the same
constants λ and Λ of the sequence (Ah)h, leading to the compactness of both classes.
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2.4. The Γ-convergence problem. Let us fix A0 ∈ Msym(λ,Λ,Rn) and a sequence (Ah)h
in Msym(λ,Λ,Ω, A0). For all h ∈ N, we consider the nonlocal energies Fh : L

2(Rn) → [0,∞]
associated with Ah, represented by

Fh(u) :=


1

2

∫
Rn

Ah(x)∇su(x) · ∇su(x) dx if u ∈ Hs
0(Ω),

∞ if u ∈ L2(Rn) \Hs
0(Ω).

(2.17)

The second goal of this paper is to show the Γ-compactness in the strong topology of L2(Rn) for
the class of nonlocal energies (2.17). In particular, we prove the existence of a limit symmetric
matrix-valued function A∞ ∈ Msym(λ,Λ,Ω, A0) such that, up to a not relabeled subsequence,

(Fh)h Γ-converges to F∞ strongly in L2(Rn),

where the limit nonlocal energy F∞ : L2(Rn) → [0,∞] is represented by

(2.18) F∞(u) :=


1

2

∫
Rn

A∞(x)∇su(x) · ∇su(x) dx if u ∈ Hs
0(Ω),

∞ if u ∈ L2(Rn) \Hs
0(Ω).

As a consequence, in Subsection 3.3 we provide a second (equivalent) proof of theH-compactness
for the class Msym(λ,Λ,Ω, A0), which relies exclusively on variational techniques.

We start recalling the notion of Γ-convergence for functionals. For a complete treatment of
the topic, we refer the interested reader to the monographs [4, 15].

Definition 2.18. Let X be a Banach space and let Eh, E∞ : X → [0,∞], h ∈ N. We say that

(Eh)h Γ-converges to E∞ strongly in X

if the following two conditions simultaneously hold:

• Γ-liminf inequality: for all x ∈ X and for any sequence (xh)h ⊂ X strongly converging
to x in X one has

E∞(x) ≤ lim inf
h→∞

Eh(xh);

• Γ-limsup inequality: for all x ∈ X there exists a recovery sequence (yh)h ⊂ X strongly
converging to x in X and such that

E∞(x) ≥ lim sup
h→∞

Eh(yh).

In analogy with Subsection 2.3, we remind that the class of local energies Gh : L
2(Ω) → [0,∞],

h ∈ N, associated with a sequence (Bh)h in Msym(λ,Λ,Ω) and represented by

Gh(v) :=


1

2

∫
Ω
Bh(x)∇v(x) · ∇v(x) dx if v ∈ H1(Ω),

∞ if v ∈ L2(Ω) \H1(Ω),
(2.19)

is compact with respect to the Γ-convergence in the strong topology of L2(Ω). A proof of the
next result can be found in [32] and [15, Theorem 22.2].

Proposition 2.19 (Γ-compactness of local functionals). Let (Bh)h ⊂ Msym(λ,Λ,Ω) and, for
any h ∈ N, let Gh : L

2(Ω) → [0,∞] be the local energy associated with Bh as in (2.19). Then,
there exists G∞ : L2(Ω) → [0,∞] such that, up to a not relabeled subsequence,

(Gh)h Γ-converges to G∞ strongly in L2(Ω).

Moreover, there exists a matrix-valued function B∞ ∈ Msym(λ,Λ,Ω) such that the Γ-limit G∞
has the following integral representation

G∞(v) :=


1

2

∫
Ω
B∞(x)∇v(x) · ∇v(x) dx if v ∈ H1(Ω),

∞ if v ∈ L2(Ω) \H1(Ω).
(2.20)
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Remark 2.20. In order to derive Proposition 2.19 from [32] and [15, Theorem 22.2], we recall
that, according to Lemma 2.11, any symmetric matrix-valued function B belongs to the space
Msym(λ,Λ,Ω) if and only if the following growth condition is satisfied

λ|ξ|2 ≤ B(x)ξ · ξ ≤ Λ|ξ|2 for all ξ ∈ Rn and for a.e. x ∈ Ω.(2.21)

3. Main results

3.1. H-compactness of nonlocal operators. This first subsection is devoted to the H-
compactness result for nonlocal operators. The proof of the following Theorem 3.1 relies on
Proposition 2.15 and Proposition 2.16.

Theorem 3.1. Fix A0 ∈ M(λ,Λ,Rn). For any (Ah)h ⊂ M(λ,Λ,Ω, A0), there exist a not
relabeled subsequence and a matrix-valued function A∞ ∈ M(λ,Λ,Ω, A0) such that

(Ah)h H-converges to A∞ in Hs
0(Ω).

Proof. For all h ∈ N, we define

(3.1) Bh := Ah|Ω ∈ M(λ,Λ,Ω).

By Proposition 2.15, there exists a limit matrix

(3.2) B∞ ∈ M(λ,Λ,Ω)

such that, up to subsequences,

(Bh)h H-converges to B∞ in H1
0 (Ω).

For a.e. x ∈ Rn we define

A∞(x) :=

{
B∞(x) if x ∈ Ω,

A0(x) if x ∈ Rn \ Ω.
(3.3)

By construction, A∞ ∈ M(λ,Λ,Ω, A0). To conclude the proof, we show that A∞ is the H-limit
of (Ah)h in Hs

0(Ω), in the sense of Definition 2.13.

Fix f ∈ H−s(Ω) and consider the sequence (uh)h ⊂ Hs
0(Ω) of unique solutions of (P f

h )h.
Since (uh)h and (Ah∇suh)h are respectively bounded in Hs

0(Ω) and L2(Rn;Rn), then there
exist u∗ ∈ Hs

0(Ω) and m ∈ L2(Rn;Rn) such that, up to a not relabeled subsequence,

(3.4) uh → u∗ weakly in Hs
0(Ω) and Ah∇suh → m weakly in L2(Rn;Rn) as h→ ∞.

Our goal is to show that

(3.5) m = A∞∇su∗ a.e. in Rn.

