
Strategic execution trajectories

Giuliana Bordigoni†, Alessio Figalli‡, Anthony Ledford†§ and Philipp Ustinov†

†Man Group plc, Riverbank House, 2 Swan Lane, London, EC4R 3AD, UK; ‡Department of Mathematics,
ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland; §Oxford-Man Institute of Quantitative Finance,
University of Oxford, Oxford, OX2 6ED, UK

ABSTRACT
We obtain the optimal execution strategy for two sequential trades in the presence of a transient price 
impact. We first present a novel and general solution method for the case of a single trade (a metaorder) 
that is executed as a sequence of sub-trades (child orders). We then analyze the case of two sequential 
metaorders, including the case where the size and direction of the second metaorder are uncertain at the 
time the first metaorder is initiated. We obtain the optimal execution strategy under two different cost 
functions. First, we minimize the total cost when each metaorder is benchmarked to the price at its 
initiation, the total separate costs approach widely used by practitioners. Although simple, we show that 
optimizing total separate costs can lead to a significant understatement of the real costs of trading whilst 
also adversely impacting order scheduling. We overcome these issues by introducing a new cost function 
that splits the second metaorder into two parts, one that is predictable when the first metaorder is 
initiated and a residual that is not. The predictable and residual parts of the second metaorder are 
benchmarked using the initiation prices of the first and second metaorders, respectively. We prove 
existence of an optimal execution trajectory for linear instantaneous price impact and positive definite 
decay, and derive the explicit form of the minimizer in the special case of exponentially decaying impact, 
however uniqueness in general remains unproven. Various numerical examples are included for 
illustration.
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1. Introduction

Reducing transaction costs is an important goal for any institution that trades in financial markets,
and optimizing trade execution strategies is a well-studied problem. Any trade generates an impact in
the market and on average buy trades (or simply buys) push prices up whereas sells push prices down.
Such shifts in price are termed price impact. Most approaches for optimizing trade execution focus on
the problem of executing a single large trade (which we call a metaorder) within a given time horizon.
To achieve this, the metaorder is split into smaller child orders that are executed sequentially, and
each child order is potentially affected by the price impact of all previous child orders.

The literature on optimal execution and price impact largely divides along empirical and theoretical
lines. The empirical papers report concave market impact as a function of metaorder size, and price
reversion (often termed relaxation) after metaorder completion, see [3, 4, 9]. The market impact of
metaorders may be further decomposed into temporary and permanent impact, however estimation
of these components empirically is challenging due to the difficulty of distinguishing between impact
that is truly permanent and impact that decays slowly, while the informational content of trades also
complicates matters. The theoretical strand of the literature focuses on models of market impact under
which execution schedules are derived that minimise some measure of costs, with some papers mod-
elling the whole limit order book [23, 1] and others ignoring microstructure [14]. Recently propagator
models of market impact, which ignore limit order book microstructure, have proved popular both in
the academic literature and with practitioners due to their relative simplicity. Gatheral [18] derives
no-arbitrage conditions for them. The widely studied optimal execution problem is usually framed in
terms of minimizing the expected execution cost benchmarked against the pre-trade mid-price, how-
ever other approaches are possible. For example, [10, 16] use volume-weighted average price (VWAP)
during the execution period as their benchmark, and in [2] both the expected execution cost and its
volatility are taken into account. Price prediction can also be considered within the optimal execution
problem [15], and the execution trajectories obtained range from simple constant rate trajectories (in
volume time) to more complex solutions [11].

In practice, financial institutions both monitor and seek to minimize execution costs with respect
to some benchmark averaged over many metaorders, and frequently use the classical cost definition
given by the implementation shortfall in [24]. Definition of the benchmark is important and [26] argues
that benchmarking to VWAP can lead to suboptimal execution because the VWAP price is affected
by the trades. Best practice within the industry is often considered to be benchmarking to a pre-
trade price, for example the metaorder arrival price, as this is not impacted by subsequent trading
and is therefore not considered gameable. However this overlooks that the metaorder arrival price
may have been impacted by previous metaorders, an effect which can be especially important when
consecutive metaorders are correlated as discussed in [21]. See also [5] for an empirical paper which
shows that consecutive metaorders may interact when they are close together in time. Thus optimizing
expected or average individual metaorder execution costs with arrival price as a benchmark may lead
to suboptimal outcomes once sequential effects are included.

1.1. Two metaorders – the simplest sequential case

Although most literature deals with optimizing the execution of a single trade over a single time
horizon (STSH), here we extend this to a pair of sequential metaorders, and include the case where
both the size of the second metaorder and its direction (buy or sell) are uncertain at the time the first
metaorder is initiated. This setup is motivated by characteristics of the metaorder streams typical of
large systematic investment managers where the optimal position to hold (e.g. long q shares) is updated
whenever market or other data are sampled. Only the changes in optimal position which exceed some
materiality threshold become metaorders, and small noise trades are ignored. Such managers often
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set their data sampling schedules in advance, and therefore know the times at which metaorders in
any particular security may arise, however the size and direction of these metaorders is uncertain until
the latest data has been sampled. Motivated by this, we assume throughout that the times at which
trades arise are known in advance, and we explore the impact of uncertainty in both trade size and
trade direction.1

Our intention is to keep the model setup as simple as possible in order to illustrate how optimiz-
ing individual metaorder costs can lead to suboptimal outcomes when a richer objective function is
considered that captures sequential effects.2 Thus for our analysis, throughout we assume transient
linear market impact, no permanent impact, no alpha signals and no complex liquidity stucture. Under
these assumptions, the price impact of a trade can be decomposed into two components: the instan-
taneous price impact, representing an immediate shock to market prices, and the decay component
representing the gradual dissipation of this price shock over time. Instantaneous price impact tends
to be higher for larger metaorders3 so for simplicity we assume a linear function of order size. For the
decay component, we first derive some theoretical results keeping its form general, and then focus on
the important special case of exponential decay as this yields a tractable explicit solution. Our setup
coincides with the so called linear continuous propagator model first defined by Bouchaud et al. for
discrete time in [8], and for continuous time by Gatheral in [18]. Details are given in Section 2.

Existence and uniqueness of the minimum cost solution in the STSH case of the linear continuous
propagator model were established by Gatheral et al. in [19]. Curato et al. in [11] assumed a nonlinear
instantaneous price impact and positive definite decay function, and used homotopy analysis to con-
tinuously deform an initial strategy and thereby lower the expected execution cost. In Section 2.1 we
provide a new proof of uniqueness, employing a more direct approach that uses optimal transport. The
assumptions of our and their approaches are different: we assume an equivalent condition to positive
definiteness for the decay component, but assume linear instantaneous price impact. Obizhaeva and
Wang in [23] studied the STSH problem in a similar framework, however their approach used a limit
order book (LOB) with price-time matching. We do not pursue the LOB extension of our results here,
leaving that for separate analysis. There is a growing literature on applications of optimal transport,
and in particular martingale optimal transport, in finance and econometrics, see [6], [12], [13], [17]
and [20]. To the best of our knowledge this paper is the first to apply optimal transport in the context
of optimal execution.

Sections 3.1 and 3.2 cover the main contributions of this study, focusing attention away from the
standard STSH problem to optimizing the combined execution of two sequential metaorders.4 Clearly,
if the second metaorder commences before the impact of the first metaorder has completely dissipated
then there is interaction between the two executions and, in general, there is no reason to expect
the optimal strategy for the combined execution to coincide with overlaying two separately optimal
STSH trajectories. Sections 3.1 and 3.2 explore two different ways of formulating the total cost over
the two metaorders. In Section 3.1 each metaorder is benchmarked to the market price at which it
is initiated. This criterion, which we refer to as the total separate costs approach, is widely used
by practitioners in retrospective transaction cost monitoring and analysis. Whilst common in that
context, it raises some issues when used for execution optimization because the benchmark price of
the second metaorder depends on the first metaorder, and both the size and direction of the second
metaorder may be unknown when the first metaorder initializes. We later show that optimizing total
separate costs can lead to potentially undesirable effects including backloading in the case of correlated

1The discarding of noise trades is easily accommodated by allowing the trade size distribution to support trades of size zero.
2Although we seek model simplicity, we do expect the qualitative results obtained to hold for any reasonable price impact

model.
3Empirical analysis typically suggests a mildly nonlinear monotonic relationship with order size. We keep the instantaneous

impact component as straightforward as possible whilst maintaining realism.
4We restrict attention to two metaorders for the sake of simplicity and to emphasize the main ideas. However we expect our

findings can be generalized to an arbitrary number of metaorders.
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metaorders (i.e. where more is traded in the latter part of each execution period). This happens because
backloading increases the impact on the next arrival price, making it easier for the next metaorder to
perform well against its benchmark.

There exist several alternative criteria for analysing sequential transactions, for example the
stitching together approach discussed by Harvey et al. in [21], however these too can have issues when
used for forward planning. Our solution is to decompose the second metaorder into a predictable
part known at the time the first metaorder initializes, plus a non-predictable residual that becomes
known only when the second metaorder initializes. The predictable part of the second metaorder is
benchmarked to the price when the first metaorder initializes, and the non-predictable part to the ini-
tialisation price of the second metaorder. We refer to this criterion as the total hybrid costs approach
and explore it in Section 3.2. In Section 4 we analyze the two metaorder problem for both separate
costs and hybrid costs in the special case of exponentially decaying impact, illustrating these results
in Section 5 with a range of numerically derived optimal execution schedules. Finally, appendices are
provided that include some proofs together with additional results about the separate costs case.

2. The Single Trade Single Horizon (STSH) problem

Letting T0 and T denote the times at which trading commences and finishes, respectively, and V
the inventory required to be held at time T , then without loss of generality we take T0 = 0 and
further assume V > 0, corresponding to a buy, since precisely analogous results hold in the sell case
when V < 0. We denote by G(t) > 0 the price impact discussed in Section 1, so that G(0) is the
instantaneous price impact and G(t) for t > 0 represents the decay component. We assume G(t) is
non-increasing for all t ≥ 0 and additionally that G(t) is convex.

We adopt a special case of the continuous-time price model given by Gatheral et al. in [19] and refer
the reader there for a detailed discussion. We now introduce the concept of a trading schedule in the
form of a stochastic process X = (Xt) that describes the inventory held at each time, and therefore
satisfies {X0− = 0, XT = V }. In the absence of our trading, the so called unimpacted price is defined
on a given filtered probability space (Ω,F , (Ft),P) and is assumed to be driven by a standard Wiener
process Wt. Again, following the discussion in [19], every admissible execution schedule X = (Xt)
gives rise to a finite Borel measure dXt, and it follows that the price model depends on the execution
schedule X only through this measure dXt. When the trading schedule is continuous,5 then allowing
for the impact of our trading, the impacted price St evolves according to

St = S0 +

∫ t

0
σ dWt︸ ︷︷ ︸

unimpacted price

+

∫ t

0
G(t− s) dXs︸ ︷︷ ︸
impact

(2.1)

where the constant σ > 0 denotes the volatility of the unimpacted price. More generally, the trading
schedule can contain jumps corresponding to instantaneous buy or sell block trades.

We now consider the slippage or implementation shortfall cost of the execution schedule, which
is defined as the total price paid for buying V units over time horizon [0, T ] minus the price that
hypothetically could have been paid were all V units purchased at the initial unimpacted (or arrival)

price S0. With S0
t = S0 +

∫ t
0 σ dWt denoting the unimpacted price at time t, when X is continuous

5This includes the possibility Xt contains some continuous singular component.
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the total purchase price is given by∫
St dXt =

∫
S0
t dXt +

∫ ∫
{s<t}

G(t− s) dXsdXt,

whereas ifX has a jump of size ∆Xt at time t then the trade ∆Xt occurs at costG(0)(∆Xt)
2/2+∆XtSt,

see Gatheral et al. [19]. Combining these two cost expressions, the total purchase price for the general
execution schedule X is therefore ∫

St dXt +
G(0)

2

∑
(∆Xt)

2.

Hence, similar to Lemma 2.3 of [19], the expected slippage cost satisfies

E
[∫

St dXt +
G(0)

2

∑
(∆Xt)

2

]
− V S0 = E[C(X)] (2.2)

where the expectations in equation (2.2) are with respect to the measure P and C(X) is defined by

C(X) ≡ 1

2

∫ T

0

∫ T

0
G(|t− s|) dXs dXt. (2.3)

As discussed in Predoiu et al. [25, Section 3], without loss of generality we may restrict the search for
an optimal execution schedule X to nonrandom functions of time, as such a solution minimizes E[C(X)]
over all execution schedules including stochastic ones.6

We find it convenient to re-write the functional in equation (2.3) by defining G(t) = G(−t) for all
t ∈ R, so that G becomes an even function, and also implicitly to regard Xt as identically zero for
t < 0 so that X0− has a clear meaning as the limit from the left. Our goal is therefore to determine the
trading schedule X that minimizes the slippage cost C(X) subject to completing the purchase of V
units within time horizon [0, T ], or more succinctly:

find X that minimizes C(X) subject to {X0− = 0, XT = V }

where

C(X) =
1

2

∫ T

0

∫ T

0
G(t− s) dXs dXt. (2.4)

Our treatment ignores limit order book (LOB) microstructure features such as those discussed in
Obizhaeva and Wang [23], so the roles played by bids, offers, spreads and depths remain open for
separate study.

2.1. Uniqueness of the minimizer via optimal transport

Without loss of generality, from hereon we take S0 = 0. As noted in Curato et al. [11], the STSH case
was completely solved by Gatheral et al. [19] who showed that optimal strategies always exist, are
nonrandom functions of time, and are non-alternating between buy and sell trades when instantaneous
price impact is linear in the trading rate and decays as a convex function of time. We do not re-derive

6See also pages 7-8 of http://faculty.baruch.cuny.edu/jgatheral/JOIM2011.pdf.
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these results, but instead demonstrate how optimal transport may be employed to show uniqueness.
Accordingly we assume non-negativity of the optimizer and then examine carefully the structure of
the optimal solution as this proves propaedeutic to our later treatment of the adjacent metaorders
case.

