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Abstract. Given a conical point of a convex surface, a robust notion of generalized unit normal is introduced.

Its relationship with the polar to the tangent cone implies the BV regularity of our unit normal. We then show that
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Introduction

In the study of extremum problems in many areas of applied mathematics, convexity plays an increasingly
important role. For a self-contained account of the recent developments of the theory of convex sets and
convex functions we refer to the monograph [22].

Second order invariants of smooth oriented surfaces in 3D are encoded by the graph of the Gauss map,
the function defining the unit normal at any point of the surface, see [10]. Concerning non-parametric
surfaces given by the graph of bounded and convex functions (that is, by pieces of the boundary of a 3D
convex body), the unit normal is well defined at the full 2D-measure set of regular points. Moreover, as
observed in [9], it is a function of bounded variation. The Jump component of its distributional derivative
contains the relevant information about the set of ridge points: they are points where the tangent cone is
the union of two half-planes meeting at a line, whose orientation is identified by the one-sided limits of the
unit normal. Therefore, in an unspecified sense, convex functions may be viewed as functions with bounded
hessian, that provide the functional framework in order to study e.g. plastic behavior without hardening of
plates, compare [12].

Complementary to regular and ridge points is the at most countable set of conical points. In mechanics,
a conical point is e.g. obtained when deforming a flat surface through a punching. However, analytical
properties at conical points of convex surfaces cannot be analyzed by means of the previous functional
setting. On the other hand, in all examples one has in mind, one checks the existence of a “normal” to the
oriented convex surface that is defined around a conical point, whose image in the Gauss sphere S2 collects
the information of the tangent cone.

The aim of this paper is to give a robust notion of generalized normal at conical points P of a convex
surface. Our normal is a function θ 7→ νP (θ) of the angle identifying the outcoming direction at a conical
point, taking values into S2. Its definition clearly depends on the directional derivatives of a local parame-
terization of the convex surface around the point P , see Proposition 3.1. The BV regularity of the function
νP is the first main result of this paper, and we now briefly describe how it is obtained.

Let ∂Ω be the convex surface given by the boundary of a convex body Ω in R3 with non-empty interior.
For each point P at ∂Ω, up to a rigid motion, we have P = (0R2 , λP ) for some λP > 0, and the tangent
cone ΣP is equal to the graph of a function σP : R2 → R such that σP (0R2) = λP . Denote by cP the convex
spherical curve identified by the intersection of the tangent cone ΣP with the unit sphere centered at P , i.e.,

cP = {z − P | z ∈ ΣP , |z − P | = 1} ⊂ S2 .

Then, cP is a rectifiable and closed curve with finite geodesic total curvature, say TCS2(cP ) <∞. Refer-
ring to Sec. 1 for some notation and background material, and using results taken from [20], in Theorem 2.2
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we show the existence of a convex and closed spherical curve γP , whose length is equal to TCS2(cP ), that
agrees with the limit of the polar curves of any sequence of inscribed spherical polygonals converging to cP .
Therefore, the curve γP will be called polar to cP , and we also denote by NP the spherically convex region
of the Gauss sphere enclosed by the polar γP .

In Theorem 3.3, we then prove that the set NP agrees with the geodesic convex hull of the image of the
generalized unit normal νP . Therefore, NP may be called generalized normal cone. As a consequence, in
Proposition 3.4 we obtain that νP is a function of bounded variation.

We now call angle defect of the convex surface at P the area AD(P ) of NP . Note that AD(P ) = 0 if P
is a regular or ridge point, whereas AD(P ) > 0 if P is a conical point. In that case, in fact, the polar γP is
a non-degenerate, simple, convex curve.

If P is a conical point, one expects that (in a weak sense) the Gauss curvature of the tangent cone ΣP is
concentrated at the point P , where it is described by a Dirac measure δ with a positive weight equal to the
angle defect AD(P ). This is the content of our second main result.

Assume first that the spherical curve cP is smooth, and recall that σP is the function whose graph is
equal to the tangent cone ΣP . If P is a conical point, then σP is not differentiable at the origin. However, in
Proposition 4.1 we show the existence of a smooth sequence {σk} ⊂ C∞(B2) such that σk → σP uniformly
in B2, and

|K(x, σk(x))|
√
1 + |∇σk(x)|2 L2 B2 ⇀ AD(P ) δ0R2

weakly-* in the sense of the measures, as k → ∞, where K = K(x, σk(x)) is the Gauss curvature of the
graph Gσk

of σk at the point (x, σk(x)). Moreover,

lim
k→∞

∫
Gσk

|K| dH2 = AD(P ) .

Furthermore, Theorem 4.2 extends the latter result to any point P of the convex surface ∂Ω.

We conclude this introduction by giving a short (and not exhaustive) list of recent regularity results in
this framework. We first recall that boundaries of convex bodies with non-empty interior are surfaces with
curvature measures in the sense of Federer [15], compare e.g. [9], whereas the Radon-Nikodým derivatives
of curvature and surface area measures of convex bodies (as Hessian measures) have been studied in [14].
Moreover, a thorough analysis of non differentiability points of convex functions is given in [3], see also the
survey paper [7], and we refer to [1] for a study of the structure properties of the singular set. Also, the fine
properties of subgradients of convex and lower semicontinuous functions obtained by Alexandrov [5], can be
recovered by viewing them as a particular class of monotone functions, see [2]. Finally, Lusin-type properties
of convex functions and convex bodies have been recently analyzed in [11].

Acknowledgments The research of the authors was partially supported by the GNAMPA of INDAM.

1 Preliminary results

We collect some well-known properties of curves in Euclidean spaces. We then focus on spherical curves,
recalling some results from [21] concerning rectifiable curves with finite geodesic total curvature. We refer
to Secs. 3.1-3.2 of [8] for the notation adopted on one-dimensional functions of bounded variations.