Indeed, once obtained (3.5), by passing to the limit (as h → ∞) in the weak formulation of

(P f
h ), we obtain that u∗ is a solution of (P f

∞). Thus, by uniqueness, u∗ = u∞ and, by (3.4),

(Ah)h H-converges to A∞ in Hs
0(Ω),

as desired.
First, notice that

(3.6) m = A0∇su∗ = A∞∇su∗ a.e. in Rn \ Ω.
In fact, by (3.4), for all Φ ∈ L2(Rn \ Ω;Rn) it holds that∫

Rn\Ω
m(x) · Φ(x) dx = lim

h→∞

∫
Rn\Ω

Ah(x)∇suh(x) · Φ(x) dx

= lim
h→∞

∫
Rn\Ω

A0(x)∇suh(x) · Φ(x) dx =

∫
Rn\Ω

A0(x)∇su∗(x) · Φ(x) dx,

which implies (3.6).
It remains to show that

(3.7) m = A∞∇su∗ a.e. in Ω.
10



Fix g ∈ H−1(Ω) and consider (wh)h ⊂ H1
0 (Ω) and w∞ ∈ H1

0 (Ω), respectively (unique) solutions
of the transpose problems

(3.8)

{
−div(BT

h∇wh) = g in Ω,

wh = 0 on ∂Ω,
and

{
−div(BT

∞∇w∞) = g in Ω,

w∞ = 0 on ∂Ω.

By Proposition 2.16,

(3.9) wh → w∞ weakly in H1
0 (Ω) and B

T
h∇wh → BT

∞∇w∞ weakly in L2(Ω;Rn) as h→ ∞.

Let φ ∈ C∞
c (Ω) and define

Mh :=

∫
Rn

φ(x)Ah(x)∇suh(x) · ∇wh(x) dx.

We claim that for all φ ∈ C∞
c (Ω)

(3.10) lim
h→∞

Mh =

∫
Ω
φ(x)m(x) · ∇w∞(x) dx =

∫
Ω
φ(x)A∞(x)∇su∗(x) · ∇w∞(x) dx.

Once the claim is proved, we obtain (3.7). Indeed, since the operator −div(BT
∞∇ · ) defines

a bijection between the spaces H1
0 (Ω) and H−1(Ω) and, since g ∈ H−1(Ω) can be arbitrarily

taken in (3.8), then for all φ ∈ C∞
c (Ω) and w ∈ H1

0 (Ω) the following identity holds∫
Ω
φ(x)m(x) · ∇w(x) dx =

∫
Ω
φ(x)A∞(x)∇su∗(x) · ∇w(x) dx.

Hence,

(3.11) m(x) · ∇w(x) = A∞(x)∇su∗(x) · ∇w(x) for a.e. x ∈ Ω and for all w ∈ H1
0 (Ω)

and the collections of points of Ω where (3.11) fails can be chosen independent of w by a density
argument. Therefore, by fixing Ω′ ⋐ Ω and ϕ ∈ C1

c (Ω), such that ϕ = 1 on Ω′, and by defining

w(x) := ϕ(x)ξ · x for a.e. x ∈ Ω and for all ξ ∈ Rn,

by (3.11), we get that

m(x) · ξ = A∞(x)∇su∗(x) · ξ for a.e. x ∈ Ω′ and for all ξ ∈ Rn,

which implies the validity of (3.7) in Ω′. Moreover, since this is true for every Ω′ ⋐ Ω, we
get (3.7) in all Ω, which completes the proof.

We then conclude by showing the validity of the claim (3.10). Its proof is divided into two
steps.

Step 1. We first show that

(3.12) lim
h→∞

Mh =

∫
Ω
φ(x)A∞(x)∇su∗(x) · ∇w∞(x) dx.

In virtue of Proposition 2.3, we have

Mh =

∫
Ω
φ(x)∇suh(x) ·BT

h (x)∇wh(x) dx

=

∫
Ω
φ(x)∇(I1−suh)(x) ·BT

h (x)∇wh(x) dx

=

∫
Ω
∇(φI1−suh)(x) ·BT

h (x)∇wh(x) dx−
∫
Ω
I1−suh(x)∇φ(x) ·BT

h (x)∇wh(x) dx.(3.13)

By (3.4) and Proposition 2.9,

(3.14) uh → u∗ strongly in L2(Rn) as h→ ∞,

and so, by Proposition 2.1, we get

I1−suh → I1−su
∗ strongly in L2(Ω) as h→ ∞.
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This last convergence, coupled with (3.9), implies that

lim
h→∞

∫
Ω
I1−suh(x)∇φ(x) ·BT

h (x)∇wh(x) dx =

∫
Ω
I1−su

∗(x)∇φ(x) ·BT
∞(x)∇w∞(x) dx.(3.15)

We observe that φI1−suh ∈ H1
0 (Ω). Hence, by (3.4), (3.14), and Proposition 2.6,

φI1−suh → φI1−su
∗ weakly in H1

0 (Ω) as h→ ∞.

Thus, since wh solves problem (3.8), we get

lim
h→∞

∫
Ω
∇(φI1−suh)(x) ·BT

h (x)∇wh(x) dx = lim
h→∞

⟨g, φI1−suh⟩H−1(Ω)×H1
0 (Ω)

= ⟨g, φI1−su
∗⟩H−1(Ω)×H1

0 (Ω)

=

∫
Ω
∇(φI1−su

∗)(x) ·BT
∞(x)∇w∞(x) dx.(3.16)

By combining (3.13), (3.15), and (3.16), we then obtain (3.12), being

lim
h→∞

Mh =

∫
Ω
∇(φI1−su

∗)(x) ·BT
∞(x)∇w∞(x) dx−

∫
Ω
I1−su

∗(x)∇φ(x) ·BT
∞(x)∇w∞(x) dx

=

∫
Ω
φ(x)∇(I1−su

∗)(x) ·BT
∞(x)∇w∞(x) dx =

∫
Ω
φ(x)A∞(x)∇su∗(x) · ∇w∞(x) dx.

Step 2. We conclude by showing that

(3.17) lim
h→∞

Mh =

∫
Ω
φ(x)m(x) · ∇w∞(x) dx.

