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Abstract

We present regularity results for nonlinear drift-diffusion equations of porous medium
type (together with their incompressible limit). We relax the assumptions imposed
on the drift term with respect to previous results and additionally study the effect
of linear diffusion on our regularity result (a scenario of particular interest in the
incompressible case, for it represents the motion of particles driven by a Brownian
motion subject to a density constraint). Specifically, this work concerns the L4-
summability of the pressure gradient in porous medium flows with drifts that is stable
with respect to the exponent of the nonlinearity, and L2-estimates on the pressure
Hessian (in particular, in the incompressible case with linear diffusion we prove that
the pressure is the positive part of an H2-function).
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Keywords and phrases.

1 Introduction

The paper is concerned with conservation laws for a density, n = n(t, x), at location
x ∈ Rd at time t ∈ [0, T ], for some T > 0, of the form

∂n

∂t
= ∇ · (n(∇p+∇V )) + ν∆n, (1a)

where the first term on the right-hand side models the density’s response to the pressure,
p, and the penultimate term its response to an external drift with potential V = V (t, x).
The final term describes random motion with diffusivity ν ≥ 0. Here, the pressure is
directly related to the density through the constitutive law

p = P (n) := nγ ,
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where γ > 1 models the stiffness of the pressure law. A quick computation shows that p
satisfies

∂p

∂t
= γp∆(p+ V ) +∇p · ∇(p+ V )− ν

γ

γ − 1

|∇p|2

p
+ ν∆p. (1b)

We are interested in two distinct scenarios – the case ν > 0, corresponding to a model
with active motion, and the case ν = 0, corresponding to a purely mechanical model, such
that the density evolves according to

∂n

∂t
= ∇ · (n∇(p+ V )). (2a)

In this case, the pressure satisfies the equation

∂p

∂t
= γp∆(p+ V ) +∇p · ∇(p+ V ). (2b)

It is well known that, when γ → ∞, these equations generate free boundary problems of
Hele-Shaw type. This asymptotic is known as hard-congestion or incompressible limit and
has attracted a lot of attention in the last decade, especially for its applications to crowd
behaviour and living tissue modelling.
The aim of this paper is to separately study the cases ν > 0 and ν = 0 and establish
integral estimates on the first and second-order derivatives of the pressure p which are
uniform with respect to the stiffness parameter γ. This will include estimates on |∇p|4
and |D2p|2. Specifically, great attention will be dedvoted to deriving such uniform bounds
under relaxed assumptions on the potential, V : R × Rd → R, compared to the those
already present in the literature.

1.1 Literature review and motivations from applied sciences

Motivations – modelling of crowd behaviour. A crucial aspect of modelling pedes-
trian motion are congestion effects since it is clear that, at any point in space and time,
the density of individuals cannot surpass a maximum threshold. This translates directly
into imposing an upper bound on the density, usually n ≤ 1, which is referred to as hard
congestion effect [24, 25]. Clearly, solutions to the equations presented above, (1a) and
(2a), do not guarantee the preservation of this constraint. Although the pressure acts
to prevent congestion through Darcy’s law, the (compressible) constitutive law p = nγ

does not necessarily enforce n ≤ 1 at all times. There is however a well-known link be-
tween compressible (or soft congestion) models such as (2a) and their hard-congestion
counterparts. In the so-called incompressible limit, γ → ∞, the limit pressure satisfies an
inclusion, determined by a monotone multi-function P :

p∞ ∈ P (n∞), where P (n) =


{0}, for n < 1,

[0,+∞) for n = 1,

∅ for n > 1.

(3)

This graph relation prevents the limit density from exceeding the value 1 and can also be
rewritten as follows

p∞(1− n∞) = 0, and 0 ≤ n∞ ≤ 1. (4)

Moreover, the limit density and pressure of solutions to Eq. (2a) are expected, at least at
a formal level, to satisfy

∂n∞
∂t

= ∆p∞ +∇ · (n∞∇V ). (5)
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The interpretation of problem (4)-(5) as a macroscopic model of crowd motion was first
suggested by one of the authors together with Maury and Roudneff-Chupin in [24]. They
consider the conservation law

∂n

∂t
+∇ · (nu) = 0, (6)

where the velocity field is defined as u = PCnU , where U represents the spontaneous
velocity that individuals would have in the absence of others, and PCn denotes a projection
operator onto the space of admissible velocities, namely the space of velocities that preserve
the constraint n ≤ 1. When U is of the form U = −∇V , the authors show that (6)
corresponds to the 2-Wasserstein gradient flow associated with the functional

E∞(n) =


ˆ
Rd

V n dx for n ≤ 1,

+∞ otherwise.
(7)

The velocity field that preserves the density constraint is, indeed, of the form u = −∇V −
∇p, where p is an L2

tH
1
x function that satisfies (4). Formally, the gradient flow associated

with (7) can be approximated by a porous medium-type equation as γ → ∞, namely the
gradient flow corresponding to the following energy functional

Eγ(n) =
ˆ
Rd

nV dx+
1

γ + 1

ˆ
Rd

nγ+1 dx. (8)

The rigorous derivation of this limit was first proven in [2], where the authors prove that
the solution to (2a) converges to the gradient flow associated with E∞ in the 2-Wasserstein
distance. Moreover, they compute the first explicit rate of convergence which was later
improved in the H−1 norm [10].
Models including sources and sinks in addition to convective effects have also been ap-
proached, [13, 22], and will be discussed later on in the paper. Uniqueness results for
problem (4)-(5) can be found in [13, 17, 20].

Motivations – tissue growth models. Besides crowd motion, the stiff-pressure limit
of porous medium equations or systems has been widely applied to biologically motivated
models, specifically, to living tissue. Indeed, Darcy’s law has been successfully used to en-
code the cells’ motion down pressure gradients. Unlike in the description of crowd motion,
these models involve reaction terms which are usually pressure-related. The incompress-
ible limit leads to Hele-Shaw-type problems where proliferation terms are responsible for
the appearance of positive-pressure regions which drive the motion of the boundary. The
first result on the incompressible limit for tumour growth models was proposed in [27] by
Perthame, Quirós, and Vazquez in 2014. The authors consider an equation of the form (2a)
without accounting for convective effects, including reactions of the form nG(p), where
the growth rate, G, is a decreasing function of the pressure. In order to study the limit
γ → ∞, the authors establish uniform bounds, specifically BV -bounds for both n and p
and ∇p ∈ L2

t,x. Moreover, they prove the lower bound ∆p+G(p) ≳ −1/γt. This control is
a variation of the fundamental estimate of the porous medium equation, also known as the
celebrated Aronson-Bénilan estimate [3], and implies that ∆p is uniformly controlled as a
bounded measure which is sharp since the gradient of the pressure of compactly supported
solutions exhibits jumps at the free boundary. From the seminal work [27] research has
branched out to several model extensions involving, for instance, nutrient concentrations
[11], Brinkman’s law [14, 15], and singular pressure laws [16, 19]. In particular, let us
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briefly discuss a model including random motion on the macroscopic scale addressed in
[28] which is pertinent to our work. The authors study the same tissue growth model as
the one in [27] including also active motion

