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We propose a MFG model with quadratic Hamiltonian involving N pop-
ulations. This results in a system of N Hamilton-Jacobi-Bellman and N
Fokker-Planck equations with non-local interactions. As in the classical case
we introduce an Eulerian variational formulation which, despite the non con-
vexity of the interaction, still gives a weak solution to the MFG model. The
problem can be reformulated in Lagrangian terms and solved numerically by
a Sinkhorn-like scheme. We present numerical results based on this approach,
these simulations exhibit different behaviours depending on the nature (re-
pulsive or attractive) of the non-local interaction.
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1. Introduction

The aim of this paper is to establish a variational formulation (both Lagrangian and
Eulerian), as well as a suitable numerical methods, for quadratic second order Mean
Field Games which involves N different populations interacting through a given non-
local functional. Let d be the dimension of the space, then for i = 1, . . . , N we consider
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the following system of coupled PDE
−∂tui −

1

2
∆ui +

1

2
|∇ui|2 =

∑
j ̸=i

∫
Rd

V i,j(x− y)ρjtdy,

∂tρ
i − 1

2
∆ρi + div(∇uiρi) = 0,

ρi(0, x) = ρi0(x), u
i(T, x) = gi(x);

(1.1)

where ρi(0, x) ∈ Pac(Rd) and gi ∈ C0(Rd) and V i,j is a given positive and lower semi-
continuous potential, the full set of assumptions is at the end of this introduction.
Mean field games involving several populations have been studied recently by [16, 17, 1,
4, 10, 19, 28, 23]; for some more details about the theory of MFG we refer the reader
to the seminal work by Lasry and Lions [21], the book [14] or the lecture notes by
Cardaliaguet [12]. Notice that the interaction of the populations can be expressed via a
more general functional, we will discuss later the extra difficulties, or via some Optimal
Transport coupling as done in [4]. We will show that the above system can be seen as
the optimality conditions for the following Eulerian variational problem

inf

{
J(ρ1, v1; . . . ; ρN , vN ) | ∂tρ

i − 1

2
∆ρi + div(ρivi) = 0, ρi(0, x) = ρi0,∀i

}
where

J(ρ1, v1; . . . ; ρN , vN ) :=
∑
i

∫
[0,T ]×Rd

|vi|2

2
dρidt+

∑
1≤j≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V i,j(x− y)dρi ⊗ dρjdt+

∫
Rd

gi(x)dρi(T, x). (1.2)

Moreover, we will also relate the above minimization problem with a Lagrangian relative
entropy minimization problem, that is

min{J(Q1, . . . , QN ) : e0♯Q
i = ρi0} (1.3)

where

J(Q1, . . . , QN ) :=
∑
i

H(Qi|Ri) +
∑

1≤i≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V (x− y)det♯Q
i ⊗ et♯Q

jdt

+
∑
i

∫
Rd

gi(ω(T ))dQi,
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where Qi ∈ P(Ω) with Ω = C([0, T ];Rd) and and H(P |R) is the Boltzmann-Shannon
entropy, that is

H(γ |π) =
∫
ρ log ρdπ, if γ = ρπ.

When the reference measure π in the entropy is non indicated, is intended the Lebesgue
measure.
We denote the N -uple by ρ := (ρ1, . . . , ρN ).
Existence and uniqueness of weak solutions for this system will be discussed in two

settings, the periodic setting of Td and in the full space Rd.
We will make the following assumptions

(A1) ρi0 ∈ Lip(Td)) or ρi0 ∈ Lip0(Rd);

(A2) H(ρi0) < +∞;

(A3) gi ∈ C2(Rd),

(A4) V i,j ∗ ρ ∈ Cb(Rd), for all ρ such that
√
ρ ∈ H1(Rd).

Remark 1.1. Assumption (A4) above is always satisfied if V i,j ∈ Cb(Rd) but also, for

example, if V i,j(x) =
1

|x|α
with α such that

1

|x|α
∈ Lq

loc for a
d

2d− 2
≤ q ≤ ∞. So, if

d = 3, the Coulomb cost is allowed. The condition
√
ρ ∈ H1(Rd) may look unnatural,

however, since ρ is a probability measure, it corresponds to the fact that the Fisher
information I(ρ) is finite. Lemma 4.1 of [8] shows that this is always the case in this
setting. The relevance of the condition

√
ρ ∈ H1(Rd) is also given by the fact that such

ρ’s are the electron densities associated to wave functions in quantum mechanics [22]
and, in this respect, the Coulomb type cost discussed above is also relevant (notice that
in [21] the authors linked the MFG system with Hartree type equation in which case the
Coulomb intercation arises quite naturally).
Also, assumption (A4) is related to Th. 2.6. Choosing to use duality with different

functions spaces would, of course, requires different assumptions.

The aim of this work is twofold. On the one hand, we introduce a non-local interaction
term, which is not only interesting for the applications (see for instance [16, 17, 1, 4, 10,
19, 28] and the references therein) but also introduces a slight non-convexity. On the
other hand, we try to strip naked the structure of the problem so to be as accessible as
possible to non-specialists and students.

The paper is organized as follows: Section 2 is devoted to introduce the Eulerian vari-
ational formulation (in the same flavor as [21, 13]) as well as the analysis of minimizers
and the duality. Notice here that since the interaction term is slightly non-convex we
have to introduce and study the linearized functional. In Section 3 we introduce the
Lagrangian variational formulation which, as in [7], turns out to correspond to a min-
imization of a relative entropy. Section 4 is devoted to the time discretization of the
two formulations and the Γ−convergence of the discrete problem to the continuous one.
The time discretization, as well as the linearization functional introduced in section 2

3



are then useful in order to introduce a suitable numerical method in section 5 based on
generalized Sinkhorn algorithm.