By Proposition 2.5 and Proposition 2.7, we have

Mh =

∫
Ω
φ(x)Ah(x)∇suh(x) · ∇wh(x) dx

=

∫
Rn

φ(x)Ah(x)∇suh(x) · ∇s((−∆)
1−s
2 wh)(x) dx

=

∫
Rn

Ah(x)∇suh(x) · ∇s(φ(−∆)
1−s
2 wh)(x) dx(3.18)

−
∫
Rn

Ah(x)∇suh(x) · ∇sφ(x)(−∆)
1−s
2 wh(x) dx

−
∫
Rn

Ah(x)∇suh(x) · ∇s
NL(φ, (−∆)

1−s
2 wh)(x) dx.

For what concerns the second integral in (3.18), in view of (3.9) and Proposition 2.9, we have

wh → w∞ strongly in L2(Rn) as h→ ∞.

Moreover, the sequence (wh)h ⊂ H1
0 (Ω) is uniformly bounded. Hence, by Proposition 2.5,

(3.19) (−∆)
1−s
2 wh → (−∆)

1−s
2 w∞ strongly in L2(Rn)

and, since ∇sφ ∈ L∞(Rn), by (3.4) we get

lim
h→∞

∫
Rn

Ah(x)∇suh(x) · ∇sφ(x)(−∆)
1−s
2 wh(x) dx =

∫
Rn

m(x) · ∇sφ(x)(−∆)
1−s
2 w∞(x) dx.

(3.20)

Regarding the third integral in (3.18), by Proposition 2.7 and (3.19), since ∇s
NL is a bilinear

operator, we deduce that

∇s
NL(φ, (−∆)

1−s
2 wh) → ∇s

NL(φ, (−∆)
1−s
2 w∞) strongly in L2(Rn;Rn) as h→ ∞.
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Therefore, in virtue of (3.4), we have

lim
h→∞

∫
Rn

Ah(x)∇suh(x) · ∇s
NL(φ, (−∆)

1−s
2 wh)(x) dx =

∫
Rn

m(x) · ∇s
NL(φ, (−∆)

1−s
2 w∞)(x) dx.

(3.21)

Finally, (−∆)
1−s
2 wh ∈ Hs(Rn) by Proposition 2.5, which implies that φ(−∆)

1−s
2 wh ∈ Hs

0(Ω).
Then,

φ(−∆)
1−s
2 wh → φ(−∆)

1−s
2 w∞ weakly in Hs

0(Ω) as h→ ∞.

Therefore, regarding the first integrals in (3.18), since uh is a solution of (P f
h ) then, by (3.4),

lim
h→∞

∫
Rn

Ah(x)∇suh(x) · ∇s(φ(−∆)
1−s
2 wh)(x) dx

= lim
h→∞

⟨f, φ(−∆)
1−s
2 wh⟩H−s(Ω)×Hs

0(Ω)

= ⟨f, φ(−∆)
1−s
2 w∞⟩H−s(Ω)×Hs

0(Ω)

= lim
h→∞

∫
Rn

Ah(x)∇suh(x) · ∇s(φ(−∆)
1−s
2 w∞)(x) dx

=

∫
Rn

m(x) · ∇s(φ(−∆)
1−s
2 w∞)(x) dx.(3.22)

By combining (3.18), (3.20), (3.21), and (3.22), we finally get (3.17), being

lim
h→∞

Mh =

∫
Rn

m(x) · ∇s(φ(−∆)
1−s
2 w∞)(x) dx

−
∫
Rn

m(x) · ∇sφ(x)(−∆)
1−s
2 w∞(x) dx−

∫
Rn

m(x) · ∇s
NL(φ, (−∆)

1−s
2 w∞)(x) dx

=

∫
Rn

φ(x)m(x) · ∇s((−∆)
1−s
2 w∞)(x) dx =

∫
Ω
φ(x)m(x) · ∇w∞(x) dx.

Hence, the claim (3.10) holds true and the proof of the Theorem is accomplished. □

As a consequence of Proposition 2.16, the H-compactness Theorem 3.1 also applies to the
subclass of symmetric matrices Msym(λ,Λ,Ω, A0), for a fixed A0 ∈ Msym(λ,Λ,Rn). More
precisely, theH-limit A∞ of sequences (Ah)h inMsym(λ,Λ,Ω, A0) still lies inMsym(λ,Λ,Ω, A0).

Theorem 3.2. Assume that A0 ∈ Msym(λ,Λ,Rn). For any (Ah)h ⊂ Msym(λ,Λ,Ω, A0), there
exist a not relabeled subsequence and a matrix-valued function A∞ ∈ Msym(λ,Λ,Ω, A0) such
that

(Ah)h H-converges to A∞ in Hs
0(Ω).

Proof. The proof of the Theorem in the symmetric case follows verbatim the construction al-
ready presented in the proof of Theorem 3.1 for the general case, combined with the following
observations.

The limit matrix B∞ in the local H-convergence of the sequence (Bh)h, introduced in (3.1),
whose existence is shown in (3.2), is now symmetric in view of Proposition 2.16 and by the
uniqueness of the local H-limit. This implies that the matrix A∞, defined in (3.3), belongs to
the class Msym(λ,Λ,Ω, A0), and it is the H-limit of (Ah)h, in virtue of Theorem 3.1. □

3.2. Γ-compactness of nonlocal energies. The goal of this subsection is to show the follow-
ing Γ-compactness Theorem, whose proof is inspired by some recent ideas presented in [14, 20].

