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Abstract

We complete the study concerning the minimization of the positive principal eigenvalue
associated with a weighted Neumann problem settled in a bounded regular domain Ω ⊂
RN , N ≥ 2, for the weight varying in a suitable class of sign-changing bounded functions.
Denoting with u the optimal eigenfunction and with D its super-level set, corresponding to
the positivity set of the optimal weight, we prove that, as the measure of D tends to zero, the
unique maximum point of u, P ∈ ∂Ω, tends to a point of maximal mean curvature of ∂Ω.
Furthermore, we show that D is the intersection with Ω of a C1,1 nearly spherical set, and
we provide a quantitative estimate of the spherical asymmetry, which decays like a power of
the measure of D.

These results provide, in the small volume regime, a fully detailed answer to some long-
standing questions in this framework.

AMS-Subject Classification. 49R05, 49Q10; 92D25, 35P15, 47A75.
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1 Introduction

Let Ω ⊂ RN be a (open and connected) domain, D ⊂ Ω be a measurable subset of positive
measure, β > 0 be a given constant, and let us consider the principal eigenvalue

λ(D) = λ(D, Ω) := inf
{∫

Ω
|∇u|2 dx : u ∈ H1(Ω),

∫
D

u2 − β
∫

Ω\D
u2 dx = 1

}
, (1.1)

associated to the indefinite weighted Neumann eigenvalue problem{
−∆u = λmDu in Ω,
∂νu = 0 on ∂Ω,

where mD := 1D − β1Ω\D. (1.2)

Throughout this paper we mainly deal with a fixed domain Ω, bounded and with regular
boundary (at least C3,θ , for some θ > 0, although for a relevant part of our results C2,1 is
enough), and we omit the dependence of λ on Ω in case no confusion arises. For such an Ω,
λ(D, Ω) is strictly positive, and achieved by a strictly positive non-constant eigenfunction, if
and only if mD has negative average (thus avoiding λ(D) = 0, with constant eigenfunction).
This condition translates in terms of the Lebesgue measure of D as

0 < |D| =: δ <
β|Ω|
β + 1

. (1.3)
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For any such δ, let us consider the shape optimization problem

Λ(δ) = min
{

λ(D) : D ⊂ Ω, measurable, |D| = δ
}

. (1.4)

It has been proved in [18] that Λ(δ) is achieved for every δ enjoying (1.3) by an optimal shape
Dδ, with associated positive eigenfunction uδ ∈ C1,α(Ω), normalized in L2(Ω). In particular,
uδ satisfies (1.2) with λ = Λ(δ) and D = Dδ, and moreover Dδ is a superlevel set of uδ, for a
suitable choice of the level.

In this paper we pursue the analysis started in [21], concerning the asymptotic location
and shape of the optimal set Dδ, in the small volume regime δ → 0 (in which (1.3) is always
satisfied). In particular, we provide a complete answer to some questions which were left open
in [21].

Before recalling the results contained in [21] and outlining our contributions here, let us
briefly describe one main motivation to investigate (1.4), which comes from population dy-
namics and is related to the optimal design of an habitat to enhance the chances of persistence
of a species. Consider a population of density u = u(x, t) which disperses in an insulated
region Ω according to a Cauchy-Neumann reaction-diffusion model of logistic type:

ut − d∆u = m(x)u − u2 x ∈ Ω, t > 0,
u = u0 ≥ 0 x ∈ Ω, t = 0
∂νu = 0 x ∈ ∂Ω, t > 0

(see [5, 2]). In such a model, favorable and hostile zones of the heterogeneous habitat respec-
tively correspond to positivity and negativity sets of the sign-changing weight m ∈ L∞(Ω),
while the constant motility rate d > 0 encodes the intensity of diffusion. It is well known (see
e.g. [2]) that persistence of the population, for every nontrivial initial datum u0, is equivalent
to the existence of a positive steady state, which in turn is equivalent to the strict negativity of
the (non-weighted) principal eigenvalue λ̃1 = λ̃1(m, d) of the eigenvalue problem{

−d∆u − m(x)u = λ̃u in Ω,
∂νu = 0 on ∂Ω.

(1.5)

On the other hand, using the monotonicity of λ̃1(m, d) with respect to d, it is not difficult to see
that, for every fixed habitat m ∈ L∞(Ω), there exists a threshold motility d∗ = d∗(m) ∈ [0,+∞]
such that

λ̃1(m, d) < 0 ⇐⇒ d < d∗(m).

In particular, since d∗ is defined by λ̃1(m, d∗(m)) = 0, we obtain that the corresponding positive
eigenfunction φ∗ satisfies −∆φ∗ =

1
d∗(m)

mφ∗ in Ω,

∂ν φ∗ = 0 on ∂Ω,

so that λ1(m) :=
1

d∗(m)
is the positive principal eigenvalue of (1.2) (with m instead of mD).

Since the population persists if and only if d < d∗(m), it is natural to be interested in max-
imizing such threshold, i.e. minimizing λ1(m), with respect to m or other relevant parameters
of the problem. In this direction, there is a large variety of contributions in the literature (see
e.g. [25, 3, 1, 20, 11, 24, 23] and references therein), for instance including other possible types
of diffusion or addressing different but related optimization problems, also appearing in the
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context of composite membranes (see [7, 8] and the review [19]). On the other hand, one of the
most considered problem is the minimization of λ1(m) for m in a class of weights M which
fixes the total resources

∫
Ω m, as well as pointwise lower and upper bounds −β ≤ m ≤ 1, see

e.g. [5, 18, 17]. In such a case, it has been shown in [18] that the infimum of λ1(m) is achieved
by a bang-bang (piecewise constant) optimal weight m = mD, as in (1.2), for some measurable
set D ⊂ Ω, which represents the favorable zone of the optimal habitat. Therefore, the opti-
mal design problem for the survival threshold of the population reduces to (1.4), where δ is
prescribed by the fixed average of m. Moreover, any optimal set Dδ is a superlevel set of the
associated positive eigenfunction uδ, so that the location of Dδ is somewhat related to that of
maximum points of uδ.

While the picture is nowadays completely clear in dimension N = 1, not very much is
known about the properties of Dδ, uδ, in dimension N ≥ 2; several conjectures and open
questions have been formulated in the literature [6, 2, 18, 20, 19] about the shape and location
of Dδ, also in the case of other boundary conditions. Up to our knowledge, the only results for
general domains Ω are contained in [21], in the small volume regime, inspired by techniques in
the framework of concentration results for semilinear problems [22]. More precisely, the results
in [21] are obtained through a blow-up procedure, in connection with the limit problem

I := min
{

λ(A, RN
+) : A ⊂ RN

+ , measurable, |A| = 1
}

= min
{

λ(A, RN) : A ⊂ RN , measurable, |A| = 2
}

,
(1.6)

where RN
+ := RN ∩ {x : xN > 0} denotes the N-dimensional upper half-space. It has been

shown in [21, Sec. 2], by reflection and symmetrization, that I is achieved by a half ball, cen-
tered at the boundary of RN

+ , with an associated radial and radially decreasing eigenfunction.
Precisely, we have that

I = λ(B+
r2

, RN
+) = λ(Br2 , RN), (1.7)

where Br2 ⊂ RN denotes the ball of measure 2, centered at the origin, and r2 denotes its radius.
Moreover such minimizer is unique up to translations along ∂RN

+ , and in turn λ(B+
r2

, RN
+) is

achieved by (the restriction to RN
+ of) w ∈ H1

rad(R
N) ∩ C1,1(RN), solution of

−∆w = Imw in RN , where m := 1Br2
− β1RN\Br2

. (1.8)

Here w > 0 is radially symmetric and radially decreasing; as a matter of fact, w is explicit in
terms of Bessel functions, and it decays exponentially at infinity:

|w(x)|+ |∇w(x)| ∼ C|x|−(N−1)/2e−
√

Iβ|x| as |x| → +∞. (1.9)

In the next statement we collect the part of the results obtained in [21] which is relevant for
the present discussion. To this aim, for any P ∈ ∂Ω we denote with HP the mean curvature of
∂Ω at P.

Theorem 1.1 ([21, Thms. 1.2, 1.6]). Let ∂Ω be of class C2,1. There exists δ0 > 0 such that, for every
δ ∈ (0, δ0):

1. uδ has a unique local maximum point Pδ ∈ ∂Ω;

2. Dδ is connected.

Moreover, as δ → 0,
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3. for any choice of r±(δ) such that |Br±(δ)| = 2δ(1 ± oδ(1)),

Br−(δ)(Pδ) ∩ Ω ⊂ Dδ ⊂ Br+(δ)(Pδ) ∩ Ω;

4. for a universal constant Γ > 0, explicit in terms of w (see equation (3.1)),

Iδ−2/N (1 + oδ(1)) ≤ Λ(δ) ≤ Iδ−2/N
(

1 − ΓHPδ1/N + o(δ1/N)
)

,

for any P ∈ ∂Ω.

In particular, for δ small, the optimal set Dδ is connected, it intersects ∂Ω, and it roughly
looks as the intersection of Ω with a shrinking ball centered at moving points Pδ ∈ ∂Ω. In this
respect, the main questions left open in [21] concern the asymptotic location of Pδ as δ → 0, as
well as more quantitative information about the asymptotic shape of Dδ.

Our aim here is twofold. First of all, we are now able to obtain an exact expansion of the
optimal eigenvalue with respect to δ, which allows us to detect the location of Pδ at the points
of highest mean curvature of ∂Ω, as stated in our first main result.

Theorem 1.2. With the same assumptions and notations of Theorem 1.1, we have that, as δ → 0,

1. HPδ
→ max{HP : P ∈ ∂Ω} =: Ĥ;

2. Λ(δ) = Iδ−2/N
(

1 − ΓĤδ1/N + o(δ1/N)
)

.

