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Abstract
We examine the construction of variable importance measures for multivariate responses
using the theory of optimal transport. We start with the classical optimal transport for-
mulation. We show that the resulting sensitivity indices are well-defined under input
dependence, are equal to zero under statistical independence, and are maximal under
fully functional dependence. Also, they satisfy a continuity property for information re-
finements. We show that the new indices encompass Wagner’s variance-based sensitivity
measures. Moreover, they provide deeper insights into the effect of an input’s uncertainty,
quantifying its impact on the output mean, variance, and higher-order moments. We
then consider the entropic formulation of the optimal transport problem and show that
the resulting global sensitivity measures satisfy the same properties, with the exception
that, under statistical independence, they are minimal but not necessarily equal to zero.
We prove the consistency of a given-data estimation strategy and test the feasibility of
algorithmic implementations based on alternative optimal transport solvers. Application
to the assemble-to-order simulator reveals a significant difference in the key drivers of
uncertainty between the case in which the quantity of interest is profit (univariate) or
inventory (multivariate). The new importance measures contribute to meeting the in-
creasing demand for methods that make black-box models more transparent to analysts
and decision-makers.
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1. Introduction
Managerial decision-making is increasingly informed by forecasts produced by mathemat-
ical models. In many instances, these models calculate multiple quantities of interest:
Future CO2 emissions, temperature changes, and carbon prices are outputs of well-known
integrated assessment models (Hu et al. 2012, Nordhaus 2017); the number of infected,
hospitalized, or deceased individuals as well as policy-relevant economic quantities are
simultaneously calculated by epidemiological models (Berger et al. 2022, Du et al. 2022).

The complexity of the problems and the large amount of data, however, often force
analysts to implement sophisticated software architectures that make the resulting simu-
lator black-boxes, with little hope of obtaining insights from intuition. Analysts should
then transparently assess the stability of the simulator response and its sensitivity to the
uncertain inputs (Kleijnen 2010, Barton 2016, Saltelli et al. 2020), before communicat-
ing results to stakeholders. Feature importance, that is, the understanding of the factors
that drive a simulator behavior, becomes an essential insight for result explanation and
communication. While there is a well-established set of methods for analyzing univariate
responses, identifying key drivers for multivariate responses is an active area of research.
For instance, well-known methods such as the variance-based approach of Wagner (1995)
or the moment-independent approach of Baucells and Borgonovo (2013) are devised for
the single output context.

We propose a novel approach to the global sensitivity analysis of multivariate responses
grounded in the theory of optimal transport (OT) (Figalli and Glaudo 2021). We consider
two classes of global sensitivity measures, based on the classical and the entropic formula-
tion. We prove that indices based on the classical formulation possess key properties that
ease their interpretation: They are equal to zero if and only if the (multivariate) output
is independent of the input of interest and they are maximal if and only if the output is
a deterministic function of the inputs. We also derive a monotonicity result according to
which the value of the sensitivity index decreases if less refined information on the input
is received. A key role in obtaining these properties is played not only by the convexity of
the OT cost functional, but also, and far less obviously, by its strict-convexity on Dirac-δ
measures.

We then study global sensitivity indices based on the entropic OT formulation (Cuturi
2013). The interest is twofold. On the one hand, the entropic formulation is often used
as a substitute for the classical one because it allows for fast algorithmic implementations
and, under mild conditions, the solution of the entropic problem approximates the classical
solution well. On the other hand, due to its wide applicability, there is growing interest
in studying the entropic formulation per se, independently of its use for approximating
the classical problem (Genevay et al. 2018, Chen et al. 2021). However, the geometric
properties of the entropic OT formulation are less known. We contribute by proving that
the entropic cost functional is convex and, surprisingly, strictly convex on Dirac-δ masses.
Then, entropic OT-based sensitivity indices are monotonically increasing for information
refinements and maximal in the presence of a noiseless input-output dependence. They
also attain their minimum value under independence, although the minimum may not
necessarily be zero. They reach the same maximum value as sensitivity measures based
on the classical OT formulation. However, as the value of the entropic regularization
parameter increases, they tend to the maximum value for all inputs, thereby confounding
the relative input importance.
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We then focus on indices based on the 2-Wasserstein squared distance. We show that the
corresponding indices allow for a transparent interpretation of the sensitivity measures.
One can decompose them exactly into three terms. The first term and second terms
account, respectively, for differences in the means and variance-covariance matrices of the
model output. The third term is residual and is present when the effect of fixing an
input impacts more than the first two moments of the output. In addition, we prove that
the first term is the sum of the univariate variance-based sensitivity measures proposed
by Wagner (1995) for the dependent as well as independent input cases and that, under
input independence, it coincides with the multivariate indices proposed by Lamboni et al.
(2011) and Gamboa et al. (2014).

To enable computation for realistic applications, we study an estimation design based
on Pearson’s given-data intuition (Pearson 1905), which makes the calculation cost linear
in the sample size. We prove that the estimators are asymptotically unbiased and the
estimates converge from below. The estimation design involves the solution of a series
of data-driven OT problems. Here our work intersects with the fast-growing literature
on efficient algorithmic solutions to OT problems, nowadays a topical research subject in
machine learning (Altschuler et al. 2019, Janati et al. 2020). We implement and com-
pare estimators with solvers that rely on alternative principles, namely, on the network
simplex approach (Kuhn 1955), the partial orderings approach of Puccetti (2017), the
Sinkhorn-based approach of Cuturi (2013), as well as algebraic estimators based on the
Wasserstein-Bures approximation (Givens and Shortt 1984). Our goal is not to single out
“a” (or the) best algorithm, but to assess whether numerical quantification is feasible in
an amount of time that makes the method suitable for realistic applications. We evaluate
the insights delivered by the new indices and the performance of the proposed estimators
through several experiments. We start with the well-known Ishigami model and continue
with a new univariate case in which dimensionality is increased up to about 10, 000 inputs.
We then consider a multivariate normal test case, for which closed-form expressions of the
OT-based sensitivity measures are available. Findings indicate that all the employed algo-
rithms yield consistent estimates at reasonable sample sizes and with fast execution times.
Also, their behavior is in line with the theoretical premises, with convergence from below.
We then apply the new sensitivity measures to conduct a global sensitivity analysis of the
well-known assemble-to-order (ATO) simulator of Hong and Nelson (2006). We consider
both the system profit (univariate) and the final inventory (multivariate). The numeri-
cal investigation shows that the new indices yield additional insights, complementary to
the ones produced by variance-based indices both in the univariate and the multivariate
output cases.

2. Background
This section concisely reviews material on the theory of optimal transport (Section 2.1)
and probabilistic sensitivity analysis (Section 2.2).

2.1. Optimal Transport and Wasserstein Distances
Optimal transport (OT, henceforth) is a classical research subject in operations research
(Hitchcock 1940, Hillier and Lieberman 2012), and is actively studied across mathematics,
statistics, and machine learning (Chen et al. 2021). We refer to the monographs of Villani
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(2008), Peyré and Cuturi (2019), Figalli and Glaudo (2021) for a detailed treatment of
theoretical and computational aspects.

Let Y be a random variable on measure space (Ω, B,P), with support Y ⊆ RnY . Let
A be a measurable subset of Y. A marginal probability measure of Y denoted by ν, is
a set function ν(A) = p(Y ∈ A). For instance, if A = {y : y ∈ Y and y ≤ y′}, then
ν(A) = P(Y ≤ y′) = FY (y′), where y 7→ FY (y) is the cumulative distribution function of
Y .

Consider two marginal distributions of Y , ν and ν ′: the optimal transport problem
consists in transferring the first distribution into the second while minimizing a given
cost function. Let π(y, y′) be a transfer plan and Π(ν, ν ′) be the set of all transfer plans.
Formally, an element of Π(ν, ν ′) is a joint probability function whose marginal distributions
are ν and ν ′, respectively. Posed a lower semi-continuous cost function k : Y×Y → [0, +∞],
let K(π) := Eπ[k(Y, Y ′)] =

∫∫
Y×Y k(y, y′)dπ(y, y′) be the integral cost for transferring mass

from ν to ν ′ under plan π. The Kantorovich formulation of the optimal transport problem
consists of finding a transfer plan π ∈ Π(ν, ν ′) that minimizes the integrated cost K, i.e.,
in finding K(ν, ν ′) such that

K(ν, ν ′) = inf
π∈Π(ν,ν′)

K(π). (1)

It can be shown that the Kantorovich problem in (1) has at least one solution if a transfer
plan π ∈ Π(ν, ν ′) with finite cost K(π) < ∞ exists. A sufficient (and often encountered
condition) is that k(y, y′) is bounded by the sum of two nonnegative continuous and
separate cost functions a1(y), and a2(y′) such that E[a1(Y )] < +∞ and E[a2(Y )] < +∞
(bounded separate costs).

If Y and Y ′ are discrete random variables with probability mass functions given by,
respectively, Pr(Y = yi) = si and Pr(Y ′ = y′

j) = tj , with si, tj ≥ 0,
∑I

i=1 si =
∑J

j=1 tj =
1, where I and J are natural numbers, then the Kantorovich problem amounts to solving
the linear program

K(ν, ν ′) = min

∑
ij

k(yi, zj)pij : pij ≥ 0,
∑

j

pij = si,
∑

i

pij = tj

 . (2)

When k(y, y′) = dp(y, y′) for a suitable continuous metric d : Y × Y → [0, +∞), the
Kantorovich problem

W p
p (ν, ν ′) = inf

π∈Π(ν,ν′)

∫
dp(y, y′) dπ(y, y′) (3)

defines the p-th power of the so-called Wasserstein distance of order p, Wp (henceforth
Wasserstein distance).

Closed-form expressions for the Wasserstein distance are generally out of reach. How-
ever, in the multivariate case, nY ≥ 2, let ν and ν ′ be two normal distributions with mean
values m, m′ and covariance matrices Σ, Σ′ respectively. Then Givens and Shortt (1984)
show that the squared 2-Wasserstein distance between ν and ν ′ is given by

WB(ν, ν ′) =
∥∥m − m′∥∥2

2 + Tr
(

Σ + Σ′ − 2
(
Σ′1/2ΣΣ′1/2

)1/2
)

, (4)

where Tr(·) denotes the matrix trace and Σ1/2 is the symmetric square root of a symmet-
ric and positive matrix. Equation (4) defines the Wasserstein-Bures semi-metric (Janati

4



et al. 2020) (henceforth denoted with WB(ν, ν ′)). An interesting interpretation arises
from the work of Gelbrich (1990), whose results show that Equation (4) can be inter-
preted as follows. The first term, ∥m − m′∥2

2 is the minimal cost for moving the dis-
tributions ν and ν ′ in such a way to match their first moments. The second term,
Tr
(

Σ + Σ′ − 2
(
Σ′1/2ΣΣ′1/2

)1/2
)

is the additional minimum cost for matching the sec-
ond moments. In general, because we need to match more then the first two moments of
ν and ν ′, we need to pay an extra cost and it is

W 2
2 (ν, ν ′) ≥ WB(ν, ν ′), (5)

that is, the Wasserstein distance between ν and ν ′ is larger or equal to the Wasserstein-
Bures distance. Here, a fresh look at the proofs of Gelbrich (1990) indicates that such
inequality can be made sharper. In particular, under broad assumptions on ν and ν ′, it
holds:

W 2
2 (ν, ν ′) = WB(ν, ν ′)+Γ(ν, ν ′) =

∥∥m − m′∥∥2
2+Tr

(
Σ + Σ′ − 2

(
Σ′1/2ΣΣ′1/2

)1/2
)

+Γ(ν, ν ′),
(6)

where Γ(ν, ν ′) ≥ 0 is a non-negative residual term. Gelbrich (1990) proves that the residual
term Γ(ν, ν ′) is null when ν and ν ′ are two elliptical distributions with the same character-
istic generator. Within the family of elliptical distributions with the same characteristic
generator, WB(ν, ν ′) = 0 implies that ν and ν ′ are the same distribution. Outside this
family, WB(ν, ν ′) = 0 implies only that they have identical means (m = m′) and variance-
covariance matrices (Σ = Σ′).

In an influential work, Cuturi (2013) proposes to regularize the Kantorovich problem
through a penalty term based on the Kullback-Leibler entropy of π w.r.t. a suitable
reference probability measure ϑ

KL(π|ϑ) =
∫

log
(dπ

dϑ

)
dπ, (7)

with KL(π|ϑ) = +∞ if π is not absolutely continuous w.r.t. ϑ.
A natural choice is to set ϑ as the product measure ϑ = ν × ν ′, writing

Kε(ν, ν ′) = inf
π∈Π(ν,ν′)

K(π) + εKL(π|ν × ν ′), ε ≥ 0, (8)

where ε ≥ 0 is called regularization parameter. Setting ϵ = 0 recovers the unregular-
ized problem. Problem (8) is referred to as the entropic OT problem. It admits a dual
formulation, which can be expressed as:

Kε(ν, ν ′) = sup
fϵ,gϵ∈Cb(Y)

E[fϵ(Y )] + E[gϵ(Z)]

− ε

(∫∫
exp

(
fϵ(y) + gϵ(z) − k(y, z)

ε

)
dν(y) dν ′(z) − 1

)
,

(9)

where fϵ, gϵ belong to the class of continuous and bounded functions on Y. It is possible to
prove that for ε → 0 one regains the solution to the classical (Kantorovich) OT problem.

The results in Cuturi (2013) have paved the way to a flourishing research stream devoted
to the algorithmic solution of problems (1) and (8). With some conceptual simplification,
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one can consider three groups of algorithms, based respectively on linear programming,
sorting and matrix scaling solvers. The first group contains algorithms that solve the OT-
linear program through specializations of the simplex method, which comprise variants
of the Hungarian method (Kuhn 1956), the network flow and the transportation simplex
algorithms (Luenberger and Ye 2016). The second group relies on extending the univari-
ate intuition that the one-dimensional Wasserstein distance can be obtained by suitable
reordering of the data realizations. A multivariate algorithm that relies on a bubble-sort
approach is presented in Puccetti (2017). The algorithm makes use of pairwise vector-
comparisons and iterative swaps leading to an approximate solution of the classical OT
problem in (1). These algorithms yield solutions of the Kantorovich problem in (1). The
third class of algorithms solves the entropic problem in (8). Cuturi (2013) revived in-
terest in the Sinkhorn-Knopp method (Knight 2008), yielding a computationally efficient
fixpoint algorithm (see Peyré and Cuturi (2019) for a thorough treatment). Variants are
discussed in articles such as Altschuler et al. (2017). These algorithms provide numerical
solutions for the entropic problem in (8) or (9), which are approximating the solutions of
the classical problem in (1).