2. Variational formulation

Let P2 =

{
µ ∈ P | µ << Lebd,

∫
|x|2dµ < +∞

}
the space of probability measure with

finite second moment. We will consider the metric space (P2,W2) constituted by P2

equipped with the Wasserstein distance W2. This is a length metric space (see, for ex-
ample, [3]) and absolutely continuous curve in this metric space will play a role. Since the
functional (1.2) is not convex in the couple (ρi, vi) we have to introduce the momentum
variable mi = ρivi and re-write the functional in the following convex formulation

J(ρ1,m1; . . . ; ρN ,mN ) :=
∑
i

∫
[0,T ]×Rd

|mi|2

2ρi
dxdt+

∑
1≤j≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V i,j(x− y)dρi ⊗ dρjdt+

∫
Rd

gi(x)dρi(T, x); (2.1)

if ρj ∈ P2, m
i << ρi and vi =

∂mi

∂ρi
, and +∞, otherwise. And

∂mi

∂ρi
denotes the

Radon-Nicodym derivative of measures. We will be interested in

inf

{
J(ρ1,m1; . . . ; ρN ,mN ) | ∂tρ

i − 1

2
∆ρi + divmi = 0, ρi(0, x) = ρi0, ∀i = 1, · · · , N

}
.

(2.2)
Absolutely continuous curves in P2 are, by now, well characterized. We report here

part of the characterization which may be read, for example, in [27] Th. 5.14. For a
curve γ in a metric space X we denote by |γ′| the metric derivative of γ.

Theorem 2.1. Let ρt be an absolutely continuous curve in P2(Rd) then for a.e. t ∈
[0, T ], there exists a vector field vt ∈ L2

ρt such that

∂tρ+ div(vtρt) = 0, (2.3)

and for a.e. t we have ∥vt∥L2
ρt

≤ |ρ′|, where |ρ′| denotes the metric derivative of ρ.

Conversely, if ρt is a curve in P2(Rd) and for a.e. t ∈ [0, T ] there exists vt ∈ L2
ρt(R

d,Rd)
such that (2.3) holds, then ρt is an absolutely continuous curve in P2 and for a.e. t we
have . |ρ′| ≤ ∥vt∥L2

ρt
.

If {ρt}t∈[0,T ] is a curve of probability measures which solves

∂tρ−
1

2
∆ρ+ div(vρ) = 0,
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with ∫ T

0

∫
|vt|2ρtdt < +∞

and ρ(0) = ρ0, then by Lemma 4.1 of [8] ρt is absolutely continuous since for wt :=

vt −
1

2
∇ log ρt it holds

∂tρ− div(wtρt) = 0,

and∫ T

0

∫
|wt|2ρtdxdt =

∫ T

0

∫
|vt|2ρtdxdt+

1

4

∫ T

0
I(ρt)dt+H(ρT )−H(ρ0) < +∞,

where I denotes the Fischer information, that is

I(ρ) = 4||∇√
ρ||2L2

Actually Lemma 4.1 of [8] is richer and more detailed than we need and, for more, we
refer the reader to the original paper. In particular, if (ρ1, . . . , ρN ) is admissible for
problem (2.2) then each component ρi satisfies the assumptions above and so it is an
absolutely continuous curve in P2.
Existence of at least one minimiser of problem (2.2) will be proved in the next section.

It is well known that the first term of J is not convex in the couple (ρi, vi). However, as
we have mentioned above, it can be rewritten as∫

[0,T ]×Rd

f2(ρ
i,mi)dxdt,

where

f2(t, z) :=


z2

t
if t > 0,

0 if t = 0, and, z = 0.
+∞ otherwise.

and the functional (ρi,mi) 7→
∫
f2(ρ

i,mi) is convex and lower semi-continuous (see, for

example, Th. 5.18 of [27]).
The second term is only separately convex in the N -uple (ρ1, . . . , ρN ) so, obtaining

the optimality conditions goes through a directional linearisation process which will also
be used in the following section.
Let (ρ1,m1; . . . ; ρN ,mN ) be a minimiser of (2.2), define, for i = 1, . . . , N

H i(t, x) =
∑
j ̸=i

∫
(V i,j(x− y) + V j,i(x− y))dρjt (y), (2.4)
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and consider the functionals

Ji(ρ,m) :=

∫
[0,T ]×Rd

|m|2

2ρ
dxdt+

∫
[0,T ]×Rd

H idρdt+ ki +

∫
Rd

gi(x)dρi(T, x),

where the constant is given by

ki :=
∑
j ̸=i

∫
[0,T ]×Rd

|mj |
2ρj

2

dxdt

+

∫
Rd

gj(x)dρj(T, x) +
∑

1≤k≤N

j ̸=k ̸=i

∫ T

0

∫
Rd×Rd

V j,k(x− y)dρk ⊗ dρjdt.

The following proposition is slightly more than a remark.

Proposition 2.2. For i = 1, . . . , N , the couple (ρi,mi) is a minimizer, among curves
starting at ρi0, of the functional

Ji(ρ,m),

which is, moreover, a convex functional.

Proof. We observe that

Ji(ρ,m) = J(ρ1,m1; . . . ; ρ,m; . . . ; ρN ,mN ) ≥ J(ρ1,m1; . . . ; ρN ,mN ) = Ji(ρi,mi).

The convexity of Ji is due to the separate convexity of the only term of J which is not
convex.

We will then make a careful analysis of a functional of the type of Ji.

2.1. Analysis of the minimizers

In this subsection, we will write necessary conditions for the minimization of

F(ρ,m) :=

∫
[0,T ]×Rd

|m|
ρ

2

dρdt+

∫
[0,T ]×Rd

Hdρdt+

∫
Rd

g(x)dρ(T, x),

among solutions of {
∂tρ−

1

2
∆ρ+ divm = 0;

ρ(0, x) = ρ0(x).