∂n

∂t
= ∇ · (n∇p) + ν∆n+ nG(p). (9)

They establish the incompressible limit as γ → ∞ obtaining a Hele-Shaw free boundary
problem in the same fashion as done in [27]. However, the inclusion of active motion
introduces crucial differences between the two models. In particular, the density n(t, x)
possesses better regularity properties coming from the uniform parabolicity of the equa-
tion. Indeed, the authors show that not only ∇p ∈ L2, but also ∇n ∈ L2. This is true
uniformly in γ – hence also for the limits p∞ and n∞. Let us note that both the density
and the pressure gradients exhibit jumps at the free boundary. However, as observed by
the authors, in the sum p∞ + νn∞ these singularities cancel out, and the sum actually
belongs to H2. It is furthermore shown that both n∞ and p∞ are continuous in space for
almost every time t > 0, which depicts a picture radically different from the case ν = 0.
For the latter, it is known that characteristic functions of bounded moving domains are
solutions of the density equation. It is part of the objectives of this paper to show that
these properties also hold true when including a convective term into the equation, under
mild assumptions on the potential V (t, x).
The stiff-pressure limit was also studied for tumour growth models including local and
non-local drift terms. In [22] the authors consider a convective-reaction-porous medium
equation where the external drift b(t, x) is assumed to be C1

t C
3
x and the reaction is linear,

namely nf(t, x). Assuming f −∇ · b > 0 the authors study the incompressible limit and
prove convergence towards a free boundary problem using a viscosity solution approach.
The case b = −∇V with nonlinear pressure-dependent reaction, nG(p), was addressed
by two of the authors in [13] in a distributional solutions framework. Here, under sub-
stantially relaxed assumptions on the external drift, the authors establish the so-called
complementarity relation (i.e., the equation satisfied by p∞) by means of an L3-Aronson-
Bénilan-type estimate and a uniform bound on ∇p in L4.
The incompressible limit γ → ∞ has also been analysed when the porous medium term is
complemented by nonlocal drift effects, ∇W ⋆n, rather than local, ∇V , as for instance in
[7, 18] for Newtonian potentials. We refer the reader to [8] for a wider class of interaction
potentials, see also [5, 6] and references therein.

The gradient estimate in L4. In the study of porous medium models such as (2a) a
question that has attracted major attention is that of establishing regularity estimates on
the pressure gradient ∇p. The Hölder and Lipschitz regularity theory of the solution to
the standard porous medium is well-established – we refer the reader to the monograph
by Vázquez [30]. However, obtaining refined estimates that are uniform in γ has been
addressed only quite recently. To the authors’ best knowledge, the first such result in the
context of nonlinear diffusion equations applied to tissue growth models is due to Mellet,
Perthame, and Quirós [26]. The authors address the same model studied in [27], namely
Eq. (9) with ν = 0. For this model, the authors prove that ∇p belongs to L4([0, T ];L4(Rd))
uniformly with respect to γ. Such a bound is obtained by testing the equation on the pres-
sure by −∆p+G(p) and exploiting the modified version of the Aronson-Bénilan estimate
obtained in [27]. Later, in [11], the authors show the uniform L4-boundedness of the
pressure gradient for a system where the density equation is coupled with an equation
for a nutrient concentration. Here, the nature of the coupling makes the Aronson-Bénilan
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estimate in [27] fail calling for a more general argument independent of such a bound.
Moreover, in this work, the authors show that such a bound is sharp, in that there exists
an example – the so-called focusing or Graveleau solution [4] – for which Lp-norms blow up
as γ → ∞ whenever p > 4. This property was also numerically investigated in [12]. The
case involving convective effects has been considered in [13] where a uniform L4-bound is
obtained on ∇p under the suitable assumption on the potential V (t, x). Let us also men-
tion that nowadays such an L4-control is also known for nonlinear cross-diffusion systems
and structured models, see [9, 21]. Similar estimates have also been established for fluid
models [1].

1.2 Our contribution and summary of the strategy

Goals and motivations of the paper. As detailed in the introduction, the first uni-
form L4-estimate on the pressure gradient for porous medium equations including convec-
tive effects was recently obtained by two of the authors in [13]. This result was achieved
under the following assumptions imposed on the potential V (t, x)

∇(∂tV ) ∈ L1([0, T ];L∞(Rd)), ∆(∂tV ) ∈ L1([0, T ];L1(Rd)), (10)

D2V ∈ L∞([0, T ]× Rd), ∇V ∈ L∞([0, T ]× Rd). (11)

The aim of this paper is to further relax these conditions and to furnish an analogous
result for the model including active motion, Eq. (1a).
The relaxation of the regularity that needs to be imposed on V is not only interesting
in its own right and for its substantial application to the incompressible limit but it also
represents a first promising step towards the understanding of more involved systems of
equations. In particular, in [29] one of the authors proposed a mean-field game where
a continuity equation on the density is coupled with a Hamilton-Jacobi equation. This
system is the first example of a non-variational mean-field game that takes into account
the strong density constraint, n ≤ 1, such as the one obtained in the incompressible limit
of porous medium-type equations. Due to the nonvariational formulation of the problem,
the existence of solutions for this system remains uncharted territory to this day. The
presence of active motion, which was not considered in [29], could mitigate the difficulties
of proving the existence of solutions thanks to the additional regularity provided by the
parabolic regularisation. The system then reads

∂n

∂t
−∆n+∇ · (n(∇φ−∇p)) = 0,

∂φ

∂t
+∆φ+

|∇φ|2

2
−∇φ · ∇p = 0,

p ≥ 0, n ≤ 1, p(1− n) = 0.

(12)

The value function, φ, the macroscopic density of players, n, and the pressure, p, represent
the three unknowns of the system, which is closed with the saturation condition on n and
p. The backward-forward structure of the system is the key feature of mean-field games
– the forward equation on the density describes the movement of the crowd, while the
backward equation on the adjoint variable φ represents the backward reasoning strategy
of the players. Even in the presence of diffusion, the question of proving the existence of
weak solutions remains open. One of the main difficulties is the nonlinear term ∇φ · ∇p.
It is easy to obtain L2 bounds on each of the gradients separately, but this only provides
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weak convergence while at least one of the factors should be proven to converge strongly.
The stronger bounds on the pressure derivatives established in this paper could exactly
be used to prove strong compactness in L2 of ∇p.