Several other works in the management sciences have employed the Wasserstein distance
as a metric. Mohajerin Esfahani and Kuhn (2018), Hanasusanto and Kuhn (2018) (see
also (Chen et al. 2020)) use the Wasserstein distance to define ambiguity sets for robust
optimization problems. Carlsson et al. (2018) and Wang et al. (2020) then apply it in their
works regarding the definition and solution of the travelling salesman and the shortest
path problems, respectively. Zhang et al. (2021) and Subramanyam et al. (2021) use
the Wasserstein distance to obtain ambiguity sets for robust vehicle routing data-driven
optimization. Recently, Bertsimas et al. (2022b) and Bertsimas et al. (2022a) employ
the ∞-Wasserstein metric to define ambiguity sets for robust guarantees in two-stage and
multi-stage stochastic optimization. Luo and Mehrotra (2019), Blanchet and Kang (2021)
and Nguyen et al. (2022) use the Wasserstein distance in contexts at the intersection
between optimization and statistical estimation. Luo and Mehrotra (2019) employ this
metric to obtain an algorithm for robust optimization within a class of regression models;
Blanchet and Kang (2021) employ the 2-Wasserstein distance to define a new robust
inference approach called sample-out-of-sample inference; Nguyen et al. (2022) use the
same metric to obtain robust data driven estimators of the inverse covariance matrix. To
our knowledge, this manuscript is the first to explore the use of this metric in simulation
experiments.

2.2. Global Sensitivity Analysis
In the management sciences, the term global sensitivity analysis appears for the first time
in Wagner (1995). Wagner’s approach starts with the generation of an input-output Monte
Carlo sample. The sample is then post-processed via statistical methods and indications
about the importance of the inputs are obtained by estimating variance-based sensitivity
indices. Since then, the family of global sensitivity methods has expanded to include
non-parametric regression approaches (Kleijnen and Helton 1999), moment-independent
approaches (Baucells and Borgonovo 2013), value of information (Felli and Hazen 1998,
Strong and Oakley 2013), Shapley values (Owen 2014) and other methods — See Razavi
et al. (2021) for a perspective. In this section, we review the aspects of the literature that
are most closely related to our work.
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Let Z = (X, Y ) be a random variable on (Ω, B,P), with support Z := X×Y, with Y and Y
as previously defined, and X a random vector on (Ω, B,P), with support X ⊆ RnX . Let us
denote with FXY (x, y) = P(X ≤ x, Y ≤ y) the joint cumulative probability distribution
(cdf) function of (X, Y ) and with µ(x), FX(x) the marginal probability measure and
cumulative distribution function of X, respectively. A relevant role is played by the
conditional probability distribution of Y given X. We denote with νx(y) and FY |X(y), the
corresponding probability measure and conditional cumulative distribution function.

Let P(Y) denote the set of all marginal probability distributions of Y . Consider a
mapping ζ : P(Y) × P(Y) → [0, +∞], whose value quantifies the discrepancy between
two distributions in P(Y). We say that ζ(·, ·) is a separation measurement, if it is null
when the two marginal distributions are identical, i.e., ζ(·, ·) satisfies ζ(QY ,QY ) = 0 for
all marginal distributions QY ∈ P(Y). Then, we define the global sensitivity index of X
with respect to Y as

ξζ(Y, X) := EX

[
ζ(PY ,PY |X)

]
. (10)

Several global sensitivity measures are written in the form of (10). If the output Y is a
real number, and we select ζV(PY ,PY |X) = (E[Y ] − E[Y |X])2 as separation measurement,
we obtain the first order variance-based index of Wagner (1995), Sobol’ (1993)

ξW (Y, X) = E
[
(E[Y ] − E[Y |X])2

]
. (11)

Wagner’s sensitivity measure ξW (Y, X) represents the expected amount of reduction in
output variance provided that we receive perfect information about X. Alternatively, if
Y is absolutely continuous, one can use the L1 norm between densities (Borgonovo et al.
2014), writing

ξL1(Y, X) = E
[1

2

∫
Y

∣∣∣fY (y) − fY |X(y)
∣∣∣ dy

]
. (12)

Equation (12) is also a representative of the family of global sensitivity measures based
on Csiszar’s divergences proposed in Rahman (2016).

With Y = R, setting

ξKu(Y, X) = E
[
sup
y∈R

{FY (y) − FY |X(y)} − inf
y∈R

{FY (y) − FY |X(y)}
]

, (13)

one obtains the global sensitivity measure introduced in (Baucells and Borgonovo 2013),
in which the separation measurement is the Kuiper distance, a generalization of the
Kolmogorov-Smirnov metric. Gamboa et al. (2018) introduce a family of probabilistic
sensitivity measures based on the Cramér-von Mises distance, defining

ξCvM(Y, X) = E
[∫

Y

∣∣∣FY (y) − FY |X(y)
∣∣∣2 dFY (y)

]
. (14)

The probabilistic sensitivity framework of (10) does not require a functional relationship
between Y and X. However, in simulation and machine learning, Y = (Y1, Y2, . . . , YnY ) is
a quantity of interest (usually called output or target) calculated through a mathematical
model, whose input is a random vector X = (X1, X2, . . . , XnX ), with Xi called input
or feature. Then, we write the simulator input-output mapping that links Y to X as
Y = g(X, E(X, ω)), where g : X → Y and where E : X×Ω → Y is such that, for every value
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of x, E(x) is a random vector on (Ω, B,P). If E(X, ω) ̸= 0 for some ω and X, the model
is stochastic, deterministic otherwise. Then, let α ⊆ (1, 2, . . . , nX), α = (i1, i2, . . . , ik)
be a subset of indices and let Xα = (Xi1 , Xi2 , . . . , Xik

) denote the corresponding group
of features. If we are informed that Xα = xα, then the model response becomes Y =
g(xα, X−α, E(xα; X−α, ω)), where −α = {1, 2, . . . , ny} \ α is the complementary set of α.
Clearly, Y and Y |Xα = xα have probability measures PY and PY |Xα=xα

.
The extension of variance-based indices ξW (Y, X) to the multivariate case has been

addressed in Lamboni et al. (2011) and Gamboa et al. (2014) with the introduction of
generalized variance-based indices. In these works, independence among the inputs is as-
sumed so that µ(x) =

nX∏
i=1

µi(xi). Given X = (X1, X2, . . . , XnX ) and Y = (Y1, Y2, . . . , YnY ),
we can define the variance-based importance measure of Xi with respect to any output Yj ,
i = 1, 2, . . . , nX , j = 1, 2, . . . , nY via (11): ξW (Yj , Xi) = EXi

[
(E[Yj ] − E[Y |Xi])2]. Then,

let ΣY denote the variance-covariance-matrix of the output and V[Y ] denote its trace, that
is, the sum of the diagonal elements of ΣY . Assuming that Yj = gj(X1, X2, . . . , XnX ), i.e.,
the input-output mapping is deterministic, let the variance-based importance index of
Lamboni et al. (2011) and Gamboa et al. (2014) be defined as

ξLG(Y, Xi) := V[Y ]−1
nY∑
t=1

ξW (Yt, Xi). (15)

Thus, ξLG(Y, Xi) is the fraction of the trace of the variance-covariance matrix of Y asso-
ciated with Xi, when inputs are independent.

The works of Fraiman et al. (2020) and Gamboa et al. (2021) further extend ξCvM to
the case in which the output belongs to a Riemannian manifold and to a metric space,
respectively. Fort et al. (2021) address the sensitivity of models with stochastic output
using these indices with the Wasserstein distance as a metric. An approach to create
sensitivity measures for multivariate responses using distances between kernels is proposed
in da Veiga (2021) and Barr and Rabitz (2022). This concise review shows that the
definition of indices for vectorial outputs is an active research field, motivated also by
industrial and machine learning applications (Marrel et al. 2017).

Recent studies by Chatterjee (2021), Wiesel (2022) and Deb et al. (2020) have refocused
attention on the mathematical guarantees underlying the use of measures of statistical
association. These guarantees include desirable properties such as zero-independence,
max-functionality, and monotonicity. The first two properties originate from Postulates
D and E in Rényi (1959). Postulate D (see also Axiom 1 in Móri and Székely (2019))
stipulates that a measure of statistical association is null if and only if Y is statistically
independent of X. This property helps us to avoid the error of dismissing an input as
unimportant when, in fact, it plays a role in the model. Postulate E (max-functionality)
stipulates that the value of a global sensitivity measure is maximal if and only if Y is a
deterministic function of X, i.e., if Y can be expressed as g(X) for a mapping g : X →
Y. The third property, monotonicity, is associated with the following interpretation in
our context: if we receive less refined information about an input, we require that such
information is associated with a lower value of the global sensitivity measure than if we
received more refined (or perfect) information on the same input. In the next section,
we define global sensitivity measures based on OT functionals and discuss the conditions
under which they possess these properties.
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3. Global Sensitivity Measures based on Optimal Transport
This section introduces global sensitivity measures based on optimal transport, with the
classical as well as entropic formulation of the cost function. It is structured as follows:
definitions and properties are presented in Sections 3.1 and 3.2. Section D discusses in
depth the interpretation of the new indices in light of their mathematical properties.

3.1. A family of OT-based indicators
Given the setup of Section 2.2, assume that the OT-functional in Equation (1) is associated
with a continuous cost function k : Y × Y → [0, +∞] which is null if and only if its two
arguments are equal, that is k(y, y′) = 0 ⇔ y = y′.

Definition 1. Let X, Y be random variables with marginal distributions µ, ν respectively
and let (νF

x )x∈X be the conditional distribution of Y generated by (X, F). We call

ξK(Y, X|F) := E[K(PY ,PF
Y |X)] =

∫
X

K(ν, νF
x ) dµ(x) (16)

the OT-based global sensitivity measure of (X, F) with respect to Y .

A notable class of OT-based sensitivity measures is obtained using the pth-power of
Kantorovich-Rubinstein-Wasserstein distance Wp in (3) (as usual, we omit F when it
coincides with B(X)):

ξWp
p(Y, X) := E

[
inf

π∈Π(PY ,PY |X)

∫
dp(y, z) dπ(y, z)

]
. (17)

In applications, it is often of interest to measure the relevance of a set of features/inputs,
(X1, X2, . . . , XnX ). Ranking them by the magnitude of ξK(Y, Xi) means to sort them
based on the expected amount of work needed to optimally pass from the marginal (and
current) probability measure of Y to the conditional (and updated) probability measure
of Y given that we have received perfect information about Xi.
Remark 2. Equation (16) defines a family of global sensitivity measures. To illustrate, the
well-known ξL1(Y, X) in Equation (12) can be reinterpreted as an OT-based sensitivity
measure. In fact, if Y is equipped with the discrete metric, i.e., a metric such that for all
y, y′ ∈ Y, k(y, y′) = 0 if y = y′ and k(y, y′) = 1 if y ̸= y′, then, ξK(Y, X) = ξL1(Y, X)
(see Appendix A for the calculations) — However in this case k is not continuous and the
corresponding K is not strictly convex on Dirac-δ masses.

Proposition 3. With the setup in Definition 1, ξK(Y, X) ≥ 0 and ξK(Y, X) = 0 if and
only if Y and X are statistically independent.

(Please see Appendix A for all proofs).
Thus, the family of OT-based sensitivity measures in (16) possesses the zero-independence

property. Proposition 3 then provides a lower-bound on ξK(Y, X). In order to obtain an
upper bound for ξK(Y, X), we introduce the quantity

MK [Y ] := E[k(Y, Y ′)] =
∫

Y2
k(y, y′) dν(y) dν(y′), (18)
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where Y ′ is an independent replica of Y . Notice that if k is the sum of two separately
bounded cost functions then MK [Y ] is bounded.

For the next result, we recall that a Dirac measure δy centered at y ∈ Y is defined by
δy(A) = 1 if y ∈ A and δy(A) = 0 if y /∈ A for every A ⊂ Y. The next Lemma states a
useful property of the optimal transport cost with respect to Dirac measures.

Lemma 4. Let K be the OT-functional in (1) with k continuous and let ν ∈ P(Y) satisfy
K(ν×ν) < +∞. Then the function K(ν, ·) satisfies the following strict convexity inequality
between Dirac measures in the support of ν:

K (ν, (1 − t)δy1 + tδy2) < (1 − t)K (ν, δy1) + tK (ν, δy2) (19)

for every y1, y2 ∈ supp(ν), y1 ̸= y2, t ∈ (0, 1).

Theorem 5. Under the same assumptions of Lemma 4, for all random variables X, Y
and every σ-algebra F

ξK(Y, X|F) ≤ MK [Y ], (20)

so that ξK(Y, X|F) is finite if MK [Y ] < ∞. Moreover ξK(Y, X|F) = MK [Y ] if and only
if Y is functionally dependent on X, i.e. Y = f(X) P-a.e. for some F-measurable map
f : X → Y.

