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Abstract. We investigate the behavior of minimizers of perturbed Dirichlet energies sup-

ported on a wire generated by a regular simple curve γ and defined in the space of S2-valued

functions. The perturbation K is represented by a matrix-valued function defined on S2

with values in R3×3. Under natural regularity conditions on K, we show that the family of

perturbed Dirichlet energies converges, in the sense of Γ-convergence, to a simplified energy

functional on γ. The reduced energy unveils how part of the antisymmetric exchange inter-

actions contribute to an anisotropic term whose specific shape depends on the curvature of

γ.

We also discuss the significant implications of our results for studies of ferromagnetic

nanowires when Dzyaloshinskii-Moriya interaction (DMI) is present.

1. Introduction and motivation

The motivation for our study comes from investigating the behavior of ferromagnetic
nanowires. Microscopically ferromagnetic nanowires such as nanotubes, nanowhiskers, or
nanostrips can exhibit unique physical properties. These include anisotropic magnetore-
sistance in helimagnets [19, 38], proximity exchange fields in ferromagnet–superconductor
heterostructures [36, 53], fast domain wall motion [50], impact of wire twisting onto mag-
netic textures [49], and many others [22, 37]. Techniques for fabricating magnetic nanowires
make available a wide variety of cross-sections and shapes, from almost perfectly straight
to braided [29, 49]. Of significant interest for research and applications are wireframes and
networks made of magnetic nanowires [48, 31, 27, 54].

The theoretical description of the statics and dynamics of magnetization in nanomagnets
is a challenging task even from the numerical point of view due to the nonlinear, nonconvex,
and nonlocal nature of the problem, see, e.g., the monograph [46], the review articles [34, 24]
and the references therein. Brute-force numerical simulations are typically performed within
the framework of 3D micromagnetic model [21, 55, 9, 54], which are challenging and often
time-consuming.

While an essential goal of quantitative simulations is description, the basic explanation
of magnetic phenomena typically requires having simplified yet accurate models at hand.
From the mathematical point of view, such models can be derived by dimension reduction
techniques of the calculus of variations as Γ-limits of the micromagnetic energy functional
under suitable asymptotic relations among the material and geometric scaling parameters.
Dimensional reduction arguments in micromagnetics are a subject with a long history as they
date back to the seminal paper [26], where the authors show that in planar thin films, the
nonlocal effects of the stray field operator reduce to an easy-plane anisotropy term. Later,

2020 Mathematics Subject Classification. 49S05; 35C20; 35Q51; 82D40.

Key words and phrases. Dirichlet energy, Harmonic maps, Γ-Convergence, Micromagnetics, Magnetic thin

films, Dzyaloshinskii–Moriya interaction, Magnetic skyrmions.

1



2 GIOVANNI DI FRATTA, FILIPP N. RYBAKOV, AND VALERIY SLASTIKOV

various static reduced theories for planar thin-film micromagnetics were established under
different scaling regimes [7, 12, 13, 32, 42, 43, 51]. Further asymptotic regimes, e.g., in
the presence of strong perpendicular anisotropy, have been the subject of [17]. The induced
thin-film dynamics have been analyzed in [33, 39, 25, 6].

The latest developments in nanotechnology have made it possible to create nanostruc-
tures, with thicknesses as small as a few atomic layers and lateral sizes down to tens of
nanometers. These structures often demonstrate the impact of interfacial effects, such as
the Dzyaloshinskii-Moriya interaction (DMI) [20, 41], leading to the formation of magnetic
skyrmions [23]. Mathematical studies of magnetic domain walls in the regime of planar thin
films, taking into account also DMI, have been done in [11, 40, 44, 45].

In recent years, interest has grown in ferromagnetic systems with a curved shape due
to their capability of hosting magnetic skyrmions even in materials where the DMI can be
neglected. The evidence of these states sheds light on the role of the geometry in magnetism:
chiral spin-textures can be stabilized by curvature effects only, in contrast to the planar
case where DMI is required (we refer the reader to the recent monograph [37]). From
the mathematical perspective, dimension reduction results for curved thin films have been
studied in [7, 14, 16, 51] and, more recently, in [18] where the curved thin film limit of chiral
Dirichlet energies is derived.

The effective magnetic behavior of ferromagnetic nanowires has been investigated in
[52] where both long-range dipolar interactions and symmetric exchange interactions are
considered, also for curved wire. The main aim of this paper is to complement the analysis
in [52] by taking into account general antisymmetric exchange interactions. As in [11] and
[18], the derived limiting model reveals new physics: part of the antisymmetric exchange
interactions contributes to an increase in the shape anisotropy originating from the magne-
tostatic self-energy. Several examples of applications to the micromagnetic theory complete
our analytical derivation.