As frequently in this settings, the convex analysis, via the Fenchel-Rockafellar theorem,
will be the main tool. In the next two lemmas we will write F as the sum of two convex
conjugates. Since (ρ,m) is couple of finite measures, the natural space for duality is
C([0, T ]× Rd)× C([0, T ]× Rd;Rd).
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Lemma 2.3. Let

K1(α, β) :=

 0 if α+
|β|2

2
≤ H,

+∞, otherwise.

Then

K∗
1(ρ,m) =


∫

|m|2

ρ
+

∫
Hdρ if m << ρ,

+∞ otherwise.

Proof. This is part of Prop. 5.18 in [27].

Lemma 2.4. Let

K2(α, β) =


∫
ϕ(0, x)ρ0dx if α = −∂tϕ−∆ϕ and β = −∇ϕ,

+∞ otherwise;

for some ϕ ∈ C2
0([0, T ]× Rd), such that ϕ(T, x) ≥ −g(x). Then

K∗
2(ρ,m) =


∫
g(x)ρ(T, x)dx if ∂tρ−∆ρ+ divm = 0, ρ(0) = ρ0

+∞ otherwise;

Proof. By the finiteness condition on K2 we can write

K∗
2(ρ,m) = sup{⟨−∂tϕ−∆ϕ, ρ⟩ − ⟨∇ϕ,m⟩ −

∫
ϕ(0, x)ρ0(x)dx |

ϕ ∈ C2
0([0, T ]× Rd), ϕ(T, x) ≥ −g(x).}

Integrating by parts gives

sup{⟨ϕ, ∂tρ−∆ρ+ divm⟩ −
∫
ϕT (x)ρT (x)dx+

∫
ϕ0(x)ρ(0, x)dx−

∫
ϕ0(x)dρ0(x)}

considering the sup over suitable subsets of {ϕ ∈ C2
0([0, T ]×Rd), ϕ(T, x) ≥ −g(x)} gives

that, unless
∂tρ−∆ρ+ divm = 0

in the sense of distibutions, and
ρ(0, x) = ρ0

the sup is +∞. If these last two conditions are satisfied then

K∗
2(ρ, µ) =

∫
g(x)ρT (x)dx.

By Fenchel- Rockafellar duality
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Proposition 2.5.

min{K∗
1(ρ,m) +K∗

2(ρ,m)} = sup{−K1(α, β)−K2(−α,−β)}

According to the expression of the functionals obtained above

min{K∗
1(ρ,m) +K∗

2(ρ,m)} = min

{∫
|m|2

ρ
+

∫
Hdρ+

∫
g(x)ρT (x)dx

if m << ρ and ∂tρ−∆ρ+ divm = 0, }

which is our original problem. On the other end the right-hand side is

sup

{∫
ϕ(0, x)ρ0(x) | ϕ ∈ C2

0([0, T ]× Rd),

− ∂tϕ−∆ϕ+
|∇ϕ|2

2
≤ H, ϕ(T, x) ≤ g(x).

}
(2.5)

Concerning the existence of a solution for this last problem, we have

Theorem 2.6. There exists a solution ψ of −∂tψ −∆ψ +
|∇ψ|2

2
= H(t, x),

ψ(T, x) = g(x)∫
ψ(0, x)ρ0(x)dx = (2.5).

and such ψ is a maximizer for problem (2.5) above.

Proof. Setting u(t, x) := ψ(T − t, x) the problem above is transformed in ∂tu−∆u+
|∇u|2

2
= H(T − t, x),

u(0, x) = g(x)

Then the Hopf-Cole transform v(x, t) = e−
u
2 gives the further simplification ∂tv −∆v = −v1

2
H(T − t, x),

v(0, x) = e−
g(x)
2

So, setting h(x, t) := −H(T − t, x)

2
we can look at the solutions of the Heat equation.

By assumptions (A1), (A4), Remark 1.1 and Lemma 4.1 of [8], h is continuous and
bounded. So that, according also to our assumptions on the functions gi we can apply
Theorem 5.1 or 5.2 of [20] (page 320) which gives a C2 solution of the problem. The
maximum principle implies, then, the maximality.
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We conclude the section by connecting everything back to the system (1.1),

Theorem 2.7. Let (ρ1,m1, ..., ρN ,mN ) be a minimizer for (2.2), define vi = mi/ρi and,
for all i = 1, . . . , N , let ui be a maximizer for (2.5) with H = H i (defined in equation
(2.4)), ρ0 = ρi0 and g = gi. Then vi = −∇ui and (ρ1, . . . , ρN , u1, . . . , uN ) is a solution
of (1.1).

Proof. By Proposition 2.2, (ρi,mi) minimizes, among curves with the same initial datum,
the functional ∫

[0,T ]×Rd

|m|2

2ρ
dxdt+

∫
[0,T ]×Rd

H idρdt+

∫
Rd

gi(x)dρi(T, x),

(ki is irrelevant in the minimization process). Moreover, by Proposition 2.5 and the
explicit expressions of the functionals, immediately following that Proposition,∫

[0,T ]×Rd

|mi|2

2ρi
dxdt+

∫
[0,T ]×Rd

H idρidt+

∫
Rd

gi(x)dρi(T, x) =

∫
Rd

ui(0, x)dρi0(x) (2.6)

Using the inequalities satisfied by ui∫
[0,T ]×Rd

H idρidt+

∫
Rd

gi(x)dρi(T, x) ≥∫
[0,T ]×Rd

(−∂tui −∆ui +
|∇ui|2

2
)dρidt+

∫
Rd

ui(T, x)dρi(T, x). (2.7)

Integrating by parts, the right-hand side is equal to∫
[0,T ]×Rd

ui(∂tρ
i −∆ρi)dxdt+

∫
[0,T ]×Rd

|∇ui|2

2
dρidt+

∫
Rd

ui(0, x)dρi0,

which, in turn, is equal, by the equation satisfied by (ρi,mi), to∫
[0,T ]×Rd

ui(−divmi)dxdt+

∫
[0,T ]×Rd

|∇ui|2

2
dρidt+

∫
Rd

ui(0, x)dρi0.