Theorem 2.1. Let G in expression (2.4) denote an even continuous function, strictly convex
on (0,∞). Then the problem

min
X
C(X) subject to dXt ≥ 0, X0− = 0, XT = V > 0 (2.5)

has a unique solution.

Proof. We first note existence by recalling that the space of nonnegative measures dXt with constant
total mass is compact for the weak∗ topology. Hence, since the functional that we are minimizing is
continuous under weak∗ convergence, there exists a minimum.

To show uniqueness we use optimal transport (or equivalently, rearrangement) techniques. Let dX
(1)
t

and dX
(2)
t denote two minimizers, and consider the optimal transport7 problem:

min
Γ̄

∫
[0,T ]×[0,T ]

|t1 − t2|2dΓ̄(t1, t2) subject to (πi)#Γ̄ = dX(i)

where πi(t1, t2) = ti denotes the canonical projection onto the i-th variable, for i = 1, 2. Standard
optimal transport results (see [27, Chapter 2]) give that there exists a minimizing measure Γ̄ ≥ 0
which enjoys the following monotonicity property:

if (t1, t2), (s1, s2) ∈ supp(Γ̄) then s1 ≤ t1 implies s2 ≤ t2. (2.6)

We now define dX̄ = {(π1 + π2)/2}# Γ̄ and note, by the definition of push-forward, that

∫ T

0
dX̄t =

∫
[0,T ]×[0,T ]

dΓ̄(t1, t2) =

∫
[0,T ]

dX
(1)
t = V.

Furthermore, we have

C(X̄) =

∫
[0,T ]×[0,T ]

∫
[0,T ]×[0,T ]

G

(
t1 + t2

2
− s1 + s2

2

)
dΓ̄(t1, t2) dΓ̄(s1, s2)

=

∫
[0,T ]×[0,T ]

∫
[0,T ]×[0,T ]

G

(
t1 − s1

2
+
t2 − s2

2

)
dΓ̄(t1, t2) dΓ̄(s1, s2).

Now, since G is strictly convex on both (0,∞) and (−∞, 0), a consequence of property (2.6) is that
for all (t1, t2), (s1, s2) ∈ supp(Γ̄) with s1 ≤ t1, we have that both t1 − s1 ≥ 0 and t2 − s2 ≥ 0, and

7LetMV (Z) denote the set of nonnegative measures on a space Z with total mass V . In the terminology of optimal transport,

a measure Γ ∈ MV (X × Y ) that has marginals µ ∈ MV (X) and ν ∈ MV (Y ) is called a transport plan between µ and ν. The

marginal condition corresponds to saying that (π1)#Γ = µ and (π2)#Γ = ν, where π1(x, y) = x and π2(x, y) = y. We recall
that, given two measures σ1 ∈ MV (Z1) and σ2 ∈ MV (Z2) and a measurable map S : Z1 → Z2, we say that S#σ1 = σ2 if
σ2(B) = σ1(S−1(B)) for all σ2-measureable sets B.
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hence

G

(
t1 − s1

2
+
t2 − s2

2

)
≤ G(t1 − s1) +G(t2 − s2)

2
.

Note that the inequality above is strict unless t2− t1 = s2− s1, and that an analogous result holds for
t1 ≤ s1. This proves that

C(X̄) ≤ 1

2

∫
[0,T ]×[0,T ]

∫
[0,T ]×[0,T ]

[
G(t1 − s1) +G(t2 − s2)

]
dΓ̄(t1, t2) dΓ̄(s1, s2) =

C
(
X(1)

)
+ C

(
X(2)

)
2

,

with strict inequality unless X(1) ≡ X(2). Since X(1) and X(2) are both minimizers, the inequality
above must be an equality, in which case X(1) ≡ X(2), as required.

2.1.1. Optimality conditions

We now derive optimality conditions for dXt, the unique minimizer of the previous section. Since our
minimization problem concerns processes that are monotonically increasing, our strategy for obtaining
these conditions is based on considering perturbations of dXt that preserve both this monotonicity
and satisfaction of the total volume constraint. We do this in two distinct ways. The first way involves
a function η(t) that has zero mean with respect to dXt, while the second way scales dXt by a constant
less than 1 and then adds an arbitrary nonnegative finite measure dYt. As we shall see, these two types
of perturbation yield the desired optimality conditions.

We start by considering a function η(t) that is continuous on [0, T ] and satisfies
∫ T

0 η(t) dXt = 0 but
is otherwise arbitrary, so that for all ε > 0 sufficiently small we have that dXt,ε ≡ {1 + εη(t)}dXt is

nonnegative and satisfies
∫ T

0 dXt,ε = V . Hence, by the optimality of dXt and the fact that G is even,
we have

d C(Xε)

dε

∣∣∣∣
ε=0

=

∫ T

0

{∫ T

0
G(t− s) dXs

}
η(t) dXt = 0.

Now, since η(t) is arbitrary apart from having zero mean with respect to dXt, and both dXt ≥ 0 and

G > 0, it must be that F (t) ≡
∫ T

0 G(t− s) dXs for t ∈ [0, T ] satisfies

F (t) = Λ for some constant Λ > 0 on supp(dXt). (2.7)

Exploring the structure of F (t) outside supp(dXt) requires our second type of perturbation. For

dYt ≥ 0 a nonnegative finite measure and αY = V −1
∫ T

0 dYt, we define dXt,ε ≡ (1− εαY )dXt + εdYt.
The measure dXt,ε is admissible for the optimization problem (2.5) since dXt,ε ≥ 0 for ε > 0 sufficiently

small, and it is elementary to show
∫ T

0 dXt,ε = V . Thus, for F (t) as defined above, it follows by
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optimality and property (2.7) that

0 ≤ lim
ε→0+

C(Xε)− C(X)

ε
=

∫ T

0

{∫ T

0
G(t− s) dXs

}
(dYt − αY dXt)

=

∫ T

0
F (t) dYt − αY

∫ T

0
F (t) dXt =

∫ T

0
F (t) dYt − αY

∫ T

0
Λ dXt

=

∫ T

0
F (t) dYt − αY ΛV =

∫ T

0
F (t) dYt − Λ

∫ T

0
dYt =

∫ T

0
{F (t)− Λ} dYt.

Now, since dYt ≥ 0 is arbitrary, it must be that F (t) ≥ Λ for t ∈ [0, T ]. In summary, we have proved:

Proposition 2.2. Let dXt be the unique minimizer of optimization problem (2.5) and F (t) ≡
∫ T

0 G(t−
s) dXs for t ∈ [0, T ]. Then there exists a constant Λ > 0 such that F (t) = Λ on supp(dXt) and F (t) ≥ Λ
for all t ∈ [0, T ].

2.1.2. Structure of the minimizer

In Proposition (2.2), we expressed the optimality of dXt via the behaviour of the function F (t), which
is the convolution of dXt and the price impact kernel G(t). In this section we unpack this integral
quantity involving dXt and G(t) to expose the structure of the minimizer dXt. The approach is rather
delicate, as it involves understanding the fine regularity properties of F (t). With this in mind, we make
some additional simplifying assumptions on G, namely that G is strictly convex on t ∈ (0,∞), is twice
differentiable with continuous second derivative on R\{0}, and additionally satisfies 0 < G(t) ≤ C0,
0 > G′(t) ≥ −C0 and 0 < G′′(t) ≤ C0 for some constant C0 > 0.8,9 Our analysis exploits that the
second derivative of G(t) has a Dirac delta function at the origin, and provides a particularly flexible
approach that can be applied also in the case of multiple trades (see Section 3.1.1).

We begin by noting that, by our assumptions, the second derivative of G(t) has a singular part at
t = 0 due to the jump in G′. More precisely, if we set γ ≡ −G′(0+) +G′(0−) = 2G′(0−) and denote by
D2G the distributional second derivative of G, with G′′ the pointwise second derivative of G(t) that
exists everywhere apart from t = 0, then

D2G = G′′ dt− γδ0 (2.8)

where δ0 denotes the Dirac delta function. Next, we define

H(t) ≡
∫ T

0
G′′(t− s) dXs for t ∈ [0, T ]

and note that H > 0 since both G′′ > 0 and dXt ≥ 0. Hence, using equation (2.8) and recalling the
definition of F (see Proposition 2.2), we obtain

D2F =

∫ T

0
D2G(t− s) dXs = H dt− γ dXt on (0, T ). (2.9)

In particular, this implies that D2F = H dt > 0 on (0, T )\supp(dXt). Now, since F attains its

8Although the assumptions here exclude power law cases such as G(t) = |t|−1/2, they accommodate close approximations such

as G(t) = (a+ |t|)−1/2 for any a > 0.
9Since the form of G outside the domain of integration plays no role, these bounds on G need to be satisfied only for t ∈ (0, T ).
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minimum on supp(dXt), we have

0 ≤ D2F = H dt− γ dXt ≤ H dt ≤ ‖H‖∞ dt on (0, T ),

whereby it follows that F is convex on (0, T ) and D2F ∈ L∞((0, T )).10 Recalling equation (2.9), we
obtain also that dXt ∈ L∞((0, T )), namely dXt = xt dt with xt ∈ L∞((0, T )).

We now note that F ′′ = 0 almost everywhere on the set supp(dXt) since F is constant there. This,
combined with equation (2.9) and the fact that dXt ∈ L∞((0, T )), yields

dXt =
1

γ
H dt on supp(dXt) ∩ (0, T ).

Also, since F is convex and D2F = H dt > 0 outside supp(dXt), we deduce that

{F = Λ} ∩ (0, T ) = supp(dXt) ∩ (0, T ) is an interval.

We now claim that supp(dXt) = [0, T ]. Indeed, assume for instance that supp(dXt) = [a, b] with a > 0.
Then, since F ′ = 0 on supp(dXt), we obtain

0 = F ′(a) =

∫ b

a
G′(a− s) dXs. (2.10)

However, G′ > 0 on (−∞, 0), so the above integral must be strictly positive, which is a contradiction,
implying that a = 0. By a similar argument, b = T . Finally we note that dXt cannot be a L∞ function
extending all the way to t = 0 (respectively, all the way to t = T ), since if it were then we could apply
equation (2.10) at t = 0 (respectively, at t = T ) and thereby obtain a contradiction. Thus dXt must
be singular at both 0 and T , with Dirac delta functions at each location.

We now compute the masses µ0 and µT associated with these Dirac delta functions and write

dXt = µ0 δ0 + µT δT +
1

γ
H(t) dt.

For small ε > 0 we have

0 = F ′(ε) =

∫ T

0
G′(ε− s) dXs = µ0G

′(ε) + µT G
′(ε− T ) +

1

γ

∫ T

0
G′(ε− s)H(s) ds,

and similarly

0 = F ′(T − ε) =

∫ T

0
G′(T − ε− s) dXs = µ0G

′(T − ε) + µT G
′(−ε) +

1

γ

∫ T

0
G′(T − ε− s)H(s) ds.

Thus letting ε→ 0+ and recalling that G′(−t) = −G′(t), we obtain the pair of equations

G′(0+)µ0 −G′(T )µT −
1

γ

∫ T

0
G′(s)H(s) ds = 0 and

G′(T )µ0 −G′(0+)µT +
1

γ

∫ T

0
G′(T − s)H(s) ds = 0,

10In other words, the distributional Hessian of F is bounded and has no singular part.
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and hence that

µ0 =
1

G′(0+)2 −G′(T )2

1

γ

∫ T

0

{
G′(0+)G′(t) +G′(T )G′(T − t)

}
H(t) dt,

µT =
1

G′(0+)2 −G′(T )2

1

γ

∫ T

0

{
G′(0+)G′(T − t) +G′(T )G′(t)

}
H(t) dt.

(2.11)

In conclusion, we have proved the following:11

Proposition 2.3. Let dXt be the unique minimizer of optimization problem (2.5). Then

dXt = µ0 δ0 + µT δT +
1

γ
H(t) dt on [0, T ] (2.12)

where γ ≡ 2G′(0−) > 0, H(t) ≡
∫ T

0 G′′(t − s) dXs for t ∈ [0, T ] and the constants µ0, µT > 0 satisfy
the pair of equations (2.11).

Remark 2.4. The pair of equations (2.11) is particularly useful in the exponential case G(t) = e−κ|t|,
as it allows us to recover immediately the classical formula for the minimizer (see [19]). Indeed, since
G′′ = κ2G and γ = 2κ, using Propositions 2.2 and 2.3 we obtain

H(t) = κ2F (t) = κ2Λ and dXt = µ0 δ0 + µT δT +
κ

2
Λ dt on [0, T ],

with

µ0 =
κΛ

2(1− e−2κT )

∫ T

0

{
e−κt + eκ(t−2T )

}
dt =

Λ

2
, and

µT =
κΛ

2(1− e−2κT )

∫ T

0

{
e−κ(T−t) + e−κ(T+t)

}
dt =

Λ

2
.

Thus the volume constraint
∫ T

0 dXt = V gives

V = Λ +
κΛ

2

∫ T

0
dt = Λ

(
1 +

κT

2

)
which implies Λ =

2V

2 + κT
,

11Alternatively, using that F is constant and that XT = V , one gets the following relations:

G(0)µ0 +G(T )µT +
1

γ

∫ T

0
G(s)H(s) ds = G(T )µ0 +G(0)µT +

1

γ

∫ T

0
G(T − s)H(s) ds,

µ0 + µT +
1

γ

∫ T

0
H(s) ds = V.

Solving this linear system, one obtains the following expressions for µ0 and µT :

µ0 =
1

2

[
V −

1

γ

∫ T

0
H(s) ds+

1

G(0)−G(T )

(
1

γ

∫ T

0
G(s)H(s) ds−

1

γ

∫ T

0
G(T − s)H(s) ds

)]
,

µT =
1

2

[
V −

1

γ

∫ T

0
H(s) ds−

1

G(0)−G(T )

(
1

γ

∫ T

0
G(s)H(s) ds−

1

γ

∫ T

0
G(T − s)H(s) ds

)]
.
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and therefore the optimal execution strategy is given by

dXt =
V

2 + κT
δ0 +

V

2 + κT
δT +

κV

2 + κT
dt on [0, T ].

