DE GIORGI-NASH-MOSER THEORY
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ABSTRACT. We extend the celebrated De Giorgi-Nash-Moser theory to a class of nonlocal
hypoelliptic equations naturally arising in kinetic theory, which combine a first-order
operator with an elliptic one involving fractional derivatives along only part of the
coordinates. Provided that the nonlocal tail in velocity of weak solutions is just p-
summable along the drift variables, we prove the first local L2-L°° estimate for kinetic
integral equations. Then, we establish the first strong Harnack inequality under the
aforementioned tail summability assumption. The latter is in fact naturally implied
in literature, e. g., from the usual mass density boundedness (as for the Boltzmann
equation without cut-off), and it reveals to be in clear accordance with the very recent
counterexample by KaBimann and Weidner [46].

Armed with the aforementioned results, we are able to provide a geometric charac-
terization of the Harnack inequality in the same spirit of the seminal paper by Aronson
and Serrin [9] for the (local) parabolic counterpart.
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1. INTRODUCTION
In the present paper we study a wide class of kinetic integro-differential equations of the
form
(1.1) O +v-Vo)f=Lyf+h in QCRxR"xR",
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where h is a possibly unbounded scalar field, and the diffusion term L, is given by
(1.2) Lyf(t,z,v):= p. V./ (f(t, @, w) — f(t,z,v))K(t, z,w,v)dw.
R’n

The kernel K : R x R" x R?" — [0, 00) is a measurable symmetric kernel of differentiability
order s € (0,1); that is, there exists a constant A > 1 such that

(1.3) A Mo — w7 < K(tz,0,w) < Alv—w|7""*, for a.e. v,w € R",

where we assume that the condition above holds for all ¢ and x; throughout the following
we omit the ¢ and = dependence to clean up the notation.

As a prototype one can just keep in mind the classical fractional Laplacian opera-
tor (—A,)*, with respect to the v-variables, given by
f(ta fE,’U) - f(ta {E,’UJ)

o — w|+2s duw

(1.4) (A f(t,x,v) :==cps D. V.

R7
In the display above, ¢, s is a positive constant only depending on the dimension n and
the differentiability exponent s; see [23, Section 2] for further details. Furthermore, the
integrals in (1.2)-(1.4) may be singular at the origin, and hence must be interpreted in the
appropriate sense. Since we are considering diffusion terms with possibly rough coefficients,
the related equation has to have a natural weak formulation, for which we refer the reader
to Section 2 below.

Such hypoelliptic equations arise as linearized models for the Boltzmann equation with-
out cutoff. They also naturally show up in several different models, because of the special
role played by the velocity variable and its interaction with both the drift and the diffusion
terms — see e. g. the comprehensive introduction in [57] and the references therein; see also
Section 1 in [65] — even in other unrelated disciplines as for instance in Finance in order
to describe the evolution of Asian options, where the drift term is connected with risk-free
interest rates.

Our main goal is to prove general quantitative estimates for weak solutions to (1.1),
by finally completing the longly unaccomplished De Giorgi-Nash-Moser theory for integro-
differential Kolmogorov-Fokker-Planck equations.

1.1. The De-Giorgi-Nash-Moser theory: state of the art. Roughly speaking, by “De
Giorgi-Nash-Moser (DGNM) theory” we mean the following fundamental results for weak
solutions to Partial Differential Equations: L?-L> estimate; Holder regularity; Harnack
inequalities.

In the local case (when s = 1; let us say, L, & 0y, (aix(-)0y, f)), apart from constituting
the missing piece in solving Hilbert’s 19" Problem, the DGNM theory has revealed to
be fundamental for uniformly elliptic and parabolic equations with rough coefficients in
divergence form and, since the pioneering works by De Giorgi and Nash, together with
the subsequent important contribution by Moser, its extension to more general equations
involving various operators has been one of the main goals for entire generations of Mathe-
matics communities. Both the refined estimates and the iterative methods presented in the
aforementioned works finally found an exhaustive extension in the difficult case of kinetic
only a few years ago, because of the increased difficulties in the very form of the involved
equations itself, where ellipticity fails in some direction. The completeness of the DGNM
theory is accomplished thanks to the results in [29] and [31,33], where weak and strong
Harnack inequalities can be found together with Holder regularity; it is also worth referring
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to [22] for a constructive proof of the weak Harnack inequality for rough kinetic equations.
For what concerns the L2-L*° estimate, this was firstly done in [60]. See, also, [66] for a
preliminary Holder result via the extension of the original proof by Moser.

The situation becomes even more convoluted when the operator £, is a general integro-
differential operator, as the fractional Laplacian with rough coefficients. Indeed, the de-
velopment of the DGMN theory for nonlocal equations underwent a substantial growth
during the past decades. In particular, after the breakthrough results by Kafimann [41,43]
on the validity of the classical Harnack inequality, a quite comprehensive nonlocal theory
was presented in more general integro-differential elliptic frameworks, even for nonlinear
fractional equations. Since the literature is really too wide to attempt any comprehensive
list here, we only refer to [13,18,19,25,42,58], and the references therein.

Further difficulties do appear in the integro-differential parabolic framework where the
intrinsic scaling of the involved cylinders depends not only on the time variable ¢, but
also on the differentiability order s. Despite such non-negligible technicalities, parabolic
Harnack inequalities, Holder continuity and L?-L> inequality are available for general
fractional equations as finally shown in the very important paper [45] in part extending
the results in the elliptic counterpart in [18]. All in all, both in the nonlocal elliptic and
parabolic frameworks, as in the local ones, the DGMN theory is complete.

For what regards the case of nonlocal kinetic equations as in (1.1), it is enlightening to
focus on an even wider class as the one modeling the non-cutoff Boltzmann equation for
which important estimates and regularity results were recently proven via fine variational
techniques and radically new approaches. An inspiring step in such an advance relies
on the method proposed in the breakthrough paper [38], where Imbert and Silvestre are
able to derive a weak Harnack inequality for a very large class of kinetic integro-differential
equations as in (1.1) with very mild assumptions on the integral diffusion in velocity having
degenerate kernels K in (1.2) which are not symmetric (not in the usual way), nor pointwise
bounded by Gagliardo-type kernels; see Theorem 1.6 there. In the conditional regime, where
the hydrodynamic quantities mass, energy and entropy are bounded above and the mass is
bonded away from the vacuum, the aforementioned result is enough to derive as corollary
the Holder regularity for nonnegative solutions of the spatially inhomogeneous Boltzmann
equation without cut-off. Further related regularity estimates in the conditional regime were
subsequently proven in [39]. All in all, despite the fine estimates and the new techniques
mentioned above — see also the related interesting papers [55,65] — a strong Harnack-type
inequality is still missing. More than this, despite some polynomial L>° bound such as

If ()| oo @nsrny ST+ P, B>0,

can be established for the Boltzmann equation without cut-off under pointwise bounds on
some observables and condition on the solution f (see for example [26,59,64]), boundedness
of solutions is usually assumed a priori in the nonlocal kinetic literature. Likewise, a
quantitative control on the L norm of the solutions, i.e. L?-L*° estimate, is missing.