The proof of Theorem 1.2 is based on the asymptotic expansion of a suitable Rayleigh
quotient related to Λ(δ). In performing this expansion one cannot take advantage of any
kind of linearization argument, due to the presence of the discontinuous weight. However,
exploiting the analogies with concentration results for singularly perturbed semilinear elliptic
equations, obtained in [9, 10], we can show a refined exponential decay of uδ. This allows us
to obtain the desired second order expansion of Λ(δ) yielding the information in Theorem 1.2.

Next, we focus on the asymptotic shape of the optimal set Dδ and we show that it is nearly
spherical in a quantitative way, as in the following result.

Theorem 1.3. Let ∂Ω be of class C3,θ , for some θ > 0. There exists δ > 0 such that, for every
δ ∈ (0, δ), there exists Qδ ∈ ∂Ω, ρδ ∈ C1,1(SN−1), such that

Dδ =

{
x ∈ Ω : |x − Qδ| < δ1/N

(
r2 + ρδ

(
x − Qδ

|x − Qδ|

))}
(1.10)

where r2 is the radius of the ball of measure 2.
Moreover, as δ → 0, δ−1/N |Pδ − Qδ| → 0 and

1. ∥ρδ∥C1,1 → 0;

2. ∥ρδ∥L2 = o(δ1/2N).

The proof of this theorem is based on the expansion of Λ(δ) obtained in Theorem 1.2 and
on sharp quantitative estimates about problem (1.6), adapted from [14], where the analogous
problem is considered in the case of Dirichlet boundary conditions. Such adaptation is highly
nontrivial and technically demanding: in the Neumann case concentration happens at the
boundary, and quantitative estimates are strongly affected by the local regularity and geometry
of ∂Ω. In particular, the point Qδ can be seen as a sort of projection on ∂Ω of the barycenter of
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Dδ. Its precise definition is provided in Lemma 4.2 ahead, and its role is to prevent translations
of optimizers associated with (1.6). Moreover, we remark that in principle the eigenfunctions
uδ, for which Dδ is a superlevel set, are naturally uniformly bounded only in C1,α, α < 1;
the C1,1 control in the above theorem is more delicate to be obtained, and it requires the use
of recent results about the regularity of transmission problems, see [4, 12]. Actually, this is
the only part of the argument which requires the further regularity assumptions on ∂Ω; on the
other hand, such further regularity should reflect also on that of the free boundary, see Remark
4.9. Furthermore, by Gagliardo-Nirenberg inequality, it is possible to combine the estimates in
Theorem 1.3 to obtain quantitative information concerning the rate of decay of the C1,α norm
of ρδ, for α < 1 (see Remark 5.4):

∥ρδ∥C1,α = o
(

δ
(1−α)

N(4+N)

)
∀ α ∈ (0, 1).

In view of Theorems 1.2, 1.3, we have a fairly complete picture about the shape and loca-
tion of the optimal favorable shape Dδ, in the small volume regime, in the case of Neumann
boundary conditions. As we mentioned, in the case of Dirichlet boundary conditions, the same
issues have been recently faced in [14]: also in this case the optimal shape is C1,1 nearly spher-
ical, but asymptotically located at a point inside Ω with maximal distance from the boundary.
As far as the asymptotic location and shape is concerned, these results completely agree with
those in dimension N = 1: it is well known that, for any δ, the optimal shape Dδ is an interval
positioned at the boundary of the interval Ω (for Neumann boundary conditions) or at its
center (for Dirichlet ones). From this perspective, these results also provide positive answers
to questions raised in the literature [6, 18, 19], which in turn were partially motivated by the
above mentioned one-dimensional description.

On the other hand, the quantitative estimates of the spherical asymmetry show the emer-
gence of a phenomenon which is peculiar to the case of dimension N ≥ 2. Indeed, in dimen-
sion N = 1, both Ω and Dδ are intervals, i.e. balls, with no spherical asymmetry. In dimension
N ≥ 2, this is possible only if Ω is a ball and Dirichlet boundary conditions are assumed,
see [17]. For general Ω, or for Neumann conditions, the spherical asymmetry is non-trivial,
and it exhibits very different decay rates. Indeed, in the Dirichlet case, the decay fully inherits
that of the solution of the limit problem, namely of exponential rate; in the case of Neumann
boundary conditions, it is triggered by the geometry and the regularity of the boundary ∂Ω.
This phenomenon enlighten once again analogies with the semilinear case.

Structure of the paper. Section 2 is devoted to the proof of the exponential decay of
the eigenfunction uδ and of wδ, its counterpart in the blow-up configuration. Thanks to this
information, in Section 3 we can prove Theorem 1.2, in particular the bound from below
in the expansion of Λ(δ). Section 4 is devoted to prove that Dδ is nearly spherical and to
show that its parametrization is actually C1,1, exploiting the regularity results for transmission
problems. Finally, in Section 5 we use the quantitative estimates from [14] to conclude the
proof of Theorem 1.3.

Notation.

• | · | denotes the Lebesgue N dimensional measure and HN−1(·) the Hausdorff N − 1
dimensional measure.

• For a function f , its positive/negative parts are denoted as f±(x) = max{± f (x), 0}.

• The characteristic function of a set E is denoted by 1E.
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• Br(x) denotes the ball of radius r > 0 centered at x ∈ RN . If x = 0, we often write
Br = Br(0). We call ωN = |B1| the measure of a ball of radius 1.

• We denote with r2 > 0 the radius of the ball Br2 , such that |Br2 | = 2.

• RN
+ = RN−1 × R+, B+

r = Br ∩ (RN
+).

• HP denotes the mean curvature of ∂Ω at P ∈ ∂Ω, and Ĥ = maxP∈∂Ω HP.

• Given a set A ⊂ RN , we denote bar(A) its barycenter.

• C, C1, C′, . . . denote any (non-negative) universal constant, which may also change from
line to line.

2 Uniform exponential decay of the eigenfunctions

Let us recall that, for δ > 0 small, uδ denotes the positive, L2-normalized eigenfunction associ-
ated with Λ(δ) = λ(Dδ, Ω), with unique maximum point Pδ ∈ ∂Dδ ∩ ∂Ω.

The starting point of this section is the following version of a result which was obtained in
[21].

Theorem 2.1 ([21, Proposition 4.11]). With the notation above, for all η > 0 there exist δ0 > 0,
Ĉ > 0 such that, for all δ ∈ (0, δ0), there is a subdomain Ω(i)

δ ⊂ Ω satisfying:

(i) Pδ ∈ ∂Ω(i)
δ and diam(Ω(i)

δ ) ≤ Ĉδ1/N ,

(ii) ∥uδ∥L∞(Ω) ≤ C∗δ−1/2,

(iii) |uδ(x)| ≤ C∗δ−1/2ηe−
µ1d(x)
δ1/N , for all x ∈ Ω \ Ω(i)

δ ,

where d(x) := min{dist(x, ∂Ω(i)
δ ), η0} and C∗, µ1, η0 are positive constants depending only on Ω.

With a careful look at the proof of [22, Theorem 2.3] and using the same approach of [10,
Lemma 2.3], we can prove the following decay result for uδ.

Theorem 2.2. There exist universal constants C1, C2 > 0 and δ0 > 0 such that, for all 0 < δ < δ0,

uδ(x) ≤ C1δ−1/2e−C2|x−Pδ |δ−1/N
, for all x ∈ Ω. (2.1)

Proof. Step 1. For all ε > 0 there is R = R(ε) > 0 such that, for δ sufficiently small we have
δ1/2|uδ(x)| ≤ ε for |x − Pδ| > Rδ1/N .

This follows thanks to Theorem 2.1, choosing η = ε
C∗ . In fact, thanks to (i), we deduce that

if |x − Pδ| > Rδ1/N for R > 2Ĉ (independent of δ), then x ∈ Ω \ Ω(i)
δ . Eventually, thanks to

(iii), we conclude the claim, since the exponential is for sure less than or equal to 1.
Step 2. There exist R0 > 0 and ν0 > 0 such that for all R > R0 and δ sufficiently small we have

sup
|x−Pδ |>Rδ1/N

δ1/2uδ(x) ≥ 2 sup
|x−Pδ |>(R+ν0)δ1/N

δ1/2uδ(x).
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Let us assume, for the sake of contradiction, that there are sequences Rn → +∞, νn → +∞,
δn → 0 and xn ∈ Ω such that |xn − Pn| ≥ (Rn + νn)δ1/N , being Pn ∈ ∂Ω the maximum point
for uδn and

δ1/2
n uδn(xn) = µn >

Mn

2
, Mn = sup

|x−Pn |>Rnδ1/N
n

δ1/2
n uδn(x).

For the uniform decay proved in Step 1, we deduce that µn, Mn → 0 as n → +∞. We define
the auxiliary function

vn(y) = δ1/2
n

uδn(δ
1/N
n y + xn)

µn
,

then vn(0) = 1, 0 < vn < 2 if |y| < νn (thus |δ1/N
n y + xn − Pn| > Rnδ1/N

n ) and vn solves the
equation −∆vn(y) = δ2/N

n Λ(δn)mδn(δ
1/N
n y + xn)vn(y), for y ∈ Ω−xn

δ1/N
n

,

∂νvn = 0, on ∂ Ω−xn
δ1/N

n
.

For every compact set K ⊂ RN , mδn = −β for n sufficiently big in K ∩ (δ−1/N
n (Ω − xn)).

Then we can use Theorem 1.1 to pass to the limit as n → +∞; we obtain that vn → v locally
uniformly (and locally W2,p) to a positive solution to either{

−∆v = −Iβv, in RN
+ ,

∂νv = 0, on RN−1,
or − ∆v = −Iβv, in RN .