1.1 Length and total curvature

Consider a curve c in the Euclidean space R3 parameterized by the continuous map c : [a, b] → R3. Any
polygonal curve p inscribed in c, say p � c, is obtained by choosing a finite partition D := {a = t0 <
t1 < . . . < tm−1 < tm = b} of [a, b], say p = p(D), and letting p : [a, b] → R3 such that p(ti) = c(ti) for
i = 0, . . . ,m, and p(t) affine on each interval Ii := [ti−1, ti]. We call meshp the maximum length of its
edges. The length L(c) of c is defined by

L(c) := sup{L(p) | p � c}
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and c is said to be rectifiable if L(c) <∞. By uniform continuity, for each ε > 0 we can find δ > 0 such that
meshp < ε if meshD < δ and p = p(D). As a consequence, taking pn = p(Dn), where {Dn} is any sequence
of partitions of I such that meshDn → 0, we get meshpn → 0 and hence the convergence L(pn) → L(c) of
the length functional. Finally, the curve c is rectifiable if and only if the function c is of bounded variation,
say c ∈ BV((a, b),R3), and in that case

L(c) = VarR3(c) = |Dc|(a, b) .

In particular, if c ∈ C1([a, b],R3) we get L(c) =
∫ b

a
‖ċ(t)‖ dt <∞.

Definition 1.1 The Fréchet distance d(c1, c2) between two rectifiable curves is the infimum, over all strictly
monotonic reparameterizations, of the maximum pointwise distance.

Therefore, if d(c1, c2) = 0, the two curves are equivalent in the following sense: homeomorphic reparameter-
izations that approach the infimal value zero will limit to the more general reparameterization that might
eliminate or introduce intervals of constancy, compare [23].

Moreover, if {ch} is a sequence of rectifiable curves in R3 such that d(ch, c) → 0 as h → ∞ for some
rectifiable curve c, then by lower semicontinuity

L(c) ≤ lim inf
h→∞

L(ch) . (1.1)

We call rotation k∗(p) of a polygonal curve p in R3 the sum of the exterior angles between consecutive
segments. Milnor [18] defined the total curvature TC(c) of a curve c in R3 by

TC(c) := sup{k∗(p) | p � c} .

Then TC(p) = k∗(p) for each polygonal p. Moreover, if a curve c has compact support and finite total
curvature, TC(c) <∞, then it is a rectifiable curve.

Assume now that a rectifiable curve c is parameterized by arc-length, so that c = c(s), with s ∈ [0, L] =

IL, where IL := (0, L) and L = L(c). If c is smooth and regular, one has TC(c) =
∫ L

0
|k| ds, where

k(s) := c̈(s) is the curvature vector. More generally, since c is a Lipschitz function, by Rademacher’s
theorem (cf. [8, Thm. 2.14]) it is differentiable L1-a.e. in IL. Denoting by ḟ := d

dsf the derivative w.r.t.
arc-length parameter s, the tantrix t = ċ exists a.e., and actually t : IL → R3 is a function of bounded
variation. Since moreover t(s) ∈ S2 for a.e. s, where S2 is the Gauss sphere

S2 := {z ∈ R3 : |z| = 1}

we shall write t ∈ BV(IL, S2). The essential variation VarS2(t) of t in S2 differs from VarR3(t), as its
definition involves the geodesic distance dS2 in S2 instead of the Euclidean distance in R3. Therefore,
VarR3(t) ≤ VarS2(t), and equality holds if and only if t has a continuous representative. More precisely,

VarS2(t) =

∫ L

0

|ṫ| ds+
∑
s∈Jt

dS2(t(s+), t(s−)) + |DCt|(IL) (1.2)

whereas in the formula for VarR3(t), that is equal to |Dt|(IL), one has to replace in (1.2) the geodesic
distance dS2(t(s+), t(s−)) with the Euclidean distance |t(s+)− t(s−)| at each Jump point s ∈ Jt.

The following facts hold:

i) if p and p′ are inscribed polygonals and p′ is obtained by adding a vertex in c to the vertices of p,
then k∗(p) ≤ k∗(p′) ;

ii) if c has finite total curvature, for each point v in c, small open arcs of c with an end point equal to v
have small total curvature.

As a consequence, compare [23], it turns out that TC(c) = VarS2(t), see (1.2), and the total curvature
of c is equal to the limit of k∗(pn) for any sequence {pn} of polygonals in R3 inscribed in c such that
meshpn → 0. More precisely, if tn is the tantrix of pn, then VarS2(tn) → VarS2(t).
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1.2 Geodesic total curvature of spherical curves

We now consider curves supported in the unit sphere S2 of R3.
If c is a smooth and regular curve in S2, parameterized by arc-length, the unit tangent vector t(s) := ċ(s)

satisfies ṫ • t ≡ 0, whence the curvature vector k(s) := ṫ(s) is orthogonal to t(s). Since the unit normal
n(s) = c(s), denoting by u(s) := n(s)× t(s) the unit conormal, we get

k(s) = Kg(s)u(s)− n(s) .

The triad (t,n,u) is called Darboux frame, whereas Kg := k • u is the geodesic curvature of c, and the
normal curvature is equal to −1. The geodesic torsion is equal to zero, and the Frenet-Serret formulas in R3

are equivalent to the Darboux system:

ṫ = Kgu− n , ṅ = t , u̇ = −Kgt .

Let p be a polygonal in S2. The geodesic rotation kS2(p) of p is the sum of the turning angles between
the consecutive geodesic arcs of p. The polygonal p is said to be inscribed in a curve c : [a, b] → S2 if it
is obtained by choosing a partition a ≤ t0 < t1 < · · · < tm ≤ b and connecting with geodesic segments the
consecutive points c(ti) of the curve. Note that one has TC(p) = kS2(p) + L(p).

For a general curve c supported in S2, we denote by PS2(c) the class of polygonals in S2 which are
inscribed in c. The following property has been proved in [13, Thm. 3.4].

Theorem 1.2 Let c be a regular curve in S2 of class C2, parameterized by arc-length. Then, for any
sequence {pn} ⊂ PS2(c) such that meshpn → 0, one has

lim
n→∞

kS2(pn) =

∫
c

|Kg| ds =
∫ L

0

|Kg(s)| ds .

As a consequence, one is tempted to define the geodesic total curvature of a curve c in S2 as in the
Euclidean case, i.e., by the supremum of the geodesic rotation kS2(p) computed among all the polygonals
p in PS2(c). However, as observed in [13], since S2 has positive sectional curvature, the analogous to the
monotonicity property i) fails to hold, and hence latter definition does not work.