3. Optimal Execution of Two Adjacent Metaorders

We now move away from the extensively studied STSH problem and begin exploration of optimal
execution in the two metaorder case which, as far as we know, is a new research direction. For simplicity,
we consider only the case where the first metaorder has to be completed by the time the second
metaorder arrives. Similar to the STSH setup, we assume the first metaorder requires purchasing
quantity V[0,1] > 0 over the time interval [0, T1], where V[0,1] is assumed known at time t = 0. This
is augmented with a second metaorder for quantity V[1,2] ∈ R to be executed over period [T1, T2],
corresponding to a buy or a sell depending on the sign of V[1,2]. In Section 3.1, full knowledge of
V[1,2] is assumed available at time t = 0, and V[1,2] is therefore treated as a deterministic constant for
all t ∈ [0, T2]. In contrast, in Section 3.2 we assume that V[1,2] becomes known only at the instant when
the first metaorder has completed and the second metaorder has yet to start, which is time t = T1.
In this case, we treat V[1,2] as an exogenous random variable for all times t < T1, and additionally

assume V[1,2] is independent of both the unimpacted and impacted price processes.12 For clarity, we
emphasize that the times T1 and T2 are assumed known here, and are therefore treated as fixed
constants throughout, see Section (1.1).13

At this point we need to introduce the concepts of round trip trades and price manipulation. The

trading schedule X = {Xs}s≥0 6≡ 0 is described as a round trip trade if
∫ T

0 dXs = 0, corresponding to
some mixture of buys and sells that nets out to zero in total. If an execution problem accommodates
price manipulation then it means there exists at least one such round trip trade that has negative
expected cost, see [22]. In the STSH case with linear transient impact and exponential decay, the
absence of price manipulation was proved by Gatheral in [18]. However no such result is available
for two adjacent metaorders even in the case of linear transient impact and exponential decay. We
exclude the possibility of price manipulation solutions by making these inadmissible within both
metaorder horizons [0, T1] and [T1, T2], although in our later numerical results we do explore relaxing
this requirement. In particular, since V[0,1] is assumed positive, this means we exclude any selling over
the first interval [0, T1], whereas over the second interval [T1, T2] all trades must be of the same sign
as V[1,2].

14 No additional assumptions are required.
Extending equation (2.3) to obtain a two-period slippage requires choosing an appropriate bench-

mark price for the second metaorder. Benchmarking this with the price just before the second
metaorder starts (but after the first metaorder completes) corresponds to the total separate costs
approach, whereas benchmarking using the price at t = 0 for both the first and second metaorders
corresponds to the so called stitching together cost. Of these two possibilities, we examine in detail
only the total separate costs case. Limitations of the stitching together approach are discussed in [21].
In Section 3.1 the optimal execution schedule under separate costs is derived, while in Section 3.2 we

12The assumption that the second metaorder is independent of both the unimpacted and impacted price processes is, of course,

mathematically convenient. However the main motivation for it is that it reflects the majority of systematic strategies employed
by fund managers, where trades are typically generated by observing prices and other data over histories that are disjoint from, or

have only minimal overlap with, the execution horizon. Such an assumption may be unjustified in other cases, e.g. the strategies

deployed by high-frequency traders (HFTs).
13Extending these results, for example to accommodate randomness in the arrival time and duration of the second metaorder,

is left for a separate study.
14This mimics the industry practice of large buy-side firms where each metaorder is typically executed as a sequence of same-sign

child-orders.
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derive results under an alternative benchmarking scheme that decomposes the second metaorder into
predictable and non-predictable components which are benchmarked separately.

3.1. The Two Trade Separate Costs (TTSC) Problem

Motivated by the separate costs criterion introduced in Section 1 and mentioned above, the first and
second metaorders V[0,1] > 0 and V[1,2] ∈ R are both assumed known at time t = 0. As usual, the first
metaorder is benchmarked to the price just before its execution begins, which is S0− . Some care is
needed in how we benchmark the second metaorder, as what is intuitively required is the price just
before its execution commences whilst factoring in all impact from the first metaorder. This price,
which we denote by S∗T1

, is given by

S∗T1
= S0 +

∫ T1

0
σ dWt︸ ︷︷ ︸

unimpacted price

+

∫ T1

0
G(T1 − s) dX [0,1]

s︸ ︷︷ ︸
total impact of first metaorder

(3.1)

similar to equation (2.1). For this two trade separate costs (TTSC) problem the analogue of the
slippage cost (or implementation shortfall) is then∫ T1

0
St dX

[0,1]
t − V[0,1]S0− +

∫ T2

T1

St dX
[1,2]
t − V[1,2]S

∗
T1

(3.2)

for S∗T1
as given by equation (3.1). We emphasise that S∗T1

in the last term of expression (3.2) is the
price used to benchmark the second metaorder, and therefore includes the impact of any block trade
at the end of the first metaorder but excludes the impact of any block trade at the start of the second.
See Figure 1.

Remark 3.1. If the second metaorder quantity V[1,2] to be traded within interval [T1, T2] were known
prior to T1, then benchmarking its execution using the price at T1 may be optimistic. For example,
if the two trades are in the same direction, this would be likely to understate the total trading cost.
More appropriate would be to benchmark the second trade using the prevailing price at the instant V[1,2]

became known, or an approach like that discussed in Section 3.2.

Without loss of generality we assume S0− = 0 and as usual take V[0,1] > 0 so that the first trade is

a buy. By taking expectations15 and performing manipulations similar to those applied in obtaining
equation (2.4) from equation (2.1), from expression (3.2) the expected slippage cost becomes

1

2

∫ T1

0

∫ T1

0
G(t− s) dX [0,1]

s dX
[0,1]
t +

1

2

∫ T2

T1

∫ T2

T1

G(t− s) dX [1,2]
s dX

[1,2]
t

+

∫ T1

0

∫ T2

T1

G(t− s) dX
[1,2]
t dX [0,1]

s − V[1,2]

∫ T1

0
G(T1 − s) dX [0,1]

s .

(3.3)

Recalling that the second trade can only commence once the first trade has completed, expression (3.3)

has the following intuitive interpretation: trading from X
[0,1]
t may affect the execution prices of trades

within X
[1,2]
t , including at time T1; however trading from X

[1,2]
t , including any trade that X

[1,2]
t requires

15With respect to P, as before.

13



Figure 1. Schematic illustrating the component parts of the two metaorders and execution intervals. The coloured triangles

positioned at the start and end of the first and second intervals represent block trades of sizes (µ0, µ1) and (ν1, ν2) respectively.
The blue and orange horizontal lines, which here extend over the full time-range of the first and second intervals (but in later

examples may only partially cover these intervals) indicate the extent of continuous trading within each period, with vertical height

indicating trading rate. Thus the volume executed by continuous trading in the second period is r2(T2 − T1) where r2 denotes the
height of the orange line. The green line shows the combined price impact from all trading activity and reversion over the first and

second periods up to each time t. For this example, the impact is shown increasing in the first period but decreasing in the second,

indicating that the reversion induced by the combined first period trades and the block trade at the beginning of the second period
is stronger than the additional impact generated by the continuous trading within the second interval. Beyond time T2, which is

when trading finishes, the impact decays monotonically. The price impact noted at time T1 is used for benchmarking the second

metaorder, see equation (3.1), so includes the impact of the block trade at the end of the first period (µ1) but excludes the impact
of the block trade at the start of the second period (ν1).

at time T1, can have no effect on the execution prices of trades within X
[0,1]
t . We start by re-writing

expression (3.3) as

C
(
X [0,1], X [1,2]

)
≡1

2

∫ T1

0

∫ T1

0
G(t− s) dX [0,1]

s dX
[0,1]
t +

1

2

∫ T2

T1

∫ T2

T1

G(t− s) dX [1,2]
s dX

[1,2]
t

+

∫ T1

0

∫ T2

T1

[G(t− s)−G(T1 − s)] dX
[1,2]
t dX [0,1]

s

(3.4)

which follows because
∫ T2

T1
dX

[1,2]
t = V[1,2]. Expressions (3.3) and (3.4) are both deterministic functions

of time, so in the TTSC cost minimization problem which follows we restrict the search for an optimal
execution schedule (X [0,1], X [1,2]) to nonrandom functions of time. Our analysis of the TTSC case uses
similar arguments to the STSH discussion of Section 2, beginning with the existence of minimizers.

Theorem 3.2. Let G be an even continuous function, strictly convex on (0,∞) with C
(
X [0,1], X [1,2]

)
as defined in equation (3.4). Then the TTSC problem

min
X [0,1],X [1,2]

C
(
X [0,1], X [1,2]

)
subject to

{
X

[0,1]
0− = 0, X

[0,1]
T1

= V[0,1] > 0, dX
[0,1]
t ≥ 0,

X
[1,2]
T1−

= 0, X
[1,2]
T2

= V[1,2] ∈ R, V[1,2] dX
[1,2]
t ≥ 0

(3.5)

has a solution (which is a nonrandom function of time).

Proof. Similar to Theorem 2.1, this is an immediate consequence of the weak∗ compactness of non-
negative measures with constant total mass.
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Remark 3.3. In this general setting, uniqueness is not clear.

3.1.1. Optimality conditions

Let (dX
[0,1]
t ,dX

[1,2]
t ) denote a minimizer. To simplify the notation, let

F0,1(t) ≡
∫ T1

0
G(t− s) dX [0,1]

s +

∫ T2

T1

[G(t− s)−G(t− T1)] dX [1,2]
s (3.6)

and

F1,2(t) ≡
∫ T1

0
[G(t− s)−G(T1 − s)] dX [0,1]

s +

∫ T2

T1

G(t− s) dX [1,2]
s (3.7)

so that

C
(
X [0,1], X [1,2]

)
=

1

2

∫ T1

0
F0,1(t) dX

[0,1]
t +

1

2

∫ T2

T1

F1,2(t) dX
[1,2]
t . (3.8)

As in Section 2.1.1, we derive the optimality conditions using two different kinds of perturbation. For
the first, let η1 and η2 denote continuous functions on [0, T1] and [T1, T2], respectively, that satisfy∫ T1

0
η1(t) dX

[0,1]
t =

∫ T2

T1

η2(t) dX
[1,2]
t = 0

but are otherwise arbitrary. Then, for any ε1, ε2 ∈ R sufficiently small, the execution schedules

dX
[0,1]
t,ε1 ≡ {1 + ε1η1(t)}dX [0,1]

t and dX
[1,2]
t,ε2 ≡ {1 + ε2η2(t)}dX [1,2]

t are admissible for the TTSC problem

in Theorem 3.2. Hence, by the minimality of (dX
[0,1]
t , dX

[1,2]
t ) and the fact that G is even, we have

0 =
d C(X [0,1]

ε1 , X [1,2])

dε1

∣∣∣∣∣
ε1=0

=

∫ T1

0
F0,1(t) η1(t) dX

[0,1]
t

and

0 =
d C(X [0,1], X

[1,2]
ε2 )

dε2

∣∣∣∣∣
ε2=0

=

∫ T2

T1

F1,2(t) η2(t) dX
[1,2]
t ,

and hence that

F0,1(t) = Λ0,1 ∈ R on supp(dX
[0,1]
t ) and F1,2(t) = Λ1,2 ∈ R on supp(dX

[1,2]
t ). (3.9)

Combining equations (3.8) and (3.9) we therefore obtain

C
(
X [0,1], X [1,2]

)
=

1

2

(
Λ0,1V[0,1] + Λ1,2V[1,2]

)
.

We deduce structure beyond supp(dX
[0,1]
t ) and supp(dX

[1,2]
t ) by means of a second kind of perturba-

tion. Letting dYt,1 denote a nonnegative arbitrary measure on [0, T1], and dYt,2 an arbitrary measure on
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[T1, T2] with the same sign as V[1,2], we set (cY,1, cY,2) ≡ (
∫ T1

0 dYt,1/V[0,1],
∫ T2

T1
dYt,2/V[1,2]) and define the

perturbations dX
[0,1]
t,ε1 ≡ (1− ε1cY,1)dX

[0,1]
t + ε1dYt,1 and dX

[1,2]
t,ε2 ≡ (1− ε2cY,2)dX

[1,2]
t + ε2dYt,2. Hence,

applying the argument utilized just before Proposition 2.2, the assumed optimality of (dX
[0,1]
t ,dX

[1,2]
t )

together with equation (3.9) give that

0 ≤ lim
ε1→0+

C(X [0,1]
ε1 , X [1,2])− C(X [0,1], X [1,2])

ε1
=

∫ T1

0
{F0,1(t)− Λ0,1} dYt,1

and

0 ≤ lim
ε2→0+

C(X [0,1], X
[1,2]
ε2 )− C(X [0,1], X [1,2])

ε2
=

∫ T2

T1

{F1,2(t)− Λ1,2} dYt,2.

Now, since dYt,1 and dYt,2 are arbitrary, we conclude that

F0,1(t)− Λ0,1 ≥ 0 on [0, T1] and V[1,2]{F1,2(t)− Λ1,2} ≥ 0 on [T1, T2].

Summarizing the above, we have proved the following:

Proposition 3.4. Let (dX
[0,1]
t , dX

[1,2]
t ) denote a minimizer of the TTSC problem in Theorem 3.2, with

F0,1(t) and F1,2(t) as defined in equations (3.6) and (3.7) respectively. Then there exist real constants
Λ0,1 and Λ1,2 such that

(1) F0,1(t) = Λ0,1 on supp(dX
[0,1]
t ) with F0,1(t)− Λ0,1 ≥ 0 on [0, T1], and

(2) F1,2(t) = Λ1,2 on supp(dX
[1,2]
t ) with V[1,2] × (F1,2(t)− Λ1,2) ≥ 0 on [T1, T2].

3.1.2. Structure of the minimizer

Thanks to Proposition 3.4, we can now analyze the structure of minimizers of the TTSC problem. We
do so under the same additional assumptions about G, G′ and G′′ as listed at the start of Section 2.1.2.
For the analysis which follows it is convenient to define the component parts of F0,1 and F1,2 in
equations (3.6) and (3.7) as follows:

Φ0,1(t) ≡
∫ T1

0
G(t− s) dX [0,1]

s , Ψ0,1(t) ≡
∫ T2

T1

[G(t− s)−G(t− T1)] dX [1,2]
s ,

Φ1,2(t) ≡
∫ T2

T1

G(t− s) dX [1,2]
s , Ψ1,2(t) ≡

∫ T1

0
[G(t− s)−G(T1 − s)] dX [0,1]

s .