Theorem 3.3. Assume that A0 ∈ Msym(λ,Λ,Rn). Let (Ah)h ⊂ Msym(λ,Λ,Ω, A0) and let
(Fh)h be the nonlocal energies introduced in (2.17). Then, there exist a not relabeled subsequence
of (Ah)h and A∞ ∈ Msym(λ,Λ,Ω, A0) such that

(Fh)h Γ-converges to F∞ strongly in L2(Rn),

where F∞ : L2(Rn) → [0,∞] is the nonlocal energy associated with A∞, as in (2.18).
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Proof. For all h ∈ N, we define the matrix-valued functions

Bh := Ah|Ω ∈ Msym(λ,Λ,Ω)

and the functionals Gh : L
2(Ω) → [0,∞], which are the local energies associated with Bh, as

in (2.19). By Proposition 2.19, there exists a limit matrix B∞ ∈ Msym(λ,Λ,Ω) such that, up
to a not relabeled subsequence,

(3.23) (Gh)h Γ-converges to G∞ strongly in L2(Ω),

where G∞ : L2(Ω) → [0,∞] is the limit local energy associated with B∞, as in (2.20).
We define A∞ ∈ Msym(λ,Λ,Ω, A0) as

A∞(x) :=

{
B∞(x) if x ∈ Ω,

A0(x) if x ∈ Rn \ Ω,

and denote by F∞ : L2(Ω) → [0,∞] the limit nonlocal energy associated with A∞, as in (2.18).
To conclude the proof, we show that

(Fh)h Γ-converges to F∞ strongly in L2(Rn),

in accordance with Definition 2.18.

Γ-liminf inequality. Let uh, u ∈ L2(Rn), h ∈ N, be such that (uh)h strongly converges to u
in L2(Rn) as h→ ∞. We show that

F∞(u) ≤ lim inf
h→∞

Fh(uh).

Without loss of generality, we assume that

lim inf
h→∞

Fh(uh) <∞,

the conclusion being otherwise trivial, and that the limit is actually achieved up to a not
relabeled subsequence, i.e.

lim inf
h→∞

Fh(uh) = lim
h→∞

Fh(uh).

According to its own definition, (Fh)h is finite only on Hs
0(Ω), thus forcing the sequence (uh)h

to lie therein. Since (Ah)h ⊂ Msym(λ,Λ,Ω, A0), there exists a positive constant C such that

sup
h∈N

∥∇suh∥L2(Rn;Rn) ≤ C,

which yields that (uh)h is uniformly bounded in Hs
0(Ω). Then, the limit u also lies on Hs

0(Ω)
and

uh → u weakly in Hs
0(Ω) as h→ ∞.(3.24)

For any h ∈ N, we define

vh := I1−suh and v := I1−su.

By Proposition 2.6, vh, v ∈ H1(Ω) for any h ∈ N and, by (3.24) and the continuity of the linear
operator I1−s : H

s(Rn) → H1(Ω),

vh → v strongly in L2(Ω) and weakly in H1(Ω) as h→ ∞.

By (3.23),

G∞(v) ≤ lim inf
h→∞

Gh(vh),(3.25)

in virtue of the Γ-liminf inequality. We also note that, by Proposition 2.6,

∇vh = ∇suh and ∇v = ∇su a.e. in Rn.

Thus, we can rephrase (3.25) as

1

2

∫
Ω
B∞(x)∇su(x) · ∇su(x) dx ≤ lim inf

h→∞

1

2

∫
Ω
Ah(x)∇suh(x) · ∇suh(x) dx.
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On the other hand, since A0 ∈ M(λ,Λ,Rn), by (3.24) we get

1

2

∫
Rn\Ω

A0(x)∇su(x) · ∇su(x) dx ≤ lim inf
h→∞

1

2

∫
Rn\Ω

A0(x)∇suh(x) · ∇suh(x) dx.

Hence,

F∞(u) =
1

2

∫
Ω
B∞(x)∇su(x) · ∇su(x) dx+

1

2

∫
Rn\Ω

A0(x)∇su(x) · ∇su(x) dx

≤ lim inf
h→∞

1

2

∫
Ω
Ah(x)∇suh(x) · ∇suh(x) dx+ lim inf

h→∞

1

2

∫
Rn\Ω

A0(x)∇suh(x) · ∇suh(x) dx

≤ lim inf
h→∞

Fh(uh).

Γ-limsup inequality. We fix u ∈ L2(Rn) and show the existence of a recovery sequence
(uh)h ⊂ L2(Rn) such that (uh)h strongly converges to u in L2(Rn), as h→ ∞, and

(3.26) F∞(u) ≥ lim sup
h→∞

Fh(uh).

The proof of the Γ-limsup inequality is rather technical and for the readers’ convenience, we
indicate the main steps below.

• First, we exploit the Riesz potential to move to the local setting and we obtain the
existence of a recovery sequence (vh)h for the Γ-convergence of the local energies (Gh)h
to G∞.

• Then, through a cut-off argument, we adapt the sequence (vh)h to the boundary data
of our problem and we come back to the nonlocal setting, obtaining the existence of a
sequence (uεh)h satisfying the Γ-limsup inequality up to a reminder term, which depends
on a parameter ε > 0.

• In the last part of the proof, we let the reminder term to zero by a diagonal argument,
which provides the existence of a recovery sequence (uh)h for our problem.

Without loss of generality, we consider only the case of u ∈ Hs
0(Ω), the conclusion being

otherwise trivial.
We define

v := I1−su.

Then, by Proposition 2.6,

(3.27) v ∈ H1(Ω) and ∇v = ∇su a.e. in Rn.

Moreover, by (3.23), there exists a recovery sequence (vh)h ⊂ H1(Ω) for v, i.e. such that

(3.28) vh → v strongly in L2(Ω) as h→ ∞ and lim
h→∞

Gh(vh) = G∞(v) <∞

(we recall, in fact, that the Γ-liminf and the Γ-limsup inequalities imply that the limit is achieved
at least for the recovery sequence). In particular, by the definition of Gh (see (2.19)), (vh)h is
bounded in H1(Ω), which gives that

vh → v weakly in H1(Ω) as h→ ∞.

Let ε > 0 be fixed and let Kε ⋐ Ω be a compact set such that

(3.29)

∫
Ω\Kε

|∇v(x)|2 dx < ε.

We fix an open set U ε such that Kε ⋐ U ε ⋐ Ω, consider a cut-off function φε ∈ C∞
c (U ε)

satisfying 0 ≤ φε ≤ 1 on U ε and φε ≡ 1 on Kε and, for all h ∈ N, we define

(3.30) vεh := φεvh + (1− φε)v.

