Homogenization of changing-type evolution equations

Micol Amar ${ }^{1}$, Andrea Dall'Aglio ${ }^{1}$, Fabio Paronetto ${ }^{2}$

${ }^{1}$ Dipartimento di Metodi e Modelli Matematici
Università di Roma "La Sapienza", via A.Scarpa 16, 00161 Roma, Italy
E-mail: amar@dmmm.uniroma1.it - aglio@dmmm.uniroma1.it
${ }^{2}$ Dipartimento di Matematica "Ennio De Giorgi"
Università di Lecce, Via per Arnesano, 73100 Lecce, Italy,
E-mail: fabio.paronetto@unile.it

Abstract

In this paper we study the homogenization of the linear equation $$
R\left(\varepsilon^{-1} x\right) \frac{\partial u_{\varepsilon}}{\partial t}-\operatorname{div}\left(a\left(\varepsilon^{-1} x\right) \cdot \nabla u_{\varepsilon}\right)=f
$$ with appropriate initial/final conditions, where R is a measurable bounded periodic function and a is a bounded uniformly elliptic matrix, whose coefficients $a_{i j}$ are measurable periodic functions. Since we admit that R may vanish and change sign, the usual compactness of the solutions in L^{2} may not hold if the mean value of R is zero.

1 Introduction

In this paper we will state a homogenization result for the problem

$$
\begin{cases}R_{\varepsilon}(x) \frac{\partial u_{\varepsilon}}{\partial t}(x, t)-\operatorname{div}\left(a_{\varepsilon}(x) \nabla u_{\varepsilon}(x, t)\right)=f(x, t) & \text { in } \Omega \times(0, T) \tag{1.1}\\ u_{\varepsilon}(x, t)=0 & \text { on } \partial \Omega \times(0, T) \\ u_{\varepsilon}(x, 0)=\varphi(x) & \text { on } \Omega_{+, \varepsilon} \\ u_{\varepsilon}(x, T)=\psi(x) & \text { on } \Omega_{-, \varepsilon}\end{cases}
$$

i.e., we will characterize the asymptotic limit, for $\varepsilon \rightarrow 0^{+}$, of the sequence of the solutions $\left\{u_{\varepsilon}\right\}$. Here, Ω is an open bounded subset of \mathbf{R}^{N} with smooth boundary, $T>0, f \in$ $L^{2}\left(0, T ; H^{-1}(\Omega)\right), \varphi, \psi \in L^{2}(\Omega), a_{\varepsilon}(x)=a\left(\varepsilon^{-1} x\right)$, where $a=a_{i j}$ is a measurable bounded periodic matrix which is uniformly elliptic, $R_{\varepsilon}(x)=R\left(\varepsilon^{-1} x\right)$, where $R: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a measurable bounded periodic function which may vanish and change sign, $\Omega_{+, \varepsilon}$ (respectively, $\Omega_{-, \varepsilon}$) is the subset of Ω where $R_{\varepsilon}>0$ (respectively, $R_{\varepsilon}<0$).

In the case $R \geqslant 0$, the homogenization of problem (1.1) has been studied in [14], [16]. Some recent existence results can be found in [17] and, for an interesting survey of physical applications, see also [5].

In the case where R changes sign, particular cases of the equation in (1.1), for fixed $\varepsilon=1$, arise in the kinetic theory (see, for instance, [6]) and have been already considered in [3] and [11]. Problem (1.1), in its general setting, is studied in [13] and [15], in connection with existence and uniqueness results and, in some particular situations, in [1], in connection with the homogenization.

We point out that in (1.1) the initial datum is only prescribed in the region where $R_{\varepsilon}>0$, i.e. where the equation is "forward parabolic", the final datum only where $R_{\varepsilon}<0$, i.e. where the equation is "backward parabolic", while no datum is given in the region where $R_{\varepsilon}=0$, i.e. where the equation is "elliptic" in the variable x, with t as a parameter.

Setting \bar{R} the mean value of the function R (which can be positive, negative or null), by standard a-priori estimates, it is not difficult to see that, up to a subsequence, the solutions u_{ε} converge, weakly in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, to a function u_{0} which we will characterize as the weak solution, in the sense of distributions, of the equation

$$
\begin{equation*}
\bar{R} \frac{\partial u_{0}}{\partial t}(x, t)-\operatorname{div}\left(a^{*} \nabla u_{0}(x, t)\right)=f(x, t) \quad \text { in } \Omega \times(0, T), \tag{1.2}
\end{equation*}
$$

with $u_{0}(x, t)=0$ on $\partial \Omega$, in the sense of traces, for a.e. $t \in(0, T)$ and proper initial/final conditions. Here, a^{*} is the homogenized matrix given in (3.13) below. Note that in the case $\bar{R}=0$, we have a parametric elliptic equation.

The main difference with respect to the results in [16] is the lack of compactness of the sequence $\left\{u_{\varepsilon}\right\}$ in the space of continuous functions, which is crucial to pass to the limit in the initial/final data.

In the case $\bar{R} \neq 0$, the previous problem was solved by the authors in [1] for the case of Laplace operator, even with an appropriate nonlinear reaction term in the righthandside.

In that paper, we obtained that, in the case $\bar{R}>0$, the limit $u_{0} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ is uniquely determined by (1.2), with the appropriate limit data given by the original initial datum and no final datum is prescribed; in the case $\bar{R}<0$, the limit u_{0} satisfies the final condition, while the initial condition is lost. The crucial tool is a compactness result in $\frac{L^{2}}{R}(\Omega \times(0, T))$ for the sequence $\left\{u_{\varepsilon}\right\}$, which does not hold true, in general, if we admit that \bar{R} can also be null.

In the present paper, we overcome this difficulty, obtaining the homogenization result for any \bar{R} (and for a general operator), using a different compactness property (see lemma 3.4), which leads to a new and (at least for the linear case) more general proof. Neverthless, the starting point is the usual asymptotic expansion of the operator and of the solutions, introduced in [4] (see Section 3).

In the case $\bar{R}>0$, our main result is that the whole sequence $\left\{u_{\varepsilon}\right\}$ converges strongly in $L^{2}(\Omega \times(0, T))$ to the solution $u_{0} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ of the problem

$$
\begin{cases}\bar{R} \frac{\partial u_{0}}{\partial t}(x, t)-\operatorname{div}\left(a^{*} \nabla u_{0}(x, t)\right)=f(x, t) & \text { in } \Omega \times(0, T) \tag{1.3}\\ u_{0}(x, t)=0 & \text { on } \partial \Omega \times(0, T) \\ u_{0}(x, 0)=\varphi(x) & \text { on } \Omega\end{cases}
$$

where a^{*} is the usual constant homogenized matrix (see theorem 3.3). Analogous results are obtained for $\bar{R}<0$ and for $\bar{R}=0$ (see theorems 3.5 and 3.6): in the first case only the final condition passes to the limit; in the second one no initial/final condition passes to the limit. We remark that in all these cases there is no interaction between the homogenization of the two operators R_{ε} and a_{ε}.

Finally, we recall that our result solves an open problem suggested by A. Pankov in one of his books (see [12], open problems - 10).

The paper is organized as follows: in Section 2 we set our notations and recall some preliminary results on the existence and uniqueness of the solution of (1.1). In Section 3 the homogenization thoerems, i.e. the main results of the paper, are stated and proved (see theorems 3.3, 3.5 and 3.6). Moreover, in that section we obtain a crucial compactness result (see lemma 3.4) for an appropriate temporal mean average of the sequence of the solutions $\left\{u_{\varepsilon}\right\}$.

Acknowledgments: The authors would like to thank Prof. A. Pankov for suggesting the problem and Prof. A. Piatznisky for some helpful discussions. The authors are also grateful to Prof. C. Pagani for some useful references on the physical applications of this kind of problems.