Summary of the strategy. Our analysis relies on exploiting the evolution equation
satisfied by the pressure for any fixed γ > 0. In the case ν = 0, the pressure equation
has been widely used in the literature to establish fundamental regularity properties of
solutions. To obtain the uniform L4-estimate on the pressure gradient we will compute
the time evolution of |∇p|2 using Eq. (2b), following the technique in [11, 13, 26]. This
will allow us to obtain a uniform estimate on the L2 norm of pD2p which, together with
a L∞-bound of p, controls the L4 norms of the gradient through a simple functional
inequality. Let us remark that it would be futile to try to establish an L2-estimate on
D2p not weighted by p since the solution’s gradient exhibits jumps on the free boundary
∂{p > 0}.
In order to relax the assumptions on V we will, however, employ a different treatment
of the drift terms with respect to [13]. In particular, our results do not rely on the
uniform BV -bounds on the pressure established in [13]. Therefore, we will no longer need
assumption (10) which was used to infer ∂tp ∈ L1([0, T ]× Rd). Moreover, we are able to
improve the estimate in such a way that the L∞-control on the second derivatives of V ,
assumption (11), can be replaced by an L2-control.
In the case ν > 0, working with the pressure equation does not seem to be as effective as
in the degenerate case. Indeed, it is unclear how to treat the additional term appearing in
(1b) which is proportional to |∇√

p|2. For this reason, as done in [28], rather than dealing
with p = nγ we focus on the following quantity

Σ(t, x) = σ(n) :=
γ

γ + 1
nγ+1 + νn. (13)

Computing the time evolution of |∇Σ|2, we will show that Σ ∈ L2([0, T ];H2(Rd)) uni-
formly in γ also in the presence of drifts. Moreover, we will show how such an estimate
yields a control of Σ in L4([0, T ];W 1,4(Rd)), uniformly in γ.
Again, an important building block of the proof is represented by the L∞ bound on Σ or p,
that we prove uniformly in γ under some assumptions on V , including ||∂tV+ν∆V ||L1

tL
∞
x

<
+∞. Yet, it is possible to see (it will be done in Section 4.3) that the pressure in the
case γ = ∞ satisfies an L∞ estimate only depending on ||V ||∞, and we would like thus
to obtain the H2 and W 1,4 results on Σ∞ under less restrictive assumptions on V . The
strategy to obtain this result consists in first passing to the limit γ → ∞ some terms
and only then using the L∞ bound on Σ∞ or p∞. This is possible but requires strong
convergence of ∇Σγ to ∇Σ∞, which we are able to guarantee in the case ν > 0 and not
in the case ν = 0. This explains why this improved result (including the improved L∞

bound) is only presented in the case with active motion.

1.3 Outline of the rest of the paper

The rest of the paper is organised as follows: in Section 2 we present the assumptions and
main results, namely the uniform integrability bounds on the pressure first and second
derivatives in L4 for both equations (2b) and (1b). In Section 3, we prove the main result
for the equation without active motion, Theorem 2.1, while the case ν > 0, Theorems 2.2-
2.4, is treated in Section 4. This last section is divided into three subsections: first we
prove results which are uniform in γ, then we prove strong convergence when γ → ∞,
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and finally we prove the estimates which are valid, under less restrictive assumptions, for
γ = ∞.

2 Assumptions and main results

We now state the assumptions and main results of the paper for the cases ν = 0 and
ν > 0, respectively.

2.1 The advection-porous medium equation.

For ν = 0, we make the following assumptions on the initial data, n0(x), and its associated
pressure p0(x) = (n0(x))

γ ,

0 ≤ n0, p0 ∈ L1(Rd) ∩ L∞(Rd), p0 ∈ H1(Rd).

supp(n0) ⊂ K,
(14)

where K ⊂ Rd is a compact subset of Rd. We impose the following conditions on the
potential V (t, x):

V ∈ L∞([0, T ]× Rd) ∩ L2([0, T ];H2(Rd)),

∂tV ∈ L1([0, T ];L∞(Rd)) ∩ L4/3([0, T ];W 1,4/3(Rd)).
(15)

The L1
tL

∞
x -control on ∂tV is needed in order to prove the uniform boundedness of the

pressure through a maximum principle argument. It is immediately clear that the as-
sumptions on ∇∂tV are much weaker than the ones in (11). In fact, as mentioned in the
previous section, we no longer need BV -control in time of the pressure which required the
higher regularity on V . However, some integrability of this term is still necessary to treat
the term

´
∂tp∆V which appears in the time evolution of |∇p|2.

Theorem 2.1 (L4-estimate on the gradient for ν = 0.). Let (n0, p0), V = V (t, x) satisfy
assumptions (14), (15). There exists a positive constant C, independent of γ, such that
the solution, p(t, x), of Eq. (2b) with initial data p0, satisfies

ˆ T

0

ˆ
Rd

p|D2p|2 dx dt+
ˆ T

0

ˆ
Rd

|∇p|4 dx dt ≤ C.

2.2 Including active motion – the non-degenerate case.

We now discuss the assumptions and main results for the case with non-vanishing random
motion. The proofs heavily depend on integration by parts and since solutions are no
longer compactly supported as in the degenerate case, we choose to consider the equation
on the torus Td for the ease of exposition.
We make the following assumptions on the initial data

0 ≤ n0, p0 ∈ L∞(Td) ∩H1(Td). (16)

Let us remark that definition (13) and the above assumptions imply

∇Σ0 = n0∇p0 + ν∇n0 ∈ L2(Td).

7



We make the following assumptions on the potential V (t, x):

V ∈ L∞([0, T ]× Td) ∩ L2([0, T ];H2(Td)),

∂tV ∈ L2([0, T ]× Td),

ν∆V + ∂tV ∈ L1([0, T ];L∞(Td)).

(17)

Let us emphasise that in this case, no control on ∇∂tV is needed. In fact, the addi-
tional regularity coming from the uniform parabolicity permits a different way of treating´
∂tΣ∆V only requiring ∂tV ∈ L2

tL
2
x.

We now state the main results concerning the solution of (1a).

Theorem 2.2 (Uniform bounds for ν > 0). Let (n0, p0), V = V (t, x) satisfy assump-
tions (16), (17). There exists a positive constant C, independent of γ, such that the
solution, n(t, x), to (1a) with initial data n0, satisfies

ˆ T

0

ˆ
Td

|∆Σ|2 dx dt+
ˆ T

0

ˆ
Td

|∇Σ|4 dx dt ≤ C, (18)

where Σ = σ(n) is defined in (13).

In the case of active motion, ν > 0, we are actually able to further weaken the assumptions
on the potential needed to show the L4 bound of ∇p∞. To do so, we first prove that, as
γ → ∞, the solution to Eq. (1a) converges to n∞, the solution of

∂n∞
∂t

= ∆Σ∞ +∇ · (n∞∇V ),

p∞(1− n∞) = 0,

(19)

where Σ∞ = νn∞ + p∞ is the limit of Σγ . The uniqueness of solutions to the limit
equation was proven in [17]. In order to pass to the limit we need stronger assumptions
on the potential V . However, the final estimates on ∆Σ∞ and ∇Σ∞ will be independent
of such assumptions, which we will remove through a regularisation argument, as detailed
in Section 4.2.

Theorem 2.3 (Convergence). Let the potential V satisfy

∂tV ∈L∞([0, T ]× Td), ∇V ∈L∞([0, T ]× Td), ∆V ∈L2([0, T ]× Td). (20)

Then, there exist n∞ and Σ∞ such that the solution to (1a) convergences, up to a subse-
quence, as γ → ∞

nγ → n∞ strongly in C([0, T ];L2(Td)),

Σγ → Σ∞ strongly in L2([0, T ];H1(Td)).