(3.10)

Additionally, we set

H0,1(t) ≡
∫ T1

0
G′′(t− s) dX [0,1]

s +

∫ T2

T1

[G′′(t− s)−G′′(t− T1)] dX [1,2]
s and

H1,2(t) ≡
∫ T1

0
G′′(t− s) dX [0,1]

s +

∫ T2

T1

G′′(t− s) dX [1,2]
s .

(3.11)

We now separately examine the two cases V[1,2] > 0 and V[1,2] < 0.
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Case 1: The second trade is a buy, so V[1,2] > 0

The main result has the following interpretation:16

(1) dX [0,1] always has a nonzero atom (block trade) at T1 plus the possibility of continuous trading
over some interval [a, T1], with an additional atom at t = 0 only when a = 0; and

(2) dX [1,2] always has a nonzero atom (block trade) at T2 plus the possibility of continuous trading
over some interval [c, T2], with an additional atom at T1 only when c = T1.

The above is made precise in Proposition 3.5 and proved in Appendix A.

Proposition 3.5. Let (dX [0,1], dX [1,2]) denote a minimizer of the the TTSC problem in Theorem 3.2
with V[1,2] > 0, and let H0,1 and H1,2 be as defined by the pair of equations (3.11). Then:

either

dX
[0,1]
t = µT1

δT1
+

1

γ
H0,1(t) dt with supp(dX

[0,1]
t ) = [a, T1] for some a > 0, µT1

> 0

or

dX
[0,1]
t = µ0 δ0 + µT1

δT1
+

1

γ
H0,1(t) dt with supp(dX

[0,1]
t ) = [0, T1] for some µ0 ≥ 0, µT1

> 0.

Also:

either

dX
[1,2]
t = νT2

δT2
+

1

γ
H1,2(t) dt with supp(dX

[1,2]
t ) = [c, T2] for some c > T1, νT2

> 0

or

dX
[1,2]
t = νT1

δT1
+ νT2

δT2
+

1

γ
H1,2(t) dt with supp(dX

[1,2]
t ) = [T1, T2] for some νT1

≥ 0, νT2
> 0.

Case 2: The second trade is a sell, so V[1,2] < 0

Similar to above, the main result is given by Proposition 3.6 and is proved in Appendix A.

Proposition 3.6. Let (dX [0,1], dX [1,2]) denote a minimizer of the the TTSC problem in Theorem 3.2
with V[1,2] < 0, and let H0,1 and H1,2 be as defined by the pair of equations (3.11). Then:

either

dX
[0,1]
t = µ0 δ0 +

1

γ
H0,1(t) dt on [0, b] for some b < T1, µ0 > 0

or

dX
[0,1]
t = µ0 δ0 + µT1

δT1
+

1

γ
H0,1(t) dt on [0, T1] for some µ0 ≥ 0, µT1

> 0.

16Let I(·) denote the indicator function. Throughout our numerical experiments for the TTSC problem with exponentially
decaying impact, the first period optimal schedules were either of the form µT1

δT1
or µ0δ0 + r1I(0 < t < T1)+µT1

δT1
with µ0 > 0,

µT1
> 0 and r1 > 0. In particular, we never observed a solution of the form r1I(a ≤ t < T1) + δT1

for nonzero r1 and a > 0.
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Also:
either

dX
[1,2]
t = νT1

δT1
+

1

γ
H1,2(t) dt on [T1, d] for some d < T2, νT1

< 0

or

dX
[1,2]
t = νT1

δT1
+ νT2

δT2
+

1

γ
H1,2(t) dt on [T1, T2] for some νT1

< 0, νT2
≤ 0.

3.2. The Two Trade Hybrid Costs (TTHC) Problem

Our treatment of the TTSC problem in the previous section benchmarks the second metaorder using
the price S∗T1

defined in equation (3.1) where T1 denotes the time at which the second trade becomes
known. In this section we consider the case where some information about the second trade may be
known in advance of time T1. Specifically, we again consider two trades (metaorders) of sizes V[0,1] > 0
and V[1,2] ∈ R to be executed over periods [0, T1] and [T1, T2], but we now decompose the second trade
into two parts: a predictable part of size V[1,2],p = EV[1,2] that is assumed known at time T = 0, and
a surprise (or trade amend) part of size V[1,2],a = V[1,2] − V[1,2],p that becomes known only at time T1.
These predictable and surprise parts of the second trade are benchmarked using the price S0− for
the predictable part V[1,2],p and S∗T1

for the surprise part V[1,2],a. As in equation (3.2) we reiterate
that S∗T1

includes the impact of any block trade at the end of the first period but excludes the impact
of any block trade at the start of the second period. Thus at time t = 0, we have that V[1,2],p is a
constant whereas V[1,2],a is a random variable satisfying EV[1,2],a = 0. As before, the first trade remains
benchmarked using the initial price S0− . We refer to this Two Trade Hybrid Costs setup as the TTHC
problem.

Analogous to equation (3.2), the TTHC implementation shortfall is given by[∫ T1

0
St dX

[0,1]
t − V[0,1]S0−

]
+

[∫ T2

T1

St dX
[1,2]
p,t − V[1,2],pS0−

]
+

[∫ T2

T1

St dX
[1,2]
a,t − V[1,2],aST ∗

1

]
. (3.12)

The first square-bracketed term of expression (3.12) corresponds to execution of the first trade V[0,1]

benchmarked using price S0− . The second square-bracketed term corresponds to the predictable part
of V[1,2] benchmarked using price S0− , while the third square-bracketed term corresponds to the un-
predictable amend part of the second trade benchmarked using price S∗T1

. For the avoidance of doubt,
we reiterate that both the predictable and surprise parts of the second trade V[1,2] are executed within
the second period [T1, T2], and there is no reallocation of inventory between the two execution periods.
As before, whilst our setup accommodates the case of a buy in the first period and a sell in second,
it excludes the possibility of price manipulation because trading is restricted to be non-alternating
within each period.17

Writing dX
[1,2]
t ≡ dX

[1,2]
p,t + dX

[1,2]
a,t for the execution schedule of the combined predictable and

amend parts of V[1,2], and assuming S0− = 0, expression (3.12) becomes∫ T1

0
St dX

[0,1]
t +

∫ T2

T1

St dX
[1,2]
t − V[1,2],aS

∗
T1

(3.13)

for S∗T1
as given by equation (3.1). Expression (3.13) contains two distinct sources of randomness:

17In the numerical results which follow later we explore the impact of relaxing this restriction.
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the process St corresponding to the impacted price, and the random variable V[1,2],a corresponding
to the amend part of the second metaorder. We deal with these separately by first conditioning on
V[1,2],a = v in expression (3.13), and then taking expectation with respect to P, as before. Applying
the same manipulations used to derive equation (3.4), the TTHC problem conditional on V[1,2],a = v
thereby becomes to minimize

C
(
X [0,1], X [1,2]|V[1,2],a = v

)
≡ 1

2

∫ T1

0

∫ T1

0
G(t− s) dX [0,1]

s dX
[0,1]
t +

1

2

∫ T2

T1

∫ T2

T1

G(t− s) dX [1,2]
s dX

[1,2]
t

+

∫ T1

0

∫ T2

T1

G(t− s) dX
[1,2]
t dX [0,1]

s − v
∫ T1

0
G(T1 − s) dX [0,1]

s (3.14)

subject to the constraints

X
[0,1]
0− = 0, X

[0,1]
T1

= V[0,1] > 0, dX
[0,1]
t ≥ 0, X

[1,2]
T1−

= 0, X
[1,2]
T2

= V[1,2] ∈ R,

V[1,2] dX
[1,2]
t ≥ 0 and V[1,2] = V[1,2],p + v.

For the deterministic case, that is when V[1,2],a = 0 with probability 1, we note that existence of
minimizers for the optimization problem (3.14) is an immediate consequence of the weak∗ compactness
of nonnegative measures with constant total mass (see the proof of Theorem 2.1). If additionally we
have that G(t) = e−κ|t|, an analysis using essentially the same arguments as for the TTSC case shows
that minimizers again have constant absolutely continuous parts inside both [0, T1] and [T1, T2], and
the possibility of Dirac deltas at the upper and lower bounds of these intervals.

Remark 3.7. In the deterministic case when V[1,2],a = 0 with probability 1 so that V[1,2] is known at
time t = 0, and additionally the two execution intervals [0, T1] and [T1, T2] are of the same duration,
then the TTHC problem is symmetric under the transformation t′ = T2 − t providing V[0,1] and V[1,2]

are also swapped. In this case the minimizer which arises when V[0,1] and V[1,2] are swapped is just the
time-reversed version of the minimizer obtained with them in their original order.

Remark 3.8. When V[1,2],p = 0 so that the second trade is of random size with mean zero, then no part
of V[1,2] is benchmarked against price S0−. In this case, and conditional on each V[1,2] ≡ V[1,2],a = v,
then the optimization problem (3.14) coincides with the deterministic TTSC problem discussed in
Section 3.2 (that is, their objective functions and constraints coincide), so the minimizers for the two
problems coincide also.

We do not further discuss the conditional TTHC problem given in equation (3.14), as rather than
being of primary interest it is simply an intermediate construct that gets used in the next section.

3.2.1. Optimizing over uncertainty in the second trade V[1,2]

Decomposing the second trade V[1,2] into its predictable mean and surprise components V[1,2],p = EV[1,2]

and V[1,2],a = V[1,2]−V[1,2],p, respectively, our focus now becomes unconditionally optimizing the TTHC
cost allowing for the uncertainty in the random variable V[1,2],a. It is important to note that this is the
only source of randomness within this stochastic optimization, as the operation of taking expectation
with respect to P in constructing the objective function (3.14) removes the randomness associated
with the price process St.

We start with the time T1 problem of optimizing TTHC costs over X [1,2] conditional on a given first
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period strategy X [0,1] and assumed known V[1,2],a = v. More precisely, let X [0,1] denote an admissible
strategy for the initial trade V[0,1] so that

X
[0,1]
0− = 0, X

[0,1]
T1

= V[0,1] > 0, dX
[0,1]
t ≥ 0,

and consider minimizing C(X [0,1], X [1,2]|V[1,2],a = v) as given in equation (3.14) over X [1,2] subject to

X
[1,2]
T1−

= 0, X
[1,2]
T2

= V[1,2] ∈ R, V[1,2] dX
[1,2]
t ≥ 0, V[1,2] = V[1,2],p + v. (3.15)

Denoting by m(X [0,1]|V[1,2],a = v) the minimum cost expression obtained for each X [0,1] and v, we

define m̂[X [0,1]] as the expectation of this minimum cost over the probability distribution of V[1,2],a,
that is

m̂[X [0,1]] ≡ EV[1,2],a

[
m(X [0,1], V[1,2],a)

]
=

∫
m(X [0,1]|V[1,2],a = v) dV[1,2],a(v).

To solve the overall problem we now seek the admissible strategy X [0,1] that minimizes m̂[X [0,1]]. More
precisely, we solve

min
X [0,1]

m̂[X [0,1]] subject to X
[0,1]
0− = 0, X

[0,1]
T1

= V[0,1] > 0, dX
[0,1]
t ≥ 0. (3.16)

As before, weak∗ compactness of nonnegative measures with constant total mass immediately gives
that a minimizer of the optimization (3.16) exists.

3.2.2. Extension: The Stochastic TTSC Problem

If instead of taking V[1,2],p = EV[1,2] in the above we were to define V[1,2],p ≡ 0 (even when EV[1,2] 6= 0) so
that the random variable V[1,2],a = V[1,2] comprises the entire second metaorder, then the middle term of
equation (3.12) vanishes (since S0− = 0) and the second trade is wholly benchmarked using price S∗T1

.
We refer to this as the Stochastic TTSC problem and note it arises as the {V[1,2],p ≡ 0, V[1,2],a =
V[1,2]} special case of the TTHC problem discussed above. More generally, even when V[1,2],p 6= 0
the Stochastic TTSC objective function may be obtained from the TTHC objective function (when
S0− = 0) simply by substracting from it the quantity V[1,2],pS

∗
T1

, see equation (3.13). This enables
straightforward formulation of the Stochastic TTSC problem for numerical solution in terms of the
TTHC objective function. Later we show optimal execution schedules obtained numerically for both
the Stochastic TTSC and TTHC problems.

4. Two Adjacent Metaorders: exponentially decaying impact

To illustrate our results, for simplicity throughout this section we focus on the case of exponen-
tially decaying impact with G(t) = e−κ|t| so that G′′ = κ2G, while from equation (2.8) we have
γ ≡ 2G′(0−) = 2κ. Within this setup we derive the structure of optimal solutions under the TTSC
and TTHC objectives discussed in Section 3. Analysis under more general assumptions about G(t)
remains open for separate study.
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4.1. The deterministic TTSC problem with exponentially decaying impact

From Proposition 3.4 and equation (A2), respectively, we have that F1,2 = Λ1,2 and dX
[1,2]
t =

(2κ)−1H1,2 dt on supp(dX
[1,2]
t ) ∩ (T1, T2). Hence, since G′′ = κ2G, recalling the definitions of F1,2

and H1,2 from equations (3.7) and (3.11), we obtain

H1,2(t) =

∫ T1

0
G′′(t− s) dX [0,1]

s +

∫ T2

T1

G′′(t− s) dX [1,2]
s = κ2

∫ T1

0
G(t− s) dX [0,1]

s + κ2

∫ T2

T1

G(t− s) dX [1,2]
s

= κ2F1,2(t) + κ2

∫ T1

0
G(T1 − s) dX [0,1]

s = κ2Λ1,2 + κ2

∫ T1

0
G(T1 − s) dX [0,1]

s ,

so H1,2(t) = Λ̂1,2 is constant on supp(dX
[1,2]
t ) ∩ (T1, T2) where

Λ̂1,2 ≡ κ2Λ1,2 + κ2

∫ T1

0
e−κ(T1−s) dX [0,1]

s . (4.1)

In particular, dX
[1,2]
t is constant on its support inside (T1, T2). Analogously, H0,1 = Λ̂0,1 is also

constant, with

Λ̂0,1 = κ2Λ0,1. (4.2)

As before, we consider two cases depending on the sign of V[1,2].