2 Notations and preliminary results

2.1 Notations

Let $A \subseteq \mathbf{R}^{n}, n \geqslant 1$, be a given open set, with smooth boundary, for simplicity. We denote by \bar{A} the closure of A and by ∂A the boundary of A.
For any integer $k, \mathcal{C}^{k}(A)$ (resp. $\left.\mathcal{C}^{\infty}(A)\right)$ is the set of all real functions defined on A, which admit continuous partial derivatives up to order k (resp. having continuous partial derivatives of any order). In particular, $\mathcal{C}_{c}^{k}(A)$, is the subset of those functions belonging to $\mathcal{C}^{k}(A)$, with compact support in A. For simplicity, $\mathcal{C}^{0}(A)$ (resp. $\left.\mathcal{C}_{c}^{0}(A)\right)$ is also denoted by $\mathcal{C}(A)$ $\left(\right.$ resp. $\left.\mathcal{C}_{c}(A)\right)$.
We denote by $L^{p}(A)$ and $W^{k, p}(A), 1 \leqslant p \leqslant \infty, k \in \mathbf{N}$, (resp. $L_{\mathrm{loc}}^{p}(A)$ and $\left.W_{\mathrm{loc}}^{k, p}(A)\right)$ the standard Lebesgue and Sobolev spaces. In particular, we set $H^{1}(A):=W^{1,2}(A)$ and denote by $H_{0}^{1}(A)$ the subset of $H^{1}(A)$ of those functions having null trace on ∂A. As usual, $H^{-1}(A)$ is the topological dual space of $H_{0}^{1}(A)$.

Let $Y=(0,1)^{n}$ be the unit cell in \mathbf{R}^{n}. A function defined on \mathbf{R}^{n} is said to be Y-periodic if it is periodic of period 1 with respect to each variable x_{i}, with $1 \leqslant i \leqslant n$. We denote by $L_{\#}^{p}(Y)$ and $W_{\#}^{k, p}(Y), 1 \leqslant p \leqslant \infty, k \in \mathbf{N}$, the space of functions in $L_{\mathrm{loc}}^{p}\left(\mathbf{R}^{n}\right)$ or $W_{\mathrm{loc}}^{k, p}\left(\mathbf{R}^{n}\right)$, respectively, which are Y-periodic. As usual, $H_{\#}^{1}(Y):=W_{\#}^{1,2}(Y)$.
Let I be a real interval and X a topological vector space. We denote by $L^{p}(I ; X), 1 \leqslant p \leqslant \infty$, the space of measurable functions $h: I \rightarrow X$, such that

$$
\int_{I}\|h(t)\|_{X}^{p} d t<+\infty \quad \text { if } 1 \leqslant p<+\infty, \quad \underset{t \in I}{\operatorname{ess}-\sup }\|h(t)\|_{X}<+\infty \quad \text { if } p=+\infty
$$

Throughout this paper, Ω is an open bounded subset of \mathbf{R}^{n} with smooth boundary (for simplicity assume $\partial \Omega$ of class $\left.\mathcal{C}^{\infty}\right)$ and T is a positive number; we set $\Omega_{T}=\Omega \times(0, T)$. If it is not otherwise specified, we adopt the convention that repeated indices indicate summation. Finally, the letter C denotes a strictly positive constant which may vary from line to line.

2.2 Mixed type evolution equations

In the rest of this section we want to present an existence result for evolution equations of mixed type, i.e. which may be partially elliptic and partially parabolic, both forward and backward. To this purpose, let us introduce the following class of matrices.

Definition 2.1 Fix $\lambda, \Lambda \in \mathbf{R}$ with $0<\lambda \leqslant \Lambda$. We denote by $\mathcal{M}_{\Omega}(\lambda, \Lambda)$ the set of $n \times n$ matrices $a=\left(a_{i j}(x)\right)_{i, j=1, \ldots . n} \in L^{\infty}\left(\Omega ; \mathbf{R}^{n^{2}}\right)$ such that

$$
\left\{\begin{array}{l}
a_{i j}(x) \xi_{i} \xi_{j} \geqslant \lambda|\xi|^{2} \tag{2.1}\\
|a(x) \cdot \xi| \leqslant \Lambda|\xi|
\end{array}\right.
$$

for every $\xi \in \mathbf{R}^{n}$, for a.e. $x \in \Omega$.
Given a matrix $a \in \mathcal{M}_{\Omega}(\lambda, \Lambda)$, we consider the operator $A: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ defined by $A u=-\operatorname{div}(a \nabla u)$. Let $R(x)$ be a given function in $L^{\infty}(\Omega)$. We set

$$
\begin{equation*}
\Omega_{+}=\{x \in \Omega \mid R(x)>0\}, \quad \Omega_{0}=\{x \in \Omega \mid R(x)=0\}, \quad \Omega_{-}=\{x \in \Omega \mid R(x)<0\}, \tag{2.2}
\end{equation*}
$$

and assume that $\Omega_{ \pm}, \Omega_{0}$ have Lipschitz boundaries.
Our first step is to define a solution for the following problem

$$
\begin{cases}R(x) \frac{\partial u}{\partial t}(x, t)-\operatorname{div}(a(x) \nabla u(x, t))=f(x, t) & \text { in } \Omega \times(0, T) \tag{2.3}\\ u(x, t)=0 & \text { on } \partial \Omega \times(0, T) \\ u(x, 0)=\varphi(x) & \text { on } \Omega_{+} \\ u(x, T)=\psi(x) & \text { on } \Omega_{-}\end{cases}
$$

where $f: \Omega_{T} \rightarrow \mathbf{R}, \varphi: \Omega_{+} \rightarrow \mathbf{R}, \psi: \Omega_{-} \rightarrow \mathbf{R}$ are the data of the problem, for which appropriate regularity assumptions will be required.
In order to achieve this goal, we consider the space

$$
\begin{equation*}
\mathcal{W}=\left\{u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \mid(R u)^{\prime} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)\right\} \tag{2.4}
\end{equation*}
$$

(where $(R u)^{\prime}$ is the distributional derivative of $R u$ with respect to t), endowed with the natural norm

$$
\begin{equation*}
\|u\|_{\mathcal{W}}=\|u\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}+\left\|(R u)^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)} \tag{2.5}
\end{equation*}
$$

Following [13] and [15], we give the definition below.
Definition 2.2 Let $f \in L^{2}\left(0, T ; H^{-1}(\Omega)\right), \varphi \in L^{2}\left(\Omega_{+}\right), \psi \in L^{2}\left(\Omega_{-}\right)$. We say that a function $u \in \mathcal{W}$ is a solution of the problem (2.3), if

$$
(R u)^{\prime}(t)+A u(t)=f(t) \quad \text { for almost every } t \in(0, T)
$$

and

$$
u(x, 0)=\varphi(x) \quad \text { for a.e. } x \in \Omega_{+}, \quad u(x, T)=\psi(x) \quad \text { for a.e. } x \in \Omega_{-}
$$

Note that $R^{+} u^{2}, R^{-} u^{2} \in \mathcal{C}^{0}\left([0, T] ; L^{1}(\Omega)\right)$ (see [13] and [15]); therefore, the initial/final conditions make sense. Observe also that, denoting by $\langle\langle\cdot, \cdot\rangle\rangle$ the duality pairing between $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ and $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and by $((\cdot, \cdot))$ the scalar product in $L^{2}\left(0, T ; L^{2}(\Omega)\right)$, we have

$$
\left\langle\left\langle(R u)^{\prime}, \theta\right\rangle\right\rangle=-\left(\left(R u, \theta^{\prime}\right)\right)=-\int_{0}^{T} \int_{\Omega} R(x) u(x, t) \frac{\partial \theta}{\partial t}(x, t) d x d t \quad \forall \theta \in C_{c}^{1}\left(\Omega_{T}\right)
$$

We have the following result (see [15]).
Theorem 2.3 Let f, φ, ψ and R as before. Then, problem (2.3) admits a unique solution (in the sense of definition 2.2). Moreover, the following estimate holds:

$$
\|u\|_{\mathcal{W}} \leqslant C\left[\|f\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)}+\left\|\varphi|R|^{1 / 2}\right\|_{L^{2}\left(\Omega_{+}\right)}+\left\|\psi|R|^{1 / 2}\right\|_{L^{2}\left(\Omega_{-}\right)}\right]
$$

where $C=C(\lambda, \Lambda, n, \Omega)$.