Theorem 5 states that the class of OT-based sensitivity satisfies the max-functionality
property (Rényi’s Postulate E) for a vast class of cost functions.
Remark 6. Equation 17 coincides with the numerator of the Wasserstein correlation coef-
ficient defined by Wiesel (2022). Therein, an important result is Theorem 2.2 which shows
that the Wasserstein correlation coefficient is maximal (equal to unity) in the case X and
Y are related by a functional dependence and zero if they are statistically independent.
Theorem 5 covers a slightly more general situation extending the result to general cost
functionals k and offers a different perspective, based on the strict convexity of K(ν, ·) on
Dirac measures stated in Lemma 4. This new approach allows us to extend this property
to global sensitivity measures based on the entropic formulation of the OT problem.
Remark 7. Regarding the maximum value of (17), when Y = R and p is an even integer,
we have

MK [Y ] =
∫
R2

(y − z)p dν(y) dν(z) =
p∑

k=0
(−1)k

(
p

k

)∫
R2

ykzp−k dν(y) dν(z)

=
p∑

k=0
(−1)k

(
p

k

)
E[Y k]E[Y p−k]. (21)

When Y = RnY with nY ≥ 2 and k(y, y′) := ∥y − y′∥2
2, we have

MW2
2 =

∫
Y2

∥∥y − y′∥∥2
2 dν(y) dν(y′) = 2

∫
Y

∥y − E[Y ]∥2
2 dν(y) = 2V[Y ], (22)

where V[Y ] denotes the trace of the variance-covariance matrix of Y .
The next result shows the monotonicity of ξK with respect to the information provided

by F and can be applied to the case when we receive perfect information on a random
variable U which is a transformation of X, U = g(X).
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Theorem 8. For every σ-algebra F ⊂ B(X) we have

ξK(Y, X) ≥ ξK(Y, X|F). (23)

In particular, if g : X → U is a Borel map with values in a Polish space U, U := g ◦ X,
and F = σ(g) is the σ-algebra generated by g, we have

ξK(Y, X) ≥ ξK(Y, U) = ξK(Y, X|F), where F = σ(g). (24)

Moreover, if g is injective almost everywhere, then ξK(Y, X) = ξK(Y, U).

Theorem 8 implies that receiving information in the form U = g(X) has the same value
as receiving direct information on X if the transformation g is injective. The fact that
ξK(Y, X) is greater than ξK(Y, U) otherwise is consistent with the intuition that receiving
direct information on X is more valuable than receiving “indirect” information via a
transformation of X. Starting from Theorem 8, we can obtain an important continuity
property with respect to an increasing family of σ-algebras in B(X).

Theorem 9. Let (Fn)n∈N be an increasing family of sub-σ-algebras in F and let us denote

by F =
∞∨

n=1
Fn the smallest σ-algebra containing each Fn. We have

lim
n→∞

ξK(Y, X|Fn) = ξK(Y, X|F). (25)

Theorem 9 says that if we collect information on X in such a way to progressively
refine the associated algebra towards F , then ξK(Y, X|Fn) converges to ξK(Y, X|F).
Also, by Theorem 8, ξK(Y, X|Fn) is smaller than ξ(Y, X|F) for any value of n, and
thus ξK(Y, X|Fn) converges to ξK(Y, X|F) from below. This result is also relevant for
estimation, as discussed in Section 4.

We now consider separation measurements induced by the entropic OT functional (8).
We then investigate whether these have the same properties as indicators based on the
classical OT formulation. The next lemma shows that Kε satisfies a property similar to
Lemma 4.

Lemma 10. Let Kε be the entropic OT-functional in (8) with k continuous and let ν ∈
P(Y) satisfy K(ν × ν) < +∞. Then the function Kε(ν, ·) satisfies the following strict
convexity inequality between Dirac measures in the support of ν:

Kε (ν, (1 − t)δy1 + tδy2) < (1 − t)Kε (ν, δy1) + tKε (ν, δy2) (26)

for every y1, y2 ∈ supp(ν), y1 ̸= y2, t ∈ (0, 1).

The next theorem summarizes results for ξKε(Y, X).

Theorem 11. Let ε > 0 and Kε be the entropic OT-functional in (8). For all random
variables X, Y the corresponding sensitivity index ξKε(Y, X) satisfies

ξK(Y, X|F) ≤ ξKε(Y, X|F) ≤ MK [Y ], (27)

so that ξKε(Y, X|F) is finite if MK [Y ] < ∞. Moreover ξKε(Y, X|F) = MK [Y ] if and only
if Y is functionally dependent on X, i.e. Y = f(X) P-a.e. for some F-measurable map
f : X → Y. Eventually, ξKε(Y, X) satisfies the same properties stated in Theorems 8, and
9.

11



Notice that (27) yields
ξK(X, Y )
MK [Y ] ≤ ξKε(Y, X)

MK [Y ] . (28)

This last inequality then allows a direct comparison of sensitivity measures based on
classical and entropic formulations, as they are set on the same scale. Theorem 11 shows
that global sensitivity measures based on the entropic OT, ξKϵ(Y, X), enjoy properties
similar to those of indices based on the classical OT and stated in Theorems 5, 8, and 9.
However, Proposition 3 does not hold for ξKε(Y, X), since when supp(ν) is not reduced to
a singleton (i.e. ν is not a Dirac measure) Kε(ν, ν) > 0 and Kε is not a strict separation
measurement. When Y and X are independent, ν = νx µ-a.e., and we have ξKε(Y, X) =
Kε(ν, ν), which shows that ξKε does not possess the zero-independence property. The
next result shows that Kε(ν, ν) is the minimum value of ξKε(Y, X).

Proposition 12. For every pair of random variables X, Y and every σ-algebra F we have

ξKε(Y, X|F) ≥ Kε(ν, ν). (29)

Equality in (29) is attained when Y and X are independent.

Notice that Kε(ν, ν) is a minimum for ξKε(Y, X), but there might exist ν ′ for which
Kε(ν, ν ′) < Kε(ν, ν). Supplementary Appendix B shows that equality in (29) does not
imply that Y and X are independent.

Overall, the above results show that OT-based sensitivity measures (entropic and clas-
sical) possess intuitive properties that ease their interpretation: if Y is independent of
X, information about X is irrelevant and reaches its lowest value (zero in the case of
the classical OT formulation). Conversely, if Y is functionally dependent on X then the
OT-based importance of X is maximal. In all other cases, the value of the OT-based
sensitivity measure is in between these two extremes.

3.2. A Family of Sensitivity Indices
With the assumptions and analysis in the previous section, we can define the following
sensitivity indices.

Definition 13. If MK [Y ] > 0, we call

ιK(Y, X) = ξK(Y, X)
MK [Y ] (30)

and
ιKϵ(Y, X) = ξKϵ(Y, X)

MK [Y ] (31)

classical and entropic OT-based sensitivity index of X with respect to Y , respectively.

Then, by the zero-independence and max-functionality properties, we have 0 ≤ ιK(Y, X) ≤
1. The extreme values ιK(Y, X) = 0 and ιK(Y, X) = 1 indicate statistical independence
and fully functional dependence, respectively. Differently, ιKϵ(Y, X) varies between its
minimum and unity, with unity indicating functional dependence and the minimum being

12



reached when Y and X are independent. In the remainder, we shall focus on the case in
which the cost is associated with the squared 2-Wasserstein distance, letting:

ι(Y, X) = (2V[Y ])−1ξW2
2(Y, X). (32)

In general, closed form expressions for ι(Y, X) are out of reach. Nonetheless, a notable ex-
ception appears if the involved distributions are elliptical (Cambanis et al. 1981, Landsman
and Valdez 2003). We say that Z follows an elliptically contoured distribution if its char-
acteristic function can be represented in the form ϕ(z; µZ , Σ∗

Z) = eizT µ∗
Z G(zT Σ∗

Zz), where
G : R+ → R+ is called the characteristic generator (see (Cambanis et al. 1981, Theorem
2) for technical conditions), and µ∗

Z and Σ∗
Z are called location and dispersion parameters,

respectively. One correspondingly writes Z ∼ EC(µ∗
Z , Σ∗

Z , G) where EC stands for ellipti-
cally contoured, as in Cambanis et al. (1981) — elliptical, for short. Note that, if the first
moment, µZ , of Z exists then µZ = µ∗

Z ; if the second moment exists then the variance-
covariance matrix ΣZ is related to the dispersion parameter Σ∗

Z as ΣZ = −2G′(0+)Σ∗
Z

(Cambanis et al. 1981, Theorem 4), where G′(0+) is the right derivative of the character-
istic generator at the origin. If a density function for an elliptical family exists, it has the
form (Landsman and Valdez 2003, p. 58)

fZ(z) = C√
|Σ∗

Z |
Gd

[1
2(z − µ∗

Z)T (Σ∗
Z)−1(z − µ∗

Z)
]

, (33)

where C is a normalizing constant, | · | stands for determinant and Gd(·) is the density
generator.
Example 14. A representative of the family of elliptical distributions is the Gaussian family
obtained with Gd(·) = e− 1

2 (·). In this case, we also have µ∗
Z = µZ and Σ∗

Z = ΣZ and the
density assumes the well-known expression

fZ(z) = 1
(
√

2π)nZ
√

|ΣZ |
exp

[
−1

2(z − µZ)T (ΣZ)−1(z − µZ)
]

, (34)

where nZ is the cardinality of Z. Other representatives are the Student-t, the logistic, and
the exponential power distributions, which are obtained selecting alternative generators
— please refer to (Landsman and Valdez 2003, p. 58-60) for the detailed expressions of
these densities.

For OT-based sensitivity measures, a notable identity holds when both the marginal
distribution and the conditional distributions of Y given X are elliptical.

Let us consider the global sensitivity index based on the Wasserstein-Bures semi-metric:

iWB(Y, X) :=
E[WB(PY ,PY |X)]

2V[Y ] , (35)

where WB(·, ·) is given in Equation (4).

Proposition 15. Assume that the second moment of Y is finite. In general, it holds that

ι(Y, X) = iWB(Y, X) +
E[Γ(PY ,PY |X)]

2V[Y ] , (36)
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so that ι(Y, X) ≥ iWB(Y, X). If PY and PY |X are elliptical with the same characteristic
generator G for values of X almost everywhere in X then

ι(Y, X) = iWB(Y, X) = Adv(Y, X) + Diff(Y, X), (37)

where
Adv(Y, X) = E

[
∥E[Y ] − E[Y |X]∥2]

2V[Y ] , (38)

and

Diff(Y, X) =
E
[
Tr
(

ΣY + ΣY |Xi
− 2

(
Σ1/2

Y |Xi
ΣY Σ1/2

Y |Xi

)1/2
)]

2V[Y ] . (39)

Equation (36) indicates that the OT-based sensitivity indices ι(Y, X) can be decomposed
in two terms, the Wasserstein-Bures index in Equation (35) and a residual term given by
(2V[Y ])−1E[Γ(PY ,PY |X)]. By Equations (38) and (39), the Wasserstein-Bures index is, in
turn, the addition of two summands: Adv(Y, X), that accounts for the difference in the
first moments of PY and PY |X and Diff(Y, X) that involves the differences in their second
moments (ΣY vs ΣY |X). These two terms are the expected optimal cost required for
matching the first and second moments of PY and PY |X . If matching the first and second
moment exhausts the transport of PY into PY |X , then the residual term E[Γ(PY ,PY |X)] is
null. Moreover, Adv(Y, X) can be interpreted as an “advective part” that can be identified
as a movement of the center of gravity, and Diff(Y, X) as a “diffusive part” which leads to
a dispersion (rotation) of the data points. — Supplementary Appendix D offers additional
discussion on the interpretation of the advective and diffusive parts.

We also have a direct connection between the advective part of an optimal transport
sensitivity measure and the generalized variance-based sensitivity measures of Lamboni
et al. (2011) and Gamboa et al. (2014).

Proposition 16. For the advective part of the Wasserstein-Bures global sensitivity mea-
sure, i.e. Adv(Y, X) in (38), it holds:

Adv(Y, X) = (2V[Y ])−1
nY∑
t=1

ξW (Yt, X), (40)

where ξW (Yt, X) is Wagner’s univariate sensitivity measure of X with respect to Yt in
Equation (11) and ξLG(Y, X). Moreover, if we assume that the inputs are independent
then

Adv(Y, X) = 1
2

nY∑
t=1

S(Y t, X) = 1
2ξLG(Y, X), (41)

where S(Y t, X) = ξW (Y, X)
V[Y ] is the Sobol’ first order sensitivity index of X with respect to

the tth component of the output, Y t.

The first equality in Proposition 16 does not assume input independence and suggests
that the numerator of the advective part of an OT-based sensitivity measure is the sum of
the Wagner’s univariate sensitivity measures of the output components Y1,. . . , YnY . If, in
addition, we assume input independence, Equation (41) holds and Adv(Y, X) differs only
by a factor 1/2 from the sensitivity measures of Lamboni et al. (2011) and Gamboa et al.
(2014).
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Table 1: ι(Y, Xi), and associated decompositions into advective and diffusive parts for the
model in Equation (44).

ι(Y, Xi) = ιW B(Y, Xi) Advi Diffi Perc. Adv. ιϵ(Y, Xi)
X1 0.492 0.294 0.198 60% 0.554
X2 0.507 0.318 0.189 63% 0.575
X3 0.117 0.107 0.01 91% 0.199

Corollary 17. Let X = (X1, X2, . . . , XnX ), X ∼ EC(mX , Σ∗
X , G), mX = (m1, m2, . . . , mnX ),

with finite second moment. If Y = AX+b, where A is an nY ×nX matrix and b ∈ RnY , then
the OT-based sensitivity measure between Y and Xi is given by (37) with ΣY = AΣXAT ,
ΣY |Xi

= AΣc
iA

T ,

Σc
i = (σi

t,j)t,j=1,2,...,nX , σi
t,j = σt,j − σt,i · σi,j√

σi,i
, (42)

and

mYk|Xi
=

nX∑
j=1

ak,j

(
mj + (Xi − µi)

σi
i,j

σi
i,i

)
, (43)

for k = 1, 2, . . . , nY .