4.1.1. Case 1: The second trade is a buy so V[1,2] > 0

From Proposition 3.5, we have that

dX
[0,1]
t = µ0 δ0 + µT1

δT1
+ I(a ≤ t ≤ T1)

Λ̂0,1

2κ
dt for a ∈ [0, T1) and

dX
[1,2]
t = νT1

δT1
+ νT2

δT2
+ I(c ≤ t ≤ T2)

Λ̂1,2

2κ
dt for c ∈ [T1, T2)

where I(·) denotes the indicator function, µ0, µT1
, νT1

, νT2
, Λ̂0,1 and Λ̂1,2 are all nonnegative constants,

with µ0 · a = 0 (that is, one of the two numbers vanishes) and likewise νT1
· (c− T1) = 0.

To progress further we impose that the derivatives of F0,1 and F1,2 vanish on the support of our
minimizer, similar to the approach of Section 2.1.2. The sign of the derivative of G′ changes at the
origin, so care is needed near the Dirac deltas. We thereby obtain the following system of equations:

0 = lim
ε→0+

F ′0,1(T1 − ε) = −κ
(∫ T−

1

0
e−κ(T1−s)dX [0,1]

s − µT1
−
∫ T2

T1

[e−κ(s−T1) − 1]dX [1,2]
s

)
,

0 = lim
ε→0+

F ′1,2(T2 − ε) = −κ
(∫ T1

0
e−κ(T2−s)dX [0,1]

s +

∫ T−
2

T1

e−κ(T2−s)dX [1,2]
s − νT2

)
,

0 = lim
ε→0+

F ′0,1(a+ ε) = −κ
(∫ T1

a+

e−κ(s−a)dX [0,1]
s − µ0 +

∫ T2

T1

[e−κ(s−a) − e−κ(T1−a)]dX [1,2]
s

)
,

0 = lim
ε→0+

F ′1,2(c+ ε) = −κ
(∫ T1

0
e−κ(c−s)dX [0,1]

s + νT1
−
∫ T2

c+
e−κ(s−c)dX [1,2]

s

)
.

(4.3)
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Recalling that µ0 · a = 0 so that µ0e
−κa = µ0, and νT1

· (c− T1) = 0 which implies νT1
e−κ(c−T1) = νT1

,
this system becomes

0 = e−κT1µ0 +
1− e−κ(T1−a)

2κ2
Λ̂0,1 − µT1

− [e−κ(T2−T1) − 1]νT2
− e−κ(c−T1) − e−κ(T2−T1) − κ(T2 − c)

2κ2
Λ̂1,2,

0 = e−κT2µ0 +
e−κ(T2−T1) − e−κ(T2−a)

2κ2
Λ̂0,1 + e−κ(T2−T1)µT1

+ e−κ(T2−T1)νT1
+

1− e−κ(T2−c)

2κ2
Λ̂1,2 − νT2

,

0 =
1− e−κ(T1−a)

2κ2
Λ̂0,1 + e−κ(T1−a)µT1

− µ0

+ [e−κ(T2−a) − e−κ(T1−a)]νT2
+
e−κ(c−a) − e−κ(T2−a) − κ(T2 − c)e−κ(T1−a)

2κ2
Λ̂1,2,

0 = e−κcµ0 +
e−κ(c−T1) − e−κ(c−a)

2κ2
Λ̂0,1 + e−κ(c−T1)µT1

+ νT1
− 1− e−κ(T2−c)

2κ2
Λ̂1,2 − e−κ(T2−c)νT2

.

(4.4)

Coupling these 4 equations with the volume constraints

V[0,1] = µ0 + µT1
+ (T1 − a)

Λ̂0,1

2κ
and V[1,2] = νT1

+ νT2
+ (T2 − c)

Λ̂1,2

2κ
(4.5)

gives an overall system of 6 equations involving 8 unknowns. In order to solve this system, we distin-
guish 4 separate cases each of which involves 6 equations in 6 unknowns:

Case 1: a = 0, c = T1, Case 2: a > 0, c = T1 (hence µ0 = 0),
Case 3: a = 0, c > T1 (hence νT1

= 0) and Case 4: a > 0, c > T1 (hence µ0 = νT1
= 0).

Solution of the original TTSC problem proceeds by solving each of the above cases (if a case has no
critical point then the global minimizer does not correspond to that case), evaluating the expected
cost for each and then selecting the most favourable.

4.1.2. Case 2: The second trade is a sell so V[1,2] < 0

Arguing exactly as above, thanks to Proposition 3.6 we have

dX
[0,1]
t = µ0 δ0 + µT1

δT1
+ I(0 ≤ t ≤ b)Λ̂0,1

2κ
dt for b ∈ (0, T1] and

dX
[1,2]
t = νT1

δT1
+ νT2

δT2
+ I(T1 ≤ t ≤ d)

Λ̂1,2

2κ
dt for d ∈ (T1, T2]

where I(·) denotes the indicator function, µ0, µT1
, νT1

, νT2
, Λ̂0,1 and Λ̂1,2 are all nonnegative constants

µT1
· (T1 − b) = 0 (that is, one of the two numbers vanishes) and νT2

· (T2 − d) = 0. Repeating the
same analysis as the last section, one obtains a system of equations the solution of which provides a
minimizer.

4.1.3. Solution by numerical optimization

The structure of the minimizers described above is more complicated than the STSH solution en-
countered previously, making solution of the TTSC problem via the four separate cases somewhat
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cumbersome. We avoid this complication by using numerical optimization and noting that in all four
cases the optimal solution falls within the parametric family

dX
[0,1]
t = µ0 δ0 + µT1

δT1
+ I(a ≤ t ≤ b)

V[0,1] − µ0 − µT1

b− a
dt and (4.6)

dX
[1,2]
t = νT1

δT1
+ νT2

δT2
+ I(c ≤ t ≤ d)

V[1,2] − νT1
− νT2

d− c
dt (4.7)

where µ0 ≥ 0 and µT1
≥ 0 satisfy µ0 + µT1

≤ V[0,1], νT1
and νT2

both have the same sign as V[1,2] and
satisfy |νT1

+ νT2
| ≤ |V[1,2]|, and the constants (a, b, c, d) satisfy 0 ≤ a < b ≤ T1 and T1 ≤ c < d ≤ T2.

Thus the problem becomes to minimize C(X [0,1]
t , X

[1,2]
t ) given by

1

2
µ2

0 +
1

2
µ2
T1

+ µ0µT1
e−κT1 +

{
µ0
e−κa − e−κb

κ
+ µT1

e−κ(T1−b) − e−κ(T1−a)

κ

}
·
V[0,1] − µ0 − µT1

b− a

+
κ(b− a)− 1 + e−κ(b−a)

κ2
·
(
V[0,1] − µ0 − µT1

b− a

)2

+
1

2
ν2
T1

+
1

2
ν2
T2

+ νT1
νT2

e−κ(T2−T1)

+

{
νT1

e−κ(c−T1) − e−κ(d−T1)

κ
+ νT2

e−κ(T2−d) − e−κ(T2−c)

κ

}
·
V[1,2] − νT1

− νT2

d− c

+
κ(d− c)− 1 + e−κ(d−c)

κ2
·
(
V[1,2] − νT1

− νT2

d− c

)2

+

(
µ0 + µT1

eκT1 +
eκb − eκa

κ
·
V[0,1] − µ0 − µT1

b− a

)
·
(
νT1

e−κT1 + νT2
e−κT2 +

e−κc − e−κd

κ
·
V[1,2] − νT1

− νT2

d− c

)
over the above 8-dimensional space of decision variables. Some additional observations relating to the
deterministic TTSC problem with exponentially decaying impact are provided in Appendix B.

4.2. The TTHC problem with exponentially decaying impact

As usual we take V[0,1] > 0 so the first trade is a buy. Then following the steps of Section 3.2.1, for

G(t) = e−κ|t| and fixed X [0,1], the optimization problem (3.14) conditionally on V[1,2],a = v becomes

min
X [1,2]


1

2

∫ T1

0

∫ T1

0
e−κ|t−s| dX [0,1]

s dX
[0,1]
t +

1

2

∫ T2

T1

∫ T2

T1

e−κ|t−s| dX [1,2]
s dX

[1,2]
t

+

∫ T1

0
eκs dX [0,1]

s

∫ T2

T1

e−κt dX
[1,2]
t − v

∫ T1

0
e−κ(T1−s) dX [0,1]

s

 . (4.8)

Holding X [0,1] fixed in the above, the integrals over [0, T1] remain constant, so the above problem is
of the form

min
X [1,2]

(
constant +

1

2

∫ T2

T1

∫ T2

T1

e−κ|t−s| dX [1,2]
s dX

[1,2]
t +A

∫ T2

T1

e−κt dX
[1,2]
t

)
(4.9)

where A = A[X [0,1]] ≡
∫ T1

0 eκs dX
[0,1]
s > 0 and V[1,2] = V[1,2],p + v.

Let X [1,2] denote a minimizer of the above. By considering perturbations as in Section 3.1.1 we
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deduce that the function

F1,2(t) ≡
∫ T2

T1

e−κ|t−s| dX [1,2]
s +Ae−κt

is equal to a constant Λ1,2 on the support of X
[1,2]
t , and is either greater than or equal to Λ1,2, or less

than or equal to Λ1,2, depending on whether V[1,2] = V[1,2],p + v is positive or negative, respectively.

Now, taking the second derivative of F1,2 on the support of X [1,2] and arguing as in Section 3.1.2, we
obtain

0 = κ2F1,2(t)− 2κdX
[1,2]
t on supp(dX

[1,2]
t ) ∩ (T1, T2),

which on rearranging yields

dX
[1,2]
t =

κ

2
Λ1,2 on supp(dX

[1,2]
t ) ∩ (T1, T2).

Also, the support of X
[1,2]
t is an interval.

Now, for each value of V[1,2] = V[1,2],p + v, we could apply Propositions 3.5 or 3.6 (depending on the
sign of V[1,2]) to deduce the structure of each minimizer. Whichever of these applies, the minimizer
will be of the form

dX
[1,2]
t = νT1

δT1
+ νT2

δT2
+ I(c ≤ t ≤ d)

V[1,2] − νT1
− νT2

d− c
dt (4.10)

where the interval (c, d) denotes supp(X [1,2]) ∩ (T1, T2) and T1 ≤ c < d ≤ T2. Discarding the constant
term, the problem (4.9) then becomes to minimize

1

2
ν2
T1

+
1

2
ν2
T2

+ νT1
νT2

e−κ(T2−T1)

+

{
νT1

e−κ(c−T1) − e−κ(d−T1)

κ
+ νT2

e−κ(T2−d) − e−κ(T2−c)

κ

}
·
V[1,2] − νT1

− νT2

d− c

+
κ(d− c)− 1 + e−κ(d−c)

κ2
·
(
V[1,2] − νT1

− νT2

d− c

)2

+A

(
νT1

e−κT1 + νT2
e−κT2 +

e−κc − e−κd

κ
·
V[1,2] − νT1

− νT2

d− c

)
over the 4-dimensional space (νT1

, νT2
, c, d) such that both νT1

and νT2
have the same sign as V[1,2] and

|νT1
+ νT2

| ≤ |V[1,2]|. We denote the minimal value of the above expression by Q(A, V[1,2]).

From expression (4.8), the cost of (X [0,1], X [1,2]) where X [1,2] is a minimizer as above is given by

1

2

∫ T1

0

∫ T1

0
e−κ|t−s| dX [0,1]

s dX
[0,1]
t − v

∫ T1

0
e−κ(T1−s) dX [0,1]

s +Q

(∫ T1

0
eκs dX [0,1]

s , V[1,2]

)
.

Taking the expectation of this by integrating with respect to dV[1,2],a(v), the middle term vanishes
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because EV[1,2],a = 0 and we obtain

1

2

∫ T1

0

∫ T1

0
e−κ|t−s| dX [0,1]

s dX
[0,1]
t + E

[
Q

(∫ T1

0
eκs dX [0,1]

s , V[1,2]

)]
. (4.11)

So, we are now left with minimizing this expression over admissible X [0,1].
Again, a minimizer is easily seen to exist. Hence, by considering first perturbations as in Sec-

tion 3.1.1, and writing ∂1Q for the partial derivative of Q with respect to its first argument, we deduce
that the function

F0,1(t) ≡
∫ T1

0
e−κ|t−s| dX [0,1]

s + E
[
∂1Q

(∫ T1

0
eκs dX [0,1]

s , V[1,2]

)]
eκt

is equal to a constant Λ0,1 on the support of X
[0,1]
t , and it is greater than or equal to Λ0,1 everywhere

else. Taking the second derivatives of F0,1 on the support of X [0,1], and arguing as in Section 3.1.2, we
obtain

0 = κ2F0,1(t)− 2κdX
[0,1]
t on supp(dX

[0,1]
t ) ∩ (0, T1),

which rearranges to give

dX
[0,1]
t =

κ

2
Λ0,1 on supp(dX

[0,1]
t ) ∩ (0, T1).

The support of X
[0,1]
t is again an interval, so similar to equation (4.10), we have

dX
[0,1]
t = µ0 δ0 + µT1

δT1
+ I(a ≤ t ≤ b)

V[0,1] − µ0 − µT1

b− a
dt

where (a, b) denotes supp(X [0,1])∩ (0, T1) and 0 ≤ a < b ≤ T1. Substituting this into expression (4.11),
the problem becomes to minimize

1

2
µ2

0 +
1

2
µ2
T1

+ µ0µT1
e−κT1 +

{
µ0
e−κa − e−κb

κ
+ µT1

e−κ(T1−b) − e−κ(T1−a)

κ

}
·
V[0,1] − µ0 − µT1

b− a
(4.12)

+
κ(b− a)− 1 + e−κ(b−a)

κ2
·
(
V[0,1] − µ0 − µT1

b− a

)2

+ E
[
Q

(
µ0 + µT1

eκT1 +
eκb − eκa

κ
·
V[0,1] − µ0 − µT1

b− a
, V[1,2]

)]
over the 4-dimensional space (µ0, µT1

, a, b) where µ0 ≥ 0, µT1
≥ 0 and µ0 + µT1

≤ V[0,1].