3 Homogenization

The aim of this paper is to study the homogenization of the problem (2.3), in the case when R and $a_{i j}$ are periodic functions. To this purpose, let $a \in \mathcal{M}_{Y}(\lambda, \Lambda)$ be a Y-periodic matrix (i.e. $a_{i j}$ are Y-periodic functions), and $R \in L_{\#}^{\infty}(Y)$ be a given function. We assume that the regions $\left\{x \in \mathbf{R}^{n}: R(x)>0\right\},\left\{x \in \mathbf{R}^{n}: R(x)<0\right\}$ and $\left\{x \in \mathbf{R}^{n}: R(x)=0\right\}$ have Lipschitz boundaries. For every $\varepsilon>0$, we set $R_{\varepsilon}(x)=R\left(\varepsilon^{-1} x\right)$ and $a_{\varepsilon}(x)=a\left(\varepsilon^{-1} x\right)$. As done in (2.2), we denote by $\Omega_{+, \varepsilon}$ (resp. $\Omega_{-, \varepsilon}$ or $\Omega_{0, \varepsilon}$) the subset of Ω where $R_{\varepsilon}>0$ (resp. $R_{\varepsilon}<0$ or $R_{\varepsilon}=0$).

Let us fix $f \in L^{2}\left(0, T ; H^{-1}(\Omega)\right), \varphi, \psi \in L^{2}(\Omega)$, and, for $\varepsilon>0$, consider the family of problems

$$
\begin{cases}R_{\varepsilon}(x) \frac{\partial u_{\varepsilon}}{\partial t}(x, t)-\operatorname{div}\left(a_{\varepsilon}(x) \nabla u_{\varepsilon}(x, t)\right)=f(x, t) & \text { in } \Omega \times(0, T) \tag{3.1}\\ u_{\varepsilon}(x, t)=0 & \text { on } \partial \Omega \times(0, T) \\ u_{\varepsilon}(x, 0)=\varphi(x) & \text { on } \Omega_{+, \varepsilon} \\ u_{\varepsilon}(x, T)=\psi(x) & \text { on } \Omega_{-, \varepsilon}\end{cases}
$$

Note that we consider as Cauchy conditions the restrictions of the functions φ and ψ respectively to $\Omega_{+, \varepsilon}$ and $\Omega_{-, \varepsilon}$.
By theorem 2.3, for every $\varepsilon>0$, problem (3.1) has a unique solution

$$
u_{\varepsilon} \in \mathcal{W}_{\varepsilon}=\left\{u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \mid\left(R_{\varepsilon} u\right)^{\prime} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)\right\}
$$

Moreover,

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{\mathcal{W}_{\varepsilon}} \leqslant C\left[\|f\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)}+\|\varphi\|_{L^{2}(\Omega)}+\|\psi\|_{L^{2}(\Omega)}\right], \tag{3.2}
\end{equation*}
$$

where $C>0$ does not depend on ε. Hence, we can assume that there exist a function $u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and a subsequence, which we still denote by $\left\{u_{\varepsilon}\right\}$, such that

$$
\begin{equation*}
u_{\varepsilon} \rightharpoonup u \quad \text { weakly in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{3.3}
\end{equation*}
$$

It is our purpose to characterize the asymptotic limit u of the solutions u_{ε}, when $\varepsilon \rightarrow 0^{+}$.
The homogenization of problem (3.1) in the case $R \equiv 0$ or $R \geqslant C>0$ (equivalently, $R \leqslant C<0$), i.e. in the elliptic case or the standard parabolic case, is by now a classical matter (see e.g. [2], [4], [8]). A non classical homogenization result, in the case $R \geqslant 0$, is given in [14] and [16]. In the case of a coefficient R with non constant sign, a first homogenization result, for the Laplace operator and under the constraint $\int_{Y} R(y) d y \neq 0$, can be found in [1].

When we deal with a more general coercive operator and with no constraint on the mean value of R, as in the present situation, the homogenization of (3.1) can formally be done as usual, but the main difference will be in the error estimate (see theorems 3.3, 3.5, 3.6 and lemma 3.4, below).

In this approach, the solution u_{ε} is assumed to admit the following ansatz (or asymptotic expansion)

$$
\begin{equation*}
u_{\varepsilon}(x)=u_{0}\left(x, \frac{x}{\varepsilon}, t\right)+\varepsilon u_{1}\left(x, \frac{x}{\varepsilon}, t\right)+\varepsilon^{2} u_{2}\left(x, \frac{x}{\varepsilon}, t\right)+\varepsilon^{3} u_{3}\left(x, \frac{x}{\varepsilon}, t\right)+\ldots \tag{3.4}
\end{equation*}
$$

where each function $u_{i}(x, y, t)$ is Y-periodic with respect to the fast variable $y=x / \varepsilon$. Plugging this ansatz in the first equation of (3.1) and identifying different powers of ε, we
obtain a cascade of equations. Defining the operator A_{ε} by $A_{\varepsilon} u=-\operatorname{div}\left(a_{\varepsilon} \nabla u\right)$, we may write $A_{\varepsilon}=\varepsilon^{-2} A_{0}+\varepsilon^{-1} A_{1}+A_{2}$, where

$$
\begin{align*}
A_{0} & =-\frac{\partial}{\partial y_{i}}\left(a_{i j}(y) \frac{\partial}{\partial y_{j}}\right) \\
A_{1} & =-\frac{\partial}{\partial y_{i}}\left(a_{i j}(y) \frac{\partial}{\partial x_{j}}\right)-\frac{\partial}{\partial x_{i}}\left(a_{i j}(y) \frac{\partial}{\partial y_{j}}\right) \tag{3.5}\\
A_{2} & =-\frac{\partial}{\partial x_{i}}\left(a_{i j}(y) \frac{\partial}{\partial x_{j}}\right) .
\end{align*}
$$

The two space variables x and y are taken as independent, and only at the end of the computation y is replaced by $\frac{x}{\varepsilon}$. The first equation in (3.1) is therefore equivalent to the following system

$$
\left\{\begin{array}{l}
A_{0} u_{0}=0 \tag{3.6}\\
A_{0} u_{1}+A_{1} u_{0}=0 \\
R \frac{\partial u_{0}}{\partial t}+A_{0} u_{2}+A_{1} u_{1}+A_{2} u_{0}=f \\
R \frac{\partial u_{1}}{\partial t}+A_{0} u_{3}+A_{1} u_{2}+A_{2} u_{1}=0 \\
\cdots \cdots
\end{array}\right.
$$

the solutions of which are easily computed. To this aim, the following result well known result will be useful (see, for instance, [4] and [7]).

Proposition 3.1 Consider the periodic problem

$$
\left\{\begin{array}{l}
A_{0} v=g-\operatorname{div} G \quad \text { in } Y \tag{3.7}\\
v \in H_{\#}^{1}(Y)
\end{array}\right.
$$

where A_{0} is the operator defined by the first equality in (3.5), $g \in L_{\#}^{2}(Y)$ and $G \in L_{\#}^{2}\left(Y ; \mathbf{R}^{N}\right)$. Then problem (3.7) admits a weak solution if and only if

$$
\int_{Y} g(y) d y=0
$$

Moreover, in this case, the solution is unique up to an additive constant.
The first equation in (3.6) implies that $u_{0}(x, y, t) \equiv u_{0}(x, t)$ does not depend on y. The second equation in (3.6) gives the value of u_{1} in terms of u_{0}, i.e.

$$
\begin{equation*}
u_{1}\left(x, \frac{x}{\varepsilon}, t\right)=-\chi^{j}\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{0}}{\partial x_{j}}(x, t)+\tilde{u}_{1}(x, t) \tag{3.8}
\end{equation*}
$$

where $\chi^{j}(y), j=1, \ldots, n$, are the unique solutions in $H_{\#}^{1}(Y)$, with zero average, of the cell problem

$$
\begin{cases}A_{0} \chi^{j}=-\frac{\partial a_{i j}}{\partial y_{i}} & \text { in } Y \tag{3.9}\\ \int_{Y} \chi^{j}(y) d y=0 & y \mapsto \chi^{j}(y) Y \text {-periodic }\end{cases}
$$

and \tilde{u}_{1} is a non-oscillating function, which is by now not determined.
The third equation in (3.6) gives u_{2} in terms of u_{0}, i.e.