Corollary 17 states that if the model output is a linear transformation of an elliptical
input variable X, then we obtain a closed-form expression for ι(Y, X). This is due to
the fact that all the involved distributions of Y , marginal and conditionals, are elliptical
with the same characteristic generator. For instance, if X is a multivariate Gaussian or
Student-t or logistic random variable, then all distributions of Y will be, respectively,
Gaussian or Student-t or logistic, with parameters in Equations (42) and (43).
Example 18. Consider the input-output mapping Y = g(X1, X2, X3) given by:{

Y1 = 4X1 − 2X2 + X3
Y2 = 2X1 + 5X2 − X3, (44)

with X normally distributed, with mean mX = (1, 1, 1), and variance-covariance matrix

ΣX =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

. Y is then normal with mean mY = (3, 6) and variance-covariance

matrix ΣY =
(

15 7.5
7.5 33

)
. In this case, it is ι(Y, Xi) = ιW B(Y, Xi). The corresponding

advective and diffusive parts are reported in Table 1. The third and fourth columns in
Table 1 show that the advective part amounts at about 60% of the OT-based importance
of X1 and X2, and at about 90% of the importance of ι(Y, X3). The additional portion
is due to the diffusive part, because all the involved distributions are elliptical. We use
this example to illustrate the relationship between Adv(Y, X) and Wagner’s univariate
sensitivity measures in Proposition 16. We calculate Wagner’s variance-based importance
measures for Y1 and Y2 separately.

The last column of Table 2 shows that, if we sum the Wagner’s importance measures
of the inputs with respect to each output, the sum exceeds the value of the corresponding
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Table 2: Wagner’s importance measures for the example.

ξW (·, X1) ξW (·, X2) ξW (·, X3)
3∑

i=1
ξW (·, Xi)

Y1 12.25 0.25 4 16.5
Y2 16 30.25 6.25 42.5
ξW (Y1, Xi) + ξW (Y2, Xi) 28.5 30.50 10.25

variance for both Y1 and Y2: this occurs because the inputs are not orthogonal. If we sum
across the outputs, we get the values in the third row of Table 2. Dividing these sums by
twice the diagonal of the variance-covariance matrix, we obtain the values of the advective
part of the Wasserstein-Bures importance measure, in accordance with Proposition 16.

According to equation (37), an OT-based importance measure includes extra terms
compared to a generalized variance-based index. Thus, the global impact of an input
on the output distribution is more than just the sum of its individual variance-based
sensitivities. By the properties of the Wasserstein distance, we know that the Wasserstein-
Bures distance between ν and ν ′ is always lower than or equal to their squared Wasserstein-
2 distance: WB(ν ′, ν ′) ≤ W 2

2 (ν ′, ν ′). This inequality yields a corresponding inequality on
the corresponding global sensitivity indices: ιW B(Y, X) ≤ ι(Y, X). As a result, we can
expect that if learning X only affects the first order moment mY of Y , then the importance
of X is equal to Adv(Y, X), or the sum of univariate sensitivities. However, if there is also
an impact on the second order moment ΣY , then a diffusive component is present. These
two components sum to ιW B(Y, X) and account for the input entire importance when
all the involved distributions are elliptical with the same characteristic generator. The
presence of an additional gap between ιW B(Y, X) and ι(Y, X) suggests that information
about X impacts the distribution of Y beyond its first two moments.

A recent result in Janati et al. (2020) allows us to obtain closed form expressions for the
entropic OT-based sensitivity measures when the marginal and conditional distributions
are normal. With the notation of Corollary 17, if X, Y and Y |X are normally distributed,
given ε ≥ 0, then the entropic sensitivity index in (31) can be written as

ιWB
ε (Y, X) = Adv(Y, X) +

E[Tr
(
ΣY + ΣY |X − Dε

)
+ L(Dε, ε)]

2V[Y ] , (45)

where Dε =
(

4Σ
1
2
Y ΣY |XΣ

1
2
Y + 1

4ε2I

) 1
2
, I is the identity matrix, and

L(Dε, ε) = ε
2
(
nY · (1 − log(ε)) + log det

(
Dε + ε

2I
))

. (46)

The terms Dε and L(Dε, ε) appear in ιε(Y, X) rather than in ιWB(Y, X) in (37), as a
consequence of the entropic penalty.

We close the investigation of the properties of OT-based sensitivity measures studying
the behavior of entropic indices for large values of the regularization parameter.

Theorem 19. Given ιε(Y, Xi) in Equation (31), we have:

lim
ε→∞

ιε(Y, X) = 1 (47)

for any X.
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Theorem 19 implies that the entropic importance of any random variable tends to the
maximum value if the regularization parameter grows. Then, ιε(Y, X) becomes uninfor-
mative for large values of ε, as all Xi’s are assigned the same value of ιε(Y, X).
Example 20 (Example 18 continued.). The last column of Table 1 reports the values of
the entropic OT-based sensitivity indices ιε(Y, Xi) for the same input-output mapping
and input distributions in Example 18. For illustrative purposes, we have set ε = 1.
The values in Table 1 indicate that the entropic sensitivity measures are larger than the
classical sensitivity measures for all inputs, in accordance with Theorem 11. The increases
are systematic and the ranking is unchanged. However, there is no reassurance that this is
maintained for any value of the regularization parameter. Increasing its value to ε = 10, we
record ιε=10(Y, X1) = 0.95, ιε=10(Y, X2) = 0.96, ιε=10(Y, X3) = 0.89. While the ranking is
maintained, the value of the entropic importance of X3 increases notably. In agreement
with Theorem 19, for higher values of ε we obtain ιε(Y, Xi) ≈ 1 for all the three inputs
and we become unable to rank them.

4. Estimation
The estimation of global sensitivity measures in the common rationale of Equation (10) is
widely recognized as a challenging task. A brute force implementation requires a double-
loop of Monte Carlo simulations: an outer loop in which values of X are fixed and an inner
loop in which the model is evaluated to obtain the conditional distribution of Y given X.
The computational cost associated with this strategy is CBrute Force = nXNoutNinn model
evaluations, where Nout and Ninn are the sample sizes allocated to the outer and inner
loops, respectively. This cost is of the order of the square of the sample size and depends
on the model input dimensionality nX . Nested estimation is widely encountered in the
management sciences. To illustrate, in the pricing of financial instruments the outer loop
is needed to generate a set of scenarios in which a number the risk factors are fixed, while
the inner loop calculates the future cash flows conditional on the scenario (Broadie et al.
2011, 2015). Several studies have addressed the reduction of numerical cost in problems
involving nested estimation (see Gordy and Juneja (2010) for a review). Hong et al. (2017)
propose smoothing approaches to reduce the computational burden of the inner conditional
expectation. The same problem has been studied in parallel in the statistical literature
for the estimation of global sensitivity measures, with the pick-and-freeze design as the
first successful proposal to decrease the computational cost down to ≈ nX(N + 1) model
runs (Saltelli 2002, Gamboa et al. 2016). On the other hand, given-data (or once-through)
designs bring the number of model evaluations down to N model evaluations, where N
is the size of a single-loop Monte Carlo sample. The corresponding computational cost
is then independent of the problem dimensionality nX . Moreover, the design allows the
calculation of global sensitivity measures also when the input-output sample come from
data collection. We follow Pearson’s intuition underlying the correlation ratio (Pearson
1905). One considers partitioning the support of X, X, into H non overlapping subsets,
Xh

i , h = 1, 2, . . . , H. Then, one writes an estimate of a global sensitivity measure in the
common rationale of (10) as

ξ̂(Y, Xi; N, H) = 1
H

H∑
h=1

ζ(PN
Y ,PN

Y |Xi∈Xi
h
), (48)
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Figure 1: Scatterplot partitioning with H = 10 and H = 100 for hypothetical Y and Xi.
The upper graphs display the scatterplot and the partitions, the lower graphs
the corresponding empirical distributions (empirical densities are available in
this case).

where ζ(PN
Y ,PN

Y |Xi∈Xh
i
) is an empirical estimate of the separation between the marginal and

the conditional property of interest required by ζ(·, ·), here denoted by PN
Y and PN

Y |Xi∈Xh
i
,

respectively. In the latter, the point condition Xi = xi is replaced by the bin condition
Xi ∈ Xh

i .
We can implement Equation (48) through the following steps. First, we build the

scatterplot with Xi and Y on the horizontal and vertical axis, respectively. Next, we
partition the horizontal axis into H bins Xh

i , h = 1, 2, . . . , H, such that the union of all
bins equals Xi and the intersection of any two bins is empty. Graph (a) in Figure 1 offers a
visualization of this partitioning into ten intervals of the horizontal axis of a hypothetical
scatterplot. The third step is to consider the separation between the empirical marginal
distribution PN

Y and the conditional marginal distribution PN
Y |Xi∈Xh

i
, that is, to compute

ζ(PN
Y ,PN

Y |Xi∈Xh
i
). The estimate ξ̂(Y, Xi; N, H) is then the average of these values.

Pearson’s intuition suggests that, if the partition is sufficiently refined, the bin con-
dition P̂Y |Xi∈Xh

i
tends to the point condition P̂Y |Xi=xi

. (Graph (b) in Figure 1 shows a
scatterplot partition with the cardinality increased to H = 100.) Then, if ζ(PN

Y ,PN
Y |Xi∈Xh

i
)

is an accurate approximation of ζ(PY ,PY |Xi∈Xh
i
), the value of ξ̂(Y, Xi) should be close to

ξ(Y, Xi). More precisely, we expect that as the sample size N and the cardinality of the
partition tend to infinity, then ξ̂(Y, Xi) tends to ξ(Y, Xi). The convergence depends on
the properties of ζ(P̂N

Y , P̂N
Y |Xi∈Xh

i
) and a general proof is nowadays missing.

However, we show in Supplementary Appendix A that if ζ(P̂N
Y , P̂N

Y |Xi∈X m
i

) is based on
optimal transport, then

lim
H→∞,N→∞

ξ̂(Y, Xi; N, H) = ξ(Y, Xi). (49)

A fundamental role in this result is played by the convexity and monotonicity of the OT
functional in Equation (16). These two properties also imply that for N sufficiently large,
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the estimates ξ̂K(Y, X; N, H) approximate the true value ξK(Y, X) from below as the
partition size increases. By Theorem 11, the same holds for the case in which the quantity
to be estimated is an entropic-OT based sensitivity measure.

To complete the estimation procedure, we need an algorithm for solving the data-driven
optimal transport problem between the two empirical distributions P̂N

Y and P̂N
Y |Xi∈Xh

i
for

h = 1, 2, . . . , H. If the cost function is the squared Wasserstein metric, the problem is:

infs
N∑

k=1

∑
j:xj,i∈Xh

i

sk,j

nY∑
t=1

(yk,t − yj,t)2

subject to
N∑

k=1
sk,j = 1

N ,
∑

j:xj,i∈Xh
i

sk,j = 1
Nh

, Nh = #{j : xj,i ∈ Xh
i },

(50)

for h = 1, 2, . . . , H(M), where s is the set of (empirical) couplings, #{·} denotes cardinal-
ity, Nm counts the realizations of X which are included in Xh

i ; the realizations yk,t follow
PY , while the realizations yj,t follow PY |X∈Xh

i
.

The algorithm that solves the OT problem in (50) is crucial because the estimation
requires solving a conditional OT-problem in each partition set. However, if Y is univari-
ate (nY = 1), the solution is streamlined by results in works such as Vallender (1974),
Cambanis et al. (1976). Given u ∈ [0, 1] let QY (u) be the uth quantile of Y and QY |Xi

(u)
the uth quantile of Y given Xi. By Cambanis et al. (1976) we can write:

W 2
2 (PY ,PY |X) =

∫ 1

0

(
QY (u) − QY |Xi

(u)
)2

du. (51)

Thus, the squared 2-Wasserstein distance can be found by integrating the squared differ-
ence of the quantile functions. Numerically, it is then enough to reorder the marginal and
conditional quantiles of Y in each partition, calculate their squared differences, and take
the average over the partitions.

If nY ≥ 2, our work intersects with the growing body of literature on solvers for the
optimal transport problem. The literature displays two main strategies. We can opt for
an exact solver obtaining the exact value of K(P̂N

Y , P̂N
Y |X∈Xh

i
). We use an implementation

of the network simplex in our experiments. Alternatively, we can opt for an approximate
solver. The proposal of Cuturi (2013) is to employ the entropic problem in (52), for which
faster solvers are available. The given-data problem is:

infsε

N∑
k=1

∑
j:X∈Xh

i

(
sε

k,j

∑nY
t=1(yk,t − yj,t)2 + ε exp

(
−
∑nY

t=1(yk,t−yj,t)2

ε

))
such that

N∑
i=1

sε
i,j = 1

N ,
∑

j:X∈Xh
i

sε
i,j = 1

Nh
, Nh = #{j : xj,i ∈ Xh

i },

(52)

Cuturi (2013)’s algorithm based on Sinkhorn iterations yields the solution of Problem
(52) in computationally fast times. For small values of the regularization parameter, the
obtained solution can then be used as a proxy for the solution of the classical given-data
problem in (50). The trade-off is then between precision and speed. We also implement two
further alternatives: the sorting approach of Puccetti (2017) which provides an approxi-
mate solution to Problem (50), and the Wasserstein-Bures approximation. A given-data
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estimate of the Wasserstein-Bures index is given by

ι̂W B(Y, X) = 1
2V̂[Y ]

H(N)∑
h=1

Nh

N

(
nY∑
t=1

(m̂Y,t − m̂Y,t|X∈Xh
i
)2+

Tr
(

Σ̂Y + Σ̂Y |X∈Xh
i

− 2
(√

Σ̂Y Σ̂Y |X∈Xh
i

√
Σ̂Y

)1/2
))1

2
, (53)

where m̂Y,t and m̂Y,t|X∈Xh
i

are empirical means, Σ̂Y and Σ̂Y |X∈Xh
i

empirical covariance
matrices. It is an immediate corollary of Theorem 21 that ι̂W B(Y, X) is asymptotically
consistent provided that the variance-covariance matrix estimators are. The calculation of
(53) is computationally fast, because it involves only linear algebra operations. However,
when distributions are not elliptical ι̂W B(Y, X) in (53) cannot be regarded as an estimate
of ι(Y, X).

5. Experiments for Univariate and Multivariate Output Test
Cases

This section is divided into two parts. In the first part, we discuss experiments for two
univariate test cases. In the second part, we discuss a multivariate output test case
in which it is possible to obtain ι(Y, Xi) analytically. All experiments are performed
on a personal PC, with an Intel(R) Core(TM) i7-7700HQ CPU 2.80GHz processor and
64GRAM, subroutines implemented in MatLab.