Finally, we state the assumptions and the result on the boundedness of the L2
tH

2
x-norm

and the L4
tW

1,4
x -norm of the limit Σ∞. We assume

V ∈ L∞([0, T ]× Td) ∩ L2([0, T ];H2(Td)),

∂tV ∈ L2([0, T ]× Td).
(21)
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Theorem 2.4 (Bounds for Σ∞). Let (n0, p0), V = V (t, x) satisfy assumptions (16) and
(21), and let (n∞,Σ∞) be a solution to (19). There exists a positive constant C such that

ˆ T

0

ˆ
Td

|∆Σ∞|2 dx dt+
ˆ T

0

ˆ
Td

|∇Σ∞|4 dx dt ≤ C.

Corollary 2.5. Let (n0, p0), V = V (t, x) satisfy assumptions (16) and (21), and let p∞
be the pressure associated with Eq. (19). There exists a positive constant C such that

ˆ T

0

ˆ
Td

|∇p∞|4 dx dt ≤ C.

3 The advection-porous medium equation

We collect some useful functional identities and inequalities that will be used extensively
in the proofs of the main results.

Proposition 3.1. Given two functions g, h ∈ H2(Rd) ∩ L∞(Rd), we haveˆ
Rd

|∇g|2∆g dx = −2

3

ˆ
Rd

g|∆g|2 dx+
2

3

ˆ
Rd

g|D2g|2 dx, (22)

as well as ˆ
Rd

|∇g|4 dx ≤ 8

ˆ
Rd

g2|∆g|2 dx+ 4

ˆ
Rd

g2|D2g|2 dx, (23)

and ˆ
Rd

∆h|∇g|2 dx =

ˆ
Rd

h|D2g|2 − h|∆g|2 +∇gD2h∇g dx. (24)

Proof. Using integration by parts, we haveˆ
Rd

|∇g|2∆g dx =

ˆ
Rd

g∆|∇g|2 dx

=

ˆ
Rd

2g|D2g|2 + 2g∇g · ∇∆g dx

=

ˆ
Rd

2g|D2g|2 − 2|∇g|2∆g − 2g|∆g|2 dx.

Upon rearranging, we obtainˆ
Rd

3|∇g|2∆g dx =

ˆ
Rd

2g|D2g|2 − 2g|∆g|2 dx,

which proves the first statement, (22). To prove (23), we computeˆ
Rd

|∇g|4 dx = −
ˆ
Rd

g∇ · (∇g|∇g|2) dx

= −
ˆ
Rd

g∆g|∇g|2 dx− 1

2

ˆ
Rd

∇g2 · ∇|∇g|2 dx

= −
ˆ
Rd

g∆g|∇g|2 dx+
1

2

ˆ
Rd

g2∆|∇g|2 dx

= −
ˆ
Rd

g∆g|∇g|2 dx+

ˆ
Rd

g2∇g · ∇∆g dx+

ˆ
Rd

g2|D2g|2 dx

= −3

ˆ
Rd

g∆g|∇g|2 dx−
ˆ
Rd

g2|∆g|2 +
ˆ
Rd

g2|D2g|2 dx.
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Upon using Young’s inequality we obtain
ˆ
Rd

|∇g|4 dx ≤
(
3C

2
− 1

)ˆ
Rd

g2|∆g|2 dx+
3

2C

ˆ
Rd

|∇g|4 dx+

ˆ
Rd

g2|D2g|2 dx.

Setting C = 2 and rearranging, we find

1

4

ˆ
Rd

|∇g|4 dx ≤
ˆ
Rd

2g2|∆g|2 dx+

ˆ
Rd

g2|D2g|2 dx,

which yields (23). For the final statement, we observe that
ˆ
Rd

∆h|∇g|2 dx =

ˆ
Rd

2h(∇g · ∇∆g) + 2h|D2g|2 dx

=

ˆ
Rd

−2h|∆g|2 − 2∇h · ∇g∆g + 2h|D2g|2 dx

=

ˆ
Rd

−2h|∆g|2 + 2∇g · (D2h∇g +D2g∇h) + 2h|D2g|2 dx.

Rearranging the terms in the last line, we obtain
ˆ
Rd

∆h|∇g|2 dx =

ˆ
Rd

2h|D2g|2 − 2h|∆g|2 + 2∇g ·D2h∇g − |∇g|2∆hdx,

which directly implies (24).

Now we state an important result that allows us to establish a uniform L∞-control on
the pressure. This uniform bound will be obtained under different assumptions for the
uniformly parabolic case ν > 0, and it is therefore stated as a different lemma in Section 4.

Lemma 3.2. Let T > 0 and V = V (t, x) ∈ L2([0, T ];H1(Rd)) such that

∥∂tV ∥L1([0,T ];L∞(Rd)) ≤ C. (25)

Let p(t, x) solve Eq. (2b). Then, p ∈ L∞([0, T ]× Rd) uniformly in γ.

Proof. We argue by applying the comparison principle to the equation satisfied by f :=
p+ V which reads

∂f

∂t
= ∇p · ∇f + γp∆f +

∂V

∂t
.

We have
∥f(t)∥L∞(Rd) ≤ ∥f0∥L∞(Rd) + ∥∂tV ∥L1([0,T ];L∞(Rd)) ,

and therefore

∥p(t)∥L∞(Rd) ≤ ∥p0∥L∞(Rd) + ∥V (·, 0)∥L∞(Rd) − inf
t,x

V (t, x) + ∥∂tV ∥L1([0,T ];L∞(Rd)) .

Thus, we may conclude

∥p∥L∞([0,T ]×Rd) ≤ ∥p0∥L∞(Rd) + 2∥V ∥L∞([0,T ]×Rd) + ∥∂tV ∥L1([0,T ];L∞(Rd)).
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Let us recall some well-known properties of solutions to Eq. (2a), and therefore of the rela-
tive pressure that satisfies (2b). First of all, non-negativity is preserved; n ≥ 0 almost ev-
erywhere in [0, T ]×Rd. The density n(t, x) is also uniformly bounded in L∞([0, T ];L1(Rd));
in particular ∥n(t)∥1 = ∥n0∥1. As proven in Lemma 3.2, the pressure is uniformly bounded
in L∞([0, T ]×Rd) which, together with p = np(γ−1)/γ , implies p ∈ L∞([0, T ];L1(Rd)) uni-
formly in γ.
Exploiting this regularity, a simple computation shows that the pressure gradient is
bounded uniformly L2([0, T ]× Rd). Indeed, by integrating (2b) we obtain

d

dt

ˆ
Rd

p dx = (1− γ)

ˆ
Rd

|∇p|2 dx+ (1− γ)

ˆ
Rd

∇p · ∇V dx

≤ 1− γ

2

ˆ
Rd

|∇p|2 dx+
γ − 1

2

ˆ
Rd

|∇V |2 dx,

and thus

γ − 1

2

ˆ T

0

ˆ
Rd

|∇p|2 dx dt ≤ γ − 1

2

ˆ T

0

ˆ
Rd

|∇V |2 dx dt+
ˆ
Rd

p0 dx,

from which we deduce ∇p ∈ L2([0, T ]× Rd) uniformly in γ.