$$
\begin{equation*}
u_{2}\left(x, \frac{x}{\varepsilon}, t\right)=\chi^{0}\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{0}}{\partial t}(x, t)+\chi^{i j}\left(\frac{x}{\varepsilon}\right) \frac{\partial^{2} u_{0}}{\partial x_{i} \partial x_{j}}(x, t)-\chi^{j}\left(\frac{x}{\varepsilon}\right) \frac{\partial \tilde{u}_{1}}{\partial x_{j}}(x, t)+\tilde{u}_{2}(x, t) \tag{3.10}
\end{equation*}
$$

where $\chi^{0} \in H_{\#}^{1}(Y)$ is the unique solution, with zero average, of the cell problem

$$
\begin{cases}A_{0} \chi^{0}=\int_{Y} R(y) d y-R & \text { in } Y \tag{3.11}\\ \int_{Y} \chi^{0}(y) d y=0 & y \rightarrow \chi^{0}(y) Y \text {-periodic }\end{cases}
$$

and $\chi^{i j} \in H_{\#}^{1}(Y)$, for $i, j=1, \ldots, n$, are the unique solutions, with zero average, of another family of cell problems (see [4], (2.42) and (2.39))

$$
\begin{cases}A_{0} \chi^{i j}=b_{i j}-\int_{Y} \tilde{b}_{i j}(y) d y & \text { in } Y \tag{3.12}\\ \int_{Y} \chi^{i j}(y) d y=0 & y \rightarrow \chi^{i j}(y) Y \text {-periodic }\end{cases}
$$

with

$$
\begin{aligned}
& b_{i j}(y)=a_{i j}(y)-a_{i k}(y) \frac{\partial \chi^{j}}{\partial y_{k}}-\frac{\partial}{\partial y_{k}}\left(a_{k i}(y) \chi^{j}\right), \\
& \tilde{b}_{i j}(y)=a_{i j}(y)-a_{i k}(y) \frac{\partial \chi^{j}}{\partial y_{k}}
\end{aligned}
$$

and \tilde{u}_{2} is another non-oscillating function, which is by now not determined.
The homogenized equation for u_{0} is obtained by writing the compatibility condition (or Fredholm alternative) for the third equation in (3.6). If we define

$$
\bar{R}=\int_{Y} R(y) d y
$$

this gives

$$
\bar{R} \frac{\partial u_{0}}{\partial t}(x, t)-\operatorname{div}\left(a^{*} \nabla u_{0}(x, t)\right)=f(x, t),
$$

where the homogenized matrix a^{*} is defined by its constant entries $a_{i j}^{*}$ given by

$$
\begin{equation*}
a_{i j}^{*}=\int_{Y} \tilde{b}_{i j}(y) d y=\int_{Y}\left[a_{i j}(y)-a_{i k}(y) \frac{\partial \chi^{j}}{\partial y_{k}}(y)\right] d y . \tag{3.13}
\end{equation*}
$$

Remark 3.2 - Note that, so far, the functions \tilde{u}_{1} in (3.8) and \tilde{u}_{2} in (3.10) are non-oscillating functions that are not determined. This implies, as pointed out in [4], that if we stop expansion (3.4) at the first order (i.e. if we do not look at higher order equations in (3.6)), the function \tilde{u}_{1} (and a fortiori \tilde{u}_{2}) does not play any role, and so we may choose $\tilde{u}_{1}=\tilde{u}_{2} \equiv 0$.

As far as the boundary conditions are concerned, we will show that three different situations may occur, depending on the sign of the average \bar{R}. We first examine the case where $\bar{R}>0$. The following theorem will prove that the limit function u in (3.3), actually coincides with the function u_{0}, solution of (3.14) below, and that the whole sequence (not only a subsequence) converges strongly to u_{0} in $L^{2}(\Omega \times(0, T))$.

Theorem 3.3 For each $\varepsilon>0$, let u_{ε} be the unique solutions of (3.1). Assume that $\bar{R}>0$, and let u_{0} be the unique solution of problem

$$
\begin{cases}\bar{R} \frac{\partial u_{0}}{\partial t}(x, t)-\operatorname{div}\left(a^{*} \nabla u_{0}(x, t)\right)=f(x, t) & \text { in } \Omega \times(0, T) \tag{3.14}\\ u_{0}(x, t)=0 & \text { on } \partial \Omega \times(0, T) \\ u_{0}(x, 0)=\varphi(x) & \text { on } \Omega\end{cases}
$$

Assume, in addition, that u_{0} satisfies the following regularity assumptions:

$$
\begin{equation*}
u_{0} \in L^{\infty}\left(0, T ; W^{3, \infty}(\Omega)\right), \quad \frac{\partial u_{0}}{\partial t} \in L^{\infty}\left(0, T ; W^{2, \infty}(\Omega)\right), \quad \frac{\partial^{2} u_{0}}{\partial t^{2}} \in L^{\infty}\left(\Omega_{T}\right) \tag{3.15}
\end{equation*}
$$

Let u_{1} be defined by (3.8), with $\tilde{u}_{1}=0$. Then, for every $\tilde{T} \in(0, T)$, we have

$$
\begin{equation*}
\left\|u_{\varepsilon}-u_{0}-\varepsilon u_{1}\right\|_{L^{2}\left(0, \tilde{T} ; H^{1}(\Omega)\right)} \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0^{+} \tag{3.16}
\end{equation*}
$$

Moreover, $\left\|u_{\varepsilon}-u_{0}\right\|_{L^{2}\left(\Omega_{T}\right)} \rightarrow 0$, for $\varepsilon \rightarrow 0^{+}$.

Note that problem (3.14) is well-posed in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ since it is easily seen that a^{*} is bounded and coercive (see [4], Remark 2.6).
In order to prove this theorem, we need the following lemma.
Lemma 3.4 For every $\varepsilon>0$, let $u_{\varepsilon} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ be the unique solution of (3.1) and let $v \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ be a given function. Then, for every $s, t \in[0, T], s<t$, there exists a function $\psi \in H_{0}^{1}(\Omega)$ such that

$$
\int_{s}^{t}\left|u_{\varepsilon}-v\right|^{2} d \tau \rightarrow \psi^{2} \quad \text { strongly in } L^{1}(\Omega)
$$

up to a subsequence.
Proof - By a-priori estimates (3.2), it follows that, for every $s, t \in[0, T], s<t$,

$$
\begin{equation*}
\int_{s}^{t}\left(\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x\right) d \tau \leqslant\left\|u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \leqslant C \tag{3.17}
\end{equation*}
$$

for a constant C independent of ε. Set

$$
\psi_{\varepsilon}(x)=\left(\int_{s}^{t}\left|u_{\varepsilon}(x, \tau)-v(x, \tau)\right|^{2} d \tau\right)^{1 / 2} \quad \text { for a.e. } x \in \Omega
$$

Clearly, $\left\{\psi_{\varepsilon}\right\} \subseteq H_{0}^{1}(\Omega)$ and, for a constant C independent of ε, we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \psi_{\varepsilon}\right|^{2} d x & =\int_{\Omega}\left(\frac{1}{\int_{s}^{t}\left|u_{\varepsilon}-v\right|^{2} d \tau}\left|\int_{s}^{t}\left(u_{\varepsilon}-v\right) \nabla\left(u_{\varepsilon}-v\right) d \tau\right|^{2}\right) d x \\
& \leqslant \int_{\Omega}\left(\int_{s}^{t}\left|\nabla\left(u_{\varepsilon}-v\right)\right|^{2} d \tau\right) d x \leqslant C
\end{aligned}
$$

where the last inequality is due to (3.17). Hence, $\left\{\psi_{\varepsilon}\right\}$ is bounded in $H_{0}^{1}(\Omega)$ and then it is compact in $L^{2}(\Omega)$; i.e., up to a subsequence, $\left|\psi_{\varepsilon}\right|^{2} \rightarrow|\psi|^{2}$, strongly in $L^{1}(\Omega)$, for a proper
function $\psi \in L^{2}(\Omega)$ (actually, $\psi \in H_{0}^{1}(\Omega)$).
In particular, the previous lemma implies that, for $\varepsilon \rightarrow 0^{+}$,

$$
\int_{s}^{t} \int_{\Omega} R\left(\frac{x}{\varepsilon}\right)\left|u_{\varepsilon}-v\right|^{2} d x d \tau=\int_{\Omega} R\left(\frac{x}{\varepsilon}\right)\left[\int_{s}^{t}\left|u_{\varepsilon}-v\right|^{2} d \tau\right] d x \rightarrow \bar{R} \int_{\Omega} \psi^{2}(x) d x
$$

