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inequality, then these functions are close to a common log-concave function, up to multiplication
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1. INTRODUCTION

1.1. Brunn-Minkowski and Prékopa-Leindler inequalities. Writing |X| to denote Lebesgue
measure of a measurable subset X of R™ (with |()] = 0), the Brunn-Minkowski-Lusternik inequality
states that if a;, 3 > 0 and A, B, C are bounded measurable subsets of R with A + B C C’D then

1 1 1
(1.1) |Cl» = alAl= + B|B]».

Also, in the case when |A| > 0 and |B| > 0, equality holds if and only if there exist a convex body
K (that is, a convex compact set with nonempty interior), constants a,b > 0, and vectors x,y € R",
such that aa + 8b =1, azx + Sy = 0, and

(1.2) AcaK+z, BCbK+y, |[(aK+x)\A =0, |(bK+y)\B|=0, and |KAC|=0,

where KAC stands for the symmetric difference between K and C. We note that even if A and B
are Lebesgue measurable, the Minkowski linear combination aA + B may not be measurable (while
aA + B is measurable if A and B Borel). We refer to the monograph [49] for a detailed exposition

on this beautiful topic.

The Prékopa-Leindler inequality is a functional generalization of the classical Brunn-Minkowski
inequality. In order to state it precisely, we recall that a function f : R™ — Ry is said to be log-
concave if f((1— Nz +Ay) > f(z)!" f(y)* for all z,y € R® and A € (0,1); in other words, f is
log-concave if it can be written as f = e~ for some convex function ¢ : R"” — (—o00, 00].

Theorem 1.1 (Prékopa, Leindler; Dubuc). Let A € (0,1) and f,g,h : R" — R>o be measurable

functions such that
(1.3) h((L=Na+Ay) > f@) Pgly)* Yo,y eR™

Then

(1.4) IRE </Rf>H </Rg>k‘

Also, equality holds if and only if there exist a > 0, w € R", and a log-concave function h, such that
h=h, f=ah(- = w), g=a' " h(-+ (1 — Nw) almost everywhere.

Note that, if f, g, h are the indicator functions of some sets A, B, C, then Theorem corresponds

exactly to the Brunn-Minkowski inequality.

1By convention, if one of the sets A or B is empty, then aA + 8B := ().
1
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The Prékopa-Leindler inequality, due to Prékopa [45] and Leindler [41] in dimension one, was
generalized in Prékopa [46] and Borell [9] to any dimension (cf. Marsiglietti [43], Bueno, Pivovarov
[13], Brascamp, Lieb [I1I], Kolesnikov, Werner [40], Bobkov, Colesanti, Fragala [8]). The case of
equality is characterized by Dubuc [19]. Various applications are provided and surveyed in Gardner
[33].

1.2. Stability questions. As discussed above, optimizers are known both for the Brunn-Minkowski
and Prékopa-Leindler inequalities. However, in spite of knowing the equality cases for these inequali-
ties, one might ask about what geometric properties can be deduced if one knows that the equality is
‘almost’ attained. This is what one usually refers to as stability estimates.

Recently, various important stability results about geometric and functional inequalities have been
obtained. For example, Fusco, Maggi, Pratelli [32] proved an optimal stability version of the isoperi-
metric inequality. This result was extended to the anisotropic isoperimetric inequality and to the
Brunn-Minkowski inequality for convex sets by Figalli, Maggi, Pratelli [27, 28] (for the latter prob-
lem, the current best estimate is due to Kolesnikov, Milman [39]). One can further mention, for in-
stance, stronger versions of the functional Blaschke-Santalé inequality, provided by the work of Barthe,
Boroczky, Fradelizi [6]; of the Borell-Brascamp-Lieb inequality, provided by Ghilli, Salani [34], Rossi,
Salani [47, [48] and Balogh, Kristdly [4]; of the Sobolev inequality by Figalli, Zhang [30] (extending
Bianchi, Egnell [7] and Figalli, Neumayer [29]), Nguyen [44] and Wang [50]; of the log-Sobolev in-
equality by Gozlan [35]; and of some related inequalities by Caglar, Werner [14], Cordero-Erausquin
[18] and Kolesnikov, Kosov [38]. An “isomorphic” stability result for the Prekopa-Leindler inequality
for log-concave functions in terms of the transportation distance has been obtained by Eldan [20),

Lemma 5.2].

1.2.1. Stability for Brunn-Minkowski. About the specific case of the Brunn—Minkowski inequality
, the stability question is rather delicate. The first contribution in the direction of stability was
made by Freiman [31I], although indirectly, as a consequence of his celebrated 3k — 4 theorem in
dimension n =1 (see also Christ [17]):

Theorem 1.2 (Freiman). Let A, B,C C R be bounded measurable sets satisfying A+ B C C and
|IC| < |A| + |B| + ¢ for some ¢ < min{|A|, |B|}. Then there ezist intervals I, J C R such that A C I,
BcC J,|I\A| <€ and |J\B| <e.

In the planar case, van Hintum, Spink, Tiba [37] have found the optimal stability version of ([1.1).

Theorem 1.3 (van Hintum, Spink, Tiba). For 7 € (0, %] and X\ € [1,1 — 7], let A, B,C be bounded
measurable subsets of R? satisfying (1 — \)A+ AB C C and

‘|A| —1)+ ’|B| —1‘ v ]|0| —1‘ <e
for some e < e M) with M(1) > 0 depending only on 7. Then there exists a convex body K, with
ACK+2x and B C K +y for some x,y € R?, such that
(1.5) (K +2)\A| + [(K + y)\B| + |[KAC| < er~ 3¢

for an absolute constant ¢ > 0.

We note that, for n > 2, in (1.5 one cannot have an estimate with better error term, both in terms
of the order of 7 and €. In higher dimensions, the only available quantitative stability version of the
Brunn-Minkowski inequality has been established by Figalli, Jerison [24].
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Theorem 1.4 (Figalli, Jerison). For 7 € (0,3] and A € [r,1 — 7], let A, B,C be bounded measurable
subsets of R™, n > 3, with (1 — A\)A+ AB C C and
4] = 1|+ 1Bl - 1] + [Ic] - 1] <«
—_A . 93" 2 3" |log 7'|3n . .
for some e < e~ An() with Ap(1) = =~ —. Then there exists a convex body K, with

ACK+zx and BC K 4y for some x,y € R", such that
(1.6) (K + 2)\A| + (K + y)\B| + |KAC| < 7~ Nren(7)

an
3

23" 37 og 7|37

where v, (1) = and N, > 0 depends only on n.

Remark 1.5. We list here some result for particular cases of Theorem [1.4)

o When A = B, van Hintum, Spink, Tiba [36] obtained the optimal stability version, where the
error term in (1.6|) is of the from chf%eé with ¢, > 0 depending only on n. Their result
improves the previous contributions [22, 23], 25].

When at least one of the sets A or B is convex, several results have been obtained, as described below.
However, it is important to observe that all these results measure stability by controlling the symmetric
difference between A and a translate of B. This is weaker than the statement in Theorem where
one finds a convex set K that contains both A and B (up to a translation) with a control on the missing
volume. Here are some itmportant results.

o When either A or B is convex, an optimal stability estimate has been proved by Barchiest,
Julin [B]. This extends earlier results about the case where both A and B are convex |27, 28],
or when either A or B is the unit ball [26].

e If A and B are convex and n is large, then Kolesnikov, Milman [39] provided an estimate on
|AA(x + B)| with a bound of the form cn2'757'7%5%, for some absolute constant c. Actually,

275 can be improved to n®5T°() by combining the general estimates of

we note that the term n
Kolesnikov, Milman [39, Section 12] with the bound n°") on the Cheeger constant of a convex
body in isotropic position, that follows from Chen’s work [16] on the Kannan-Lovasz-Simonovits

conjecture.

1.2.2. Stability for Prékopa-Leindler. With respect to the Brunn-Minkowski inequality, until now
much less was known about stability for the Prékopa Leindler inequality, except for some results
in the case of log-concave functions (see the discussion below). In this paper, we prove the first
quantitative stability result for the Prékopa-Leindler inequality on arbitrary functions.

Theorem 1.6. Given 1 € (0, %] and A € [1,1—7], let f,g,h : R™ — R>q be measurable functions such
that h (1 — Nz + \y) > f(x)' " g(y)* for all z,y € R™, and

(1.7) /nh<(1+€)</nf>1_/\</ng>>\ for some € > 0.

There are a computable dimensional constant ©,, and computable constants Qn (1) and M, (7) depend-
g only on n and 7' such that the following holds: If 0 < & < e=Mn(7) | then there exist h log-concave
and w € R™ such that

N N N Qn(T)
/|h—h|+/ IaAf—h(-JrAw)H/ g — A+ (A — Dw)| < /h,
Rn Rn n n

76n
where a = [ g/ [gn -

2At the end of the proof of Theorem (see (5.40)), we indicate explicit values for the constants My (1), Qn(7), On.
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Remark 1.7. If f,g,h are a priori assumed to be log-concave, then Theorem [1.0] was established by
Ball, Boréczky [3] and Boréczky, De [10] in the case n = 1 (in this case, e9n(7) /7O in Theorem
can be essentially replaced by (E/T)%; see also Theorem , and by Boréczky, De [10] in the case
n > 2 (in that case, €97(7) /7O in Theorem can be replaced by (6/T)T19) Further, we note that
Bucur, Fragala [12] proved another interesting stability version of the Prékopa-Leindler inequality for

log-concave functions, bounding the distance of all one dimensional projections.

Theorem is probably quite far from the optimal version, that one could conjecture to provide a
bound of the form C(n, T)E%. In this direction, already for n = 1, Example E below shows that the
error term in Theorem E is at least ce3.

At first sight, this is perhaps surprising, because in the case of Freiman’s result (Theorem [I.2))
the error is of order e, which shows that the Brunn—Minkowski and Prékopa-Leindler inequalities
exhibit different behaviors for n = 1. Nonetheless, our proof of Theorem shows that the Prékopa—
Leindler inequality in dimension n shares some - but not all - of the geometric aspects of the Brunn—
Minkowski inequality in dimension n + 1, which explains, at least partially, the difference between the
two exponents.

Another important difference between the stability version of the Prékopa-Leindler and the Brunn-
Minkowski inequality is shown by the following observation: when A = B, the convex set K in
Theorem coincides with the convex hull of A; on the other hand, for f = g, the function A in
Theorem can be quite far from the log-concave hull of f (see Example below). In other words,

there is no direct geometric characterization of the function A (see also Remark below).

As mentioned above, the following example shows that the error term in Theorem is at least ce2 .

Example 1.8. There is an absolute constant ¢ € (0,1) such that the following holds. For any e < 1,

there exist log-concave probability densities f,g on R such that

(1.8) / sup f(z )% (y )%dz<1—|—€,
szfac—‘r Y

while

(1.9) / lg(x x+w)|dac>ce2 for any w € R.

Proof. We fix f(z) = e=™" and an odd C? function ¢ on R satisfying supp ¢ C [—1,1] and max ¢ = 1.
Note that, since ¢ is odd, [, fe = 0.
Given 1 < 1 to be fixed later, we consider g = (1 + n¢)f so that [ g = 1. We note that there

exists a constant ¢ > 2 such that

/

1.10 log(1+ne)| = |n- <é
(1.10) gt mol| = |- 2| <
" AV

" +ne) —nl)| _ .

(L11) froe(1-+ne)" = |- <a
(1+n¢)?

for any n € (0, %) In particular, since (log f)” = —2m, it follows that ¢ is log-concave provided
n<1/e

Note now that, since g(z) = f(z) = e ™" for |z| > 1, there exists a constant ¢y > 0 such that
oo
(1.12) / lg(z) — flz 4 w)|dz > / le”™" — e (@ 0)*| gy > co min{|w|, 1}.
1
On the other hand, we have

/|g x+wrdx>/|g F(@)| — £ () - <az+w>|dm>n/f Yo(@)| de — o],
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Hence, combining this last estimate with ((1.12)), we deduce the existence of a constant ¢; > 0 such
that

(1.13) / lg(x) — f(x + w)|dx > c1n Yw e R.