Eventually, all the mentioned combined efforts in pushing forward the nonlocal theory of
hypoelliptic equations culminated with the establishment of an ingenuous counterexample
by Kamann and Weidner in [46], where they built a sequence of solutions {f.} to

(1.5) v-Vof+(=A))°f=0,
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such that, for some points z, € R"™ the ratio f¢(0)/f:(2,) blows-up as £ N\, 0; see The-
orem 1.1 there. This implies the failure of the Harnack inequality for (1.5), and, by
extension, for (1.1) since the solutions {f.} are time-independent. Moreover, a closer in-
spection reveals that a local L2-L* estimate for solutions to (1.1) generally fails too, even
when an error term is added on its right-hand side, basically a tail-type contribution— see
Formula (1.10) below — in striking contrast to all the parabolic and elliptic literature on
fractional equations ([19,44,45]). Such peculiar feature of (1.5) is a pure effect originating
from the combination of the nonlocality of the diffusion term with the anisotropy behavior
of the drift, and it is in odd contrast with all the previous literature dealing with local
kinetic equations. Furthermore, it is worth noticing that such a phenomenon is quite re-
markable given that the degeneracy of (1.5) is no obstruction to C°°-regularity; see for
example [39]. Indeed, by velocity averaging techniques ([10]) it is possible to transfer
regularity from the v-variable to the x one as it happens for purely local operators.

Within this framework, the result in [46] could have been the end of any hope to
complete the DGNM theory for nonlocal kinetic equations, beyond any assumptions on
the involved diffusion kernels. However, by proposing a refined version of the L2-L>°
estimate, as well as a revised nonlocal strong Harnack inequality, in clear accordance with
the aforementioned counterexample, our forthcoming Theorem 1.1 and 1.5 serve as a final
completion of the whole nonlocal theory for Kolmogorov equations, being concomitantly
the integro-differential counterpart of the aforementioned recent results achieved for local
kinetic equations with rough coefficient, along with the results already obtained in both the
fractional elliptic and parabolic context. As an important addition, which will be clearer in
the following, both our strategy and proofs seem very much adaptable to deal with more
general nonlocal ultraparabolic equations.

1.2. Main results. The underlying geometry of equations (1.1) is determined by a ho-
mogeneous Lie group structure. Hence, to state our main results, which reflect this non-
Euclidean background, we endow R'*2" with the Galilean transformation

(1.6) 2602 := (t+to, T+ To + tvo, U+ Vo) for any z,,z € R1T27
and the usual kinetic scaling §, : R!*27 s R1*2" defined by
(1.7) 6p(2) = (r25t, P12 ro) for any r > 0.

Also, note that the inverse of each element zo = (tg, o, v0) € R12" is defined and

1

2o 0z=(t—to,x —To — (t — to)Vo,V — Vp) for any z = (t,2,v) € R*2",

Then for any r > 0, we denote by @, a cylinder centered in the origin of radius r; that
is,
Qr = Qr(0) = Uy (0,0) x B,(0) = (=r",0] x Byus2:(0) x B, (0).
For every z, € R!*2" and for every r > 0, the slanted cylinder Q,(z,) is defined as follows,
(1.8) Qr(20) = {z:= (t,z,v) e R . —p? <t —¢, <0,

2 — 26 — (t — to)vo| <72, |u—w,| <7}

We denote with d the homogeneous dimension related to (1.7) defined as

(1.9) d:=n(2+2s)+ 2s.
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Qr(0) Qr(zo)

FIGURE 1. On the left the cylinder Qr(0) centered at the origin; on the right a
slanted cylinder Qr(zo) = Qr(to, o, Vo) according to the invariant transformation
given in (1.8).

Such quantity encodes the scaling properties of the underlying kinetic scalings. Indeed,
we have that |Q,| = 7¢|Q:|, and in general |6,.(Q)| = r¢|Q|, for any Lebesgue measurable
sets 2 C R1+2n,

Moreover, as expected when dealing with nonlocal operators, to control the growth of
solutions at infinity we consider “the nonlocal tail of a function f centred in v, € £, C R™
of diffusion radius r”, which is given by

(1.10) Tail(f; Br(vo)) = 7“28/ |£(v)||vo — v|7"7%* do.

R™\ Br.(vo)

The nonlocal tail was firstly defined in the purely p-fractional elliptic setting in [18,19]
and subsequently proven to be decisive in the analysis of many other nonlocal problems
when a fine quantitative control of the naturally arising long-range interactions is needed;
see, e. g., [11,14,52], and the references therein.

In order to overcome the nonlocality issues mentioned above (which also prevent a
strong Harnack inequality from Holder estimates), in the present paper we prove a totally
new J-interpolative L°-inequality with tail for weak subsolutions to (1.1); also, possibly
unbounded source terms h are taken into account. The parameter 0 < § < 1 in such a
boundedness estimate can be suitably chosen in order to balance in a quantitative way the
local contributions and the nonlocal ones; see in particular the right-side of inequality (1.12)
in the theorem below; that is, the LP-norm along the drift variables of the nonlocal Tail-
quantity in velocity. Moreover, in order to keep track of the behavior of our estimates at
large velocities, we denote with the bracket (-) := (1 + |-[2)2. Here below it is our first
main result and it constitutes a veritable novelty in the whole kinetic integral panorama.

Theorem 1.1 (The d-interpolative L2-L>° estimate). Let Q := (t1,t2) x Q x Q, C RIF27 he
a domain, s € (0,1) and let d be the homogeneous dimension in (1.9). Assume that f € W
is a weak subsolution to

O +v-Vo)f=L,f+h in Q.
and let

1.11 =
(1.11) P>
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If Tail(fy; B) € LF

loc

ing (1.11), then, for any Q.(2,) € Q and any 6 € (0,1], it holds

d
, 2sp—d
(1.12) qu(p)f < e (57§n°+>25> 1+ 1l22@nzo) + 1Pllr(@n (o))
5o

((t1,t2) X Q) for any B € Q, and h € LV (Q), for some p satisfy-

loc

+6|| Tail(f4; Bg (UO))HLP(UT(tmmO)) )
where ¢ = c¢(n, s,A,p) >0

The finiteness of the LP-energy of the tail term is a turning point in the local analysis
of (1.1). This is in contrast with most of the parabolic literature, where nonlocal effects
have been compensated via a supremum tail, which apparently does the trick coupled with
further global assumptions on the solution, despite not natively arising from the scaling of
the involved equations. Such a L°°-Tail choice appears very strong and easily adaptable to
obtain several estimates even for solutions to (1.1). Nevertheless, it is a concrete stumbling
block to concretize our program to obtain also a strong Harnack inequality under light
nonlocal assumptions. On the contrary, the L' boundedness of the Tail would have been a
borderline result, being critical with respect to kinetic scalings; see [46]. Then, by working
on the p-summability in transport of the Tail contribution we are able to find a balance
for such a discrepancy, in turn also dealing with the combined effects due to the transport
term of the equation. Accordingly, a couple of additional remarks are in order.