2. Contributions of the present work

Given a regular simple curve1 γ : I 7→ R3 and a smooth domain Q ⊆ R2, for every
ε > 0, we denote by Ωε ⊆ R3 the ε-tube along γ with cross-sectional shape Q and thickness
ε, defined as the image of the cylindrical region I×Q ⊆ R×R2 through the parameterization
(see Figure 1)

φε : (s, z) ∈ I ×Q 7→ γ(s) + εz1n(s) + εz2b(s) ∈ Ωε. (2.1)

Here, we set z := (z1, z2) and denoted by (t(s),n(s), b(s)) the Frenet–Serret frame
consisting, respectively, of the tangent, normal, and binormal unit vectors to the curve at
γ(s) — if γ is a straight line, we complete t to an orthonormal basis of R3. In what follows,
we assume that γ is parameterized by arc length. Also, we assume that the interval I is
compact so that according to the tubular neighborhood theorem, there exists a δ > 0 such
that for every 0 < ε < δ, the map φε defined by (2.1) is a diffeomorphism of I ×Q onto the
ε-tube along γ.

1By a regular simple curve, we mean the image of a C2-map γ : I 7→ R3, I ⊆ R a compact interval,

such that ∂sγ(s) ̸= 0 for every s ∈ I, and with no self-intersections, i.e., such that the only possible loss of

injectivity in γ arises at the endpoints of I, case in which the curve closes into a loop.
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Figure 1. Sketches of suitable wires. The wires can be straight or curved and can
have a nonsmooth boundary or a multiply connected cross-section (not every case is
shown in the picture). The cross-section is assumed to be invariant along the wire.

The main aim of this paper is to investigate the curved thin-wire limit (ε → 0) of the
perturbed Dirichlet energy (0 < ε < δ)

Gε(v) := 1
2ε2|Q|

ˆ
Ωε

|Dv(x) +K(v(x))|2 dx (2.2)

defined on H1 Sobolev maps v : Ωε → S2, where for every ε > 0 the domain Ωε ⊆ R3 is an
ε-tube of R3, and S2 is the two-sphere of R3. In writing (2.2), we made the common and
convenient abuse of denoting by | · | both the Euclidean norm on R3×3 and the Lebesgue
measure when applied to sets as in the expression |Q|.

The perturbation K : σ ∈ S2 7→ K(σ) ∈ R3×3 is represented by a matrix-valued function
defined on S2 and with values in R3×3 and is assumed to be Lipschitz continuous, i.e., that
there exists cK > 0 such that

|K(σ1) −K(σ2)|n×m ⩽ cK |σ1 − σ2|m ∀σ1, σ2 ∈ S2. (2.3)

Since S2 is compact, the continuity condition (2.3) implies that the image of K is bounded
(in fact, compact). In what follows, to simplify notation, we will assume that a Lipschitz
constant cK is chosen big enough so that there holds

|K(σ)| ⩽ cK ∀σ ∈ S2. (2.4)

For any 0 < ε < δ, the existence of at least a minimizer for Gε in H1(Ωε, S2) is a simple
application of the direct method of the calculus of variations. We are interested in the
asymptotic behavior of the family of minimizers of (Gε)ε as ε → 0. Our main result (cf.
Theorem 1 below) shows that the family (Gε)ε converges, in the sense of Γ-convergence to an
energy functional defined on the curve γ, which strongly depends on K and the target space
S2, and has remarkable physical implications for relevant systems, for instance, to magnetic
materials: in the curved thin-wire regime, generic exchange interactions (symmetric and
antisymmetric) can manifest themselves under an additional anisotropy term whose specific
shape depends both on the shape of the wire and the curvature of the target surface.

To properly state our result, we must finish setting up the stage. For every 0 < ε < δ
we introduce the following functional defined on H1(C,S2), which can be thought of as the
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pull-back of Gε on the cylindrical domain C := I ×Q:

Eε
C (vε) := 1

2|Q|

ˆ
I×Q

|∂svε + τ (z ∧ ∇zvε) + αεK(vε)t|2 1
αε

dzds

+ 1
2|Q|

ˆ
I×Q

(
|ε−1∂1vε + αεK (vε) n|2 + |ε−1∂2vε + αεK(vε)b|2

) 1
αε

dzds (2.5)

where we set
∂1 := ∂z1 , ∂2 := ∂z2 , z ∧ ∇zvε := z2∂1vε − z1∂2vε, αε (s, z) := (1 − εϖ(s)z1), (2.6)

with ϖ(s) being the curvature of the space curve γ at γ(s). Our main result is stated in the
following statement.

Theorem 1. For any 0 < ε < δ, the minimization problem for Gε in H1(Ωε,S2) is equivalent
to the minimization in H1(C,S2) of the functional Eε

C defined by (2.5) in the sense that a
configuration vε ∈ H1(Ωε, S2) minimizes Gε if and only if vε ◦φε ∈ H1(C, S2) minimizes Eε

C.
The family (Eε

C)ε is equicoercive in the weak topology of H1(C,S2) and the Γ-limit EC :=
Γ- limε→0 Eε

C is defined for every v ∈ H1(C, S2) by

EC(v) =


1
2

ˆ
I

|∂sv(s) +K(v(s))t(s)|2ds

+1
2

ˆ
I

|K⊤(v(s))v(s)|2 − (K⊤(v(s))v(s) · t(s))2ds if ∇zv = 0,

+∞ otherwise.