By construction,

(3.31) vεh → v strongly in L2(Ω) and weakly in H1(Ω) as h→ ∞.
15



Moreover, by (2.12), (2.21), (3.29), and the convexity of the map ξ 7→ Ah(x)ξ · ξ, it holds that

Gh(v
ε
h) =

1

2

∫
Ω
Ah(x)[φ

ε(x)∇vh(x) + (1− φε(x))∇v(x)] · [φε(x)∇vh(x) + (1− φε(x))∇v(x)] dx

+

∫
Ω
Ah(x)[∇φε(x)(vh(x)− v(x))] · [φε(x)∇vh(x) + (1− φε(x))∇v(x)] dx

+
1

2

∫
Ω
Ah(x)[∇φε(x)(vh(x)− v(x))] · [∇φε(x)(vh(x)− v(x))] dx

≤ 1

2

∫
Ω
φε(x)Ah(x)∇vh(x) · ∇vh(x) dx+

1

2

∫
Ω
(1− φε(x))Ah(x)∇v(x) · ∇v(x) dx

+ Λ∥∇φε∥L∞(Ω;Rn)∥vh − v∥L2(Ω)(∥∇vh∥L2(Ω;Rn) + ∥∇v∥L2(Ω;Rn))

+
Λ

2
∥∇φε∥2L∞(Ω;Rn)∥vh − v∥2L2(Ω)

≤ Gh(vh) +
Λ

2
ε+ Λ∥∇φε∥L∞(Ω;Rn)∥vh − v∥L2(Ω)(∥∇vh∥L2(Ω;Rn) + ∥∇v∥L2(Ω;Rn))

+
Λ

2
∥∇φε∥2L∞(Ω;Rn)∥vh − v∥2L2(Ω).

Hence, by (3.28) and the boundedness of (vh)h in H1(Ω), we conclude that

lim sup
h→∞

Gh(v
ε
h) ≤ lim

h→∞
Gh(vh) +

Λ

2
ε = G∞(v) +

Λ

2
ε.(3.32)

We trivially extend vεh − v ∈ H1
0 (Ω) to a function in H1(Rn) and, for all h ∈ N, we define

wε
h := (−∆)

1−s
2 (vεh − v).

By Proposition 2.5, we have that

(3.33) wε
h ∈ Hs(Rn) and ∇swε

h = ∇(vεh − v) a.e. in Rn

and, by (2.3), (3.31), and (3.33), there exist two positive constants C and Cε such that

∥wε
h∥2Hs(Rn) = ∥wε

h∥2L2(Rn) + ∥∇swε
h∥2L2(Rn;Rn) ≤ C∥vεh − v∥2H1

0 (Ω) ≤ Cε for all h ∈ N.

Therefore, by (2.1), (2.2) and (3.31), for all ψ ∈ C∞
c (Rn) we get that∫

Rn

wε
h(x)ψ(x) dx =

∫
Rn

(vεh(x)− v(x))(−∆)
1−s
2 ψ(x) dx→ 0 as h→ ∞,

which yields that

wε
h → 0 weakly in Hs(Rn) as h→ ∞.(3.34)

In particular, by (2.3) and (3.31),

wε
h → 0 strongly in L2(Rn) as h→ ∞.(3.35)

Let χε ∈ C∞
c (Ω) satisfy 0 ≤ χε ≤ 1 on Ω and χε = 1 on U ε. We define

uεh := u+ χεwε
h ∈ Hs

0(Ω).

By (3.34) and (3.35),

(3.36) uεh → u strongly in L2(Rn) and weakly in Hs
0(Ω) as h→ ∞.

For all h ∈ N, we also set

Rε
h := ∇s(χεwε

h)− χε∇swε
h.

By Proposition 2.7, there exists a positive constant C such that

∥Rε
h∥L2(Rn;Rn) ≤ C ∥χε∥W 1,∞(Rn) ∥w

ε
h∥L2(Rn) for all h ∈ N.

Then, by (3.35),

Rε
h → 0 strongly in L2(Rn;Rn) as h→ ∞(3.37)
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and, by (3.33),

∇suεh = ∇su+ χε∇swε
h +Rε

h = ∇su+ χε∇(vεh − v) +Rε
h a.e. in Rn.(3.38)

We consider the following decomposition

Fh(u
ε
h) =

1

2

∫
Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx+
1

2

∫
Ω\Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx(3.39)

+
1

2

∫
Rn\Ω

A0(x)∇suεh(x) · ∇suεh(x) dx.

By (3.37) and (3.38), the last integral in (3.39) satisfies

lim
h→∞

1

2

∫
Rn\Ω

A0(x)∇suεh(x) · ∇suεh(x) dx

= lim
h→∞

1

2

∫
Rn\Ω

A0(x)(∇su(x) +Rε
h(x)) · (∇su(x) +Rε

h(x)) dx

=
1

2

∫
Rn\Ω

A0(x)∇su(x) · ∇su(x) dx.(3.40)

Concerning the second integral in (3.39), we note that, by (3.30) and (3.38),

∇suεh = ∇su+Rε
h a.e. in Ω \ U ε.

Then, by (2.21), (3.27), and (3.29),

lim sup
h→∞

1

2

∫
Ω\Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx

≤ lim
h→∞

Λ

2
∥∇su+Rε

h∥
2
L2(Ω\Uε;Rn) =

Λ

2
∥∇su∥2L2(Ω\Uε;Rn) ≤

Λ

2
∥∇v∥2L2(Ω\Kε;Rn) ≤

Λ

2
ε.(3.41)

Finally, for what concerns the first integral in (3.39), we observe that, since χε = 1 in U ε,
by (3.27) and (3.38) we have

∇suεh = ∇v +∇(vεh − v) +Rε
h = ∇vεh +Rε

h a.e. in U ε.