Finally, we estimate th for h(z) = supy,_, 1,/ f(x)g(y). To this aim, consider the auxiliary
function h =+/f . Thanks to Holder 1nequahty, this satisfies fR h<1.
Since f and g are log—concave and g(x) = f(x) for |z| > 1, for any z € R, there exists a point y, € R

such that h(z) = \/f(22 — y:)g(y:). Also, y, = z if |z| > 1, and ly.| < 1if|z| <1
We now observe that, for any z € R, the function ¢,(y) = log+\/f(2z — ) satisfies ¥, (z) =

log h(2), ¥ (y.) = log h(z) , and 1, has a maximum at .. Then, recalling (|1 , we have
0=vl(y:) = 2m(z —yz) + g log(L+n9)|'(y) = |z—w:| <aen.

Hence, since [¢”] is bounded, a Taylor expansion yields (recall that ¢ (y,) = 0)

log 28 =.(y.) —s(2) <can®* VzER,

for some constant co > 1, and we conclude that

/ h < ec2n” / h < e < + 2¢om? for n <« 1.
R R

Choosing n := (202)_%5%, (1.13]) and the equation above prove the result. ]

The next example shows that, even in the case f = g, the function h provided by Theorem
cannot be chosen to be the log-concave hull of f (i.e., the smallest log-concave function above f).

Example 1.9. For any e > 0 there exist f,h : R — R>q measurable functions such that h ( T+ 2y)

F(@)2f(y)2 for all z,y € R",
/h<(1+5)/f,
R R

fw-n=3]+

where F' denotes the log-concave hull of f.

but

Proof. Given A > 1, let f be defined as

fla) = e on[0,1]U[24,24 + 1]
10 otherwise
and set h(z) := SUP,_1,11, f(az)%f(y)% Then
W) = e on[0,1]U[A, A+ 1]U[24,2A + 1]
1o otherwise

and therefore

/Rh<(1+5)/Rf

with € ~ e=4 < 1. On the other hand, the log-concave hull of f is given by

- 24 +1
Flz) = e on [0, : + 1]
0 otherwise
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_ —xg. -1 oA L gy L
/R(F—f)—/1 e fdr=¢e" —e¢ 22(1 e )—Q/Rf,

as desired. O

Hence, for A > 1,

Remark 1.10. The argument used in Example emphasizes a key difference between the Brunn-
Minkowski inequality and the Prékopa-Leindler inequality: while in the Brunn-Minkowski inequality
only arithmetic means of points are considered, in Prékopa-Leindler one considers points z that are the
arithmetic mean of x and y, but then the value of h(z) is obtained as a geometric mean of the values of
f(x) and g(y). This key difference is the source of many new challenges when proving stability results
for Prékopa-Leindler.

1.3. Outline of the proof of Theorem We now sketch the structure of the proof of Theo-
rem [1.6] which is split in four main steps. The first three steps deal with the one-dimensional case.
Then, in Step 4, we exploit both the one-dimensional case and Theorem to obtain the higher-

dimensional result.

(1) We first deal with the case of symmetrically rearranged functions, and prove the result in
this case. Note that, if f, g, h satisfy and , then also their rearrangements f*, g*, h*
satisfy the same estimates.

(2) With the knowledge that the result holds for f*, g*, h*, we deduce conditions on the distribution
functions t — HY({f > t}), H'({g > t}). In particular, from applied to f, g, h, we use a
stability version of the Brunn—Minkowski inequality in one-dimension in order to prove that
f and g are close to “bubble-shaped” functions (i.e., that are nondecreasing on an interval
(—00,a) and nonincreasing on (a, +00)).

Calling ¢ and 1 such “bubble-shaped” functions, we define

Az) = sup  B(x) M)
(I=N)z+ y==z

This function is measurable (thanks to the fact that ¢ and v are “bubble-shaped”), and an
analysis similar to the proof of Proposition shows that ¢, 1, A satisfy both and
(but for some smaller power of ¢).

(3) Denote

{r eR: o(x) >t} = (ay (1), b7 (1),  {z € R:(x) >t} = (ag(t),by(1))-

Then we use the almost-optimality of ¢, ¥, A to prove that, on a large set, a four-point inequality
(in the same spirit of [24, Lemma 3.6 and Remark 4.1]) is satisfied by the functions B¢(T') =
br(eT) and By(T) = by(eT), and a ‘reversed’ version of such four-point inequality holds for
Ap(T) = as(el) and Ay (T) = ay(el).

As a consequence, we are able to prove that Ay, A, are both L'-close to convex functions
my,mg on a large interval. Analogously, By, B, are L'-close to concave functions ng,ng on
the same large interval. Thanks to these facts, we show that there exist log-concave function
¢ and 1 such that {¢ > t} = (my(logt),n(logt)) and {¢ > t} = (m,(logt),ny(logt)) on a
large interval.

Finally, we translate the properties of Ay, Ay, By, By, m s, mg,n s, ng into a bound on ||¢—q5||1,
which can be thus made small. By Proposition [2.6] we conclude the one-dimensional case of
Theorem

(4) In order to obtain the result also in higher dimensions, we consider the hypographs of the
logarithms of f, g, h. Denoting these sets by S¢, Sy, Sy, respectively, we show that they satisfy
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the Brunn-Minkowski condition Sy, O (1-X)S¢+AS,. In particular, due to the one-dimensional
case, we can estimate how level sets of f, g, h are close to each other, in terms of volume. This
enables us to use the main theorem in [24] on the sets Sy, Sy, Sy, which in turn produces a
natural algorithm to construct log-concave functions close to f, g, h.

The rest of the manuscript is organized as follows: in Section [2| we prove tail estimates that allow
us to suitably truncate the functions under consideration, as well as estimate on the size of level
sets. This allows us to perform a set of preliminary reductions of the one-dimensional problem. In
Section [3] we prove Theorem in the case when n = 1 and f, g, h are symmetrically decreasing,
while in Section [4] we deal with the general one dimensional case. Finally, in Section [5}, we prove the
theorem in arbitrary dimension.

Throughout the manuscript, we will use the notation H* for the k-dimensional Hausdorff measure
of a set. Sometimes we shall use ¢ > 0 to denote an absolute (computable) constant, whose exact
value might change from one part of the paper to the next, and even from line to line. We will
also occasionally use a subscript, e.g. ¢,, to indicate dependence of the constant on a dimensional
parameter. Moreover, we write a < b whenever a/b is bounded from above by an absolute and
explicitly computable constant, and we shall use a subscript a <, b to emphasize the dependence of
the bound on the dimension considered. Finally, we write a ~ b if both a < b and b < a hold.

Acknowledgments. The first author is supported by the NKFIH Grant 132002, and gratefully acknowl-
edges the perfect working enviroment at ETH Ziirich where the paper has been completed. The second

and third author are supported by the European Research Council under the Grant Agreement No.
721675 “Regularity and Stability in Partial Differential Equations (RSPDE).”

2. TAIL ESTIMATES IN THE CASE OF ALMOST EQUALITY IN THE ONE-DIMENSIONAL
PREKOPA-LEINDLER INEQUALITY

A useful tool for our study is the symmetric decreasing rearrangement. For a bounded function

p:R—=R>p with 0 < fR ¢ < 00, we define its symmetric decreasing rearrangment ¢* : R — R>( by

@*(t) = inf {a: H'({p > a}) < 2/t|}.

*

In particular, ¢* is an even function that is monotone decreasing on [0,00), ¢*(0) is the essential

supremum of ¢, and

(2.1) Hi({p>a}) =H'({¢" > a})

for any a > 0 with H!({¢ > a}) > 0. In particular, the level sets {p* > a} are symmetric segments,
and the layer cake representation yields [p ¢ = [p ¢*

Symmetric decreasing rearrangement works very well for the Prékopa-Leindler inequality. For A €
(0,1) and bounded functions f, g, h : R — R>q with positive integral, if h((1—X)z+Ay) > f(z)' A g(y)?
for any =,y € R, then the one-dimensional Brunn-Minkowski inequality yields A*((1 — X)z + A\y) >
f*(z)'=*g*(y) for any z,y € R. Also, if ¢ is log-concave, then the same holds for ¢*.

The main goal of this section is to show that if we have almost equality in the one-dimensional
Prékopa-Leindler equality, then the functions f, g, h in with positive integral satisfy similar tail
estimates like log-concave functions (here ¢ : R — R has positive integral if 0 < [¢ < co). First
we review the related properties of log-concave functions. Let us recall the following estimate from
13, [10]:

Theorem 2.1 (Ball, Boroczky, De). For 7 € (0, %] and A € [1,1 —7], let f,g,h : R — R>¢ be log-
concave functions with positive integral such that h ((1 — N)a + \y) > f(z)' " g(y)* for all 2,y € R,



8 KAROLY J. BOROCZKY (RENYI INSTITUTE), ALESSIO FIGALLI (ETH) AND JOAO P. G. RAMOS (ETH)

and

[ ()7 ()

for some € € (0,1). Then there exists w € R such that

/Wf B +)\w\+/\a’\ Y- h(+ (A=)l <e(5) |10g5]3/" ,

where a = [ g/ [z f. and ¢ > 1 is an absolute constant.

Next, we prove some basic properties of log-concave functions. We observe that if ¢ is log-concave
and 0 < fR (p < 00, then the level sets are segments, ¢ is bounded, and its essential supremum coincides

with its supremum ||¢||oc-

Lemma 2.2. Let ¢ be a log-concave function with 0 < fR @ < 0o. Then:

(D): H'{ > llplloo —5}) > H”ﬁ;‘; s provided 0 < s < [[p]loo;

W 4o > 1 < Bk

2
(5i0): [ipay < Tt provided 0 <t < 5 [lo]loc.

log IIgDHOO ‘ provided 0 < t < 1 [|¢]loo;

Proof. Using symmetric decreasing rearrangement we can assume that ¢ is even. Also, by scaling, we
may also suppose that ¢(0) = [l¢[lec = [p = 1.

For (i), let 29 = sup{z : ¢(z) > 1 —s} = T H' ({y > 1 — s}), and choose vy > 0 such that
1—s=e"7%_ It follows from the log-concavity and the evenness of ¢ that p(z) < 1if |z| < ||, and
o(x) < eIl if || > |xg|. Also, since e=7%0 > 1 — vz we get % < ™ thus

1-— 2
< 270 <1+ 8) _ %o,
S S

ef'yx()

o0 2
1:/4p<2x0+2/ e 7T dxr = 2x9 +
R

o

For (i) and (iii), let 21 = sup{z : p(x) >t} = 2 H'({¢ > t}), and choose § > 0 such that t = e =271,
It follows again by log-concavity and evenness that ¢(z) > e~°I*| if |z| < |z1], and p(z) < e~ 07l if
] = [a]-

Then, on the one hand, we have

1 o l—e@® 1—-t _ 1 x

(2.3) 22/0 0 dr = —— = — Z%:mTlgﬂ’
verifying (ii). On the other hand, using we get

-0
/ 80<2/006_6xdx:26 T 2t < 2t
{p<t} N x1 0 ‘logt‘ N

verifying (iii). O

Given ¢ € (0,1], 7 € (0, %], and A € [r,1 — 7], we now consider measurable functions f,g,h: R —
R>o with positive integral satisfying

(2.4) A(L=Nz+Xy) > f@) gy forz,yeR
1-A A

(2.5) /Rh < (1+5)</Rf> </}Rg> |

For t > 0, we set

(26) A= {f > t}? By = {g > t}a and Cp = {h > t}’

so that

(1 4, Bi= (] Bs, and Ci= () C.

0<s<t 0<s<t 0<s<t
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It follows from that if Ay, Bs # () for t, s > 0, then
(2.7) (1=XNAs+ABs C Chaagr.
Lemma 2.3. Let f, g, h satisfy and . Then f and g are bounded.