After a last integration by parts we substitute in (2.6) to obtain∫
[0,T ]×Rd

|vi|2

2
dρidt+

∫
[0,T ]×Rd

vi · ∇uidρidt+
∫
[0,T ]×Rd

|∇ui|2

2
dρidt ≤ 0,

which gives the equality vi = −∇ui. Moreover the equality carry on to the inequality
(2.7) giving that ui is a solution of the desired equation.
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3. The Entropic problem

In this section we focus on a Lagrangian formulation to (2.2) based on a minimization of
a relative entropy. In particular by proving the existence of a solution to the Lagrangian
formulation we deduce the existence also for the Eulerian one.
Let Ω := (C([0, T ],Rd), ∥ · ∥∞) and let Ri ∈ P(Ω) be Wiener measures defined by

Ri =

∫
Rd

ρi0δx+Bi(t)(x)dx

where the Bi are the classical Brownian motions. For Qi ∈ P(Ω) consider the following
variational problem to which we will refer as Lagrangian

min{J(Q1, . . . , QN ) : e0♯Q
i = ρi0} (3.1)

where

J(Q1, . . . , QN ) :=
∑
i

H(Qi|Ri) +
∑

1≤i≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V (x− y)det♯Q
i ⊗ det♯Q

jdt

+
∑
i

∫
Rd

gi(x)deT♯ Q
i,

where et♯ : P(Ω) → P(Rd) is the evaluation map at time t; moreover, notice that for every

t ∈ [0, T ], et♯ is continuous for the narrow convergences.

Theorem 3.1. The minimum in (3.1) is finite and there exists a minimizer (Q
1
, . . . , Q

N
).

Proof. First observe that choosing Qi = Ri gives at least one point at which J is finite
so that the infimum is finite. Let {(Q1

n, . . . , Q
N
n )}n∈N be a minimizing sequence, so that

J(Q1
n, . . . , Q

N
n ) ≤ C. Since V is bounded from below we have∑

i

H(Qi
n|Ri) + k +

∑
i

∫
Rd

gi(ω(T ))dQi
n +max

φ
{
∑
i

∫
Rd

φ(0, x)dρi0 −
∫
Rd

φ(0, ω(0))dQi
n}

≤
∑
i

H(Qi|Ri) +
∑

1≤i,j≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V (x− y)dQi
t ⊗ et♯Q

jdt

+
∑
i

∫
Rd

gi(ω(T ))dQi +max
φ

{
∑
i

∫
Rd

φ(0, x)dρi0 −
∫
Rd

φ(0, ω(0))dQi}

≤ C

Which implies, since the other addenda of the first term have linear growth

H(Qi
n|Ri) ≤ C1, ∀i.
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This implies (see appendix) that, up to subsequences, there exists Qi with

Qi
n

∗
⇀ Qi

and since all the terms constituting J are lower semicontinuous, (Q1, . . . , QN ) is a min-
imizer.
The first term of J is the entropy which is lower-semicontinuous (see Lemma 9.4.3 of [3]

and the appendix), the second and the third terms are given by continuous functionals
composed with the continuous operator Q 7→ et♯Q finally the last term is the sup of
continuous functionals and l.s.c. as such.

From now on, we denote Qi
t = et♯Q

i ∀t ∈ [0, T ].
The next theorem from [8] relates the Lagrangian problem (3.1) to the Eulerian for-

mulation of system (1.1) that we discussed in the previous section. This will allow us to
obtain the existence of a minimizer (ρ1,m1 . . . , ρN ,mN ) for problem (2.2). Since only
the first term of the energy in (2.2) depends on m, given a curve ρ ∈ C([0, T ];P2,W2)
we define

E(ρ) := inf
v

{
1

2

∫
|vt|2dρtdt : ∂tρ−

1

2
∆ρ+ div(vρ) = 0

}
,

and then, we decompose the minimization (2.2) in a two steps minimization writing it
as

inf

{∑
i

E(ρi) +
∑

1≤j≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V i,j(x− y)dρi ⊗ dρjdt

+

∫
Rd

gi(x)dρi(T, x) : ρi ∈ C([0, T ];P2,W2), ρ
i(0, x) = ρi0, ∀i = 1, · · · , N

}
. (3.2)

This last problem only depends on the curve ρ since the role of m (or v) has already been
encoded in E. In an analogous way we can decompose also the minimization problem
(3.1) as

inf

{∑
i

S(ρi) +
∑

1≤j≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V i,j(x− y)dρi ⊗ dρjdt

+

∫
Rd

gi(x)dρi(T, x) : ρi ∈ C([0, T ];P2,W2), ρ
i(0, x) = ρi0, ∀i = 1, · · · , N

}
, (3.3)

where
S(µi) = inf{H(Qi|Ri) | Qi

t = µit, ∀t ∈ [0, T ], } (3.4)

so obtaining a problem which depends only on the curve µi. Then using the following
result of [8] we have the existence of a minimizer of (2.2) from that of a minimizer of
(3.1).
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Proposition 3.2 (see corollary 4.7 of [8]). If ρ0 ∈ P2 and H(ρ0) < +∞ then

S(ρ) = E(ρ) +H(ρ0).