3.1 Proof of Theorem 2.1

We now proceed to proving the first main result, namely the L4 estimate on the pressure
gradient. First of all, let us notice that by using (22) in Proposition 3.1 it is straight-
forward to see that the regularity assumption on the potential V ∈ L∞([0, T ] × Rd) ∩
L2([0, T ];H2(Rd)), implies ∇V ∈ L4([0, T ]× Rd).
Setting f := p+ V , we rewrite (2b) as

∂p

∂t
= ∇p · ∇f + γp∆f. (26)

We multiply Eq. (26) by −(∆f) and integrate in space and time to obtain
ˆ T

0

d

dt

ˆ
Rd

|∇p|2

2
dx dt−

ˆ T

0

ˆ
Rd

∆V
∂p

∂t
dx dt

= −
ˆ T

0

ˆ
Rd

∇p · ∇f∆f dx dt︸ ︷︷ ︸
I

−γ

ˆ T

0

ˆ
Rd

p|∆f |2 dx dt.
(27)

Since p = f − V we have

I =−
ˆ T

0

ˆ
Rd

∇p · ∇f∆f dx dt

=−
ˆ T

0

ˆ
Rd

|∇f |2∆f dx dt︸ ︷︷ ︸
I1

+

ˆ T

0

ˆ
Rd

∇V · ∇f∆f dx dt︸ ︷︷ ︸
I2

.

11



Thanks to (22) we have

I1 = −
ˆ T

0

ˆ
Rd

|∇f |2∆f dx dt

=
2

3

ˆ T

0

ˆ
Rd

f |∆f |2 dx dt− 2

3

ˆ T

0

ˆ
Rd

f

d∑
i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dx dt
=

2

3

ˆ T

0

ˆ
Rd

p|∆f |2 dx dt− 2

3

ˆ T

0

ˆ
Rd

p

d∑
i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dx dt
+

2

3

ˆ T

0

ˆ
Rd

V |∆f |2 dx dt− 2

3

ˆ T

0

ˆ
Rd

V
d∑

i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dx dt.
Using identity Eq.(24) of Proposition 3.1, the last two terms of the previous line become

2

3

ˆ T

0

ˆ
Rd

V |∆f |2 − V
d∑

i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dx dt
=

2

3

ˆ T

0

ˆ
Rd

(∇fD2V∇f −∆V |∇f |2) dx dt

≤ ε∥∇f∥44 +
C

ε
∥D2V ∥22 +

C

ε
∥∆V ∥22

≤ ε∥∇f∥44 + C,

where we used Young’s inequality and D2V ∈ L2([0, T ]× Rd). Therefore, we get

I1 ≤
2

3

ˆ T

0

ˆ
Rd

p|∆f |2 − p
d∑

i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dx dt+ ε∥∇f∥44 + C. (28)

Now we proceed to estimate the term I2

I2 =
ˆ T

0

ˆ
Rd

∇V · ∇f∆f dx dt

= −
ˆ T

0

ˆ
Rd

∇f ·D2V∇f dx dt−
ˆ T

0

ˆ
Rd

∇V ·D2f∇f dx dt

≤ ε

2

ˆ T

0

ˆ
Rd

|∇f |4 dx dt+ 1

2ε

ˆ T

0

ˆ
Rd

|D2V |2 dx dt−
ˆ T

0

ˆ
Rd

∇V ·D2f∇f dx dt

≤ ε

2
∥∇f∥44 + C∥D2V ∥22 −

1

2

ˆ T

0

ˆ
Rd

∇V · ∇|∇f |2 dx dt

=
ε

2
∥∇f∥44 + C∥D2V ∥22 +

1

2

ˆ T

0

ˆ
Rd

∆V |∇f |2 dx dt

≤ ε∥∇f∥44 + C,

where we again used the weighted Young’s inequality and V ∈ L2([0, T ];H2(Rd)). There-
fore, we obtain

I = I1 + I2 ≤
2

3

ˆ T

0

ˆ
Rd

p|∆f |2 dx dt− 2

3

ˆ T

0

ˆ
Rd

p
d∑

i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dx dt+ 2ε∥∇f∥44 + C.
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Gathering all the bounds we can write Eq. (27) as

1

2
∥∇p(T )∥22 +

2

3

ˆ T

0

ˆ
Rd

p

d∑
i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dx dt+ (
γ − 2

3

) ˆ T

0

ˆ
Rd

p|∆f |2 dx dt

≤ C + 2ε∥∇f∥44 +
ˆ T

0

ˆ
Rd

∂t∇V · ∇pdx dt+
1

2
∥∇p0∥22

≤ C + Cε∥∇p∥44 +
1

2
∥∇p0∥22,

where we used Young’s inequality with exponents 4 and 4/3, ∇V ∈ L4 and the L4/3-bound
of ∂t∇V assumed in (15). Thus, we have proven the following bound

1

2
∥∇p(T )∥22 +

2

3

ˆ T

0

ˆ
Rd

p
d∑

i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dx dt+ (
γ − 2

3

) ˆ T

0

ˆ
Rd

p|∆f |2 dx dt

≤ C + Cε∥∇p∥44,

(29)

where we used the assumption p0 ∈ H1(Rd). Using (29) in conjunction with the uniform
bounds on D2V in L2([0, T ]× Rd) and p ∈ L∞([0, T ]× Rd), we have

ˆ T

0

ˆ
Rd

p

d∑
i,j=1

∣∣∣∣ ∂2p

∂xi∂xj

∣∣∣∣2 dx dt ≤ 2

ˆ T

0

ˆ
Rd

p

d∑
i,j=1

∣∣∣∣ ∂2f

∂xi∂xj

∣∣∣∣2 dx dt
+ 2

ˆ T

0

ˆ
Rd

p

d∑
i,j=1

∣∣∣∣ ∂2V

∂xi∂xj

∣∣∣∣2 dx dt
≤ C + ε∥∇p∥44,

(30)

as well as ˆ T

0

ˆ
Rd

p |∆p|2 dx dt ≤ 2

ˆ T

0

ˆ
Rd

p |∆f |2 dx dt+ 2

ˆ T

0

ˆ
Rd

p |∆V |2 dx dt

≤ C + Cε∥∇p∥44.

(31)

Using the uniform L∞-bound on p in (23) in Proposition 3.1, we obtain
ˆ T

0

ˆ
Rd

|∇p|4 dx dt ≤ C

ˆ T

0

ˆ
Rd

p|∆p|2 dx dt+ C

ˆ T

0

ˆ
Rd

p
d∑

i,j=1

∣∣∣∣ ∂2p

∂xi∂xj

∣∣∣∣2 dx dt,
where the right-hand side is controlled by (30, 31). We conclude

∥∇p∥44 ≤ Cε∥∇p∥44 + C,

which completes the proof of the uniform L4-bound of the gradient if ε > 0 is sufficiently
small. Finally, (29) yields p ∈ L∞([0, T ];H1(Rd)), and this concludes the proof.