Remark 1.2. Firstly, it is possible to check that (1.12) is not in contrast with the sta-
tionary situation presented in [46, Theorem 1.1]; see the comments after forthcoming The-
orem 1.5 on Page 8 for further details. Moreover, even if by definition weak solutions
to (1.1) are not required to have finite LP-energy of their nonlocal tail in velocity, the
usual constraints on the notable hydrodynamic observable required in physical models for
the Boltzmann equation without cut-off and related kinetic equations plainly imply our
requirements on the LP-energy of the nonlocal tail, see for instance the condition on the
mass as in [64, Theorems 1.1-1.2], [57, Formula (1.4)], [29, Formula (1.3)], [36, For-
mula (1.3)], [37, Section 1.4-Assumption (H)], [38, Section 1.3], [39, Assumption 1.1], [59,
Formula (1.2)], [26, Formula (1.9)] and so on.

Remark 1.3. The lower bound on the integrability condition of tail in (1.11) is the
expected one. Indeed, the Tail(-) essentially behaves as the source term h. Hence, one
can note that in complete analogy to the (local) ultraparabolic case, (1.11) is the correct
integrability assumption on the source to guarantee boundedness of solutions; see [8,66].
Moreover, if one restricts to fractional parabolic equations, than (1.11) becomes
n+2s
25
which is the analogous lower bound on the integrability of the source term to guarantee
boundedness of solutions; see [46, Lemma 3.2]. Lastly, as proven in [46], for stationary

solutions of (1.1), the estimate (1.12) is generally false whenever the Tail belongs to LP,
n(142s)
2s '

for p <

The proof of Theorem 1.1 relies on a fine De Giorgi-type recursive argument taking
into account both the LP-energy of the Tail term and the desired interpolative effect.
However, the starting point in our proof is far from the usual elliptic or parabolic strategy
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since the diffusion operator is localized in time and in space, and this precludes a plain
application of Sobolev inequality. In fact, the backbone of the related iterative procedure is
an hypoelliptic gain of Sobolev regularity whose proof extends and refines similar results in
the Kolmogorov-Fokker-Planck framework. In this respect, it is worth recalling the original
result for solutions to the Boltzmann equation without cut-off by Imbert and Silvestre —
see in particular Lemma 6.1 and Proposition 2.2 in [38] — which in turn reminds of the
strategy in [60] by making use of the so-called parametrix of (1.1); i. e., the fundamental
solution of the fractional Kolmogorov equation.

Such an integrability gain result is obtained also by proving a suitable kinetic Cacciop-
poli estimate with tail, and it is presented in Theorem 1.4 below. We stress that the
maximal summability exponent that appears below is the expected one, as also anticipated
in Remark 1.3. For this, we believe that our result could be of independent interest.

Theorem 1.4 (Local gain of integrability). Let Q := (t1,t2) x Q; x Q, C RIT2" pe q
domain and s € (0,1). Assume that f € W is a weak subsolution to

(O +v-Vo)f =Lof +h in Q.

Then, begin d the homogeneous dimension in (1.9), it holds that f € LL () for all

loc

4s
1.13 2<¢g<2|(1 .
(1.13) == ( +d45)

Furthermore, for any p > 2 such that Tail(f1; B) € L1, .((t1,t2) X Qy), for any B € Q,, h €

LY (Q), any Qr(z,) € Q, the following estimate does hold

¢ (Vo)
I = RB)+llLa(@uz) < (T_Q)%H(f = E)+ll22(Qn(20)

RCACO L) |

1

P
121l e (@, (20 )

r—o
elQr(z0) N {f > R}[Z75 ,
+ (T' — Q)QUH_QS) ||Ta11((f - K’)"r? BT(’UO))HLP(Ur(tm:Do)) )

for any k € R, any o € (0,7) and where the constants ¢ = c¢(n, s, A) > 0.

As expected, the feasibility of the result in Theorem 1.1 above will allow us to bypass
the global boundedness assumption on the solutions f usually assumed in previous kinetic
literature, in turn being fundamental in order to prove several estimates for solutions
to (1.1) as those presented right below in Theorem 1.5. Eventually, considering null source
term h and no a priori boundedness assumptions for solutions f to (1.1), we are able to
prove a new (possibly sharp) formulation of the classical strong Harnack inequality for
kinetic equations with nonlocal diffusion, provided only the local summability assumption
on the tail discussed in Remarks 1.2 and 1.3. Hence, our third main result reads as follows,

Theorem 1.5 (The Strong Harnack inequality). Let Q := (t1,t2) x Q, x Q, C R**2" be
a domain, Q2(0) € Q, and s € (0,1). Assume that f € W is a globally nonnegative weak
solution to

(0, +v-Vo)f =L,f in Q.
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If Tail(f; B) € LY ((t1,t2) X Q), for any B € Q,, for some p > 2 satisfying (1.11) then

loc

there exists v, € (0,1) depending only on n and s such that

(1.14) supf < ¢ (1;)n+f f+ | Tail(f; Bro/z(O))||Lp(UTO(_1+Tgsyo)) ,
Qro ro

where ¢ = ¢(n, s,p,A) >0, and

QT_O =(-1,-1+ T(Q)S} X B,i+2s X By,
(1.15) °

and Q;’; = (—7‘3570] X Bré+25 X By, .

FIGURE 2. The geometry of the Harnack inequalities for kinetic equations.

As natural when dealing with fractional problems, it is usually the negativity of solu-
tions which does interfere with the validity of Harnack inequalities, and Tail(f_) is the
decisive player in such a game, in order to compensate the possible negative interactions
of the solution at infinity which can pull the infimum down, in turn leading to the failure
of the Harnack inequality in the elliptic case [41,43]. However, in striking contrast with its
elliptic and parabolic counterparts ([18,45]), even when restricting to globally nonnegative
solutions, a nonlocal reminder still persists in the estimate. Thus, it has been funda-
mental our detection of such a precise quantity which controls the combined anisotropic
and nonlocal behaviour of (1.1), as seen in the model example (1.5), which in turn takes
part to the failure of the classical Harnack estimate. Furthermore, our new tail formula-
tion in both Theorem 1.1 and Theorem 1.5 is somehow sharp, in the sense that for the
aforementioned sequence of stationary solutions {f.} in [46] the quantity

sup f-
inf fo + || Tail(fe)| e

Remark 1.6 (Hélder continuity as a corollary). As expected, by combining our L2-L>°
estimate (1.12) with the weak Harnack inequality in [38], one can prove in a quantitative
way the Holder continuity of weak solutions to (1.1) by also dropping the usual a priori
boundedness assumption common in previous kinetic literature; see [65, Theorem 1.1], [55,
Theorem 1.2] and [38, Theorem 1.5]. This is easily done via the now classical Moser scheme
by simply checking the validity of the so-called Growth Lemma.

< 00 as € \(0.

It is worth stressing that the tail term in our formulation does not interfere with the
expected applications, as already mentioned in the preceding remark in order to obtain
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the Holder continuity. In this respect, as another concrete consequence, we are able to
extend to our context the classical geometric characterization of the Harnack inequality in
the same spirit of the seminal paper [9] for parabolic equations as well as in the important
counterpart in the local ultraparabolic framewok given in the relevant paper [61]. Indeed,
thanks to Chow’s Lemma one can infer that R!*2" is connected with respect to the group
associated to the underlying Lie algebra, and we can consider suitable integral curves
in order to state a geometric Harnack inequality characterizing the involved sets in such
inequality. We refer the reader to Theorem 4.7 in Section 4.2.