Theorem 3.3. There exists minimizers of problems (3.2) and (2.2).

Proof. If Q = (Q
1
, . . . , Q

N
) is a minimizer of problem (3.1), the curve Qt := (ρ1, . . . , ρN )

is a minimizer of problem (3.3). By Proposition 3.2 above, problems (3.2) and (3.3) have
the same minimizers (while the minimal values differs by a constant). So (ρ1, . . . , ρN )
is also a minimizer for problem (3.2). If we choose, then, for each i ∈ {1, . . . , N},
vi a vector field as in the definition of E(ρi) and consider mi := viρi we have that
(ρ1,m1, . . . , ρN ,mN ) is a minimizer for problem (2.2).

4. Time discretization and Γ-convergence

Before introducing a suitable discretizations we shortly recall the two equivalent prob-
lems we studied above. The main player in those problems is a vector curve of probability
measures

ρ ∈ (C([0, T ]; (P2,W2)))
N .

Given a positive integer K the discrete version of the ρ above is a N -tuple of (K + 1)-
vectors of probability measures

ρK ∈ PK+1
2 × · · · × PK+1

2 .

So the i-th components ρi
0, · · · ,ρi

K of ρi
K is a discrete version of the i-th curve. To this

(K + 1)−tuple of probability measures we can associate the piece-wise constant curve

ρi(t) = ρi
j , for t ∈

[
jT

K
,
(j + 1)T

K

)
.

The ambient space for the Eulerian versions of the problems was

A0 = {ρ : [0, T ] → (P2)
N | abs. cont. and s.t. ρ(0) = ρ0}.

We may first introduce the discretized space

AK
0 := {ρK ∈ (P

(K+1)
2 )N : ρi

0 = ρi0, i = 1, . . . , N}

We say that ρK → ρ as K → +∞ if for all i = 1, . . . , N

sup
t∈[0,T ]

W2(ρ
i(t), ρi(t)) → 0.

Given N continuous curves of measures ρi ∈ C([0, T ], (P2(Rd),W2)), that is ρi : t ∈
[0, T ] 7→ ρit ∈ P2(Rd), we defined the minimal energy E(ρ), the minimal entropic cost

12



S(ρ), as well as the cost

F(ρ1, · · · , ρN ) =
∑

1≤i,j≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V (x− y)dρit ⊗ dρjtdt+
∑
i

∫
Rd

gi(x)dρiT .

Thus, the minimization problem (2.2) and (3.1) can now be re-written in the following
way

inf{
N∑
i=1

E(ρi) + F(ρ1, · · · , ρN ) | ρ ∈ A0}, (4.1)

and

inf{
N∑
i=1

S(ρi) + F(ρ1, · · · , ρN ) | ρ ∈ A0}. (4.2)

We define the time discretization of (4.1) as

inf{
N∑
i=1

EK(ρi) + FK(ρ1, · · · ,ρN ) | ρK ∈ TK}, (4.3)

where

EK(ρi) :=
K−1∑
k=0

E T
K
(ρi

k,ρ
i
k+1),

with

E T
K
(µ, ν) := inf{1

2

∫ T
K

0

∫
Rd

|vt|2dρtdt | ∂tρ−
1

2
∆ρ+ div(ρv) = 0, ρ0 = µ, ρ T

K
= ν}.

In a similar way one can discretize in time the Lagrangian counterpart

SK(ρi) := inf{H(Qi|Ri) | Q ∈ P(Ω), Qi
j T
K

= ρi
j , j = 0, · · · ,K} (4.4)

as well as the interaction term and the final cost

FK(ρ1, · · · ,ρN ) =
T

K

K−1∑
k=1

∑
1≤i,j≤N

j ̸=i

∫
Rd×Rd

V (x− y)dρi
k ⊗ dρj

k +

N∑
i=1

∫
Rd

gi(x)dρi
K , (4.5)

where, we recall, ρi stands now for a vector of measures, that is ρi ∈ P2(Rd)(K+1) which
discretize a curve of measures. Notice that (4.4) can be equivalently reformulate as a
classical multi-marginal problem; that is for i = 1, .., N we have

SK(ρi) := inf{H(πiK |Ri
K) | πiK ∈ Π(ρi

0, · · · ,ρi
K)}, (4.6)

13



where Π(ρi
0, · · · ,ρi

K) is the set of probability measures on (Rd)K+1 having ρi
0, · · · ,ρi

K

as marginals and

Ri
K := (e0, e

T
K , · · · , eT )♯Ri.

Then the discretized (4.2) takes the form

inf{
N∑
i=1

SK(ρi) + FK(ρ1, · · · ,ρN ) | (ρ1, · · · ,ρN ) ∈ TK}, (4.7)

where

TK := {(ρ1, · · · ,ρN ) ∈ ((P2(Rd),W2)
(K+1))N | ρi

0 = ρi0, ∀i = 1, · · · , N}.

Theorem 4.1. As K → +∞,

N∑
i=1

EK(ρi) + FK(ρ1, . . . ,ρn)
Γ→

N∑
i

E(ρi) + F(ρ1, . . . , ρN ).

Proof. Γ− lim sup inequality Let ρ ∈ A0 be such that∑
i

E(ρi) + F(ρ) < +∞.

We consider the discretization ρK of ρ given by ρj = ρ(ξKj ) where the times ξKj ∈[
j
T

K
, (j+1)

T

K

)
for j = 1, . . . ,K−1 are chosen according to Remark 4.2 below, ξ0K = 0

and ξKK = T . Since t 7→ ρt is uniformly continuous, the convergence,

ρK → ρ,

is verified. We check the convergence of each term of the functional, starting with FK .
Since t 7→ ρt is W2 continuous, it is w∗ continuous and since (x, y) 7→ V (x− y) is lower
semi-continuous, the same holds for

t 7→
∑

1≤i,j≤N

i ̸=j

∫
V (x− y)dρit(x)⊗ dρjt (y).