(2.7)

Moreover,
min

H1(Ωε,S2)
Gε = min

H1(C,S2)
Eε

C= min
H1(C,S2)

EC + o(1) (2.8)

and if (vε)ε is a minimizing family for (Eε
C)ε then (vε)ε converges, strongly in H1(C, S2), to

a minimum point of EC.

Remark 1. In terms of normal and binormal vectors to the curve, the expression in (2.7) is
equivalent to

1
2

ˆ
I

|∂sv(s) +K(v(s))t(s)|2 ds+ 1
2

ˆ
I
(K⊤(v(s))v(s) · n(s))2 + (K⊤(v(s))v(s) · b(s))2ds.

Proof. (Equivalence) First, we show that for any 0 < ε < δ, the minimization problem for
Gε in H1 (Ωε, S2) is equivalent to the minimization in H1(C, S2) of the functional Eε

C defined
by (2.5). For that, let us denote by with F := (t|n|b) the matrix whose columns are the
component of the Frenet frame. By the Frenet–Serret formulas (with ϖ and τ denoting,
respectively, the curvature and the torsion of γ) :

ṅ(s) = −ϖt + τb, ṫ = ϖn, ḃ = −τn,

we get that for every 0 < ε < δ, there holds

Dφε =
(
∂sφε ∂1φε ∂2φε

)
= F ·

 1 − εϖz1 0 0
−ετz2 ε 0
ετz1 0 ε


and detDφε = ε2αε, with αε(s, z1) := 1 − εϖ(s)z1. Note that Dφε is invertible for ε small
because. The inverse of Dφε is given by

(Dφε)−1 = 1
αε

ΦεF
⊤, Φε :=

 1 0 0
τz2 ε−1 0

−τz1 0 ε−1

 .
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The previous considerations allow showing the equivalence between the minimization prob-
lem for Gε and Eε

C . Indeed with vε := v ◦ φε, we have

Gε (v) = 1
2ε2|Q|

ˆ
Ωε

|Dv(x) +K (v(x))|2 dx

= 1
2

ˆ
I×Q

∣∣∣Dvε(Dφε)−1 +K(vε)
∣∣∣2 αεdzds

= 1
2|Q|

ˆ
I×Q

|(∂svε + τ (z2∂1vε − z1∂2vε)) + αεK (vε) t|2 1
αε

dzds

+ 1
2|Q|

ˆ
I×Q

(
|ε−1∂1vε + αεK(vε)n|2 + |ε−1∂2vε + αεK(vε)b|2

) 1
αε

dzds

= Eε
C(vε),

from which the equivalence follows.

(Compactness/Equicoerciveness) We want to show that the family (Eε
C)ε is equicoercive

in the weak topology of H1(C,S2), i.e., the existence of a weakly compact set J(C,S2) ⊆
H1(C,S2) such that for every 0 < ε < δ there holds

min
H1(C,S2)

Eε
C = min

J(C,S2)
Eε

C . (2.9)

Ensuring the equicoercivity of (Eε
C)ε will guarantee that the fundamental theorem of Γ-

convergence hypotheses are met. Consequently, the Γ-limit EC will satisfy realtion (2.8) on
the variational convergence of minimum problems.

To show (2.9), we first observe that for any constant in space configuration ξ ∈ H1(C, S2)
we have

min
v∈H1(C,S2)

Eε
C (v) ⩽ Eε

C(ξ) = 1
2|Q|

ˆ
I×Q

|K(ξ)|2√
αε(s, z)

dzds. (2.10)

Given that for ε sufficiently small αε (s, z) is uniformly bounded away from zero, there exists
cϖ > 0 such that (cf. the expression of αε in (2.6))

c−1
ϖ < αε (s, z) < cϖ for every (s, z) ∈ I ×Q. (2.11)

Also, as stated in (2.4), |K(σ)| ⩽ cK . Therefore, for δ sufficiently small, the minimizers of
(Eε

C)0<ε<δ are all contained in the ε-independent set

J(C, S2) :=
⋃

0<ε<δ

{
v ∈ H1(C,S2) : Eε

C (v) ⩽ c
}
, (2.12)

where c > 0 is a positive constant that depends only on cϖ, cK and on the geometry of
γ. After that, we use that for every a, b ∈ R and every η > 0 there holds |a + b|2 ⩾
(1 + η)−1|a|2 − η−1|b|2, to infer that

2|Q|Eε
C (v) ⩾

1
cϖ(1 + η)

ˆ
I×Q

|∂sv + τ (z ∧ ∇zv)|2

+ 1
αε

dzds+ 1
ε2(1 + η)

ˆ
I×Q

|∇zv|2 1
αε

dzds− 1
η

ˆ
I×Q

|K (v)|2
√
αε

dzds

⩾
1

cϖ(1 + η)2

ˆ
I×Q

|∂sv|2 dzds− 1
cϖη(1 + η)τ

2
ˆ

I×Q
|z ∧ ∇zv|2 dzds

+ 1
cϖ(1 + η)ε2

ˆ
I×Q

|∇zv|2 1
αε

dzds− c2
K

η
√
cϖ

|I ×Q|.
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Given that |z ∧ ∇zv| ⩽ 2|z| · |∇zv| ⩽ cQ |∇zv| for a positive constant cQ > 0 that depends
only on Q, we get that up to the constant term − c2

K
η

√
cϖ

|I ×Q| there holds

2|Q|Eε
C (v) ⩾ 1

cϖ(1 + η)2

ˆ
I×Q

|∂sv|2 dzds+ 1
(1 + η)cϖ

(
1
ε2 −

τ2c2
Q

η

) ˆ
I×Q

|∇zv|2dzds.