since, by periodicity, $R_{\varepsilon} \rightharpoonup \bar{R}$ *-weakly in $L^{\infty}(\Omega)$.
Proof of Theorem 3.3 - Let us introduce a cut-off function $\theta_{\varepsilon}: \Omega \rightarrow \mathbf{R}$, such that $\theta_{\varepsilon} \in \mathcal{C}^{\infty}(\Omega), 0 \leqslant \theta_{\varepsilon}(x) \leqslant 1 \quad \forall x \in \Omega, \quad \theta_{\varepsilon}(x)=0$ on the set $\Omega_{\varepsilon}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geqslant \varepsilon\}$, $\theta_{\varepsilon}(x)=1$ on $\partial \Omega,\left|\nabla \theta_{\varepsilon}\right| \leqslant C / \varepsilon$. Note that, by the regularity assumption on $\partial \Omega$, the region where $\theta_{\varepsilon} \neq 0$ has Lebesgue measure smaller than $C \varepsilon$.
Let us define the error function r_{ε} of the asymptotic expansion by

$$
r_{\varepsilon}(x, y, t)=u_{\varepsilon}(x, t)-\left[u_{0}(x, t)+\varepsilon u_{1}(x, y, t)\left(1-\theta_{\varepsilon}(x)\right)+\varepsilon^{2} u_{2}(x, y, t)\left(1-\theta_{\varepsilon}(x)\right)\right]
$$

where u_{1} and u_{2} are defined respectively in (3.8) and (3.10) and we choose $\tilde{u}_{1}=\tilde{u}_{2}=0$ as explained in Remark 3.2.

It follows that $r_{\varepsilon}\left(x, \frac{x}{\varepsilon}, t\right)$ solves

$$
\begin{cases}R_{\varepsilon} \frac{\partial r_{\varepsilon}}{\partial t}-\operatorname{div}\left(a_{\varepsilon} \nabla r_{\varepsilon}\right)=f_{\varepsilon} & \text { in } \Omega \times(0, T), \tag{3.18}\\ r_{\varepsilon}=0 & \text { on } \partial \Omega \times(0, T), \\ r_{\varepsilon}\left(x, \frac{x}{\varepsilon}, 0\right)=\varphi_{\varepsilon}\left(x, \frac{x}{\varepsilon}\right) & \text { on } \Omega_{+, \varepsilon}, \\ r_{\varepsilon}\left(x, \frac{,}{\varepsilon}, T\right)=\psi_{\varepsilon}\left(x, \frac{x}{\varepsilon}\right) & \text { on } \Omega_{-, \varepsilon},\end{cases}
$$

where

$$
\begin{aligned}
\varphi_{\varepsilon}(x, y) & =\varphi(x)-\left[u_{0}(x, 0)+\varepsilon u_{1}(x, y, 0)\left(1-\theta_{\varepsilon}(x)\right)+\varepsilon^{2} u_{2}(x, y, 0)\left(1-\theta_{\varepsilon}(x)\right)\right] \\
& =-\left[\varepsilon u_{1}(x, y, 0)\left(1-\theta_{\varepsilon}(x)\right)+\varepsilon^{2} u_{2}(x, y, 0)\left(1-\theta_{\varepsilon}(x)\right)\right] \\
\psi_{\varepsilon}(x, y) & =\psi(x)-\left[u_{0}(x, T)+\varepsilon u_{1}(x, y, T)\left(1-\theta_{\varepsilon}(x)\right)+\varepsilon^{2} u_{2}(x, y, T)\left(1-\theta_{\varepsilon}(x)\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{\varepsilon}(x, y, t)=R(y) \frac{\partial u_{\varepsilon}}{\partial t}(x, t)-\operatorname{div}\left(a(y) \nabla u_{\varepsilon}(x, t)\right)-\left[R(y) \frac{\partial u_{0}}{\partial t}(x, t)-\operatorname{div}\left(a(y) \nabla u_{0}(x, t)\right)\right] \\
& -\varepsilon\left[R(y) \frac{\partial u_{1}}{\partial t}(x, y, t)-\operatorname{div}\left(a(y) \nabla u_{1}(x, y, t)\right)\right] \\
& -\varepsilon^{2}\left[R(y) \frac{\partial u_{2}}{\partial t}(x, y, t)-\operatorname{div}\left(a(y) \nabla u_{2}(x, y, t)\right)\right] \\
& +\varepsilon\left[R(y) \frac{\partial\left(u_{1} \theta_{\varepsilon}\right)}{\partial t}(x, y, t)-\operatorname{div}\left(a(y) \nabla\left(u_{1} \theta_{\varepsilon}\right)(x, y, t)\right)\right] \\
& +\varepsilon^{2}\left[R(y) \frac{\partial\left(u_{2} \theta_{\varepsilon}\right)}{\partial t}(x, y, t)-\operatorname{div}\left(a(y) \nabla\left(u_{2} \theta_{\varepsilon}\right)(x, y, t)\right)\right] \\
& =f(x, t)-R(y) \frac{\partial u_{0}}{\partial t}(x, t)-\frac{1}{\varepsilon} A_{1} u_{0}-A_{2} u_{0} \\
& -\varepsilon R(y) \frac{\partial u_{1}}{\partial t}(x, y, t)-\frac{1}{\varepsilon} A_{0} u_{1}-A_{1} u_{1}-\varepsilon A_{2} u_{1} \\
& -\varepsilon^{2} R(y) \frac{\partial u_{2}}{\partial t}(x, y, t)-A_{0} u_{2}-\varepsilon A_{1} u_{2}-\varepsilon^{2} A_{2} u_{2} \\
& +\varepsilon R(y) \frac{\partial u_{1}}{\partial t}(x, y, t) \theta_{\varepsilon}(x)+\varepsilon A_{\varepsilon}\left(u_{1} \theta_{\varepsilon}\right) \\
& +\varepsilon^{2} R(y) \frac{\partial u_{2}}{\partial t}(x, y, t) \theta_{\varepsilon}(x)+\varepsilon^{2} A_{\varepsilon}\left(u_{2} \theta_{\varepsilon}\right) \\
& =f(x, t)-\left[R(y) \frac{\partial u_{0}}{\partial t}(x, t)+A_{0} u_{2}+A_{1} u_{1}+A_{2} u_{0}\right] \quad(=0 \text { by (3.6)) } \\
& -\frac{1}{\varepsilon}\left(A_{1} u_{0}+A_{0} u_{1}\right) \quad(=0 \text { by }(3.6)) \\
& -\varepsilon\left[R(y)\left(1-\theta_{\varepsilon}(x)\right) \frac{\partial u_{1}}{\partial t}(x, y, t)+A_{2} u_{1}+A_{1} u_{2}\right. \\
& \left.+\varepsilon R(y)\left(1-\theta_{\varepsilon}(x)\right) \frac{\partial u_{2}}{\partial t}(x, y, t)+\varepsilon A_{2} u_{2}\right] \\
& +\varepsilon A_{\varepsilon}\left(u_{1} \theta_{\varepsilon}\right)+\varepsilon^{2} A_{\varepsilon}\left(u_{2} \theta_{\varepsilon}\right) .
\end{aligned}
$$