Example 1.3 Let c be a parallel which is not a great circle. If p,p′ ∈ PS2(c), where p′ is obtained by
adding a vertex in c to the vertices of p, then kS2(p) ≥ kS2(p

′) >
∫
c
|Kg| ds.

In order to overcome this drawback, the good intrinsic notion turns out to be the one proposed by
Alexander-Bishop [4], that goes back to the one considered by Alexandrov-Reshetnyak [6].

For this purpose, compare e.g. [17], we recall that the modulus µc(p) of a polygonal p in PS2(c) is the
maximum of the geodesic diameter of the arcs of c determined by the consecutive vertexes in p. For ε > 0,
we also let

Σε(c) := {p ∈ PS2(c) | µc(p) < ε} .

Definition 1.4 The total intrinsic curvature of a curve c in S2 is

TCS2(c) := lim
ε→0+

sup{kS2(p) | p ∈ Σε(c)} .

Clearly, the above limit is equal to the infimum as ε > 0 of sup{kS2(p) | p ∈ Σε(c)}. Moreover, arguing
as in [17, Prop. 2.1], for a spherical polygonal we always have TCS2(p) = kS2(p). If e.g. c = cθ0 is the
parallel with constant co-latitude θ0 ∈]0, π/2], one has TCS2(cθ0) = 2π cos θ0. In particular, TCS2(cθ0) = 0
if and only if θ0 = π/2, so that cπ/2 is a great circle, whence a geodesic in S2. Most importantly, compare
[6, Thm. 6.3.2], one has:

Proposition 1.5 The geodesic total curvature TCS2(c) of any curve c in S2 is equal to the limit of the
geodesic rotation kS2(ph) of any sequence of polygonals {ph} ⊂ PS2(c) such that µc(ph) → 0.

Proposition 1.5 fills the gap given by the lack of monotonicity observed in Example 1.3, yielding to the
conclusion that Definition 1.4 involves a control on the modulus and not on the mesh.
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As a consequence, by Theorem 1.2 one infers that for smooth curves c in S2 one has TCS2(c) =
∫
c
|Kg| ds.

By [13, Cor. 3.6], for piecewise smooth curves c in S2 one similarly obtains that

TCS2(c) =

∫ L

0

|Kg(s)| ds+
∑
i

|αi| . (1.3)

In this formula, the integral is computed separately outside the corner points of c, where the geodesic
curvature Kg is well-defined, and the second addendum denotes the finite sum of the absolute value of the
oriented turning angles αi between the incoming and outcoming unit tangent vectors at each corner point
of c. Therefore, for piecewise smooth curves we can rewrite formula (1.3) as

TCS2(c) =

∫ L

0

|ṫ • u| ds+
∑
s∈Jt

dS2(t(s+), t(s−)) .

For a curve c in S2, we clearly have TCS2(c) ≤ TC(c), but it is false in general that if TCS2(c) < ∞,
then also TC(c) <∞. If one e.g. takes a curve in S2 that winds around an equator infinitely many times, its
total intrinsic curvature is zero but its length and total curvature are both infinite. Dealing with rectifiable
curves c in S2, one instead has

TCS2(c) <∞ ⇐⇒ TC(c) <∞ .

Assume now that c : IL → S2 ⊂ R3 is a rectifiable spherical curve parameterized in arc-length, where
IL = (0, L) and L = L(c). If TCS2(c) <∞, then the curve is one-sidedly smooth in the sense of [6, Sec. 3.1],
i.e., it has a left and a right tangent T±(s) at all points c(s) in the so called “strong sense”. This implies
that for each s ∈ IL and δ > 0, we can find ε > 0 such that any secant inscribed in the arc c| [s,s+ε] forms
with the straight line T+(s) an angle less than δ, and similarly for the left tangent.

Furthermore, recalling that the tantrix t is a function of bounded variation, the weak conormal u ∈
BV(IL, S2) is well defined, u(s) ∈ Tc(s)S2 for a.e. s ∈ IL, and one has

DCt = u (u •DCt)

i.e., the Cantor component DCt of the distributional derivative of the tantrix is tangential to S2.
The previous discussion motivates the introduction of the energy functional:

F(t) :=

∫ L

0

|ṫ • u| ds+ |DCt|(IL) +
∑
s∈Jt

dS2(t(s+), t(s−)) , (1.4)

where, we recall, ṫ•u is the tangential component of the differential of the tantrix t := ċ, so that |ṫ| ≥ |ṫ•u|.
Therefore, by (1.2) we clearly have F(t) ≤ VarS2(t), where strict inequality holds in general.

By exploiting a suitable notion of weak parallel transport, and a generalized Gauss-Bonnet theorem, in
[21] we proved that for any rectifiable curve c in S2 with finite geodesic total curvature, one has:

TCS2(c) = F(t) .

2 Polar to spherical curves

Fenchel [16] in the 1950’s exploited the spherical polarity of the tangent and binormal indicatrix in order to
analyze differential geometric properties of smooth curves in R3. In his survey, Fenchel proposed a general
method that gathers several results on curves in a unified scheme.

In this section, we introduce a notion of polar of any rectifiable spherical curve with finite geodesic total
curvature, by exploiting polarity along inscribed approximating polygonals. For the sake of simplicity, we
only consider closed curves, the case of open curves being treated in a similar way.

Let p be a closed and oriented spherical polygonal in S2. Then, the support of p is the union of m
non-trivial geodesic arcs γi, where γi has initial point zi−1 and end point zi, for i = 1, . . . ,m, and we let
zm := z0. We denote by bi ∈ S2 the “north pole” corresponding to the great circle passing through γi
and with the same orientation as γi, and we let bm+1 := b1. For i = 1, . . . ,m, we also denote by Γi a
minimal geodesic arc in S2 with initial point bi and end point bi+1. Note that Γi is uniquely determined if
bi+1 6= −bi.
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Definition 2.1 We call polar of the spherical polygonal p the closed oriented curve γp in S2 obtained by
connecting the consecutive geodesic arcs Γi, for i = 1, . . . ,m.

The polar of p is a spherical polygonal. Moreover, since the length of each Γi is equal to the geodesic
distance between bi and bi+1, and hence to the turning angle of p at the vertex zi, we have:

L(γp) = kS2(p) <∞ .