In particular, choosing η := 2ε2τ2c2
Q, we get the existence of a constant c∗ > 0 dependent

only on δ, cϖ, cK and the shape of the δ-tube generated by γ, such that
ˆ

I×Q
|∂sv|2 dzds+ 1

ε2

ˆ
I×Q

|∇zvε|2dzds ⩽ c∗ (1 + Eε
C (v)) . (2.13)

Assuming without loss of generality that δ < 1 so that also ε < 1, from the previous relation
(2.13) we can conclude that the set J(C, S2) defined by (2.12) is contained in the bounded
subset of H1(C,R3) given by

H1
b (C,S2) := {v ∈ H1(C,R3) : |v| = 1, ∥v∥2

H1(C,R3) ⩽ c∗(1 + c)}

Therefore

min
v∈H1(C,S2)

Eε
C (v) = min

v∈H1
b

(C,S2)
Eε

C (v) .

To establish that H1
b (C, S2) is weakly compact, we need to prove that it is weakly closed. To

do this, consider a sequence (vn)n∈N in H1
b (C, S2) such that vn ⇀ v0 weakly in H1(C,R3);

by Rellich-Kondrachov theorem, vn → v0 strongly in L2(C,R3). Thus, after extracting a
subsequence that converges pointwise a.e. in C, we get that the v0 still takes values in S2.
This completes the proof of equicoerciveness.

(Γ-liminf) Let (vε) be a family in H1(C,S2) such that

sup
0<ε<δ

Eε
C(vε) < +∞.

By estimate (2.13), we get that the families
(
ε−1∂1vε

)
,
(
ε−1∂2vε

)
and (∂svε) are bounded

in L2. Therefore, there exist v0 ∈ H1(C,S2),d1,d2 ∈ L2(C,R3), such that

vε → v0 strongly in L2(C,S2),
∂svε ⇀ ∂sv0 weakly in L2(C,R3),

1
ε∂1vε ⇀ d1 weakly in L2(C,R3),
1
ε∂2vε ⇀ d2 weakly in L2(C,R3).

(2.14)

The previous relations imply that v0 is 0-homogeneous along the cross-section of the wire,
i.e., that it depends only on the s-variable. In particular,

∇zvε → 0 strongly in L2(C,R3). (2.15)

Moreover, since ∂1vε · vε = ∂2vε · vε = 0 for every 0 < ε < δ, we also infer that d1,d2 are
pointwise orthogonal to v0, i.e.,

d1 · v0 = 0, d2 · v0 = 0. (2.16)
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By (2.14), (2.15), and (2.16), taking into account the lower semicontinuity of the norm and
that αε → 1 when ε → 0, we get that

lim inf
ε→0

Eε
C(vε) ⩾ 1

2

ˆ
I

|∂sv0 +K (v0) t|2 ds

+ 1
2|Q|

ˆ
I×Q

(
|d1 +K(v0)n|2 + |d2 +K(v0)b|2

)
dzds

⩾
1
2

ˆ
I

|∂sv0 +K (v0) t|2 ds+ 1
2

ˆ
I

[
min

d1(s),d2(s)∈v⊥
0 (s)

g(d1(s),d2(s))
]

dzds,

with
g(d1,d2) := |d1 +K(v0)n|2 + |d2 +K(v0)b|2 . (2.17)

The minimal energy of g is given by

min
d1(s),d2(s)∈v⊥

0 (s)
g(d1(s),d2(s)) = (K(v0)n · v0)2 + (K (v0) b · v0)2 , (2.18)

and is reached when

d1(v0) := v0 × (v0 ×K(v0)n) , (2.19)
d2(v0) = v0 × (v0 ×K(v0)b) . (2.20)

Indeed, one can observe that

g(d1,d2) = |d1 − v0 × (v0 ×K(v0)n) + (K (v0) n · v0) v0|2

+ |d2 − v0 × (v0 ×K(v0)b) + (K(v0)b · v0) v0|2

= |d1 − v0 × (v0 ×K(v0)n)|2 + |d2 − v0 × (v0 ×K (v0) b)|2

+ (K(v0)n · v0)2 + (K(v0)b · v0)2 .

Summarizing, we obtained that

lim inf
ε→0

Eε
C(vε) ⩾ 1

2

ˆ
I

|∂sv(s) +K (v(s)) t(s)|2 ds

+ 1
2

ˆ
I
(K⊤(v(s))v(s) · n(s))2 + (K⊤ (v(s)) v(s) · b(s))2ds, (2.21)

and this is nothing but the right-hand side of (2.7).

