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Abstract. We study the H-convergence of nonlocal linear operators in fractional divergence
form, where the oscillations of the matrices are prescribed outside the reference domain. Our
compactness argument bypasses the failure of the classical localisation techniques that mismatch
with the nonlocal nature of the operators involved. If symmetry is also assumed, we extend
the equivalence between H-convergence of the operators and Γ-convergence of the associated
energies. As a consequence, we establish the uniqueness of the H-limit in the symmetric case.

1. Introduction

At the beginning of the ’70s the French school of J.-L. Lions set the stage for the mathematical
theory of the homogenisation of composite materials, made by the superposition of sheets of
different materials, or considering homogeneous materials with holes filled by another material.
For a given source term f , this problem is mathematically modelled by a symmetric matrix-
valued function A(x), identifying the different materials at each point x, and expressed through
partial differential equations in divergence form

(1.1) −div(A(x)∇u(x)) = f(x).

An equivalent statement of problem (1.1) considers the momentum p(x) := A(x)∇u(x) and is
formulated as

−div(p(x)) = f(x).

Such equations appear in many applications in physics and engineering: in the equation of
the electrostatics, u is the electric potential, p is the electric displacement, and A is the dielectric
constant, while, in the equation of magnetostatics, u is the magnetic potential, p is the magnetic
induction, and A is the magnetic permeability. Other examples are the equation of the time-
independent heat transfer, where u is the temperature, p is the heat flux, and A represents
the thermal conductivity and, in the vectorial case, the equation of the linear elasticity for
composite materials, where u is the displacement field, p (usually denoted by σ) is the Cauchy
stress tensor, and A represents the elasticity tensor.

From a numerical point of view, when the coefficients of the matrix A oscillate too fast, it
can be very difficult to deal with the above equations, for example when the heterogeneous
material has a periodic structure. A possible way to overcome this problem is to approximate
the solutions by the (unique) solution of a limit problem, much easier to deal with numerically.
This is the so-called homogenised problem, in which the matrix A is independent on x.

The first relevant contributions to this theory are by Sánchez-Palencia [29, 30, 31], through
applications of the asymptotic expansions method. It consists in approximating solutions of (1.1)
with a series depending on the layers of the material, and then estimating the resulting error.

A more general approach, introduced by Spagnolo in the pioneering works [37, 38, 39], is the
so-called G-convergence of linear partial differential equations of the form

(1.2) −div(Ah(x)∇u(x)) = f(x), h ∈ N.

The G-convergence theory studies the asymptotic behaviour of the solutions of problems (1.2),
assuming very mild hypotheses on the coefficients of any matrix Ah, and it is based on the
distributional nature of the problems (1.2) and some standard tools of functional analysis.

2020 Mathematics Subject Classification. (Primary) 35B40, (Secondary) 35B27, 35R11, 49J45, 74S40.
Key words and phrases. H-convergence, Γ-convergence, fractional operators, Riesz potentials.

1



Nevertheless, at its early stage, it was not clear what properties the limit with respect to the
G-convergence would have satisfied. A first characterisation of the limit operator (the so-called
G-limit) was only later obtained by De Giorgi and Spagnolo [18], who show that the G-limit still
acts as a divergence form operator depending on a limit homogenised matrix A∞ (sometimes
called effective matrix and denoted by Aeff). We underline that, whenever Ah(x) = A(hx), we
recover the former theory of the homogenisation of composite materials but, differently from it,
the limit matrix of the G-convergence, A∞ = A∞(x), may in general still be x-dependent.

By its very nature, the G-convergence is sensible according to the class of operators considered
and, without further requirements, it appears incomplete when dealing with not necessarily
symmetric matrices, needed in applications involving e.g. porous media. Tartar observes in [42]
that the divergence operator does not in fact recognise perturbations from skew-symmetric
matrices leading, in this case, to the non-uniqueness of the matrix A∞.

This lack of uniqueness is bypassed by Tartar [41] and Murat [26, 27] at the end of the ’70s,
and this theory in nowadays called H-convergence, where H stands for homogenisation. The
main difference with the former G-convergence naturally appears in the non-symmetric case:
the uniqueness of the homogenised matrix A∞ is now guaranteed, whenever the sequence of the
momenta ph = Ah∇uh converges (in the weak topology) to the momentum of the limit solution
p∞ = A∞∇u∞.

In the last decade there has been an increasing interest in extending these results to a nonlocal
framework, motivated by the huge number of applications in fluid mechanics, image denoising,
nonlinear elasticity, nonlocal minimal surfaces, anomalous diffusion, and stable Lévy processes
(see e.g. [10, 11] and the references therein). First attempts to deal with nonlocal H-convergence
appear in [4, 19], where the authors study scalar perturbations of the fractional p-Laplace
operator, and in [9], regarding the H-convergence of fractional powers of elliptic operators in
divergence form. We also mention [6, 20, 28] for the homogenisation of more general nonlocal
energies.

All the aforementioned contributions in nonlocal H-convergence consider, however, only the
case of scalar weights, in contrast to the classical results by Tartar [42]. On the other hand,
the case of matrix weights is of great interest in applications, as it allows to study anisotropic
heterogeneous materials. We observe that it is not immediately clear how to get a momentum
operator in problems involving Gagliardo seminorms, since the latters are defined via integration
of scalar energies.

We hence wonder whether it might be possible to formulate a nonlocal H-convergence-type
problem à la Tartar. To this aim, we exploit a suitable notion of fractional-order divergence divs

and fractional-order gradient ∇s (see Definition 2.2), in a way that the fractional divergence acts
on the nonlocal momentum p(x) = A(x)∇su(x). The construction of this class of fractional-
order operators is explained in details in Section 2, and relies on the pioneering contributions
by Shieh and Spector [34, 35], Šilhavý [45], and the subsequent works [8, 12, 13, 14].

This leads to the study of the H-convergence of the following sequence of elliptic problems

(P f
h )

{
−divs(Ah∇suh) = f in Ω,

uh = 0 in Rn \ Ω,

h ∈ N, on the same spirit of Tartar and Murat.

When dealing with the asymptotics of problems (P f
h ), there are two main issues to be

taken into account. The first one is to overcome the localisation techniques needed in the
H-convergence (see e.g. [42] for a deep discussion on this topic), which is done by exploiting

the distributional nature of (P f
h ) and using a suitable Leibniz rule (see Proposition 2.7). The

second question concerns the behaviour of the matrices Ah(x) outside the reference domain Ω.
Indeed, differently from the local scenario, since the fractional gradient ∇s must be defined on
the whole space Rn, then the fractional divergence divs acts on vector fields globally defined
over Rn (see Definition 2.2). Hence, the matrix-valued functions Ah(x) must be defined on the
whole space Rn. On the other hand, −divs(Ah∇suh) is bounded only in Ω, and so we cannot
hope to obtain compactness of (Ah)h outside the reference domain.
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In order to tackle this lack of compactness, the values of any matrix Ah(x) are prescribed
outside Ω by a fixed matrix A0(x) which satisfies standard growth conditions.

In details, we study the limiting behaviour, in the sense of the H-convergence, of the class of
matrix-valued functions

M(λ,Λ,Ω, A0) := {A ∈ M(λ,Λ,Rn) : A = A0 a.e. in Rn \ Ω}

for positive constants λ ≤ Λ and A0 ∈ M(λ,Λ,Rn), where M(λ,Λ,Rn) denotes the class of
matrix-valued measurable functions A : Rn → Rn×n satisfying the growth conditions

A(x)ξ · ξ ≥ λ|ξ|2 for all ξ ∈ Rn and for a.e. x ∈ Rn,

A(x)ξ · ξ ≥ Λ−1|A(x)ξ|2 for all ξ ∈ Rn and for a.e. x ∈ Rn.

Our first main result is Theorem 3.1, which is the H-compactness of the class M(λ,Λ,Ω, A0)
with respect to a suitable notion of nonlocal H-convergence, see Definition 2.13. More precisely,
we prove that any sequence of matrix-valued functions (Ah)h in M(λ,Λ,Ω, A0) admits, up to
a subsequence, a limit matrix A∞ such that (Ah)h H-converges to A∞. Moreover, A∞ still
belongs to M(λ,Λ,Ω, A0), leading to the compactness of the class. It would be of great interest
to compare our results with the ones obtained in [43, 44], where a different notion of nonlocal
H-convergence, based on a functional analytic approach, is introduced.

We point out that, within the reference domain, our H-limit A∞ coincides with its local
counterpart, showing a consistency between the local and nonlocal H-convergence. As a by-
product, in Theorem 3.2 we show that also the subclass of symmetric matrices, here denoted
by Msym(λ,Λ,Ω, A0), is H-compact, i.e. if (Ah)h is in Msym(λ,Λ,Ω, A0), then A∞ belongs to
Msym(λ,Λ,Ω, A0).

In the second part of this paper, we focus exclusively on the symmetric case and prove
Theorem 4.1, which is the Γ-compactness of the class of nonlocal energies associated with
Msym(λ,Λ,Ω, A0). This is achieved by exploiting the classical local Γ-compactness result for
quadratic functionals, see Proposition 2.19, and proving the equivalence between Γ-convergence
of the nonlocal energies and Γ-convergence of the corresponding local ones, see Proposition 4.3.
This equivalence relies on Lemma 4.2, where we show that the integral representation of the
nonlocal energies in term of L∞-matrices is unique (as in the local case), and the properties of
the Riesz potential, which allow us to pass from the nonlocal scenario to the local one.

A very non-exhaustive list of recent references about the Γ-convergence of fractional quadratic
energies is given by [1, 7, 32, 36]. In particular, in [7], the Γ-compactness is obtained using the
Beurling-Deny criteria for Dirichlet forms, which are unfortunately not available in our setting
since it is not known whether quadratic forms of the fractional gradient are Dirichlet forms.

In the last part of the paper, we prove in Theorem 5.1 the equivalence between nonlocal
H-convergence in the symmetric case and Γ-convergence of the associated energies. This result
is obtained by adapting the following classical argument: in Lemma 5.2, we first compare the
Γ-convergence of the nonlocal energies with a suitable notion of nonlocal G-convergence. Then,
in Proposition 5.4, we show the convergence of the momenta through the Γ-convergence.

Finally, as a consequence of the uniqueness representation of Lemma 4.2 and the equiva-
lence Theorem 5.1, we derive the uniqueness of the H-limit A∞ in the symmetric case, see
Corollary 5.5. Moreover, in view of the Γ-compactness Theorem 4.1, we show that the nonlo-
cal H-compactness of Msym(λ,Λ,Ω, A0), already proved in Theorem 3.2, can be equivalently
obtained only by Γ-convergence arguments.

The paper is organized as follows. In Section 2, we provide and discuss in details all the
preliminaries. Section 3 is dedicated to the proofs of bothH-compactness results of Theorem 3.1
and Theorem 3.2. Then, in Section 4 and Section 5, we focus specifically on the symmetric
case. We prove the Γ-compactness result in Theorem 4.1, establish the equivalence between
Γ-convergence and H-convergence in Theorem 5.1, and gives an alternative proof of the H-
compactness result in Theorem 3.2, based on Γ-convergence. Finally, in Section 6, we present
a list of open problems and new research directions drawn from this work.
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2. Preliminaries

2.1. Notation. We assume that s ∈ (0, 1), n ≥ 2, and that Ω is a bounded open subset of
Rn. The space of n× n real matrices is denoted by Rn×n, while Rn×n

sym denotes the subspace of
symmetric matrices. We adopt standard notation for Lebesgue spaces on measurable subsets
E ⊆ Rn and Sobolev spaces on open subsets O ⊆ Rn. We denote by ∥·∥X the norm of a Banach
space X, by X ′ the dual space of X, and by ⟨·, ·⟩X′×X the duality product between X ′ and X.

2.2. The functional setting. For any α ∈ (0, n), the α-Riesz potential of a measurable func-
tion f : Rn → R is defined as

Iαf(x) :=
1

γα

∫
Rn

f(y)

|x− y|n−α
dy, with γα := 2απ

n
2

Γ(α2 )

Γ(n−α
2 )

.