Then it is easy to check that

$$
\begin{aligned}
f_{\varepsilon}\left(x, \frac{x}{\varepsilon}, t\right)= & \varepsilon g_{\varepsilon}(x, t)-\varepsilon^{2} \operatorname{div} G_{\varepsilon}(x, t) \\
& -\varepsilon \operatorname{div}\left(a\left(\frac{x}{\varepsilon}\right) \nabla\left(u_{1} \theta_{\varepsilon}\right)\left(x, \frac{x}{\varepsilon}, t\right)\right)-\varepsilon^{2} \operatorname{div}\left(a\left(\frac{x}{\varepsilon}\right) \nabla\left(u_{2} \theta_{\varepsilon}\right)\left(x, \frac{x}{\varepsilon}, t\right)\right),
\end{aligned}
$$

where

$$
g_{\varepsilon}(x, t)=R\left(\frac{x}{\varepsilon}\right)\left(1-\theta_{\varepsilon}(x)\right) \chi^{j}\left(\frac{x}{\varepsilon}\right) \frac{\partial^{2} u_{0}}{\partial x_{j} \partial t}(x, t)
$$

$$
\begin{aligned}
& -a_{i j}\left(\frac{x}{\varepsilon}\right) \chi^{k}\left(\frac{x}{\varepsilon}\right) \frac{\partial^{3} u_{0}}{\partial x_{i} \partial x_{j} \partial x_{k}}(x, t) \\
& +a_{i j}\left(\frac{x}{\varepsilon}\right) \frac{\partial \chi^{0}}{\partial y_{j}}\left(\frac{x}{\varepsilon}\right) \frac{\partial^{2} u_{0}}{\partial x_{i} \partial t}(x, t) \\
& +a_{i j}\left(\frac{x}{\varepsilon}\right) \frac{\partial \chi^{h k}}{\partial y_{j}}\left(\frac{x}{\varepsilon}\right) \frac{\partial^{3} u_{0}}{\partial x_{i} \partial x_{h} \partial x_{k}}(x, t) \\
& -\varepsilon R\left(\frac{x}{\varepsilon}\right)\left(1-\theta_{\varepsilon}(x)\right) \chi^{0}\left(\frac{x}{\varepsilon}\right) \frac{\partial^{2} u_{0}}{\partial t^{2}}(x, t) \\
& -\varepsilon R\left(\frac{x}{\varepsilon}\right)\left(1-\theta_{\varepsilon}(x)\right) \chi^{i j}\left(\frac{x}{\varepsilon}\right) \frac{\partial^{3} u_{0}}{\partial x_{i} \partial x_{j} \partial t}(x, t), \\
\left(G_{\varepsilon}\right)_{i}(x, t)= & -a_{i j}\left(\frac{x}{\varepsilon}\right) \chi^{0}\left(\frac{x}{\varepsilon}\right) \frac{\partial^{2} u_{0}}{\partial x_{j} \partial t}(x, t) \\
& -a_{i j}\left(\frac{x}{\varepsilon}\right) \chi^{h k}\left(\frac{x}{\varepsilon}\right) \frac{\partial^{3} u_{0}}{\partial x_{j} \partial x_{h} \partial x_{k}}(x, t) .
\end{aligned}
$$

Let us now remark that, in view of Stampacchia's and Meyers' regularity theorems (see [10] and, for instance, [9], Chap. 8), the functions $\chi^{j}(y), \chi^{0}(y)$ and $\chi^{i j}(y)$ defined by (3.9), (3.11) and (3.12), respectively, satisfy the following properties:

$$
\begin{gather*}
\chi^{j}(y) \in L_{\#}^{\infty}(Y), \quad \nabla_{y} \chi^{j}(y) \in L_{\#}^{2+\sigma}(Y), \quad \text { for every } j=0, \ldots, n, \tag{3.19}\\
\chi^{i j}(y) \in W_{\#}^{1,2+\sigma}(Y), \quad \text { for every } i, j=1, \ldots, n \tag{3.20}
\end{gather*}
$$

for some $\sigma>0$. It follows in particular that, under the regularity assumptions (3.15) on u_{0},

$$
\begin{gather*}
g_{\varepsilon}(x, t) \text { is bounded in } L^{\infty}\left(0, T ; L^{2+\sigma}(\Omega)\right) \tag{3.21}\\
G_{\varepsilon}(x, t) \text { is bounded in } L^{\infty}\left(0, T ; L^{2+\sigma}\left(\Omega ; \mathbf{R}^{n}\right)\right) . \tag{3.22}
\end{gather*}
$$

Fix δ such that $0<\delta<T$, and let $\eta_{\delta}(t):[0, T] \rightarrow \mathbf{R}$ be the function defined by

$$
\eta_{\delta}(t)= \begin{cases}1 & \text { if } t \in[0, T-\delta] \tag{3.23}\\ \frac{1}{\delta}(T-t) & \text { if } t \in(T-\delta, T]\end{cases}
$$

We multiply the first equation in (3.18) by $r_{\varepsilon}\left(x, \frac{x}{\varepsilon}, t\right) \eta_{\delta}(t)$ and integrate over Ω_{T}. It follows that

$$
\begin{aligned}
& \int_{0}^{T}\left\langle R_{\varepsilon} \frac{\partial r_{\varepsilon}}{\partial t}(t), r_{\varepsilon}(t) \eta_{\delta}(t)\right\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} d t+\int_{\Omega_{T}} a_{\varepsilon} \nabla r_{\varepsilon} \nabla r_{\varepsilon} \eta_{\delta} d x d t \\
&= \varepsilon \int_{\Omega_{T}} g_{\varepsilon} r_{\varepsilon} \eta_{\delta} d x d t+\varepsilon^{2} \int_{\Omega_{T}} G_{\varepsilon} \cdot \nabla r_{\varepsilon} \eta_{\delta} d x d t \\
&+\varepsilon \int_{\Omega_{T}} a_{\varepsilon} \nabla\left(u_{1} \theta_{\varepsilon}\right) \nabla r_{\varepsilon} \eta_{\delta} d x d t+\varepsilon^{2} \int_{\Omega_{T}} a_{\varepsilon} \nabla\left(u_{2} \theta_{\varepsilon}\right) \nabla r_{\varepsilon} \eta_{\delta} d x d t .
\end{aligned}
$$

Since

$$
\left\langle R_{\varepsilon} \frac{\partial r_{\varepsilon}}{\partial t}(t), r_{\varepsilon}(t) \eta_{\delta}(t)\right\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}=\frac{d}{d t}\left[\frac{1}{2} \int_{\Omega} R_{\varepsilon} r_{\varepsilon}^{2} \eta_{\delta} d x\right]-\frac{1}{2} \int_{\Omega} R_{\varepsilon} r_{\varepsilon}^{2} \eta_{\delta}^{\prime} d x
$$

for a.e. $t \in[0, T]$, using the ellipticity and boundedness condition (2.1), Poincaré's and Young's inequalities, and recalling that $\eta_{\delta}(0)=1, \eta_{\delta}(T)=0$, one obtains

$$
\begin{aligned}
\lambda \int_{\Omega_{T}}\left|\nabla r_{\varepsilon}\right|^{2} \eta_{\delta} d x d t \leqslant & \frac{\lambda}{2} \int_{\Omega_{T}}\left|\nabla r_{\varepsilon}\right|^{2} \eta_{\delta} d x d t+C(\lambda, n, \Omega) \varepsilon^{2} \int_{\Omega_{T}} g_{\varepsilon}^{2} \eta_{\delta} d x d t \\
& +C(\lambda) \varepsilon^{4} \int_{\Omega_{T}}\left|G_{\varepsilon}\right|^{2} \eta_{\delta} d x d t+C(\lambda, \Lambda) \varepsilon^{2} \int_{\Omega_{T}}\left|\nabla\left(u_{1} \theta_{\varepsilon}\right)\right|^{2} \eta_{\delta} d x d t \\
& +C(\lambda, \Lambda) \varepsilon^{4} \int_{\Omega_{T}}\left|\nabla\left(u_{2} \theta_{\varepsilon}\right)\right|^{2} \eta_{\delta} d x d t+\frac{1}{2} \int_{\Omega_{T}} R_{\varepsilon} r_{\varepsilon}^{2} \eta_{\delta}^{\prime} d x d t \\
& +\frac{1}{2} \int_{\Omega} R_{\varepsilon}(x) r_{\varepsilon}^{2}\left(x, \frac{x}{\varepsilon}, 0\right) d x .
\end{aligned}
$$

Using the definition of u_{1}, u_{2}, the regularity statements (3.19) and (3.20), recalling that $0 \leqslant \theta_{\varepsilon} \leqslant 1,\left|\nabla \theta_{\varepsilon}\right| \leqslant C / \varepsilon$, and that θ_{ε} is different from zero on a set which has measure of order ε, it is easy to check that

$$
\begin{gather*}
\varepsilon^{2} \int_{\Omega_{T}}\left|\nabla\left(u_{1} \theta_{\varepsilon}\right)\right|^{2} d x d t \leqslant C \varepsilon^{\frac{\sigma}{2+\sigma}} \tag{3.24}\\
\varepsilon^{4} \int_{\Omega_{T}}\left|\nabla\left(u_{2} \theta_{\varepsilon}\right)\right|^{2} d x d t \leqslant C \varepsilon^{\frac{\sigma}{2+\sigma}+2}
\end{gather*}
$$

with $\sigma>0$. Moreover

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega} R_{\varepsilon}(x) r_{\varepsilon}^{2}\left(x, \frac{x}{\varepsilon}, 0\right) d x & \leqslant \frac{1}{2} \int_{\Omega_{+, \varepsilon}} R_{\varepsilon}(x) r_{\varepsilon}^{2}\left(x, \frac{x}{\varepsilon}, 0\right) d x \\
& =\frac{\varepsilon^{2}}{2} \int_{\Omega_{+, \varepsilon}}\left|R_{\varepsilon}\right|\left[u_{1}\left(1-\theta_{\varepsilon}\right)+\varepsilon u_{2}\left(1-\theta_{\varepsilon}\right)\right]^{2}\left(x, \frac{x}{\varepsilon}, 0\right) d x \\
& \leqslant C \varepsilon^{2}
\end{aligned}
$$