(Γ-limsup) A direct computation shows that for any v0 ∈ H1(C, S2) such that ∇zv0 = 0,
the family

vε := v0 + εd(v0)
|v0 + εd(v0)| , d(v0) := z1d1(v0) + z2d2(v0), (2.22)

with d1(v0),d2(v0) given by (2.19)-(2.20), is a recovery sequence, i.e.,

vε → v0 strongly in H1(C,S2) and Eε
C(vε) → EC(v0). (2.23)

Indeed, since d1(v0), d2(v0) depend only on the s-variable and |v0)| = 1, we have

Dvε = 1
|v0 + εd(v0)|

(
I + v0 + εd(v0)

|v0 + εd(v0)| ⊗ v0 + εd(v0)
|v0 + εd(v0)|

)
D(v0 + εd(v0))

≈ (I + v0 ⊗ v0)(∂s|∂1|∂2)(v0 + εd(v0))
= (I + v0 ⊗ v0)(∂sv0 + ε∂sd(v0)|εd1(v0)|εd2(v0))
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where we used the approximation symbol to denote equality up to negligible terms when
ε → 0. Given that 0 = ∂sv0 · v0 = d1(v0) · v0 = d2(v0) · v0, we infer the following limit
relations

∂svε → (I + v0 ⊗ v0)∂sv0 = ∂sv0, (2.24)
ε−1∂1vε → (I + v0 ⊗ v0)d1(v0) = d1(v0), (2.25)
ε−1∂2vε → (I + v0 ⊗ v0)d2(v0) = d2(v0), (2.26)

from which (2.23) follows.

(Strong convergence of minimizers) Let (vε)ε ⊂ H1(C, S2) be a minimizing family for
(Eε

C)ε. By compactness (cf. (2.14)–(2.15)), there exists v0 ∈ H1(C,S2), depending only the
s-variable, such that vε ⇀ v0 weakly in H1(C,S2) and ∂svε → 0 strongly in L2(C,S2). By
the Γ-liminf inequality, the strong convergence of vε → v0 in L2(C, S2), and the minimality
of vε, we get that if v⋆

ε is the recovery sequence built from v0 as in (2.22), then
EC(v0) ⩽ lim inf

ε→0
Eε

C(vε) ⩽ lim sup
ε→0

Eε
C(vε) ⩽ lim

ε→0
Eε

C(v⋆
ε) = EC(v0). (2.27)

Therefore, if (vε)ε is a minimizing family for (Eε
C)ε, then vε ⇀ v0 weakly inH1(C, S2) for some

v0 which depends only on the s-variable and, moreover, by (2.27), limε→0 Eε
C(vε) = EC(v0).

By the compactness relations (2.14)–(2.15) and the lower semicontinuity of the norm, we get
that

EC(v0) = lim
ε→0

Eε
C(vε) ⩾ lim sup

ε→0

1
2|Q|

ˆ
I×Q

|∂svε +K(vε)t|2 dzds

+ 1
2|Q|

ˆ
I×Q

g(d1,d2)dzds

⩾ lim sup
ε→0

1
2|Q|

ˆ
I×Q

|∂svε +K (vε) t|2 dzds

+ 1
2

ˆ
I

(
K⊤(v0)v0 · n

)2
+
(
K⊤(v0)v0 · b

)2
ds, (2.28)

where, for the last inequality, we used the fact that the function g defined by (2.17) has mini-
mal energy (K(v0)n · v0)2 +(K(v0)b · v0)2. Substituting in (2.28) the equivalent expression
of EC(v0) given in Remark 1, we get that

lim sup
ε→0

1
2|Q|

ˆ
I×Q

|∂svε +K(vε)t|2 dzds ⩽ 1
2

ˆ
I

|∂sv0 +K(v0)t|2 ds. (2.29)

Hence, from the lower semicontinuity of the norm, it follows that

lim
ε→0

1
2|Q|

ˆ
I×Q

|∂svε +K(vε)t|2 dzds = 1
2

ˆ
I

|∂sv0 +K(v0)t|2 ds. (2.30)

The previous relation implies that ∥∂svε∥L2(C,S2) → ∥∂sv0∥L2(C,S2). Overall, also considered
that ∥∂1vε∥L2(C,S2) → 0 and ∥∂2vε∥L2(C,S2) → 0, we deduce the convergence of the norms
∥vε∥H1(C,S2) → ∥v0∥H1(C,S2) which together with the weak convergence vε ⇀ v0 in H1(C,S2),
assures strong convergence in H1(C, S2). This concludes the proof. □

3. Applications to Micromagnetics

In this section, we illustrate how our analysis of curved thin wires can explain different
scenarios that may occur when ferromagnetic crystals lack inversion symmetry and how
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the so-called Dzyaloshinskii-Moriya interaction (DMI) can distort the otherwise uniform
ferromagnetic state. Before delving into specifics, we describe the physical framework and
introduce relevant notation.