Proof. For any zp € R with f(z¢) > 0, we have

2(Afy4<4g>xiéh24f@wkﬁﬁz—Lﬁx@%&-ﬂmﬂ”Aég\

therefore, f is bounded. Similarly, g is bounded, as well. U

We use the following stability version of the inequality between the arithmetic and geometric mean.
It follows from Lemma 2.1 in Aldaz [I] that if a,b > 0 and A € [r,1 — 7] for 7 € (0, 1], then
2
(2.8) (1—=Na+M—a™0* > 7 (f — \/5> .

According to Lemma[2.3] we can speak about | f||e and ||g||so-

Lemma 2.4. Let f,g,h satisfy 2.4) and [2.5). If ¢ < 27573, then
£l gl

glloo [1£112

Proof. We may assume that [, f = [pg=1.

We set 0 = || f||oo/|lg]loo- Using the notation ([2.6)), it follows from (2.4) that if 0 < ¢ < || f||[. g/l
then

VI

— 1‘ < 47'_%6 .

(1 — )\)Aﬁ)‘t + )\ngflt C Ct.
We deduce from (2.7) and the one-dimensional Brunn-Minkowski inequality that

171135 gl
l4+e > /hz/ H(Cy) dt
R 0
[F{Eg IS A5 gl
> (1—)\)/ H(Apry) dt—i—)\/ 'Hl(ngﬂt) dt
0 0

Ly e gl o
_ m/o H(Ay) ds + X 0" A/0 M (B ds = T 4 A0

We conclude from ([2.8)) that

_1 1
< T 2e2,

‘e—% _95

which in turn yields that

TT2e7 > ew -1> L lzge\.
Since |log 6| < 27 267 < 1 provided e < 73/64, we have |0 — 1| < Ar—2es. O

Lemma 2.5. Let f,g,h satisfy (2.4) and (2.5)). Ifaé <n<1, then

_3
72| £l

5
4 77 2]|gllh 4
1flloe llogel=,  H'({g=nlglle}) S ——— - |logel~,
o0

(29 H{S = nlfleh) S lollse

and
_s 4 -5 2
[ rsr it [ g g7 Hglhnllosel
{F<n} {g<n}

Proof. We may assume that || f|lc = [|glloc = 1 and min{ [, f, [r 9} = 1, so that Lemma yields

(2.10) 1:min{/Rf,/Rg}gmax{/Rf,/Rg}gler—gsi<2.
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For t > 0, it follows from (2.7) that if o € (0,1), then

(2.11) Cgt:)<(1_)\)Atﬁ +ABQi>U((1_)\)A911A —|—)\Bt}\>,

thus the one-dimensional Brunn-Minkowski inequality yields that H!(C,;) is at least the arithmetic

mean of (1_)‘>H1(Atﬁ)+/\7{1(3 %) and (1-\)H!(A ﬁ)"")‘HI(Bt% ), and hence letting o tending
= 0 o

to 1 implies
(2.12) H(Cy) > % [ (4 o) +ant (By)]

In addition, H1(Cy) — (1 — A)H(A;) — AHY(B;) > 0 holds for any ¢ > 0, thanks to and the
one-dimensional Brunn-Minkowski inequality.

Therefore, using the near optimality for the Prékopa-Leindler inequality, , and ,
we deduce that for any « € (0, 1], we have

3
2

87 22 > /a (HY(C) — (1 = NHY (Ay) — AHY(By)) dt
0

(2.13) N
> /0 (; (= (A o)+ AR (By )| = (= Vr!(A) - A’Hl(Bt)> dt.
We now define N

I'(a) ::/0 (1= MK (A) + AHN(BY)) dt.

Note that I' is an increasing function bounded by 2. Also, through a change of variables, it satisfies
/ (L= NHUA )+ AHI(B,))) dt = sa'~HT(ad) Vs e (0,1).
0 El S

Hence, assuming with no loss of generality that A < 1/2, it follows from ([2.13) that

1—2A
(2.14) 8rded > — " TR D(aT) — T(a).
As 1 — X > 1/2, using the substitution g = € (0,1), (2.14]) leads to
L) _ 3273% r(E )

B 61—)\ + 4 IBI—)\ ’

and, by iteration,

k ; k 1
I'(5) 81 4t R8T s €2 4%
(2.15) 5 < 327 2¢2 ZB(HV +4 S = S Vi > 1.
i=1
Hence, if €2 < 3, then (2.15)) yields
L@ _ s 4*
5 = cT S
Choosing k € [Hlog‘(iogf)"' ‘llf;ggl(logﬁ)ﬂ so that B(0=N" ~ 1, then the bound above gives (recall that
A > 7 and that |log(1 — 7)| ~ 7)
F;) < er 342 < S og B1F VB e e, ).
Since (ﬂ)
5 2 > (1= NHNAg) + AHY(Bg) > 7(H' (Ar) + H(By)),
this proves

Finally, the layer cake formula yields | (e I T J (g<m 9 < I'(n)/7, and the monotinicity of A; and
By imply H'({f >n}) + H'({g > n}) < T(n)/n, completing the proof of Lemma [2.5] O
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Proposition 2.6. Let f,g,h satisfy [2.4) and [2.5) where 7 € (0,3] and 0 < e < cr3 for certain
absolute constant ¢ € (0,279). For n > ¢ with n < 4ct3, we assume that there exist log-concave

functions f,g such that
If = fllr <nllfll and |lg—glly <nllgll-

Then, setting a = fR g/ fR f, there exist a log-concave function h and a constant w € R such that

:):— w X + a ~:1c—|— —Aw)|dr I T_nT12 ogz-:%
a)‘f Aw)|d Alg(z) — h 1-Nw)|dz < 77'niE|l h
R

/|h 2)|dz < T—2ni|1ogg|/h
R

Proof. We may assume that min{|| f||e, [|g9lloc} =1 and [ f = [z g =1, so that Lemmayields

. _3 1
(2.16) 1= min {[| flloc, lglloc} < max{[[fllcc; lglloc} <1+ 477262 < 2.

It follows from the conditions |f — f|li < 1 and |lg — gl < 7 and n < 5 that the approximating

log-concave functions satisfy

(2.17) ;</Rf,/Rg<2.

The main idea of the proof is to show that, for a suitable log-concave function h, the log-concave
functions fo = fX (F>al and go = gX{j>a} satisfy almost equality in the Prékopa-Leindler inequality
for some value o > 7; therefore, the stability version Theorem of the Prékopa-Leindler inequality
for log-concave functions implies that fo and go can be expressed in terms of shifts and multiples of h.

As a first step, we claim that

r _3 1 ~ _3 1
(2.18) [ flloo = [[fllocl < 32772192 and [[|gllec — [[gllco] < 3277272,

As the roles of f and g are symmetric, we only prove the statement about f.

First, we assume that ||f|loc > ||fllso, hence |[flloc = | f]loc — @ for some a > 0. In this case,

Lemma(i) and (2.17) imply that H'({f > || f]lec — s}) > 5 s || 112 for s € (0, ), thus the layer-cake
representation gives

||f||oo W > 1) o2
n 2/ >thH)dt > ——.
£ 110 401 F11%
Therefore || flloo = || flloc — @ > [|flloo(1 — 24/77), and we deduce that

1 lloe = 1 flloo < Iflloo [(1 = 2y/m) ™" = 1] < 812,

Next we assume that || f]joo < ||f]leo. We consider the function

fi=1- X{r<|flloo} T 1 flloo X{> N flloc}?

() (o ) v

As f1 < f, we have h((1 — Az + Ay) > fi(z)'"Ag(y)* for any x,5 € R where
1-X A 1-X A
/h§(1+6)(/f) (fo) <asa([n) (o)
R R R R
We deduce from Lemma [2.4] applied to f and g on the one hand, and to f; and g on the other hand

that
[ Flloe _ Iflloo . llgllo
1£lle lglloo I filloo

that satisfies

< (1 + 47*%&:%) : (1 + 47*%77%) (1+45) <1+ 167 373,
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Recalling (2.16)), this proves the claim (2.18). In turn, combining (2.16]) and (2.18]) leads to

1 ; _
(2.19) 5 < fllsos llglloos 1£lloc, NIgllec < 2.

For any r > 0, we define
Ar={f>r}, A, ={f>r}, Bo={g9>r}, B.={j>r}

According to the layer-cake representation (representing ||¢ — |1 for non-negative p, 1 € Li1(R)) as

the area of the symmetric difference of the parts between the graphs and the first axis),

| aiydr = - i

IA

Ui

N

/0 HI(BT‘AET) dr = Hg - §H1 > 7.
In particular, the set S C (0,00) defined by the property
(2.20) HY(AAA) + HY(B,AB,) <n? forreS

satisfies that

=

(2.21) H((0,00)\S) < 4n2.
It follows from (2.20) that if 75 € S and o € R, then H! ((1 CNAA(L - A)/L> < (1—A\)? and
H! ((a: — ABg)A(x — )\ES)> < )\n%; therefore,

(2.22) ]7{1 (1= M)A, N (2 — ABy)) — H ((1 “NA N (- /\ES))’ <3,
Consider
(2.23) ro=||flle — 327 1 and s = ||§]lec — 327 'ni.

Using (2.17)) and (2.19), we deduce from Lemma (i) that

(2.24) HY(A,,), H(By,) > 47 'n1.

Possibly after shifting f and f together on the one hand, and g and § together on the other hand, we

may assume that zero is the common midpoint of the segments ETO and ESO. In particular, setting
cl A, = [a1(r),az(r)] and cl By = [b1(s), ba(s)] for 0 <7 < || f]loc and 0 < s < ||§]|oc,

using that ai(r),bi1(r) are monotone increasing and as(r),ba(r) are monotone decreasing provided
0 < r < min{|| f|lco, [|G]lcc }, Wwe have

as(r),ba(s) > 27'_117% and ay(r),bi(s) < —27'_177% for r € (0,70], s € (0, so].
We deduce that if r € SN (0,79), s € SN (0, sp) and
ve (1207 (=04, + (WBy)) € (1=n¥) (1= VA + (ABy))

then (1—MX)a;(r), Ab;i(s) > 2ni fori=1,2, and z—\ By = [z—Abay(s), z+ A by (s)] satisfies z— A by(s) <
(1= XNaz(r) — ni/\bg(s) and z + Abi(s) > —(1 — Nax(r) + n%/\bl(s); therefore,

H! ((1 —NA, N (z— A§3)> > 27]%.
In turn, [.22) yields that if = € (1 + 253)~" ((1 — M)A, + (A és)), then
z € (1—=MNA, + (\Bs).
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In other words, if r € SN (0,79) and s € SN (0, sg), then
(2.25) (1= NA, +ABs € (1+291) (1 = A, + ABy) € (1+211) {h > rl_)‘s)‘} .

On the other hand, for any r € (77%, | flleo) and s € (77%, 1Gl0c), and the definition of rg, so yield
the existence of some 7 € SN (0, min{r,79}) and § € SN (0, min{s, sp}) with
r>r—0(r) and §>s—0(s)
where 0(t) = 267*177% ift > 1, and 0(t) = 417% if t € (0,%). In particular,
7> (1- 277_177i)r and §> (1— 277'_117%)8 for r,s > n%
thus setting t = r1=*s*, we have
A > (1 - 277'_177i)t >t— 287_17)%.
Therefore, if we define
(2.26) a=28r"1n1,
then, for any r € (o, || fllo) and s € (@, ||7]|s0), we deduce from that t = r1=As* satisfies
(1-NA, +AB, © (1—MNAr+ABsC (1+2p%) {h > ngA}
(2.27) c (1+2p0){h>t—al}.