Notice that Iα is a Fourier multiplier that acts in the Fourier space as

F (Iαf) (ξ) = |ξ|−αF (f) (ξ),

being F the Fourier transform. Moreover, as shown in [40, Theorem 1, pag. 119], we have the
following result.

Proposition 2.1. Let α ∈ (0, n) and p ∈
(
1, nα

)
. For any f ∈ Lp(Rn), the α-Riesz potential

Iαf is well-defined and there exists a positive constant C, depending only on α, n, and p, such
that

∥Iαf∥Lp∗α (Rn) ≤ C ∥f∥Lp(Rn) ,

where p∗α := np
n−αp .

Let us recall the notions of fractional divergence and fractional gradient that will be used to
introduce the H-convergence problem in our framework.

Definition 2.2. Let ψ ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn) be fixed. We define the s-fractional
gradient ∇sψ and the s-fractional divergence divs ϕ, respectively, as

∇sψ(x) :=
n− 1 + s

γ1−s

∫
Rn

(ψ(x)− ψ(y))(x− y)

|x− y|n+s+1
dy for all x ∈ Rn,

divs ϕ(x) :=
n− 1 + s

γ1−s

∫
Rn

(ϕ(x)− ϕ(y)) · (x− y)

|x− y|n+s+1
dy for all x ∈ Rn.

The next result links the notions of fractional gradient and fractional divergence with the
classical ones. A proof can be found in [34, Theorem 1.2] and [12, Proposition 2.2].

Proposition 2.3. Let ψ ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn). It holds that

∇sψ = ∇(I1−sψ) = I1−s(∇ψ) in Rn,

divs ϕ = I1−s(div ϕ) = div(I1−sϕ) in Rn.

We now introduce the functional framework for our problems in fractional divergence form.

Definition 2.4. Let O ⊆ Rn be an open set. We denote by Hs
0(O) the Hilbert space defined as

the closure of C∞
c (O) with respect to the following norm

∥ · ∥Hs(Rn) :=
(
∥ · ∥2L2(Rn) + ∥∇s · ∥2L2(Rn;Rn)

)1/2

and, by H−s(O), the dual space of Hs
0(O). When O = Rn, we simply write Hs

0(Rn) = Hs(Rn).

As a consequence of Proposition 2.3, one can immediately show, through Fourier transform,
that for all ψ ∈ C∞

c (Rn) and s, σ ∈ (0, 1) we have

(2.1) −divs(∇σψ) = (−∆)
s+σ
2 ψ.

Moreover, by Fubini’s Theorem, it holds that

(2.2)

∫
Rn

∇sψ(x) · ϕ(x) dx = −
∫
Rn

ψ(x) divs ϕ(x) dx

4



for all ϕ ∈ C∞
c (Rn;Rn) and ψ ∈ C∞

c (Rn).
If we extend the operators ∇s and divs respectively to Hs(Rn) and Hs(Rn;Rn), then (2.2)

holds for all ϕ ∈ Hs(Rn;Rn) and ψ ∈ Hs(Rn). In particular, we can define the operator
divs : L2(Rn;Rn) → H−s(Ω) as

⟨divs u, v⟩H−s(Ω)×Hs
0(Ω) := −

∫
Rn

u(x) · ∇sv(x) dx

for all u ∈ L2(Rn;Rn) and v ∈ Hs
0(Ω).

The following two Propositions provide a useful connection between the Sobolev spaces
H1(Rn) and Hs(Rn). For the proof of the next Proposition we refer the interested reader
to [8, Lemma A.4].

Proposition 2.5. Let w ∈ H1(Rn) and set u := (−∆)
1−s
2 w. It holds that

u ∈ Hs(Rn) and ∇su = ∇w a.e. in Rn.

Moreover, there exists a positive constant C, depending only on n and s, such that the following
estimate holds true

(2.3) ∥u∥L2(Rn) ≤ C(n, s)∥w∥sL2(Rn)∥∇w∥
1−s
L2(Rn;Rn)

.

Proposition 2.6. Let u ∈ Hs(Rn) and set w := I1−su. It holds that

w ∈
{
v ∈ L2∗1−s(Rn) : ∇v ∈ L2(Rn)

}
and ∇w = ∇su a.e. in Rn,

where 2∗1−s =
2n

n−2+2s .

In particular, w ∈ H1
loc(Rn) and, for every open set O ⋐ Rn, there exists a positive constant

C, depending only on n, s and O, such that the following estimate holds true

(2.4) ∥w∥H1(O) ≤ C(n, s)∥u∥Hs(Rn).

Proof. If u ∈ C∞
c (Rn), the result is a consequence of Proposition 2.1 (with p = 2 and α = 1−s)

and of Proposition 2.3.
Let now (uh)h ⊂ C∞

c (Rn) be such that uh → u strongly in Hs(Rn). Then,

wh := I1−suh → w := I1−su strongly in L2∗1−s(Rn) as h→ ∞
and

∇wh = ∇suh → ∇su strongly in L2(Rn;Rn) as h→ ∞,

which gives the existence of ∇w = ∇su ∈ L2(Rn;Rn). Thus, the estimate (2.4) follows again in
virtue of Proposition 2.1. □

We conclude this subsection recalling some extensions of classical results to the framework
of fractional calculus, that will be used throughout the paper. They are a Leibniz-type rule for
the fractional gradient [13, Eq. (1.5), (1.6)] and [21, Eq. (2.11)], a Poincaré-type inequality [34,
Theorem 3.3], and a Rellich-type Theorem [35, Theorem 2.2].

Proposition 2.7 (Leibniz rule). Let φ ∈ C1
c (Ω) and u ∈ Hs(Rn). Then, φu ∈ Hs

0(Ω) and

∇s(φu) = φ∇su+ u∇sφ+∇s
NL(φ, u)

where, for every x ∈ Rn, the remainder term ∇s
NL(φ, u)(x) is

∇s
NL(φ, u)(x) :=

n− 1 + s

γ1−s

∫
Rn

(φ(x)− φ(y))(u(x)− u(y))(x− y)

|x− y|n+s+1
dy.

Moreover, there exists a positive constant C, depending only on n and s, such that

∥∇s
NL(φ, u)∥L2(Rn;Rn) ≤ C∥u∥L2(Rn)∥φ∥1−s

L∞(Ω)∥∇φ∥
s
L∞(Ω;Rn).

Proposition 2.8 (Poincaré inequality). For every set O ⋐ Rn there exists a positive constant
C, depending only on n, s and O, such that

∥u∥L2(O) ≤ C∥∇su∥L2(Rn;Rn) for all u ∈ Hs(Rn).
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Proposition 2.9 (Rellich Theorem). For every set O ⋐ Rn the space Hs
0(O) is compactly

embedded into L2(O).

2.3. The H-convergence problem. We now want to introduce our notion of H-convergence
associated with the nonlocal operators introduced above. As in the local counterpart (see
e.g. [42]), we begin by defining the class of matrices in which we are interested.

Definition 2.10. Given 0 < λ ≤ Λ <∞ and a measurable subset E of Rn, we define M(λ,Λ, E)
as the collection of all matrix-valued measurable functions A : E → Rn×n satisfying

A(x)ξ · ξ ≥ λ|ξ|2 for all ξ ∈ Rn and for a.e. x ∈ E,(2.5)

A(x)ξ · ξ ≥ Λ−1|A(x)ξ|2 for all ξ ∈ Rn and for a.e. x ∈ E.(2.6)

We also set

Msym(λ,Λ, E) := {A ∈ M(λ,Λ, E) : A = AT a.e. in E}.

The estimate (2.6) above is needed to obtain the compactness of the class M(λ,Λ,Ω) with
respect to the H-convergence topology, even in the local setting. More precisely, it is well-known
that the H-limit of sequences of matrices satisfying the standard growth condition

λ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2 for all ξ ∈ Rn and for a.e. x ∈ Ω,(2.7)

instead of (2.5) and (2.6), may belong to a wider class M(λ,Λ′,Ω) with Λ′ ≥ Λ (see e.g. the
observations of Tartar in [42, Chapter 6, Pag. 81]).

We also point out that, in the symmetric case A = AT , conditions (2.5)–(2.6) are actually
equivalent to (2.7), as shown in the following result.

Lemma 2.11. Given 0 < λ ≤ Λ <∞, let B ∈ Rn×n satisfy

Bξ · ξ ≥ λ|ξ|2 for all ξ ∈ Rn.(2.8)

Then, B is invertible and condition

Bξ · ξ ≥ Λ−1|Bξ|2 for all ξ ∈ Rn(2.9)

is equivalent to

B−1ξ · ξ ≥ Λ−1|ξ|2 for all ξ ∈ Rn.(2.10)

In particular, B satisfies

(2.11) Bξ · ξ ≤ Λ|ξ|2 for all ξ ∈ Rn.

Moreover, if B is symmetric (B = BT ), then conditions (2.9), (2.10) and (2.11) are all equiv-
alent.

Proof. Let B ∈ Rn×n satisfy (2.8). By Lax-Milgram Theorem, for all η ∈ Rn there exists a
unique vector ξ ∈ Rn such that Bξ = η, i.e. B is invertible. Hence, (2.9) implies

Λ−1|ξ|2 = Λ−1|BB−1ξ|2 ≤ BB−1ξ ·B−1ξ = B−1ξ · ξ for all ξ ∈ Rn.

Conversely, by (2.10), we get

Λ−1|Bξ|2 ≤ B−1Bξ ·Bξ = Bξ · ξ for all ξ ∈ Rn.

Assume now that B satisfies condition (2.9). By Cauchy-Schwartz inequality, we get

Λ−1|Bξ|2 ≤ Bξ · ξ ≤ |Bξ||ξ| for all ξ ∈ Rn,

leading to

(2.12) |Bξ| ≤ Λ|ξ|.

Therefore, by applying again Cauchy-Schwartz inequality, we get

Bξ · ξ ≤ |Bξ||ξ| ≤ Λ|ξ|2 for all ξ ∈ Rn

and so condition (2.9) implies (2.11).
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Finally, assume that B is symmetric. It is enough to show that (2.11) implies (2.9). We start
by observing that, by the symmetry of B, the bilinear form (ξ, η) 7→ (Bξ, η) is a scalar product
in Rn, in virtue of (2.11). Hence, by Cauchy-Schwartz inequality and (2.11), it holds that

|Bξ · η|2 ≤ (Bξ · ξ)(Bη · η) ≤ (Bξ · ξ)Λ|η|2 for all ξ, η ∈ Rn.

In particular, for η = Bξ, we get

|Bξ|4 = |Bξ ·Bξ|2 ≤ (Bξ · ξ)Λ|Bξ|2 for all ξ ∈ Rn,

which implies (2.9). □

From now on, we fix 0 < λ ≤ Λ < ∞. Given a sequence of matrices (Ah)h ⊂ M(λ,Λ,Rn),
for all f ∈ H−s(Ω) and h ∈ N we consider the following elliptic problems

(P f
h )

{
−divs(Ah∇suh) = f in Ω,

uh = 0 in Rn \ Ω,

where divs and ∇s are the fractional differential operators introduced in Definition 2.2. The

following result ensures that the problem (P f
h ) is well-defined.

Lemma 2.12. Let A ∈ M(λ,Λ,Rn). For every f ∈ H−s(Ω) there exists a unique (weak)
solution u ∈ Hs

0(Ω) of the elliptic problem{
−divs(A∇su) = f in Ω,

u = 0 in Rn \ Ω,

i.e. satisfying∫
Rn

A(x)∇su(x) · ∇sv(x) dx = ⟨f, v⟩H−s(Ω)×Hs
0(Ω) for all v ∈ Hs

0(Ω).

Moreover, the solution u satisfies the following estimate

∥∇su∥L2(Rn;Rn) ≤ λ−1∥f∥H−s(Ω).