This gives a contradiction, because the only bounded nonnegative solution of both the above
problems is the trivial one, while v(0) = 1.

Conclusion. Iterating Step 2 one obtains that, for all k ∈ N (taking ν0 > R0, which is always
possible),

sup
|x−Pδ |>kν0δ1/N

uδ(x) ≤ 2−k sup
|x−Pδ |>ν0δ1/N

uδ(x) ≤ 2−k∥uδ∥L∞(Ω).

For all x ∈ Ω, we can find k ∈ N such that

k ≤ |x − Pδ|
ν0δ1/N ≤ k + 1;

recalling also conclusion (ii) of Theorem 2.1, we obtain

uδ(x) ≤ 2−kC∗δ−1/2 ≤ Cδ−1/2e
− |x−Pδ |

ν0δ1/N ,

which in turn yields (2.1).

As a consequence, we have the following estimates.

Corollary 2.3. There exist δ0, R0 > 0 and universal constants C1, C2 such that, for all R > R0 and
δ ≤ δ0 we have ∫

{x∈Ω: |x−Pδ |>Rδ1/N}
|uδ|2 ≤ C1δ−1e−2C2R,∫

{x∈Ω: |x−Pδ |>Rδ1/N}
|∇uδ|2 ≤ C1δ−1e−2C2R.

(2.2)
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Proof. The first estimate is immediate. Indeed, in view of Theorem 2.2∫
{x∈Ω: |x−Pδ |>Rδ1/N}

|uδ|2 ≤ |Ω|C1δ−1e−2C2R.

We aim now to provide a decay information on the L2 norm of the gradient of uδ. It is
clear that for all R > 3, {x ∈ Ω : |x − Pδ| > Rδ1/N} ⊂ Dc

δ, so that the equation satisfied by uδ

becomes
−∆uδ = −β Λ(δ)uδ.

We take a smooth cutoff function so that
η = 1, in Ω \ B2Rδ1/N ,
|∇η| ≤ 1, in Ω ∩ (B2Rδ1/N \ BRδ1/N ),
η = 0, in BRδ1/N ,

which is possible up to take R0 sufficiently big (here all the balls are centered at Pδ). Then,
testing the equation with η2uδ ∈ H1(Ω), we obtain∫

Ω\BRδ1/N

∇uδ · ∇(uδη2) = −β Λ(δ)
∫

Ω\BRδ1/N

η2u2
δ ≤ 0,

thus∫
Ω\BRδ1/N

|∇(uδη)|2 −
∫

Ω\BRδ1/N

|∇η|2u2
δ =

∫
Ω\BRδ1/N

|∇uδ|2η2 + 2
∫

Ω\BRδ1/N

uδη∇η · ∇uδ ≤ 0.

As a consequence, using (2.1), we have∫
Ω\B2Rδ1/N

|∇uδ|2 ≤
∫

Ω\BRδ1/N

|∇(uδη)|2 ≤
∫

B2Rδ1/N \BRδ1/N

|∇η|2u2
δ ≤ C1δ−1e−2C2R,

so that also the second part of the claim is proved.

3 Sharp bound from below with the curvature

This section is devoted to the proof of Theorem 1.2. We first recall that the constant Γ in the
expansion has been calculated in [21], in terms of the eigenfunction w of the limit problem
(1.6), see (1.8). With the present notation, it reads

Γ =
2(N − 1)γ∫
RN
+
|∇w|2 dz

, where γ =
1

N + 1

∫
RN
+

|∇w|2zN dz (3.1)

(here, for z ∈ RN
+ , we write z = (z′, zN), with z′ ∈ RN−1 and zN > 0).

We are going to prove the following result.

Theorem 3.1. Let Pδ ∈ ∂Ω be the unique maximum point of the function uδ attaining Λ(δ), and let
us define

αδ = (N − 1)HPδ
, (3.2)

where HPδ
denotes the mean curvature of ∂Ω at Pδ.

We have, as δ → 0,

Λ(δ) ≥ I δ−2/N

(
1 − 2γ αδ∫

RN
+
|∇w|2

δ1/N + o(δ1/N)

)
.
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As a matter of fact, Theorem 1.2 follows at once from the result above.

Proof of Theorem 1.2. Recalling Theorem 1.1, point 4, and since

ΓHPδ
=

2γ αδ∫
RN
+
|∇w|2

, (3.3)

we infer that Theorem 3.1 implies

HPδ
+ oδ(1) ≥ HP, for every P ∈ ∂Ω,

as δ → 0, and both claims in Theorem 1.2 follow.

The remaining part of this section is devoted the proof of Theorem 3.1, which is rather
long and needs many intermediate steps. Such proof is based on an improved analysis of the
blow-up procedure used in [21, Section 4], which in turn was inspired by [22]. We summarize
the key points of such procedure in the following.

Recall that the domain Ω ⊂ RN is at least C2,1, and let P ∈ ∂Ω to be chosen below. We
call x = (x1, . . . , xN) a set of coordinates centered at P, translated so that P is the origin and
rotated so that the outer unit normal to the boundary of Ω at P is −eN . Using the notation

x′ = (x1, . . . , xN−1),

there exist d0 > 0, a C2,1 function

ψ :
{

x′ ∈ RN−1 : |x′| < d0

}
→ R, (3.4)

and a neighborhood of the origin N such that

i) ψ(0) = 0, ∇ψ(0) = 0, ∆ψ(0) = (N − 1)H0 =: α,

ii) ∂Ω ∩N =
{
(x′, xN) : xN = ψ(x′)

}
, Ω ∩N =

{
(x′, xN) : xN > ψ(x′)

}
.

For a certain d1 > 0, we define a diffeomorphism

Φ :
{

y ∈ RN : |y| ≤ d1

}
→ RN , x = Φ(y) = (Φ1(y), . . . , ΦN(y)),

as

Φj(y) =

yj − yN
∂ψ
∂yj

(y′), for j = 1, . . . , N − 1,

yN + ψ(y′), for j = N.

Remark 3.2. It is worth noticing that, in case ∂Ω is of class Ck,α, then Φ is only Ck−1,α. In
particular, under our assumptions, Φ is always at least C1,1.

We note that DΦ(0) = Id, due to the properties of ψ, and therefore Φ is locally invertible
in, say, B3ℓ for some ℓ > 0. Then we can assume

Φ(B+
2ℓ) ⊂ Ω, and Ψ : Φ(B+

3ℓ) → B+
3ℓ, Ψ(x) := Φ−1(x). (3.5)
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The map Ψ can be seen as a local diffeomorphism straightening the boundary around
0 ∈ ∂Ω. For future reference, we remark that

det DΦ(y) = 1 − αyN + O(|y|2),∣∣∣∣ y
|y|DΨ(Φ(y))

∣∣∣∣2 = 1 + 2yN

N−1

∑
i,j=1

ψij(0)
yiyj

|y|2 + O(|y|2),
as y → 0, (3.6)

where ψij =
∂ψ

∂yj∂yi
and we refer to [22, Lemma A.1] for further details.

In our case, we choose P = Pδ, the maximum point of the optimal eigenfunction uδ. As a
consequence, the rotation and translation to set Pδ at the origin become δ−dependent, and the
Taylor expansions in (3.6) hold with α = αδ, ψij = ψδ

ij. Let us also observe that all the decay
estimates of the previous section will be applied in this one taking Pδ = 0.

The transformed eigenfunction is defined by

vδ(y) := uδ(Φδ(y)), y ∈ B+
2κ . (3.7)

It is then easy to extend by symmetry in the whole B2κ the function vk also where yN < 0:

ṽδ(y) :=

{
vδ(y), if yN ≥ 0,
vδ(y′,−yN), if yN < 0.

(3.8)

At this point, we can introduce the blow-up sequence, for δk > 0,

wδ(z) = δ1/2 ṽδ

(
δ1/Nz

)
, z ∈ Bκδ−1/N . (3.9)

We obtain that wδ satisfies the following equation in divergence form:{
−div

(
Aδ∇wδ

)
= δ2/N Λ(δ)Jδ · m̃δwδ in Bκδ−1/N ,

∂Nwδ = 0 = Aδ∇wδ · eN on {zN = 0} ∩ Bκδ−1/N ,
(3.10)

where the rescaled weight is, for z ∈ Bκδ−1/N ,

m̃δ(z) =

mδ

(
Φδ(δ

1/Nz)
)

, if zN ≥ 0,

mδ

(
Φδ(δ

1/Nz′,−δ1/NzN

)
, if zN < 0.

and the scalar Jδ and the matrix Aδ are defined as

Jδ(z) = |det DΦδ(δ
1/Nz)|, Aδ(z) = Jδ(z)[DΨδ(Φδ(δ

1/Nz))]T DΨδ(Φδ(δ
1/Nz))

for zN ≥ 0, and extended in the natural way for zN < 0.

Remark 3.3. Notice that the coefficients matrix Aδ is Lipschitz continuous. Moreover, in case
∂Ω ∈ C3,θ , we have that Aδ is C1,θ with respect to z′, as the even reflection involves only zN
(recall Remark 3.2). In any case, it is standard to see that (3.10) can be written also in non-
divergence form, with a drift term with L∞ coefficients, see e.g. [16, Theorem 8.8]. In particular,
since ∂wδ

∂zN
= 0 on {zN = 0}, we have that wδ is a W2,p(Bκδ−1/N ) solution of such non-divergence

form equation. We refer to [21, Section 4] for further details.
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Under the above construction, by the results in [21], Section 4 (in particular, Remark 4.4
therein), we obtain the following convergence properties for the blow-up sequences.