4 Including active motion

Let us now consider (1a) and (1b). Defining Σ as in (13), (1a) becomes

∂n

∂t
= ∆Σ+∇ · (n∇V ). (32)
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4.1 Proof of Theorem 2.2 – uniform results in γ

Before proving the main result let us state the following lemma which gives the uniform
control of the L∞-norm of the pressure.

Lemma 4.1 (∥p∥L∞
t,x

≤ C∗). Let p satisfy (2b) with a potential V such that ∥V ∥L∞([0,T ]×Td),
∥ν∆V + ∂tV ∥L1([0,T ];L∞(Td)) are bounded. There exists a constant, C∗ > 0 such that

∥p∥L∞([0,T ]×Td) ≤ C∗, ∥n∥L∞([0,T ]×Td) ≤ C
1/γ
∗ , (33)

where n = p1/γ.

Proof. Consider the equation for the pressure

∂tp = ∇p · ∇(p+ V ) + γp(∆p+∆V )− ν
γ − 1

γ

|∇p|2

p
+ ν∆p.

Setting f := p+ V , we get

∂tf = ∇p · ∇f + γp∆f − ν
γ − 1

γ

|∇p|2

p
+ ν∆f − ν∆V − ∂tV

≤ ∇p · ∇f + γp∆f + ν∆f − ν∆V − ∂tV.

Arguing as in the proof of Lemma 3.2, by the comparison principle, we have

∥f(t)∥L∞(Td) ≤ ∥f(0)∥L∞(Td) + ∥ν∆V + ∂tV ∥L1([0,T ];L∞(Td)).

Then, we conclude

∥p(t)∥L∞(Td) ≤ ∥f(0)∥L∞(Td) + ∥ν∆V + ∂tV ∥L1([0,T ];L∞(Td)) −min
t,x

V

≤ C(∥p0∥L∞(Td)), ∥V ∥L∞([0,T ]×Td), ∥ν∆V + ∂tV ∥L1([0,T ];L∞(Td))) =: C∗.

Since n = p1/γ , we get the second bound.

Proof of Theorem 2.2. It is easy to see that Σ satisfies the following equation

∂tΣ = (ν + γp)(∆Σ + n∆V ) +∇Σ · ∇V. (34)

We multiply (34) by −(∆Σ + nV ) and get

1

2

ˆ
Td

|∇Σ|2(T ) dx+ (ν + γp)

ˆ T

0

ˆ
Td

|∆Σ+ n∆V |2 dx dt

=

ˆ T

0

ˆ
Td

n∂tΣ∆V dx dt−
ˆ T

0

ˆ
Td

∇Σ · ∇V (∆Σ + n∆V ) dx dt+
1

2

ˆ
Td

|∇Σ0|2 dx.

Setting S′(s) := sΣ′(s), we get

1

2

ˆ
Td

|∇Σ|2(T ) dx+
ν

2

ˆ T

0

ˆ
Td

|∆Σ+ n∆V |2 dx dt ≤ 1

2ν

ˆ T

0

ˆ
Td

|∇Σ · ∇V |2 dx dt

+ J + C,

(35)
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where C > 0 depends on ∥∇Σ0∥2 and

J :=

ˆ T

0

ˆ
Td

∂tS∆V dx dt.

By the definition of S, we have

J = −
ˆ T

0

ˆ
Td

∆S∂tV dx dt

= −
ˆ T

0

ˆ
Td

n∆Σ∂tV dx dt−
ˆ T

0

ˆ
Td

|∇Σ|2

Σ′ ∂tV dx dt,

having used ∆S = n∆Σ+ |∇Σ|2/Σ′. Then,

J = −
ˆ T

0

ˆ
Td

n(∆Σ + n∆V )∂tV dx dt+

ˆ T

0

ˆ
Td

n2∆V ∂tV dx dt−
ˆ T

0

ˆ
Td

|∇Σ|
Σ′ ∂tV dx dt

≤ α

2

ˆ T

0

ˆ
Td

|∆Σ+ n∆V |2 dx dt+ 1

2α

ˆ T

0

ˆ
Td

n2|∂tV |2 dx dt+ ∥n∥2∞∥∆V ∥2∥∂tV ∥2

+
1

ν

ˆ T

0

ˆ
Td

|∇Σ|2|∂tV |dx dt

≤ ν

4

ˆ T

0

ˆ
Td

|∆Σ+ n∆V |2 dx dt+ 1

ν
∥n∥2∞∥∂tV ∥22 + ∥n∥2∞∥∆V ∥2∥∂tV ∥2

+
1

ν

ˆ T

0

ˆ
Td

|∇Σ|2|∂tV |dx dt.

Thus, revisiting (35), we get

1

2

ˆ
Td

|∇Σ|2(T ) dx+
ν

4

ˆ T

0

ˆ
Td

|∆Σ+ n∆V |2 dx dt

≤ 1

ν
∥n∥2∞∥∂tV ∥22 + ∥n∥2∞∥∆V ∥2∥∂tV ∥2 + C

+
1

ν

ˆ T

0

ˆ
Td

|∇Σ|2|∂tV | dx dt+ 1

2ν

ˆ T

0

ˆ
Td

|∇Σ · ∇V |2 dx dt

≤ C
2
γ
∗

(
1

ν
∥∂tV ∥22 + ∥∆V ∥2∥∂tV ∥2

)
+ C

+
1

ν

ˆ T

0

ˆ
Td

|∇Σ|2|∂tV | dx dt+ 1

2ν

ˆ T

0

ˆ
Td

|∇Σ · ∇V |2 dx dt.

(36)

Let us recall that ˆ
Td

|∇Σ|4 dx ≤ C∥Σ∥2∞
ˆ
Td

|∆Σ|2 dx.

Since n is uniformly bounded in L∞, using Young’s inequality on the last two integrals on
the right-hand side of (36), we find

1

2

ˆ
Td

|∇Σ|2(T ) dx+
ν

4

ˆ T

0

ˆ
Td

|∆Σ|2 dx dt ≤ C + ε

ˆ T

0

ˆ
Td

|∇Σ|4 dx dt

≤ C + εC

ˆ T

0

ˆ
Td

|∆Σ|2 dx dt,
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where C = C(C∗, ε, ∥∂tV ∥2, ∥∆V ∥2, ∥∇V ∥4). Choosing ε small enough yields the bound.

4.2 Proof of Theorem 2.3 – convergence to the limit

To prove Theorem 2.4, namely the estimates for the limit Σ∞ under relaxed assumptions
on V , we will proceed from (36). In particular, instead of bounding the last two integrals,
we aim at passing to the limit as γ → ∞. In this section, we prove that the sequence
∇Σγ is strongly compact. This holds under stronger assumptions on the potential, see
(20). However, since the final estimate does not depend on such assumptions, we will later
remove them in Section 4.3.