Proof. The proof is a direct application of Lax-Milgram Theorem and Proposition 2.8. Indeed,
the bilinear form a : Hs

0(Ω)×Hs
0(Ω) → R, defined as

a(u, v) :=

∫
Rn

A(x)∇su(x) · ∇sv(x) dx for all u, v ∈ Hs
0(Ω),

is continuous and coercive, being A ∈ M(λ,Λ,Rn). □

The notion of nonlocal H-convergence of (Ah)h ⊂ M(λ,Λ,Rn) we propose consists in finding
a limit matrix A∞ ∈ M(λ′,Λ′,Rn), with 0 < λ′ ≤ λ ≤ Λ ≤ Λ′ < ∞, such that the sequence of

problems (P f
h )h is related to the limit problem

(P f
∞)

{
−divs(A∞∇su∞) = f in Ω,

u∞ = 0 in Rn \ Ω,

in the sense of the next definition. In what follows, we denote by uh = uh(f) ∈ Hs
0(Ω), h ∈ N,

and by u∞ = u∞(f) ∈ Hs
0(Ω) the unique weak solutions of (P f

h ) and (P f
∞), respectively.

Definition 2.13 (Nonlocal H-convergence). Let 0 < λ′ ≤ λ ≤ Λ ≤ Λ′ < ∞ and consider
(Ah)h ⊂ M(λ,Λ,Rn) and A∞ ∈ M(λ′,Λ′,Rn). We say that

(Ah)h H-converges to A∞ in Hs
0(Ω)

if for all f ∈ H−s(Ω) the following convergences simultaneously hold as h→ ∞:

convergence of solutions: uh → u∞ weakly in Hs
0(Ω),(2.13)

convergence of momenta: Ah∇suh → A∞∇su∞ weakly in L2(Rn;Rn).(2.14)
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Definition 2.13 is the natural counterpart in the nonlocal setting of the local H-convergence,
see e.g. [42, Definition 6.4]. For the readers’ convenience, we recall such a notion in what follows.

Let (Bh)h ⊂ M(λ,Λ,Ω) be fixed. For any h ∈ N and g ∈ H−1(Ω), we consider the following
sequence of elliptic problems

(Qg
h)

{
−div(Bh∇wh) = g in Ω,

wh = 0 on ∂Ω.

Given B∞ ∈ M(λ′,Λ′,Ω), for some 0 < λ′ ≤ λ ≤ Λ ≤ Λ′ <∞, we also consider the problem

(Qg
∞)

{
−div(B∞∇w∞) = g in Ω,

w∞ = 0 on ∂Ω,

and denote by wh = wh(g) ∈ H1
0 (Ω), h ∈ N, and by w∞ = w∞(g) ∈ H1

0 (Ω) the unique weak
solutions of (Qg

h) and (Qg
∞), respectively.

Definition 2.14 (Local H-convergence). Let 0 < λ′ ≤ λ ≤ Λ ≤ Λ′ < ∞, and consider
(Bh)h ⊂ M(λ,Λ,Ω) and B∞ ∈ M(λ′,Λ′,Ω). We say that

(Bh)h H-converges to B∞ in H1
0 (Ω),

if for all g ∈ H−1(Ω) the following convergences simultaneously hold as h→ ∞:

convergence of solutions: wh → w∞ weakly in H1
0 (Ω),(2.15)

convergence of momenta: Bh∇wh → B∞∇w∞ weakly in L2(Ω;Rn).(2.16)

We recall that the class M(λ,Λ,Ω) is compact with respect to the local H-convergence in
H1

0 (Ω). A proof of this classical result can be found e.g. in [42, Theorem 6.5].

Proposition 2.15 (Local H-compactness). For any (Bh)h ⊂ M(λ,Λ,Ω), there exist a not
relabeled subsequence and a matrix-valued function B∞ ∈ M(λ,Λ,Ω) such that

(Bh)h H-converges to B∞ in H1
0 (Ω).

We also recall that the local H-convergence is stable with respect to the transpose operation.
More precisely, we have the following result, due to Tartar, whose proof can be found in [42,
Lemma 10.2].

Proposition 2.16 (H-convergence of the transpose). Let Bh, B∞ ∈ M(λ,Λ,Ω), h ∈ N, and
assume that

(Bh)h H-converges to B∞ in H1
0 (Ω).

Then,
(BT

h )h H-converges to BT
∞ in H1

0 (Ω).

The first goal of this paper is to show that suitable subclasses of M(λ,Λ,Rn) are compact
with respect to the nonlocal H-convergence. The classes of matrices we are interested in are
defined as follows.

Definition 2.17. For any A0 ∈ M(λ,Λ,Rn), we define

M(λ,Λ,Ω, A0) := {A ∈ M(λ,Λ,Rn) : A = A0 a.e. in Rn \ Ω} .
For any A0 ∈ Msym(λ,Λ,Rn), we also set

Msym(λ,Λ,Ω, A0) := {A ∈ M(λ,Λ,Ω, A0) : A = AT a.e. in Rn}.

In the next section we show that any sequence (Ah)h in M(λ,Λ,Ω, A0) (respectively in
Msym(λ,Λ,Ω, A0)), for a fixed matrix A0 ∈ M(λ,Λ,Rn) (respectively in Msym(λ,Λ,Rn)),
admits a not relabeled subsequence and a limit matrix A∞ in M(λ,Λ,Ω, A0) (respectively in
Msym(λ,Λ,Ω, A0)) such that

(Ah)h H-converges to A∞ in Hs
0(Ω)

in the sense of Definition 2.13. In particular, the H-limit A∞ satisfies (2.5)–(2.6) with the same
constants λ and Λ of the sequence (Ah)h, leading to the compactness of both classes.
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2.4. The Γ-convergence problem. Let us fix A0 ∈ Msym(λ,Λ,Rn) and a sequence (Ah)h
in Msym(λ,Λ,Ω, A0). For any h ∈ N, we consider the nonlocal energies Fh : L

2(Rn) → [0,∞]
associated with Ah, represented by

Fh(u) :=


1

2

∫
Rn

Ah(x)∇su(x) · ∇su(x) dx if u ∈ Hs
0(Ω),

∞ if u ∈ L2(Rn) \Hs
0(Ω).

(2.17)

The second goal of this paper is to show the Γ-compactness in the strong topology of L2(Rn) for
the class of nonlocal energies (2.17). In particular, we prove the existence of a limit symmetric
matrix-valued function A∞ ∈ Msym(λ,Λ,Ω, A0) such that, up to a not relabeled subsequence,

(Fh)h Γ-converges to F∞ strongly in L2(Rn),

where the limit nonlocal energy F∞ : L2(Rn) → [0,∞] is represented by

(2.18) F∞(u) :=


1

2

∫
Rn

A∞(x)∇su(x) · ∇su(x) dx if u ∈ Hs
0(Ω),

∞ if u ∈ L2(Rn) \Hs
0(Ω).

We start recalling the notion of Γ-convergence for functionals. For a complete treatment of
the topic, we refer the interested reader to the monographs [5, 16].

Definition 2.18. Let X be a Banach space and let Eh, E∞ : X → [0,∞], h ∈ N. We say that

(Eh)h Γ-converges to E∞ strongly in X

if the following two conditions simultaneously hold:

• Γ-liminf inequality: for all x ∈ X and for any sequence (xh)h ⊂ X strongly converging
to x in X one has

E∞(x) ≤ lim inf
h→∞

Eh(xh);

• Γ-limsup inequality: for all x ∈ X there exists a recovery sequence (yh)h ⊂ X strongly
converging to x in X and such that

E∞(x) ≥ lim sup
h→∞

Eh(yh).

In analogy with Subsection 2.3, we remind that the class of local energies Gh : L
2(Ω) → [0,∞],

h ∈ N, associated with a sequence (Bh)h in Msym(λ,Λ,Ω) and represented by

Gh(v) :=


1

2

∫
Ω
Bh(x)∇v(x) · ∇v(x) dx if v ∈ H1(Ω),

∞ if v ∈ L2(Ω) \H1(Ω),
(2.19)

is compact with respect to the Γ-convergence in the strong topology of L2(Ω). A proof of the
next result can be found in [33] and [16, Theorem 22.2].

Proposition 2.19 (Γ-compactness of local functionals). Let (Bh)h ⊂ Msym(λ,Λ,Ω) and, for
any h ∈ N, let Gh : L

2(Ω) → [0,∞] be the local energy associated with Bh as in (2.19). Then,
there exists G∞ : L2(Ω) → [0,∞] such that, up to a not relabeled subsequence,

(Gh)h Γ-converges to G∞ strongly in L2(Ω).

Moreover, there exists a matrix-valued function B∞ ∈ Msym(λ,Λ,Ω) such that the Γ-limit G∞
has the following integral representation

G∞(v) :=


1

2

∫
Ω
B∞(x)∇v(x) · ∇v(x) dx if v ∈ H1(Ω),

∞ if v ∈ L2(Ω) \H1(Ω).
(2.20)

Remark 2.20. In order to derive Proposition 2.19 from [33] and [16, Theorem 22.2], we recall
that, according to Lemma 2.11, any symmetric matrix-valued function B belongs to the space
Msym(λ,Λ,Ω) if and only if the following growth condition is satisfied

λ|ξ|2 ≤ B(x)ξ · ξ ≤ Λ|ξ|2 for all ξ ∈ Rn and for a.e. x ∈ Ω.(2.21)
9



2.5. The equivalence problem. The third goal of this paper is to show the equivalence
between nonlocal H-convergence and Γ-convergence of the associated nonlocal energies.

Let us fix A0 ∈ Msym(λ,Λ,Rn). For any h ∈ N, let Ah, A∞ ∈ Msym(λ,Λ,Ω, A0) and let
Fh, F∞ : L2(Rn) → [0,∞] be the corresponding nonlocal energies, defined respectively in (2.17)
and (2.18). We want to show that

(Ah)h H-converges to A∞ in Hs
0(Ω)

if and only if

(Fh)h Γ-converges to F∞ strongly in L2(Rn).

In order to prove the above equivalence, we need to introduce the following notion of nonlocal
G-convergence of (Ah)h ⊂ Msym(λ,Λ,Rn).

Definition 2.21 (Nonlocal G-convergence). Let 0 < λ′ ≤ λ ≤ Λ ≤ Λ′ < ∞ and consider
(Ah)h ⊂ Msym(λ,Λ,Rn) and A∞ ∈ Msym(λ′,Λ′,Rn). We say that

(Ah)h G-converges to A∞ in Hs
0(Ω)

if for all f ∈ H−s(Ω) the following convergence holds as h→ ∞:

(2.22) uh → u∞ weakly in Hs
0(Ω),

where uh = uh(f) and u∞ = u∞(f) are, respectively, the unique solutions of (P f
h ) and (P f

∞).

Definition 2.21 is the natural counterpart in the nonlocal setting of the classicalG-convergence,
introduced by Spagnolo [37]. Clearly nonlocal H-convergence implies nonlocal G-convergence,
see Definition 2.13.

In Section 5, we show that the nonlocal G-convergence of (Ah)h is equivalent to the Γ-
convergence of the associated nonlocal energies (Fh)h. Moreover, we prove that for any sequence
(Ah)h ⊂ Msym(λ,Λ,Ω, A0), the Γ-convergence of the associated nonlocal energies (Fh)h implies
the convergence of the nonlocal momenta.

As a consequence, in Msym(λ,Λ,Ω, A0) the notions of nonlocal H-convergence, nonlocal
G-convergence, and Γ-convergence of the nonlocal energies, are all equivalent.

3. H-compactness of nonlocal operators

This first subsection is dedicated to the followingH-compactness result for nonlocal operators.
The proof of the following Theorem 3.1 relies on Proposition 2.15 and Proposition 2.16.

Theorem 3.1. Let A0 ∈ M(λ,Λ,Rn). For any (Ah)h ⊂ M(λ,Λ,Ω, A0), there exist a not
relabeled subsequence and a matrix-valued function A∞ ∈ M(λ,Λ,Ω, A0) such that

(Ah)h H-converges to A∞ in Hs
0(Ω).