Proposition 3.4. Under the above notation, and denoting with w, m the optimizers of the limit problem,
as in (1.8), we have

• wδ → w strongly in H1
loc(R

N) and in C1,α
loc ;

• m̃δ
∗
⇀ m weakly∗ in L∞

loc.

as δ → 0.

The exponential decay of uδ, obtained in Corollary 2.3, entails an (uniform in δ) exponential
decay for wδ and its gradient.

Lemma 3.5. There exist universal positive constants C3, C4 > 0 and there exist R0, δ0 > 0 such that,
for all R > R0 and δ ≤ δ0 we have that

wδ(z) ≤ C3e−C4|z|, for all z ∈ Bκδ−1/N ,∫
B

κδ−1/N \BR

|wδ|2 ≤ C3e−2C4R,
(3.11)

Moreover, for R2 > R1 > R0,

|∇wδ(z)| ≤ C3e−C4|z|, for all z ∈ Bκδ−1/N ,∫
B

κδ−1/N \BR

|∇wδ|2 ≤ C3e−2C4R,
(3.12)

where the balls are centered at the origin, maximum point for wδ.

Proof. The pointwise exponential decay of wδ (and of its L2 norm) follows directly from Theo-
rem 2.2 and the fact that the diffeomorphism is close to the identity and centered at Pδ (which
is translated at 0), so that

0 < wδ(z) = δ1/2uδ(Φδ(δ
1/Nz)) ≤ C1e−C2δ−1/N |Φδ(δ

1/N z)| ≤ C3e−C4|z|.

Then the decay of its L2 norm outside BR is immediate.
Concerning the exponential decay of the gradient, we use elliptic regularity, see e.g. [16,

Theorem 9.11] (recall Remark 3.3) together with the Morrey-Sobolev embedding of W2,p ⊂ C1,α

for p sufficiently large. More precisely, let z be such that B4(z) ⊂ Bκδ−1/N . Then, using (3.11),
we have that,

∥wδ∥C1,α(B3(z)\B2(z)) ≤ C∥wδ∥W2,p(B3(z)\B2(z)) ≤ C∥wδ∥Lp(B4(z)\B1(z)) ≤ Ce−C4|z|

for a universal constant C > 0, and where we have taken into account that the balls are centered
at a generic point z.

Remark 3.6. In view of Lemma 3.5, one can use a concentration-compactness kind of argument
to obtain strong H1(RN) convergence of wδ to w. We refer to [14, Lemma 2.3], [13, Section 4],
where the argument was fully detailed in the case of Dirichlet boundary conditions.

11



Going back to the blow-up procedure, we now introduce the optimal sets (nonrescaled and
rescaled)

Dδ ={x ∈ Ω : mδ(x) = 1}, |Dδ| = δ,

D̃δ :=
{

z ∈ Bκδ−1/N : z ∈ Ψδ(Dδ)

δ1/N or (z′,−zN) ∈
Ψδ(Dδ)

δ1/N

}
,

(3.13)

and we recall that

D̃δ = {z ∈ Bκδ−1/N : m̃δ(z) = 1} = {z ∈ Bκδ−1/N : wδ(z) > tδ} . (3.14)

The core of the proof of Theorem 3.1 consists in bounding the optimal level I of the limit
problem (1.8) in terms of a weighted Rayleigh quotient of wδ. An issue in this direction is that

|D̃δ| = 2 + oδ(1) as δ → 0,

but the error term cannot be discarded. This can be easily overcome using the reflection and
scaling properties of the limit problem, namely

min
{

λ(A, RN) : A ⊂ RN , measurable, |A| = ℓ
}
= I ·

(
ℓ

2

)−2/N
, for all ℓ > 0.

Lemma 3.7. We have, as δ → 0,

I ·
(
|D̃δ|

2

)−2/N

≤ λ(D̃δ, RN) ≤

∫
B

κδ−1/N
|∇wδ(z)|2 dz∫

B
κδ−1/N

m̃δw2
δ(z) dz

+ o(δ1/N). (3.15)

Proof. We need to extend wδ to the whole RN to make it an admissible competitor for the limit
problem. We extend m̃δ = −β in RN \ Bκδ−1/N , as it is natural. We define the new function

w̃δ(z) =


wδ(z), in Bκδ−1/N ,
h(z), in B(κ+1)δ−1/N \ Bκδ−1/N ,
0, in RN \ B(κ+1)δ−1/N ,

where h is the unique harmonic extension:
−∆h = 0, in B(κ+1)δ−1/N \ Bκδ−1/N ,
h = wδ, on ∂Bκδ−1/N ,
h = 0, on ∂B(κ+1)δ−1/N .

Thanks to Lemma 3.5, we have that

wδ(z) ≤ C3e−C4κδ−1/N
, on ∂Bκδ−1/N ,

and the same also holds for the normal derivative, in view of (3.12). As a consequence, calling
for the sake of simplicity A = B(κ+1)δ−1/N \ Bκδ−1/N , we deduce∣∣∣∣∫A

−βw̃2
δ(z) dz

∣∣∣∣ ≤ C|A|e−2C4κδ−1/N ≤ o(δ1/N).

Moreover, using the Divergence Theorem, we obtain∫
A
|∇w̃δ(z)|2 dz =

∫
∂B

κδ−1/N

w̃δ∂νw̃δ dHN−1 ≤ o(δ1/N).

All in all, we have proved (3.15).
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In the next three lemmas, we proceed with the estimates of all the unknown terms in (3.15),
in terms of αδ and uδ. We start from the measure of D̃δ.

Lemma 3.8. We have, as δ → 0,(
|D̃δ|

2

)−2/N

= 1 − 2
N

αδδ1/N ωN−1

N + 1
rN+1

2 + o(δ1/N). (3.16)

Proof. We recall that, thanks to Theorem 1.1 (or to [21, Lemma 4.5 and Proposition 4.7]), we
have, as δ → 0

(1 − oδ(1))Br2 ⊂ D̃δ ⊂ (1 + oδ(1))Br2 , (3.17)

recalling that |Br2 | = 2. Then, we can compute

δ = |Dδ| =
∫

Ω
1Dδ

(x) dx =
∫

RN
+

δ1Dδ

(
Φδ(δ

1/Nz)
)

det
(

DΦδ(δ
1/Nz)

)
dz,

and using also [22, Lemma A.1] (see (3.6)), we obtain

2 =
∫

RN
1D̃δ

(z)
(

1 − αδδ1/NzN + O(δ2/N |z|2)
)

dz

= |D̃δ| − αδδ1/N
∫

RN
1D̃δ

(z)
(

zN + O(δ1/N |z|2)
)

dz.

Using (3.17), it is easy to prove, as δ → 0,

2 + αδδ1/N
∫
(1−oδ(1))Br2

zN dz + O(δ2/N) ≤ |D̃δ| ≤ 2 + αδδ1/N
∫
(1+oδ(1))Br2

zN dz + O(δ2/N).

We can now compute, by scaling, that∫
(1+oδ(1))Br2

zN dz = (1 + oδ(1))
N+1

N

∫
Br2

yN dy = (1 + oδ(1))
2ωN−1

N + 1
rN+1

2 ,

where we made the change of variable z = (1 + oδ(1))1/Ny and we used∫
(Br2 )

+
zN dz =

ωN−1

N + 1
rN+1

2 ,

denoting as usual r2 the radius of the ball of measure 2. As a consequence, we have, for δ → 0,

|D̃δ| = 2 + 2αδδ1/N ωN−1

N + 1
rN+1

2 + o(δ1/N). (3.18)

Thanks to these estimates, we obtain, as δ → 0,

|D̃δ|
2

= 1 + αδδ1/N ωN−1

N + 1
rN+1

2 + o(δ1/N)

yielding the conclusion.

Next we proceed with the expansion of the numerator of the Rayleigh quotients of uδ and
wδ.
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Lemma 3.9. Recalling that αδ = (N − 1)HPδ
and that γ is defined in (3.1), we have, as δ → 0,

∫
Ω
|∇uδ(x)|2dx = δ−2/N

∫
B+

κδ−1/N

|∇wδ(z)|2 dz

(
1 − δ1/N (N − 1)γ αδ∫

RN
+
|∇w|2

+ o(δ1/N)

)
(3.19)

Proof. Let r > 0 such that B+
r ⊂ Φ(B+

κ ). From Corollary 2.3, we infer∣∣∣∣∫Ω
|∇uδ|2 −

∫
Φ(B+

κ )
|∇uδ|2

∣∣∣∣ ≤ ∫
Ω\B+

r

|∇uδ|2 ≤ C1δ−1e−C2rδ−1/N ≤ o(δ1/N).

On the other hand, exploiting the usual change of variables y = Ψ(x) and z = yδ−1/N , recalling
(3.9) and applying [22, Lemma A.1].

∫
Φ(B+

κ )
|∇uδ(x)|2dx =

∫
B+

κ

|∇vδ(y)|2
∣∣∣∣ y
|y|DΨ(x)

∣∣∣∣2 det DΦ(y) dy

= δ−2/N
∫

B+

κδ−1/N

|∇wδ(z)|2
[

1 + δ1/NzN

(
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

)
+ O(δ2/N |z|2)

]
dz.

(3.20)

At this point, one can check that there is a constant C0, independent of δ, such that(
1 + δ1/NzN

[
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

]
+ O(δ2/N |z|2)

)
≤ C0, for all z ∈ B+

κδ−1/N .