1.3. Some further developments. We believe our whole approach and new general in-
dependent results to be the starting point in order to attack several open problems related
to nonlocal kinetic equations, as, e. g., those listed below.

e By replacing the linear diffusion class of fractional operators with nonlinear p-Laplacian-
type operators, done in the parabolic setting in [53,54]. The nonlinear growth p framework
in those Gagliardo seminorms seems to be not so far from that presented there in the
superquadratic case when p > 2; the singular case when 1 < p < 2 being trickier. However,
several “linear” fractional techniques are not applicable; it is no accident that Harnack
inequalities are still not available even in the space homogeneous counterpart; say, in the
parabolic setting. Nevertheless, our estimates and the techniques employed in order to
treat nonlinear fractional parabolic equations in [53] might be a first outset for dealing
with the fractional counterpart of nonlinear Kolmogorov-type operators.

e In accordance with the spirit of related results, as for instance the Harnack inequalities
in [1,24] and in [40], one could consider to attack the problem in (1.1) via a viscosity
approach, in the same flavor of the Krylov-Safonov approach presented in [17,63] for
general integro-differential equations. This is however a difficult problem even for the case
of local diffusion for general hypoelliptic equations in non-divergenge form.

e Similar results can be expected for energy solutions to a family of kinetic equations
strictly related to (1.1), which arises from different physical models by replacing the drift
with a more general term as 9; +b(v) - V,, including more general physical settings, as e. g.
considering possibly relativistic effects. Classical regularity theory has been developed in
the local case in [67]; see also [7] for Harnack inequality and lower bound of the fundamental
solution for the relativistic Fokker-Planck operator.

e In the spirit of very recent advancement of gradient regularity estimates for Fokker-
Planck equations, it would be natural to wonder whether the same results obtained for
(local) nonlinear Fokker-Planck equations in [47] do hold in the nonlocal case as well. Also,
comparing them to the recent development of nonlocal potential estimates; see the results
in [20,21] for elliptic and parabolic equations.

e Most of the forthcoming estimates in the present paper would be still valid by weaken-
ing the pointwise control in (1.3) from below, and by assuming appropriate coercivity, local
integral boundedness and cancelation properties. On the contrary, the pointwise control
from above by a Gagliardo-type kernel, is strongly employed throughout this work, and
therefore not easily disposable. One can be interested in working with more general kernel
as the ones employed in [44] for nonlocal parabolic equations.

e Our estimates could be the basis in order to prove a Gehring-type lemma for kinetic
integral equations, which, as well as their counterpart in the nonlocal elliptic framework
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([18,19]) constitutes a fundamental tool in order to detect such self-improving property
([51]); see also the different approach in the very relevant paper [62] via a robust nonlocal
nonlinear commutator estimate concerning the transfer of derivatives onto test functions.
Such a result will be thus the natural nonlocal version of the very recent result for classical
kinetic Fokker-Planck equations presented in [32].

e Our result in Theorem 1.5 could be of some feasibility even to apparently unrelated
problems, as, a concrete example, in the mean fields game theory. It is known that under
specific assumptions, mean field games can be seen as a coupled system of two equations,
a Fokker-Planck-type equation evolving forward in time (governing the evolution of the
density function of the agents), and a Hamilton-Jacobi-type equation evolving backward
in time (governing the computation of the optimal path for the agents). Such a forward
vs. backward propagation in time should lead to interesting phenomena in time which
are present in nature, but they have not been investigated in the nonlocal context yet.
Our contribution in the present manuscript together with other recent results and new
techniques as the ones developed in [15,16,28] could be unexpectedly helpful for such an
intricate investigation.

e Finally, it is well known about the many direct consequences and applications of
a strong Harnack inequality, as for instance, maximum principles, eigenvalues estimates,
Liouville-type theorems, comparison principles, global integrability, and so on. For a dis-
cussion of certain of the aforementioned PDE aspects in the local counterpart we refer
to [48].

1.4. Outline of the paper. In Section 2 below we briefly fix the notation, we introduce
the relevant function spaces, together with the related weak formulation, as well as re-
calling some preliminary results. In Section 3 we prove the gain of integrability for weak
subsolutions to (1.1), see Theorem 1.4, and the L2-L°° estimate in Theorem 1.1. Section 4
is devoted to the completion of the proof of Theorem 1.5 as well as of its geometric version
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2. NOTATION AND PRELIMINARIES

In this section we fix notation and we briefly recall the necessary information on the
underlying functional framework required to deal with (1.1).

We denote with ¢ a positive universal constant greater than one, which may change from
line to line. For the sake of readability, dependencies of the constants will be often omitted
within the chains of estimates, therefore stated after the estimate. Relevant dependencies on
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parameters will be emphasized by using parentheses. For any D C R™ we define with xp
the indicator function of D. As customary, for any r > 0 and any y, € R™ we denote
by By (yo) = B(yo;7) := {y € R" : |y—yo| <}, the open ball with radius 7 and center .
We shall often abbrev1ate B; = B;1(0), where we denote with Og» := 0. For any measurable
function g, we define the positive and negative part of g as g4 (y) := max{=%g(y),0}.

For s € (0,1) we denote with W*?2(D) the classical fractional Sobolev space

We2(D) := {f € L*(D) : [fl,0p < +oo} ,

where the fractional seminorm [f], ,.,, is the usual one via Gagliardo kernels

B 9 1/2

and where we have equipped W*2 with the usual norm

”fHWS’Q(D) = Hf||L2(D) + [.ﬂs,2;D'
In order to lightened the notation we will often denote with [g]s 2 = [g]s,2;rn. A function f

belongs to W;>3(D) if f € W*2(D') whenever D' € D.

loc

We will denote with W=%2(R") the dual of W*2(R") and denote with (-|-) the usual
duality paring between W~=%2 and W*2. For any f € W*%(R") we define £,f as an
element of W~%2(R") that acts on ¢ € W*2(R") via

(Lo fl6) = / ) / ()~ F(@))(6(0) = () K (v, 10) dodu.

We shall often denote by £p(-) the nonlocal energy above

: / / ) ($(v) — $(w)) K (v, w) dv duw,

for any D C R™ x R™. In the case when D = R™ x R™ or D = B, x B, we simply
write g(f, ¢) = gR"LXR" (fa (b) and EBr(fv (b) = SBTXBT(fa ¢)

Consider the following tail space

ph (&)= {g e tho®) s [ M0k a0 < ool

T+ o)+

as firstly defined in [49]; see Section 2 in [50] for related properties.
Given € := (t1,t2) x Q, x Q, C R1T2" we denote by # the natural functions space to
which weak solutions to (1.1) belong to, and defined as

W= {f € LRo((t1,t2) X Qs W2 () N Lhoel(t, £2) X Q03 L, (R"))
(O + v Vo) f € L2 ((t,t2) X Qu; W‘5’2(R”)}.
We are now in the position to recall the definition of weak sub- and supersolution.