Proof. For any h ∈ N, we define

(3.1) Bh := Ah|Ω ∈ M(λ,Λ,Ω).

By Proposition 2.15, there exists a limit matrix

(3.2) B∞ ∈ M(λ,Λ,Ω)

such that, up to subsequences,

(Bh)h H-converges to B∞ in H1
0 (Ω).

For a.e. x ∈ Rn we define

A∞(x) :=

{
B∞(x) if x ∈ Ω,

A0(x) if x ∈ Rn \ Ω.
(3.3)

By construction, A∞ ∈ M(λ,Λ,Ω, A0). To conclude the proof, we show that A∞ is the H-limit
of (Ah)h in Hs

0(Ω), in the sense of Definition 2.13.
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Fix f ∈ H−s(Ω) and consider the sequence (uh)h ⊂ Hs
0(Ω) of unique solutions of (P f

h )h.
Since (uh)h and (Ah∇suh)h are respectively bounded in Hs

0(Ω) and L2(Rn;Rn), then there
exist u∗ ∈ Hs

0(Ω) and m ∈ L2(Rn;Rn) such that, up to a not relabeled subsequence,

(3.4) uh → u∗ weakly in Hs
0(Ω) and Ah∇suh → m weakly in L2(Rn;Rn) as h→ ∞.

Our goal is to show that

(3.5) m = A∞∇su∗ a.e. in Rn.

Indeed, once obtained (3.5), by passing to the limit (as h → ∞) in the weak formulation of

(P f
h ), we obtain that u∗ is a solution of (P f

∞). Thus, by uniqueness, u∗ = u∞ and, by (3.4),

(Ah)h H-converges to A∞ in Hs
0(Ω),

as desired.
First, notice that

(3.6) m = A0∇su∗ = A∞∇su∗ a.e. in Rn \ Ω.

In fact, by (3.4), for all Φ ∈ L2(Rn \ Ω;Rn) it holds that∫
Rn\Ω

m(x) · Φ(x) dx = lim
h→∞

∫
Rn\Ω

Ah(x)∇suh(x) · Φ(x) dx

= lim
h→∞

∫
Rn\Ω

A0(x)∇suh(x) · Φ(x) dx =

∫
Rn\Ω

A0(x)∇su∗(x) · Φ(x) dx,

which implies (3.6).
It remains to show that

(3.7) m = A∞∇su∗ a.e. in Ω.

Fix g ∈ H−1(Ω) and consider (wh)h ⊂ H1
0 (Ω) and w∞ ∈ H1

0 (Ω), respectively (unique) solutions
of the transpose problems

(3.8)

{
−div(BT

h∇wh) = g in Ω,

wh = 0 on ∂Ω,
and

{
−div(BT

∞∇w∞) = g in Ω,

w∞ = 0 on ∂Ω.

By Proposition 2.16,

(3.9) wh → w∞ weakly in H1
0 (Ω) and B

T
h∇wh → BT

∞∇w∞ weakly in L2(Ω;Rn) as h→ ∞.

Let φ ∈ C∞
c (Ω) and define

Mh :=

∫
Rn

φ(x)Ah(x)∇suh(x) · ∇wh(x) dx.

We claim that for all φ ∈ C∞
c (Ω)

(3.10) lim
h→∞

Mh =

∫
Ω
φ(x)m(x) · ∇w∞(x) dx =

∫
Ω
φ(x)A∞(x)∇su∗(x) · ∇w∞(x) dx.

Once the claim is proved, we obtain (3.7). Indeed, since the operator −div(BT
∞∇ · ) defines

a bijection between the spaces H1
0 (Ω) and H−1(Ω) and, since g ∈ H−1(Ω) can be arbitrarily

taken in (3.8), then for all φ ∈ C∞
c (Ω) and w ∈ H1

0 (Ω) the following identity holds∫
Ω
φ(x)m(x) · ∇w(x) dx =

∫
Ω
φ(x)A∞(x)∇su∗(x) · ∇w(x) dx.

Hence,

(3.11) m(x) · ∇w(x) = A∞(x)∇su∗(x) · ∇w(x) for a.e. x ∈ Ω and for all w ∈ H1
0 (Ω)

and the collections of points of Ω where (3.11) fails can be chosen independent of w by a density
argument. Therefore, by fixing Ω′ ⋐ Ω and ϕ ∈ C1

c (Ω), such that ϕ = 1 on Ω′, and by defining

w(x) := ϕ(x)ξ · x for a.e. x ∈ Ω and for all ξ ∈ Rn,
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by (3.11), we get that

m(x) · ξ = A∞(x)∇su∗(x) · ξ for a.e. x ∈ Ω′ and for all ξ ∈ Rn,

which implies the validity of (3.7) in Ω′. Moreover, since this is true for every Ω′ ⋐ Ω, we
get (3.7) in all Ω, which completes the proof.

We then conclude by showing the validity of the claim (3.10). Its proof is divided into two
steps.

Step 1. We first show that

(3.12) lim
h→∞

Mh =

∫
Ω
φ(x)A∞(x)∇su∗(x) · ∇w∞(x) dx.

In virtue of Proposition 2.3, we have

Mh =

∫
Ω
φ(x)∇suh(x) ·BT

h (x)∇wh(x) dx

=

∫
Ω
φ(x)∇(I1−suh)(x) ·BT

h (x)∇wh(x) dx

=

∫
Ω
∇(φI1−suh)(x) ·BT

h (x)∇wh(x) dx−
∫
Ω
I1−suh(x)∇φ(x) ·BT

h (x)∇wh(x) dx.(3.13)

By (3.4) and Proposition 2.9,

(3.14) uh → u∗ strongly in L2(Rn) as h→ ∞,

and so, by Proposition 2.1, we get

I1−suh → I1−su
∗ strongly in L2(Ω) as h→ ∞.

This last convergence, coupled with (3.9), implies that

lim
h→∞

∫
Ω
I1−suh(x)∇φ(x) ·BT

h (x)∇wh(x) dx =

∫
Ω
I1−su

∗(x)∇φ(x) ·BT
∞(x)∇w∞(x) dx.(3.15)

We observe that φI1−suh ∈ H1
0 (Ω). Hence, by (3.4), (3.14), and Proposition 2.6,

φI1−suh → φI1−su
∗ weakly in H1

0 (Ω) as h→ ∞.

Thus, since wh solves problem (3.8), we get

lim
h→∞

∫
Ω
∇(φI1−suh)(x) ·BT

h (x)∇wh(x) dx = lim
h→∞

⟨g, φI1−suh⟩H−1(Ω)×H1
0 (Ω)

= ⟨g, φI1−su
∗⟩H−1(Ω)×H1

0 (Ω)

=

∫
Ω
∇(φI1−su

∗)(x) ·BT
∞(x)∇w∞(x) dx.(3.16)

By combining (3.13), (3.15), and (3.16), we then obtain (3.12), being

lim
h→∞

Mh =

∫
Ω
∇(φI1−su

∗)(x) ·BT
∞(x)∇w∞(x) dx−

∫
Ω
I1−su

∗(x)∇φ(x) ·BT
∞(x)∇w∞(x) dx

=

∫
Ω
φ(x)∇(I1−su

∗)(x) ·BT
∞(x)∇w∞(x) dx =

∫
Ω
φ(x)A∞(x)∇su∗(x) · ∇w∞(x) dx.

Step 2. We conclude by showing that

(3.17) lim
h→∞

Mh =

∫
Ω
φ(x)m(x) · ∇w∞(x) dx.
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By Proposition 2.5 and Proposition 2.7, we have

Mh =

∫
Ω
φ(x)Ah(x)∇suh(x) · ∇wh(x) dx

=

∫
Rn

φ(x)Ah(x)∇suh(x) · ∇s((−∆)
1−s
2 wh)(x) dx

=

∫
Rn

Ah(x)∇suh(x) · ∇s(φ(−∆)
1−s
2 wh)(x) dx(3.18)

−
∫
Rn

Ah(x)∇suh(x) · ∇sφ(x)(−∆)
1−s
2 wh(x) dx

−
∫
Rn

Ah(x)∇suh(x) · ∇s
NL(φ, (−∆)

1−s
2 wh)(x) dx.

For what concerns the second integral in (3.18), in view of (3.9) and Proposition 2.9, we have

wh → w∞ strongly in L2(Rn) as h→ ∞.

Moreover, the sequence (wh)h ⊂ H1
0 (Ω) is uniformly bounded. Hence, by Proposition 2.5,

(3.19) (−∆)
1−s
2 wh → (−∆)

1−s
2 w∞ strongly in L2(Rn)

and, since ∇sφ ∈ L∞(Rn), by (3.4) we get

lim
h→∞

∫
Rn

Ah(x)∇suh(x) · ∇sφ(x)(−∆)
1−s
2 wh(x) dx =

∫
Rn

m(x) · ∇sφ(x)(−∆)
1−s
2 w∞(x) dx.

(3.20)

Regarding the third integral in (3.18), by Proposition 2.7 and (3.19), since ∇s
NL is a bilinear

operator, we deduce that

∇s
NL(φ, (−∆)

1−s
2 wh) → ∇s

NL(φ, (−∆)
1−s
2 w∞) strongly in L2(Rn;Rn) as h→ ∞.

Therefore, in virtue of (3.4), we have

lim
h→∞

∫
Rn

Ah(x)∇suh(x) · ∇s
NL(φ, (−∆)

1−s
2 wh)(x) dx(3.21)

=

∫
Rn

m(x) · ∇s
NL(φ, (−∆)

1−s
2 w∞)(x) dx.(3.22)

Finally, (−∆)
1−s
2 wh ∈ Hs(Rn) by Proposition 2.5, which implies that φ(−∆)

1−s
2 wh ∈ Hs

0(Ω).
Then,

φ(−∆)
1−s
2 wh → φ(−∆)

1−s
2 w∞ weakly in Hs

0(Ω) as h→ ∞.

Therefore, regarding the first integrals in (3.18), since uh is a solution of (P f
h ) then, by (3.4),

lim
h→∞

∫
Rn

Ah(x)∇suh(x) · ∇s(φ(−∆)
1−s
2 wh)(x) dx

= lim
h→∞

⟨f, φ(−∆)
1−s
2 wh⟩H−s(Ω)×Hs

0(Ω)

= ⟨f, φ(−∆)
1−s
2 w∞⟩H−s(Ω)×Hs

0(Ω)

= lim
h→∞

∫
Rn

Ah(x)∇suh(x) · ∇s(φ(−∆)
1−s
2 w∞)(x) dx

=

∫
Rn

m(x) · ∇s(φ(−∆)
1−s
2 w∞)(x) dx.(3.23)
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By combining (3.18), (3.20), (3.21), and (3.23), we finally get (3.17), being

lim
h→∞

Mh =

∫
Rn

m(x) · ∇s(φ(−∆)
1−s
2 w∞)(x) dx

−
∫
Rn

m(x) · ∇sφ(x)(−∆)
1−s
2 w∞(x) dx−

∫
Rn

m(x) · ∇s
NL(φ, (−∆)

1−s
2 w∞)(x) dx

=

∫
Rn

φ(x)m(x) · ∇s((−∆)
1−s
2 w∞)(x) dx =

∫
Ω
φ(x)m(x) · ∇w∞(x) dx.

Hence, the claim (3.10) holds true and the proof of the Theorem is accomplished. □

As a consequence of Proposition 2.16, the H-compactness Theorem 3.1 also applies to the
subclass of symmetric matrices Msym(λ,Λ,Ω, A0), for a fixed A0 ∈ Msym(λ,Λ,Rn). More
precisely, theH-limit A∞ of sequences (Ah)h inMsym(λ,Λ,Ω, A0) still lies inMsym(λ,Λ,Ω, A0).

Theorem 3.2. Let A0 ∈ Msym(λ,Λ,Rn). For any (Ah)h ⊂ Msym(λ,Λ,Ω, A0), there exist a
not relabeled subsequence and a matrix-valued function A∞ ∈ Msym(λ,Λ,Ω, A0) such that

(Ah)h H-converges to A∞ in Hs
0(Ω).