Furthermore, since polarity is an involutive transformation, we also have

kS2(γp) = L(p) <∞ .

Using arguments taken from [20], we prove the following

Theorem 2.2 Let c be a rectifiable and closed spherical curve with finite (and non-zero) geodesic total
curvature, T := TCS2(c) < ∞. There exists a rectifiable curve γc : [0, T ] → S2 parameterized by arc-length,
so that

L(γc) = TCS2(c) ,

satisfying the following property. For any sequence {ph} of inscribed closed polygonals, let γh : [0, T ] → S2
denote for each h the parameterization with constant velocity of the polar γph

of ph, whence

L(γh) = L(γph
) = kS2(γph

) ∀h .

If µc(ph) → 0, then γh → γ uniformly on [0, T ] and L(γh) → L(γc).

Proof: It is divided into four steps.

Step 1. Choose an optimal sequence {ph} of polygonal curves inscribed in c such that µc(ph) → 0 and
Th → T , where Th := kS2(ph) and T = TCS2(c). For h large enough so that Th > 0, we have L(γph

) = Th,
and we may and do assume that γph

: [0, Th] → S2 is parameterized in arc-length.
Define γh : [0, T ] → S2 by γh(s) := γph

((Th/T )s), so that ‖γ̇h(s)‖ = Th/T a.e., where Th/T → 1. By
Ascoli-Arzela’s theorem, we can find a (not relabeled) subsequence of {γh} that uniformly converges in [0, T ]
to some Lipschitz continuous function γ : [0, T ] → S2, and we denote γ = γc.

Step 2. We claim that a subsequence of {γ̇h} converges to γ̇ = γ̇c strongly in L1. As a consequence, we
deduce that ‖γ̇c‖ = 1 a.e. on [0, T ], and hence that

L(γc) =
∫ T

0

‖γ̇c(s)‖ ds = T = TCS2(c) .

In order to prove the claim, we let τh denote the tantrix of the curve γh, so that τh(s) = γ̇h(s)/‖γ̇h(s)‖
for a.e. s. Then, τh has essential total variation in S2 lower than the sum L(γph

)+kS2(γph
), that we already

know to be equal to the sum L(ph) + kS2(ph). Therefore, there exists h̄ such that

VarS2(τh) ≤ 2
(
L(c) + TCS2(c)

)
<∞ , ∀h ≥ h̄ .

As a consequence, recalling that ‖γ̇h(s)‖ → 1 for a.e. s, by compactness, a (not relabeled) subsequence of
{γ̇h} converges weakly-* in the BV-sense to some BV-function v : [0, T ] → S2.

We show that v(s) = γ̇c(s) for a.e. s ∈ [0, T ]. This yields that the sequence {γ̇h} converges strongly in
L1 (and hence a.e. on [0, T ]) to the function γ̇c.

In fact, using that by Lipschitz-continuity

γh(s) = γh(0) +

∫ s

0

γ̇h(λ) dλ ∀ s ∈ [0, T ]

and setting

V (s) := γc(0) +

∫ s

0

v(λ) dλ , s ∈ [0, T ]
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by the weak-* BV convergence γ̇h ⇀ v, which implies the strong L1 convergence, we have γh → V in L∞,
hence γ̇h → V̇ = v a.e. on [0, T ]. But we already know that γh → γc in L∞, thus we get v = γ̇c.

Step 3. Let now {p̃h} denote any sequence of closed polygonal curves inscribed in c such that µc(p̃h) → 0.
We claim that possibly passing to a subsequence, the polar curves γp̃h

converge uniformly (up to reparame-
terizations) to the curve γc.

In fact, we recall that the polar to a polygonal spherical curve p is defined in terms of vector products of
couples of consecutive points of its geodesic segments, the vector product being continuous. Moreover, the
Frechét distance between the two sequences {ph} and {p̃h} goes to zero, since

d(ph, p̃h) ≤ d(ph, c) + d(p̃h, c) .

Whence, the polars of ph and of p̃h must converge uniformly (up to reparameterizations) to the same limit
function. Therefore, the sequence γp̃h

converges in the Frechét distance to the curve γc obtained in Step 1.

Step 4. Now, if {p̃h} is the (not relabeled) subsequence obtained in Step 3, by repeating the argument
in Step 1 we infer that the limit function γ = γc is unique. As a consequence, a contradiction argument
yields that all the sequence {γh} uniformly converges to γc and that the limit curve γc does not depend on
the choice of the sequence {ph} of inscribed polygonals satisfying µc(ph) → 0. Therefore, the curve γc is
identified by c. Arguing as in Step 2, we finally infer that L(γh) → L(γc), as required. �

The curve γc obtained in Theorem 2.2 may be called polar to the curve c.
For future use, we finally note that if c is a geodesically convex, simple, and closed spherical curve, then

L(c) +TCS2(c) <∞, and the support of c is contained in a half sphere of S2. Each inscribed polygonals ph

is convex, and hence the polar curves γph
are geodesically convex, too. Since moreover d(ph, c) → 0, and

the convergence in distance preserves the convexity property, we obtain:

Corollary 2.3 If c is a closed, simple, and geodesically convex spherical curve, the polar γc is closed and
geodesically convex, too.

3 The generalized normal at conical points

Let Ω be a bounded convex set in Rn+1, where n ≥ 2, with non-empty interior (i.e., a convex body in Rn+1),
and let O ∈ intΩ. For any point P in the boundary ∂Ω of Ω, there exists a neighborhood U of P such that
U ∩ ∂Ω can be viewed as a non-parametric hypersurface.