5.1. Univariate Output Test Cases
Our first experiments are based on the well-known Ishigami function (Ishigami and Homma
1990). The input output mapping is given by Y = sin(X1)(1 + 0.1X4

3 ) + 7 sin(X2)2 with
X1, X2 and X3 independent and uniformly distributed on [−π, π]. The values of variance-
based sensitivity measures are analytically known, with ξW (Y, X3) = 0.31, ξW (Y, X3) =
0.44 and ξW (Y, X3) = 0, a false negative. Analytical expressions of ι(Y, Xi) are out of
reach, however calculations can be performed numerically. In fact, the Ishigami model
is extremely fast to run, and we can study the estimates for large sample sizes. We
apply the given data strategy with the estimator in Equation (48). Also, because the
output is univariate, we can use the reordering strategy to find the Wasserstein-2 distance
between the marginal and conditional distribution of Y in each partition. Figure 2 reports
results for a numerical experiment in which the sample size is increased from N = 50 to
N = 200000.

Table 2b reports the values of the estimates ι̂(Y, Xi), ι̂W B(Y, Xi) and Âdv(Y, Xi) at
N = 200000. The fourth row shows that twice the values of the estimates of Adv(Y, Xi)
coincide with the analytical values of the first-order variance-based indices, in agreement
with Equation (41). The values of ι̂W B(Y, Xi) are greater than the values of Âdv(Y, Xi) for
all three inputs, signaling the presence of a diffusive component. Relying on ιW B(Y, Xi)
already avoids the false negative for X3, as ι̂W B(Y, X3) > 0. The values of ι̂(Y, Xi)
are, in turn, greater than the values of ι̂W B(Y, Xi) for all three inputs. Because ι(Y, Xi)
accounts for the complete transport between the marginal and conditional distributions,
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(a) Asymptotic behavior of the estimates of ι(Y, Xi) (cir-
cle ◦), ιWB(Y, X) (Square □), Adv(Y, Xi) (diamonds ⋄)
for the Ishigami function. Red, Importance Measures of
X1; Blue, Importance Measures of X2; Black, Importance
Measures of X3.

X1 X2 X3
ι̂(Y, Xi) 0.40 0.55 0.19

ι̂W B(Y, Xi) 0.36 0.50 0.14
2 · Âdv(Y, Xi) 0.31 0.44 0.00

(b) Estimates of ι(Y, Xi),
ιW B(Y, Xi) and Adv(Y, Xi) at
N = 200, 000 for the Ishigami
function.

Figure 2: Right graph: Estimates of ι(Y, Xi), ιW B(Y, Xi) and Adv(Y, Xi) at increasing
sample sizes and varying partitions. Left Table: Values at N = 200000 and
H = 60.

these values indicate that the advective and diffusive parts do not fully explain the change
in distributions for the case of the Ishigami function, in accordance with the fact that the
involved distributions are not normal. Also, the value ι̂(Y, X3) > 0 confirms that Y is
statistically dependent on X3.

In our second test case, we perform experiments to analyze a higher dimensional setting.
We consider a linear input-output mapping, Y = aXT , with the number of inputs equal
to nX = 999 and nX = 9999. We let X be a multivariate normal random vector, with
pairwise correlations ρi,j = 0.5, i, j = 1, 2, . . . , nX (i ̸= j). We then assign the weights
as a = [a1, a2, . . . , a999] and X = [X1, X2, . . . , X999], with ai = 4 for i = 1, 2, . . . , 333,
ai = −2 for i = 334, 335, . . . , 666, ai = 1 for i = 667, 668, . . . , 999. (A similar 3-groups
split is performed for the 9999 case). Given this assignment, Y is correspondingly normal,
with mean equal to 0 and variance V[Y ] = 5.03E5 and to V[Y ] = 1.10E6, for nX = 999
and NX = 9999, respectively. Because all conditional distributions are normal, for this
test case it is possible to obtain the values of ι(Y, Xi) analytically. We calculate the
expressions using the software Mathcad. The values are ι(Y, Xi) = 0.293, for the first
input group, ι(Y, Xi) = 0.289 for the second and ι(Y, Xi) = 0.291 for the third, respectively,
for nX = 999. Thus, the inputs are ranked according to their weight, which is intuitive for
linear models. However, the global sensitivity measures of the three input groups are close.
This effect is due to the presence of correlations. For the case nY = 9999, the analytical
calculations yields almost identical values for all three input groups with ι(Y, Xi) = 0.293,
i = 1, 2, 3.

Figure 3 reports estimates for samples generated using crude Monte Carlo with sizes
from N = 50 to N = 500000, with 20 replicates at each sample size. As the sample size
increases, we vary the partition cardinality from H = 8 to H = 60. Overall, the analysis
takes 450 seconds in the nX = 999 case and about 8 hours in the nX = 9999 case. Figures
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(a) Correlated normal test case with nX = 999. (b) Correlated normal test case with nX = 9999.

Figure 3: Numerical estimation of probabilistic sensitivity measures for the nX = 999 and
nX = 9999 correlated normal random variables test case. Boxplots represent
variability over 20 replicates. The sample size increases from N = 50 to N =
500000.

3a and 3b show that the estimates tend to the corresponding analytical values as the
sample size increases.

5.2. Multivariate Normal Output Test Case
We report results of experiments aimed at illustrating Theorems 9 and 11 and the con-
vergence from below of the estimates in Equation (48), for classical as well as entropic-
OT-based global sensitivity indices. Results regarding the computational times needed to
solve the given-data OT problems in Equations (50) and (52) follow. As a benchmark, we
consider the input-output mapping and distributions in Example 18.

We fix the sample size at N = 50000 and implement the estimator in Equation (48) for
partition cardinalities increasing from H = 5 to H = 200. Benchmarks for the numerical
experiments are the analytical values of the sensitivity measures reported in Tables 1.
Figure 4 displays the results.

The graphs in Figure 4 show that the estimates ι̂(Y, Xi) and ι̂ϵ(Y, Xi) tend to the cor-
responding analytical values from below. In fact, refining the partition can be interpreted
as obtaining increasingly precise information on Xi and therefore as obtaining an algebra
which is getting closer and closer to the algebra generated by Xi. We also observe that
the estimates are almost insensitive to choices of the partition size H between 80 and 200.
This plateau effect is in line with previous experiments on given-data estimators in Strong
and Oakley (2013): For sufficiently large N one finds a range of values of H for which
estimates show very little variability. Then, Strong and Oakley (2013) suggest to pick one
of these values for reporting.

Next, we display results for a set of experiments aimed at investigating asymptotic
behavior and run times when alternative algorithmic approaches (Table 3) are used to
solve the given-data OT problem in Equation (50). For the Sinkhorn algorithm, we set
the regularization parameter at ε = ℓ · ∥Q∥∞, with ℓ = 0.001 and Q is the cost matrix
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Figure 4: Vertical axis: Estimates of ι(Y, Xi) (⋄) and ιϵ(Y, Xi) (◦) for the multivariate-
output analytical test case. Horizontal axis: partition cardinality varies from
H = 5 to H = 200. Dotted lines represent estimates, continuous lines analytical
values (in Table 1).

Table 3: Average computational times (in seconds) for the calculations in Figure 5.
Sample Size N=50 N=100 N=250 N=500 N=1000

Network Simplex 0.0319 0.0441 0.1691 0.6959 2.6304
Sinkhorn 0.0140 0.0014 0.0043 0.0065 0.0123

Swap 0.0089 0.0007 0.0009 0.0034 0.0086
Bures 0.0115 0.0005 0.0001 0.0001 0.0003

whose elements equal Qk,j =
nY∑
t=1

(yk,t − yj,t)2, k, j = 1, 2, . . . , nX and use the solution
as a proxy for the classical OT-problem. Figure 5 shows results at increasing sample
sizes (horizontal axis), with N = ( 50, 100, 250, 500, 1000 ) and partitions set at H(N) =
( 2, 5, 7, 8, 10 ). The first, second and third graphs report estimates (dotted lines) obtained
when the OT problem in each partition is solved, respectively, with the network simplex,
the Sinkhorn and the Swap algorithms. The fourth graph reports estimates using (53).
All graphs show that at samples of about 250 realizations the estimates are close to the
analytical values (continuous lines).

Table 3 reports the running times of the algorithms. Notice that at N = 250, with 7
partitions, we register a total of 21 optimization problems of size 250 × 35 to be solved,
at N = 1, 000 we have 30 problems of size 1000 · 100. The numbers in Table 3 show that
the estimator that solves Problem (50) with the simplex algorithm is several times slower
than the remaining algorithms. For instance, at N = 1000 the simplex algorithm takes on
average ≈ 2.6 seconds to solve one instance, the Sinkhorn and the Swap algorithms about
≈ 0.012 seconds, the estimator in (53) about ≈ 0.0003 seconds.

We conclude by presenting the results of experiments at increasing values of the regu-
larization parameter ε in the Sinkhorn approximation. We use a sample size of N = 1000
and, in addition to ℓ = 0.001 adopted in the previous experiments, we consider ℓ = 0.01,
ℓ = 0.1, ℓ = 1 and ℓ = 10. At ℓ = 0.01 estimates increase of about 10% for the three
inputs, at ℓ = 0.01 they increase of about 65% for the first two inputs, and of about 400%
for the third input. At ℓ = 1 the estimates are close to 0.97 for all three inputs and at
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Figure 5: Estimates of ι(Y, Xi) (vertical axis) with four OT-solvers for the model in (44).
Sample sizes (horizontal axis) vary from N = 50 to N = 1, 000.

ℓ = 10, they are almost close to unity. Also these results are in accordance with Theorem
19.

6. Application: The ATO Simulator
Premise: Univariate or Multivariate? The approach we have outlined applies to both
a univariate and a multivariate output setting. While the distinction between the two
settings may not always be clear-cut, it is important to ensure consistency between the
quantity of interest and the decision-making problem at hand. For instance, if the model
has been constructed to forecast the nY attributes of multicriteria utility function U(Y ) =
u(Y1, Y2, . . . , YnY ) that captures the decision-maker’s preferences, then U(Y ) becomes the
univariate output of interest. In this scenario, treating the outputs as a vector would be
inconsistent with the problem setup. Nevertheless, there are situations where the output
is inherently multivariate, as in the case of a vector in which each element is a different
quantity, or a spatially or temporally distributed output, an image, or, in general, a list
of outputs that cannot reasonably be incorporated into a multi-criteria utility function.
In these cases, employing a multivariate sensitivity approach does not conflict with the
overall decision-making problem setup. Additionally, the two approaches are not mutually
exclusive, as in the case in which the analyst is interested in examining also the sensitivity
of a specific output Yi, for instance to verify the model’s response vis-á-vis an underlying
theory or business intuition.

The ATO Simulator. The theory of assemble-to-order (ATO) systems originates with
Glasserman and Wang (1998), who use stochastic simulations to analyze the trade-off be-
tween stock reserve costs and service levels. In Hong and Nelson (2006), items (parts) are
ordered and stocked, and products are then assembled based on the available items. Some
of the items are key parts, without which the product cannot be assembled. Orders arrive
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(a) First Row: scatterplot partitioning. Second
Row: corresponding conditional densities.
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(b) Estimates of ι(Y, Xi), ιW B(Y, Xi),
Adv(Y, Xi) for the ATO final profit.

Figure 6: Global sensitivity analysis of the final profit of the ATO simulator.

stochastically, and if a key part is missing, a replenishment is ordered, and the product is
completed after a random time interval. Xie et al. (2012) provide a software implementa-
tion of the model in Hong and Nelson (2006). The code, available at the SimOpt website,
has been extensively used in simulation studies — see Binois et al. (2018) and Binois and
Gramacy (2021) for reviews. We rely on the publicly available MatLab implementation,
with the configuration of Hong and Nelson (2006): The inventory consists of eight items,
from which five products are assembled. Simulator inputs are the prices for the eight items
(X1, X2, . . . , X8), the order arrival rates for the five products (X9, X10, . . . , X13), the items
holding cost (X14), the target levels for the eight inventory items (X15, X16, . . . , X22). The
input ranges, as well as the assigned distributions, are the same as in Hong and Nelson
(2006). We set the run length at 100 hours and consider as model outputs the final profit
(univariate) and the final inventory (multivariate). While these outputs could be com-
bined to form a nine-variate vector, we prefer to keep them separate because they have
different managerial interpretations: Final profit quantifies economic performance, while
final inventory informs us about both the quantities of items to be stocked and the overall
storage capacity that allow the manager to achieve such economic performance.

We generate an input sample of size N = 213 with 5 replicates, for a total of 40960
model evaluations. The computing time for the model evaluations is about eight hours.
We use given-data estimators for all the sensitivity measures applied, fixing the number of
partitions at H = 10. We start with final profit as a quantity of interest. Figure 6a reports
results for the scatterplot partitioning and the conditional model output distributions
(empirical densities are available in this case) for selected inputs. In the second row of
Figure 6a, the bold line represents the marginal distribution. The estimated mean profit
value is Ê[Y ] ≈ 68, the 5th percentile at y05 ≈ −42, the 95th percentile at y95 ≈ −42 and
an estimated standard deviation of σ̂Y ≈ 54. The non-bold (blue) densities represent the
conditional densities given one of the four inputs. To illustrate, in Graph (a) we have eleven
conditional densities because the target level of inventory item six (input X20) is a discrete
random variable with support {0, 1, . . . , 10}. The graph directly below evidences a left shift
in the conditional densities after fixing this input: fixing the target level of inventory item
six to zero yields a negative profit in all simulations (see the corresponding barplot in Graph
(a). The visual impression from the second row in Figure 6a is that information about the
target levels of inventory items six and four (input X18), respectively, has a greater impact
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on the final profit distribution than information about the prices of items one and three
(inputs X1 and X3, respectively). This qualitative intuition is confirmed quantitatively by
the estimates of the OT-based sensitivity measures (Figure 6b). The barplot in Figure 6b
reports the values of the triplet of indices ι̂(Y, Xi), ι̂W B(Y, Xi) and Âdv(Y, Xi). We obtain
ι̂(Y, Xi) > ι̂W B(Y, Xi) > Âdv(Y, Xi) for all inputs, in accordance with the theory, with the
advective (variance-based) contribution amounting at a substantial portion of the overall
input importance. The most important input is the target inventory level of item six, X20,
followed by the target inventory level for item four, X18, and the items holding cost, X14.
The prices of the first three items (inputs X1, X2 and X3) play a minor role. We observe
an overall agreement between the ranking induced by Âdv(Y, Xi) and by ι(Y, Xi), with
minor differences occurring for the least relevant inputs.