Proof. The proof of the Theorem in the symmetric case follows verbatim the construction al-
ready presented in the proof of Theorem 3.1 for the general case, combined with the following
observations.

The limit matrix B∞ in the local H-convergence of the sequence (Bh)h, introduced in (3.1),
whose existence is shown in (3.2), is now symmetric in view of Proposition 2.16 and by the
uniqueness of the local H-limit. This implies that the matrix A∞, defined in (3.3), belongs to
the class Msym(λ,Λ,Ω, A0), and it is the H-limit of (Ah)h, in virtue of Theorem 3.1. □

4. Γ-compactness of nonlocal energies

The goal of this subsection is to show the following Γ-compactness Theorem.

Theorem 4.1. Let A0 ∈ Msym(λ,Λ,Rn). Let (Ah)h ⊂ Msym(λ,Λ,Ω, A0) and let (Fh)h be the
nonlocal energies introduced in (2.17). Then, there exist a not relabeled subsequence of (Ah)h
and A∞ ∈ Msym(λ,Λ,Ω, A0) such that

(Fh)h Γ-converges to F∞ strongly in L2(Rn),

where F∞ : L2(Rn) → [0,∞] is the nonlocal energy associated with A∞, as in (2.18).

In order to prove Theorem 4.1, we begin with the following lemma, which guarantees the
uniqueness of the integral representation of nonlocal energies by matrices.

Lemma 4.2. Let A, Â ∈ L∞(Rn;Rn×n
sym ) and let Ω ⊆ Rn be an open set. Assume that

A(x)ξ · ξ ≥ 0 and Â(x)ξ · ξ ≥ 0 for a.e. x ∈ Ω and all ξ ∈ Rn,

and

(4.1)

∫
Rn

A(x)∇sψ(x) · ∇sψ(x) dx =

∫
Rn

Â(x)∇sψ(x) · ∇sψ(x) dx for all ψ ∈ C∞
c (Ω).

Then

(4.2) A(x0) = Â(x0) for a.e. x0 ∈ Ω.

Proof. We define

C := A− Â ∈ L∞(Rn;Rn×n
sym ).

Since C ∈ L∞(Rn;Rn×n
sym ), for a.e. x0 ∈ Rn and for all M ∈ (0,∞) we have

lim
r→∞

∫
BM (0)

∣∣∣C (y
r
+ x0

)
− C(x0)

∣∣∣ dy = 0.
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In particular, there exists (rk)k ⊂ (0,∞) with rk → ∞ as k → ∞ such that

(4.3)

∣∣∣∣C (
y

rk
+ x0

)
− C(x0)

∣∣∣∣ → 0 as k → ∞ for a.e. y ∈ Rn.

Step 1: Blow-up. We fix φ ∈ C∞
c (Rn). For all x0 ∈ Ω and r ∈ (0,∞) we define

φx0,r(x) := φ(r(x− x0)) for all x ∈ Rn.

There exists r0 = r0(x0,Ω) ∈ (0,∞) such that

φx0,r ∈ C∞
c (Ω) for all r ∈ (r0,∞).

We have that

∇sφx0,r(x) =
1

γ1−s

∫
Rn

∇φx0,r(y)

|y − x|n+s−1
dy =

r

γ1−s

∫
Rn

∇φ(r(y − x0))

|y − x|n+s−1
dy

=
rs

γ1−s

∫
Rn

∇φ(z)
|z + r(x0 − x)|n+s−1

dz = rs∇sφ(r(x− x0)).

By (4.1), for all x0 ∈ Ω and r ∈ (r0,∞) we have

0 = rn−2s

∫
Rn

C(x)∇sφx0,r(x) · ∇sφx0,r(x) dx

= rn
∫
Rn

C(x)∇sφ(r(x− x0)) · ∇sφ(r(x− x0)) dx

=

∫
Rn

C
(y
r
+ x0

)
∇sφ(y) · ∇sφ(y) dy.(4.4)

Moreover, by (4.3), we derive

C

(
y

rk
+ x0

)
∇sφ(y) · ∇sφ(y) → C(x0)∇sφ(y) · ∇sφ(y) for a.e. y ∈ Rn as k → ∞.

Since∣∣∣∣C (
y

rk
+ x0

)
∇sφ(y) · ∇sφ(y)

∣∣∣∣ ≤ ∥C∥L∞(Rn;Rn×n
sym )|∇

sφ(y)|2 for a.e. y ∈ Rn and all k ∈ N,

in virtue of the dominated convergence Theorem and (4.4), we conclude that∫
Rn

C(x0)∇sφ(y) · ∇sφ(y) dy = 0 for all φ ∈ C∞
c (Rn).

Step 2: Reduction to the local case. By a density argument, we derive that∫
Rn

C(x0)∇su(y) · ∇su(y) dy = 0 for all u ∈ Hs(Rn).

Let v ∈ H1(Rn). By Proposition 2.5, we have that u := (−∆)
1−s
2 v ∈ Hs(Rn) and

∇su(x) = ∇v(x) for a.e. x ∈ Rn.

Therefore, we derive that∫
Rn

A(x0)∇v(y) · ∇v(y) dy =

∫
Rn

Â(x0)∇v(y) · ∇v(y) dy for all v ∈ H1(Rn).

Hence, we can apply [16, Lemma 22.5] to obtain (4.2). □

As a consequence of Lemma 4.2, we derive the following equivalence between Γ-convergence
of the nonlocal energies (Fh)h and Γ-convergence of the local ones (Gh)h. The proof is inspired
by some recent ideas presented in [15, 21].
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Proposition 4.3. Let A0 ∈ Msym(λ,Λ,Rn). For any h ∈ N, let Ah, A∞ ∈ Msym(λ,Λ,Ω, A0)
and Fh, F∞ : L2(Rn) → [0,∞] be the nonlocal energies, respectively defined in (2.17) and (2.18).
For any h ∈ N, define

Bh := Ah|Ω ∈ Msym(λ,Λ,Ω), B∞ := A∞|Ω ∈ Msym(λ,Λ,Ω),

and consider the local energies Gh, G∞ : L2(Ω) → [0,∞], respectively defined in (2.19) and (2.20).
Then,

(Fh)h Γ-converges to F∞ strongly in L2(Rn)

if and only if
(Gh)h Γ-converges to G∞ strongly in L2(Ω).

Proof. Step 1: Γ-convergence of (Gh)h implies Γ-convergence of (Fh)h. We assume that

(4.5) (Gh)h Γ-converges to G∞ strongly in L2(Ω),

and we want to show that

(Fh)h Γ-converges to F∞ strongly in L2(Rn).

Γ-liminf inequality. Let uh, u ∈ L2(Rn), h ∈ N, be such that (uh)h strongly converges to u
in L2(Rn) as h→ ∞. We show that

F∞(u) ≤ lim inf
h→∞

Fh(uh).

Without loss of generality, we assume that

lim inf
h→∞

Fh(uh) <∞,

the conclusion being otherwise trivial, and that the limit is actually achieved up to a not
relabeled subsequence, i.e.

lim inf
h→∞

Fh(uh) = lim
h→∞

Fh(uh).

According to its own definition, (Fh)h is finite only on Hs
0(Ω), thus forcing the sequence (uh)h

to lie therein. Since (Ah)h ⊂ Msym(λ,Λ,Ω, A0), there exists a positive constant C such that

sup
h∈N

∥∇suh∥L2(Rn;Rn) ≤ C,

which yields that (uh)h is uniformly bounded in Hs
0(Ω). Then, the limit u also lies on Hs

0(Ω)
and

uh → u weakly in Hs
0(Ω) as h→ ∞.(4.6)

For any h ∈ N, we define

vh := I1−suh and v := I1−su.

By Proposition 2.6, vh, v ∈ H1(Ω) for any h ∈ N and, by (4.6) and the continuity of the linear
operator I1−s : H

s(Rn) → H1(Ω),

vh → v strongly in L2(Ω) and weakly in H1(Ω) as h→ ∞.

By (4.5),

G∞(v) ≤ lim inf
h→∞

Gh(vh),(4.7)

in virtue of the Γ-liminf inequality. We also note that, by Proposition 2.6,

∇vh = ∇suh and ∇v = ∇su a.e. in Rn.

Thus, we can rephrase (4.7) as

1

2

∫
Ω
B∞(x)∇su(x) · ∇su(x) dx ≤ lim inf

h→∞

1

2

∫
Ω
Ah(x)∇suh(x) · ∇suh(x) dx.

On the other hand, since A0 ∈ M(λ,Λ,Rn), by (4.6) we get

1

2

∫
Rn\Ω

A0(x)∇su(x) · ∇su(x) dx ≤ lim inf
h→∞

1

2

∫
Rn\Ω

A0(x)∇suh(x) · ∇suh(x) dx.
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Hence,

F∞(u) =
1

2

∫
Ω
B∞(x)∇su(x) · ∇su(x) dx+

1

2

∫
Rn\Ω

A0(x)∇su(x) · ∇su(x) dx

≤ lim inf
h→∞

1

2

∫
Ω
Ah(x)∇suh(x) · ∇suh(x) dx+ lim inf

h→∞

1

2

∫
Rn\Ω

A0(x)∇suh(x) · ∇suh(x) dx

≤ lim inf
h→∞

Fh(uh).

Γ-limsup inequality. We fix u ∈ L2(Rn) and show the existence of a recovery sequence
(uh)h ⊂ L2(Rn) such that (uh)h strongly converges to u in L2(Rn), as h→ ∞, and

(4.8) F∞(u) ≥ lim sup
h→∞

Fh(uh).

The proof of the Γ-limsup inequality is rather technical and for the readers’ convenience, we
indicate the main steps below.

• First, we exploit the Riesz potential to move to the local setting and we obtain the
existence of a recovery sequence (vh)h for the Γ-convergence of the local energies (Gh)h
to G∞.

• Then, through a cut-off argument, we adapt the sequence (vh)h to the boundary data
of our problem and we come back to the nonlocal setting, obtaining the existence of a
sequence (uεh)h satisfying the Γ-limsup inequality up to a reminder term, which depends
on a parameter ε > 0.

• In the last part of the proof, we let the reminder term tend to zero via a diagonal
argument, which ensures the existence of a recovery sequence (uh)h for our problem.

Without loss of generality, we consider only the case of u ∈ Hs
0(Ω), the conclusion being

otherwise trivial.
We define

v := I1−su.

Then, by Proposition 2.6,

(4.9) v ∈ H1(Ω) and ∇v = ∇su a.e. in Rn.

Moreover, by (4.5), there exists a recovery sequence (vh)h ⊂ H1(Ω) for v, i.e. such that

(4.10) vh → v strongly in L2(Ω) as h→ ∞ and lim
h→∞

Gh(vh) = G∞(v) <∞

(we recall, in fact, that the Γ-liminf and the Γ-limsup inequalities imply that the limit is achieved
at least for the recovery sequence). In particular, by the definition of Gh (see (2.19)), (vh)h is
bounded in H1(Ω), which gives that

vh → v weakly in H1(Ω) as h→ ∞.

Let ε > 0 be fixed and let Kε ⋐ Ω be a compact set such that

(4.11)

∫
Ω\Kε

|∇v(x)|2 dx < ε.

We fix an open set U ε such that Kε ⋐ U ε ⋐ Ω, consider a cut-off function φε ∈ C∞
c (U ε)

satisfying 0 ≤ φε ≤ 1 on U ε and φε ≡ 1 on Kε and, for any h ∈ N, we define

(4.12) vεh := φεvh + (1− φε)v.