N(;Z‘Xt we replace f by fo = JEX{f>o<} and g by Jo = gX{g>a}- Then Lemma (2.17), and % <
[flloos [19llee < 2 (cf. (2.18)), yield

(2:28) IF = foli + 15— golh < 320
(2.29) H! (supp fo) + H' (suppgo) < 32|logal.
In particular, we deduce from ([2.28]) that
(2.30) I1f = foll + llg = Gollr < 2%,
hence
(231) /fb? /.6021_26‘04)

R R
Consider now the log-concave function h defined as

hz)= sup  fo(z)' Go(y)*,

z=(1-N)z+Ay
which satisfies ﬁ(z) > o for any z € int supp h and
(2.32) #H! (supp ﬁ) < 32|log a
(see (2.29)). According to (2.31)) and the Prékopa-Leindler inequality, we have
(2.33) / h>1-25.

R

It follows from the the definition of & and (2.27) that, for any ¢ > «, we have
(2.34) h>ty= | ((1—A)ET+A§3) c(1+2n1){h>t—al.

t=rl-Ag)
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To relate h to f and g, we deduce from (2.31)) and (2.34) that
B 0 N 1 o0 1
/h = / H! ({h>t}> dt§(1+2n4)/ H' ({h >t —a}) dt:(1+2n4)/h
R «a «a R

(2.35) < 1+44p1 < (1+2%) (/Rfo)u (/R‘%)A'

Recalling that a = 287*117&, thanks to Theorem there exists w € R such that

R

where ag = [gn G0/ [pn fo. Also, by l) and the conditions [ 1, Jr 9 < 1+mn, it holds
1— 247 Iyi < / fo, /go <1+,
R R
In particular |ag — 1| < T_l’ﬂi, therefore

/ |f0_ (—|—)\w)|+/ |§0_B('+(>‘—1)w)|57_377112|10ga|§/ h.

R"

Recalling ([2.30] , this proves the first bound in the statement of Proposition
To relate fz to h, consider the auxiliary function

- h((1+ 277i)93) —a if z € intsupph,
ho(z) = .
0 otherwise,
so that, if ¢ > «, then
(2.36) {h>t}=(1+2n1){ho >t —a}.

Comparing ([2.36) and (2.34)), it follows that hg < k. In addition, (2.33)) implies that

1-27a < (14 291) / /ho /h<1+5

(2.37) |h = holl1 < 28a.

therefore

Next we claim that
%)x) < h(zx) + 277'*217% for any x € supp h.

(1+
We observe that ty = T‘O s > 1—267~ 2774 according to - , and (2.23)). Since f and g were
translated to ensure fo(0) > ro and go(0) > sg, we deduce that h( ) Z to. Usmg that h is log-concave,
we deduce that that if h(z) < to, then h((l + 277%) ) < h(z). On the other hand, if h(z) > to then
([2-38) follows from [h]loe < 1+ 327'_5772 (see (2.16) and (2.18)) and the bound ty > 1 — 267~ 2174

Thanks to , since a < 27772 7]4 we get

bl = [
supp h

= / ) ‘ﬁ(az) + 277_277i — B((l + 217%)@ + (a— 277_277i)
supp h

(2.38) h(

h(z) — h((1 + 20%)z) + a| dz

dx

< / h(zx) + 277_277% —h((1+ Qni)x) dx + / 277'_217i dx
suppﬁ SUPPB

1 - -
= (1- : / h(x)dx 42 - H ' (supph) - 277 2n1.
14 2ns supp h

=
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Since th < 2 and H'(supph) < 32|loga] (see and (2.32))), we conclude that |h — holl1 <
2147 774\10g04|. Combining this estimate with ({ 1mphes that ||h — hl; < 2157*217%|10g al. As
a = 287_177%, we have |loga| < max{|log T\,\log5|} < |loge|. Plugging this into the statements
above, we obtain the original claim, which finishes the proof. [l

3. THE CASE OF SYMMETRIC-REARRANGED FUNCTIONS

For this part and for the remainder of the paper, we assume all the reductions and results from §2
to hold.

As noticed in the beginning of the previous section, the symmetric decreasing rearrangements of
functions f, g, h satisfying and , denoted by f*,g*, h*, also satisfy and with the
same constant, as rearrangements preserve LP —norms. By changing these functions on a zero-measure
set, we may suppose that their level sets are all open. The main result of this section Theorem
lays out the foundation for the analysis in the following ones. But first state a lemma that is used in

the proof of Theorem and also later in the paper.

Lemma 3.1. Let f,g,h : R — Rxq satisfy (1.3) and (1.7) for 0 < e < 27573 | flli = llgli = 1,
min{|| f|loc, 19llcc} = 1, and let Ay = {f >t}, By ={g >t}, C, = {h >t} be their level sets. Then

O [ 1) — (1= )M (40) = 3 (B e < 97 E

(ii) there emists a measurable a set F C Ry such that H'(Ry \ F) < 9e1 and

(3.1) [HY(C) — (1= NVHN(A) = AHY(By)| <7 %ei VieF

Proof. We may assume that min{||f||oc; [|g]lc} = || f]|cc = 1, and hence Lemma [2.4] yields that

3 1
1 <|glloo <1447 26e2.

D (0,1) as Ay # G and B, #0if 0 <t <1 = [|floc < llglloc, and Sy D (1 + 4772,00) as
At =B, =0ift>1+4r2 > lglloe > || flloc- If t € Sy for So = Ry \ Si, then ¢ > 1 and
Jof=Jzg < Jgh <1+eyield H'(Ay), H (By), H'(Cy) < 1+ &; therefore,

HY(Cy) — (1= NHY(A) = MHY(By)| <1+e<2 VteSs.

Let 51 {t > 0;HYC) > (1 — MNHY(Ar) + AHY(B:)}. By the reductions made, we know that
1) a

Thus,

3

1+47 22
IHY(C) — (1= NHY(A) — XHY(By)|dt < / 2dt =872
1

I\J
l\J‘H

Sa
By the fact that the integral fR LGy — (1 = HY(A) — MHY(By)) dt < €; we obtain that

/ IHY(Cy) — (1 = NHU(A) — MHY(By)| dt < 07 2e3.
R4

By using Chebyshev’s inequality, we obtain that the set of ¢ > 0 where the integrand is larger than
772e1 has measure at most 95%, which finishes the proof of Lemma g

Theorem 3.2. There is an absolute constant ¢ > 0 szich that the following holds. Suppose f,g,h
R — R>o satisfy and for0<e< 6671000‘7#. Then there exist even log-concave functions
f.,§ such that

1F* = Flly+ g™ = glly S e P s,

where w s an absolute constant given by w = 6 + 3°’°, with wy as in Lemma .

Here and henceforth, given a family of sets {S,}, we shall use the notation |J, So to denote the
union {J,,. g, ¢ Sa-
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Proof of Theorem[3.3. First, we may suppose without loss of generality that | f|1 = |lg/[1 = 1, and
that min{|| f|lec, [|gllcc} = || fllcc = 1. These assumptions, together with Lemma imply that
0<[|glo —1 <47 2e2,
Consider, thus, the functions a, b, c: R — R, defined so to satisfy, for any R € R,
{f* > e} = (—a(R),a(R)) =: Ap,
{g* > €} = (~b(R), b(R)) =: B,
{h* > ef'} = (=¢(R),c(R)) =: Cg.
By applied to h*, we have (remember, |J, So = U,. 5,40 Sa for any sets Sq)

*

(3.2) Cr2 U {@=XNAr+2Bs}.
(1=N)R+AS=T

Thus, as [ f* = [ ¢* =1, by a change of variables ¢ = el we have
e > /Oo (H'(Cr) — (1 = NH ' (A7) + AH (Br))) e aT.
Notice that the map T +— H(Cr) — (1 — NH (A1) — AHY(Br) is, by and the Brunn-Minkowski
inequality, nonnegative for all T' € R for which Ay, Br # (). We observe that
Ar = A.r, Br = B.r, Cr = C,r.

Let F' be the set constructed in Lemma (ii). In particular, Lemma yields that if Ag,Bg #
0,(1-=ANR+AS =T, and el =t € F, we have

N

(3.3) (1= Na(R) + Ab(S) < (1 — Na+ \b) (T) + 7 2e1.

Fix thus M = #log(1/¢), with 6 > 0 small to be chosen later. Denote by Fy; = F N [e=M eM]. With
this definition, we have that the set

log(Fur) = {T € R: e’ € Fyr}
has large measure within [—M, M]. Indeed, recalling that H'(Ry \ F) < €i,

_ _ 1_
(3.4) /RX[—M,M]\log(FM)(T> dI' < eM/RX[—M,M]\log(FM)(T> eldl = ¢ 0H1([€ M7€M] \F) <ed ‘.

Thus, if 6 < 1/8; then H!([—M, M] \ log(Fa)) < e5.
Therefore, if 17,75 € log(F)r), and additionally

1 1—X 1 L
+ Ty €l F Ty — T I
Th 2 5 )\71 2\ b € log(Fu), 21= 5 2+2 )\T16 og(Fur),
then the reduction in [24, Remark 4.1] and (3.3)) show that the following four-point inequalities hold:
9 .
a(Th) + a(Tz) < a(Tip) + a(Toy) )\T*%&’

(3.5) )
b(Tl) + b(TQ) < b(TLQ) + b(TQ’l) + XT_EE .

PN

Inspired by this, we recall the statement of Lemma 3.6 in [24] in the one-dimensional case:

Lemma 3.3 (Lemma 3.6 in [24]). Let G C R be a measurable subset and i : G — R be a function,
such that the following properties hold:

(1) The four-point inequality

(3.6) P(T1) +9(T2) < P(Tr2) +9(Ton) + o
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holds, whenever T1,T5,T1 2,151 € G;
There is r € (1/2,2) with [—r,r] =

The inequalities —k < Y(T) < k hold for all T € G for some k > 1;
There is H C R such that

(37) [ Hieoltv > sh\ o> shs+ [ (0> <c
H R\H
Then there exist a concave function W : Q — [—2k, 2k], and an absolute constant ¢ > 0, such that
(3.8) / (T — $(T)| dT < chr0(c + C)°,
G

where we let oy = and wy > 0 is an absolute constant.

T
16| log 7|’

We are almost ready to apply Lemma we change variables and set a(T") = a(MT").
If 77, Ty, T1 5, Ty ; € log(Fpr)/M and A € [7,1 — 7], then the four-point inequality (3.6) holds for a,
1

with o = 3?2 Moreover, the properties of log(Fas) (see (3.4)) imply

H' (co(log(Far) /M) \ (log(Far) /M) < e5.

From that, we see that Q := co(log(Far)/M) is an interval that differs by at most £8 from the
interval [—1, 1], and thus can be written as Ty + I, with [ = [—r,r] and |r —1| < 2%, and Tj) € R with
ITy| < e.

Defining the function a’(7")

= a(T" + Ty) preserves conditions (1), (2), (4), and (5), in Lemma [3.3]
In addition, now also condition (3)

is fulfilled. Furthermore, by Lemma we have @' is bounded in
absolute value by k = -5|log s|%, with ¢ an absolute constant.

Finally, as the function a is nonincreasing on R, the level sets of @’ are all intervals. Hence we may
take H to be the support of @’ in and ¢ = 4es.

Therefore, by Lemma there is a concave function @ : @y, := Qar — Top — [—2k, 2] such that

/ &(T) = @(T)|dT < kT~ - ———.
log(Far)/M—To Thar/

Thus, the function a(7T") = a’(T — Tp) satisfies

aT

£78
a(T) — a(T)|dT < |loge|~ .
/log(FM)/Mr (T) ~ a(T)|dT < [log el s

This follows from the definition of x and the fact that 7% = e~7/16_ which is bounded from below and
above whenever 7 € (0, 1/2]. Changing variables T'= T"/M above yields that a(T") = a(T/M) satisfies
(recall that M = 0log(1/¢))

ar
g 8

7—4+UJ0 .

(3.9) / a(T") — a(T")] dT" < |loge| '+
log(Far)

We observe that, if we denote by Qu = MQy the domain of definition of a, then it follows from the
considerations above that H([—M, M]\ Q) < |log 5]5%.