(a) Estimates of ιWB(Y, Xi) and Adv(Y, Xi)
for the ATO inventory level.

(b) Inputs ranks on profit and final inventory of
the ATO simulator.

Figure 7: Results for the multivariate output of the ATO simulator

Consider now the case in which inventory is the output. We report estimates of ι(Y, Xi)
and Adv(Y, Xi). By Proposition 16, ranking inputs with Adv(Y, Xi) is equivalent to sorting
them with the generalized variance-based importance measures. To calculate ι(Y, Xi), we
solve the OT-problem in each partition using the Sinkhorn algorithm. The barplot in
Figure 7a reports the estimates of ι̂(Y, Xi) as light colored (orange) bars and of Adv(Y, Xi)
as dark colored bars (blue). The values of ι̂(Y, Xi) are close to zero for the prices of the eight
inventory items, (inputs X1, X2, . . . , X8), the order arrival rates of products three, four and
five (inputs X11, X12 and X13, respectively), as well as for the holding cost (input X14). By
zero-independence these values indicate that the final multivariate inventory distribution
is not sensitive to these inputs: gathering information about them brings little or no value
to the decision-maker. Conversely, the non-zero values of the sensitivity indices of the
prices of the first two products (inputs X9 and X10), and of the target inventory levels for
all items (inputs X15, X16, . . . , X22) indicate that the multivariate output distribution is
sensitive to these variables. However, by max-functionality we know that, because none of
their OT-based indices is close to unity, the final inventory composition is not functionally
dependent on any of these inputs separately, and gaining perfect information about any
of them individually is not sufficient to remove uncertainty.

Comparing the values of Adv(Y, Xi) and ι(Y, Xi) shows that the advective part accounts
from a minimum of 2% up to a maximum of 54% of ι̂(Y, Xi), with the highest percentage
associated with the most important input, the price of item six, X20. Overall, in the
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multivariate case the variance-contributions amount to a much lower fraction of the inputs’
importance than in the univariate (final profit) case. We also observe greater discrepancies
in the rankings generated by Adv(Y, Xi) and ι(Y, Xi) compared to those in the univariate
case.

Figure 7b compares the input ranks for final profit (dashed blue line) against their ranks
for final inventory (solid red line). Although the most important input, the target level of
inventory item six (X20), is the same for both the univariate and the multivariate output,
the remaining ranks differ notably. The Spearman correlation coefficient between the two
ranking is 0.54. For the final profit, the target levels of inventory items eight and three
(X22 and X17, respectively) rank tenth and seventh, while they rank second and third
when the output is final inventory. Interestingly, the holding cost X14 ranks only 21st for
final inventory but third for the final profit. This suggests that uncertainty in inventory
cost impacts profitability but not the final item allocation. The fact that the target level of
inventory of item six, X20, is ranked as the most important input for both final inventory
and profit can be explained by its association with the only item that is key for all five
products.

7. Conclusions
This work proposes an approach to global sensitivity analysis based on the theory of opti-
mal transport that yields an elegant solution to the problem of determining key drivers of
variability for multivariate responses. We have seen that the resulting sensitivity indices
possess relevant properties such as zero-independence, max-functionality and monotonic-
ity.

We have focused on the squared Wasserstein-2 distance and studied the case when
marginal and conditional distributions are elliptical with the same characteristic generator.
The closed-form expressions yield a global sensitivity measure based on the Wasserstein-
Bures distance that extends Wagner’s variance-based sensitivity measures and, under input
independence, coincides with the generalized sensitivity indices of Lamboni et al. (2011)
and Gamboa et al. (2014).

Recent literature is paying attention to the entropic formulation of OT problems, be-
cause it grants a computationally advantageous algorithmic implementation and its solu-
tion can be used as an approximation of the classical OT formulation. We have studied
entropic-OT-based indices and we have seen that they possess the same properties as the
ones based on the classical-OT formulation, with the difference that entropic OT-based in-
dices are minimal but not necessarily zero in the case of statistical independence. However,
for large values of the regularization parameter entropic OT-based indices tend to one and
blur the inputs’ importance, assigning the same value, independently of the underlying
input-output mapping.

We have discussed a given-data estimation design that is linear in the sample size and
does not depend on the problem dimensionality. We have proven that the given-data
estimators are asymptotically unbiased and converge from below, both for the classical
and entropic cases. We have conducted a series of numerical experiments aimed at testing
the theoretical findings and at determining computational times using OT solvers that
rely on alternative rationales, such as the network simplex, Cuturi’s Sinkhorn, Puccetti’s
reordering, and the Wasserstein-Bures approximation. Results show that most estimators
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yield accurate estimates within a short amount of time.
We have challenged the estimation strategy through several experiments, including the

well-known ATO simulator, and an analytical test case with large number of inputs. Our
results showed that the new indices provide valuable insights for both univariate and
multivariate output settings, producing robust input rankings in both cases. Additionally,
by calculating both OT-based and Wasserstein-Bures-indices simultaneously, analysts can
avoid false negatives and determine the extent to which an input’s importance is due to
its impact on the first moments (advective part), on the second moments (diffusive part)
or on other statistical properties of the output.

ore broadly, this work contributes to connecting sensitivity analysis with optimal trans-
port, a branch of optimization receiving increasing attention in machine learning and
statistics. Research in machine learning is rapidly progressing toward the development of
efficient optimal transport solution algorithms (see Chen et al. (2022)). A natural contin-
uation of this work is to invest in estimators based on these recent strategies. A further
research avenue consists of applying theoretical findings on algorithmic convergence (such
as those in Chizat et al. (2020) on the Sinkhorn algorithm) to obtain confidence bounds at
finite sample sizes. Additionally, kernel-based indicators are currently being researched for
use in multivariate problems. Comparing OT-based and kernel-based indices from both
theoretical and numerical perspectives is a further research avenue following the present
work.
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Peyré G, Cuturi M (2019) Computational optimal transport. Foundations and Trends in Machine
Learning 11(5–6):355–607.

Puccetti G (2017) An algorithm to approximate the optimal expected inner product of two vectors
with given marginals. Journal of Mathematical Analysis and Applications 451(1):132–145.

Rahman S (2016) The f-Sensitivity Index. SIAM/ASA Journal on Uncertainty Quantification
4(1):130–162.

Razavi S, Jakeman A, Saltelli A, Prieur C, Iooss B, Borgonovo E, Plischke E, Lo Piano S, Iwanaga
T, Becker W, Tarantola S, Guillaume JHA, Jakeman J, Gupta H, Melillo N, Rabitti G,
Chabridon V, Duan Q, Sun X, Smith S, Sheikholeslami R, Hosseini N, Asadzadeh M, Puy A,
Kucherenko S, Maier HR (2021) The Future of Sensitivity Analysis: An essential discipline for
systems modeling and policy support. Environmental Modelling and Software 137(104954):1–
22.
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A. Proofs
Proof. Calculations for Remark 2. Let Y be absolutely continuous. Let (Y, k) be a metric
space with the discrete metric. Also, let P, Q be two probability measures on (Ω, B), with
densities fP(y), fQ(y). Dobrushin (1970) proves that in the case Y is univariate and the
metric for the optimal transport problem is the discrete metric then the Wasserstein metric
is given by W (P,Q) = supB∈B(Ω) |P(B)−Q(B)|. Then, by Scheffè’s theorem (Scheffé 1947),
we have

W (P,Q) = sup
B∈B(Ω)

|P(B) − Q(B)| = 1
2

∫
R

|fP (y) − fQ(y)|dy. (54)

Hence, ξL1
X is an OT-based sensitivity measure between density functions.

Proof. Proof of Proposition 3. Positivity: E[K(ν, νx)] ≥ 0, follows immediately from the
fact that K(ν, ν ′) ≥ 0 for any ν, ν ′ ∈ P(Y). Zero: independence of Y and X is equivalent
to ν = νx for µ-a.e. x ∈ X. Then, under independence it is k(y, y′) = 0 almost everywhere
in X, which leads to ξK(Y, X) = 0. Conversely, if K(ν, ν ′) = 0 for some π∗ ∈ Π(ν, ν ′),
then it must be K(π∗) =

∫
k(y, y′) dπ∗(y, y′) = 0. Because the integrand is non-negative,

it must hold that k(y, y′) = 0 on a set of π∗-probability 1. Then, because k(y, y′) = 0
implies y = y′, we have that νx = ν almost everywhere.
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Proof. Proof of Lemma 4. We argue by contradiction and we assume that there exists
ν ∈ P, y1, y2 ∈ supp(ν) with y1 ̸= y2, and t ∈ (0, 1) such that

K
(
ν, (1 − t)δy1 + tδy2

)
= (1 − t)K(ν, δy1) + tK(ν, δy2) < ∞. (55)

We set ν ′ := (1 − t)δy1 + tδy2 and π := ν × ν ′. We then have:

K(π) =
∫∫

Y2
k(y, y′)dπ(y, y′) =

∫∫
Y2

k(y, y′)dν(y)dν ′(y′)

=
∫∫

Y2
k(y, y′)dν(y)

(
(1 − t)δy1(y′) + tδy2(y′)

)
dy′ = (1 − t)

∫
Y

k(y, y1)dν(y) + t

∫
Y

k(y, y2)dν(y)

= (1 − t)K(ν, δy1) + tK(ν, δy2) = K(ν, ν ′),

so that π is an optimal coupling between ν and ν ′ for the cost k. Then, by the properties
of optimal plans and the continuity of k, supp(π) = supp(ν) × {y1, y2} is k-cyclically
monotone (see (Villani 2008, Ch. 5)). Since {y1, y2} ⊂ supp(ν) the pairs (y1, y2) and
(y2, y1) belong to supp(π); however

k(y1, y2) + k(y2, y1) > 0 = k(y1, y1) + k(y2, y2), (56)

which shows that there is a cycle that improves the integral cost, contradicting the opti-
mality of π.

Proof. Proof of Theorem 5. For the inequality, it is sufficient to observe that from the
theory of optimal transport

K(ν, ν ′) ≤
∫∫

Y2
k(y, y′) dν(y) dν ′(y′) = K(ν × ν ′). (57)

In our context, then we have

K(ν, νx) ≤
∫∫

Y2
k(y, y′) dν(y) dνx(y′) = K(ν × νx). (58)

Taking the integral with respect to µ we have

ξK(Y, X) =
∫

X
K(ν, νx) dµ(x) ≤

∫
X

∫∫
Y2

k(y, y′) dν(y) dνx(y′) dµ(x) (59)

≤
∫∫

Y2
k(y, y′) dν(y)

∫
X

dνx(y′)dµ(x) =
∫∫

Y2
k(y, y′) dν(y) dν(y′) = MK [Y ],

(60)

where MK [Y ] is in (18). Then, in the case of functional dependence, we have Y = f(X)
for some F-measurable map f : X → Y, ν = f♯µ, and νF

x = δf(x); since

K(ν, δf(x)) =
∫

Y
k(y, f(x))dν(y),

we obtain

ξK(Y, X|F) =
∫

X
K(ν, νF

x ) dµ(x) =
∫

X
K(ν, δf(x)) dµ(x) =

∫
X

( ∫
Y

k(y, f(x))dν(y)
)

dµ(x)

=
∫

Y

( ∫
Y

k(y, y′) dν(y)
)

dν(y′) = MK [Y ].
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Thus, we have proven that the maximum is reached in the case of a functional de-
pendence. For the converse implication, let us suppose that ξK(Y, X|F) = MK [Y ] =∫

Y K(ν, δy) dν(y), that is,∫
X

K(ν, νx) dµ(x) = MK [Y ] =
∫

Y
K(ν, δy) dν(y), (61)

and let us show that νF
x is concentrated into a Dirac mass for µ-a.e. x ∈ X. By disinte-

gration we can write the last term as∫
Y

K(ν, δy) dν(y) =
∫

X

( ∫
Y

K(ν, δy) dνx(y)
)

dµ(x). (62)

Since for every x ∈ X we have

K(ν, νF
x ) ≤

∫
Y

K(ν, δy) dνF
x (y),

comparing (62) and (61) we get

K(ν, νF
x ) =

∫
Y

K(ν, δy) dνF
x (y) for µ-a.e. x ∈ X. (63)

We want to show that equality in (63) can hold only if νF
x is a Dirac measure using Lemma

4 (with t = 1/2) and the fact that the support of νF
x is contained in the support of ν. We

argue by contradiction: if for some x ∈ X the measure νF
x is not concentrated at a unique

point, then we can write νF
x = 1

2ν1
x + 1

2ν2
x for some probability measures ν1

x, ν2
x ∈ P(Y),

ν1
x ̸= ν2

x, which clearly have support contained in S := supp(ν). Defining σ := ν1
x × ν2

x we
can represent νF

x as
νF

x =
∫

S×S

(1
2δy1 + 1

2δy2

)
dσ(y1, y2). (64)

Since K(ν, ·) is convex and l.s.c. and 1
2δy1 + 1

2δy2 are supported in S for every (y1, y2) ∈
S × S, Jensen inequality yields

K(ν, νF
x ) ≤

∫
S×S

K
(
ν,

1
2δy1 + 1

2δy2

)
dσ(y1, y2). (65)

Since σ is not concentrated on the diagonal of Y × Y, the strict convexity of ζ on Dirac
masses yields∫

S×S
K
(
ν,

1
2δy1 + 1

2δy2

)
dσ(y1, y2) <

∫
S×S

(1
2K

(
ν, δy1

)
+ 1

2K
(
ν, δy2

))
dσ

= 1
2

∫
Y

K(ν, δy1) dν1
x(y1) + 1

2

∫
Y

K(ν, δy2) dν2
x(y2)

=
∫

Y
K(ν, δy) dνF

x (y) < ∞.