By construction,

(4.13) vεh → v strongly in L2(Ω) and weakly in H1(Ω) as h→ ∞.
17



Moreover, by (2.12), (2.21), (4.11), and the convexity of the map ξ 7→ Ah(x)ξ · ξ, it holds that

Gh(v
ε
h) =

1

2

∫
Ω
Ah(x)[φ

ε(x)∇vh(x) + (1− φε(x))∇v(x)] · [φε(x)∇vh(x) + (1− φε(x))∇v(x)] dx

+

∫
Ω
Ah(x)[∇φε(x)(vh(x)− v(x))] · [φε(x)∇vh(x) + (1− φε(x))∇v(x)] dx

+
1

2

∫
Ω
Ah(x)[∇φε(x)(vh(x)− v(x))] · [∇φε(x)(vh(x)− v(x))] dx

≤ 1

2

∫
Ω
φε(x)Ah(x)∇vh(x) · ∇vh(x) dx+

1

2

∫
Ω
(1− φε(x))Ah(x)∇v(x) · ∇v(x) dx

+ Λ∥∇φε∥L∞(Ω;Rn)∥vh − v∥L2(Ω)(∥∇vh∥L2(Ω;Rn) + ∥∇v∥L2(Ω;Rn))

+
Λ

2
∥∇φε∥2L∞(Ω;Rn)∥vh − v∥2L2(Ω)

≤ Gh(vh) +
Λ

2
ε+ Λ∥∇φε∥L∞(Ω;Rn)∥vh − v∥L2(Ω)(∥∇vh∥L2(Ω;Rn) + ∥∇v∥L2(Ω;Rn))

+
Λ

2
∥∇φε∥2L∞(Ω;Rn)∥vh − v∥2L2(Ω).

Hence, by (4.10) and the boundedness of (vh)h in H1(Ω), we conclude that

lim sup
h→∞

Gh(v
ε
h) ≤ lim

h→∞
Gh(vh) +

Λ

2
ε = G∞(v) +

Λ

2
ε.(4.14)

We trivially extend vεh − v ∈ H1
0 (Ω) to a function in H1(Rn) and, for any h ∈ N, we define

wε
h := (−∆)

1−s
2 (vεh − v).

By Proposition 2.5, we have that

(4.15) wε
h ∈ Hs(Rn) and ∇swε

h = ∇(vεh − v) a.e. in Rn

and, by (2.3), (4.13), and (4.15), there exist two positive constants C and Cε such that

∥wε
h∥2Hs(Rn) = ∥wε

h∥2L2(Rn) + ∥∇swε
h∥2L2(Rn;Rn) ≤ C∥vεh − v∥2H1

0 (Ω) ≤ Cε for all h ∈ N.

Therefore, by (2.1), (2.2) and (4.13), for all ψ ∈ C∞
c (Rn) we get that∫

Rn

wε
h(x)ψ(x) dx =

∫
Rn

(vεh(x)− v(x))(−∆)
1−s
2 ψ(x) dx→ 0 as h→ ∞,

which yields that

wε
h → 0 weakly in Hs(Rn) as h→ ∞.(4.16)

In particular, by (2.3) and (4.13),

wε
h → 0 strongly in L2(Rn) as h→ ∞.(4.17)

Let χε ∈ C∞
c (Ω) satisfy 0 ≤ χε ≤ 1 on Ω and χε = 1 on U ε. We define

uεh := u+ χεwε
h ∈ Hs

0(Ω).

By (4.16) and (4.17),

(4.18) uεh → u strongly in L2(Rn) and weakly in Hs
0(Ω) as h→ ∞.

For any h ∈ N, we also set

Rε
h := ∇s(χεwε

h)− χε∇swε
h.

By Proposition 2.7, there exists a positive constant C such that

∥Rε
h∥L2(Rn;Rn) ≤ C ∥χε∥W 1,∞(Rn) ∥w

ε
h∥L2(Rn) for all h ∈ N.

Then, by (4.17),

Rε
h → 0 strongly in L2(Rn;Rn) as h→ ∞(4.19)
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and, by (4.15),

∇suεh = ∇su+ χε∇swε
h +Rε

h = ∇su+ χε∇(vεh − v) +Rε
h a.e. in Rn.(4.20)

We consider the following decomposition

Fh(u
ε
h) =

1

2

∫
Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx+
1

2

∫
Ω\Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx(4.21)

+
1

2

∫
Rn\Ω

A0(x)∇suεh(x) · ∇suεh(x) dx.

By (4.19) and (4.20), the last integral in (4.21) satisfies

lim
h→∞

1

2

∫
Rn\Ω

A0(x)∇suεh(x) · ∇suεh(x) dx

= lim
h→∞

1

2

∫
Rn\Ω

A0(x)(∇su(x) +Rε
h(x)) · (∇su(x) +Rε

h(x)) dx

=
1

2

∫
Rn\Ω

A0(x)∇su(x) · ∇su(x) dx.(4.22)

Concerning the second integral in (4.21), we note that, by (4.12) and (4.20),

∇suεh = ∇su+Rε
h a.e. in Ω \ U ε.

Then, by (2.21), (4.9), and (4.11),

lim sup
h→∞

1

2

∫
Ω\Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx

≤ lim
h→∞

Λ

2
∥∇su+Rε

h∥
2
L2(Ω\Uε;Rn) =

Λ

2
∥∇su∥2L2(Ω\Uε;Rn) ≤

Λ

2
∥∇v∥2L2(Ω\Kε;Rn) ≤

Λ

2
ε.(4.23)

Finally, for what concerns the first integral in (4.21), we observe that, since χε = 1 in U ε,
by (4.9) and (4.20) we have

∇suεh = ∇v +∇(vεh − v) +Rε
h = ∇vεh +Rε

h a.e. in U ε.

Thus, (2.21) and (4.9) imply that

1

2

∫
Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx

=
1

2

∫
Uε

Ah(x)(∇vεh(x) +Rε
h(x)) · (∇vεh(x) +Rε

h(x)) dx

=
1

2

∫
Uε

Ah(x)∇vεh(x) · ∇vεh(x) dx+

∫
Uε

Ah∇vεh(x) ·Rε
h(x) dx

+
1

2

∫
Uε

AhR
ε
h(x) ·Rε

h(x) dx

≤ Gh(v
ε
h) +

∫
Uε

Ah∇vεh(x) ·Rε
h(x) dx+

1

2

∫
Uε

AhR
ε
h(x) ·Rε

h(x) dx(4.24)

and, since (vεh)h is uniformly bounded in H1(Ω), by (4.14), (4.19) and (4.24), we get

lim sup
h→∞

1

2

∫
Uε

Ah(x)∇suεh(x) · ∇suεh(x) dx ≤ G∞(v) +
Λ

2
ε.(4.25)

Therefore, by (4.22), (4.23) and (4.25), we obtain that for all ε > 0

(4.26) lim sup
h→∞

Fh(u
ε
h) ≤ F∞(u) + Λε.

To conclude, we use the following diagonal argument. In view of [16, Definition 4.1 and
Remark 4.3], by (4.18) and (4.26), we have that for all ε > 0

Γ- lim sup
h→∞

Fh(u) := sup
k∈N

lim sup
h→∞

inf
z∈B 1

k
(u)
Fh(z) ≤ F∞(u) + Λε.
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Hence, by letting ε→ 0, we conclude that

Γ- lim sup
h→∞

Fh(u) ≤ F∞(u)

and, by the properties of the Γ-lim sup (see e.g. [16, Proposition 8.1]), there exists a sequence
(uh)h ⊂ L2(Rn) such that uh → u strongly in L2(Rn) as h→ ∞ and

lim sup
h→∞

Fh(uh) = Γ- lim sup
h→∞

Fh(u) ≤ F∞(u).

This implies the validity of (4.8).
Step 2: Γ-convergence of (Fh)h implies Γ-convergence of (Gh)h. We assume that

(Fh)h Γ-converges to F∞ strongly in L2(Rn),

and we want to show that

(Gh)h Γ-converges to G∞ strongly in L2(Ω).

By Proposition 2.19, there exist a not relabeled subsequence and a functional Ĝ∞ : L2(Ω) →
[0,∞] such that

(4.27) (Gh)h Γ-converges to Ĝ∞ strongly in L2(Ω).

Moreover, there exists B̂∞ ∈ Msym(Ω, λ,Λ) such that

Ĝ∞(v) :=


1

2

∫
Ω
B̂∞(x)∇v(x) · ∇v(x) dx if v ∈ H1(Ω),

∞ if v ∈ L2(Ω) \H1(Ω).

By (4.27) and Step 1, we conclude that

(Fh)h Γ-converges to F̂∞ strongly in L2(Rn),

where F̂∞ is the nonlocal energies associated with the matrix

Â∞(x) =

{
B̂∞(x) if x ∈ Ω,

A0(x) if x ∈ Rn \ Ω.

By the uniqueness of the Γ-limit, we conclude that F̂∞ = F∞, and by Lemma 4.2 we derive

that B̂∞ = B∞. Hence, by the Uryshon property of Γ-convergence, we conclude that

(Gh)h Γ-converges to G∞ strongly in L2(Ω).

□

Remark 4.4. We point out that the nonlocal energies (Fh)h account for the boundary condition,
while the corresponding local energies (Gh)h do not, as they are finite in H1(Ω) instead of
H1

0 (Ω). We have chosen to work with (Gh)h, since it simplifies the proof of the Γ-convergence
equivalence between nonlocal energies and local ones. On the other hand, if we define

G0
h(v) :=


1

2

∫
Ω
Bh(x)∇v(x) · ∇v(x) dx if v ∈ H1

0 (Ω),

∞ if v ∈ L2(Ω) \H1
0 (Ω),

and

G0
∞(v) :=


1

2

∫
Ω
B∞(x)∇v(x) · ∇v(x) dx if v ∈ H1

0 (Ω),

∞ if v ∈ L2(Ω) \H1
0 (Ω),

by [16, Theorem 13.12 and Theorem 22.4] we have that

(G0
h)h Γ-converges to G0

∞ strongly in L2(Ω)

if and only if
(Gh)h Γ-converges to G∞ strongly in L2(Ω).

Therefore, Proposition 4.3 is still valid if we replace (Gh)h and G∞, respectively, with (G0
h)h

and G0
∞.
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As a consequence of Proposition 2.19 and Proposition 4.3, we can finally prove Theorem 4.1.

Proof of Theorem 4.1. For any h ∈ N, we define the matrix-valued functions

Bh := Ah|Ω ∈ Msym(λ,Λ,Ω),

and we consider the functionals Gh : L
2(Ω) → [0,∞] associated with Bh, as in (2.19). By

Proposition 2.19, there exist a not relabeled subsequence and a matrix B∞ ∈ Msym(λ,Λ,Ω)
such that

(Gh)h Γ-converges to G∞ strongly in L2(Ω),

where the functional G∞ : L2(Ω) → [0,∞] is defined as in (2.20).
We define

A∞(x) :=

{
B∞(x) if x ∈ Ω,

A0(x) if x ∈ Rn \ Ω,
and we denote by F∞ : L2(Ω) → [0,∞] the nonlocal energy associated with A∞, as in (2.18).
Then, A∞ ∈ Msym(λ,Λ,Ω, A0) and, by Proposition 4.3, we deduce that

(Fh)h Γ-converges to F∞ strongly in L2(Rn).

□

5. Equivalence between nonlocal H-convergence and Γ-convergence

We conclude this paper with the following equivalence between nonlocal H-convergence of
a sequence (Ah)h ⊂ Msym(λ,Λ,Ω, A0) and Γ-convergence of the associated nonlocal energies
(Fh)h, introduced in (2.17).

Theorem 5.1. Let A0 ∈ Msym(λ,Λ,Rn). For any h ∈ N, let Ah, A∞ ∈ Msym(λ,Λ,Ω, A0)
and Fh, F∞ : L2(Rn) → [0,∞] be the nonlocal energies, respectively defined in (2.17) and (2.18).
Then,

(Ah)h H-converges to A∞ in Hs
0(Ω)

if and only if
(Fh)h Γ-converges to F∞ strongly in L2(Rn).

The proof of Theorem 5.1 requires two preliminary results. In Lemma 5.2, we first show the
equivalence between the Γ-convergence of the nonlocal energies and the nonlocal G-convergence
introduced in Definition 2.21, which corresponds to the sole convergence of the solutions. Later,
in Proposition 5.4, we show that the Γ-convergence of the nonlocal energies also implies the
convergence of the momenta, as required in Definition 2.13.