Remark 4.1. The roles of µ0 and µT1
are not symmetric in the above, e.g. in the last term µT1

is
multiplied by eκT1 > 1. This is consistent with intuition, as we would expect the strength of influence
between the second trade and µT1

to be stronger than the strength of influence between the second trade
and µ0.

4.2.1. Illustrative example: TTHC when the second trade has zero mean

Consider the special case where V[1,2],p = 0, for example when V[1,2],a takes the values ±v with proba-
bility 1/2 for some v > 0, so that the second trade has zero mean and is equally likely to be a buy or a
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sell. Thus P(V[1,2],a = +v) = P(V[1,2],a = −v) = 1/2. In this case problem (4.12) becomes to minimize

1

2
µ2

0 +
1

2
µ2
T1

+ µ0µT1
e−κT1 +

{
µ0
e−κa − e−κb

κ
+ µT1

e−κ(T1−b) − e−κ(T1−a)

κ

}
·
V[0,1] − µ0 − µT1

b− a
(4.13)

+
κ(b− a)− 1 + e−κ(b−a)

κ2
·
(
V[0,1] − µ0 − µT1

b− a

)2

+
1

2
Q

(
µ0 + µT1

eκT1 +
eκb − eκa

κ
·
V[0,1] − µ0 − µT1

b− a
,+v

)
+

1

2
Q

(
µ0 + µT1

eκT1 +
eκb − eκa

κ
·
V[0,1] − µ0 − µT1

b− a
,−v

)
over (µ0, µT1

, a, b) where both µ0 ≥ 0, µT1
≥ 0 and µ0 + µT1

≤ V[0,1]. It is important to note that both
the V[1,2],a = +v and V[1,2],a = −v branches of the expectation appear in the objective function. We
return to this example later in Section 5.3.

5. Numerical exploration of the exponential case

In this section we examine numerically derived solutions for the TTSC and TTHC problems described
in Sections 3.1 and 3.2 for G(t) = e−κ|t|. We focus on qualitative and quantitative differences between
the optimal TTSC and TTHC execution schedules, also evaluating performance of the optimal TTSC
solution under the TTHC objective function, and vice versa. Alongside these solutions we provide a
suboptimal benchmark that follows the STSH solution (see Remark 2.4) in both trading periods. We
refer to this suboptimal benchmark, which deals with the first and second trades independently by
solving each STSH problem in isolation, as the Myopic solution. All the examples below have κ = 1,
T0 = 0, T1 = 1, T2 = 2, and S0 = 0, with the remaining parameters taking the values shown in
Figures 2–6 and repeated in Tables 1 and 2. All calculations were performed using the SLSQP method
of the optimize numerical minimization routine in the SciPy library.

5.1. The deterministic case for two buy trades

We consider three examples where the first and second trades are buys of equal, decreasing and
increasing size by taking (V[0,1], V[1,2]) = (1, 1), (3, 1), and (1, 3) respectively. We accommodate these
cases, where V[1,2] is assumed known with certainty, in the TTHC problem by taking V[1,2],a = 0 with
probability 1 so that V[1,2] is benchmarked wholly against price S0 = 0. Situations where adjacent
trades are of different sizes arise frequently, for example as a result of emerging alpha opportunities,
changes in risk appetite or constraints on maximum holdings becoming binding.

The optimal Myopic, TTSC and TTHC execution schedules are shown in Figure 2 for the three
examples above, and the optimal parameter and objective function values are given in Table 1. The
Myopic solutions always have full support and include deltas at both ends of the [0, T1] and [T1, T2]
intervals, consistent with applying the STSH solution to both V[0,1] and V[1,2]. Compared to the Myopic
solutions, the first major departure we observe is that in some of the TTSC and TTHC panels the
periods of continuous trading do not extend to the boundaries of the [0, T1] and [T1, T2] intervals,
corresponding to optimal schedules that contain trading gaps. The second departure we observe is
that the optimal TTSC and TTHC schedules do not necessarily have deltas at both ends of the [0, T1]
and [T1, T2] intervals. For example, the optimal TTHC schedule for (V[0,1], V[1,2]) = (1, 1) has no delta
at T1, and coincides with the STSH solution for a single trade of size (V[0,1] + V[1,2]) executed over
period [0, T2].

Also shown are values of the TTSC and TTHC objective functions for the depicted execution
schedules. Clearly the optimal TTSC schedule evaluated under the TTHC objective function always
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yields a worse value than the optimal TTHC schedule under the TTHC objective, but the level of
underperformance can be considerable, e.g. above 25% for (V[0,1], V[1,2]) = (1, 3). The optimal TTSC
schedule sometimes even underperforms the Myopic solution under the TTHC objective, e.g. in the
(V[0,1], V[1,2]) = (1, 1) and (1, 3) cases. Conversely, the optimal TTHC schedule can considerably under-
perform both the TTSC and Myopic solutions under the TTSC objective, e.g. by more than 30% and
15%, respectively, for (V[0,1], V[1,2]) = (1, 3). Differences in the value of the TTSC and TTHC objective
functions evaluated on the same solution can be even higher, e.g. the TTHC cost is more than three
times the TTSC cost for the optimal TTSC solution for (V[0,1], V[1,2]) = (1, 1).

All of the TTSC schedules depicted in Figure 2 backload execution in the first interval. This is
because backloading the first trade drives-up the benchmark price of the second trade, and this quantity
appears in the TTSC objective function with a negative sign. So backloading the first trade benefits
the TTSC problem. In contrast, all the TTHC solutions in Figure 2 are frontloaded in the first
period. This frontloading reduces the upward impact on both the benchmark price for the second
period and the subsequent prices, which in turn benefits the buy trade undertertaken in the second
interval. Thus frontloading the first trade benefits the TTHC problem. These effects are particularly
clear in the (V[0,1], V[1,2]) = (1, 3) case, where trading in the first interval is almost maximally back-
and frontloaded in the optimal TTSC and TTHC schedules, respectively. The second buy trade is
backloaded in all the TTSC and TTHC schedules shown in Figure 2. This backloading allows beneficial
capture of the downwards price drift that arises from the decaying impact of the first trade. Although
backloading arises in the second period for both the TTSC and TTHC cases, the effect is typically
milder in the TTHC schedules. This is because in the TTHC schedule there is less beneficial reversion
to capture because the impact experienced by the benchmark price for the second period is smaller.
The effect is particularly clear in the (V[0,1], V[1,2]) = (3, 1) case, where the TTSC and TTHC solutions
exhibit pronounced backloading in the second period. This case also demonstrates that the TTSC
solution can outperform the Myopic solution under the TTHC objective, whilst simultaneously the
TTHC solution can outperform the Myopic solution under the TTSC objective. This situation arises
because the opportunity provided in the second period by the impact of the first trade can prove
advantageous overall even when execution in the first period is adversely loaded.

In Figure 3 solutions are provided for these same problems, but now under the additional Full
Domain (FD) constraint {(a, b) = (0, 1), (c, d) = (1, 2)}. This ensures that any periods of nonzero
rate continuous trading within [0, T1] or [T1, T2] extend to the boundaries of these intervals. The
corresponding optimal parameter and objective function values are given in Table 1. All the Myopic
solutions, and the subset of TTSC and TTHC schedules that already satisfy the FD constraint, do
not change between Figures 2 and 3. However, several of the TTSC and TTHC schedules shown
in Figure 2 contain both trading gaps and nonzero rate continuous execution in the same interval,
rendering them inadmissible. Applying the FD constraint to these either results in a period of nonzero
rate continuous execution over the corresponding interval, e.g. the second period of the TTSC FD
schedule for (V[0,1], V[1,2]) = (1, 1), or results in the continuous rate execution for that period vanishing
altogether, e.g. the second period of the TTHC FD schedule for (V[0,1], V[1,2]) = (3, 1). Enforcing the FD
constraint on an inadmissible solution always results in a less favourable value of the relevant objective
function, although in practice, this change may be small, e.g. the TTHC objective function changes
from 4.212 to 4.213 between the optimal TTHC and TTHC FD schedules when (V[0,1], V[1,2]) = (3, 1).
Finally, recalling Remark 3.7, we note that both the TTHC and TTHC FD execution schedules in
Figures 2 and 3 exhibit the expected time reversibility.

5.2. Randomness and mixed trading

In this section we retain V[0,1] = 1 for the first trade, corresponding to a buy, and examine how optimal
solutions behave when the second trade is not fully known at time t = 0 but contains some element
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Figure 2. Optimal execution schedules for two buy orders that are known deterministically at time t = 0. The top row depicts the
case (V[0,1], V[1,2]) = (1, 1), whereas the middle and bottom rows show the cases (V[0,1], V[1,2]) = (3, 1) and (1, 3) respectively. The

benchmark Myopic solution (discussed early in Section 5) is shown in the left column. The middle column depicts optimal execution

schedules under the TTSC objective discussed in Section 3.1. The right column shows solutions under the TTHC objective when
V[1,2],a = 0 with probability 1, see Remark 3.7. The optimal parameter and objective function values are also shown in Table 1.
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Figure 3. Optimal execution schedules when the Full Domain (FD) constraint introduced at the end of Section 5.1 is applied
to the same trade examples as Figure 2, so that the periods of continuous trading throughout the first and second time intervals
either vanish or occur at constant nonzero rate. Close comparison with Figure 2 shows that imposing the FD constraint has no

impact for the bottom-middle and top-right panels, together with all the Myopic solutions in the left-hand column. The optimal

parameter and objective function values are also shown in Table 1.
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of uncertainty. Our coverage also examines the case V[1,2] < 0 where the second trade is a sell. We
reflect the uncertainty in V[1,2] ≡ V[1,2],p+V[1,2],a by considering several fixed values for V[1,2],p = EV[1,2]

whilst assuming the random variable V[1,2],a takes values ±v each with probability 0.5. Note that the
deterministic solutions discussed in Section 5.1 coincide with the v = 0 special case of this setup.

We also provide solutions where the constraint C∗ ≡ {dX [0,1]
t ≥ 0, V[1,2]dX

[1,2]
t ≥ 0} is relaxed, thus

admitting optimal trading schedules of alternating sign (i.e. both buys and sells) within each period.
Solutions for the (V[0,1], V[1,2],p, V[1,2],a) = (1, 1,±0.5) cases are provided in Figure 4, correspond-

ing to two buys of unequal but similar magnitude. The corresponding optimal parameter and ob-
jective function values are given in Table 2. Also investigated, but not reported herein, were the
(V[0,1], V[1,2],p, V[1,2],a) = (1, 1,±2) cases, corresponding to the second trade being a buy three times
the size of the first, or a sell of the same magnitude. The resulting optimal TTSC and TTHC costs
were higher for V[1,2],a = ±2 than for V[1,2],a = ±0.5 even though EV[1,2] remains the same. From
Figures 4 and 5 and Table 1 we observe that optimal values of the TTHC cost can be 2-3 times larger
than the optimal TTSC cost. The optimal TTSC and TTHC costs were of closer relative size when
V[1,2],a = ±2, with the TTHC cost remaining the larger of the two. This behaviour is as expected,

since increasing V[1,2],a reduces the correlation between the first and second trades18 and also reduces
the proportion of the second trade that is predictable, resulting in a greater proportion of V[1,2] being
benchmarked against S∗T1

. Additional numerical investigations demonstrate that optimal execution
schedules and their corresponding objective values remain close to those of the deterministic case
discussed in Section 5.1 when V[1,2],a is small compared to V[0,1] and V[1,2].

Most of the observations made in Section 5.1 about deterministic solutions also hold here, e.g. the
backloading of optimal TTSC schedules relative to TTHC solutions. We therefore focus discussion
on new phenomena, and start with the optimal C∗-unrestricted TTHC schedules depicted in the
right-hand column of Figure 4. Within the first interval, that is over [0, T1], these agree with the deter-
ministic (V[0,1], V[1,2],p, V[1,2],a) = (1, 1, 0) solution depicted in the top-right panel of Figure 2, and also
with the (not shown) optimal C∗-unrestricted TTHC solutions for (V[0,1], V[1,2],p, V[1,2],a) = (1, 1,±2)
again over period [0, T1]. This agreement with the deterministic solution over [0, T1] may not hold when
the C∗-constraint is enforced, e.g. the third column of Figure 4 has b = 0.97 leading to a trading gap in
the first period that corresponds to slight frontloading compared to the optimal deterministic and C∗-
unrestricted TTHC schedules.19 This trading gap arises because both the V[1,2],a = +v and V[1,2],a = −v
branches of the expectation appear in the TTHC objective given by expression (4.12), and the C∗-
constraint makes inadmissible the alternating trading (both selling and buying) shown in the second
period of the bottom-right panel in Figure 4. Holding V[1,2],p = 1 fixed and V[1,2],a = ±v each with prob-
ability 0.5, then compared to the deterministic TTHC solution, on [0, T1] the C∗-constrained TTHC
schedule displays zero backloading when v = 0, backloading that increases and ultimately peaks as
v increases, and then diminishing backloading as v further increases until eventually the deterministic
and C∗-constrained TTHC schedules again coincide on [0, T1].20

Focusing on the bottom right-hand panel of Figure 4, the C∗-unrestricted solution places a block
sell at the start of the second period in order to offset the price impact created by buying during the
first period. Although this is mathematically optimal, such an execution schedule may be inconsistent
with acceptable market practice and governing legislation, as it could be interpreted as issuing a sell
with the specific intention of impacting market prices favourably for a subsequent buy.21 Comparing
the bottom panels in the third and fourth columns of Figure 4, although the optimal trading schedules

18For example, suppose V[0,1] = ±1 with probability 0.5, V[1,2],p = sgn(V[0,1]) and V[1,2],a = ±v also with probability 0.5. Then

the correlation between the first and second trades is (1 + v2)−1/2.
19Alternative choices of (V[0,1], V[1,2],p, V[1,2],a) can make this trading gap much larger, e.g. (0.8, 1.0, 0.5) yields b = 0.79.
20Our results for v = 2 produced deterministic and C∗-constrained TTHC schedules that coincided on [0, T1].
21See https://www.handbook.fca.org.uk/handbook/MAR/1/6.html for regulations on manipulating transactions and wash

trades.
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Figure 2, top First trade (buy of size 1.0) Second trade (buy of size 1.0) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 0.333 0.333 [1.000, 2.000] 0.333 0.444 1.111