A priori estimates and strong compactness. We consider the solution of Eq. (32)
with potential V that satisfies (20). Our goal is to show the strong convergence of Σγ to
Σ∞ in L2([0, T ];H1(Td)). To this end, we introduce the index γ to indicate the sequence
(or the not relabelled subsequences) of solutions. The result follows from the uniform a
priori estimates proved in the following lemmata.

Lemma 4.2 (∇Σγ is uniformly bounded in L2). There exists C > 0 independent of γ
such that

∥∇Σγ∥L2([0,T ]×Td) ≤ C. (37)

Proof. We recall the equation for nγ

∂tnγ = ∆Σγ +∇ · (nγ∇V ).

Multiplying by Σγ and integrating in space, we get
ˆ
Td

Σγ∂tnγ dx = −
ˆ
Td

|∇Σγ |2 dx−
ˆ
Td

nγ∇V · ∇Σγ dx.

The left-hand side is an exact derivative(
νnγ +

γ

γ + 1
nγ+1

)
∂tnγ =

∂

∂t

(
ν

2
n2
γ +

γ

(γ + 1)(γ + 2)
nγ+2
γ

)
.

Using Young’s inequality on the right-hand side, we get

d

dt

ˆ
Td

(
ν

2
n2
γ +

γ

(γ + 1)(γ + 2)
nγ+2
γ

)
dx+

1

2

ˆ
Td

|∇Σγ |2 dx ≤ 1

2
∥∇V ∥22∥nγ∥2∞.

Integrating in time, we get

ν

2

ˆ
Td

n2
γ(t) dx+

1

2

ˆ T

0

ˆ
Td

|∇Σγ |2 dx dt ≤ ∥∇V ∥22TC
2/γ
∗ +

ν

2

ˆ
Td

n2
γ(0) dx

+
γ

(γ + 1)(γ + 2)

ˆ
Td

nγ+2
γ (0) dx,

which concludes the proof.

Lemma 4.3 (Boundedness of ∆Σγ in L2). There exists C > 0 independent of γ, such
that

∥∆Σγ∥L2([0,T ]×Td) ≤ C.

Thus, we have
∆Σγ ⇀ ∆Σ∞, weakly in L2([0, T ]× Td).
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Proof. From (36) we have

1

2

ˆ
Td

|∇Σγ(T )|2 dx+
ν

4

ˆ T

0

ˆ
Td

|∆Σγ + nγ∆V |2 dx dt

≤ 1

ν
C

2
γ
∗ ∥∂tV ∥22 + C

2
γ
∗ ∥∆V ∥2∥∂tV ∥2 +

1

ν
∥∇Σγ∥22∥∂tV ∥∞

+
1

2ν
∥∇V ∥2∞∥∇Σγ∥22

≤ C,

where C > 0 is independent of γ by Lemma 4.2. Thus, we have (uniformly in γ)

∥∆Σγ + nγ∆V ∥22 ≤ C.

Using the uniform boundedness of nγ , and ∆V ∈ L2([0, T ]× Td), we conclude.

Lemma 4.4 (∇pγ is uniformly bounded in L2). There exists C > 0 independent of γ,
such that

∥∇pγ∥L2([0,T ]×Td) ≤ C. (38)

Proof. Let us integrate the equation for pγ (1b) to obtain

d

dt

ˆ
Td

pγ dx ≤ (1− γ)

ˆ
Td

∇pγ · (∇pγ +∇V ) dx,

and thus, by Young’s inequality
ˆ
Td

pγ(T ) dx+
γ − 1

2

ˆ T

0

ˆ
Td

|∇pγ |2 dx dt ≤
ˆ
Td

pγ(0) dx+
γ − 1

2

ˆ T

0

ˆ
Td

|∇V |2 dx dt,

and the proof is complete.

Lemma 4.5 (Strong compactness of nγ .). For 1 ≤ q < ∞, as γ → ∞ we have

nγ → n∞ strongly in Lq([0, T ]× Td),

up to a subsequence. Moreover, nγ → n∞ strongly in C(0, T ;L2(Td)).

Proof. From the proofs of Lemmata 4.2-4.3-4.4, we have

∇nγ =
1

ν
(∇Σγ − nγ∇pγ) ∈ L∞([0, T ];L2(Td)),

and
∂nγ

∂t
= ∆Σγ +∇ · (nγ∇V ) ∈ L2([0, T ]× Td),

uniformly in γ. Therefore, by Aubin-Lions’ lemma, we conclude.
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Strong compactness of the gradient. The strong compactness of nγ given by Lemma 4.5
and the weak compactness of ∇Σγ implied by Lemma 4.2 are enough to pass to the limit
in (34) and show that n∞ and Σ∞ satisfy

∂n∞
∂t

= ∆Σ∞ +∇ · (n∞∇V )

Exploiting the energy structure of the limit equation we show that the weak convergence
of ∇Σγ can be uplifted to strong convergence.

Lemma 4.6 (Strong convergence of ∇Σγ). As γ → ∞, we have

∇Σγ → ∇Σ∞, strongly in L2([0, T ]× Td).

Proof. Testing the equations

∂nγ

∂t
= ∆Σγ +∇ · (nγ∇V ),

∂n∞
∂t

= ∆Σ∞ +∇ · (n∞∇V ),

by Σγ and Σ∞, respectively, we have

ˆ T

0

ˆ
Td

Σγ
∂nγ

∂t
dx = −

ˆ T

0

ˆ
Td

|∇Σγ |2 dx−
ˆ T

0

ˆ
Td

∇Σγ · ∇V nγ dx,

ˆ T

0

ˆ
Td

Σ∞
∂n∞
∂t

dx = −
ˆ T

0

ˆ
Td

|∇Σ∞|2 dx−
ˆ T

0

ˆ
Td

∇Σ∞ · ∇V n∞ dx.

Our goal is to show
lim
γ→∞

∥∇Σγ∥2 = ∥∇Σ∞∥2.

From the two energy equalities, we have
ˆ T

0

ˆ
Td

|∇Σγ |2 dx dt =
ˆ T

0

ˆ
Td

Σ∞
∂n∞
∂t

dx dt−
ˆ T

0

ˆ
Td

Σγ
∂nγ

∂t
dx dt+

ˆ T

0

ˆ
Td

|∇Σ∞|2 dx dt

+

ˆ T

0

ˆ
Td

∇Σ∞ · ∇V n∞ dx dt−
ˆ T

0

ˆ
Td

∇Σγ · ∇V nγ dx dt

→
ˆ T

0

ˆ
Td

|∇Σ∞|2 dx dt,

because the two differences on the right-hand side converge to zero as γ → ∞ by the
strong compactness of Σγ (and nγ) and the weak compactness of ∂tnγ (and ∇Σγ).

The above argument concludes the proof of Theorem 2.3.