Thus, (2.21) and (3.27) imply that

1

2

∫
Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx

=
1

2

∫
Uε

Ah(x)(∇vεh(x) +Rε
h(x)) · (∇vεh(x) +Rε

h(x)) dx

=
1

2

∫
Uε

Ah(x)∇vεh(x) · ∇vεh(x) dx+

∫
Uε

Ah∇vεh(x) ·Rε
h(x) dx

+
1

2

∫
Uε

AhR
ε
h(x) ·Rε

h(x) dx

≤ Gh(v
ε
h) +

∫
Uε

Ah∇vεh(x) ·Rε
h(x) dx+

1

2

∫
Uε

AhR
ε
h(x) ·Rε

h(x) dx(3.42)

and, since (vεh)h is uniformly bounded in H1(Ω), by (3.32), (3.37) and (3.42), we get

lim sup
h→∞

1

2

∫
Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx ≤ G∞(v) +
Λ

2
ε.(3.43)

Therefore, by (3.40), (3.41) and (3.43), we obtain that for all ε > 0

(3.44) lim sup
h→∞

Fh(u
ε
h) ≤ F∞(u) + Λε.

To conclude, we use the following diagonal argument. In view of [15, Definition 4.1 and
Remark 4.3], by (3.36) and (3.44), we have that for all ε > 0

Γ- lim sup
h→∞

Fh(u) := sup
k∈N

lim sup
h→∞

inf
z∈B 1

k
(u)
Fh(z) ≤ F∞(u) + Λε.

17



Hence, by letting ε→ 0, we conclude that

Γ- lim sup
h→∞

Fh(u) ≤ F∞(u)

and, by the properties of the Γ-lim sup (see e.g. [15, Proposition 8.1]), there exists a sequence
(uh)h ⊂ L2(Rn) such that uh → u strongly in L2(Rn) as h→ ∞ and

lim sup
h→∞

Fh(uh) = Γ- lim sup
h→∞

Fh(u) ≤ F∞(u).

This implies the validity of (3.26), and concludes the proof of the Theorem. □

3.3. H-compactness in the symmetric case via Γ-convergence. In this last subsection,
we provide an alternative proof of Theorem 3.2, purely based on variational techniques.

Let Ah, A∞ ∈ Msym(λ,Λ,Ω, A0), h ∈ N, for a given A0 ∈ Msym(λ,Λ,Rn). We first show that
the Γ-convergence of the local energies (Gh)h to G∞, respectively defined in (2.19) and (2.20),
associated with Bh := Ah|Ω and B∞ := A∞|Ω, implies the convergence of the nonlocal momenta.
To this aim, following the strategies adopted in [16, Lemma 4.11] and [3, Theorem 4.5], we define
the functionals Fh,F∞ : L2(Rn;Rn) → R as

Fh(Φ) :=
1

2

∫
Rn

Ah(x)Φ(x) · Φ(x) dx for all Φ ∈ L2(Rn;Rn),

F∞(Φ) :=
1

2

∫
Rn

A∞(x)Φ(x) · Φ(x) dx for all Φ ∈ L2(Rn;Rn),

and consider their Fréchet derivatives F ′
h and F ′

∞, which are given by

F ′
h(Φ)[Ψ] =

∫
Rn

Ah(x)Φ(x) ·Ψ(x) dx and F ′
∞(Φ)[Ψ] =

∫
Rn

A∞(x)Φ(x) ·Ψ(x) dx

for all Φ,Ψ ∈ L2(Rn;Rn).
We note that F ′

h and F ′
∞ can be used to derive the convergence of the nonlocal momenta.

Indeed, given a sequence (uh)h ⊂ Hs
0(Ω) and u∞ ∈ Hs

0(Ω), then the convergence

F ′
h(∇suh)[Ψ] → F ′

∞(∇su∞)[Ψ] for all Ψ ∈ L2(Rn;Rn)

is equivalent to

Ah∇suh → A∞∇su∞ weakly in L2(Rn;Rn).

Proposition 3.4. Fix A0 ∈ Msym(λ,Λ,Rn) and Ah, A∞ ∈ Msym(λ,Λ,Ω, A0), h ∈ N. Let
Gh, G∞ : L2(Ω) → [0,∞] be the local energies, respectively defined in (2.19) and (2.20), and
associated with Bh := Ah|Ω, and B∞ := A∞|Ω. Assume that

(3.45) (Gh)h Γ-converges to G∞ strongly in L2(Ω).

Let Fh, F∞ : L2(Rn) → [0,∞] be the nonlocal energies, respectively defined in (2.17) and (2.18),
and let (uh)h ⊂ Hs

0(Ω) and u∞ ∈ Hs
0(Ω) satisfy

uh → u∞ strongly in L2(Rn) and Fh(uh) → F∞(u∞) as h→ ∞.(3.46)

Then, the convergence of the nonlocal momenta holds, i.e.

F ′
h(∇suh)[Ψ] → F ′

∞(∇su∞)[Ψ] for all Ψ ∈ L2(Rn;Rn) as h→ ∞.(3.47)

Proof. To prove (3.47), it is sufficient to show the following inequality

(3.48) F ′(∇su∞)[Ψ] ≤ lim inf
h→∞

F ′
h(∇suh)[Ψ] for all Ψ ∈ L2(Rn;Rn).

Indeed, by replacing Ψ with −Ψ, and by the properties of the limit inferior, one get the desired
condition (3.47).
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For all Φ ∈ L2(Ω;Rn), we define GΦ
h ,GΦ

∞ : L2(Ω) → [0,∞] as

GΦ
h (v) :=


1

2

∫
Ω
Ah(x)(∇v(x) + Φ(x)) · (∇v(x) + Φ(x)) dx if v ∈ H1(Ω),

∞ if v ∈ L2(Ω) \H1(Ω),

GΦ
∞(v) :=


1

2

∫
Ω
A∞(x)(∇v(x) + Φ(x)) · (∇v(x) + Φ(x)) dx if v ∈ H1(Ω),

∞ if v ∈ L2(Ω) \H1(Ω).

By [15, Theorem 22.4] and [3, Theorem 4.2], (3.45) implies that for all Φ ∈ L2(Ω;Rn)

(3.49) (GΦ
h )h Γ-converges to GΦ

∞ strongly in L2(Ω).