Combining the last strict inequality with (65) we thus obtain

K(ν, νF
x ) <

∫
Y

K(ν, δy) dνF
x (y),

a contradiction with (63). We eventually obtain that νF
x = δf(x) for some Borel map

f : X → Y; since νF
x is F-measurable, we conclude that f is F-measurable as well.
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Proof. Proof of Theorem 8.
Let us call µF

x′ be the disintegration of µ w.r.t. F and let νF
x′ the disintegration of π

w.r.t. X and the σ-algebra F . By (Schwartz 1973, Theorem 3,1) we have

νF
x′ =

∫
X

νx dµF
x′(x) for µ-a.e. x′ ∈ X. (66)

One can also directly check the validity of (66): denoting by (ϑx′)x′∈X the measure given
by the right-hand side of (66), we have for every Borel set B ∈ B(Y)

ϑx′(B) =
∫

X
νx(B) dµF

x′(x) = Eµ[ν·(B)|F ] (67)

by definition of the conditional measure µF
x′ ; thus x′ 7→ ϑx′(B) is F-measurable for every

Borel set B ∈ B(Y). On the other hand, integrating (67) w.r.t. µ on a arbitrary set A ∈ F
we get∫

A
ϑx′(B) dµ(x′) =

∫
A

( ∫
X

νx(B) dµF
x′(x)

)
dµ(x′) =

∫
A

νx(B) dµ(x) = π(A × B)

by definition of µF
x′ , so that ϑx′(B) should coincide with νF

x′ for µ-a.e. x′ ∈ X by the
(essential) uniqueness of the regular conditional laws.

Using the convexity of K(ν, ·) and Jensen inequality we have

ξK(Y, X|F) =
∫

X
K(ν, νF

x′) dµ(x′) =
∫

X
K
(
ν,

∫
X

νx dµF
x′(x)

)
dµ(x′)

≤
∫

X

( ∫
X

K(ν, νx) dµF
x′(x)

)
dµ(x′) =

∫
X

K(ν, νx) dµ(x) = ξK(Y, X),

which yields (23).
In the case F = σ(g), we can set σ := g♯µ = U♯P ∈ P(U), and we can decompose µ as

µ =
∫

U µu dσ(u). If ν ′
u is the disintegration of π given g, we have as in (67)

ν ′
u =

∫
X

νx dµu(x) (68)

and the previous estimate reads as

ξK(Y, U) =
∫

U
K(ν, ν ′

u) dσ(u) =
∫

U
K
(
ν,

∫
X

νx dµu(x)
)

dσ(z)

≤
∫

U

( ∫
X

K(ν, νx) dµu(x)
)

dσ(u) =
∫

X
K(ν, νx) dµ(x) = ξK(Y, X).

Equality holds if for σ-a.e. u ∈ U

K
(
ν,

∫
X

νx dµu(x)
)

=
∫

X
K(ν, νx) dµu(x)

and this happens, e.g., if g is injective, so that µu is a Dirac mass concentrated in g−1(u)
for σ-a.e. u and νx = ν ′

g(x).
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Proof. Proof of Theorem 9. It is clear that lim supn→∞ ξK(Y, X|Fn) ≤ ξK(Y, X|F); we
thus have to show that lim infn→∞ ξK(Y, X|Fn) ≥ ξK(Y, X|F).

Let us consider the family of σ-algebras in X × Y F ′
n :=

{
A × Y : A ∈ Fn

}
and

F ′
∞ :=

{
A × Y : A ∈ F

}
, Let (ν∞

x )x∈X (resp. (νn
x )x∈X) be the conditional measures in

P(Y) of π with respect to F ′
∞ (resp. F ′

n).
For every f ∈ L1(X × Y, π), the conditional expectations fn := Eπ[f, F ′

n] (resp. f∞ :=
Eπ[f, F ′

∞]) can be identified with the Fn (resp. F) measurable functions given by

fn(x) = Eνn
x [f ] =

∫
Y

f(x, y) dνn
x (y), f∞(x) = Eν∞

x [f ] =
∫

Y
f(x, y) dν∞

x (y) for µ-a.e. x ∈ X,

and we have fn → f∞ π (and thus µ) almost everywhere.
Choosing f(x, y) = φ(y) with φ ∈ Cb(Y) and observing that

Eνn
x [f ] =

∫
Y

φ dνn
x (y),

we get
lim

n→∞

∫
Y

φ dνn
x (y) =

∫
Y

φ dν∞
x (y),

for µ-a.e. x ∈ X. Choosing a countable collection of functions in Cb(Y) which determine
weak convergence we conclude that νn

x → ν∞
x for µ-a.e. x ∈ X.

Since K is lower semicontinuous w.r.t. weak convergence we have

lim inf
n→∞

K(ν, νn
x ) ≥ K(ν, ν∞

x ) for µ-a.e. x ∈ X

and therefore Fatou’s Lemma yields

lim inf
n→∞

ξK(Y, X|Fn)) = lim inf
n→∞

∫
X

K(ν, νn
x ) dµ(x) ≥

∫
X

K(ν, ν∞
x ) dµ(x) = ξK(Y, X|F).

Proof. Proof of Lemma 10 We first observe that

Kε(ν, δy′) = K(ν, δy′) =
∫

Y
k(y, y′) dν(y), (69)

because in this case the unique coupling in Π(ν, δy′) is ν × δy′ and KL(π, ν × δy′) = 0.
We use a similar argument by contradiction as in the case of K: let us suppose that

there exists ν ∈ D(Kε), y1, y2 ∈ supp(ν) with y1 ̸= y2, and t ∈ (0, 1) such that

Kε

(
ν, (1 − t)δy1 + tδy2

)
= (1 − t)Kε(ν, δy1) + tKε(ν, δy2) < ∞.

We set ν ′ := (1 − t)δy1 + tδy2 and π := ν × ν ′. It is easy to check that

Kε(π) = (1 − t)
∫

Y
k(y, y1) dν(y) + t

∫
Y

k(y, y2) dν(y)

= (1 − t)K(ν, δy1) + tK(ν, δy2) = (1 − t)Kε(ν, δy1) + tKε(ν, δy2) = Kε(ν, ν ′),
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so that π is an optimal coupling between ν and ν ′ for the entropic optimal transport
problem. It follows that the density dπ/d(ν × ν ′) = 1 should admit a k, ε cyclically
invariant version: in particular

k(z1, y1) + k(z2, y2) = k(z1, y2) + k(z2, y1),

for z1, z2 in a dense subset of supp(ν). Using the continuity of k and approximating yi

with a sequence of points zi, we get 0 = k(y1, y1) + k(y2, y2) = k(y1, y2) + k(y2, y1), a
contradiction.

Proof. Proof of Theorem 11. We first observe that Kε(ν, ν ′) is lower semicontinuous,
and convex in its second argument, analogously to K(ν, ν ′). Equation (27) follows by
integrating (69) w.r.t. ν. We can then apply, with minor modifications, the arguments
used in the proofs of Theorems 5, 8, and 9 for K to complete the proof (these steps are
omitted for brevity).

Proof. Proof of Proposition 12. In general, by the convexity of Kε(ν, ν ′) in its second
argument, we have

ξKε(Y, X) =
∫

X
Kε(ν, νx) dµ(x) ≥ Kε(ν,

∫
X

νx dµ(x)) = Kε(ν, ν),

where the equality ν =
∫

X νx dµ(x) follows by disintegration. Thus, Kε(ν, ν) is a minimum
for ξKε(Y, X). Moreover, if Y and X are independent, then νx = ν for µ-a.e. x ∈ X, so
that one gets the equality in the previous formula and in (29).

Proof. Proof of Proposition 15. Inserting Equation (6) into Equation (30) we find Equation
(37). Then, Theorem 2.1 in Gelbrich (1990) shows that when PY and PY |X are elliptical
with the same generator for all values of X, then the Wasserstein distance between PY

and PY |X is given by Equation (4) almost everywhere in X , because the residual term
Γ(PY ,PY |X) is null almost everywhere. Then, taking the expectation, Equation (37)
holds. Equation (38) is an immediate consequence of Equation (4), while Equation (39)
requires the additional observation that E[Tr ΣY |X ] = Tr ΣY and Tr ΣY = V[Y ] so that

Diff(Y, X) = 1 − V[Y ]−1E[Tr
(
Σ1/2

Y ΣY |XΣ1/2
Y

)1/2
].

Proof. Proof of Proposition 16. To prove (40), note that

Adv(Y, X) = E
[

nY∑
t=1

(E[Yt] − E[Yt|X])2
]

=
nY∑
t=1

E[(µY,t − µY |Xi,t)
2] =

nY∑
t=1

ξV,t
i . (70)

To prove Equation (41), we report the results in (Gamboa et al. 2014, Section 3.1). First,
note that one can write

g(X) = gi(Xi) − gi(X−i) + g−i,j(Xi, X−i) − E[Y ], (71)

where gi(Xi) = E[Y |Xi]−E[Y ], g−i(X−i) = E[Y |X−i]−E[Y ], and gi,−i(Xi, X−i) = g(X)−
gi(Xi) − g−i(X−i). Under independence, the variance of Y can be decomposed as ΣY =
ΣY

i + ΣY
−i + ΣY

i,−i, and the generalized Sobol’ sensitivity index of Xi is then S(Y, Xi) =
Tr(ΣY

i )
Tr(ΣY ) , where Tr(ΣY

i ) equals the sum of the individual contributions of Xi to the variance

of Y t, that is Tr(ΣY
i ) =

∑nY
t=1 ξV,t

i , so that .
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=
∑nY

t=1 S(Yt, Xi)

Proof. Proof of Corollary 17. Let Y = AX +b, with Y a random vector in Rm on probabil-
ity space (Ω, B,P), A = (ai,j), i = 1, 2, . . . , nX , j = 1, 2, . . . , nY , and b = (b1, b2, . . . , bnY ).
First, let X ∈ RnX , X ∼ EC(mX , Σ∗

X , h) with finite second order moment. If A is an
nY × nX matrix and b ∈ RnY , then Y ∼ EC(AmX + b, AΣ∗

XAT , h) and Z = Y |Xi is el-
liptical [see Landsman and Valdez (2003) among others]. At the same time, as proven
in Cambanis et al. (1981), if X is elliptical then the random variable U = X|Xi is
elliptical and U ∼ EC(mX|Xi

, Σc
i
, h), with Σc

i as given in (42). Therefore, (Y |Xi) ∼
EC(AmY |Xi

+b, AΣc
iA

T , h). Then, Y and (Y |Xi) are both elliptical random variables with
characteristic generator G. Then, the 2-Wasserstein metric between PY and PY |Xi

is equal
to the Wasserstein-Bures metric WB(PY ,PY |Xi

) in (4) for every Xi.

Proof. Proof of Theorem 19 We recall that in Equation (31) the numerator is equivalent
to writing

ξKε(Y, X) = E[Kε(PY ,PY |X)], (72)

with Kε(ν, ν ′) defined by Equation (8). The value Kε(·, ·) is determined by the solu-
tion of the entropic-OT problem. The theory of the entropic-OT states that the op-
timal transport plan is the product plan ν × ν ′ when ε → ∞. We have seen that,
in correspondence of this solution, Kε(ν, ν ′) is maximal and equal to MK [Y ]. That is
Kε(ν, νx) →

∫ ∫
k(y, y′) dν(y)dνx(y′) = K(ν×νx), as ε → ∞. Thus, for every value X = x,

ε → ∞, Kε(PY ,PY |X=x) → MK [Y ]. Then, E[Kε(PY ,PY |X)] → E[MK [Y ]] = MK [Y ].
Then, by Equation (31) we have ι∞(Y, X) = 1.

Estimation: Detailed Treatment and Proof Consider a sequence of random variables
(XN , Y N ), N ∈ N, defined on (ΩN ,BN ,PN ) with values in X × Y such that the joint laws
πN = (XN , Y N )♯PN is weakly converging to π = (X, Y )♯P. When k is not bounded, we
will also assume that

lim
N→∞

EN [a(Y N )] = E[a(Y )] < ∞, (73)

where a = a1 + a2, with the separate cost functions bounded, so that MK [Y ] < ∞. A
typical example is given by ΩN := {1, 2, · · · , N} with the uniform measure and XN (n) :=
Xn(ω), Y N (n) := Yn(ω), n = 1, · · · , N , are obtained by the evaluation of a sequence
(Xn, Yn)n∈N of mutually independent random variables sharing the same joint law of
(X, Y ).

Here, we can distinguish the simpler case when X takes values in a finite set (or,
equivalently, F is finite) from the general one. In the discrete case, we will assume that
X = {x1, x2, · · · , xH} is a finite set, F = 2X, and we consider the quantity

ξK
N := ξK(Y N , XN ). (74)

In the general case, we introduce a countable collection of measurable partitions of X,
X M = {XM

h }h=1,··· ,H(M), M ∈ N, generating a corresponding family of σ-algebras FM =
σ(X M ) satisfying

FM ⊂ FM+1,
∨

M∈N
FM = F , µ(∂XM

h ) = 0 for every M ∈ N, 1 ≤ h ≤ H(M). (75)
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We then rewrite the estimator in (48) as

ξ̂K(M, N) =
H(M)∑
h=1

P̂N [X ∈ Xh
i ]K(P̂N

Y , P̂N
Y |X∈Xh

i
), (76)

where, P̂Y and P̂Y |X are the empirical marginal and conditional measures estimated from
the available observations, and consider the quantities

ξK
M,N := ξK(Y N , XN |FM ). (77)

Theorem 21. Under the above conditions:

1. If X is finite then
lim

N→∞
ξK

N = ξK(X, Y ). (78)

2. In the general case, if (75) holds true,

lim
M→∞

lim
N→∞

ξK
M,N = ξK(X, Y |F). (79)

Proof. Proof of Theorem 21. Case 1: X is finite It is not restrictive to assume that
P[X = xh] > 0, h = 1, · · · , H. In this case, the OT-based sensitivity measures

ξK(Y, X), ξK
N can be rewritten as

ξK =
H∑

h=1
P[X = xh]K(PY ,PY |X=xh) =

H∑
h=1

µ({xh})K(ν, νxh), (80)

ξK
N =

H∑
h=1

PN[XN = xh]K(PY N ,PY N |XN =xh) =
H∑

h=1
µN ({xh})K(νN , νN

xh), (81)

where νxh(B) = (µ({xh}))−1π({xh} × B) for every Borel set B of Y and a similar formula
holds for νN

xh .
The weak convergence assumption on πN and the fact that X is finite yields νN → ν

and, for every h, µN ({xh}) → µ({xh}), νN
xh → νxh as N → ∞. We can then easily pass to

the limit in (81) as N → ∞ obtaining (80).
Case 2 We want to prove first that

lim
N→∞

ξK
M,N = ξK(Y, X|FM ). (82)

The situation here is quite similar to the previous case: we set µM,h := µ(XM
h ), µN

M,h :=
µN (XM

h ), H(M) := {h ∈ N : 1 ≤ h ≤ H(M), µM,h > 0}, HN (M) := {h ∈ N : 1 ≤ h ≤
H(M), µN

M,h > 0} and for every Borel set B of Y h ∈ H(M) νM,h(B) = (µM,h)−1π(XM
h ×

B); similarly, if h ∈ HN (M) νN
M,h(B) = (µN

M,h)−1π(XM
h × B).