We choose an orthonormal frame (x1, . . . , xn, y) centered at the point O in such a way that P =
λP en+1 for some λP > 0, where (e1, . . . , en, en+1) is the canonical basis defining the frame. Denote by
x = (x1, . . . , xn) the coordinates on Rn := span{e1, . . . , en}, and by y the coordinate on the “vertical”
direction en+1. Then, letting B

n
r := {x ∈ Rn : |x| < r}, there exists r = rP > 0 such that

∂Ω ∩ (Bn
r ×]0,+∞[) = {(x, y) ∈ Rn+1 | x ∈ Bn

r , y = uP (x)}

for some bounded and concave function uP : Bn
r → R+. For each direction v in ∂Bn

1 := {v ∈ Rn : |v| = 1},
since the differential quotient along radial directions is monotone, the limit

∂vuP := lim
h→0+

uP (h v)− uP (0Rn)

h
∈ R (3.1)

is a real number, and the tangent cone ΣP to ∂Ω at P is determined by the directional derivatives ∂vuP .
Precisely, ΣP is given by the graph of a concave function σP : Rn → R such that σP (0Rn) = λP and

σP (x) = λP + ∂vxuP |x| , x 6= 0Rn , vx :=
x

|x|
, (3.2)

so that we have:
ΣP = {(0Rn , λP ) + h (v, ∂vuP ) | h ≥ 0 , v ∈ ∂Bn

1 } . (3.3)

Denote by Hk the k-dimensional Hausdorff measure in Rn+1. Then, for Hn-almost every point P in ∂Ω,
the tangent cone ΣP is an affine n-space, with equation y = λP + aP • x in the given frame coordinates,
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where aP ∈ RN and • denotes the scalar product. In that case, P is called a regular point, and one has
aP = ∇uP (0Rn) and ∂vuP = aP • v for each v ∈ ∂Bn

1 .
If P is a ridge point, after a rotation around the en+1-axis, and using the two alternatives ± by the sign,

we find two vectors a±P ∈ Rn satisfying the compatibility conditions a−P • e1 6= a+P • e1 and a−P • ei = a+P • ei,
∀ i = 2, . . . , n, such that ∂vuP = a±P • v for each v ∈ ∂±Bn

1 , where

∂±Bn
1 := {v ∈ ∂Bn

1 | ±v • e1 ≥ 0} .

Therefore, this time ΣP is the union of the two half-spaces Σ±
P given by

Σ±
P := {(x, y) ∈ Rn+1 | ±x • e1 ≥ 0 , y = λP + a±P • x} .

At regular points P , the outward unit normal to ∂Ω is given by nP := (−aP , 1)/
√
|aP |2 + 1, and it

identifies a point in the Gauss hypersphere

Sn := {z ∈ Rn+1
z : |z| = 1} .

Instead, at ridge points, two unit “normals” n±
P := (−a±P , 1)/

√
|a±P |2 + 1 appear, the normal cone is degen-

erate, and it is identified by the geodesic arc connecting the points n±
P in Sn.

In general, there exists an at most countable set of points P in ∂Ω that are neither regular nor ridge
points: they are called conical points.

We wish to describe the normal cone at a conical point P through a generalized outward unit normal in
the Gauss hyper-sphere Sn, in such a way that the angle defect at P is described by the n-dimensional area
of the geodesic convex hull in Sn of the image of our unit normal. We only consider the case of dimension
n = 2.

3.1 The generalized unit normal

Assume now n = 2. With the previous notation, we identify directions in the unit circle ∂B2
1 with the angle

θ ∈ [0, 2π[, so that in polar coordinates ∂B2
1 = {vθ := (cos θ, sin θ) | θ ∈ [0, 2π[}. We also denote:

v⊥θ := (− sin θ, cos θ) ,

and note that since sin ε = ε+ o(ε) and cos ε = 1 + o(ε), we have:

vθ+ε − vθ = ε v⊥θ + (o(ε), o(ε)) . (3.4)

Proposition 3.1 For every θ ∈ [0, 2π[, there exists αP (θ) ∈ R such that

∂vθ+ε
uP = ∂vθuP + αP (θ) ε+ o(ε) , ∀ ε > 0 . (3.5)

Therefore,

lim
ε→0+

(vθ, ∂vθuP )× (vθ+ε, ∂vθ+ε
uP )

|(vθ, ∂vθuP )× (vθ+ε, ∂vθ+ε
uP )|

=

(
αP (θ) sin θ − ∂vθuP cos θ,−αP (θ) cos θ − ∂vθuP sin θ, 1

)√
1 + ∂vθuP

2 + αP (θ)
2

.

Proof: The function x 7→ σp(x)− λP = ∂vxuP |x| being concave, by computing the differential quotient at
the point x = 0R2 + vθ in the direction of v⊥θ , it turns out that for each θ ∈ [0, 2π[, and for ε > 0 small,

ε 7→
∂vθ+ε

uP − cos ε ∂vθuP

sin ε

is a bounded and monotone function, whence

αP (θ) := lim
ε→0+

∂vθ+ε
uP − cos ε ∂vθ

uP

sin ε
∈ R ,
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and the first formula readily follows. Let now (ē1, ē2, ē3) be the canonical basis in R3
z, and denote for

simplicity w(0) := ∂vθ
uP and w(ε) := ∂vθ+ε

uP . For ε > 0, we first compute

[(vθ, w(0))× (vθ+ε, w(ε))] • ē1 = sin θ(w(ε)− w(0) cos ε)− cos θw(0) sin ε ,

[(vθ, w(0))× (vθ+ε, w(ε))] • ē2 = − cos θ(w(ε)− w(0) cos ε)− sin θw(0) sin ε ,

[(vθ, w(0))× (vθ+ε, w(ε))] • ē3 = sin ε .

Using that w(ε) = w(0) + αP (θ) ε+ o(ε), we get:

(vθ+ε, w(ε))× (vθ, w(0)) =
(
(αP (θ) sin θ − ∂vθuP cos θ)ε+ o(ε), (−αP (θ) cos θ − ∂vθuP ) ε+ o(ε), ε+ o(ε)

)
,

and hence

lim
ε→0+

(vθ+ε, w(ε))× (vθ, w(0))

ε
=
(
αP (θ) sin θ − ∂vθuP cos θ,−αP (θ) cos θ − ∂vθuP sin θ, 1

)
,

where

|
(
αP (θ) sin θ − ∂vθuP cos θ,−αP (θ) cos θ − ∂vθuP sin θ, 1

)
| =

√
1 + ∂vθuP

2 + αP (θ)
2
.

The limit readily follows. �

Let now φP : ∂B2
1 → R2 be the function given by

φP (vθ) :=
(
(αP (θ), ∂vθ

uP ) • v⊥θ , (αP (θ), ∂vθuP ) • vθ
)
, θ ∈ [0, 2π[ , (3.6)

so that

φP (vθ) • vθ = ∂vθ
uP , φP (vθ) • v⊥θ = αP (θ) .