Let Ψ ∈ L2(Rn;Rn) and (ti)i be a sequence of positive numbers, infinitesimal as i → ∞.
Moreover, let uh, u∞ ∈ Hs

0(Ω), h ∈ N, satisfy (3.46), and define

vh := I1−suh ∈ H1(Ω) and v∞ := I1−su∞ ∈ H1(Ω).

By the continuity of I1−s : L
2(Rn) → L2(Ω), it holds that

vh → v∞ strongly in L2(Ω) as h→ ∞
and, by (3.49) with Φ := tiΨ|Ω, we get

GtiΨ|Ω
∞ (v∞) ≤ lim inf

h→∞
GtiΨ|Ω
h (vh) for all i ∈ N.(3.50)

Since, by Proposition 2.6,

∇vh = ∇suh and ∇v∞ = ∇su∞ a.e. in Rn,

we can then rephrase (3.50) as

1

2

∫
Ω
A∞(x)(∇su∞(x) + tiΨ(x)) · (∇su∞(x) + tiΨ(x)) dx

≤ lim inf
h→∞

1

2

∫
Ω
Ah(x)(∇suh(x) + tiΨ(x)) · (∇suh(x) + tiΨ(x)) dx.(3.51)

In addition, by (2.5) and (3.46), the sequence (uh)h is uniformly bounded in Hs
0(Ω) and, by the

strong convergence of (uh)h to u in L2(Rn), we have

∇suh + tiΨ → ∇su∞ + tiΨ weakly in L2(Rn;Rn) as h→ ∞.

Then,

1

2

∫
Rn\Ω

A0(x)(∇su∞(x) + tiΨ(x)) · (∇su∞(x) + tiΨ(x)) dx

≤ lim inf
h→∞

1

2

∫
Rn\Ω

A0(x)(∇suh(x) + tiΨ(x)) · (∇suh(x) + tiΨ(x)) dx.(3.52)

Therefore, by (3.51) and (3.52),

F∞(∇su∞ + tiΨ) =
1

2

∫
Ω
A∞(x)(∇su∞(x) + tiΨ(x)) · (∇su∞(x) + tiΨ(x)) dx

+
1

2

∫
Rn\Ω

A0(x)(∇su∞(x) + tiΨ(x)) · (∇su∞(x) + tiΨ(x)) dx

≤ lim inf
h→∞

1

2

∫
Ω
Ah(x)(∇suh(x) + tiΨ(x)) · (∇suh(x) + tiΨ(x)) dx

+ lim inf
h→∞

1

2

∫
Rn\Ω

A0(x)(∇suh(x) + tiΨ(x)) · (∇suh(x) + tiΨ(x)) dx

≤ lim inf
h→∞

Fh(∇suh + tiΨ).

Moreover, since by definition

Fh(∇suh) = Fh(uh) and F∞(∇su∞) = F∞(u∞),
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then, by (3.46), it holds that

F∞(∇su∞ + tiΨ)−F∞(∇su∞)

ti
≤ lim inf

h→∞

Fh (∇suh + tiΨ)−Fh (∇suh)

ti
for all i ∈ N.

Hence, there exists an increasing sequence of integers (hi)i ⊂ N such that

F∞ (∇su∞ + tiΨ)−F∞ (∇su∞)

ti
− 1

i
≤ Fh (∇suh + tiΨ)−Fh (∇suh)

ti
for all h ≥ hi.(3.53)

If we set εh := ti for hi ≤ h < hi+1 and i ∈ N, then, by (3.53)

lim inf
h→∞

F∞ (∇su∞ + εhΨ)−F∞ (∇su∞)

εh
≤ lim inf

h→∞

Fh (∇suh + εhΨ)−Fh (∇suh)

εh
.(3.54)

Note that the limit inferior on the left-hand side of (3.54) is actually achieved and coincides
with the Fréchet derivative of the functional F∞, i.e.

(3.55) F ′
∞(∇su∞)[Ψ] = lim

h→∞

F∞ (∇su∞ + εhΨ)−F∞ (∇su∞)

εh
.

For what concerns the right-hand side of (3.54), we have

Fh (∇suh + εhΨ)−Fh (∇suh)

εh
= F ′

h(∇suh)[Ψ] + εhFh(Ψ).(3.56)

Since the last term on the right-hand side of (3.56) converges to 0 as h → ∞, from (3.54)–
(3.56) we get (3.48). □

We can finally provide an alternative proof of Theorem 3.2, purely based on variational
techniques.

Proof of Theorem 3.2. Let (Ah)h ⊂ Msym(λ,Λ,Ω, A0) and let (Fh)h be the associated nonlocal
energies, defined in (2.17). By Theorem 3.3, there exist a not relabeled subsequence of (Ah)h
and A∞ ∈ Msym(λ,Λ,Ω, A0) such that, if F∞ denotes the nonlocal energy associated with A∞,
as in (2.18), then

(Fh)h Γ-converges to F∞ strongly in L2(Rn).

Moreover, it holds that

(3.57) (Gh)h Γ-converges to G∞ strongly in L2(Ω),

where the local energies Gh and G∞ are defined as usual.
We now show that

(Ah)h H-converges to A∞ in Hs
0(Ω),

by first proving that (2.13) and (2.14) hold for every f ∈ L2(Rn). Later, by a density argument,
we extend the validity of (2.13) and (2.14) to every f ∈ H−s(Ω).

Step 1. We fix f ∈ L2(Rn) and, for any h ∈ N, we define F f
h , F

f
∞ : L2(Rn) → [0,∞] as

F f
h (u) := Fh(u) +

∫
Rn

f(x)u(x) dx, F f
∞(u) := F∞(u) +

∫
Rn

f(x)u(x) dx for all u ∈ L2(Rn).

Since we have perturbed with continuity Fh and F∞, then

(F f
h )h Γ-converges to F f

∞ strongly in L2(Rn),

in virtue of [15, Proposition 6.21].

We notice that the solutions uh ∈ Hs
0(Ω) and u∞ ∈ Hs

0(Ω) of problems (P f
h ) and (P f

∞), whose

existence is guaranteed by Lemma 2.12, minimise the energies F f
h and F f

∞, respectively, i.e.