Therefore, using also (3.21), (3.22) and possibly passing to a subsequence, we conclude that

$$
\begin{aligned}
\limsup _{\varepsilon \rightarrow 0^{+}} \int_{\Omega_{T}}\left|\nabla r_{\varepsilon}\right|^{2} \eta_{\delta} d x d t & \leqslant C \limsup _{\varepsilon \rightarrow 0^{+}} \int_{\Omega_{T}} R_{\varepsilon} r_{\varepsilon}^{2} \eta_{\delta}^{\prime} d x d t \\
& =-\frac{C}{\delta} \lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega} R_{\varepsilon}\left[\int_{T-\delta}^{T} r_{\varepsilon}^{2} d t\right] d x \\
& =-\frac{C}{\delta} \bar{R} \int_{\Omega} \psi^{2}(x) d x \leqslant 0
\end{aligned}
$$

where, by lemma 3.4, with v replaced by u_{0}, we have

$$
\psi^{2}(x)=L^{1}-\lim _{\varepsilon \rightarrow 0^{+}} \int_{T-\delta}^{T}\left|u_{\varepsilon}-u_{0}\right|^{2} d t=L^{1}-\lim _{\varepsilon \rightarrow 0^{+}} \int_{T-\delta}^{T} r_{\varepsilon}^{2} d t
$$

This implies that

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega_{T}}\left|\nabla r_{\varepsilon}\right|^{2} \eta_{\delta} d x d t=0 \\
& \int_{\Omega} \psi^{2}(x) d x=\lim _{\varepsilon \rightarrow 0^{+}} \int_{T-\delta}^{T} \int_{\Omega}\left|u_{\varepsilon}-u_{0}\right|^{2} d x d t=0 \tag{3.25}
\end{align*}
$$

Since δ is arbitrary, it follows that, for every $\tilde{T} \in(0, T)$,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega \times(0, \tilde{T})}\left|\nabla r_{\varepsilon}\right|^{2} d x d t=0
$$

and, taking into account (3.24) and the estimate

$$
\int_{\Omega \times(0, \tilde{T})} \varepsilon^{4}\left|\nabla\left(u_{2}\left(1-\theta_{\varepsilon}\right)\right)\right|^{2} d x d t \leqslant C \varepsilon^{2},
$$

we also have

$$
\left\|u_{\varepsilon}-u_{0}-\varepsilon u_{1}\right\|_{L^{2}\left(0, \tilde{T} ; H^{1}(\Omega)\right)} \rightarrow 0
$$

and therefore

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega \times(0, \tilde{T})}\left|u_{\varepsilon}-u_{0}\right|^{2} d x d t=0 \tag{3.26}
\end{equation*}
$$

By (3.26) and (3.25), it follows

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega_{T}}\left|u_{\varepsilon}-u_{0}\right|^{2} d x d t=0
$$

Finally, since u_{0} is uniquely determined by (3.14), it follows that the result holds for the whole sequence, and not only for a subsequence.

We obtain analogous results in the other two cases, i.e. $\bar{R}<0$ or $\bar{R}=0$. If $\bar{R}<0$, the limit equation is backward-parabolic, and it is the final condition for $t=T$ which passes to the limit, as stated in the following theorem.

Theorem 3.5 Assume the same hypotheses of theorem 3.3, but suppose that $\bar{R}<0$. Let u_{0} be the unique solution of

$$
\begin{cases}\bar{R} \frac{\partial u_{0}}{\partial t}(x, t)-\operatorname{div}\left(a^{*} \nabla u_{0}(x, t)\right)=f(x, t) & \text { in } \Omega \times(0, T) \tag{3.27}\\ u_{0}(x, t)=0 & \text { on } \partial \Omega \times(0, T) \\ u_{0}(x, T)=\psi(x) & \text { on } \Omega\end{cases}
$$

and assume that it satisfies (3.15). Then, for every $\tilde{T} \in(0, T)$,

$$
\left\|u_{\varepsilon}-u_{0}-\varepsilon u_{1}\right\|_{L^{2}\left(\tilde{T}, T ; H^{1}(\Omega)\right)} \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0^{+} .
$$

Moreover, $\left\|u_{\varepsilon}-u_{0}\right\|_{L^{2}\left(\Omega_{T}\right)} \rightarrow 0$, for $\varepsilon \rightarrow 0^{+}$.
The proof is not very different from the one of theorem 3.3, if we replace the function η_{δ} defined in (3.23) by

$$
\eta_{\delta}(t)= \begin{cases}t / \delta & \text { if } t \in[0, \delta] \\ 1 & \text { if } t \in(\delta, T]\end{cases}
$$

Similarly, taking

$$
\eta_{\delta}(t)= \begin{cases}t / \delta & \text { if } t \in[0, \delta] \\ 1 & \text { if } t \in(\delta, T-\delta) \\ (T-t) / \delta & \text { if } t \in[T-\delta, T]\end{cases}
$$

one can prove the borderline case:

Theorem 3.6 Assume the same hypotheses of theorem 3.3, but suppose that $\bar{R}=0$. Let $u_{0}(\cdot, t)$ be the unique solution of the following family of elliptic problems

$$
\begin{cases}-\operatorname{div}\left(a^{*} \nabla u_{0}(x, t)\right)=f(x, t) & \text { in } \Omega, \text { for a.e. } t \in(0, T), \tag{3.28}\\ u_{0}(x, t)=0 & \text { on } \partial \Omega, \text { for a.e. } t \in(0, T)\end{cases}
$$

and assume that it satisfies (3.15). Then, for every $\tilde{T}_{1}, \tilde{T}_{2} \in(0, T), \tilde{T}_{1}<\tilde{T}_{2}$, we have

$$
\left\|u_{\varepsilon}-u_{0}-\varepsilon u_{1}\right\|_{L^{2}\left(\tilde{T}_{1}, \tilde{T}_{2} ; H^{1}(\Omega)\right)} \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0^{+} .
$$

Moreover, $\left\|u_{\varepsilon}-u_{0}\right\|_{L^{2}\left(\Omega_{T}\right)} \rightarrow 0$, for $\varepsilon \rightarrow 0^{+}$.
REMARK 3.7-In the particular case of constant matrix a (the model case is the Laplace operator), the cell functions χ^{j} and $\chi^{i j}, i, j=1, \ldots, n$, are identically equal to zero, so that the first corrector u_{1} can be choosen equal to zero. This implies that, when $\bar{R}>0$, for every $\tilde{T} \in(0, T)$,

$$
\left\|\nabla u_{\varepsilon}-\nabla u_{0}\right\|_{L^{2}(\Omega \times(0, \tilde{T}))} \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0^{+}
$$

i.e. we have the strong convergence of the gradients in $L^{2}(\Omega \times(0, \tilde{T}))$ (clearly, the same property holds in the other two cases, if we replace $L^{2}(\Omega \times(0, \tilde{T}))$ by $L^{2}(\Omega \times(\tilde{T}, T))$ or $L^{2}\left(\Omega \times\left(\tilde{T}_{1}, \tilde{T}_{2}\right)\right)$, respectively). Note that, for $\bar{R} \neq 0$, this result was previously obtained in [1], by means of a different technique.