Optimal TTSC 0.142 0.715 [0.000, 1.000] 0.142 0.000 0.605 [1.350, 2.000] 0.605 0.319 1.177

Optimal TTHC 0.500 0.000 [0.000, 1.000] 0.500 0.000 0.500 [1.000, 2.000] 0.500 0.500 1.000

Figure 2, middle First trade (buy of size 3.0) Second trade (buy of size 1.0) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 1.000 1.000 [0.000, 1.000] 1.000 0.333 0.333 [1.000, 2.000] 0.333 2.667 4.667

Optimal TTSC 0.790 1.420 [0.000, 1.000] 0.790 0.000 0.904 [1.890, 2.000] 0.904 2.169 4.379
Optimal TTHC 1.125 0.751 [0.000, 1.000] 1.125 0.000 0.838 [1.810, 2.000] 0.838 2.336 4.212

Figure 2, bottom First trade (buy of size 1.0) Second trade (buy of size 3.0) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 1.000 1.000 [1.000, 2.000] 1.000 2.667 4.667
Optimal TTSC 0.000 1.000 NA 0.000 0.333 1.333 [1.000, 2.000] 1.333 2.333 5.333

Optimal TTHC 0.838 0.000 [0.000, 0.190] 0.838 0.751 1.125 [1.000, 2.000] 1.125 3.089 4.212

Figure 3, top First trade (buy of size 1.0) Second trade (buy of size 1.0) TTSC TTHC
µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 0.333 0.333 [1.000, 2.000] 0.333 0.444 1.111

Optimal FD TTSC 0.149 0.701 [0.000, 1.000] 0.149 0.000 0.697 [1.000, 2.000] 0.303 0.325 1.175

Optimal FD TTHC 0.500 0.000 [0.000, 1.000] 0.500 0.000 0.500 [1.000, 2.000] 0.500 0.500 1.000

Figure 3, middle First trade (buy of size 3.0) Second trade (buy of size 1.0) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 1.000 1.000 [0.000, 1.000] 1.000 0.333 0.333 [1.000, 2.000] 0.333 2.667 4.667

Optimal FD TTSC 0.789 1.421 [0.000, 1.000] 0.789 0.000 1.000 NA 0.000 2.169 4.380
Optimal FD TTHC 1.123 0.755 [0.000, 1.000] 1.123 0.000 1.000 NA 0.000 2.336 4.213

Figure 3, bottom First trade (buy of size 1.0) Second trade (buy of size 3.0) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 1.000 1.000 [1.000, 2.000] 1.000 2.667 4.667

Optimal FD TTSC 0.000 1.000 NA 0.000 0.333 1.333 [1.000, 2.000] 1.333 2.333 5.333
Optimal FD TTHC 1.000 0.000 NA 0.000 0.755 1.123 [1.000, 2.000] 1.123 3.110 4.213

Table 1. Optimal parameter and objective function values for the solutions shown in Figures 2 and 3.

are significantly different, the corresponding TTHC objective values are very similar, suggesting that
any advantage from relaxing the C∗-constraint is minimal.

Optimal execution schedules for these same examples under the previously used Full Domain (FD)
constraint {(a, b) = (0, 1), (c, d) = (1, 2)} are depicted in Figure 5, with corresponding optimal pa-
rameter and objective function values shown in Table 2. Compared with the results in Figure 4, only
solutions depicted in the second and third columns are impacted by the FD constraint. Trading gaps
like those arising in the third column of Figure 4, where b = 0.97, are not available under the FD
constraint, but the TTHC FD solution nonetheless achieves frontloading in the first period by making
the block trade at time t = 0 larger than the constant continuous trading rate over [0, 1]. The changes
in optimal objective function values between corresponding panels of Figures 4 and 5 are small. This
is potentially important in practice, as it suggests restricting attention to FD solutions incurs little
underperformance even though the computational burden of the resulting optimization is significantly
reduced.

5.3. Interaction between the two trading intervals

We now illustrate some key aspects of how trading within the first and second periods can interact
even when the direction of the second trade is unpredictable. Recalling the setup of Example 4.2.1, we
consider the case (V[0,1], V[1,2],p, V[1,2],a) = (1, 0,±1) so that the second trade is always of unit size but is
equiprobably a buy or sell, with this information becoming known only at time T1 = 1. Even under this
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Figure 4. Optimal execution schedules when the first order is a buy with V[0,1] = 1 and the second order V[1,2] has predicted

part V[1,2],p that is known at time t = 0 and stochastic adjust component V[1,2],a that becomes known only at time T1. The two
examples considered have V[0,1] = V[1,2],p = 1, with V[1,2],a = 0.5 (top row) and V[1,2],a = −0.5 (bottom row). The benchmark

Myopic solution (discussed early in Section 5) is shown in the left column. The second column depicts optimal execution schedules

under the Stochastic TTSC objective discussed in Section 3.2.2, while the third column shows solutions for the Stochastic TTHC
objective described in Section 4.2. The right column provides optimal schedules for the Stochastic TTHC objective when the C∗-

constraint introduced in Section 5.2 is relaxed to accommodate alternating solutions within each period. Note that in the third
column, parameter b has optimal value 0.97 so that the period of constant rate trading finishes before time T1 = 1. The optimal

parameter and objective function values are also shown in Table 2.
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Figure 5. Optimal execution schedules when the Full Domain (FD) constraint introduced at the end of Section 5.1 is applied to
the same trade examples as Figure 4, so that the periods of continuous trading throughout the first and second time intervals either

vanish or occur at constant nonzero rate. Close comparison with Figure 4 shows that imposing the FD constraint only impacts the
solutions in the second and third columns. The optimal parameter and objective function values are also shown in Table 2.
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Figure 4, top 1st trade (buy of size 1.0) 2nd trade (V[1,2],p, V[1,2],a) = (1.0, 0.5) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 0.500 0.500 [1.000, 2.000] 0.500 0.528 1.194

Optimal TTSC 0.152 0.697 [0.000, 1.000] 0.152 0.000 0.782 [1.080, 2.000] 0.782 0.414 1.262
Optimal TTHC 0.507 0.000 [0.000, 0.970] 0.507 0.171 0.664 [1.000, 2.000] 0.664 0.592 1.085

Unrestricted TTHC 0.500 0.000 [0.000, 1.000] 0.500 0.167 0.667 [1.000, 2.000] 0.667 0.583 1.083

Figure 4, bottom 1st trade (buy of size 1.0) 2nd trade (V[1,2],p, V[1,2],a) = (1.0,−0.5) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 0.167 0.167 [1.000, 2.000] 0.167 0.528 1.194

Optimal TTSC 0.152 0.697 [0.000, 1.000] 0.152 0.000 0.400 [1.750, 2.000] 0.400 0.414 1.262

Optimal TTHC 0.507 0.000 [0.000, 0.970] 0.507 0.000 0.319 [1.430, 2.000] 0.319 0.592 1.085
Unrestricted TTHC 0.500 0.000 [0.000, 1.000] 0.500 −0.167 0.333 [1.000, 2.000] 0.333 0.583 1.083

Figure 5, top 1st trade (buy of size 1.0) 2nd trade (V[1,2],p, V[1,2],a) = (1.0, 0.5) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 0.500 0.500 [1.000, 2.000] 0.500 0.528 1.194
Optimal FD TTSC 0.153 0.693 [0.000, 1.000] 0.153 0.000 0.804 [1.000, 2.000] 0.696 0.415 1.261

Optimal FD TTHC 0.513 0.000 [0.000, 1.000] 0.487 0.169 0.665 [1.000, 2.000] 0.666 0.590 1.086
Unrestricted FD TTHC 0.500 0.000 [0.000, 1.000] 0.500 0.167 0.667 [1.000, 2.000] 0.667 0.583 1.083

Figure 5, bottom 1st trade (buy of size 1.0) 2nd trade (V[1,2],p, V[1,2],a) = (1.0,−0.5) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 0.167 0.167 [1.000, 2.000] 0.167 0.528 1.194

Optimal FD TTSC 0.153 0.693 [0.000, 1.000] 0.153 0.000 0.500 NA 0.000 0.415 1.261
Optimal FD TTHC 0.513 0.000 [0.000, 1.000] 0.487 0.000 0.388 [1.000, 2.000] 0.112 0.590 1.086

Unrestricted FD TTHC 0.500 0.000 [0.000, 1.000] 0.500 −0.167 0.333 [1.000, 2.000] 0.333 0.583 1.083

Figure 6, top 1st trade (buy of size 1.0) 2nd trade (V[1,2],p, V[1,2],a) = (0.0, 1.0) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 0.333 0.333 [1.000, 2.000] 0.333 0.667 0.667

Optimal TTSC 0.255 0.491 [0.000, 1.000] 0.255 0.000 0.575 [1.260, 2.000] 0.575 0.584 0.584
Optimal TTHC 0.255 0.491 [0.000, 1.000] 0.255 0.000 0.575 [1.260, 2.000] 0.575 0.584 0.584

Unrestricted TTHC 0.250 0.500 [0.000, 1.000] 0.250 −0.167 0.583 [1.000, 2.000] 0.583 0.583 0.583

Figure 6, bottom 1st trade (buy of size 1.0) 2nd trade (V[1,2],p, V[1,2],a) = (0.0,−1.0) TTSC TTHC

µ0 µ1 [a, b] r1 ν1 ν2 [c, d] r2 Obj. Obj.

Myopic 0.333 0.333 [0.000, 1.000] 0.333 −0.333 −0.333 [1.000, 2.000] −0.333 0.667 0.667
Optimal TTSC 0.255 0.491 [0.000, 1.000] 0.255 −0.830 −0.085 [1.000, 2.000] −0.085 0.584 0.584

Optimal TTHC 0.255 0.491 [0.000, 1.000] 0.255 −0.830 −0.085 [1.000, 2.000] −0.085 0.584 0.584
Unrestricted TTHC 0.250 0.500 [0.000, 1.000] 0.250 −0.833 −0.083 [1.000, 2.000] −0.083 0.583 0.583

Table 2. Optimal parameter and objective function values for the solutions shown in Figures 4, 5 and 6.
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setup, where the predictable part of the second trade is zero and consecutive trades are uncorrelated,
it turns out that price impact from trading in the first period is exploitable. Figure 6 depicts the
optimal Myopic, Stochastic TTSC, Stochastic TTHC and C∗-unrestricted TTHC solutions, and the
corresponding optimal parameter and objective function values are shown in Table 2. As expected, the
graphs in the second and third columns are identical since the corresponding optimization problems
coincide when V[1,2],p = 0. The Myopic objective value, which is exactly twice that of the STSH solution
for a unit buy, is outperformed by the TTSC and TTHC (identical) solutions which provide a cost
improvement of over 10%. This improvement is achieved by backloading execution in the [0, T1] period
compared to the Myopic solution, and either backloading or frontloading execution in the second period
depending on whether the second trade is a buy or sell, respectively. To understand how this effect
arises, recall that since the first trade is a buy it will inflate the price used for benchmarking V[1,2],a.
In the absence of further trading, prices would decline over [T1, T2] as the impact of the first trade
decays. When the second trade is a buy, this decaying price is advantageous so backloading arises.
In contrast, if V[1,2] < 0, corresponding to a sell, this decaying price is detrimental so frontloading
arises. For an equiprobable mix (average) of the buy-buy and buy-sell cases, the beneficial effect for
buy-buy more than offsets the detrimental impact for buy-sell, so backloading execution of the first
trade provides advantage overall and arises in both cases.

Finally, solutions showing the impact of relaxing the C∗-constraint are depicted in the last column
of Figure 6. The most obvious difference is the block trade sell at the start of [T1, T2] when the second
trade is a buy, corresponding to an alternating solution. However there are other subtle changes,
e.g. for both buy and sell cases of the second trade, the (identical) second and third columns have
TTSC and TTHC solutions with (µ0, µ1, r1) ≈ (0.2546, 0.4907, 0.2546) whereas for the optimal C∗-
unrestricted TTHC solution these parameters are (0.25, 0.50, 0.25). Recalling that the expectation in
the TTHC objective function given in expression (4.13) includes both buy and sell branches for the
second trade, these parameter differences arise precisely because the alternating solution depicted in
the top-right panel is inadmissible. The resulting TTHC solution therefore slightly frontloads in the
first period compared to the C∗-unrestricted solution, with both solutions exhibiting clear backloading
over [0, T1] compared to the Myopic solution. Indeed the proximity of the resulting optimal TTHC
and C∗-unrestricted TTHC objective values suggests there is little underperformance for restricting
attention to non-alternating solutions.

6. Discussion, extensions and conclusion

We have extended the standard single trade single horizon (STSH) optimal execution problem to
the case of two adjacent metaorders, and explored properties of the class of optimal solutions under
several ways of benchmarking implementation shortfall. To the best of our knowledge, this study is the
first to consider optimal execution within such a framework, and is intended to provide steps towards
the general case of multiple trades and multiple execution horizons. We find that even for the case
of two metaorders, the currently widely followed practice of adopting the STSH solution myopically
over each metaorder can significantly underperform compared to optimizing over a shortfall metric
that accounts for both periods. Our results demonstrate that problems can still arise even when both
periods are accounted for, as there is flexibility in how the shortfall metric is constructed. For example,
separate cost benchmarking may result in significant understatement of transaction costs and adverse
backloading when prior knowledge of future order flow is available. Our remedy for this is to optimize
over the hybrid cost function used within our TTHC analysis. This leads to optimal execution schedules
that typically frontload their trajectories compared to optimal TTSC solutions.