Notice that the process above can be adapted verbatim to b, and we find a concave function b :
Qnr — [—2k, 2k] such that

3.10 / b(T') — b(T")|dT’ < |loge|"Hs =
(3.10) log(FM)| (T7) = o(T")| [loge| ™7~y
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Let, for shortness, wy := 44wg. We must now ensure that a, b satisfy the requirements of distribution
functions. Indeed, in case a, b are both nonincreasing on the subinterval Ip; = [-3M/4,3M /4] C Qus,
we do not change them.

On the other hand, if either a or b are not nonincresing on such a large interval, we use Chebyshev’s

inequality in conjunction with (3.9) and (3.10)).
This implies that there is a set F C log(Fy) such that H!(log(Fy) \ F) < 773 e%, and

6(T) — b(T)| + |a(T) —a(T)| S 7~ 2e%, VT eF.

Changing a,b on a zero measure set, we may suppose that both are lower semicontinuous. Suppose
then without loss of generality that a attains its maximum at a point Ty € 1.
As HY(Qp \ F) S 772 %, there is a point T} € F such that
Ty —Ti| 777 e%.
Analogously, there is a point T, € F such that |1y + M| < 7_%5%, thus,
a(To) — a(T2) < |a(Tz) — a(T2)| + a(T1) — a(T2) + [a(T1) — a(T1)| + [a(T1) — a(To)|
(3.11) o1 ar
<ecr 2esz +|a(Ty) — a(Tp)|.
On the other hand, by concavity,
(3.12) a(Ty) > va(Tp) + (1 — v)a(Tr), with v € (0,1) such that vTp + (1 — v)T5 = T7.

It follows from the manner we have chosen Ty, 17,75 that
w ar M w ar
r R 2N - Tl = (-T2 (Y e e ) 1),
Thus, if € > 0 is sufficiently small, we have
v>1-10r" 7%,
Also, by boundedness of a, we have
3w ar
(3.13) a(Ty) — a(Tp)| < |loge|=7~ 2 6.
Combining (3.13)) and (3.11) implies
4 3wy ar

a(Ty) < a(Tz) + clloge|=7 2 eox

where ¢ > 0 is an absolute constant, and so, by monotonicity,
4 _ 3wl ar

(3.14) a(Tpy) < a(T) + c|loge|=7" 2 o4 VT € Iy T < Tp.

We thus define
Cl(T), it T eIy, T > Top;
O(To), if T ely,T<T.
This new function, besides being concave, is also nonincreasing on 7, and, by (3.9) and (3.14]),

a(T) =

w1 ar

/ |a(T) — a(T)|dT < HOgE‘H_%T_T&‘ o1 .
lOg(F]\/j)nIA{

As both a, a are bounded by ¢| log 5\%/74 on Ipy and H(Iy \ log(Fyy)) < £8, we conclude moreover
that

or

/ 6(T) — a(T)|dT < |loge|"F 17~ 3 %%

Iy
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By symmetry, the same method can be applied to the function b. Given the two resulting concave

functions a, b, they define an almost-everywhere unique pair f, § of functions such that

{z e R: f(z) >t} = (—ad(logt),a(logt)), {z e R: g(z) >t} = (—b(logt), b(logt)),

30

whenever logt € I (that is, t € (534*0,577)),

supp(f) = |J  (—allogt),a(logt)),  suwpp(@) = |J  (~b(logt), bllogt)),

30 _ 30 30 _ 360
te(ed e 4) te(ed g 4)

and {z e R: f(z) >t} ={z e R: §(z) > s} =0 for t,s > e~ or whenever d(logt) = 0 = b(log s).
We claim that these functions are log-concave. Indeed, if f (z1) > s1 and f (x2) > s with s1, 59 €
(5%,5_%) then
x1 € (—a(logsi),a(logsi)), x2 € (—a(logsz2), a(log s2)).
By concavity, for any ¢ € (0, 1),

try + (1 — t)xg € (—ta(logsi) — (1 — t)a(log s2), ta(log s1) + (1 — t)a(log s2))
C (—a(log(sysy ")), a(log(sisy "))).

Thus f(tzy + (1 — t)x2) > stsy !, which concludes in this case.

The case max{sy, s2} > e 1 or a(max{log si,logsa}) = 0 is trivial by definition. Also, if s; €
(0, 5%), then x; € (—a(logtp), a(logty)), for ty € (6¥,€_3719), and thus we reduce to the previous one.
By symmetry, the same holds for g, and the claim is proved.

Finally, it remains to prove that || f — f||1 +|lg — g||1 is small. By layer-cake representation, choosing
0 = o /100 we have

£ =l = [ > nalF > )d = [ lam) - am)|emar

30

e 30 -

(3.15) s/ (’H {f>tH+H{f> t})) dt+a4/ la(T) — a(T)|dT
0 Iy
o 1 A | 3 M 3
S et [loge|r 04ng + Hoga]l*%e%z*%rf% < E%]logs\pr%r’%,

.

where we used || fl|co, [|9]loc < 2 and Lemma Naturally, all such considerations hold in the exact
same manner for g, g.

We now notice that, if € > 0 satisfies the smallness condition as in the statement of the result, then
we may bound
‘1+

llogs 7-5128 <E256

By Proposition this is enough to conclude the case of symmetrically decreasing functions. As
we do not need an explicit estimate on the distance between h and a log-concave function, we omit
the final bound one could obtain using that proposition, limiting ourselves thus to the statement of
Theorem [3.2 O

4. THE GENERAL CASE

We now turn to the general case, assuming the results in the previous subsection. We shall prove

the following result:

Theorem 4.1. There is an explicitly computable constant cg > 0 such that the followz'ng holds. For
T € (0, ] and A € [1,1—7|, if f,g,h : R = R>g are measurable functions for which ( and | .



20 KAROLY J. BOROCZKY (RENYI INSTITUTE), ALESSIO FIGALLI (ETH) AND JOAO P. G. RAMOS (ETH)

hold, with 0 < & < coeM(7)_ then there exist a log-concave function h and w € R such that

) ) ) Q)
/]h—h\+/\a’\f—h(-+)\w)|+/|a’\1g—h(-—|—()\—1)w)]<co€ w /h,
R R R T R

it

where w = 3 + £0 with wy being the exponent of T in Lemma M(7) = 10%0(wo + 4)& and

7-4
4
Q(T) = groTiog-r-

As pointed out in the introduction, in order to prove such a result we shall break the proof into

several steps.

e Step 1: finding better behaving functions f,g,h (c¢f (4.6)) that satisfy (1.3) and (1.7)
with a possibly smaller power of ¢. Once more, we assume the reductions made in Sections
and [3] to hold. That is, we have | f|l1 = |lg|li = 1, min{[|f||sc, [|g]loc} = || f]loc = 1. Lemma [2.4] yields
then that
3 1
llglloo € (1,1 4+ 477 2£2).
Also, as || f|l1 = |lg|l1 = 1, using notation from Lemma [2.5]

£> /Oo (H(Cy) — (1 = NHY(A) — MHY(By)) dt > 0.
0

Thus Lemma [3.T] implies

~

T3 2 / ) — (1= NHN (A — NHA(BY)| d.
0

Let F' be the set constructed in Lemma (ii). Moreover, if t < 1 — CT_%E%, then we know that
Cy D (1 = AN)A; + AB;. Thus, Lemma and the Brunn-Minkowski inequality yield

(4.1) 0 < HYC) — (1= NHY(A) — NHY(B) < 7 %e1, Vi e FN(0,1—cr 2e2).

We need one more preliminary result in order to move on with our construction.

Lemma 4.2. Let f,g,h : R — Rxq satisfy (1.3) and (1.7) for 0 < e < 27573 | flli = llgl = 1,
min{|| f|leo, 19llcc} = 1, and let Ay = {f > t}, B, = {g > t}, C, = {h > t} be their level sets. Then

there exists a measurable set F' C Ry such that:

(1) H' (R \ F') < €°, whenever § < a,/2048;
(2) [HY(Cy) — (1= NVHA(A) — XHA(BY)| S 727 for all t € F;
(3) min{H!(Ay), H (By)} > &% for allt € (0,1 + ct~2e2) N F', § < o, /2048,

where we let, as before, c; = m.
Proof. By the considerations in Section |3 we know that there are log-concave functions f*, g*such
that

1F* = Pl + g™ = 3l S 7 7 e i,
where f*, g* denote the symmetric decreasing rearrangements of f, g, respectively. By the reductions
in the proof of Proposition we may suppose that holds for the functions f*, §*. In particular,

applying it in conjunction with Lemma [2.2] to these functions, we conclude that
H ({t>0: H ({f* >t} <)) S

for all § > 0. By writing

3wy  ar

17" — ol = /0 HUS > AL > 1)) dt S 7 5 e
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and using the argument with Chebyshev’s inequality we have extensively employed throughout this
manuscript, we obtain

HU({t > 0: HH{f* > 1)) <)) <&
for all § € (0, 1§37), and € > 0 sufficiently small (independently of 7 > 0). Thus, by equimeasurability
of the rearrangement,

HU({t>0: HI{f >t}) <eh) S &
for all 6 < a;/1024. In particular, we see that

H(Ay) > 2008,

3 1

whenever t € F' C F N (0,1 —¢r~2¢2), where H'(F \ F') < e20is. The same holds for g, and thus we
may denote still by F’ the set where the above properties hold for both f and g. By the considerations
above, the set F’ thus defined satisfies the assertions in Lemma and we are done. g

We now wish to employ Freiman’s theorem in order to conclude that the convex hull of the level
sets A;, By are not too far off from A;, B; themselves. To that extent, notice that, for ¢ < 7% < 1,

min{H (A;), H (By)} > e20is > 772e3,  Vte F,
Thus, thanks to (4.1), we can apply Freiman’s theorem. This yields that
(4.2) M (co(Ag) \ Ay) + H' (co(By) \ By) S 7~ %e,
for all ¢ € F’. Notice also that, since the sets {A;}+~0 are nested, the same property holds for their
convex hulls {co(A4¢)}e>o-
With this in mind, we set

(4.3) co(Ar) = (ap(t),b5(1),  co(By) = (ag(t), by(t)).

The main idea is to slightly change the functions a}, a;, b}, b;, in order to construct two functions f,g
close to f, g respectively, and whose level sets are intervals coinciding with co(A;), co(B;) for the vast
majority of levels ¢ > ¢, where # > 0 will be a small constant to be chosen later.
By redefining on a set of zero measure, we may assume that the functions af,a b1 b1 are all
right-continuous. Then we define
be(t) = sup b}‘(t/), by(t) = sup b;(t/),

t'>t,t' € F t'>t,t'eF’
(4.4)

af(t)= inf ab(¥ ag(t) = inf al(t).
7(®) t'>t ! 7 (), o(t) t>tt R o(t)

The functions ay, ag, by, by defined in such a way are all, by definition, monotone. Moreover, modi-
fying on a zero-measure set, we may suppose them to be right-continuous as well.