We can re-write equation (3.2) as:

σP (x) = λP + φP

( x
|x|

)
• x , x 6= 0R2 , (3.7)

whereas in Proposition 3.1 we have obtained:

lim
ε→0+

(vθ, ∂vθuP )× (vθ+ε, ∂vθ+ε
uP )

|(vθ, ∂vθuP )× (vθ+ε, ∂vθ+ε
uP )|

=
(−φP (vθ), 1)√
1 + |φP (vθ)|2

. (3.8)

Finally, note that we actually have:

(vθ, ∂vθuP )× (v⊥θ , αP (θ)) = (−φP (vθ), 1) , ∀ θ ∈ [0, 2π[ . (3.9)

Definition 3.2 We call generalized unit normal the function νP : [0, 2π[→ S2 given by:

νP (θ) :=
(−φP (vθ), 1)√
1 + |φP (vθ)|2

,

where φP (vθ) ∈ R2 is given by (3.6), with ∂vθuP the directional derivative in (3.1), and αP (θ) ∈ R the real
number in (3.5).

If P is a ridge point, when θ ∈ [0, π[ we have ∂vθuP = a+P • vθ, so that by (3.4) we obtain that αP (θ) =
a+P • v⊥θ , and hence φP (vθ) = a+P . Similarly, φP (vθ) = a−P when θ ∈ [π, 2π[, and definitely

νP (θ) = n±
P if ± cos θ > 0 .
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3.2 The polar curve of the normal

Let P ∈ ∂Ω, where Ω ⊂ R3 is a convex body. Consider the function cP : [0, 2π] → S2 given by

cP (θ) :=
(vθ, ∂vθ

uP )√
1 + ∂vθuP

2

for θ ∈ [0, 2π[, and cP (2π) := cP (0). By the previous construction, it defines a closed, simple, and geodesi-
cally convex spherical curve. According to Theorem 2.2, we denote by γP = γcP

the polar of cP .
By Corollary 2.3, we already know that γP is a closed and geodesically convex spherical curve. In the

smooth case, since by (3.5) we get ∂θ[∂vθuP ] = αP (θ), using (3.9) we infer that γP agrees with the spherical
curve θ 7→ νP (θ). More generally, we have:

Theorem 3.3 Let P be a conical point. Then, the region of the Gauss sphere S2 enclosed by the polar γP
of the curve cP agrees with the geodesic convex hull of the image

{νP (θ) : θ ∈ [0, 2π[} ⊂ S2 (3.10)

of the generalized unit normal νP .

Proof: Since P is a conical point, the polar γP is a simple curve. In fact, if γP is not simple (and non-
degenerate), being convex its support is equal to a geodesic arc that is parameterized twice. Since polarity
is involutive, the support of cP has the same structure, and hence P must be a ridge point. We also denote
by γP : [0, L] → S2 an arc-length parameterization, where L is the length of γP .

For a fixed θ ∈ [0, 2π[, we choose a sequence {ph} ⊂ PS2(cP ) of inscribed closed spherical polygonals
with µcP

(ph) → 0 and such that cP (θ) is a vertex of each ph. For any h, we choose εh > 0 in such a way
that cP (θ + εh) is the vertex following cP (θ) of the polygonal ph. Since µcP

(ph) → 0, by possibly taking a
subsequence, we have that εh ↘ 0. Therefore, the limit (3.8) and Definition 3.2 give:

lim
h→∞

(vθ, ∂vθuP )× (vθ+εh , ∂vθ+εh
uP )

|(vθ, ∂vθuP )× (vθ+εh , ∂vθ+εh
uP )|

= νP (θ) . (3.11)

On the other hand, for every h there exists λh > 0 such that

(vθ, ∂vθuP )× (vθ+εh , ∂vθ+εh
uP ) = λh b(h) ,

where b(h) ∈ S2 is the polar point of the oriented geodesic arc between cP (θ) and cP (θ+ εh). Therefore, on
account of Definition 2.1 of polar of ph, by Theorem 2.2 we infer that the sequence {b(h)} converges to a
point in the support of the polar of the spherical curve cP . Using (3.11), we can thus find t(θ) ∈ [0, L[ such
that

νP (θ) = γP (t(θ)) . (3.12)

Up to a translation of the arc-length parameter of γP , we may and do assume that t(0) = 0. Then, by
the convexity of the curve γP , it turns out that the parameter function θ 7→ t(θ) is non-decreasing, i.e., for
any 0 ≤ θ0 < θ1 < 2π, we have t(θ0) ≤ t(θ1). Finally, the thesis readily follows from the previous facts. �

As a consequence, we obtain:

Proposition 3.4 Let P be a conical point. Then, the function θ 7→ νP (θ) has bounded variation, νP ∈
BV((0, 2π), S2). Moreover, if νP (θ) → νP (0) as θ → 2π−, its total variation in S2 is equal to the length of
the spherical polar curve γP , i.e.,

VarS2(νP ) = L(γP ) . (3.13)

Proof: By the monotonicity property of the function θ 7→ t(θ) yielding to equation (3.12), and since γP is
a convex curve, it turns out that νP is a function of bounded variation. If νP is not continuous, we choose
θ0 ∈]0, 2π[ in the at most countable set of discontinuity points of νP . Then, denoting by νP (θ0±) ∈ S2 the
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left and right limits of νP at θ0, it turns out that the geodesic distance between the two points is equal to
the length of a geodesic arc lying in the support of γP and connecting the points

lim
t→t(θ0)−

γP (t) , lim
t→t(θ0)+

γP (t) .

On the other hand, if νP is continuous at some closed interval [θ0, θ1], the total variation |DνP |(θ0, θ1) is
equal to the length of the arc of γP with end points γP (t(θ0)) and γP (t(θ1)). Therefore, equation (3.13)
follows from definition (1.2), where t = νP . �

Remark 3.5 If νP (0) 6= limθ→2π− νP (θ), we similarly obtain that the length of γP is equal to VarS2(νP )
plus the length of the minimal geodesic arc between the points limθ→2π− νP (θ) and νP (0).