Definition 2.1. A function f € W is a weak subsolution (resp., supersolution) to (1.1)
in Q with h € L?(Q) if

/:/Qzé’(f,@ dz dt + /:/Qz<ft+v~vzf|¢>dxdt = Zor /thﬁdz,
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for any nonnegative ¢ € L3 _((t1,t2) x Qu; WS2(R™)) such that supp (¢(t,z,-)) € Q, for

a.e. (t,x) € (t1,t2) X Q. A function f € W is a weak solution to (1.1) if it is both a weak
sub- and supersolution.

As already remarked in the introduction, in order to establish the gain of integrability in
Theorem 1.4 we need to invoke the hypoelliptic nature of equation (1.1); see [35]. Indeed,
we shall rely on the regularizing properties of the fundamental solution of the fractional
Kolmogorov equation. For some h € L2(R'*2"), we consider

Or+v-Vo)f+(=A)°f=h.
This equation admits a fundamental solution

c(n) x v .
=P ; ft>0,

(2.1) P(z) = { e (t1+2z t) '
0 ift<0,

where the kernel P is defined in Fourier variables
1

F[P](n,0) :=exp (—/ In + 76| dT) .
0

We refer the reader to [30] for the derivation of the fundamental solution in (2.1) to-
gether with polynomial upper and lower bound; see also [34] for an alternative proof via
probabilistic methods. Then, the following result holds true

Lemma 2.2 (Proposition 1.11 in [27]). Let § € (0,d), with d being the homogeneous
dimension in (1.9) and let P € C(R*2"\ {0}) be a §,-homogeneous kernel of degree 3 —d.
If h € L*(R'™2"), then

f(z) = / P(z7t 0 2)h(z1) dzy
R1+2”
is defined almost everywhere and there exists a (universal) constant ¢ > 0 such that

||fHL’1(R1+2") <c ||hHL2(R1+2n) ,

where

S
N =
WSS

Given ¢, as in (1.7) we have that
P(5.(2)) = r "G p(z).
So, using the same notation as in Lemma 2.2 above, we obtain that 8 = 2s. So, given
fe)= [ PG ooh(a) da
R1+2n

we get that

4s
(2.2) ||f||L(1(R1+2n) <c ||h||L2(]R1+2n) for g =2 (1 + d_ 4S> .

Moreover, the following weak Harnack inequality holds true, even in the more intricate
Boltzmann non-cutoff context. We took the liberty to adjust the statement below in view
of our setting, and in accordance with our boundedness result in Theorem 1.1.
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Theorem 2.3 (Theorem 1.6 in [38]). Let s € (0,1). Then, there exist 7o, R > 1, ¢ and ¢
such that if f € W is a globally nonnegative weak supersolution to

(at+vvz)f:,cvf in [—170} XBR1+25 XBR7
then,

< fo(2) dz) <cinf f,
Qo Q.

To

where Qrio are defined in (1.15) and the constant ¢ and ¢ depends only on n, s and A,
while 7o and R depends only on n and s.

For an alternative proof of the weak Harnack estimate we refer the reader to [4].

We recall some results on the geometry of the slanted cylinders in (1.8). Firstly, we
state a covering property. For a similar result in the classic kinetic framework we refer
to [60, Lemma 4.2]; see also [6].

Lemma 2.4. There exist two universal constants c. = c.(s) € (0,1) and 5 = F(s) > 1 such
that, for any 1/2 < o<1 <1 and any z, € R'T2" it holds

(2.3) Q(C*(T,Q))a(zl) C QT(ZO) Vz1 € QQ(ZO).

Proof. Define c,(s) := min{1,2s} and $(s) := max{l, 5-}. Let us note that for any z; =
(t1,1,v1) € Qp(20) and any 2y = (t2,72,v2) € Q(c, (r—p))# (21) We have

(2.4) t1 € (to — gzs,to], v1 € By(ve) and |z — zo — (t1 — to)ve| < o't

Next, note that, when s € [1/2,1) we have

= g® = 2 (/01(@ +o(r—e)*! dU) (r=o

(25) Sy 10251d0> (r— 0 = (r— o)

whereas, when s € (0,1/2), since o+ o(r — ) <r <1 for any o € (0,1), we have

(2.6) P2 g2 — 9 (/01 = U(Ti S da) (r— o) > 2s(r — o).

Hence,

Vg € B(C*(T,Q))ﬁ(vl) -

Br—g) (01 it sell/2,1
{ (r—o) (V1) o) £oe EO{I/Q)) - B(rfg)(vl) C By (vo),

Blasran®
where in the case s € (0,1/2) we have used that (2s(r — 0))2= = (2s(r — 9))2 ~12s(r — 9) <
(r — o), given that 5z > 1. Moreover, by combining (2.4), (2.5) and (2.6), we have for the
time interval

{t2 €(ti—(r—o)?,t1] ifse[1/2,1)

(to —72°,ty] Vs € (0,1).,
ta € (t1 — 2s(r — 0),t1] if s €(0,1/2)
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whereas for the spatial variables
|To — o — (t2 — to)Vo| < |wa— a1 — (L2 — t1)vi| + |21 — 26 — (81 — to) Vo]
+|(t2 = t1)(v1 — o)
(r— o) + o' 4 (r — 0)*p if s €[1/2,1)
1420
(2s(r—0)) = + 0" +2s(r—p)o  if 5s€(0,1/2)

(r — 0)*r + o' T2 if s€[1/2,1)
2s(r —o)r + o't if s €(0,1/2)

IN

25 Vs € (0,1),

a 1
since in a similar way (2s(r — 0))* = (2s(r — o)) * < 2s(r — o) given that = — 1> 0
when s € (0, 3). 0

Lastly, we conclude by stating some classical iteration argument which will turn out to
be useful in establishing our main results.

Lemma 2.5 (see, e. g., Lemma 2.7 in [18]). Let a > 0 and let {Y;}jen be a sequence of
positive real numbers such that

}/j-i-l < C*bjx/}1+aa
with ¢, >0, b> 1. If
_1
Y, < e ab_zlz’7

then lim Y; = 0.

J—0o0

Lemma 2.6 (see, e. g., Lemma 4.11 in [14]). Let ¥ : [p,r] — [0,400) be a bounded
function, € € (0,1), Ay, As, As, 51, P2 >0 and 9,7 > 0. Assume that

V(o) <e¥(o) +

(0 —o')B + (o —o')P2 +4s,

holds for every o < ¢’ < o < r. Then,
Ay Az

V) se|l o gm Y pogm T4

where ¢ = c(g, f1, B2) > 0.

3. LOCAL GAIN OF INTEGRABILITY AND LOCAL BOUNDEDNESS ESTIMATES

This section is devoted to the proof of the gain of integrability for subsolutions to (1.1),
as stated in Theorem 1.4, which constitutes an important step in the subsequent proof of
the L2-L> (interpolative) estimate. Let us just remind that for the sake of readability we
will simply denote with f(¢,x,v) = f(v), just to differentiate between the double variables
appearing in the nonlocal energy £(-) in the weak formulation of (1.1).