The proof of the equivalence between the nonlocal G-convergence and the Γ-convergence of
the associated nonlocal energies can be obtained as an application of [16, Theorem 13.12], with
Y = Hs

0(Ω) and X = L2(Rn). For the reader’s convenience, we provide below a complete proof,
following the techniques presented in [16, Theorem 13.5].

Lemma 5.2. For any h ∈ N, let Ah, A∞ ∈ Msym(λ,Λ,Rn) and let Fh, F∞ : L2(Rn) → [0,∞]
be the nonlocal energies, respectively defined in (2.17) and (2.18). Then

(Ah)h G-converges to A∞ in Hs
0(Ω)

if and only if
(Fh)h Γ-converges to F∞ strongly in L2(Rn).

Proof. Γ-convergence implies G-convergence.
We assume that (Fh)h Γ-converges to F∞ strongly in L2(Rn) and we first show that (2.22)

holds for every f ∈ L2(Rn). Later, by a density argument, we extend the validity of (2.22) for
all f ∈ H−s(Ω), which implies the G-convergence of (Ah)h to A∞ in Hs

0(Ω).
Step 1. We fix g ∈ L2(Rn) and, for any h ∈ N, we define F g

h , F
g
∞ : L2(Rn) → [0,∞] as

(5.1) F g
h (u) := Fh(u) +

∫
Rn

g(x)u(x) dx and F g
∞(u) := F∞(u) +

∫
Rn

g(x)u(x) dx
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for all u ∈ L2(Rn). Since we have perturbed with continuity Fh and F∞, then

(F g
h )h Γ-converges to F g

∞ strongly in L2(Rn),

in virtue of [16, Proposition 6.21].
We note that the solutions wh ∈ Hs

0(Ω) and w∞ ∈ Hs
0(Ω) of problems (P g

h ) and (P g
∞), whose

existence is guaranteed by Lemma 2.12, minimise the energies F g
h and F g

∞, respectively, i.e.

F g
h (wh) = min

u∈L2(Rn)
F g
h (u) and F g

∞(w∞) = min
u∈L2(Rn)

F g
∞(u).

Therefore, by the Fundamental Theorem of Γ-convergence (see e.g. [16, Theorem 7.8]), we get

wh → w∞ strongly in L2(Rn) as h→ ∞.

In particular, since (wh)h ⊂ Hs
0(Ω) is uniformly bounded, we conclude that

(5.2) wh → w∞ weakly in Hs
0(Ω) as h→ ∞.

Step 2. We fix now f ∈ H−s(Ω) and denote uh, u∞ ∈ Hs
0(Ω) the solutions of the problems

(P f
h ) and (P f

∞), respectively.
Since the embedding Hs

0(Ω) ⊂ L2(Rn) is continuous and dense, so does the embedding
L2(Rn) ⊂ H−s(Ω). Therefore we can find a sequence (fj)j ⊂ L2(Rn) such that

fj → f strongly in H−s(Ω) as j → ∞.

For all j ∈ N, let ujh, u
j
∞ ∈ Hs

0(Ω) be the solutions of the problems (P
fj
h ) and (P

fj
∞ ), respec-

tively. Fixed g ∈ H−s(Ω), by Proposition 2.8 and Lemma 2.12, we obtain

|⟨g, uh − u∞⟩H−s(Ω)×Hs
0(Ω)| ≤ |⟨g, ujh − uj∞⟩H−s(Ω)×Hs

0(Ω)|+ C∥g∥H−s(Ω)∥fj − f∥H−s(Ω).

Hence, in view of (5.2) in Step 1, by letting first h → ∞ and then j → ∞, we obtain (2.22),
and so

(Ah)h G-converges to A∞ in Hs
0(Ω).

G-convergence implies Γ-convergence. We now show that

(Fh)h Γ-converges to F∞ strongly in L2(Rn),

in accordance with Definition 2.18, by assuming the G-convergence of the associated operators.
Γ-liminf inequality. We fix uh, u ∈ L2(Rn), h ∈ N, such that uh → u as h → ∞ and,

without loss of generality and up to a not relabeled subsequence, we assume that

lim
h→∞

Fh(uh) = lim inf
h→∞

Fh(uh) <∞ and sup
h∈N

Fh(uh) ≤ C,

for some positive constant C, the conclusion being otherwise trivial.
Then, (uh)h ⊂ Hs

0(Ω) and there exists another positive constant C such that

∥uh∥Hs
0(Ω) ≤ C for all h ∈ N,

which gives that also u ∈ Hs
0(Ω) and

uh → u weakly in Hs
0(Ω) as h→ ∞.

For any h ∈ N, define
(5.3) f := −divs(A∞∇su) ∈ H−s(Ω)

and consider the (unique) weak solution wh ∈ Hs
0(Ω) of problem (P f

h ). Since

(Ah)h G-converges to A∞ in Hs
0(Ω)

and, by construction, u is the (unique) weak solution of (P f
∞), it holds that

wh → u weakly in Hs
0(Rn) as h→ ∞.

From the one hand, we have that

lim
h→∞

1

2

∫
Rn

A∞(x)∇su(x) · (2∇suh(x)−∇swh(x)) dx = F∞(u).
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From the other hand, by (5.3)∫
Rn

A∞(x)∇su(x) · (2∇suh(x)−∇swh(x)) dx

= ⟨f, 2uh − wh⟩H−s(Ω)×Hs
0(Ω) =

∫
Rn

Ah(x)∇swh(x) · (2∇suh(x)−∇swh(x)) dx

≤
∫
Rn

Ah(x)∇suh(x) · ∇suh(x) dx = 2Fh(uh),

being

Ah(x)ξ1 · ξ1 −Ah(x)ξ2 · (2ξ1 − ξ2) = Ah(x)(ξ1 − ξ2) · (ξ1 − ξ2) ≥ 0

for a.e. x ∈ Rn and all ξ1, ξ2 ∈ Rn.
Hence,

lim inf
h→∞

Fh(uh) = lim
h→∞

Fh(uh) ≥ lim
h→∞

1

2

∫
Rn

A∞(x)∇su(x) · (2∇suh(x)−∇swh(x)) dx = F∞(u),

which conclude the proof of the Γ-liminf inequality.

Γ-limsup inequality. We fix u ∈ Hs
0(Ω), the conclusion being otherwise trivial by the

definition of F∞, we set f := −div(A∞∇su), and we consider wh ∈ Hs
0(Ω), (unique) weak

solution of (P f
h ). By the G-convergence of (Ah)h towards A∞ in Hs

0(Ω) and, by Proposition 2.9,

wh → u weakly in Hs
0(Rn) and wh → u strongly in L2(Rn) as h→ ∞.

Moreover,

lim
h→∞

Fh(wh) = lim
h→∞

1

2

∫
Rn

Ah(x)∇swh(x) · ∇swh(x) dx

= lim
h→∞

1

2
⟨f, wh⟩H−s(Ω)×Hs

0(Ω) =
1

2
⟨f, u⟩H−s(Ω)×Hs

0(Ω)

=
1

2

∫
Rn

A∞(x)∇su(x) · ∇su(x) dx = F∞(u).

Hence the Γ-limsup inequality also holds (the limit is actually achieved) and this concludes the
proof of the Γ-convergence of (Fh)h towards F∞. □

Remark 5.3. If we consider only the equivalence between the nonlocal G-convergence and
the Γ-convergence of the associated nonlocal energies (Fh)h, then the assumption of fixing
the matrices (Ah)h outside the reference domain Ω may be dropped. On the other hand,
for the compactness of the Γ-convergence (see Theorem 4.1) and for the following equivalence
between the nonlocal H-convergence and the Γ-convergence, we need to consider the subclass
Msym(λ,Λ,Ω, A0), for a given A0 ∈ Msym(λ,Λ,Rn).

In view of Lemma 5.2, in order to prove Theorem 5.1 it is enough to show that the Γ-
convergence of the nonlocal energies (Fh)h to F∞ also implies the convergence of momenta, as
required in Definition 2.13. To this aim, we follow the strategies adopted in [17, Lemma 4.11]
and [3, Theorem 4.5], and we define the functionals Fh,F∞ : L2(Rn;Rn) → R, respectively, as

Fh(Φ) :=
1

2

∫
Rn

Ah(x)Φ(x) · Φ(x) dx for all Φ ∈ L2(Rn;Rn),

F∞(Φ) :=
1

2

∫
Rn

A∞(x)Φ(x) · Φ(x) dx for all Φ ∈ L2(Rn;Rn).

Let us consider their Fréchet derivatives F ′
h and F ′

∞, which are given by

F ′
h(Φ)[Ψ] =

∫
Rn

Ah(x)Φ(x) ·Ψ(x) dx and F ′
∞(Φ)[Ψ] =

∫
Rn

A∞(x)Φ(x) ·Ψ(x) dx

for all Φ,Ψ ∈ L2(Rn;Rn).
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Note that F ′
h and F ′

∞ identify the momenta for the functionals Fh and F∞, respectively.
Indeed, given (uh)h ⊂ Hs

0(Ω) and u∞ ∈ Hs
0(Ω), then the convergence

F ′
h(∇suh)[Ψ] → F ′

∞(∇su∞)[Ψ] for all Ψ ∈ L2(Ω;Rn)

is equivalent to
Ah∇suh → A∞∇su∞ weakly in L2(Rn;Rn).

We have the following result.

Proposition 5.4. Let A0 ∈ Msym(λ,Λ,Rn). For any h ∈ N, let Ah, A∞ ∈ Msym(λ,Λ,Ω, A0)
and Fh, F∞ : L2(Rn) → [0,∞] be the nonlocal energies, respectively defined in (2.17) and (2.18).
Assume that

(Fh)h Γ-converges to F∞ strongly in L2(Rn),

and let (uh)h ∈ Hs
0(Ω) and u∞ ∈ Hs

0(Ω) satisfy

uh → u∞ strongly in L2(Rn) as h→ ∞ and Fh(uh) → F∞(u∞) as h→ ∞.(5.4)

Then, the convergence the momenta associated with (Fh)h and F∞ holds, i.e.

F ′
h(∇suh)[Ψ] → F ′

∞(∇su∞)[Ψ] for all Ψ ∈ L2(Rn;Rn) as h→ ∞.(5.5)

Proof. To prove (5.5), it is sufficient to show the following inequality

(5.6) F ′(∇su∞)[Ψ] ≤ lim inf
h→∞

F ′
h(∇suh)[Ψ] for all Ψ ∈ L2(Rn;Rn).

Indeed, by replacing Ψ with −Ψ, and by the properties of the limit inferior, one can get the
desired condition (5.5).

For any h ∈ N, we define the matrix-valued functions

Bh := Ah|Ω ∈ Msym(λ,Λ,Ω), B∞ := A∞|Ω ∈ Msym(λ,Λ,Ω),

and the functionals Gh, G∞ : L2(Ω) → [0,∞], which are the local energies associated with Bh

and B∞, as in (2.19) and (2.20), respectively. For all Φ ∈ L2(Ω;Rn), we define the functionals
GΦ
h ,GΦ

∞ : L2(Ω;Rn) → [0,∞] as

GΦ
h (v) :=


1

2

∫
Ω
Ah(x)(∇v(x) + Φ(x)) · (∇v(x) + Φ(x)) dx if v ∈ H1(Ω),

∞ if v ∈ L2(Ω) \H1(Ω),

GΦ
∞(v) :=


1

2

∫
Ω
A∞(x)(∇v(x) + Φ(x)) · (∇v(x) + Φ(x)) dx if v ∈ H1(Ω),

∞ if v ∈ L2(Ω) \H1(Ω).

By Proposition 4.3, we have

(Gh)h Γ-converges to G∞ strongly in L2(Ω)

and, by [3, Theorem 4.2], we derive that for all Φ ∈ L2(Ω;Rn) the Γ-convergence in the same
topology is also guaranteed for the sequence (GΦ

h )h, having as Γ-limit the functional GΦ
∞. In

particular, for all (vh)h converging to v strongly in L2(Ω), we have

GΦ
∞(v) ≤ lim inf

h→∞
GΦ
h (vh).