Our previous result implies that the polar curve γP can be obtained from the generalized unit normal
νP by means of the same argument leading to the notion of complete tantrix, in the sense of Alexandrov-
Reshetnyak [6]. To this purpose, we recall that if e.g. c is a rectifiable open curve in R3 with finite total
curvature, parameterized in arc-length, the approximate derivative ċ is a function of bounded variation
in BV (IL, S2). Then, the complete tantrix tc is obtained by connecting with geodesic arcs the points
ċ(s±) ∈ S2, where s ∈ IL is any discontinuity point of ċ, and actually

TC(c) = VarS2(ċ) = L(tc) .

Motivated by Theorem 3.3, we finally give for any P ∈ ∂Ω the following

Definition 3.6 We call generalized normal cone NP the geodesic convex hull of the set (3.10), i.e., the
region of the Gauss sphere S2 enclosed by the polar γP of the curve cP .

4 The angle defect

Let Ω be a convex body in R3. For any point P ∈ ∂Ω, we call angle defect of ∂Ω at P the area AD(P ) of
the generalized normal cone NP given by Definition 3.6, i.e.,

AD(P ) := H2(NP ) .

Note that AD(P ) = 0 if P is a regular or ridge point, whereas AD(P ) > 0 if P is a conical point. In
that case, in fact, the polar γP is a non-degenerate simple curve. More precisely, Theorem 3.3 says that the
angle defect is equal to the area of the spherically convex region enclosed by the polar γP of the spherical
curve cP generated by the tangent cone ΣP to ∂Ω at P .

Assume now that the function φP in (3.7) is smooth. Then, the graph of σP is a non-parametric conical
surface with zero Gauss curvature outside the point (0R2 , λP ), and the angle defect AD(P ) agrees with the
area of the region in S2 enclosed by the spherical curve νP . If e.g. σP (x) = λP −m |x|, where m > 0, we
have φP (vθ) = −mvθ, and hence νP (θ) = (mvθ, 1)/

√
1 +m2 for each θ ∈ [0, 2π[, so that

AD(P ) = 2π
(
1− 1√

1 +m2

)
.

In the smooth case, moreover, if σP is not differentiable at the origin, in a weak sense we can say that the
Gauss curvature of the graph surface is concentrated at the singular point (0R2 , λP ), where it is described
by a Dirac measure δ with a positive weight equal to the angle defect AD(P ).

To this purpose, we recall that if σ : B2 → R is a smooth function, denoting by K the Gauss curvature
of the graph surface Gσ, since

√
1 + |∇σ(x)|2 dx is the area element of the parameterization x 7→ (x, σ(x)),

by the area formula we have:∫
Gσ

|K| dH2 =

∫
B2

|K(x, σ(x))|
√

1 + |∇σ(x)|2 dx ,
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where (compare e.g. [19])

K(x, σ(x)) :=
1

(1 + |∇σ(x)|2)2
det

(
∂1,1σ(x) ∂1,2σ(x)
∂1,2σ(x) ∂2,2σ(x)

)
, x ∈ B2 .

With the previous notation, we in fact have:

Proposition 4.1 Assume that the function φP in (3.7) is smooth. Then, there exists a smooth sequence
{σk} ⊂ C∞(B2) such that σk → σP uniformly in B2, and

|K(x, σk(x))|
√
1 + |∇σk(x)|2 L2 B2 ⇀ AD(P ) δ0R2

weakly-* in the sense of the measures, as k → ∞. Moreover,

lim
k→∞

∫
Gσk

|K| dH2 = AD(P ) . (4.1)

Proof: Let ψ : [0,+∞) → R be a weakly increasing, smooth and convex function such that ψ(ρ) = 0 if
0 ≤ ρ ≤ 1/4, and ψ(ρ) = ρ− 1/2 if ρ ≥ 1. For k ∈ N+, define σk(0R2) = λP and

σk(x) = λP +
1

k
ψ(k|x|)φP

( x
|x|

)
• x

|x|
, x ∈ B2 \ {0R2} .

Each σk is a smooth function, and by equation (3.7) we readily estimate

‖σk − σP ‖∞,B2 ≤ 1

2k
max{|φP (vθ) • vθ| : θ ∈ [0, 2π[} ∀ k ,

so that uniform convergence follows from the smoothness of the function φP .
Since moreover ψ(kρ) = 0 if ρ ≤ 1/(4k), the Gauss curvature of the graph surface Gσk

is possibly non
zero only at points (x, σk(x)) such that 1/(4k) ≤ |x| ≤ 1. By the area formula we thus obtain∫

Gσk

|K| dH2 = Ik + IIk ,

where, letting Ak := B2
1/k \B2

1/(4k) and Bk := B2 \B2
1/k, we have denoted

Ik :=

∫
Ak

|K(x, σk(x))|
√
1 + |∇σk(x)|2 dx , IIk :=

∫
Bk

|K(x, σk(x))|
√
1 + |∇σk(x)|2 dx .

Recalling that σP is concave and ψ convex, it turns out that σk is a concave function on Ak. As a
consequence, the integral Ik is equal to the area of the geodesically convex set enclosed by the unit normal n
to the graph Gσk

computed at points (x, σk(x)), where |x| = 1/k. On the other hand, using polar coordinates
we infer that

n(x, σk(x)) =
(−φP (vθ), 1)√
1 + |φP (vθ)|2

, if x =
1

k
vθ , θ ∈ [0, 2π[ .

Therefore, by Definition 3.2 of generalized unit normal, the latter geodesically convex set is equal to the
normal cone NP , see Definition 3.6, and hence its area agrees with the angle defect AD(P ), so that

Ik = AD(P ) ∀ k .

Moreover, using that k−1ψ(kρ) = ρ− 1/(2k) for 1/k ≤ ρ ≤ 1, we obtain

IIk =
1

4k

∫ 1

1/k

(∫ 2π

0

f ′(θ)2/(kρ)(
1 + f(θ)2 +

(
1− 1/(2k)

)2
f ′(θ)2

)3/2 dθ
)
dρ

and hence, by the smoothness of f and by dominated convergence we infer that IIk → 0 as k → ∞, so that
the limit (4.1) holds true. Since the weak-* convergence follows from standard arguments of measure theory
(see [8]), the proof is complete. �

More generally, we finally obtain:
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Theorem 4.2 For every P ∈ ∂Ω, there exists a smooth sequence {σk} ⊂ C∞(B2) such that σk → σP
uniformly in B2 and the limit (4.1) holds.