Firstly, we need a precise Caccioppoli-type estimates with tail for subsolutions to (1.1).

Lemma 3.1 (Energy estimates). Let Q1 = Q1(0) C R'™2" and s € (0,1). Assume that f €
W is a weak subsolution to (1.1) in Q1. Then, for any 0 < o<r <1, anyp>2, any k € R
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and any cut-off function ¢ € Céx’(B(gTw)st X B%), it holds

sup / (pF,)? dvdx—|—/ E(PFL, pF ) dxdt
B_1+2s X B U,

te[—r2s,0]

(31) S (7"_9)62(14_28)/62 F_%_ dZ+C|Q7~ n {f > k}|1_% </ h,p dZ> P

c|Q. n{f >k} * . 2
i (r — p)2(nt2s) /U Tail(Fy; By)P dedt )

and
sup / (¢F4)? dvda +/ Ep, (OFy, oF,)dadt
tE[—T‘zS,O] Br1+25 X B, U,
+CT’_n_2s/ / / F_(v)Fy(w)dwdz
v, /B, /B,
28 ¢ 2
(3.2) <~/Bi+25><BT Fy(—r**)dvdx + CEYEEED /QT Fidz

1—-2 }27
el n{f >y (/ Taﬂ(FJr;BT)dedt)
U.

(T _ 9)2(n+23)

rel@en {f > kI (/ h”dz)p ,
Qr
where we denote with Fy := (f — k)x and c=c(n,s,A) > 0.
Proof. Let 0 < p <r <1 and let consider a cut-off function such that
¢ € C¢ (B((%)H% X B%)v

0<¢<1land ¢ =1o0n Byt X B,
Vo] < c/(r— ) and Jv- V¢ <c/(r—o)'*%.

Consider in the weak formulation a test function F,¢?, up to mollification (see for in-
stance [33, Section 2] and [5, Section 3]). Then, for a.e. t € (—r2%,0] it yields

/ h¢?Fydedv > / (f +v-Vof)$*Fy dedo
B, 142s X By B 1+2s X By

(3.3) +/ E(f,¢*F)de =: I + I,.
B 1+2s

We start by considering I;. Using the fact that 9;¢ = 0, and that, by [38, Formula
(A8)],

(0 +v-Va) Fy = (0¢ +v- Vi) FiX{f>r} 5
we have that
1d
L > -— (pF1)? dx dv —/ v Vuo|FF dzdo
2 BT1+25 ><BT Br1+25 XBT

C
3.4 > 77/ OF dedv—i/ F? dz dv.
( ) 2 dt B, 1t2s ><BT( +) (T - Q)1+25 B, 1425 X By "
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Now we focus on the term I5, by adapting the same argument used for fractional
parabolic equations in order to estimate the nonlocal energy &; see in particular [44]. Start
splitting

(3.5) E(f,0°Fy) = Ep,(f, *Fy) + 28, wmm\5,) (f, 9> F4) .
We start recalling the following algebraic identities
f) = fw) = (Fi(v) = Fp(w)) -
(Fi(v) = Fio(w))(¢°Fi (v) — ¢*Fi(w)) (¢0F4(v) — oFL(w))
—Fy (0)Fy (w)(6(v) — ¢(w))?,

(F-(v) = F(w)),

from which we actually obtain
(f(v) = f(w))($*Fy(v) — > Fi(w))
= —(F_(v) = F-(0))(¢*Fy(v) = ¢* Fy (w))
+(PF4 () = 9F 4 (0))? = Fy (0) Fy (w) (6(v) — p(w))?,
which actually yields
Ep, ([, 0°Fy) = Ep.(9Fy,0Fy) - Ep, (F_, ¢*Fy)

e / / Fu(0)Fy () (6(0) — 6(0))* K (v, w) dw do

> 537‘(¢F+,¢F+)+cr_”_2s/ / F_(v)Fy (w)dwdv
B

_(77"—09)2/3 Fi(v)dv

where in the last line we have used that, since K is symmetric, up to exchange the roles
of v and w we can assume that F (v) > F(w), so that

|| PP - 60K @ v dwds
B, J B,

V@l — w]?
< ) RN 0= U8 40 do
/ /B (v) + |’U _ ‘n+25
dw
D ———— F2(v / ——— | dv
(r— Q) /BT +©) ( Bay(v) [V — w|”2(15)>
C

Now, we estimate the other part of the nonlocal energy. Since on the level set when
f(v) > Kk it holds f(w) — f(v) < f(w) — &k for a.e. w € R™\ B,, we have that

o (B0 F) = [ [ (7w~ f0)6 ) ) o

/ /n\B w)¢? Fy (v) K (v, w) dw dv.

—
@
N

~

Y
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Combining (3.4) and (3.5), (3.6) and (3.7) in (3.3) yields

ld

2.de B, 1425 X By

(¢F4)? dado + / Ep, (6F ¢, oF,) da

B, 1+2s

cr_”_zs/ / / F_(v)Fy(w)dwdvdz
B*?*JB, JB,
< c/ / / w)¢*Fy (v) K (v, w) dw dv dz
B, 1+2s r "\37
c
+ + / F?dvda
<(T - g)1+25 (T - Q) > B,1+2s X By +

+c / hF} dx dv.
Br1+25 X B,

After integration in time and easy manipulations as in [65, Lemma 2.2], we arrive at

sup /BH%XB (¢F+) der/ Ep, (oF,, ¢F, ) dxdt

te[—r2s,0]
ro T 25/ / / F_(v)Fy(w)dwdz

(3.9) < /B o, Pt dvda

+c/ / /n w)$? Fy (v) K (v, w) dwdz

C
+ + F2dz+c/ hE, dz.
<(7" o)t (r—p)? ) Q- * Q -

T

In order to conclude we just estimate the nonlocal contribution and the contribution
given by the source term. Let us first note that since ¢(v) = 0 on R™\ B(,4,)/2, we
have that I # 0 only on @, Nsupp(¢). Then, by applying Holder’s Inequality twice
with (2, _2), with p > 2, we obtain

/ / / 21+( VK (v,w) dwdz
"\B
' Fi(w) ’
F? dz) / / +7wdw Xt dz
</T + Q.-Nsupp(¢) R\ B, ‘U—w|n+25 {f>r}

QN {f >k} 7 3 . 1
= = Q>nf2s (/T F_?_ dz) </UT Tail(Fy; B,)? dx dt)

1—2
(3.9) gc/ F2ay 4 1@ O > mi (/ Tail(Fy; B )pdxdt> ,
U,

§ + (7" _ 9)2(7L+28)

1
2

IA
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where in the last display we have used Young’s Inequality and we have centered the
Gagliardo kernel since for any v € B, Nsupp(¢) C B(y1)/2 and any w € R™ \ B,, it holds
] r+o0  cr

v—w| = [ =l T r—o  r—0o

|w]