We now want to show that∫
B+

κδ−1/N

(
|∇wδ|2 − |∇w|2

) [
δ1/NzN

(
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

)
+ O(δ2/N |z|2)

]
dz = o(δ1/N), (3.21)

as δ → 0. To prove this, we use the H1
loc convergence of wδ to w (Proposition 3.4) and their

exponential decay (Lemma 3.5, equation (1.9)). Precisely, let us fix ε > 0 and find R = R(ε) > 0
such that, for all δ > 0 sufficiently small

∫
B+

κδ−1/N \B+
R

|∇wδ(z)|2
[

zN

(
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

)
+ O(δ1/N |z|2)

]
dz ≤ C

∫
B+

κδ−1/N \B+
R

e−C4|z||z|dz

≤ C
(

δ−1e−kδ−1/N − RNe−C4R
)
≤ ε,∫

B+

κδ−1/N \B+
R

|∇w(z)|2
[

zN

(
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

)
+ O(δ1/N |z|2)

]
dz ≤ ε.

On the other hand, wδ converges strongly in H1(BR) to w, hence

∫
B+

R

(
|∇wδ|2 − |∇w|2

) [
zN

(
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

)
+ O(δ1/N |z|2)

]
dz ≤ C(R)oδ(1) ≤ ε,

up to take δ(ε) small enough. All in all, (3.21) follows.
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We also recall that, thanks to the exponential decay of w, it is clear that∫
(RN

+)\B+

κδ−1/N

|∇w|2 dz = o(δ1/N), as δ → 0. (3.22)

We can now manage the higher order terms in (3.20), using (3.21) and (3.22)

∫
B+

κδ−1/N

|∇wδ(z)|2
[

δ1/NzN

(
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

)
+ O(δ2/N |z|2)

]
dz

=
∫

B+

κδ−1/N

(
|∇wδ(z)|2 − |∇w(z)|2 + |∇w(z)|2

) [
δ1/NzN

(
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

)
+ O(δ2/N |z|2)

]
dz

=
∫

B+

κδ−1/N

|∇w(z)|2
[

δ1/NzN

(
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

)
+ O(δ2/N |z|2)

]
dz + o(δ1/N)

=
∫

RN
+

|∇w(z)|2
[

δ1/NzN

(
2

N−1

∑
i,j=1

ψij
zizj

|z|2 − αδ

)
+ O(δ2/N |z|2)

]
dz + o(δ1/N)

= −δ1/N [(N − 1)αδγ] + o(δ1/N).

We note that the last equality follows with computations similar to the ones of [21, Step 1 of
the proof of Proposition 3.5], in particular using that

N−1

∑
i,j=1

ψij

∫
RN
+

|∇w(z)|2
zizj

|z|2 zN dz = γ αδ.

Then, coming back to (3.20), we have

∫
Ω
|∇uδ(x)|2 = δ−2/N

∫
B+

κδ−1/N

|∇wδ(z)|2 dz

1 − δ1/N (N − 1)γ αδ∫
B+

κδ−1/N
|∇wδ(z)|2 dz

+ o(δ1/N)

 .

(3.23)

Moreover, using again the convergence and the exponential decay of wδ and w, it is clear that∫
RN
+

|∇w|2 dz =
∫

B+

κδ−1/N

|∇wδ|2 dz + oδ(1), as δ → 0,

hence, (3.23) yields the conclusion.

We use a similar strategy for the denominator of the Rayleigh quotient, with the key tools
being again Proposition 3.4 and Lemma 3.5.

Lemma 3.10. It results∫
Ω

mδ(x)uδ(x)2 dx =
∫

B
κδ−1/N

m̃δw2
δ dz

(
1 − δ1/N γ1 αδ∫

RN
+

mw2 + o(δ1/N)
)

,

where γ1 =
∫

RN
+

m(z)w(z)2zN dz.
(3.24)
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Proof. First, as Φ(B+
κ ) ⊃ B+

r for some r > 0, the exponential decay of uδ (see Corollary 2.3)
and the fact that −β ≤ mδ ≤ 1, imply∣∣∣∣∫Ω

mδu2
δ −

∫
Φ(B+

κ )
mδu2

δ

∣∣∣∣ ≤ max {β, 1}
∫

Ω\B+
R

u2
δ ≤ C1e−C2Rδ−1/N ≤ o(δ1/N), as δ → 0.

Then we have, ∫
Ω

mδ(x)u2
δ(x) dx =

∫
B+

κ

m̃δ(yδ−1/N)v2
δ(y)det DΦ(y) dy

=
∫

B+

κδ−1/N

m̃δ(z)w2
δ(z)det DΦ(y) dz

=
∫

B+

κδ−1/N

m̃δ(z)w2
δ(z)

(
1 − αδzNδ1/N + O(δ2/N |z|2)

)
dz.

As above, we have that there is a constant C0, independent of δ, such that∣∣∣1 − αδδ1/NzN + O(δ2/N |z|2)
∣∣∣ ≤ C0, for all z ∈ B+

κδ−1/N .

With the same strategy as the one used for the gradient, we first prove that, as δ → 0,∫
B+

κδ−1/N

|m̃δw2
δ − mw2|

(
αδzNδ1/N + O(δ2/N |z|2)

)
dz = o(δ1/N), (3.25)

which we split in two easier steps,∫
B+

κδ−1/N

|m̃δw2
δ − m̃δw2|

(
αδzNδ1/N + O(δ2/N |z|2)

)
dz = o(δ1/N),∫

B+

κδ−1/N

|m̃δw2 − mw2|
(

αδzNδ1/N + O(δ2/N |z|2)
)

dz = o(δ1/N).
(3.26)

To prove the estimates in (3.26), we use the H1
loc convergence of wδ to w and their exponen-

tial decay. We start from the first. More precisely, let us fix ε > 0 and find R = R(ε) > 0 such
that, for all δ > 0 sufficiently small∫

B+

κδ−1/N \B+
R

wδ(z)2
[
αδzN + O(δ1/N |z|2)

]
dz ≤ ε,∫

B+

κδ−1/N \B+
R

w(z)2
[
αδzN + O(δ1/N |z|2)

]
dz ≤ ε,

On the other hand, in BR, wδ converges strongly in H1 to w (and −β ≤ m̃δ ≤ 1), hence∫
B+

R

m̃δ(w2
δ − w2)

[
αδzN + O(δ1/N |z|2)

]
dz ≤ C(R)oδ(1) ≤ ε,

so that the first estimate in (3.26) follows.
The second estimate in (3.26) can be proved in a similar way. We fix again ε > 0 and find

R = R(ε) > 0 such that, for all δ > 0 sufficiently small∫
B+

κδ−1/N \B+
R

(m̃δ − m)w(z)2
[
αδzN + O(δ1/N |z|2)

]
dz ≤ ε,
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which is possible thanks to the exponential decay of w and the boundedness of m̃δ and m.
In BR, m̃δ converges weakly ∗ in L∞ to m (and the other terms in the integral are clearly L1),
hence ∫

B+
R

(m̃δ − m)w2
[
αδzN + O(δ1/N |z|2)

]
dz ≤ C(R)oδ(1) ≤ ε,

up to take δ(ε) small enough. In conclusion we have proved (3.25).
We also recall that, thanks to the exponential decay of w (and the fact that −β ≤ m ≤ 1), it

is clear that ∫
RN
+\B+

κδ−1/N

mw2 dz = o(δ1/N), as δ → 0. (3.27)

From (3.25), adding and subtracting the suitable terms, we obtain∫
B+

κδ−1/N

m̃δ(z)wδ(z)2
(
− αδzNδ1/N + O(δ2/N |z|2)

)
dz

=
∫

B+

κδ−1/N

(m̃δw2
δ − mw2) + m(z)w(z)2

(
− αδzNδ1/N + O(δ2/N |z|2)

)
dz

=
∫

B+

κδ−1/N

m(z)w(z)2
(
− αδzNδ1/N + O(δ2/N |z|2)

)
dz + o(δ1/N) = −αδδ1/Nγ1 + o(δ1/N).

All in all, we have ∫
B+

κδ−1/N

m̃δw2
δ =

∫
RN
+

mw2 + oδ(1) ,

showing the conclusion.

Proof of Theorem 3.1. Putting together (3.19) and (3.24), we have

Λ(δ) = δ−2/N

∫
B

κδ−1/N
|∇wδ|2∫

B
κδ−1/N

m̃δw2
δ

(
1− δ1/N (N − 1)γ αδ∫

RN
+
|∇w|2

+ o(δ1/N)
)(

1+ δ1/N γ1 αδ∫
RN
+

mw2 + o(δ1/N)
)

,

(3.28)
which, in view of (3.15), implies

Λ(δ) ≥ δ−2/N
(

1 − δ1/N αδ

I
∫

RN
+

mw2

[
(N − 1)γ − Iγ1

]
+ o(δ1/N)

)
· I

(
|D̃δ|

2

)−2/N

(3.29)

In turn, (3.16) yields

Λ(δ) ≥ δ−2/N I

(
1 − δ1/N αδ

I
∫

RN
+

mw2 [(N − 1)γ − Iγ1] + o(δ1/N)

)
×

×
(

1 − 2/Nδ1/N αδ
ωN−1

N + 1
rN+1

2 + o(δ1/N)

)
.

As
(N − 1)γ − Iγ1 = 2γ − 2IrN+1

2
ωN−1

N(N + 1)

∫
RN
+

mw2, (3.30)

the theorem follows.
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Remark 3.11. With a closer look at the previous proof, and in particular at the role of (3.15) in
estimate (3.29), we notice that also the following inequality holds true:

Λ(δ) ≥ δ−2/N
(

1 − ΓĤ δ1/N + o(δ1/N)
)
·
(
|D̃δ|

2

)2/N

λ(D̃δ, RN),

≥ δ−2/N
(

1 − ΓĤ δ1/N + o(δ1/N)
)
· I

where we used also (3.3) and Theorem 1.2. As a consequence,

δ2/N Λ(δ) =

(
|D̃δ|

2

)2/N

λ(D̃δ, RN) + oδ(1) = I + oδ(1)

as δ → 0, and finally

δ2/N Λ(δ) ≥
(
|D̃δ|

2

)2/N

λ(D̃δ, RN)− ΓĤ I δ1/N + o(δ1/N),

which establishes a lower bound for Λ(δ) on terms of an eigenvalue of the set D̃δ related to
the limit problem.