If u_{0} does not satisfy the regularity assumptions (3.15), one can proceed by approximation with smoother data. We will only state the result in the case where $\bar{R}>0$, since the analogous results for $\bar{R} \leqslant 0$ can be stated and proved with almost no difference.
Corollary 3.8 Assume that $\bar{R}>0$, and that u_{ε} and u_{0} are the solutions of problems (3.1) and (3.14), respectively. Then

$$
\begin{equation*}
\left\|u_{\varepsilon}-u_{0}\right\|_{L^{2}\left(\Omega_{T}\right)} \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0^{+} \tag{3.29}
\end{equation*}
$$

and, for every $\tilde{T} \in(0, T)$,

$$
\begin{equation*}
\left\|\nabla u_{\varepsilon}-\nabla u_{0}-\nabla \chi^{j}\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{0}}{\partial x_{j}}\right\|_{L^{1}\left(\Omega \times(0, \tilde{T}) ; \mathbf{R}^{n}\right)} \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0^{+} \tag{3.30}
\end{equation*}
$$

where $\chi^{j}(y), j=1, \ldots, n$, are the functions defined in (3.9). Moreover, if $\nabla \chi^{j}(y)$ belongs to $L^{q}(Y)$, for some $q \in[2, \infty]$, then one can replace the norm L^{1} with the norm L^{r} in (3.30), where

$$
\frac{1}{r}=\frac{1}{2}+\frac{1}{q}
$$

Proof - Let $\left\{f^{(\delta)}\right\} \subseteq \mathcal{C}^{\infty}\left(\bar{\Omega}_{T}\right)$ and $\left\{\varphi^{(\delta)}\right\} \subseteq \mathcal{C}_{0}^{\infty}(\Omega)$ be sequences of smooth functions such that

$$
\begin{array}{ccc}
f^{(\delta)} \rightarrow f & \text { strongly in } L^{2}\left(0, T ; H^{-1}(\Omega)\right) & \text { for } \delta \rightarrow 0^{+} \\
\varphi^{(\delta)} \rightarrow \varphi & \text { strongly in } L^{2}(\Omega) & \text { for } \delta \rightarrow 0^{+}
\end{array}
$$

Then, we define $u_{\varepsilon}^{(\delta)}, u_{0}^{(\delta)}$ to be the solutions of problems (3.1) and (3.14), respectively, where the data f and φ have been replaced by $f^{(\delta)}, \varphi^{(\delta)}$. It is clear that $u_{0}^{(\delta)} \in C^{\infty}\left(\bar{\Omega}_{T}\right)$. Then, by theorem 3.3 , for every fixed $\delta>0$, one has

$$
\begin{equation*}
\left\|u_{\varepsilon}^{(\delta)}-u_{0}^{(\delta)}\right\|_{L^{2}\left(\Omega_{T}\right)} \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0^{+} \tag{3.31}
\end{equation*}
$$

$$
\begin{equation*}
\left\|u_{\varepsilon}^{(\delta)}-u_{0}^{(\delta)}-\varepsilon u_{1}^{(\delta)}\right\|_{L^{2}\left(0, \tilde{T} ; H^{1}(\Omega)\right)} \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0^{+} \tag{3.32}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{1}^{(\delta)}\left(x, \frac{x}{\varepsilon}, t\right)=-\chi^{j}\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{0}^{(\delta)}}{\partial x_{j}}(x, t) \tag{3.33}
\end{equation*}
$$

Moreover, by (3.2) and the linearity of the problem, it follows

$$
\begin{align*}
& \sup _{\varepsilon}\left\|u_{\varepsilon}^{(\delta)}-u_{\varepsilon}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \rightarrow 0 \quad \text { for } \delta \rightarrow 0^{+} \tag{3.34}\\
& \left\|u_{0}^{(\delta)}-u_{0}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} \rightarrow 0 \tag{3.35}\\
& \text { for } \delta \rightarrow 0^{+}
\end{align*}
$$

Then, writing

$$
\left\|u_{\varepsilon}-u_{0}\right\|_{L^{2}\left(\Omega_{T}\right)} \leqslant\left\|u_{\varepsilon}-u_{\varepsilon}^{(\delta)}\right\|_{L^{2}\left(\Omega_{T}\right)}+\left\|u_{\varepsilon}^{(\delta)}-u_{0}^{(\delta)}\right\|_{L^{2}\left(\Omega_{T}\right)}+\left\|u_{0}^{(\delta)}-u_{0}\right\|_{L^{2}\left(\Omega_{T}\right)},
$$

one immediately obtains (3.29). Similarly,

$$
\begin{aligned}
&\left\|\nabla u_{\varepsilon}-\nabla u_{0}-\nabla \chi^{j}\left(\frac{x}{\varepsilon}\right) \frac{\partial u_{0}}{\partial x_{j}}\right\|_{L^{1}\left(\Omega \times(0, \tilde{T}) ; \mathbf{R}^{n}\right)} \leqslant\left\|\nabla u_{\varepsilon}-\nabla u_{\varepsilon}^{(\delta)}\right\|+\left\|\nabla u_{0}-\nabla u_{0}^{(\delta)}\right\| \\
&+\left\|\nabla \chi^{j}\left(\frac{x}{\varepsilon}\right)\left(\frac{\partial u_{0}}{\partial x_{j}}-\frac{\partial u_{0}^{(\delta)}}{\partial x_{j}}\right)\right\|+\left\|\nabla u_{\varepsilon}^{(\delta)}-\nabla u_{0}^{(\delta)}-\varepsilon \nabla u_{1}^{(\delta)}\right\|+\varepsilon\left\|\chi^{j}\left(\frac{x}{\varepsilon}\right) \nabla \frac{\partial u_{0}^{(\delta)}}{\partial x_{j}}\right\| .
\end{aligned}
$$

By (3.34) and (3.35), the first three terms of the right-hand side are small, uniformly with respect to ε, if δ is small. Once δ has been fixed, the other terms go to zero as $\varepsilon \rightarrow 0^{+}$. This proves (3.30). Note that the restriction to the L^{1}-norm comes from the term

$$
\left\|\nabla \chi^{j}\left(\frac{x}{\varepsilon}\right)\left(\frac{\partial u_{0}}{\partial x_{j}}-\frac{\partial u_{0}^{(\delta)}}{\partial x_{j}}\right)\right\|_{L^{1}\left(\Omega \times(0, \tilde{T}) ; \mathbf{R}^{n}\right)}
$$

Therefore, if $\nabla \chi^{j}$ is more regular, the last assertion of the corollary follows from Hölder's inequality applied to this term.

References

[1] M. Amar - A. Dall'Aglio - F. Paronetto, Homogenization of forward-backward parabolic equations. To appear.
[2] I. Babuška, Homogeneization and its application. Mathematical and computational problems, in Numerical Solution of Part. Diff. Eq., Proc. Third Symp. (SYNSPADE), B. Hubbard, ed., New York - London, 1976, Acad. Press, pp. 89-116.
[3] M. S. Baouendi - P. Grisvard, Sur une équation d'evolution changeant de type, J. Funct. Anal., 2 (1968), pp. 352-367.
[4] A. Bensoussan - J. L. Lions - G. Papanicolaou, Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978.
[5] R. W. Carroll - R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press, New York, 1976.
[6] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York, 1988.
[7] D. Cioranescu - P. Donato, An introduction to homogenization, Oxford University Press, New York, 1999.
[8] F. Colombini - S. Spagnolo, Sur la convergence de solutions d'équations paraboliques, J. Math. Pur. Appl., 56 (1977), pp. 263-306.
[9] D. Gilbarg - N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer - Verlag, Berlin, 1977.
[10] N. G. Meyers, An L^{p} estimate for the gradient of solutions of second order elliptic divergence equations., Ann. Scuola Norm. Sup. Pisa Cl. Sci., (3) 17 (1963), pp. 189-206.
[11] C. D. Pagani - G. Talenti, On a forward-backward parabolic equation, Ann. Mat. Pura Appl., 90 (1971), pp. 1-57.
[12] A. Pankov, G-convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer, 1997.
[13] A. A. Pankov - T. E. Pankova, Nonlinear evolution equations with non-invertible operator coefficient at the derivative (in russian), Doklady Akad. Nauk Ukr., 9 (1993), pp. 18-20.
[14] F. Paronetto, Homogenization of a class of degenerate parabolic equations, Asymptotic Anal., 21 (3,4) (1999), pp. 275-302.
[15] F. Paronetto, Existence results for a class of evolution equations of mixed type, Preprint, (2002).
[16] F. Paronetto, Homogenization of degenerate elliptic-parabolic equations, To appear on Asymptotic Anal., (2003).
[17] R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, 1997.