Let now 6 > 0 be a fixed parameter, whose exact value we shall determine later. We define

(ar,by) = (ag(e”), by ().
As H'((0,1 — cr e %) \ F') < e2015, as long as we choose 6 < a,/2'2 we may always find a point
to € F’ so that 1008 < tg < €. Thus, for all t > &7, . yields

(4.5) (by(t) — ag(t)) < (bylto) — ag(to)) < H'(Ay) +er~2e% S 774 loge|7,

where we used Lemma in the last inequality. We then build the function f supported in (@, by),
for < as(1), as

f(z) = sup{t: as(t) < x}.
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We further define it to be 1 in the interval (ay(1),b¢(1)), and for z > by(1) we let
f(x) =sup{t: = < bs(t)}.
An entirely analogous construction yields the function g. Notice now that, for s € (0, 1),
{x eR: f(z) > s} =
{z € R: 3t > s so that either a;(t) < x and x < af(1) or bs(t) > > by(1)} U (ap(1),b6(1))

= Ulas(050) =t ar(0.5up7(0)) = (as(s) by (5

t>s

(4.6)

Notice that we used the hypothesis of right-continuity of af, by in order to obtain the last equality
above. Thus, we have

Zt =: {Y>t}:CO(At), VtGF,.
This allows us to estimate

6

(4.7) /R Flw) — fa)] da = /O TN AN dt < /0 (MM A+ M) dt

+ / H(co(Ay) \ Ay) dt + / (H (A + HY(A)) dt S 7% loge] 7,
(€, 1)nF’ (e?, D)\ F’

where we used ([4.2), < a,/2'2, and once more Lemma The same conclusion holds in an entirely
analogous way for ||g — g||1.
We now build a function h so that (I.3) and (1.7)) are satisfied. In fact, we take the most natural

choice

h(z)=  sup  f(2)' gy
(I-X)z+Ay=z

The level sets Cy = {x € R: h(x) > t} satisfy, by definition,

*

Ci= |J ((1=NA +AB,).

rl=AgA=t

As the level sets of f,g are intervals, the function h is measurable. It remains to verify that we have

a control of the form
/ h<1+c¢(r)e,
R

for some v > 0 and some function ¢(7) > 0. The strategy here is similar to the proof of Proposition
First, we may choose 6 = ., /2!3 in (4.7), so that we obtain

(1.9 £ =Tl = [ AT > AT > thde S 7 logel
0

(with the same estimate holding for ¢g,g) and then use Chebyshev’s inequality in order to conclude
that
(4.9) H({t>0: H' ({f>1}) <) <&,
for all § < a, /2. Then, we fix 79 < a,/2'% and define S C (0,+0c0) to be the largest measurable
subset of (0, +00) satisfying:

(1) min{HY({f > t}),H' {g > t})} > " forallt € SN (O, 1+ CT*45%>;

2) HE{f > AT > t}) + H {g > t}A{g > t}) Se2' forall t € S.

By ([@.8) and (#.9), we have H' (R, \ S) < 7747, Thus, for some absolute constant ¢ > 0, there is an
element 7o € (1 — c7 47,1 4 e7~4€70) N S. Fix this element until the end of the proof.
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Note that transformations of the form

(fag7 h) = (f( - :L'O)ag(' +$0)7h)7 (f7gvh) = (f( - .’Z‘o),g(' - :L‘O)’h(' - l’o))

preserve and with the same constant. Also, they leave the set S defined above unaltered.
Hence, with no loss of generality, we may suppose that the barycenters of {f > ro} and {g > ro} both
coincide with the origin. Assume this additional fact until the end of the proof as well.

Now we employ the same strategy as in the final part of the proof of Proposition Fixt>e¢
It is not hard to see that the set {h >t} splits as

Y0
2

Ci= |J (1=XN4,+XByU U (1= N A, + ABj)
rl=Agh—¢ rl=AgA—y
r,seg r,seg
ro>r,s>e70 either r>rg or s>rg
U U (1= XA, +A\B,) = C, UC; UT,.

rl=Agr=¢

either _r/;g or s¢ZS

Case 1: Analysis of a} . By Young’s convolution inequality and the definition of S, we have
(4.10) XA A, * XAB, = X(1-2)7, * XaB, llo < ||>§El—>\)Ar - X(l_j)zrlh +xas, — x,z. 11
S e2ls Vr,seS.
On the other hand, by the definition of S and the fact that we are analyzing 6% , we have that

min{(1 — NH'(A,), \H'(B,)} > 7.
We thus have the convolution estimate
(4.11) X(-na, * Xap, (2) > 3
whenever

z € ((1 = Nag(r) + Aag(s) + 367, (1 — A)bg(r) 4+ Abg(s) — 3621°) .
Since (1 — Aag(r) + Aag(s) < =€, (1 — XN)bs(r) + Abg(s) > €7, and r,s € (€7°,19), due to the fact
that the barycenters of A,, and B, coincide with the origin, we have that the set
(1= Nag(r) + Aag(s) + 37, (1 — A)by(r) + Abg(s) — 3e21°)
contains (1 — 5%0) ((1 = XA, + AB;) whenever g < a; /2%,
On the other hand, and imply that

x € supp(X(1-a)4, * XaB,) = (1 = \) A + ABs.

Thus,
_ _ 1 1
(I-=MNA, +ABs C ——=5((1 = NA, + ABs) C ——5{h > t},
1—e1 1—¢e1
hence )
1
1—¢e1

Case 2: Analysis of 6,52 Ué?. Recall that, by assumption, ¢ > e 2. Hence, since 1 F lloos [1Fl0e < 2, we

readily obtain
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Since H! (R \ S) < &%, there exist 7', s’ € S, with 7/, s’ € (€70, rg), such that |r —7/| 4+ |s — s'| < £
and r > r’, s > s'. Therefore,
_ _ _ — 1 1
(1 — )\)Ar + )\Bs C (1 — )\)AT’ + )\Bs/ C 7770{]7‘ > (T,)I_A(S,)A} C 17770{]1 >t — 67—70},
— e — 4
which implies

_ 1 .
CiC——A{h>t—c}, Visce.

1—¢ea
Moreover, since supp(h) C (1—\)supp(f)+Asupp(g) and all sets involved are intervals, H! (supp(h)) <

~

74 log 5\%. Thus,

/Rh = /OOO HU({R > t}) dt < /OT #' (supp(h) dt

T— / H({h>t))dt <1+ —e3%|loge|7
— —€ oge|T,
1—ci Jic3° - ®

for some absolute constant ¢ > 0. This concludes Step 1, as long as we take y € (0, 7J%) and ¢(7) = 774,
e Step 2: the functions ay,ay, by, b, are suitably close to satisfying 4—point inequalities.
We now use similar methods to the ones employed in Section [3]in order to conclude that the functions
we constructed are close to being concave.

Indeed, for notational simplicity, we reset our construction from the beginning, additionally as-
suming the reductions and conclusions of Step 1 to hold. In other words, we assume that f,g,h
satisfy and , and moreover the level sets of f,¢g are intervals. We further assume that
[fllo =1, g f = Jgg =1, asin Section

Now Lemma [3.1] yields that there is a set F' C (0, +00) such that H}(Ry \ F) < e1, and moreover

3
2

[H(C) — (1= NHN(A) = AHY(BY)| S 7 %es,  VieF

We may now invoke the set F’ constructed in Lemma With this in hands, we define the set
Fiy =1og(F')N[=M,M], M =6 log(1/e) (0 < §/2 to be chosen later). We see, from this definition
and a change of variables, H!([-M, M|\ F,) < sg, and F), is such that the sets

Ap = Acr = (af(R),bf(R)), Bs = Bes = (a4(5),by(5)), Cr = Cer = (an(T), bu(T)),

satisfy

(4.12) 1M (Cr) — (1= NH (A7) — AH (Br)| S 7263, VT e Fy
and

(4.13) min{H (A7), H (Br)} > &°, VT € (—o0,log(l + cr252)) N Fy.

We claim that, for R, S,T € F}, are so that Ag,Bs # 0, (1 — A)R+ AS =T, then

1
4.14) (1- A 1— Nag(T) + Aay(T) — ——¢°, (1 = Nap(T) + Aay(T) + ——&° ) .
(410) (1= N+ 7Bs © (1= Nag(T) + Aag(T) = e’ (1= Nas(D) + 2ay(T) + 105"
Indeed, if this is not the case, then, by (4.13)) and the Brunn—Minkowski inequality,
H (1 — N)Ag + A\Bs) > &°,

and thus, as all sets involved are intervals,

HE (1= N Ap + ABs) \ (1 — N Ar + ABr)) > 1010055.
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This implies, on the other hand, that
1
1 )
C 1-A A\Br)) > ——

which, together with (4.12) and the one-dimensional Brunn—Minkowski inequality, contradicts the
definition of Fj,, as long as we take ¢ < 73. Thus, whenever R,S,T € Fy,,(1 — N)R + \S =
T, Ar,Bs # 0, we have

(4.15) (1= Nayp(R) + Aag(S) > (1 — Nay(T) + Aay(T) — ﬁg’
(1= A)by(R) + Aby(S) < (1 — A\)bs(T) + Aby(T) + Floogd’

which proves (4.14)).

As indicated in Section |3} we can apply [24, Remark 4.1] to translate the three-point inequalities
presented in (4.15)) into the following four-point inequalities:

1
af(Tl) + af(Tg) > af(Tl,z) + af(TQ,l) _ XE6’
(4.16) :
ag(Tl) + ag(TQ) 2 ag(TI,Q) + ag<T2’1) — XE(S’
1
b (T1) + by(T2) <bp(Ti2) +by(To1) + Xfé’
(4.17) )
by(T1) + by(Ta) < by(T12) 4+ by(Toy) + Xga,
whenever
Ty, T / T — T, T / T _ T T , .
vhenn =gty B Ta=gyhty ey

This concludes this step, as the functions ay, a4, by, b, are close to ay,ay, by, by, which themselves
satisfy the four-point inequalities.

e Step 3: Constructing the log-concave approximations. We now employ Lemma [3.3] to the
functions ay,a,, by, by.

Indeed, fixing a level rg > 1 — cg? with min{H'({f > ro}), H'({g > r0})} > €%, we may suppose
that the barycenters of the intervals {f > ro},{g > ro} coincide with the origin; the existence of such
a level follows once again by the definition and properties of the set F},.

After this reduction, the definition of ), and Lemma ensure that the additional hypothesis

— 4
laf (T)] + by (T)] + [ag(T)] + [bg(T)| < 7| logel -

hold on a subset § C F4, so that H'(F),; \ ) < °. We thus replace F, by §, and henceforth still
denote it by F},. Notice also that, in such a set, one has ay, a, nonpositive and by, by nonnegative.
At the present point, one notices that all other prerequisites for Lemma [3.3] are satisfied, thus we
may apply it to by, by, and to —ay, —a, (thanks to and )
Applying Lemma and arguing as in Section [3| we find functions bf, by, ar, a4, defined on an
interval Q) satisfying H!((—M, M)\ Qu) < 5%, such that

\logEI%&_é%

)

| os@ = bpmars [ lay(n) - anm)ar s
7} Fj

(4.18) M M 7-M4
loge|r sar
[ e wyar+ [ o) - agnjar £ FETE
Fu Fr g

Moreover, by, b, are concave, ar,a, are conver, and they are all bounded in absolute value by

et ™4 log5|§.
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Again, the considerations in Section |§| applied almost verbatim to by, by, —a;, —a, imply that, by
potentially decreasing the power of € in the left-hand side of , we may suppose that az, ag,br, by
are all monotone on a smaller interval Iy = (=3M/4,3M/4), and thus, as ay, a4, by, by are themselves
bounded by ¢7~*|log 5|%,

4

|loge|'™ sar
/ lay(T) — ay(T)|dT + / 04(T) = by(T) T < D827 %5

(4.19) s b T
1 T aT
[ 1a) —ay(lar+ [ Jo,1) — by ()| ar s FEL T
Iy Iy T 2

Similarly as before, we pick the unique pair f , g of functions such that
{z eR: f(z) >t} = (ar(logt),bs(logt)), {z e R: g(z) >t} = (ag(logt), by(logt)),

whenever logt € I (that is, ¢t € (6370,8_7)),

supp(f) = |J  (ag(logt),br(logt)),  supp(d)= ]  (ag(logt),by(logt)),
te(z:‘%,e*%) te(e%@*%)

and {z € R: f(z) >t} = {z € R: §(z) > s} = 0 for t,s > e~ or whenever ar(logt) = by(logt) =
0 = a4(logs) = by(logs).
It follows from the convexity of ar, a,, concavity of by, b, and the argument in Section |3| that these

functions are log-concave.

e Step 4: Conclusion. We can finally conclude the proof. Assume, as in previous sections, that
I £l = llglli = 1 and min{||f||ec |gllcc} = || f]loc = 1. Moreover, we assume that Steps 1, 2, 3 hold.