And this last map can be considered as g in Remark 4.2. By the choice of discretizing
times ∫

gi(x)dρi
k =

∫
gi(x)dρiT .

Concerning the energy term, it is enough to study the convergence for each i. In the

addendum E T
K
(ρi

k,ρ
i
k+1) we may take ρ

(
t−k T

K

)
and the corresponding optimal vector
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field v as test function so obtaining

EK(ρi
K) =

K−1∑
k=0

E T
K
(ρi

k,ρ
i
k+1) ≤ E(ρi),

which, passing to the lim sup as K → +∞ concludes the proof of the Γ − lim sup
inequality.
Γ− lim inf inequality Let ρ ∈ A0 and let ρK → ρ. We have

T

K

K−1∑
k=0

∑
1≤i,j≤N

i ̸=j

∫
V (x− y)dρi

k ⊗ dρj
k =

∫ T

0

∑
1≤i,j≤N

i ̸=j

∫
V (x− y)dρi

t
⊗ dρj

t
dt.

The very definition of convergence ρK → ρ implies that ρi
t
⊗ρj

t

∗
⇀ dρit⊗dρjt for all t, i, j.

Since V is lower semi-continuous

µ⊗ ν 7→
∫
V (x− y)dµ⊗ dν,

is w∗ lower semi-continuous, by the lower semi-continuity of the integral

lim inf
K→+∞

∫ T

0

∑
1≤i,j≤N

i ̸=j

∫
V (x− y)dρi

t
⊗ dρj

t
dt.

Concerning the last addendum of the functional∫
gi(x)dρi

K →
∫
gi(x)dρi,

since gi is continuous and bounded by assumptions. So let us look at the energy term
EK . This term may be studied as in [8] by usual methods in Calculus of Variations. Also
in this case it is enough to study EK(ρi). Since we may assume that the total energy
of ρK is bounded, the same holds for EK(ρi). Let ρ̃K , ṽK be an almost minimizer for

EK(ρi), i.e. ρ̃K : [0, T ] → P2 is absolutely continuous, ρ̃K

(
j
T

K

)
= ρi

j for j = 0, . . . ,K

ṽK,t ∈ L2
ρ̃t ,

∂tρ̃K − 1

2
∆ρ̃K + div ṽK ρ̃K = 0

and

C ≥ EK(ρi
K) ≥

∫ T

0

∫
|ṽk|2

2
dρ̃K,tdt−

1

K
.
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We estimate the total variation of the measure m̃K := ṽK ρ̃K in [0, T ]× Rd. Using

C ≥
∫ T

0

∫
|m̃K |2

2ρ̃K
dxdt,

and the Young’s inequality we obtain

∥m̃K∥[0,T ]×Rd ≤ C + ∥ρ̃∥[0,T ]×Rd .

Since {ρ̃K} is also bounded in total variation we have that, up to subsequences

(ρ̃K , m̃K)
∗
⇀ (ρ,m),

with (ρ,m) solution of

∂tρ−
1

2
∆ρ+ divmρ = 0.

Since m = vρ for a suitable v and applying the lower semi-continuity Theorem 2.34 of
[2], originally from [11], we have,

lim inf
K→+∞

EK(ρi
K) ≥ lim inf

K→+∞

∫ T

0

∫
|ṽk|2

2
dρ̃K,tdt =

lim inf
K→+∞

∫ T

0

∫
|m̃k|2

2ρ̃K,t
dxdt ≥

∫ T

0

∫
|m|2

2ρt
dxdt ≥ E(ρi).

Remark 4.2. Let g : [0, T ] → [0,+∞) be a lower-semicontinuous functions and letK ∈ N.

There exists points ξjK ∈
[
j
T

K
, (j + 1)

T

K

)
such that

T

K

K−1∑
j=1

g(ξJK) →
∫ T

0
g(t)dt.

5. Numerical Approximation

We now present a numerical scheme in order to solve the discretized in time problem
(4.7). In particular the scheme is based on a variant of the Sinkhorn algorithm, success-
fully used to solve many variational problems involving optimal transport [18, 7, 5, 9,
25, 26, 15, 24] and it is an adaptation of the scheme introduced in [8, 4].
We recall that (4.7) reads as:

inf

{
N∑
i=1

SK(ρi) + FK(ρi, · · · ,ρi) | (ρi, · · · ,ρi) ∈ TK

}
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where SK is itself defined by (4.6) which is an entropy minimization with multi-marginal
constraints.

Denoting P k : (Rd)K+1 → (Rd) the k−th canonical projection we can obviously
rewrite (4.7) as an optimization problem over plans πiN only:

inf

{
N∑
i=1

H(πiK |Ri
K) + iρi0

(P 0
#π

i
k) +G(PK

# π
i
K)

+FK(P#π1
K , · · · ,P#πN

K ) : (πiK)Ni=1 ∈ (P((Rd)K+1))N
}
, (5.1)

where P#πi
K = (P 0

#π
i
K , · · · , PK

# π
i
K) and

iρ0(ρ) =

{
0 if ρ = ρ0

+∞ otherwise

is the indicator function in the convex analysis sense and is used to enforce the initial
condition. We recall that for all i = 1, · · · , N , the static reference measure Ri

K in the
relative entropy term is defined as follows

Ri
K := (e0, e

T
K , · · · , eT )♯Ri.