Proof: Since ∂vθuP → ∂v0uP as θ ↗ 2π, we can extend θ 7→ ∂vθuP to a continuous and 2π-periodic
function f : R → R such that f(θ) = ∂vθuP if θ ∈ [0, 2π[. By the proof of Proposition 3.1, we infer that
f has bounded variation on each bounded open interval, and that f has a bounded and 2π-periodic right
derivative f ′+(θ) for each θ ∈ R, with f ′+(θ) = α(θ) for θ ∈ [0, 2π[. In a similar way, we obtain that f has

a bounded and 2π-periodic left derivative f ′−(θ) for each θ ∈ R. Therefore, f is a Sobolev map in W 1,1
loc (R),

with derivative f ′(θ) equal to αP (θ) for L1-almost every θ ∈]0, 2π[.
Let ϕh(α) := hϕ(hα) for h ∈ N+, where ϕ : R → R is a standard symmetric convolution kernel, i.e.,

ϕ(−α) = ϕ(α) ≥ 0 for each α, ϕ(α) = 0 if |α| ≥ 1, and
∫ 1

−1
ϕ(α) dα = 1. Setting

fh(θ) :=

∫
R
ϕh(α) f(θ − α) dα ,

we find a sequence {fh} ⊂ C∞(R) of 2π-periodic smooth functions converging to f uniformly in R and such
that

lim
h→∞

∫ 2π

0

|f ′h(θ)| dθ =
∫ 2π

0

|αP (θ)| dθ ,

where by the Sobolev regularity of f

f ′h(θ) =

∫
R
ϕh(α) f

′(θ − α) dα , ∀ θ ∈ R . (4.2)

According to (3.7), we then define

σP,h(x) := λP + φP,h

( x
|x|

)
• x , x 6= 0R2 ,

where as in (3.6) we have set

φP,h(vθ) :=
(
(fh(θ), f

′
h(θ)) • v⊥θ , (fh(θ), f ′h(θ)) • vθ

)
, θ ∈ [0, 2π] ,

so that φP,h(vθ) • vθ = fh(θ) and φP,h(vθ) • v⊥θ = f ′h(θ) for each θ, whereas according to (3.9)

(vθ, fh(θ))× (v⊥θ , f
′
h(θ)) = (−φP,h(vθ), 1) , ∀ θ ∈ [0, 2π] .

Therefore, the previous argument yields to the polar curve parameterized by the smooth function

νP,h(θ) :=
(−φP,h(vθ), 1)√
1 + |φP,h(vθ)|2

, θ ∈ [0, 2π] .

Moreover, by theW 1,1
loc convergence we infer that the sequence {νP,h} converges in the sense of the Frechét

distance to the polar curve γP . As a consequence, denoting by NP,h the region enclosed by the curve νP,h,
and by AD(P, h) its area, we obtain that AD(P, h) → AD(P ) as h→ ∞.

We thus have to show that σP,h is a concave function for every h ∈ N+. In fact, by applying Proposition 4.1
to the smooth function φP,h, the assertion follows through a diagonal argument.

Now, by the concavity and Sobolev regularity of the function σP , the graph of σP lies below the tangent
space Tx0

to σP at (x0, σP (x0)), for L2-almost every x0 ∈ R2. In polar coordinates, for every ρ > 0 and a.e.
θ, with x0 = ρ vθ, the tangent space Tx0

is given by the graph of the function

ρ̃ vθ̃ 7→ ρ f(θ) +
(
f(θ) vθ + f ′(θ) v⊥θ

)
• (ρ̃ vθ̃ − ρ vθ) =

(
f(θ) vθ + f ′(θ) v⊥θ

)
• ρ̃ vθ̃ .

Therefore, property σP (x) ≤ Tx0(x) is equivalent to

f(θ + ε) ≤
(
f(θ) vθ + f ′(θ) v⊥θ

)
• vθ+ε ,
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where we have taken ε = θ̃ − θ. We thus obtain the validity of inequality

f(θ + ε)− f(θ) cos ε− f ′(θ) sin ε ≤ 0

for a.e. θ ∈ R and for all ε ∈ R. Now, using (4.2), for each h we have

fh(θ + ε)− fh(θ) cos ε− f ′h(θ) sin ε =

∫
R
ϕh(α)

(
f(θ − α+ ε)− f(θ − α) cos ε− f ′(θ − α) sin ε

)
dα ≤ 0

for every θ, ε, and h, which implies that the graph of σP,h lies below the tangent space to σP,h at (x0, σP,h(x0)),
for every x0 ∈ R2, and hence the required concavity of the functions σP,h. �
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in Riemannian manifolds, Diff. Geom. Appl. 28 (2010), 140–147.

[14] A. Colesanti and D. Hug, Hessian measures of semi-convex functions and applications to support
measures of convex bodies, Manuscr. Math. 101 (2000), 209–238.

[15] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.

14



[16] W. Fenchel, On the differential geometry of closed space curves, Bull. Amer. Math. Soc. 57 (1951),
44–54.

[17] C. Maneesawarng and Y. Lenbury, Total curvature and length estimate for curves in CAT(K)
spaces, Diff. Geom. Appl. 19 (2003), 211–222.

[18] J. W. Milnor, On the total curvature of knots, Ann. of Math. 52 (1950), 248–257.

[19] D. Mucci and A. Saracco, Bounded variation and relaxed curvature of surfaces, Milan J. Math. 88
(2020), 191–223.

[20] D. Mucci and A. Saracco, The weak Frenet frame of non-smooth curves with finite total curvature
and absolute torsion, Ann. Mat. Pura Appl. (4) 199 (2020), 2459–2488.

[21] D. Mucci and A. Saracco, The total intrinsic curvature of curves in Riemannian surfaces Rend.
Circ. Mat. Palermo, II. Ser. 70 (2021), 521–557. Erratum to: Ibid. 70 (2021), 1137–1138.

[22] R. T. Rockafellar, Convex analysis, Princeton Math. Ser. 28, Princeton University Press, Princeton,
NJ, 1970.

[23] J. M. Sullivan, Curves of finite total curvature, In: Discrete Differential Geometry (Bobenko,
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