Thus, using the functions f, § and the way we built them, we are led to estimate:

0 = 7l =/O°°%1<{f > ALF > 1)) dt

</IM Iaf(T)—af(T)lerT+/ ybf(T)—bf(T)|€TdT+/O'5 HULS > 1))dt

(4.20) Ing
30 C 4
<e ([ @) - ag@lar+ [ o) - upmlar) + S ogel?
I]\/[ M T
< |log€|1+%7'*mTl€%T < 77%5%,
_ “O’Tﬁ
by choosing 6 = %630‘{ and using e < e 1075 Note that, in this computation, we assumed f and g

to fulfill the requirements in Steps 1-3. In doing so, we lose powers of € along the way. More precisely,
combining estimates from Section [3| and Steps 1-3, we have:

(1) We must not incorporate any further power from Section (3| as it has only been used in the
reduction to the case of functions whose level sets are intervals;
(2) In Steps 1-3, we must substitute € — 7%52%5, by the reduction made in Step 1.

Thus, we conclude that if the functions f, g, h satisfy (1.3) and (1.7), then there are log-concave
functions f, § such that

~ 3w 3w
If = Flli +1lg— gl S er™ 2 e = er™ 2 @),

—3wy

We are now in a position to use Proposition We choose p = ¢r 2z €90("), The condition n < ¢/73
for some ¢’ € (0,1) becomes

(4.21) £ S ceiM(T)’
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where we define M (1) = 104Ow1“0g;%)|4, and ¢ > 0 is an absolute constant. Under that condition,
notice that all the smallness conditions in the proof above are also fulfilled.

Hence, thanks to Proposition and the smallness condition , there exists a log-concave
function h such that, for f, g, h satisfying and (L.7), if we let a = ||g|[1/[| |1, then there is w € R
for which

Jila*f (@) = R = Aw)| do £ 725 foh

Jie la*g(z) — f}(x + (1= Mw)| S 72e % [ h
Ji Ih() = h(@)| do < 725 [ b

Here, we have let wy = “g-4-2. Thus, noting the choices of Q(7), M () in the statement of Theorem
we notice that this finishes the proof of that result, and thus also the proof of Theorem[I.6]in dimension

n=1.

5. THE HIGH-DIMENSIONAL CASE

With the one-dimensional case already resolved in the previous section, we now employ a recent
strategy by the first author and A. De [10] in order to reduce the higher-dimensional version to the
one-dimensional one, with the aid of the stability version of the Brunn—Minkowski inequality proved
by the second author and D. Jerison [24]. Indeed, we note that the main result in one-dimension
implies the following result:

Corollary 5.1. Let F,G,H : Ry — Ry be measurable functions such that
(5.1) H(r'72sN > F(r)'72G(s), Vr,s >0,

where A € [1,1 — 7] for some T € (0,1/2]. Suppose that

(5.2) R+H§(1+e) </R+F)1_A</R+G>A

holds for 0 < ¢ < e=M) . Then there are constant a,b > 0, with a/b = ||F||1/||G|1, such that

/ A (M) — H()|dt+ / QNGB — Hp)|dt <+ [ H.
Ry Ry Ry
Here, w and Q(1) are the same as in Theorem [{.1]

Proof. We change variables and define f(z) = F(e®)e”, g(z) = G(e®)e”, h(z) = H(e")e®. These
functions satisfy (1.3)), and, as

o e o e o

they also satisfy (1.7)). By the result in Section (4], there is a constant n € R such that

/’f (£ 111/llgll) (e + )| dae < 79D £,

/Ig = (lglh I /1) Al + (A = V)] da S 779 g,

for Q(7) as in the statement of Theorem Changing variables back, we obtain

/R [F(8) = X(|Fa/|GIVMH (g dt S 77X Py,

/ G (1) = XTI G P H (YD) dE S 790G,
R
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which implies that
/R |G/ NN F(e™s) = Hs)| dt S 779D FIY G,
/R I[P /NG Ms) — H(s)| dt S 7 2@ PGy

Taking a = e’ﬁ%llh, b = e" and using the Prékopa—Leindler inequality on the right-hand side of the

last expression implies the result. O

Let f,g,h : R® — R, satisfy the n—dimensional version of . We use Corollary for the triple
F, G, H defined by
H'({z € R f(z) > 1)) = F(1),
H'({x € R™: g(2) > 1}) = G(1),
H"({z € R": h(z) > t}) = H(t).
By and the n—dimensional Brunn-Minkowski inequality, we have
H(' %) = (1= NF@) 4+ 26 ()

whenever F(s),G(r) > 0. Thus, using the weighted inequality between arithmetic and geometric
means, we get the condition (5.1) for F(s), G(r) > 0. Whenever one of them is zero, (5.1)) holds
trivially, and thus we have verified (b.1)). By layer-cake representation, ([5.2) follows at once from
D).

As conditions are verified, we are in position to use the following result:

Lemma 5.2. If e € (0,e (")) and f,g,h : R — R, satisfy (1.3), (L.7) and Jgn f = Jgng =1,

then there is a dimensional constant ¢, > 0 such that

(5.3) /OOO |F(t) — H(t)| dt + /OOO G(t) — H(t)| dt < epr— 5157

Proof. In what follows, we let, in analogy to the notation employed in sections and
{z e R": f(z) >t} = A,
{z e R": g(z) >t} = By,
{x e R": h(x) >t} = C;

denote the level sets of f,g, h, respectively. Since ||flli = |lg]i =1, [;° H = [gn h < 1+ ¢, it follows
from Corollary that there exists some b > 0 such that

(5.4) / PE@M) — H(t)| dt + / b ONGB-0Ne) — H(t)|dt < a(r,e),
0 0
where we denote a(T,¢) = cr~“e9(") . We may assume, without loss of generality, that b > 1.
For t > 0, let
A, = budy, ifAAD

—(1-)

By = b~ w Bya-n, if Bi#0.

These sets satisfy |A;| = PPF(b*), |By| = b=V G(b~1V¢) and

oo oo
(5.5) / | |A¢l —H(t)|dt+/ ||Be| — H(t)|dt < a(r,¢€).
0 0
In addition, we also know from the Prékopa—Leindler condition that

(5.6) (1= M\bw A+ A= By C C.
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We proceed to divide the positive line [0, 00) into two sets where the measures of flt, B, are either
both close to that of H(t), and otherwise. Indeed, we write [0,400) = I U J, where t € I if 2 H(t) <
|Ay| < S2H(t)and 2 H(t) < |By| < 3 H(t), and t € J otherwise. For J, since ¢ < e~ Mn(") . 5.5) yields

~ ~ 1
(5.7) /H(t) dt < 4/ (1A = HOl+ 1Bl ~ H(0)) dt < Sa(r,e) < 3.
J J
Turning to I, it follows from the Prékopa-Leindler inequality and (5.7 that
1
(5.8) /H(t) dt>1- / H{t)dt > *.
I J 2

For t € I, we define a(t) = |A;|/H(t) and 8(t) = |By|/H(t), and hence 3 <a(t),B(t) < 5, and
implies
(5.9) / Ht) - (Jalt) — 1] + |B(t) — 1)) dt < 2a(,e).
We then proceed by estimating, by the Brunn—Minkowski inequality,
H(t) = (1= NApln + A By ]7) " = (1= N6 s + 265 | Bl

~ A ~ 1-a\ N
~ 11— ~ A |Agm 122 |By| ™
— ‘At|1 A |Bt|)\ ((1 —)\)b = ‘~t|)\ +)\b — |~t|1_)\>

t\; | t|T

A

(5.10) = H(t)- o) 5 (=N + 277

where we let v = ‘g‘l Then . 2.8]) yields

Py _1-a By _1-a)\2 a1 _1\2
(1 —)\)"yn +)\’y n 2 1—|—T (")/2” —")/ 2n > Z 1+T ("}/4n —"}/ 47L) .

We now note that for s > 1, we have

n 1 1
stn — s7dn = 5 41n(s2ln—1)>37ﬁ‘5 (s—l)E(s—),

and thus (5.10)) implies
(5.11) H(t) 2 HE) - o' 50* (1+ 2 (v=771)?)
We claim that if ¢t € I, then

12
(5.12) a(t)l—)\ . ﬁ(t)A <1 + ﬁ (7 . 7—1)2) >1-— 2|a(t) — 1| — 2|5(t) — 1| + T(\/Sl;n';).

Since a(t)172- B(t)* > 1— |a(t) — 1| — |B(t) — 1|, (5.12) readily holds if |a(t) — 1|+ |B(t) — 1] > CE=L°,

Therefore we may assume that

_1)\2
(5.13 o - 11+ 18 —1] < L= L

which condition in turn yields that
(Vo-1)2
a(t) _ b1~ e b—1)2 b—1
(5.14) B ( ° b>2b<1—2-(\[)>>b<1—\[ ):\/6.

t) — Vb—1)2
Ol() (lﬁnb)

We deduce first applying (5.13]), and then (5.14) and the fact that v = %(tt)), that

o8P (14 g (r=77)) 2 a—la@ —11-180 - 1) (14 0 6 =7)’)
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T 1\ 2
> 1=la(t) =1 =180 — 1+ ¢ (v=77)
T 1)\?
> 1 fa) =11 -180) 11+ o (VE- 1)

Vb
proving (5.12)) also under the assumption (5.13), as well.
It follows first from ([5.8)), after that from (5.10) and (5.12)) and finally from (5.9) that

_1)2
m : /Ht 8- S e /H (2la(t) = 1+ 2/B(t) — 1)) at

da(r,e)
s
Since £ < e~ Mn(7) we deduce that b < 2; therefore, one easily deduces that
(5.15) b<1+50n27 2a(r,e)z.

Next we claim that
> ~ & ~ 11 1
(5.16) [l 1A aes [ [1B0 - 1B | de < 20030 a(re)t.
0 0

Since |Ap| < |A¢], we have

| l1ad = 1A de = [ (g -4,
0 0

< [Tl =] de e [ = L di
0 0

dt

- <bA—1>+bA/ (4] — | Ag]) dt
0
A Al 1 1 1 11 1
= 20" —1) <100X2"""n27 2a(7,e)2 < 100n27 24a(T,€)2.

Similarly, |B¢| < |By-14|, and hence

0o _ 0o N
| =B a = [ B -0

< [ |ml v m e [T B B e
0 0

dt

— Q- bH/ (Byse| — [Bi]) dt
0

= 21— < 100n%r*%a(7, e)z,

proving (5.16)). We conclude the proof by combining ([5.5)) and -
As a by-product of Lemma [5.2] notice that, by setting min(|| f||sc, [|9]lsc) = | f|loc = 2, then
. L max |g|oo, || 2lloo
Halne)t 2. [ (G(t) + H(1)) d.
2

In particular, we know that

(517) Cy D (1 — )\)At + A\B;
whenever t € (0,2). We claim, before proceeding with the proof, that under such conditions,
% - 3n+1
(5.18) [9lloc < TS
Indeed, if yg € R™ is fixed, we have
CtD(l—)\)A¢ 2+ Ayo-

t1=2 /g(yo) 1>
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t 1 [t e P1/(=X) r M
F(s)ds = —— F dr
|| Feas =5 [ 9oV <9(l/0)>
At Ag(yo)? 1/(1-X)
§1( t ) / Fl- " ) ar
1—=X\g(w)/ Jo g(yo)M =)

1=

< g <g<20>>A/O " )

Therefore, by picking ¢ = 2 and using that [ H <1+ ¢, f02 F(s)ds=1,

In particular,

2-(1+e)/*

9(3/0) < W

A quick analysis shows that, for A € (0, 1), the inequality
1
(12> 21

holds. If ¢ < 7, then the numerator is at most 2e, and thus, as yy was arbitrary above, we conclude

the claim. Using now ((5.17)), we get
Fit)+G(t)  |F({) - G(1)

H(t) > ((1 CNFOY 4 AG(t)l/")" > ST 5 Vi e (0,2).