4.3 Proof of Theorem 2.4 – results for the limit pressure

We now prove that Σ∞ ∈ L∞([0, T ] × Td) and ∆Σ∞ belongs to L2([0, T ] × Td) – which
implies Σ∞ ∈ L4([0, T ];W 1,4(Td)) – under the relaxed assumptions (21).
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Lemma 4.7 ( p∞,Σ∞ ∈ L∞
t,x). Let V satisfy (21). The solution (n∞, p∞) to (19) satisfies

∥p∞∥L∞([0,T ]×Td) ≤ 2∥V ∥L∞([0,T ]×Td).

Therefore, we also have Σ∞ ∈ L∞([0, T ]× Td).

Proof. Let (n∞, p∞) be the unique solution to (19), with Σ∞ = νn∞ + p∞ — for the
uniqueness result we refer the reader to [17]. Let t0 > 0 and ϵ > 0. We choose a sequence nγ

of solutions to (1a) for t ≥ t0, such that the initial data satisfy nγ(t0, ·) ≤ 1− 1√
γ for γ large

enough and nγ(t0) converges uniformly to n∞(t0) on Td. Hence, pγ(t0) ≤ (1−1/
√
γ)γ → 0

as γ → ∞. From the proof of Lemma 4.1 we know that

max
x

pγ(t)−max
x

pγ(t0) ≤ max
x

Ṽ (t0)−min
t,x

Ṽ +

ˆ t

t0

∥ν∆Ṽ + ∂tṼ ∥L∞(Td) ds.

Passing to the limit γ → ∞, we find

max
x

p∞(t) ≤ max
x

V (t0)−min
t,x

V +

ˆ t

t0

∥ν∆V + ∂tV ∥L∞(Td) ds

≤ 2∥V ∥∞ +

ˆ t

t0

∥ν∆V + ∂tV ∥L∞(Td) ds.

Now we aim at choosing t = t0 + ϵ and passing to ϵ → 0. Let (t0, x0) be a Lebesgue point
for p∞. Since the above inequality holds for almost every t0 ≤ t ≤ t0 + ϵ, we have

 t0+ϵ

t0

 
B(x0,ϵ)

p∞(s, x) dx ds ≤ 2∥V ∥∞ +

ˆ t0+ϵ

t0

∥ν∆Ṽ + ∂tV ∥L∞(Td) ds,

which, as ϵ → 0, becomes
p∞(t0, x0) ≤ 2∥V ∥∞.

This holds for almost every (t0, x0) ∈ (0, T )Td and thus concludes the proof.

Remark 4.8. Let us note that, in the same fashion, also for ν = 0 it would be possible to
obtain a uniform bound on p∞ depending only on the L∞-norm of the potential. However,
we are not able to exploit it in the same way as for the case ν > 0. In fact, to obtain (39)
we pass to the limit γ → ∞ and use the lower semi-continuity of the L2-norm of ∆Σγ ,
which is weakly compact. In the porous medium case without active motion, ν = 0, the
same does not hold for the quantity ∥pγD2pγ∥2.

Sequence of regularised potentials. Let V satisfy (21). We take a sequence of smooth
potentials Vδ : Td × [0, T ] → Td such that, as δ → 0, we have

∆Vδ → ∆V, strongly in L2([0, T ]× Td),

∂tVδ → ∂tV, strongly in L2([0, T ]× Td),

∇Vδ → ∇V, strongly in L4([0, T ]× Td).

In particular, being smooth Vδ satisfies the assumptions of the convergence result, Theo-
rem 2.3. From now on, for the sake of readability, we simply denote by Ṽ the regularised
potential Vδ.
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Proof of Theorem 2.4. We may come back to (36), where we consider the equation with
the regularised potential, Ṽ . Using the fact that |∆Σγ+nγ∆Ṽ |2 = |∆Σγ |2+2∆Σγnγ∆Ṽ +
n2
γ |∆Ṽ |2, we can revisit the inequality as follows

1

2

ˆ
|∇Σγ |2(T ) dx+

ν

8

ˆ T

0

ˆ
Td

|∆Σγ |2 dx dt

≤ ν

4
C

2
γ
∗ ∥∆Ṽ ∥22 +

1

ν
C

2
γ
∗ ∥∂tṼ ∥2L2

t,x
+ C

2
γ
∗ ∥∆Ṽ ∥L2

t,x
∥∂tṼ ∥L2

t,x
+ C

+
1

ν

ˆ T

0

ˆ
Td

|∇Σγ |2|∂tṼ |dx dt+ 1

ν

ˆ T

0

ˆ
Td

|∇Σγ · ∇Ṽ |2 dx dt.

Letting γ → ∞, and using lower semi-continuity of convex functionals, we get

1

2

ˆ
|∇Σ∞|2(T ) dx+

ν

8

ˆ T

0

ˆ
Td

|∆Σ∞|2 dx dt

≤ ν

4
∥∆Ṽ ∥22 +

1

ν
∥∂tṼ ∥22 + ∥∆Ṽ ∥2∥∂tṼ ∥2 + C

+
1

ν

ˆ T

0

ˆ
Td

|∇Σ∞|2|∂tṼ |dx dt+ 1

ν

ˆ T

0

ˆ
Td

|∇Σ∞ · ∇Ṽ |2 dx dt.

(39)

The above lemma shows that the L∞-bound of Σ∞ no longer depends on the norm ∥ν∆Ṽ +
∂tṼ ∥L1([0,T ];L∞(Td)), but only on the L∞ norm of the potential. A similar estimate, where
the same “instantaneous” dependence of p in terms of V is shown, was already present
in [23].
Thanks to Young’s inequality, from (39) we compute

1

2

ˆ
|∇Σ∞|2(T ) dx+

ν

8

ˆ T

0

ˆ
Td

|∆Σ∞|2 dx dt

≤ ν

4
∥∆Ṽ ∥22 +

1

ν
∥∂tṼ ∥22 + ∥∆Ṽ ∥2∥∂tṼ ∥2 + C

+ ε

ˆ T

0

ˆ
Td

|∇Σ∞|4 dx dt+ C∥∂tṼ ∥22 + ∥∇Ṽ ∥44

≤ C + ε

ˆ T

0

ˆ
Td

|∇Σ∞|4 dx dt,

where C only depends on the norms ∥∂tṼ ∥2, ∥∆Ṽ ∥2, ∥∇Ṽ ∥4. Using again that
ˆ
Td

|∇Σ∞|4 dx ≤ C∥Σ∞∥2∞
ˆ
Td

|∆Σ∞|2 dx,

choosing ε small enough and passing to the limit δ → 0 we conclude.

We conclude by proving that also the gradient of the limit pressure, p∞, is bounded in L4

under the same assumptions, Corollary 2.5.

Proof of Corollary 2.5. Let us recall

Σ∞ = p∞ + νn∞ ∈ L2([0, T ];H2(Rd)),
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as well as
p∞(1− n∞) = 0.

As a consequence, we have
p∞ = (Σ∞ − ν)+,

where (·)+ denotes the positive part. Hence, the regularity of p∞ is, for each t, that of
the positive part of an H2-function. Moreover, we obtain p∞ ∈ L4([0, T ];W 1,4(Rd)) under
the same assumptions of Theorem 2.4.
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