F f
h (uh) = min

u∈L2(Rn)
F f
h (u) and F f

∞(u∞) = min
u∈L2(Rn)

F f
∞(u).

Therefore, by the Fundamental Theorem of Γ-convergence (see e.g. [15, Theorem 7.8]), we get

(3.58) uh → u∞ strongly in L2(Rn) and F f
h (uh) → F f

∞(u∞) as h→ ∞.
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In particular, since (uh)h ⊂ Hs
0(Ω) is uniformly bounded, we conclude that

(3.59) uh → u∞ weakly in Hs
0(Ω) as h→ ∞,

which is the convergence of the solutions (2.13).
We finally observe that (3.57) and (3.58) allow us to apply Proposition 3.4, which gives the

convergence of the momenta (2.14).
Step 2. We fix now f ∈ H−s(Ω) and denote uh, u∞ ∈ Hs

0(Ω), h ∈ N, the solutions of the

problems (P f
h ) and (P f

∞), respectively.
Since the embedding Hs

0(Ω) ⊂ L2(Rn) is continuous and dense, so is the embedding L2(Rn) ⊂
H−s(Ω). Therefore, we can find a sequence (fj)j ⊂ L2(Rn) such that

fj → f strongly in H−s(Ω) as j → ∞.

For all j ∈ N, let ujh, u
j
∞ ∈ Hs

0(Ω) be the solutions of the problems (P
fj
h ) and (P

fj
∞ ), respec-

tively. Fixed g ∈ H−s(Ω), by Proposition 2.8 and Lemma 2.12, we obtain

|⟨g, uh − u∞⟩H−s(Ω)×Hs
0(Ω)| ≤ |⟨g, ujh − uj∞⟩H−s(Ω)×Hs

0(Ω)|+ C∥g∥H−s(Ω)∥fj − f∥H−s(Ω).

Hence, in view of (3.59) in Step 1, by letting first h→ ∞ and then j → ∞, we obtain (2.13).
Finally, fixed Φ ∈ L2(Rn;Rn), by Proposition 2.8 and Lemma 2.12, we get∣∣∣∣∫

Ω
(Ah(x)∇suh(x)−A∞(x)∇su∞(x)) · Φ(x) dx

∣∣∣∣
≤

∣∣∣∣∫
Ω
(Ah(x)∇sujh(x)−A∞(x)∇suj∞(x)) · Φ(x) dx

∣∣∣∣+ C∥Φ∥L2(Rn;Rn)∥fj − f∥H−s(Ω).

Then, in virtue of Step 1, by first letting h→ ∞ and then j → ∞, we obtain (2.14), leading to
the H-convergence of the sequence (Ah)h to A∞ in Hs

0(Ω). □

4. Conclusions and open problems

Our distributional approach leads the H-convergence theory to cover linear operators in frac-
tional divergence form as well. In what follows, we list some possible future research directions
stemming from our results that we believe may be of particular interest to the community.

(1) As explained in the Introduction, one of the goals of the H-convergence is to obtain the
uniqueness of the limit matrix. As for the nonlocal problem, even if we are able to prove
the existence of a H-limit, its uniqueness is still unknown. Classical proofs strongly rely
on local arguments, which fail in the nonlocal scenario. It would be very interesting to
investigate this issue.

(2) A first direction that we are planning to investigate concerns the study of the asymptotic
behaviour of monotone operators in fractional divergence form with superlinear growth,
whose local counterpart is studied in [41, Chapter 11]. A key tool useful to characterise
the H-limit still as a monotone operator is the Div-Curl Lemma [25, 26], and the lack
of an analogous one in the fractional case precludes to prove the H-compactness for this
class of operators by standard techniques.

(3) In Subsection 3.3, we prove that the H-compactness in the symmetric case can be
equivalently obtained through the Γ-compactness of the associated energies. In [2], the
authors show that an analogous result can be obtained also in the case of not necessarily
symmetric matrices for which, a priori, there is no natural energy associated with the
problem. We conjecture that the techniques used in the aforementioned paper can be
adapted in the fractional scenario as well in order to obtain an alternative proof of
Theorem 3.1, purely based on variational techniques.

(4) Once the H-convergence for elliptic operators has been characterised, it is natural to
ask whether this can provide information about the asymptotic behaviour of sequences
of parabolic nonlocal operators of the form

∂t − divs(Bh(x)∇s).
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In [22], the authors show that, whenever the sequence of matrix-valued functions (Ah)h
is independent of time, then the parabolic H-limit B∞(x, t) coincides with the elliptic
H-limit A∞(x), meaning that B∞ is constant in time. Again, the authors conjecture
that a similar discussion can be extended to the nonlocal scenario.

(5) The most famous application of the H-convergence relies in the periodic homogenisation
of operators of the type

−div(a(hx)∇u(x)), h ∈ N,

where a is 1-periodic. We conjecture that an extension to the distributional fractional
setting through techniques similar to those of this paper may be possible. In particular,
we think that in this case the hypothesis of fixing a matrix A0 outside the reference
domain, used in the proof of Theorem 3.1, can be relaxed.

(6) Recently, the H-convergence has been extended also to the sub-Riemannian framework
and, more generally, to operators depending on vector fields, see e.g. [21, 22, 23, 24].
Since the definition of fractional operators is more involved in a general sub-Riemannian
setting, we plan to extend Theorem 3.1 at least to the case of Carnot groups.
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[16] G. Dal Maso, G. A. Francfort, and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch.
Ration. Mech. Anal. 176, 165–225, (2005).

[17] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell’energia per operatori ellittici del
secondo ordine, Boll. Unione Mat. Ital., IV. Ser. 8, 391–411, (1973).

[18] J. Fernández Bonder, A. Ritorto, and A. M. Salort, H-convergence result for nonlocal elliptic-type
problems via Tartar’s method, SIAM J. Math. Anal. 49, 2387–2408, (2017).

[19] M. Kassmann, A. Piatnitski,and E. Zhizhina, Homogenization of Lévy-type operators with oscillating
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