Moreover, since we are considering the reversible Wiener measure, it turns out that Ri
K

can be decomposed by using the heat kernel as

Ri
K :=

( K∏
k=1

H T
K
(xk − xk−1)

)
dx0, · · · dxK ,

where

Ht(z) :=
1

(2πt)d
exp

(
− |z|2

2t

)
, t > 0, z ∈ Rd,

and | · | denotes the standard euclidean norm. We also need a discretization in space, for
instance we use a M grid points to discretize Rd, then πiK and Ri

K become tensors in
RMN . For sake of simplicity we will keep the continuous in space notation, but form now
on integral must be understood as finite sums and x0, · · · , xK as M vectors. Notice that
thanks to the euclidean norm, the heat kernel Ht(z) can be decomposed as a product
along the dimension of the one dimensional kernel, that is

Ht(z) =
d∏

j=1

ht(zj),

where ht(zj) is the heat kernel in dimension one. This implies that, instead of storing a

matrix Ht ∈ RM×M , one can just store d small matrices belonging to R
d√M× d√M . One

17



can now try to generalize the algorithm introduced in [15] and its multi-marginal variant
[7] to the multi-population case in the same flavour as [4]. However, since the interaction
term between populations is non-convex, it happens that we are out of the domain of
application of Sinkhorn algorithm. A way to overcome this difficulty is through a semi-
implicit approach in order to treat the interaction term, that is at step n+1 the i−th plan

π
i,(n+1)
K is computed as the optimal solution of a linearized problem obtained by injecting

the j−th, with j ̸= i, plans π
j,(n)
K computed at the previous step: for all i = 1, · · · , N

π
i,(n+1)
K := argminπi

K∈P((Rd)K+1)

{
H(πiK |Ri

K) + iρi0
(P 0

#π
i
k) +G(PK

# π
i
K)

+FK
i (P#πi

K)

}
, (5.2)

where
FK
i (P#πi

K) := FK(P#π
1,(n+1)
K , · · · ,P#πi

K , · · · ,P#π
N,(n)
K )

We now have to solve N finite-dimensional strictly convex minimization problems. Then,
for each problem strong duality holds and (5.2) cab be re-written as follows

sup
(ui

0,··· ,ui
K)

−F ∗
0 (−ui0)−G∗(−uiK)− F∗

i (−ui1, · · · ,−uiK−1)

−
∫ (

exp (⊕K
j=0u

i
j)− 1

)
Ri

K , (5.3)

where with a slight abuse of notation F ∗
i denotes the sum of the Fenchel-Legendre

transform of each term in FK
i . Denoting by π

i,(n+1)
K and u

i,(n+1)
j the optimal solution to

(5.2) and (5.3), respectively, it follows that the unique solution to (5.2) has the form

π
i,(n+1)
K (x) :=

(
⊗K

k=0 e
u
i,(n+1)
k (xk)

)
Ri

K(x),

where x = (x0, · · · , xK).

Remark 5.1 (Structure of the optimal solution). By definition of the linearized term FK
i

it follows that the F∗
i is just a sum of indicator function in the convex analysis sense;

this implies that for all k = 1, · · · ,K − 1

u
i,(n+1)
k (xk) =

∑
j ̸=i

∫
V i,j(xk − yk)ρ

j,(n)
k (yk)dyk,

where ρ
j,(n)
k (yk) := Pk,♯π

j,(n)
K is the marginal of the solution computed at the previous

step. In the same way if the final cost if of the form G(ρ) =

∫
gdρ then ui,⋆K (xK) =

gi(xK). For sake of clarity we consider always these kinds of functional, even if the
algorithm can be defined with more complex functional (we refer the reader to [7, 4]
for some examples with 1 or 2 populations; the extension to N populations is then
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straightforward).

Notice that thanks to the remark above the generalised Sinkhorn algorithm takes now
the following form.

Algorithm 1 Multi-population Sinkhorn

Require: u
i,(0)
k = 0

1: while

N∑
i=1

||ρi,(n)0 − ρi0|| <tol do

2: for i = 1 : N do
3: for k = 0 : K do
4: if k = 0 then

5: u
i,(n+1)
0 = log(ρi0)− log

(∫ (
exp (⊕K

j=1u
i,(n)
j )

)
Ri

K

)
6: else if k ̸= 0,K then

7: u
i,(n+1)
K =

∑
j ̸=i

∫
V i,j(xk − yk)ρ

j,(n)
k (yk)dyk

8: else if k = K then
9: u

i,(n+1)
K = gi

10: end if
11: end for
12: end for
13: end while

In the following numerical results we take a space M ×M discretization of [0, 1]2 with
M = 100 and a time discretization of [0, 1] with K = 32 time step. Let us, firstly,
consider the 2 densities case: we have always considered the same initial data

ρ10 = exp(−50(x1 − .2)2 − 50(y1 − .5)2), ρ20 = exp(−50(x2 − .8)2 − 50(y2 − .5)2)

and the same final costs

g1 = 50((x1 − 0.8)2 + (y1 − 0.45)2), g2 = 50((x2 − 0.2)2 + (y2 − 0.5)2),

such that we expect the two Gaussians to switch position. As for the interaction potential
we have considered in Figure 5.1 a strong repulsion given by V (x, y) = 120χ||x−y||<0.2(x, y)

and in Figure 5.2 a truncated Coulomb repulsion V (x, y) = min

(
1000,

1

||x− y||

)
. No-

tice in both cases the effect of entropic term which oblige the densities to spread but
at the same time the effect of the repulsive interaction forbid them to touch each other
(the distance between them depends on the kind of the repulsion term).