4 Polar parameterization of the optimal sets

In the last part of the paper we are going to exploit the blow up analysis performed in the pre-
vious section, and in particular the asymptotic radial symmetry of the rescaled eigenfunctions
wδ and optimal sets D̃δ, see (3.17), to obtain a polar parametrization of ∂D̃δ and to investigate
its finer regularity properties, also from a quantitative point of view. Of course, such informa-
tion can be translated to Dδ using the diffeomorphisms introduced at the beginning of Section
3.

To this aim, let us first recall the concept of nearly spherical set (used in the proof of a
quantitative isoperimetric inequality first in [15]). For our aims, although D̃δ has measure
2 only in the limit, it is convenient to normalize the reference radius to r2, where as usual
|Br2 | = 2.

Definition 4.1. A (bounded) set A ⊂ RN is a nearly spherical set of class Ck,α, centered at Q,
if there exists φ = φA ∈ Ck,α(SN−1) with ∥φ∥L∞ ≤ r2/2 such that

∂A =
{

x ∈ RN : x = Q + (r2 + φ(θ))θ, for θ ∈ SN−1
}

.

In such case, we say that A is parametrized by φ.

As a matter of fact, it is not difficult to exploit (3.17) and the implicit function theorem
to see that D̃δ is nearly spherical, centered at the maximum point 0 = Ψδ(Pδ), at least when
δ is sufficiently small. On the other hand, in order to employ suitable quantitative estimates
obtained in [14], it is necessary to adjust the center of the parametrization, choosing instead
the barycenter bar(D̃δ) (and the corresponding preimage on ∂Ω). This is possible thanks to
the following lemma, where we keep track of Ψδ(Pδ) = 0 for the sake of clarity.
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Lemma 4.2. Under the notation of Section 3 we have, as δ → 0:

1. bar(D̃δ) ∈ {z : zN = 0} and
∣∣∣bar(D̃δ)− Ψδ(Pδ)

∣∣∣ = oδ(1);

2. Qδ := Φδ(bar(D̃δ)) ∈ ∂Dδ and |Qδ − Pδ| = o(δ1/N).

Proof. First, by symmetry of D̃δ, we obtain that bar(D̃δ) ∈ {z : zN = 0} and thus Qδ ∈ ∂Dδ

(recall equation (3.13)).
Next, for every ε > 0, let Br−(Ψδ(Pδ)), and Br+(Ψδ(Pδ)) be such that |Br± | = 2(1 ± ε) and,

for δ sufficiently small,
Br− ⊂ D̃δ ⊂ Br+ .

We infer∣∣∣bar(D̃δ)− Ψδ(Pδ)
∣∣∣ ≤ 1

|D̃δ|

∣∣∣∣∫D̃δ

(x − Ψδ(Pδ)) dx
∣∣∣∣ = 1

|D̃δ|

∣∣∣∣∣
∫

D̃δ\Br− (Ψδ(Pδ))
(x − Ψδ(Pδ)) dx

∣∣∣∣∣
≤ 1

|D̃δ|

∫
Br+ (Ψδ(Pδ))\Br− (Ψδ(Pδ))

|x − Ψδ(Pδ)|dx ≤ Cε(1 + oδ(1))

and the lemma follows.

Taking into account the lemma above, we change reference system in the blow-up analysis
by a vanishing translation, and from now on we assume that

Ψδ(Qδ) = bar(D̃δ) = 0, Ψδ(Pδ) = − bar(D̃δ). (4.1)

Although in principle this changes the definitions of D̃δ, wδ, Ψδ and so on, Lemma 4.2 im-
plies that all the results in Section 3 hold true also in the new reference system; in particular,
equation (3.17) holds with balls centered at 0 = bar(D̃δ).

Proposition 4.3. For δ sufficiently small, D̃δ is nearly spherical of class C1,α, 0 < α < 1, centered at
0 = bar(D̃δ) and parametrized by φδ. In addition

∥φδ∥C1,α(SN−1) → 0, as δ → 0.

Proof. The proof can be obtained (with obvious changes ) as in [14, Proposition 3.11]. Indeed,
using polar coordinates and recalling (3.14) we can write

D̃δ = {z ∈ Bkδ−1/N : wδ(z) > tδ} = {wδ(ρθ) > tδ}

where ρ > 0 and θ = x
|x| ∈ SN−1. Moreover, in view of (3.17) one has

∂D̃δ ⊂ (1 + oδ(1))Br2 \ (1 − oδ(1))Br2 ⊂ Br \ Br,

for some 0 < r < r2 < r. Let us consider F(φ, θ) := wδ((r2 + φ)θ) for φ = ρ − r2 and ρ ∈ [r, r].
As wδ converges to w in C1,α(Br), so that

max
Br\Br

∂rwδ <
1
2

max
Br\Br

∂rw < 0, for every θ ∈ SN−1.

Then we can apply the Implicit Function Theorem to the function F(ρ, θ), obtaining F(ρ, θ) = tδ

if and only if ρ = ρ(θ). This argument can be implemented for every θ ∈ SN−1 , so that by
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compactness we obtain a globally defined φδ(θ) = ρ(θ)− r2. Since wδ is of class C1,α, the same
regularity holds for φδ. Furthermore,

∇φδ = − (r2 + φδ(θ))

∂ρF(ρ, θ)
∇Twδ = − (r2 + φδ(θ))

∂ρF(ρ, θ)
(∇wδ − (∇wδ · θ)θ) .

where ∇Twδ denotes the tangential component of the gradient of wδ, and θ = x
|x| Then the

conclusion is a direct consequence of the C1,α convergence of wδ.

In order to improve the asymptotic information provided in the last proposition, from now
on we assume that, for some θ > 0,

∂Ω is of class C3,θ ,

so that Φδ is of class C2,θ ; we are going to prove a C1,1 global regularity result (up to the
boundary) for the eigenfunctions wδ. From this, we will deduce the C1,1 regularity for the
nearly spherical representation φδ. This yields a C1,1 convergence result of D̃δ to the ball with
measure two, thus improving Proposition 4.3.

To this aim, we follow the strategy of [14, Section 5], where analogous results were de-
rived for a similar problem with Dirichlet boundary conditions. In particular, we deduce the
desired regularity as a corollary of the regularity for transmission problems (see [4, 12]). The
main difficulty in extending the regularity results in [14, Section 5] to the problem we consider
here is the positioning of the optimal favorable regions: in the case of homogeneous Dirichlet
boundary conditions the favorable regions asymptotically concentrate in the interior of Ω ([14,
Theorem 1.1]), while for Neumann boundary conditions the concentration occurs at ∂Ω (The-
orem 1.1). Hence, [14, Section 5] essentially deals with interior regularity results, and we need
to extend all results up to the boundary of Ω.

Proposition 4.4. Assume that ∂Ω is of class C3,θ . Then, for all i = 1, . . . , N − 1, the functions ∂iwδ

are H1
(

B+
κδ−1/N

)
-solutions of the transmission problem

−div(Aδ∇∂iwδ) = div((∂i Aδ)∇wδ)

+ δ2/N Λ(δ)m̃δ(Jδ∂iwδ + wδ∂i Jδ)
in
(

D̃δ ∩ B+
κδ−1/N

)⋃ (
B+

κδ−1/N \ D̃δ

)
,

[∂iwδ] = 0, on ∂D̃δ ∩ B+
κδ−1/N ,

[Aδ∇(∂iwδ) · ν] = −δ2/N Λ(δ)(1 + β)wδ Jδνi on ∂D̃δ ∩ B+
κδ−1/N ,

∂N∂iwδ = 0 = Aδ∇∂iwδ · eN on {zN = 0} ∩ Bκδ−1/N ,

(4.2)

where [·] denotes the jump across ∂D̃δ ∩ B+
κδ−1/N , νi denotes the i-th component of the outer unit normal

to D̃δ ∩ B+
κδ−1/N , and eN denotes the normal to the hyperplane {zN = 0}. Moreover, there exists a

constant C > 0 such that

∥wδ∥C2,θ
(

D̃δ∩B+

κδ−1/N

) + ∥wδ∥C2,θ
(

B+

κδ−1/N \D̃δ

) ≤ C, (4.3)

uniformly as δ → 0.

Proof. Let us start with (4.2). To begin with, notice that ∂N∂iwδ = 0 = Aδ∇∂iwδ · eN a.e. on
{zN = 0} ∩ B+

κδ−1/N , since we are considering only derivatives of wδ tangential to {zN = 0}.
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Using the integration by parts formula, for any φ ∈ C∞
c

(
B+

κδ−1/N

)
we have

δ2/N Λ(δ)
∫

B+

κδ−1/N

m̃δ φJδ∂iwδ = δ2/N Λ(δ)

[∫
D̃δ∩B+

κδ−1/N

φJδ∂iwδ − β
∫

B+

κδ−1/N \D̃δ

φJδ∂iwδ

]
=

= δ2/N Λ(δ)(1 + β)
∫

∂D̃δ∩B+

κδ−1/N

wδ Jδ φνi − δ2/N Λ(δ)
∫

B+

κδ−1/N

m̃δ (wδ Jδ∂i φ + wδ φ∂i Jδ) ,

(4.4)

Now, using (3.10) and integrating again by parts we have that

δ2/N Λ(δ)
∫

B+

κδ−1/N

m̃δwδ Jδ∂i φ = δ2/N Λ(δ)

[∫
D̃δ∩B+

κδ−1/N

wδ Jδ∂i φ − β
∫

B+

κδ−1/N \D̃δ

wδ Jδ∂i φ

]
=

= −
[∫

D̃δ∩B+

κδ−1/N

div
(

Aδ∇wδ

)
∂i φ +

∫
B+

κδ−1/N \D̃δ

div
(

Aδ∇wδ

)
∂i φ

]
=

=
∫

B+

κδ−1/N

Aδ∇wδ · ∂i∇φ = −
∫

B+

κδ−1/N

Aδ∇∂iwδ · ∇φ −
∫

B+

κδ−1/N

∂i

(
Aδ
)
∇wδ · ∇φ.