Notice also that, by Lemma [5.2] ,

/Ooo IF(t) — G(t)| dt <n 7 2a(r, )3,

Thus, by these considerations and the almost-optimality of f, g, h for the Prékopa—Leindler inequality,

N

we obtain

On the other hand, notice that (2.11)) implies, together with a limiting argument and the Brunn—
Minkowski inequality,

) = max { (AG <t%)1/n - A)F(l)l/ny ! <(1 ~NF (7) e /\G(l)l/”)n} :

for all ¢ € (0,2) so that H(t) > 0. Thus, (5.19)) implies

(5.20)  cur Za(r,e)? 2 /0 ) (; (= nF (175) + a6 (1)) _FW;G“)) .

We thus let, in analogy to Lemma [2.5
I(a) = / ((1— AF(t) + A"G(2) dt.
0

Again in analogy to Lemma we may suppose without loss of generality that A < 1/2. Then ([5.20)

implies

1—A A r

Tf(aﬁ)a = < chféa(T, 8)% + 2(:;).
As in the proof of Lemma we let 8 = aﬁ. We thus have

r(s) L1 1T

— < QCnT_%(L(T, €)

B

=X T il gloa
g T g
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and therefore

k n i— —A)*
L'(B) < <20n7_ga(775)52(1/7jl)‘1> +(1/Tn+1)krw.

Q) . .
If 8 > e 2, then the estimate above yields

T(B) < com "7 Bllog(B)|

In particular, one concludes directly from the definition of I' that

4(n+3)|log 7|
T

4(n+3)|log 7| Q(r)

(5.21) F(B)+G(B) <car "2 loge|” 7, V¥B>e7.

We are now ready to give the proof of Theorem|[I.6]in dimensions n > 2. For that, we use the shorthand

Pn(T) _ 4(n+l(‘]r)|10g7'| )

Proof of Theorem|[1.6, n > 2. Let # > 0 be small, to be chosen later. Define the (truncated) log-
hypographs of f, g, h as

Sp={(z,T) eR"™:z e {f >}, e <el < fa)},
Sy={(x,T) e Rz e {g>e, & <eT < g(a)},
Sh={(z,T) eR"™: z e {h>e, ¥ <el < h(z)}).

We first claim that the measure of the two first of such sets is well-controlled. Indeed, it follows
directly from the definition of such sets and (5.21)) that, for 6 < Q(7)/4,

w

(5.22) cnfr T [log el > 0 loge| - H'({f > &}) > H"T1(Sy).

On the other hand, by a change of variables and the normalization chosen for f, one obtains

. log || fllo 1
(5.23) HH(S;) = / F(e*)ds > .
floge 2
The same estimates together with ([5.18]) show that
(n+1)
_ w4+34n T
(524 b logel D) > I (S,) > ST

holds as well. Employing Lemma [5.2] we obtain that

[ Sy) = HH S|+ [HTH(S,) — HM(Sn)]

< /oo (IF(e?) = H(e®)| +|G(e”) — H(e)]) ds
Ologe

<t ( / S(F) — B+ |6 — H)) ds)

_ w+3 Q("’)ig
<cp,7 2 € 2 =

(5.25)

s 0(e, T, 0).
We denote, until the end of the proof, 6 = d(e, 7,0) for shortness. By (1.3]), we have
(5.26) (1 =X)S+ A5, C Sp.
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In particular, (5.25)), (5.26) and the fact that H"*1(Sf) > 1/2 imply the following control on the
measure of Sy:

n
(5.27) 2c, 72 | log gD > HTH(S,) > %

We are in position to use Theorem [1.4 That result states that, under the conditions satisfied by

the sets ¢, Sy and Sy, in (5.22), (5.23), (5.24), (5.25) and (5.26)), then for § < e=An(7) the sets

Sy, S, are both close (in quantitative terms of § = é(e,7,6)) to their convex hulls. Here, we let

n+2 n n
93 3" loa 7137 . .
A, (1) = %, in accordance to Theorem 1.3 in [24].

In more effective terms, Theorem [I.4] implies that there exist an absolute constant ¢, > 0 and an
371,

P T

23T p3n g 37

of §¢,84, 8y, by Sy, Sy, Sk respectively. There are w = (w, 9) € R"*! and a convex set S, D S, with
(5.28)

exponent 7, (7) such that the following holds. Denote the closure of the convex hull

S > (S —B) U (S, + ),
HH (S \ Sh) + H TS\ Sp) + H TS, \ Sy) < O | log e|Pn (M) g (™)
H LS\ Sp) + H LS\ (Sf — @) + H7THSK\ (Sy + 1)) < enr N2 log e]Pr (D gn (™),
We thus use the shorthand N, = N,, + <542 Now readily implies that H"T1(Sy, \ Sp) <
2Cn7—_N;L| log €|/’"(T)5V"(T), and thus

(5.29) ’Hn-‘rl(ShA(Sf — QIJ)) + 'Hn-i-l(ShA(Sg _ U~J)) < 6Cn7__N"{l‘ 10g5|p"(7)57"(7),
We now employ the analysis of [10, Lemma 6.1]. Explicitly, suppose first w = (w, ), 0 > 0. We let
S¢={(2,T) € Sy: floge < T < floge + o}.

By the fact that H"*'(S¢ +(0,0)) = H"T(Sy) = H" (SN (S5 +(0,0))) +H T (SY), it follows that
HY T (SFA(S) +(0,0))) = 2H"(SF). But we also have that S¥ C Sy \ (Sj, + @), which, by (5.28)

and (5.29), implies that
H"H(Sjﬁ) < 6c,m Vo | log e[ (T 5 (),

Thus, by triangle inequality,

HTH(SEA(Sh + (w,0))) < 2H™H(SE) + H T (SFA(S) + ) < 18¢,7 V7 |log el (g7 (7).

A similar argument works in case ¢ < 0, if one considers S,'f' instead of Sji. In the end, this allows one

to conclude that the w € R™ from before satisfies that
(5.30) H ™ (SLA(S) — w)) + H T SKA(Sy + w)) < T2¢,7 M |log e|Pn (M g7 (7),
We now note that, as {f > &’} x {T = floge} C Sy, then
S D co({f > e%}) x {T = 0loge}.
We associate to each € co({f > £%}) the function
Ty(x) =sup{T € R: (z,T) € Sy}

This satisfies clearly Tf(z) > Ologe,Va € co({f > £’}). We claim that this function is, moreover,
concave. Indeed, if (z,T1), (y, T2) € S, by convexity of that set we get

(tw + (1 — Oy, tTy + (1 — )Ty) € .
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Thus,
Te(te+ (1 —t)y) =sup{T € R: (tx + (1 —t)y,T) € Sf}
>tsup{T € R: (x,T1) € S§} + (1 —t)sup{T € R: (y,T2) € Sy}
=tTy(z) + (1 —t)Ty(y), Vt € (0,1).
By definition of Sy, it also follows that Ty (x) > log f(z), Yz € co({f > €}). Let

eTf(x)

. ifz e co({f >e));
flx) = ,
0, otherwise .
Now notice that (z,r) belongs to the interior of Sy if and only if Ty(x) > r > @loge and x belongs

to the interior of co({f > €}). Writing A(r) = {(2,T) € A,T = r} for horizontal slices of a set
A C R"! we compute, by Fubini,

s\ s = [ T W (S,(r)\ Sp(r) dr

log 2

= H"({log f > r}\ {log f > r})dr
(5.31) Ologe

= [ i At = sh S

2 ~
> 5 [ HAF > Al > s

By Chebyshev’s inequality and (5.28)), there is

0 0 _ Ny (D)
so€ (e, e +epm 20 2 )

4 n (1)

so that H"({f > so}A{f > so}) < 7_%| log £|Pn(7) 52

210N, log(T)
Recalling the definition of J, one notices that, if QELT) > 0, and € < (c,) " te mM2™M  we may take

s0 € (£7,2¢%) so that

(5.32) H((F > 50}AMS > s0}) S 7V log efpn ™52
f

Define then the function fl to be zero whenever f < sg, and equal to f otherwise. This new function

is again log-concave.

We claim that this new function is still sufficiently close to f. Indeed, by gathering (5.31)), (5.32))
and (5.21)), we have

1= fll = /O Wy > BA(f > 1)) dt

50 - 2 -
< [T (i > sap s > ) arr [ R > Al > )a

5.33 iain 2 )
(5.33) < cpr T log e (™) +/ H{f > A{f > t}) dt
s0

< epr 2 log el () 4 21 (S \ Sf)

! (MQ(T)
S 7 Ve | 1og (),

~n

where we chose § = %

inequality is evidently not restrictive to f, and the same argument yields that there is a log-concave

. Fix this value, and thus the value of ¢, for the rest of the proof. Such an
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function g; so that
4 n (T)Q(7)
(5.34) 51 = gll1 S 7 Vo= (D56 | Jog e Pn (7).

In order to conclude, we only need to prove that both of fl, g1 are sufficiently close, after a trans-
lation, to a log-concave function h;. In order to prove that, one only needs to construct the function
h in entire analogy to what we did for f , g; that is, we let

Th(z) = sup{T € R: (z,T) € Si}.
One readily verifies that this new function is, again, concave, and that the function
eTh@)if 2 € co({h > €%});
0, otherwise,

is log-concave. Using (5.30]) together with an argument similar to (5.33)) implies that

(5.35) H"TN(SWA(Sy — w) + H T (SHA(S, + w)) >

11 lloo - - - s
L (> A7+ w) > )+ 1> 3AGE—w) > ) T

Notice now that ||f1]lec = ||fllecs 171]lec = l|lglec, by construction. The idea is then to truncate from
below at height {h > 59} and from above at height ¢ := max(]|fi]lcc, ||§1]|ec) in order to generate a
new function, which is again log-concave by construction. Denote this new function by hi. Moreover,

by (5.35)) in conjunction with (5.18)), we have

2e - 3”+17_”_lcn7_Nn |log 5|p”(T) 5 (7)

o) 2 [ (> AU+ ) > )+ (> YA - w) > sh) ds

— [ (1l10) = A+ 0]+ () - (o~ w)]) d

Combining (5.33)), (5.34) and ([5.36]) implies that
(- = w) = Fll+ [+ w) = gl S 7o logefr (™5,

Finally, in order to prove that h is close to iLl, we estimate
. 50
/ Ih(z) — bu(2)] dz = / (B> 5})ds
n 0

- QH”({h > s}A{h > s})ds + OOH"({h > s})ds
(5.37) / /Q

w+

n ¢ 7
< epr— T LRDI(D/16] 16 g |Pn(T) +/ H"({h > s}A{h1 > s})ds
S50

Q)
—w/2 L)
+ T w/2.75 ,

where we used both (5.21)) and Lemma in the last line. In order to deal with the middle term, we
remark that an argument entirely analogous to that of (5.31) implies that

HY(Sp \ Sp) > 2}/5 H({h > sIA{R > 5)) ds,
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which on the other hand implies

(538) /Q Hn({h > S}A{ill > 3}) ds Sn TfnflT*N;E’YnQ(T)/lﬁ‘ 10g€|p"(7).
80

Inserting (5.38) into (5.37]) implies

(5.39) 1= ally Sp 7 Ve DG Jog (@),

Finally, in order to arrive at the statement of Theorem [I.6] we notice that the expression on the
|tog lon ()

right-hand side of may be bounded by ch*N;f”*%%, aslongase <e = @un?  for
cn, > 1 sufficiently large absolute constant.

An inspection of the constants needed for the proof above allows us conclude that Theorem
holds with ¥, = N, + W +(n+1), as 77(7) is bounded by an explicitly computable absolute

constant C,, whenever 7 € [0, 1]. We also conclude that we may take Q, () = %VG"(T), and the result
holds whenever ¢ < ¢,e Mn(7) where ¢, > 0 is an explicitly computable absolute constant, and one
may take
Ap(7)  pu(7)?
5.40 M, (7) = cp|log(T max{ A
for ¢, > 0 a sufficiently large absolute constant, depending only on the dimension n > 2. This finishes
the proof of the higher-dimensional case, and thus also of Theorem O
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