In the variational theory of micromagnetism (cf. [5, 30, 35]), the order parameter that
characterizes the orientations of a rigid ferromagnetic body within a region Ω ⊆ R3 is the
magnetization M , a vector field whose magnitude Ms := |M |, called the saturation magne-
tization, can be considered constant in Ω at temperatures well below the Curie temperature.
Hence, one can represent the magnetization as M := Msv, where v : Ω → S2 is a map tak-
ing values into the unit sphere of R3. Even though the magnitude of v remains constant in
space, its direction is free to vary and the observable magnetization states can be expressed
as local minimizers of the micromagnetic energy functional. In single-crystal ferromagnets
(cf. [2, 10]), and upon appropriate non-dimensionalization, this functional reads as

EΩ(v) + WΩ(v) := 1
2

ˆ
Ω

|∇v|2dx+ 1
2

ˆ
Ω

|∇u|2dx (3.1)

with v ∈ H1(Ω, S2), and where vχΩ denotes the extension of v by zero to the whole space
outside Ω. In the above expression, the exchange energy EΩ accounts for symmetric exchange
interactions, which tend to penalize nonuniformities in the magnetization orientation. The
term WΩ represents the self-energy due to magnetostatics and describes the energy due to the
magnetic scalar potential u produced by m. For Ω bounded, the magnetic scalar potential
can be defined as the unique solution in H1(R3) of the Poisson equation

∆u = ∇ · (vχΩε) (3.2)
We refer the reader to [16] for further mathematical details.

This paper goes beyond the classical symmetric exchange interactions by examining the
potential lack of centrosymmetry in the crystal lattice structure of the ferromagnet. In this
paper, other than the classical symmetric exchange interactions, we consider the possible
lack of centrosymmetry in the crystal lattice structure of the ferromagnet. In addition to
the energy density expressed in equation (3.1), we consider possible antisymmetric exchange
interactions by including contributions from relevant Lifshitz invariants of the chirality tensor
∇v×v. Of particular significance is the energy contribution from bulk Dzyaloshinskii-Moriya
interaction (DMI), with energy density v · (∇ × v) corresponding to the trace of the chirality
tensor. Specifically, for every v ∈ H1(Ω,S2), we define the bulk DMI energy as

HΩ(v) := κ

ˆ
Ω

v · (∇ × v) dx. (3.3)

The normalized constant κ ∈ R is the so-called DMI constant, and its sign determines the
chirality of the system.

The full micromagnetic energy functional we are interested in is then EΩ +HΩ +WΩ. In
particular, with the notation introduced in Section 2, the micromagnetic energy associated
with an ε-tube Ωε along a curve γ : I 7→ R3 with cross-sectional shape Q is given by

Gε(v) := 1
ε2|Q|

(
1
2

ˆ
Ωε

|Dv|2 dx+ κ

ˆ
Ωε

v · ∇ × v dx+ 1
2

ˆ
R3

|∇u|2dx
)
, (3.4)

We note that in the energy above, we take a form of so-called interior DMI ∇ × v · v. To
put it in the form (2.2), we define a matrix K as follows

K(v) = κ

 0 −v3 v2
v3 0 −v1

−v2 v1 0

 .
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It is clear that
1
2 |Dv +K(v)|2 = 1

2 |Dv|2 +Dv : K(v) + 1
2 |K(v)|2 ,

and a simple computation shows that Dv : K(v) = κv · ∇ × v, and |K(v)|2 = 2κ2. Based
on these relations, we can rewrite our energy as follows

Gε(v) := 1
ε2|Q|

(
1
2

ˆ
Ωε

|Dv +K(v)|2 dx+ 1
2

ˆ
R3

|∇u|2dx
)

− κ2 |Ωε|
ε2|Q|

.

Without loss of generality, we assume |Q| = 1 and note that the last constant term in the
energy can be dropped as it does not affect critical points or Γ-convergence. Then, using
Γ-convergence results from [52] (see also [28]) and (2.7), in the limit as ε → 0 we obtain the
following limiting energy

EC(v) = 1
2

ˆ
I

|∂sv(s) +K(v(s))t(s)|2 ds+ 1
2

ˆ
I
Mv(s) · v(s)ds, (3.5)

where
M = − 1

2π

ˆ
∂Q

ˆ
∂Q

n(ξ) ⊗ n(η) ln |ξ − η|dξdη. (3.6)

We now want to investigate several special cases of the limiting energy and find its minimizers
in the form of domain walls.

3.1. Straight wire with DMI. In the case of an infinite straight wire with a circular cross-
section, the interval I in (3.5) is not compact, and one cannot directly apply Theorem 1.
However, it is still possible to prove the result for an infinite straight wire with some standard
modifications to account for translation invariance. It is also possible to model this scenario
by considering it as the limit of a sequence of energy functionals defined on straight wires
of finite lengths. We have t = e1 and, up to constant terms, the limiting energy can be
rewritten as

EC(v) = 1
2

ˆ
R

|∂xv + κ(0, v3,−v2)|2 dx+ 1
4π

ˆ
R

(1 − v2
1)dx . (3.7)

We note that the global minimum of the energy is achieved for v = ±e1.
We are interested in non-trivial local minimizers corresponding to domain walls. There-

fore, we can impose boundary conditions v → ±e1 as x → ±∞ and look for a global
minimizer of EC with these boundary conditions. For that, we decompose the first term as

|∂xv + κ(0, v3,−v2)|2 = |v′
1|2 + |v′

2 + κv3|2 + |v′
3 − κv2|2. (3.8)

and represent the magnetization v in spherical coordinates

v(x) = (cos θ(x), sin θ(x) cosϕ(x), sin θ(x) sinϕ(x)) .