(4.5)

Combining (4.4) and (4.5) we obtain (4.2).
Now we turn to (4.3). Notice that the condition ∂N∂iwδ = 0 on {zN = 0} ∩ B+

κδ−1/N and the
properties of the diffeomorphism Φδ (see Section 3) allow to extend ∂iwδ by reflection on the
whole Bκδ−1/N , together with its equation. Again, this reflected function solves a transmission
problem, but this time on the whole Bκδ−1/N . More precisely,{

−div
(

Aδ∇∂iwδ

)
= δ2/N Λ(δ)m̃δ (Jδ∂iwδ + wδ∂i Jδ) + div

(
Gδ

i
)

in D̃δ
⋃ (

Bκδ−1/N \ D̃δ

)
,

[∂iwδ] = 0, [Aδ∇(∂iwδ) · ν] = −δ2/N Λ(δ)(1 + β)wδ Jδνi on ∂D̃δ,
(4.6)

where Gδ
i denotes the even extension of the function

(
∂i Aδ

)
∇wδ with respect to {zN = 0}.

Since i ̸= N and recalling Remark 3.3, we have that this function is of class C0,θ . Hence, as a
consequence of [12, Theorem 1.2] we have, for all i = 1, . . . , N − 1

∥∂iwδ∥C1,θ
(

D̃δ∩B+

κδ−1/N

) + ∥∂iwδ∥C1,θ
(

B+

κδ−1/N \D̃δ

) ≤ C. (4.7)

Strictly speaking, the application of [12, Theorem 1.2] to (4.6) requires two adjustments: in-
deed, such result applies to solutions to transmission problems having fixed interface, while
here ∂D̃δ depends on δ, and homogeneous Dirichlet boundary conditions. Actually, by small
perturbations, we can modify (4.6) to meet both these conditions. We describe such arguments
in full details in the proof of Proposition 4.6 ahead, where the same issues have to be faced for
a related transmission problem, see (4.11) and (4.13), to obtain a more delicate estimate.

We are left to prove that∥∥∥∂2
Nwδ

∥∥∥
C0,θ

(
D̃δ∩B+

κδ−1/N

) + ∥∥∥∂2
Nwδ

∥∥∥
C0,θ

(
B+

κδ−1/N \D̃δ

) ≤ C. (4.8)

Condition (4.8) follows isolating ∂2
Nwδ in the equation (3.10) restricted to B+

κδ−1/N , and using
(4.7). Hence, the proof is concluded.
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A direct consequence of Proposition 4.4 is the following

Corollary 4.5. There exists a constant C > 0 such that

∥wδ∥C1,1(B
κδ−1/N )

≤ C,

uniformly as δ → 0.

Proof. It is sufficient to notice that Proposition 4.4 gives the C1,1 regularity of wδ on the closed
half ball B+

κδ−1/N , and that, since ∂Nwδ = 0 on {zN = 0}, such regularity is preserved by
reflection with respect to {zN = 0}. Moreover,

∥wδ∥C1,1(B
κδ−1/N )

≤ 2∥wδ∥C1,1
(

B+

κδ−1/N

)

Our next aim is to prove the following

Proposition 4.6. For any r ∈ (0, r2/4),

∥∇wδ − (∇wδ · n) n∥
C1,θ

(
D̃δ∩

(
B+

κδ−1/N \Br

))+
+ ∥∇wδ − (∇wδ · n) n∥

C1,θ
(

B+

κδ−1/N \(D̃δ∪Br)
) → 0

(4.9)

as δ → 0, where n = z/|z|.

Proof. Let I, w and m be respectively the principal positive eigenvalue, the optimal eigenfunc-
tion and the corresponding weight of the design problem in RN , as introduced in (1.8). Recall
that w is radially symmetric. Let us define hi = ∂iw the partial derivatives of w in the directions
tangent to {zN = 0}, i.e. i = 1, . . . , N − 1. Notice that each hi is even with respect to {zN = 0}.
The functions hi solve the transmission problem{

−∆hi = Imhi in Br2

⋃
(Bκδ−1/N \ Br2) ,

[hi] = 0, [∂nhi] = −I(1 + β)wni on ∂Br2 ,
(4.10)

where n = z/|z|.
Now consider the optimal (reflected) eigenfunctions wδ in the blow-up scale, and denote

vδ,i := ∂iwδ, for i = 1, . . . , N − 1. From (4.6), we know that they solve the transmission problem{
−div

(
Aδ∇vδ,i

)
= δ2/N Λ(δ)m̃δ (vδ,i Jδ + wδ∂i Jδ) + div

(
Gδ

i
)

in D̃δ
⋃ (

Bκδ−1/N \ D̃δ

)
,

[vδ,i] = 0, [Aδ∇vδ,i · ν] = −δ2/N Λ(δ)(1 + β)wδ Jδνi on ∂D̃δ.
(4.11)

In order to compare the functions vδ,i and hi in Bκδ−1/N , for δ sufficiently small we introduce
a one-parameter family of radial diffeomorphisms Θδ : RN → RN , with the following proper-
ties:

∥Θδ − Id∥C1,α(RN) = oδ(1) for every 0 < α < 1, as δ → 0,

Θδ = Id in RN \ B 3
2 r2

, Θδ(Br2) = D̃δ, Θδ(∂Br2) = ∂D̃δ,
(4.12)
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where |Br2 | = 2. The existence of such family of diffeomorphisms follows from Proposition
4.3 (actually Θδ depends on φδ there); we refer to [14, Section 6.1] for more details on such
diffeomorphism. In particular, (4.12) holds true with α = θ.

Let the functions ϕδ,i be defined as

ϕδ,i := vδ,i ◦ Θδ − hi.

From (4.10) and (4.12) we deduce that the functions ϕδ,i solve, in H1 (Bκδ−1/N ), the transmission
problem {

−div
(

Mδ∇ϕδ,i
)
= f δ

i + div
(

Fδ
i
)

in Br2

⋃
(Bκδ−1/N \ Br2) ,

[ϕδ,i] = 0, [Mδ∇ϕδ,i · n] = gδ
i on ∂Br2 ,

(4.13)

where we have denoted

Yδ := |det (DΘδ) |, Mδ := YδDΘ−1
δ AδDΘ−T

δ in Bκδ−1/N , Yδ,T := |DΘ−T
δ n|Yδ on ∂Br2 ,

f δ
i := δ2/N Λ(δ) (m̃δvδ,i Jδ + m̃δwδ∂i Jδ) ◦ Θδ − Imhi, Fδ

i := YδDΘ−1
δ Gδ

i +
(

Mδ − Id
)
∇hi in Bκδ−1/N ,

gδ
i := (1 + β)

(
Iwni − δ2/N Λ(δ) (wδ Jδνi) ◦ ΘδYδ,T

)
−
[(

Mδ − Id
)
∇hi · n

]
on ∂Br2 .

Without loss of generality, we can also assume that

ϕδ,i = 0 on ∂Bκδ−1/N .

Indeed, for δ sufficiently small, it is sufficient to subtract from ϕδ,i the function zδ,i solution to{
−div

(
Mδ∇zδ,i

)
= 0 in Bκδ−1/N ,

zδ,i = ϕδ,i on ∂Bκδ−1/N ,

and to notice that, by elliptic regularity and [21, Remark 4.5],

∥zδ,i∥C1,θ(B
κδ−1/N )

→ 0, as δ → 0.

We are in the position to apply the results in [12, Theorem 1.2], and since [14, Lemma 5.4],
Proposition 3.4 and (3.6) imply that

∥ f δ
i ∥L∞(B

κδ−1/N )
→ 0, ∥Fδ

i ∥C0,θ(B
κδ−1/N )

→ 0 and ∥gδ
i ∥C0,θ(∂Br2)

→ 0

as δ → 0, [12, Theorem 1.2] gives that, for all i = 1, . . . , N − 1

∥ϕδ,i∥C1,θ(Br2)
+ ∥ϕδ,i∥C1,θ(B

κδ−1/N \Br2)
→ 0, as δ → 0. (4.14)

Moreover, as usual isolating ∂2
Nwδ in equation (3.10) and composing it with the diffeomor-

phism Θδ, it can be seen using (4.14) that

∥∂N (vδ,N ◦ Θδ)− ∂2
Nw∥

C0,θ
(

Br2∩B+

κδ−1/N

)+ ∥∂N (vδ,N ◦ Θδ)− ∂2
Nw∥

C0,θ
(

B+

κδ−1/N \Br2

) → 0, as δ → 0.

Hence, we have just shown that

∥ϕδ,i∥C1,θ
(

Br2∩B+

κδ−1/N

) + ∥ϕδ,i∥C1,θ
(

B+

κδ−1/N \Br2

) → 0, as δ → 0, ∀ i = 1, . . . , N. (4.15)
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Now, in order to prove the proposition, it is sufficient to notice that, by (4.15) and (4.12) we
have

∥ (∇wδ − (∇wδ · n) n) ◦ Θδ − (∇w − (∇w · n) n) ∥
C1,θ

(
D̃δ∩

(
B+

κδ−1/N \Br

))+
+∥ (∇wδ − (∇wδ · n) n) ◦ Θδ − (∇w − (∇w · n) n) ∥

C1,θ
(

B+

κδ−1/N \(D̃δ∪Br)
) → 0.