ξK(Y, X), ξK
N can be rewritten as

ξK(Y, X|FM ) =
∑

h∈H(M)
µ(XM

h )K(ν, νM,h), (83)

ξK
N =

∑
h∈HN (M)

µN (XM
h )K(νN , νN

M,h). (84)
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The weak convergence assumption on πN and the fact that the boundaries of XM
h are

µ-negligible, yield νN → ν, µN (XM
h ) → µ(XM

h ) for every h ∈ {1, · · · , H(M)}, and νN
M,h →

νM,h as N → ∞ whenever h ∈ H(M). Moreover, we have

lim
N→∞

∫
Y

a(y) dνN (y) =
∫

Y
a(y) dν(y)

so that a is uniformly integrable w.r.t. νN , i.e.

∀ ϵ > 0 ∃ L > 0 :
∫

A(L)
a(y) dνN (y) ≤ ϵ for every N ∈ N, (85)

where A(L) := {y ∈ Y : a(y) ≥ L}.
If h ∈ H(M) we know that (µN

M,h)−1 < c for sufficiently large N , and we deduce that a
is uniformly integrable w.r.t. νN

M,h as well, since νN
M,h ≤ cνN ; we thus get

lim
N→∞

∫
Y

a(y) dνN
M,h(y) =

∫
Y

a(y) dνM,h(y) for every h ∈ H(M)

and therefore

lim
N→∞

K(νN , νN
M,h) = K(ν, νM,h) for every h ∈ H(M). (86)

When µM,h = 0, we can use (85) to get

µN
M,hK(νN , νN

M,h) ≤ µN
M,h

∫
Y

a dνN +
∫

Y×XM
h

a(y) dπN ≤ µN
M,h

∫
Y

a dνN + µN
M,hL + ϵ

so that since µN
M,h → 0 as N → ∞

lim sup
N→∞

µN
M,hK(νN , νN

M,h) ≤ ϵ;

since ϵ > 0 is arbitrary, we conclude that

lim
N→∞

µN
M,hK(νN , νN

M,h) = 0.

We can then easily pass to the limit in (83) as N → ∞ obtaining (84).
The last step

lim
M→∞

ξK(Y, X|FM ) = ξK(Y, X|F)

eventually follows by Theorem 9.

B. Counterexample for the Minimization of the Entropic
Transport

Let Y be a random variable taking values in the finite set Y = {y1, y2, y3, y4} with uniform
distribution and let X be valued in {0, 1}, so that X = 0 if Y ∈ {y1, y2} and X = 1 if
Y ∈ {y3, y4}. We consider a symmetric cost k on Y, vanishing on the diagonal, and such
that

k(y1, y2) = k(y3, y4) = h, k(y1, y3) = k(y2, y3) = k(y2, y4) = k(y1, y4) = k,
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for parameters h, k > 0 satisfying

0 < k < ln 2, h := ln
( ek

2 − ek

)
. (87)

Just to fix ideas, one can always choose the parameter k so that Y ⊂ R2 is given by the
vertexes of the unit square (0, 0), (

√
k,

√
k), (0,

√
k), (

√
k, 0) and the cost k coincides with

the squared Euclidean distance so that h satisfies the additional constraint h2 = 2k2. We
have ν0 = νX=0 = 1

2(δy1 + δy2), ν1 = νX=1 = 1
2(δy3 + δy4), and ν = 1

2(ν0 + ν1), the law of
Y , is the uniform distribution on Y. In this case, we have

ξK1(Y, X) = K1(ν, ν) = k, (88)

but X, Y are not independent. In fact, because k takes the constant value k among
pairs of points in the support of ν0 and ν1 it is easy to check that π1,2 := ν0 × ν1 is
the optimal coupling for ν0 and ν1 with constant optimal potentials f = g ≡ ϕ so that
K1(ν0, ν1) = k = 2ϕ. We look for the optimal coupling for K1(ν0, ν0) among measures
π1,1 := α(δ11+δ22)+β(δ12+δ21), β = 1/2−α, imposing that the density dπ1,1/e−k(ν0×ν0)
coincides with e2ϕ = ek. We thus obtain the conditions 4α = ek, 4βeh = ek and we get

α = ek

4 , β = ek−h

4 ,

which, thanks to (87), satisfy 0 < α < 1/2, 2α + 2β = 1, and

K1(ν0, ν0) = 2βh + 2α ln(4α) + 2β ln(4β) = 2βh + 2αk + 2β(k − h) = k.

Notice that the computation of the dual problem (9) yields

2ϕ − 1
4
(
2e2ϕ + 2e2ϕ−h

)
+ 1 = k − 1

2
(
ek + ek−h

)
+ 1 = k − 2(α + β) + 1 = k.

By symmetry we also get K1(ν1, ν1) = k. We now claim that K1(ν, ν0) = k is attained
by π1 := 1

2(π1,1 + π1,2) In fact, by the convexity of the functional defining K1 we have
K1(ν, ν0) ≤ 1

2(K1(ν0, ν0) + K1(ν1, ν0)) = k. On the other hand, choosing constant poten-
tials f = g ≡ ϕ, we obtain

K1(ν, ν0) ≥ 2ϕ + 1
2
( ∫

e2ϕ−k d(ν0 × ν0) +
∫

e2ϕ−k d(ν1 × ν0)
)

+ 1 = k.

A similar argument shows that K1(ν, ν1) = K1(ν, ν) = k. It is now sufficient to observe
that ξKε(Y, X) = 1

2
(
K1(ν, ν0) + K1(ν, ν1)

)
= k as well.

C. Counterexample: Variance-based sensitivity does not posses
information monotonicity

The next example illustrates a case in which we have two random variables that have the
same variance-based importance measure, although one is a non-monotonic transformation
of the other, and thus is less informative.
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Figure 8: Example of change in distribution after receiving information on Xi or on
Xj . The original (marginal) distribution PY is N (Y ; [0, 0], Σ), then PY |Xi

is
N (Y ; [0.5, 0.5], Σ) and PY |Xj

is N (Y ; [4, 4], Σ), with Σ equal to the 2×2 identity
matrix.

Example 22. Take m ∈ [0, 1] and let Xm be uniformly distributed in [m − 1, m + 1].
Then E[Xm] = m and Xm = m + X0, where the law of X0 is FX0(x) = 1

2 min{max{x +
1, 2}, 0}. Let Z be discretely uniformly distributed in {−1, 1} independently of Xm, with
law Fz(z) = 1

2(δ(z + 1) + δ(z − 1)) and expectation E[Z] = 0. We write the positive
and negative parts of a random variable X as X+ = max{0, X} and X− = − min{0, X},
respectively.

We set Y = X−
m · Z + X+

m. Then by independence

E[Y ] = E[X−
m] · E[Z] + E[X+

m] = E[X+
m] = 1

2

∫ 1

−m
(x + m)dx = 1

4(1 + m)2,

E[Y |Xm] = E[X−
m|Xm] · E[Z] + E[X+

m|Xm] = X+
m,

E[Y |X+
m] = E[X−

m|X+
m] · E[Z] + E[X+

m|X+
m] = X+

m.

Hence, we have V[E[Y |Xm]] = V[E[Y |X+
m]], so that ξW (Y, Xm) = ξW (Y, X+

m) and the
variance- based sensitivity indices of both Xm and X+

m coincide. However, intuitively, re-
ceiving information on the positive part of Xm has a lower value than receiving information
on Xm itself. In fact, some tedious calculations show that ι(Y, Xm) > ι(Y, X+

m).

D. More on Interpretation and Properties of the
Wasserstein-Bures Semi-Metric

To provide further insights into the interpretation of Equation 16, it is helpful to con-
sider the marginal distribution of Y as a representation of our current state of knowledge
about Y (our degree-of-belief in a Bayesian framework). To illustrate, let us suppose
that PY is bivariate normal with mean mY = [ 0 0 ] and variance-covariance matrix

Σ =
[

1 0
0 1

]
. Consider next that we receive information on two uncertain inputs Xi

and Xj . Suppose that after receiving information on Xi = xi, the conditional distribution
PY |Xi=xi

is still normal but with different means mY |Xi=xi
= [ 0.5 0.5 ] and identical Σ.
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Receiving information about Xj leads (hypothetically) to a conditional normal distribu-
tion with mY |Xj=xj

= [ 4 4 ] and identical Σ. Figure 8 visualizes these distributions. As
shown in Figure 8 conditioning on Xj = xj causes our degree-of-belief to deviate more
from the original marginal distribution than conditioning on Xi = xi. Using (4), we find,
in fact, WB(PY ,PY |Xi=xi

) = 0.5 and WB(PY ,PY |Xj=xj
) = 32. In a global sensitivity

setting, we consider the expectation of the separation over all possible values of Xi and
Xj . Then, ι(Y, Xi) > ι(Y, Xj) means that, in expectation, learning Xj brings our degree
of belief about Y further away from the current belief than learning Xj . How far we move
is quantified by the expected amount of work associated with passing from PY to PY |Xi

.
The properties of zero-independence and max-functionality help us with the interpre-

tation of the two extremes of the scale: when receiving information on Xi has either no
value or maximal value.
Example 23. Consider the following input-output mapping, g : R4 → R2,{

Y1 = X1X2 + 0 · X4
Y2 = X1X3 + 0 · X4,

(89)

with X1 uniformly distributed on [−1, 1], X2, X3 and X4 uniformly distributed on [0, 1].
Then, we obtain the values of the variance-based and optimal transport-based global
sensitivity measures in Table 4.

Table 4: Global sensitivity measures for this example
X1 X2 X3 X4

ξLG(Y, Xi) 0.75 0 0 0
ι(Y, Xi) 0.63 0.10 0.10 0

The zero values of ξLG(Y, X2), ξLG(Y, X3) and ξLG(Y, X4) may give the false impression
that these inputs are irrelevant. To avoid this false impression, we can rely on the values of
ι(Y, Xi), which indicate that Y is dependent on X1, X2 and X3, with a stronger dependence
on X1, but independent of X4.

Zero-independence is crucial in avoiding false negatives. This is because even if Y is a
function of Xi, the value of a global sensitivity measure may be zero in the absence of
this property. The max-functionality property helps us interpreting the other extreme of
the scale: The closer ι(Y, Xi) is to unity the closer information about Xi is to eliminate
uncertainty in Y . In Example 23, the input whose value is closer to unity is X1, and
can therefore be judged as the most important variable. However, because ι(Y, X1) < 1,
information about this input does not eliminate uncertainty in Y . We need to learn
simultaneously the values of X1, X2 and X3, because ι(Y, X2) as well as ι(Y, X3) are
greater than zero.

Monotonicity helps with another intuition: if we receive less accurate information about
Xi, the value of the importance measure decreases.
Example 24 (Example 23 continued). Suppose we receive information about X1 in the
distorted form Z1 = X2

1 . The distorted information hides the negative part of X1 and it
is less accurate than direct information on X1. Calculating its OT-based importance, we
obtain ι(Y, Z1) = 0.19, which is about 70% lower then ι(Y, X1).
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Figure 9: Graphs (a), (b), (c): circles (◦), original data.

Variance-based indices ξW (Y, Xi) do not have this property. Example 22 in Appendix
C illustrates a situation where two inputs, say Z and X, have the same variance-based
importance. However, Z is a non-monotonic transformation of X, and is, therefore, less
informative. This difference is instead signaled by their OT-based importance measures,
according to which it is ι(Y, Z) < ι(Y, X). Figure 9 helps us discussing further the in-
terpretation of the advective and diffusive terms in (38) and (39). Graph (a) in Figure 9
shows data generated with two normal distributions whose parameterization differs only
in their means namely mY = [0 0] and mY ′ = [1 1]. The variance-covariance matrices are
both equal to Σ = [ 1 0

0 1 ]. (The corresponding densities are displayed in Graph (d)). The
circles (◦) correspond to realizations sampled from the first distribution, the plus signs
(+) to realizations from the second distribution. The lines joining pairs of these points
(a ◦ and a +) show the optimal couplings. Graph (b) shows a transport between two
distributions with identical means, mY = mY ′ = [0 0], and different variance-covariance
matrices, namely ΣY = [ 1 0

0 1 ] and ΣY ′ = [ 1.0 0.6
0.6 1.0 ] — see Graph (e) for the corresponding

densities. In this case, the advective transport is null and the transport is purely diffusive.
A visual comparison of Graphs (a) and Graph (b) shows that in Graph (a) translations
play a prevailing role in the optimal coupling, while rotations play a major role in Graph
(b). Finally, Graph (c) displays data generated from two multivariate normal distributions
that differ in both their means and variance covariance matrices and the corresponding
optimal couplings. (The distribution parameters are mY = [0 0], ΣY = [ 1 0

0 1 ] and mY ′ = [1
1], ΣY ′ = [ 1.0 0.6

0.6 1.0 ].) Because we have both an advective and a diffusive component in the
optimal transport, translational (advective) as well as rotational (diffusive) effects appear.
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