Plugging it into the energy we obtain

EC(θ, ϕ) = 1
2

ˆ
R

|θ′(x)|2 + sin2 θ(x)|ϕ′(x) − κ|2 dx+ 1
4π

ˆ
R

sin2 θ(x) dx. (3.9)

The boundary conditions translate into θ(x) → 0 as x → ∞, θ(x) → kπ as x → −∞,
where k ∈ N is odd. We minimize this energy in ϕ to obtain ϕ(x) = κx. The subsequent
minimization in θ gives us k = 1 and a standard domain wall profile

θ0(x) = 2 arctan
(
e

− 1√
4π

x
)
. (3.10)



EXCHANGE INTERACTIONS IN CURVED MAGNETIC NANOWIRES 11

Figure 2. Sketch of the domain wall in the straight wire. The value of the dimen-
sionless parameter characterizing the strength of the DMI is chosen to be κ = 0.36,
which is close to that for the B20-type FeGe [55].

The minimizing profile is

v0(x) = (cos θ0(x), sin θ0(x) cos(κx), sin θ0(x) sin(κx)). (3.11)

It is clear that v0 is a global minimizer of the energy (3.7) under domain wall boundary
conditions v → ±e1 as x → ±∞. Therefore, it follows that it is a local minimizer of EC with
respect to H1 perturbations.

We note that in the intuitive 1D energy for a nanowire sometimes studied in physics
literature for soft materials [4]

1
2

ˆ
R

|∂xv|2 + κ(v′
2v3 − v′

3v2) +Q(1 − v2
1) dx (3.12)

the DMI term might lead to an uncontrolled profile winding at the tails to decrease the
micromagnetic energy. This phenomenon is always absent in the reduced 3D to 1D model due
to the presence of two effective anisotropy terms produced by DMI and stray field energies.
Effective anisotropy here globally suppresses conical modulation [3], but modulation occurs
along the domain wall (see Fig. 2).

3.2. Rings with DMI. If our original domain has a geometry of a ring with radius R
and circular cross-section, we can define t(ϕ) = (− sinϕ, cosϕ, 0), n(ϕ) = (cosϕ, sinϕ, 0) and
hence

K(v(ϕ))t(ϕ) = κ(−v3 cosϕ,−v3 sinϕ, v2 sinϕ+ v1 cosϕ) = −κv3n(ϕ) + κv(ϕ) · n(ϕ)e3.

It is convenient to rescale the domain to be a unit circle, and hence, we can write the energy
rescaled by R as

EC(v) = 1
2R2

ˆ 2π

0
|∂ϕv|2 dϕ+ κ

R

ˆ 2π

0
(−∂ϕv · nv3 + v · n∂ϕv3) dϕ (3.13)

+κ2

2

ˆ 2π

0
1 − (v · t)2 dϕ+ 1

4π

ˆ 2π

0
1 − (v · t)2 dϕ. (3.14)

When DMI can be neglected, an extensive examination of energy minimizers and the resulting
symmetry-breaking phenomena is carried out in [15] (see also [8] for findings on dynamic
stability).

Observe that the DMI term produces an additional anisotropy along the wire. It is
convenient to introduce local ring coordinates and decompose the magnetization v along the
Frenet frame v = vtt + vnn + v3b. We now have ∂ϕv = (v′

t + vn)t + (v′
n − vt)n + v′

3b and,
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therefore, it is possible to rewrite the reduced 1D energy as

EC(v) = 1
2R2

ˆ 2π

0

∣∣v′
t + vn

∣∣2 +
∣∣v′

n − vt −Rκv3
∣∣2 +

∣∣v′
3 +Rκvn

∣∣2 dϕ

+ 1
4π

ˆ 2π

0
(1 − v2

t )dϕ (3.15)

Let us first try to understand the influence of the DMI in the model with only exchange and
DMI present

E0
C(v) = 1

2R2

ˆ 2π

0

∣∣v′
t + vn

∣∣2 +
∣∣v′

n − vt −Rκv3
∣∣2 +

∣∣v′
3 +Rκvn

∣∣2 dϕ.

It is clear that exchange energy wants magnetization to be a constant vector. However, the
presence of DMI breaks the symmetry of the problem and leads to novel types of minimizers.
Indeed, we can solve the system

v′
t + vn = 0, v′

n − vt −Rκv3 = 0, v′
3 +Rκvn = 0, |v| = 1, (3.16)

and obtain the following set of solutions:

vt = A√
1 +R2κ2

cos(
√

1 +R2κ2ϕ+ϕ0) −RκB, (3.17)

vn = A sin(
√

1 +R2κ2ϕ+ϕ0), (3.18)

v3 = ARκ√
1 +R2κ2

cos(
√

1 +R2κ2ϕ+ϕ0) +B, (3.19)

where

A2 +B2(1 +R2κ2) = 1. (3.20)

We also need to make sure that periodicity conditions on v are satisfied and therefore,
provided A ̸= 0, we have the following condition

(1 +R2κ2) = n2, (3.21)

where n ∈ N. Note that all these solutions yield zero micromagnetic energy (with absent
stray field), and hence, depending on the relation between R and κ, we might have several
minimizers. Two minimizers always exists by taking A = 0 and B = ± 1√

1+R2κ2 (see figure 3).