(4.16)

as δ → 0, but since the function w is radial, in B+
κδ−1/N

∇w − (∇w · n) n = 0,

so that (4.16) can be rewritten as

∥ (∇wδ − (∇wδ · n) n) ◦ Θδ∥
C1,θ

(
D̃δ∩

(
B+

κδ−1/N \Br

))+
+ ∥ (∇wδ − (∇wδ · n) n) ◦ Θδ∥C1,θ

(
B+

κδ−1/N \(D̃δ∪Br)
) → 0.

(4.17)

To conclude, the claim (4.9) follows from (4.17) just rewriting

∇wδ − (∇wδ · n) n = (∇wδ − (∇wδ · n) n) ◦ Θδ ◦ Θ−1
δ

and using (4.12) once again.

As a consequence of Proposition 4.6, we have the following corollary.

Corollary 4.7. For any r ∈ (0, r2/4),

∥∇wδ − (∇wδ · n) n∥C0,1(B
κδ−1/N \Br) → 0, as δ → 0,

where n = z/|z|.

Finally, we can conclude this section with the following improvement of Proposition 4.3.

Proposition 4.8. For δ sufficiently small D̃δ is nearly spherical of class C1,1, parametrized by φδ (see
Definition 4.1). In addition

∥φδ∥C1,1(SN−1) → 0, as δ → 0.

Proof. In view of Proposition 4.4 and Corollary 4.7, the result can be proved by arguing as in
[14, Proposition 5.10].

Remark 4.9. The above C1,1 decay is sharp, on SN−1, because of the reflection of the N-th
derivative. Actually, since ∂Ω ∈ C3,θ , one may expect further regularity of the free boundary.
As a matter of fact, the estimates in C2,θ of wδ hold up to the free boundary, from inside
and outside; therefore a continuation argument should allow to improve the above C1,1(SN−1)

decay to a C2,θ(SN−1
+ ) one, but we do not pursue this argument here.

24



5 Quantitative estimates

In this section we conclude the proof of Theorem 1.3 by obtaining the quantitative estimates
for the nearly spherical parametrizations of the optimal sets D̃δ (in the blow-up scale, as in-
troduced in Sections 3, 4) and Dδ (in the original reference). These estimates are based on
Proposition 4.8 and on the application of the following result.

Theorem 5.1 ([14, Theorem 1.4]). There exist positive constants C, ε such that, for all C1,1 nearly
spherical sets A ⊂ RN , centered at the origin and parametrized by φ satisfying

1. bar(A) = 0,

2. |A| = 2,

3. ∥φ∥C1,1(SN−1) ≤ ε,

it holds
λ(A, RN)− λ(Br2 , RN) ≥ C∥φ∥2

L2(SN−1).

To apply this result to D̃δ we notice that its first assumption is verified by centering the
blow-up analysis at Qδ := Φδ(bar(D̃δ)), rather than Pδ (recall that we are working in this
setting since (4.1), thanks to Lemma 4.2). On the other hand, |D̃δ| is equal to 2 only in the
limit, thus we need to take into account an error term.

Lemma 5.2. There exists C > 0 such that, for δ sufficiently small,(
|D̃δ|

2

)2/N

λ(D̃δ, RN)− I ≥ C∥φδ∥2
L2(SN−1) + o(δ1/N).

Proof. First, recall that D̃δ is C1,1 nearly spherical, with parametrization φδ satisfying Proposi-
tion 4.8. We infer that the set

Aδ =
21/N D̃δ

|D̃δ|1/N

is nearly spherical, too: indeed, for every η ∈ ∂Aδ there exists z ∈ ∂D̃δ such that η =

21/Nz|D̃δ|−1/N , so that

∂Aδ = {η = (r2 + σδ(θ)) θ} , with σδ =
21/Nr2

|D̃δ|1/N
− r2 +

21/N

|D̃δ|1/N
φδ. (5.1)

We are in position to apply Theorem 5.1 to Aδ, obtaining(
|D̃δ|

2

)2/N

λ(D̃δ, RN)− I ≥ C∥σδ∥2
L2 .

In turn, using Lemma 3.8,

∥σδ∥2
L2 =

∥∥∥∥∥ 21/Nr2

|D̃δ|1/N
− r2 +

21/N

|D̃δ|1/N
φδ

∥∥∥∥∥
2

L2

≥ 1
2

(
2

|D̃δ|

)2/N

∥φδ∥2
L2 −

∥∥∥∥∥∥
(

2
|D̃δ|

)1/N

− 1

∥∥∥∥∥∥
2

L2

r2
2

≥ C(1 − δ1/N) ∥φδ∥2
L2 + o(δ1/N) = C ∥φδ∥2

L2 + o(δ1/N),

where we used also Proposition 4.8, and the claim follows.
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Proposition 5.3. As δ → 0,
∥φδ∥2

L2(SN−1) = o(δ1/N). (5.2)

Proof. We apply the second conclusion of Theorem 1.2, Remark 3.11 and Lemma 5.2 to obtain

−IΓĤδ1/N + o(δ1/N) = δ2/N Λ(δ)− I

= δ2/N Λ(δ)−
(
|D̃δ|

2

)2/N

λ(D̃δ, RN) +

(
|D̃δ|

2

)2/N

λ(D̃δ, RN)− I

≥ −IΓĤδ1/N + C∥φδ∥2
L2 + o(δ1/N),

(5.3)

implying the claim.

Finally, we bring back the quantitative information (5.2) to Dδ.

Proof of Theorem 1.3. By now we have obtained

D̃δ =

{
z ∈ Bkδ−1/N : |z| < r2 + φδ

(
z
|z|

)}
,

so that

D̃+
δ :=

{
z ∈ B+

kδ−1/N : |z| < r2 + φδ

(
z
|z|

)}
=

{
z ∈ B+

2r2
: |z| < r2 + φδ

(
z
|z|

)}
(5.4)

for δ small enough.
On the other hand, recalling (3.13),

D̃+
δ =

{
z ∈ B+

2r2
: z = Ψδ(x)

δ1/N , for some x ∈ Dδ

}
.

Then x ∈ ∂Dδ if and only if z ∈ ∂D̃+
δ , and the theorem will follow by a change of variable.

Thus, in the following, we consider a generic z ∈ B+
2r2

and x = Φδ(δ
1/Nz), so that |x| =

O(δ1/N) as δ → 0. We obtain

x = Φδ(δ
1/Nz) = δ1/Nz + δ2/N Rδ(z), (5.5)

where the reminder Rδ is uniformly bounded in C1,1: notice that this only requires Φδ ∈ C1,1

uniformly in δ, i.e. ∂Ω ∈ C2,1 (recall Remark 3.2). Indeed, we have

δ2/N Rδ(z) = Φδ(δ
1/Nz)− δ1/Nz = Φδ(δ

1/Nz)− Φδ(0)− DΦδ(0)δ1/Nz,

δ1/N DRδ(z) = DΦδ(δ
1/Nz)− DΦδ(0),

which yield

δ2/N |Rδ(z)| =
∣∣∣∣∫ 1

0

[
d
dt

Φδ(tδ1/Nz)− DΦδ(0)δ1/Nz
]

dt
∣∣∣∣

≤ δ1/N |z|
∫ 1

0

∣∣∣DΦδ(tδ1/Nz)− DΦδ(0)
∣∣∣ dt

≤ δ2/N |z|2 · 1
2
∥DΦδ∥C0,1 ≤ δ2/N · 2∥DΦδ∥C0,1 r2

2
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and

δ1/N |DRδ(z1)− DRδ(z2)| =
∣∣∣DΦδ(δ

1/Nz1)− DΦδ(δ
1/Nz2)

∣∣∣ ≤ δ1/N∥DΦδ∥C0,1 |z1 − z2|.

From (5.5) we infer
|x|2 = δ2/N |z|2 + δ

3
N R̃δ(z), (5.6)

where R̃δ is uniformly in C1,1, too.
Let us introduce the polar coordinates

ρ = |x|, ϑ =
x
|x| , r = |z|, ξ =

z
|z| .

Taking x ∈ ∂Dδ ∩ Ω, and the corresponding z = rξ ∈ ∂D̃+
δ , then r = r2 + φδ(ξ). By the

properties of Φδ, Ψδ, φδ we have that the map

SN−1 ∋ ξ 7→ Φδ(δ
1/N(r2 + φδ(ξ))ξ)

|Φδ(δ1/N(r2 + φδ(ξ))ξ))|
= ϑδ(ξ) ∈ SN−1

is uniformly bounded in C1,1, with inverse ϑ 7→ ξ = ξδ(ϑ), for δ small enough. Substituting
into (5.6) we infer that (1.10) holds true with ρδ = ρδ(ϑ) implicitly defined by

2r2ρδ + ρ2
δ = 2r2 φδ(ξδ(ϑ)) + φ2

δ(ξδ(ϑ)) + δ1/N R̃δ

(
(r2 + φδ(ξδ(ϑ)))ξδ(ϑ)

)
.

Then
ρδ(ϑ) = φδ(ξδ(ϑ)) + δ1/N Zδ(ϑ),

where Zδ is uniformly bounded in C1,1. Recalling (5.2) and Proposition 4.8 we obtain the
desired estimates.

Remark 5.4. From Theorem 1.3, thanks to the Gagliardo Nirenberg interpolation inequalities,
one can deduce as in [14, Corollary 1.5] estimates on different norms of ρδ, the most interesting
one being

∥ρδ∥C1,α = o
(

δ
(1−α)

N(4+N)

)
∀ α ∈ (0, 1).
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