As for the source contributions we estimate via Hoélder’s and Young’s Inequality

/hF+dz </ hzx{f>,§}dz) (/ Fidz>
T Q’r‘ Q7‘
(/ hpdz>p</ Fidz) Q- N {f > k)2 F

(3.10) < clQ n{f>r}'"F </ h”dz)p—i— F? dz.
Q’F QT

The energy estimate (3.2) follows by combining (3.8), (3.9) and (3.10). For the estimate
n (3.1), we can proceed in a similar way: the only thing that differs is in the way we have
to treat the nonlocal energy. Indeed, by symmetry of the involved kernel K, we can simply
restrict on the subcase when f(v) > f(w) (up to exchange the roles of v and w), and thus
we simply use that

(f(v) = f(w)) ($*Fr(v) = ¢* Fi(w))
= ((f(v) = K) = (f(w) = K)) ($*F1(v) — $*Fy (w))
(

IN

IA

N

(Fi () = Fy () (82F4 () — ¢2F (w)) it f(0) = f(w) > ,
= (F(0) ~ flw )¢2F+<> if f(0) > k> f(w),

0 if 5 > f(v) > f(w),

O2F2 (v) + 62F2 (w) — Fy (w)§2F. (v) — Fy (0)62Fi(w) it f(0) > f(w) > r,
> { 622 (0) if f(v) > k> flw),

0 if k> f(v) > f(w),

= (Fyé(v) — Fyd(w))? — Fy(v)Fe (w) (6(v) — p(w))?
which yields the bound

I, = L . (¢F+7¢F+ dCL'— Borias /n /n F+(U)F+(w)(¢(v) _¢(w))2K(U,U)) dw dv da

[ eoraorya- [ [ [ FR @60 - 6@ K0 dwdods
B, 1425 B,1+2s B,

_ /B N /B T / - Fy (0) Fy ()2 (0) K (v, w) dw dv d,

and then treat the diagonal contributions as in (3.6) and the off-diagonal as in (3.9). O

3.1. Proof of Theorem 1.4. We apply the group law (1.6), in order to center the main
cylinder in the origin. Indeed, note that f,_ (z):= f(z, 0 z) satisfies

Oifzo + (v+wo)- Vefew =Lofzg +hey in Zc?l o€},
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where h,, (2) := h(z, 0 2). Now, fix 0 < o < r < 1 such that Q, = Q,(0) C z;' 0, and
define oy := o+ (r —0)273 and 09 := 0+ (r — 0)272, so that 0 < p < 0y < 09 < 7 < 1.
Define now, two cut-off functions @ and ¢ such that:

¢ = 1#(33’@) € CCOO(B(E’*#)NFZS X Bﬁ#)

Y =1on Bp+es x Bpand 0 <y <1,

Vo) < ¢/(r— o) and |(v+ o) - Votb| < c(vo)/(r — 0)'+2°

and
¢ =p(z,v) € OEO(B("*%)H% X B“r%)

p=1on BJ;HS X By, and 0 < p <1,

Vol < ¢/(r— o) and [(v+vo) - Vaip| < e (vo)/(r — o).

Moreover, we consider a cut-off function 7 to restrict ourselves to a compact set in ¢,
defined as

n € O (—(#574)%,0))
n=1on [—0%, 0 and 0<n <1,

0| < ¢/(r — 0)*.
Define F; := (f., — k)+ and let us apply now (3.1), with the choice above of ¢, oo and r,
obtaining

sup / (pFy)? dvdx—i—/ E(pFy, pFy) dx dt
B,1+2s XB U,

te[—r2s,0]
2
(3.11) §(7a_g2(1+2s)/ Fidz+c|Qr N {f., > K} </Q hé’odz)

1-2 g
|Qr N {fzo > FL}' (/ Tail(F+; BT)P dax dt)
Ur

(7‘ )2(n+25)

Moreover, applying once again (3.1) with v, ¢ and o1, we arrive at

C<U0>2 2
12 F F < - F
(3 )/Ua EWF Py )dzdt < (r — 0)2(1+25) /QT G dz

+e|Qr N {fey > K} (/Q h, dz) p

- :
c|@r N {fz, > K} (/ Tail(F, ; B,)? dxdt) ,
U,

(r — 0)2(n+29)

where ¢ = ¢(n,s,A) >0
Thus, we look at what equation the function g := mF satisfies. Let us apply the
transport operator to g. Then, distributionally,

(8t+(v+vo)'vw)g = F+(8t+(v+vo ' w 771P)+771/1 8t U+UO)'vw)F+
= F+(at+(v+vo : 1: 1/) )+77,‘/}X{fzo>n}(at+<v+vo)'vm)(fzo_K?)
(3'13) < F+ (815 + (U + Uo ’ ) + n¢X{fzo>n}£ (fzu - K) + nz/)X{fzo>n}h20

Now, we employ a proper integration by parts of L,,

(3'14) LU[(on - H)#’] = ¢‘CU[(on - ‘%)] + (on - H)Evd} + I((on - H), 11[}) )
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where Z((f,, — k),%) is a remainder term defined as

I((fo, — 5) ) = / ((Fao (0) = ) — (fon () — ) ((0) — () K (v, )

RTI,
together with the following pointwise inequality (see [12]),
(315) X{\p>0}£v\I’ S ,C,U\I’+.

Indeed, by (3.14) together with (3.15) we have that the nonlocal diffusion in (3.13) can
be bounded as follows (recalling that 1 depends only on time),

NUX{fo>e} oo(foe = 8) = X{fo>e} Lol(fzo = £INV] = (0(f2y — K)LoW)X (1. >0}
—(NZ((fzo = K)s V)X {f.u >k}
(3.16) < gt ( [ F@ @) - 9) K do) xir,on-

Lastly, let us note that £,g € LR, W=52(R")). Indeed, by Cauchy-Schwartz’s
Inequality and the kernel assumptions in (1.3), we have that for any ¢ € W*2(R")

(£l < | [ ] (6w = g@)(€w) ~ DK (v, 0) dwdo| < Alelalglea,

which yields

H,Cyg”%z(]R1+n;W75,2(Rn)) = ||£U‘CJH%/V75,2(R7L) dx dt
R1+n,

- / sup  |(Logl6) dadt
R

I4n gews:2(R")

lgls 2 <1
(3.17) < C/ g2dz+c/ [gﬁde:z:dt,
r U,
recalling the choice of the cut-off  and 1.
Now, consider a translation in time § := g(t—i—(%)%,m,v) so that at time ¢t =

7(%)25 we are in the origin. Given the invariance of the equation with respect to time
translations, combining also the previous chain of estimates (3.16) with (3.13) yields that g
satisfies distributionally

(04 (v +v0) - Va)i+ (=A0)°F < Fy((0r+ (v+wo) - Vi) () + nx(s., >ryhz,
+(£v + (_Av)s)g

([ P (00) = 00 Klow) o) xir, o

= H
In order to apply Lemma 2.2, define G to be the solution to
(O + (v + o) Vo )G+ (=A)G=H in [0, 00] x R?",
G(0,z,v) = §(0,z,v) = g (—(&E2)*,z,0) =0 in R?",
G(t,z,v) =0 in (—oo,0) x R?",

Assuming H € L?(R'*2"), such a solution G does exist. Moreover, by maximum principle
as in [38, Lemma A.12], applied there to the function § — G, we get G > g > 0. Hence,
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in order to derive integrability conditions on § (and in turn on g) it is enough to apply
Lemma 2.2 on G. By (2.2) we finally obtain