It is interesting to observe that the introduction of DMI breaks the degeneracy of ex-
change interaction, and instead of any constant solution being a minimizer of symmetric
exchange energy we obtain only two global minimizers of energy E0

C with anti-symmetric
exchange

v(ϕ) = ∓ Rκ√
1 +R2κ2

t ± 1√
1 +R2κ2

b. (3.22)

Moreover, when condition (3.21) is satisfied we have a continuum of solutions (cf. (3.17)–
(3.19)) with A and B satisfying (3.20).

An alternative approach to solving the problem sheds light on non-trivial periodic so-
lutions beyond condition (3.21). Let’s define an auxiliary unit vector field as follows:

ṽ =

 1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 ·

 cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

 · v, (3.23)



EXCHANGE INTERACTIONS IN CURVED MAGNETIC NANOWIRES 13

Figure 3. Sketch of the minimizer in the circular wire. Spin configuration is drawn
according to equation (3.28) with an arbitrarily chosen value of γ = 2.3.

where α = arctan(Rκ). The expression for the energy depending on field ṽ has the following
form:

E0
C(ṽ) = 1

2R2

ˆ 2π

0
|∂ϕṽ|2 dϕ+

√
1 +R2κ2

R2

ˆ 2π

0
(ṽ1∂ϕṽ2 − ṽ2∂ϕṽ1) dϕ

+1 +R2κ2

2R2

ˆ 2π

0
(1 − ṽ2

3)dϕ .

The resulting Hamiltonian clearly shows that the system is frustrated between two states: a
homogeneous state polarized along the easy axis or a Néel spiral in a perpendicular plane.
We note that it is possible to represent ṽ in spherical coordinates as follows

ṽ = (sin θ(ϕ) cosψ(ϕ), sin θ(ϕ) sinψ(ϕ), cos θ(ϕ))

and rewrite the above energy as

E0
C(θ, ϕ) = 1

2R2

ˆ 2π

0
|θ′|2 + sin2 θ|ψ′ −

√
1 +R2κ2|2 dϕ. (3.24)

We already have information about minimizers of the energy, but using this representation,
we can also find special solutions to the Euler-Lagrange equations

−θ′′ + sin θ cos θ|ψ′ −
√

1 +R2κ2|2 = 0 (3.25)

−(sin2 θψ′)′ +
√

1 +R2κ2(sin2 θ)′ = 0 (3.26)

Here we have to supplement these with boundary conditions θ(0) = θ(2π) + 2kπ, ψ(0) =
ψ(2π) + 2mπ, θ′(0) = θ′(2π), ψ′(0) = ψ′(2π). We can take θ = π

2 and ψ = nϕ + ϕ0, n ∈ N
to deduce

ṽ = (sin(nϕ+ ϕ0), cos(nϕ+ ϕ0), 0). (3.27)

Solution (3.27) is almost always a saddle point, except when condition (3.21) is satisfied.
With this exceptional condition, the unstable mode disappears, and the solution (3.27)
coincides with the minimizer.

If we introduce the magnetostatic energy contribution and study energy EC , in general,
the minimization problem cannot be solved explicitly anymore, and numerical simulations
are needed to investigate the minimizing configurations. However, we can still find an explicit
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solution

v(ϕ) = ∓ γ√
1 + γ2 t ± 1√

1 + γ2 b, (3.28)

γ =

√
4R2κ2 + (R2κ2 + 1

2πR
2 − 1)2 +R2κ2 + 1

2πR
2 − 1

2Rκ . (3.29)

It corresponds to taking θ and ψ as constants and solving an algebraic problem coming from
Euler-Lagrange equations for θ and ψ. Our additional numerical simulations indicate that
(3.28) is a good candidate for minimizer in a wide range of values R and κ. Still, the rigorous
clarification of this question is beyond the scope of this work.

Remark 2. We note that our results also apply to some interactions beyond exchange and
DMI. Below, we give one example of such a situation — the Ado interaction — highly
nonlinear interaction possible in several systems with broken inversion symmetry [47, 1].
According to [47, 1], for the crystals with the point group symmetry Td we have the following
simplified energy

Gε(v) := 1
ε2|Q|

(ˆ
Ωε

1
2 |Dv|2 + β(v1v2v3)∇ · v dx

)
. (3.30)

Given that K(v)e1 · ∂xv + K(v)e2 · ∂yv + K(v)e3 · ∂zv = β(v1v2v3)∇ · v when K(v) =
β(v1v2v3)I with I the 3 × 3 identity matrix, using Theorem 1 we can obtain the limiting
energy for Ado interactions

EC(v) = 1
2

ˆ
I

|∂xv + βv1v2v3e1|2 dx− 3β2

2

ˆ
I
v2

1v
2
2v

2
3dx . (3.31)
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