It is now straightforward to extend the theory and the numerical method to a slightly
more general model with a viscosity parameter ε. The Mean Field Game system (1.1)
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t = 0 t = 1/8 t = 1/4 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 5.1: Support of ρ1 and ρ2 for V (x, y) = 120χ||x−y||<0.2(x, y).

t = 0 t = 1/8 t = 1/4 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 5.2: Support of ρ1 and ρ2 for V (x, y) = min

(
1000,

1

||x− y||

)
.

now takes the form :
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−∂tui −

ε

2
∆ui +

1

2
|∇ui|2 =

∑
j ̸=i

∫
Rd

V i,j(x− y)ρjtdy,

∂tρ
i − ε

2
∆ρi + div(∇uiρi) = 0,

ρi(0, x) = ρi0(x), u
i(T, x) = gi(x);

(5.4)

The Lagrangian formulation (3.1) we have proposed becomes

min{Jε(Q1, . . . , QN ) : e0♯Q
i = ρi0} (5.5)

where

Jε(Q
1, . . . , QN ) :=

∑
i

H(Qi|Ri
ε) +

∑
1≤i≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V (x− y)det♯Q
i ⊗ det♯Q

jdt

+
∑
i

∫
Rd

gi(x)deT♯ Q
i.

where Ri
ε are the reversible Wiener measure induced by a Brownian motion with variance

ε. Notice that one could choose different ε for each population. In particular, if we
discretize the problem in time, we have that the reference measure Ri

ε,K can be still
decomposed by using the heat kernel Hεt(z).

Notice that we can still use the algorithm we have introduced above, but the per-
formance, in terms of iterations to converge, will be affected by small values of ε. At
least formally, when the viscosity is small, (5.5) is an approximation of the following
Lagrangian formulation of first-order variational mean-field games (see [6] for the one
population case)

min{K(Q1, . . . , QN ) : e0♯Q
i = ρi0} (5.6)

where

K(Q1, . . . , QN ) :=
∑
i

K(Qi) +
∑

1≤i≤N

j ̸=i

∫ T

0

∫
Rd×Rd

V (x− y)det♯Q
i ⊗ det♯Q

jdt

+
∑
i

∫
Rd

gi(x)deT♯ Q
i.

where

K(Q) :=
1

2

∫
Ω

∫ T

0
|ω̇(t)|2dtdQ(ω). (5.7)

This also implies that we can use the Sinkhorn algorithm, with small ε, in order to
approximate the solution to first-order MFGs. In Figures 5.3 and 5.4 we have considered
the same data as above but with ε = 0.005; notice now the effect of a weaker diffusion
term which prevents the densities from spreading. Finally, we consider a 3 populations
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t = 0 t = 1/8 t = 1/4 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 5.3: Support of ρ1 and ρ2 for ε = .005 and V (x, y) = 120χ||x−y||<0.2(x, y).

t = 0 t = 1/8 t = 1/4 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 5.4: Support of ρ1 and ρ2 for ε = .005 and V (x, y) = min

(
1000,

1

||x− y||

)
.

example with initial data

ρ10 = exp(−50(x1 − .2)2 − 50(y1 − .5)2), ρ20 = exp(−50(x2 − .8)2 − 50(y2 − .5)2),
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ρ30 = exp(−80(x3 − .5)2 − 80(y3 − .1)2),

and final costs

g1 = 50((x1−0.8)2+(y1−0.5)2), g2 = 50((x2−0.5)2+(y2−0.1)2), g3 = 50((x2−0.2)2+(y2−0.5)2)

which induces a rotation of the populations. In Figure 5.5 we plot the evolution of
support of the 3 densities considering as interaction term the strong repulsion we have
taken above.

t = 0 t = 1/8 t = 1/4 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 5.5: Support of ρ1, ρ2 and ρ3 for V (x, y) = 120χ||x−y||<0.2(x, y).

A. Entropy and the De la Vallée Poussin Theorem

The existence of minimizers for J relies on the compactness of minimizing sequences
that follows from the super-linearity of the entropy functional. This is a classical fact
which we shortly report here for the reader’s convenience.
Let µ and σ be two probability measures on a metric space X. We say that µ is

absolutely continuous with respect to σ if there exists a function f ∈ L1
σ such that

µ = f(x)σ,

and in this case we write µ << σ and we use the classical notation f =
dµ

dσ
.
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The relative entropy of µ with respect to σ is defined as

H(µ|σ) =


∫
X

dµ

dσ
log

(
dµ

dσ

)
dσ if µ << σ,

+∞ otherwise.

Following [3] (Example 9.3.6) one can introduce the function

H(s) =


s(log s− 1) + 1 if s > 0,
1 if s = 0,
+∞ if s < 0,

which is nonnegative, lower semi-continuous, strictly convex and super-linear at +∞.
Then it holds

H(µ|σ) =
∫
H

(
dµ

dσ

)
dσ;

and
H(µ|σ) = 0 ↔ µ = σ.

This way to rewrite the relative entropy is handy to make a connection with the De la
Vallée Poussin theorem. In fact, let {µi}i∈I ⊂ P(X) be such that H(µi|σ) < C then the

family

{
dµi
dσ

}
i∈I

⊂ L1
σ(X) is weakly compact thanks to the the theorem

Theorem A.1 (De la Vallée Poussin). Let {fi}i∈I ⊂ L1
σ then the following are equivalent

• the functions {fi}i∈I are uniformly integrable (and then weakly compact in L1
σ by

the Dunford-Pettis theorem,

• there exists a function φ : R+ → R+ non-decreasing and such that

lim
t→+∞

φ(t)

t
= +∞,

such that

∫
X
φ(|fi|)dσ < C.

A second advantage of writing the entropy using the function H is the lower semi-
continuity with respect to the weak L1

σ-convergence of the densities, in the sense that
if

fn
w−L1

σ⇀ f,

then

lim inf
n→∞

∫
X
H(fn)dσ ≥

∫
X
H(f)dσ.
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