Let Ψ ∈ L2(Ω;Rn) and (ti)i be a sequence of positive numbers converging to 0, as i → ∞.
Then, tiΨ ∈ L2(Ω;Rn). Moreover, fixed uh, u∞ ∈ Hs

0(Ω), h ∈ N, satisfying (5.4), we define

vh := I1−suh ∈ H1(Ω), v∞ := I1−su∞ ∈ H1(Ω),

where the H1(Ω) Sobolev regularity of vh and v∞ is guaranteed by Proposition 2.6.
Then, by the continuity of I1−s : L

2(Rn) → L2(Ω), it holds that

vh → v∞ strongly in L2(Ω) as h→ ∞
and, by the Γ-convergence of (GΦ

h )h toward GΦ (with Φ := tiΨ), we get

GtiΨ
∞ (v∞) ≤ lim inf

h→∞
GtiΨ
h (vh) for all i ∈ N.(5.7)
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Since

∇vh = ∇suh a.e. in Rn and ∇v∞ = ∇su∞ a.e. in Rn,

by Proposition 2.6, we can rephrase (5.7) as

1

2

∫
Ω
A∞(x)(∇su∞(x) + tiΨ(x)) · (∇su∞(x) + tiΨ(x)) dx

≤ lim inf
h→∞

1

2

∫
Ω
Ah(x)(∇suh(x) + tiΨ(x)) · (∇suh(x) + tiΨ(x)) dx.

Moreover, the sequence (uh)h is uniformly bounded in Hs
0(Ω), since

λ

2
∥∇suh∥2L2(Rn;Rn) ≤ Fh(uh) → F∞(u∞) as h→ ∞.

Hence, since uh → u strongly in L2(Rn), we have

∇suh + tiΨ → ∇su∞ + tiΨ weakly in L2(Rn) as h→ ∞.

Therefore, being A0 ∈ M(λ,Λ,Rn), we get

1

2

∫
Rn\Ω

A0(x)(∇su∞(x) + tiΨ(x)) · (∇su∞(x) + tiΨ(x)) dx

≤ lim inf
h→∞

1

2

∫
Rn\Ω

A0(x)(∇suh(x) + tiΨ(x)) · (∇suh(x) + tiΨ(x)) dx.

Hence,

F∞(∇su∞ + tiΨ) =
1

2

∫
Ω
A∞(x)(∇su∞(x) + tiΨ(x)) · (∇su∞(x) + tiΨ(x)) dx

+
1

2

∫
Rn\Ω

A0(x)(∇su∞(x) + tiΨ(x)) · (∇su∞(x) + tiΨ(x)) dx

≤ lim inf
h→∞

1

2

∫
Ω
Ah(x)(∇suh(x) + tiΨ(x)) · (∇suh(x) + tiΨ(x)) dx

+ lim inf
h→∞

1

2

∫
Rn\Ω

A0(x)(∇suh(x) + tiΨ(x)) · (∇suh(x) + tiΨ(x)) dx

≤ lim inf
h→∞

Fh(∇suh + tiΨ)

and, since

Fh(∇suh) = Fh(uh) and F∞(∇su∞) = F∞(u∞),

by (5.4) we have

F∞(∇su∞ + tiΨ)−F∞(∇su∞)

ti
≤ lim inf

h→∞

Fh (∇suh + tiΨ)−Fh (∇suh)

ti
for all i ∈ N.

Therefore, there exists an increasing sequence of integers (hi)i ⊂ N such that

F∞ (∇su∞ + tiΨ)−F∞ (∇su∞)

ti
− 1

i
≤ Fh (∇suh + tiΨ)−Fh (∇suh)

ti
(5.8)

for all h ≥ hi. If we set εh := ti for hi ≤ h < hi+1 and i ∈ N, then, by (5.8)

lim inf
h→∞

F∞ (∇su∞ + εhΨ)−F∞ (∇su∞)

εh
≤ lim inf

h→∞

Fhi
(∇suhi

+ εhΨ)−Fh (∇suh)

εh
.(5.9)

Note now that, by the nature of the functional F∞, the limit inferior on the left hand side
of (5.9), is actually achieved and can be represented by the Fréchet derivative of the functional
F∞, i.e.

(5.10) F ′
∞(∇su∞)[Ψ] = lim

h→∞

F∞ (∇su∞ + εhΨ)−F∞ (∇su∞)

εh
.
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For what concerns, instead, the right hand side of (5.9), we note that

Fh (∇suh + εhΨ)−Fh (∇suh)

εh
= F ′

h(∇suh)[Ψ] + εhFh(Ψ).(5.11)

Since the last term on the right-hand side of (5.11) converges to 0 as h→ ∞, from (5.9)–(5.11)
we finally get (5.6). □

We can finally prove Theorem 5.1.

Proof of Theorem 5.1. We need to prove that the H-convergence of (Ah)h to A∞ in Hs
0(Ω)

implies the Γ-convergence of (Fh)h in the strong topology of L2(Rn), and viceversa.

H-convergence implies Γ-convergence. Since the H-convergence is stronger than the
G-convergence, this part follows by Lemma 5.2.

Γ-convergence implies H-convergence. As in Lemma 5.2, we first show that (2.13)
and (2.14) hold for every f ∈ L2(Rn). Then, by a density argument, we show that (2.13)
and (2.14) are satisfied for all f ∈ H−s(Ω), leading to the H-convergence of (Ah)h to A∞.

Step 1. We fix f ∈ L2(Rn). By Lemma 5.2, the Γ-convergence of (Fh)h towards F∞ implies

the weak convergence in Hs
0(Ω) of uh, solutions of the problem (P f

h ), towards u∞, solution of

the limit problem (P f
∞). Moreover, uh and u∞ are also, respectively, the unique minimisers

of the nonlocal energies F f
h and F f

∞ defined in (5.1). Hence, by the Fundamental Theorem of

Γ-convergence [16, Theorem 7.8], F f
h (uh) → F f

∞(u∞) as h→ ∞, which implies that

Fh(uh) → F∞(u∞) as h→ ∞.

Therefore, in virtue of Proposition 5.4, it holds that

Ah∇suh → A∞∇su∞ weakly in L2(Rn;Rn) as h→ ∞,

and (2.13)–(2.14) are satisfied for all f ∈ L2(Rn).

Step 2. We fix now f ∈ H−s(Ω). For any h ∈ N, let uh, u∞ ∈ Hs
0(Ω) be the solutions

of the problems (P f
h ) and (P∞), respectively. By Lemma 5.2, we already know the validity

of the convergence of the solutions (2.13), and it remains to prove the convergence of the
momenta (2.14).

Since the embedding L2(Rn) ⊂ H−s(Ω) is continuous and dense, there exists a sequence
(fj)j ⊂ L2(Rn) such that as j → ∞

(fj)j strongly converges to f in H−s(Ω).

For all j ∈ N, let ujh, u
j
∞ ∈ Hs

0(Ω) be, respectively, the solutions of the problems (P
fj
h ) and

(P
fj
∞ ). Fixed Φ ∈ L2(Rn;Rn), by Proposition 2.8 and Lemma 2.12, we get∣∣∣∣∫

Ω
(Ah(x)∇suh(x)−A∞(x)∇su∞(x)) · Φ(x) dx

∣∣∣∣
≤

∣∣∣∣∫
Ω
(Ah(x)∇sujh(x)−A∞(x)∇suj∞(x)) · Φ(x) dx

∣∣∣∣+ C∥Φ∥L2(Rn;Rn)∥fj − f∥H−s(Ω),

and by Step 1, by sending first h → ∞ and then j → ∞, we obtain (2.14), leading to the
H-convergence of the sequence (Ah)h to A∞ in Hs

0(Ω). □

As a consequence of Lemma 4.2 and Theorem 5.1, we easily derive the uniqueness of the
H-limit in the symmetric case.

Corollary 5.5. Let A0 ∈ Msym(Rn, λ,Λ). For any h ∈ N, let Ah, A∞, Â∞ ∈ Msym(Ω, λ,Λ, A0)
be such that

(5.12) (Ah)h H-converges to A∞ in Hs
0(Ω), (Ah)h H-converges to Â∞ in Hs

0(Ω).

Then,

(5.13) A∞(x) = Â∞(x) for a.e. x ∈ Rn.
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Proof. Let us assume (5.12). By Theorem 5.1, we derive that

(Fh)h Γ-converges to F∞ strongly in L2(Rn)

and
(Fh)h Γ-converges to F̂∞ strongly in L2(Rn),

where, for any h ∈ N, Fh, F∞, F̂∞ : L2(Rn) → [0,∞] are the nonlocal energies, respectively

associated with Ah, A∞, Â∞. Since the Γ-limit is unique, we obtain that F∞ = F̂∞, which
implies (5.13), in virtue of Lemma 4.2. □

We conclude this section providing an alternative proof of Theorem 3.2, purely based on the
variational techniques introduced in Theorem 4.1 and Theorem 5.1.

Proof of Theorem 3.2. Let (Ah)h ⊂ Msym(λ,Λ,Ω, A0) and let (Fh)h be the associated nonlocal
energies, as in (2.17). By Theorem 4.1, there exists a not relabeled subsequence of (Ah)h and
A∞ ∈ Msym(λ,Λ,Ω, A0) such that, if F∞ denotes the nonlocal energy associated with A∞, as
in (2.18), then

(Fh)h Γ-converges to F∞ strongly in L2(Rn).

We can therefore conclude that

(Ah)h H-converges to A∞ in Hs
0(Ω),

in virtue of Theorem 5.1. □

6. Conclusions and open problems

Through our distributional approach, the H-convergence theory extends to linear operators
in fractional divergence form. In what follows, we list some possible future research directions
stemming from our results that we believe may be of particular interest to the community.

(1) A first direction that we are planning to investigate concerns the study of the asymptotic
behaviour of monotone operators in fractional divergence form with superlinear growth,
whose local counterpart is presented e.g in [42, Chapter 11]. A key tool useful to
characterise theH-limit still as a monotone operator is the Div-Curl Lemma [26, 27], and
the lack of an analogous one in the fractional case precludes to prove the H-compactness
for this class of operators by standard techniques.

(2) In Section 5, we proved that the H-compactness in the symmetric case is equivalent to
the Γ-compactness of the associated energies. In [2], the authors show that an analogous
result can be obtained also in the case of not necessarily symmetric matrices for which,
a priori, there is no natural energy associated with the problem. We conjecture that the
techniques used in the aforementioned paper can be adapted in the fractional scenario.
As a consequence, we would get the uniqueness of the H-limit also for general matrices.

(3) Once the H-convergence for elliptic operators has been characterised, it is natural to
ask whether this can provide information about the asymptotic behaviour of sequences
of parabolic nonlocal operators of the form

∂t − divs(Bh(x)∇s).

In [23], the authors show that, whenever the sequence of matrix-valued functions (Ah)h
is independent of time, then the parabolic H-limit B∞(x, t) coincides with the elliptic
H-limit A∞(x), meaning that B∞ is constant in time. Again, the authors conjecture
that a similar discussion can be extended to the nonlocal scenario.

(4) The most famous application of the H-convergence relies in the periodic homogenisation
of operators of the type

−div(a(hx)∇u(x)), h ∈ N,
where a is 1-periodic. We conjecture that an extension to the distributional fractional
setting through techniques similar to those of this paper may be possible. In particular,
we think that in this case the hypothesis of fixing a matrix A0 outside the reference
domain, used in the proof of Theorem 3.1, can be relaxed.
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(5) Recently, the H-convergence has been extended also to the sub-Riemannian framework
and, more generally, to operators depending on vector fields, see e.g. [22, 23, 24, 25].
Since the definition of fractional operators is more involved in a general sub-Riemannian
setting, we plan to extend Theorem 3.1 at least to the case of Carnot groups.
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