For the practitioner, our results also show that good solutions may prove adequate even if they are
not globally optimal, e.g. those obtained under the full domain (FD) constraint, and that execution
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schedules under the separate cost criterion typically exhibit greater backloading than those under
the hybrid cost criterion. Investors whose real objective function is the hybrid criterion, but who for
simplicity use the separate cost criterion for scheduling or monitoring their execution, risk significantly
understating the true cost of their trading. This is problematic even if explicit order optimization is not
used, as heuristic experimentation (e.g. involving backloading) that happens to benefit the separate
costs criterion may well lead to apparent improvements in execution quality whilst actually making
things worse. It is unfortunate that alternative benchmarking metrics are not more widely used within
the industry, as the separate costs approach can lead to detrimental outcomes.

A further extension of the two trade case (not examined here) is when inventory from the second
period may be migrated for execution into the first period. Consider the case where V[0,1] is known
but V[1,2] is uncertain with V[1,2] = V[1,2],p+V[1,2],a as before. An heuristic solution may prove adequate
as a starting point, such as initialising with the STSH solution for quantity V ∗ = V[0,1] + V[1,2],p over
period [0, T2], but then at time T1 updating this so that the total of V[1,2],a and the remaining part
of V ∗ is completed over period [T1, T2]. Such a scheme requires discretion to be given to execution
systems in anticipation of future unconfirmed orders, however such flexibility is not standard practice
within the industry. We do not discuss this further, but note it is another optimal execution problem
that falls outside the scope of standard one-period solutions.

Finally, a comment to aid intuition. When V[1,2],p = 0, we observed that both the TTHC and TTSC
solutions are backloaded compared to the Myopic solution. One interpretation is that the impact
created by trading in the first period leads to some subsequent predictability in prices, and knowledge
of this provides a source of alpha which can be exploited to advantage in the second period. Injecting
knowledge of such an alpha (the expected impact) into an execution optimization cannot make things
worse, even if it is correlated with the direction of subsequent trading.
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Appendix A. Proofs of optimal TTSC execution schedules

A.1. Proof of Proposition 3.5

In this case dX
[1,2]
t ≥ 0. Similar to equation (2.9), we note that

D2F1,2 = H1,2 dt− γ dX
[1,2]
t on (T1, T2). (A1)

Since dX
[0,1]
t ≥ 0, dX

[1,2]
t ≥ 0 and G′′ > 0, it follows that

D2F1,2 = H1,2 dt > 0 on (T1, T2) \ supp(dX
[1,2]
t ).

Hence, since F1,2 attains its minimum on supp(dX
[1,2]
t ), it follows that F1,2 is convex on (T1, T2), so

as in Section 2.1.2 we obtain that D2F1,2 ∈ L∞((0, T )). Now, since D2F1,2 = 0 dt-almost everywhere

on supp(dX
[1,2]
t ), it follows from equation (A1) that

dX
[1,2]
t =

1

γ
H1,2 dt on supp(dX

[1,2]
t ) ∩ (T1, T2). (A2)
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Figure 6. Optimal execution schedules when the first order is a buy with V[0,1] = 1 and the second order has predicted

part V[1,2],p = 0 so that V[1,2] = V[1,2],a is wholly stochastic and becomes known only at time T1 = 1. The two examples considered
have V[1,2],a = 1 (top row) and V[1,2],a = −1 (bottom row), corresponding to the v = 1 case of Example 4.2.1. The benchmark

Myopic solution (discussed early in Section 5) is shown in the left column. The second column depicts optimal execution schedules

under the Stochastic TTSC objective discussed in Section 3.2.2, while the third column shows solutions for the Stochastic TTHC
objective described in Section 4.2. As expected, these two columns are identical since the corresponding optimization problems

coincide when V[1,2],p = 0. The right column provides optimal schedules for the Stochastic TTHC objective when the C∗-constraint

introduced in Section 5.2 is relaxed to accommodate alternating solutions within each period. The optimal parameter and objective
function values are also shown in Table 2.

Furthermore, since F1,2 is convex and D2F1,2 = H1,2 dt > 0 outside supp(dX
[1,2]
t ), we have that

{F1,2 = Λ1,2} ∩ (T1, T2) = supp(dX
[1,2]
t ) ∩ (T1, T2) is an interval.

We now deduce that T2 ∈ supp(dX
[1,2]
t ). For if not, then supp(dX

[1,2]
t ) = [a, b] for some b < T2, and

since F ′1,2 = 0 on supp(dX
[1,2]
t ) ∩ (T1, T2) we obtain

0 = F ′1,2(b) =

∫ b

0
G′(b− s) d(X [0,1]

s +X [1,2]
s ). (A3)

Now, since G′ < 0 on (0,∞) and d(X
[0,1]
s + X

[1,2]
s ) ≥ 0, the above integral must be strictly negative,

which is a contradiction. We note also that dX
[1,2]
t cannot be a L∞ function all the way up to T2,

because if it were then applying equation (A3) at T2 would lead to a contradiction. This establishes
the second part of Proposition 3.5.
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For the [0, T1] part we need a different analysis. We start by noting

D2F0,1 = H0,1 dt− γ dX
[0,1]
t on (0, T1), (A4)

however now H0,1 does not have a definite sign, and we cannot say that F0,1 is convex. However, we

can say that D2F0,1 = H0,1dt is bounded outside the support of dX
[0,1]
t , and on the support it is

bounded from above. Hence, since F0,1 has a minimum on supp(dX
[0,1]
t ), as in Section 2.1.2 we obtain

that D2F0,1 ∈ L∞((0, T )). Thus, analogous to our previous results, we obtain

dX
[0,1]
t =

1

γ
H0,1 dt on supp(dX

[0,1]
t ) ∩ (0, T1).

Note that F0,1 = Φ0,1 + Ψ0,1 (see equation (3.10)), and that Φ0,1 is convex, while

Ψ′0,1(t) =

∫ T2

T1

[G′(t− s)−G′(t− T1)] dX [1,2]
s = −

∫ T2

T1

∫ s

T1

G′′(t− τ) dτ dX [1,2]
s < 0 for t ∈ (0, T1).

We now deduce that

{F0,1 = Λ0,1} ∩ (0, T1) = supp(dX
[0,1]
t ) ∩ (0, T1) is an interval. (A5)

We start by writing (0, T1)\supp(dX
[0,1]
t ) = ∪i≥1(ai, bi), that is as a countable union of open intervals,

and assume that bi 6= T1. Then bi ∈ supp(dX
[0,1]
t ) which implies F0,1(bi) = Λ0,1. Now, by convexity,

it follows that Φ0,1 is decreasing on (ai, bi), and so F0,1 = Φ0,1 + Ψ0,1 is strictly decreasing on (ai, bi),

which implies that F0,1(ai) > Λ0,1, and hence that ai 6∈ supp(dX
[0,1]
t ). This is possible only if ai = 0.

This proves (0, T1) \ supp(dX
[0,1]
t ) can consist of at most two intervals, and that these intervals must

be of the form (0, b0) or (a0, T1). In particular, this implies the validity of claim (A5). Finally, if

supp(dX
[0,1]
t ) = [a, b] with b < T1, since F ′0,1 = 0 on supp(dX

[0,1]
t ) ∩ (0, T1) we have

0 = F ′0,1(b) =

∫ b

0
G′(b− s) dX [0,1]

s −
∫ T2

T1

∫ s

T1

G′′(b− τ) dτ dX [1,2]
s < 0, (A6)

which is a contradiction. We therefore conclude that dX
[0,1]
t cannot be a L∞ function up to T1. This

establishes the remaining first part of Proposition 3.5. �

A.2. Proof of Proposition 3.6

In this case dX
[1,2]
t ≤ 0 and it follows from equation (A1) that

|D2F1,2| = |H1,2| dt ≤ ‖H1,2‖∞ dt on (T1, T2) \ supp(dX
[1,2]
t )

and hence that D2F1,2 ≥ −‖H1,2‖∞ dt on (T1, T2). Thus, since F1,2 attains now a maximum on

supp(dX
[1,2]
t ), as in Section 2.1.2 we deduce thatD2F1,2 ∈ L∞((0, T )). Now, sinceD2F1,2 = 0 dt-almost
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everywhere on supp(dX
[1,2]
t ), it follows from equation (A1) that

dX
[1,2]
t =

1

γ
H1,2 dt on supp(dX

[1,2]
t ) ∩ (T1, T2).

Noting now that F1,2 = Φ1,2 + Ψ1,2 (see equation (3.10)) and that Φ1,2 is convex while

Ψ′1,2(t) =

∫ T1

0
G′(t− s) dX [0,1]

s < 0 for t ∈ (T1, T2),

then arguing as we did for equation (A7), it follows that

{F1,2 = Λ1,2} ∩ (T1, T2) = supp(dX
[0,1]
t ) ∩ (T1, T2) is an interval. (A7)

We now deduce that T1 ∈ supp(dX
[1,2]
t ). For if not, then supp(dX

[1,2]
t ) = [a, b] with a > T1, and since

F ′1,2 = 0 on supp(dX
[1,2]
t ) ∩ (T1, T2), we obtain

0 = F ′1,2(a) =

∫ T1

0
G′(a− s) dX [0,1]

s +

∫ T2

a
G′(a− s) dX [1,2]

s < 0 (A8)

which is a contradiction. Furthermore dX
[1,2]
t cannot be a L∞ function all the way up to T1, since if

it were then we could apply equation (A8) at T1 and obtain another contradiction. This establishes
the second part of Proposition 3.6.

For the first part, on [0, T1] we again have that D2F0,1 ∈ L∞((0, T )). Thus, analogous to before, we
obtain

dX
[0,1]
t =

1

γ
H0,1 dt on supp(dX

[0,1]
t ) ∩ (0, T1).

Recalling F0,1 = Φ0,1 + Ψ0,1 with Φ0,1 a convex function, and

Ψ′0,1(t) =

∫ T2

T1

[G′(t− s)−G′(t− T1)] dX [1,2]
s = −

∫ T2

T1

∫ s

T1

G′′(t− τ) dτ dX [1,2]
s > 0 for t ∈ (0, T1),

we deduce that

{F0,1 = Λ0,1} ∩ (0, T1) = supp(dX
[0,1]
t ) ∩ (0, T1) is an interval.

Finally, if supp(dX
[0,1]
t ) = [a, b] with a > 0, since F ′0,1 = 0 on supp(dX

[0,1]
t ) ∩ (0, T1) we obtain

0 = F ′0,1(a) =

∫ T1

a
G′(a− s) dX [0,1]

s −
∫ T2

T1

∫ s

T1

G′′(a− τ) dτ dX [1,2]
s > 0, (A9)

which is a contradiction. Furthermore, dX
[0,1]
t cannot be a L∞ function all the way up to T1. This

establishes the remaining first part of Proposition 3.6. �
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Appendix B. Additional observations on TTSC with exponential decay

Remark B.1. In the case when c < T2 we may derive a simple relation between the size of the last
trade νT2

and the rate of trading inside the second interval r2 ≡ Λ̂1,2/(2κ). Let ε > 0 be a small
constant so that T2 − ε > c. Then, since F ′1,2(T2 − ε) = 0 by optimality, we obtain

0 =

∫ T1

0
e−κ(T2−ε−s)dX [0,1]

s +

∫ T2−ε

T1

e−κ(T2−ε−s)dX [1,2]
s −

∫ T−
2

T2−ε
eκ(T2−ε−s)dX [1,2]

s − e−κενT2

= eκε
(∫ T1

0
e−κ(T2−s)dX [0,1]

s +

∫ T−
2

T1

e−κ(T2−s)dX [1,2]
s − νT2

−
∫ T−

2

T2−ε
[eκ(T2−2ε−s) + e−κ(T2−s)]dX [1,2]

s + [1− e−2κε]νT2

)
.

The first line in the last equation above vanishes as a consequence of the second equation in the
system (4.4), so by a Taylor expansion we deduce that

0 = −
∫ T−

2

T2−ε
[eκ(T2−2ε−s) + e−κ(T2−s)]dX [1,2]

s + [1− e−2κε]νT2
= −2ε r2 + 2κε νT2

+ o(ε)

whereby we obtain

r2 = κ νT2
. (B1)

A similar analysis may be performed for the first interval.

Remark B.2. Note that unless the full domain (FD) solution happens to be also a global minimizer,
then Remark B.1 cannot be applied. In other words, the relation

V[1,2] − νT1
− νT2

T2 − T1
= κ νT2

(see equation (B1)) holds whenever optimization without the FD constraint being imposed produces a
full domain solution, but otherwise may fail to hold, as our numerical simulations show.

B.1. Parametric subfamily solutions

It is also interesting to estimate the cost of solutions which impose particular constraints, for instance
full domain support in the first period and νT1

= 0 in the second. In this case the optimization problem

becomes to minimize EC[X [0,1]
t , X

[1,2]
t ] over the 4-dimensional space of decision variables (µ0, µT1

, νT2
, c)

where

dX
[0,1]
t = µ0 δ0 + µT1

δT1
+
V[0,1] − µ0 − µT1

T1
dt

and

dX
[1,2]
t = νT2

δT2
+ I(c ≤ t ≤ T2)

V[1,2] − νT2

T2 − c
dt.

40



The objective function is no longer a quadratic expression but is now given by

1

2
µ2

0 +
1

2
µ2
T1

+ µ0µT1
e−κT1 +

1− e−κT1

κ
· (µ0 + µT1

) ·
V[0,1] − µ0 − µT1

T1
+

κT1 − 1 + e−κT1

κ2
·
(
V[0,1] − µ0 − µT1

T1

)2

+
1

2
ν2
T2

+
1− e−κ(T2−c)

κ
· νT2

·
V[1,2] − νT2

T2 − c
+

κ(T2 − c)− 1 + e−κ(T2−c)

κ2
·
(
V[1,2] − νT2

T2 − c

)2

+{
νT2

(e−κT2 − e−κT1) +
V[1,2] − νT2

T2 − c
· e
−κc − e−κT2 − κe−κT1(T2 − c)

κ

}(
µ0 + µT1

eκT1+

e−κT1 − 1

κ
·
V[0,1] − µ0 − µT1

T1

)
.

Remark B.3. To apply Remark B.1 to the above problem we need to know that the minimizer of the
formula above is actually the global minimizer of the TTSC problem. Also, recall that Remark B.1
requires the assumption c < T2. When this additionally holds then we have

V[1,2] − νT2

T2 − c
= κ νT2

(see equation (B1)), but otherwise this relation may fail, as our numerical results demonstrate.
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