1F 0,y < 1G1700,) < G igiseny < clH|72mireny,

where the exponent ¢ is such that
1 1 2s

2 d’
with d being the homogeneous dimensizn defined in (1.9).
Notice now that we can estimate the L?-norm of H as follows,
[H[Z 2 (1+2ny
< c|[Fy (0 + (v +0) - Va) (1) 1120,
Fellmhe) X s, smpllTz @ + ClLogllTz e, xmmy + 1 (=20)°gl 20, xrn

ce|([ Emtta v g ), |

L2([-0%%,0]xR2™) ’
where we have used the definition of 7, and the fact that we are truncating the support in

time and space. In the display above, ¢ > 0 is a universal constant. The first term can be
plainly estimated by recalling the very definition of the cut-off functions v and 7, so that

1F4 (0 + (v + o) - Vo) (1)) 720,y = /Fﬁ(lam|2+|(v+vo)-vw1/)|2) dz

r

2
(3.18) < C<”°>/Q F2 dz.

(r — 0)2(1+29)

As for the source term contribution, we apply Holder’s Inequality with p > 2

(=) X smi T2y < / h2, dz
Qrm{fzo>'{}

(3.19) Qe N {fan > R}~ </ w dz) ,

IN

since 0 <vy,n<1.
In order to estimate the contribution given by L£,g and by (—A,)®g we proceed by
duality relying on (3.17). Indeed, we get that

||£v9||2L2(U,.an) + ||<_Av)29||%2(U,.><R")

< cllLugl e, w2 q@ny) Tl (=D0) 9l 220,02 (ny)

<c Fidz+c/[g]§2dxdt
Qr U,

2

<C<“°>2/ F2dz+c|Q n{f., >r}'"? (/ hP dz)p
o (’ri 0)2(1+25) Qr + ’ Qr =

2
T e N Y
(7« _ 9)2(n+2$) U, Tall(F-i-v Br) dx dt

where 1 is compactly supported in Bgi+25, K%

<1 and (3.12).
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Finally, it only remains to prove an estimate for the integral term. Firstly, for any
fixed v, we split the integral term as follows,

(/ Fy (w)[$(w) — ¢ (v)]

|U 7w|n+25 dw)X{fzo>n}(U)

/ Fy (w)[p(w) — 9 (v)]
Br_p(v)

v — w[n+2s dw | X{1.,>r} (V)

16

Fy(w)|h(w) = ¢(v)]
i /Rn\wa)

v — w[nt2s dw | X{1.,>r} (V)

16

=J1+ Jo,

so that, for any v € supp(¥(z,-)) C B(s4s,)/2 We have that B,._,y/15(v) C Bs,. Indeed,

for any w € B(,_,)/2(v), since o0 < 01 < 03, we have |w| < |w —v| + |v] < &2 4 =0 =
0+ 5t =02
Let us separately estimate the two integrals. We start with the term Js,
2

Fy(w)[y(v) — ¢(w)]
| J2]132_ 2= o < c/ X{f. / dw | dz
L2([ ! ,O]XRQ ) Uo1 XBQ+01 {f O>K} RW’\Brfg ('U) ‘U - w|”+23
2 16

2

F _
N / / ) bl g g,
Usy X(R"M\B g4oy ) \JR™\Br_, (v) v — w|
2 16

Consider the second one in the right-hand side in the preceding inequality. Note that
for any v € R" \ B(,14,)/2 the test (v) = 0, hence the integral is actually non-zero only
when w € B(,44,)/2, Where ¢ is supported. Then, by Hélder’s Inequality, we obtain that

2

F
/ / 7+(w)1ﬁ(+tgs) dw | dz
Uy X(R"\B g4o; ) \JRM\B,_, (v) v — wl
16

2

2 2
< / / Fi ()™ (w) S;U) dw
Usy X(R\B gty ) \J B ooy \Byp (v) [V — W[
2 2 16

dw
X / I dz
Botoy \Br—o (v) |U B ’LU|
2 16

c dv
< F2dz / —_
(’I“ _ Q)n+25 (Lﬂ + > R™\B gy |U|n+25
2

c
Si/ F2dz,
(r—om+is Jo, o "

r
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where we have used the fact that for any v € R™ \ B(,40,)/2 and any w € Byio,)/2 \
B(—g)/16(v) it holds |v|/|v —w| < ¢/(r — ). Then, also using that o1 < g2 < r, we get

2 ¢ 2
. y < F7d
ol opaperony < e L PR

Fy (w)[¢(v) — ¢ (w)
+c/ X{fzo>r} / + — 7. | dw | dz.
Uosy XB gtay R\ By, (v) v — w|
2 16

We now estimate the second term. Since for any v € B(,44,)/2, the ball B,._,) 16(v) C
B,, so we can split (R™\ B,) U (B, \ B% (v)) =R"™\ B% (v). Thus, for any w € R\ B,
and any v € B(,44,)/2, We re-center the Gagliardo kernel at the origin since |w[/|v —w]| <
er/(r — o) Thus, for any p > 2, by applying Holder’s Inequality we get

2

Fi(w)[¢(v) — ¢ (w)|
/ X{foo >} / [0 — |2 dw | dz
Usy xB Q+2'71 R™\B r—e (v)

2
Fi(w)
Sc/ X{f. >w / — 2 dw | dz
Usy % B gy {fzo>K} ( R7\ B, |,U_w|n+2s
2

F_(w
tc / X{fzo>r} / i+l ni—?s dw | dz
Uosy XB gtoy BA\B.,_, (v) v — w]
2 16

N4 5 ’
< @itz > K} (/ Tail(FJr;Br)pdxdt) +;/ F2dz.
Qr

(7’ _ Q)Z(n+25) (T _ 9)2(n+25)

r

Hence, combining all estimates for Jo yields that

C
Jo|? s ny < F2d
|| 2HL2([7U% JO]xR27) = (T_Q)2(n+25) /Qr + dz

c|Qr N {fsy > K}[' 7 o |
(3.20) L P . Tail(Fy; B,)P dzdt ) .

LN

Let us consider the contributions given by .J;. First let us note that when v € R™\ B,
then B(,_,)/16(v) Nsupp(y(,-)) = 0. Indeed, for any v € R™\B,, and any w € B(,_)/16(v)
it holds |w| > |v| = v —w| > o1 — (r—0)/16 = o+ (r — 0)/16 = (9 + 01)/2. Then,
for (v,w) € (R \ By,) X Br_g)/16(v), we have 9(w) = ¢(v) = 0, since B(,14,)/2 C Bo,,
given that 0 < p < o1. Hence, we just restrict J; on Qo,.

In order to proceed estimating further, we differentiate the cases depending on the range
of the differentiability exponent s € (0,1). Assume that s € (0,1/2). By Holder’s Inequality
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we obtain

2
11l (- o250 xn)

/ / Fy (w)[$(w) — ¢ (v)] dw | dz
Qoy Brg(v)

v — w|?t2s
c/

F2 - _
[ mse ) () ) o
B,_,w) |v—ul B,_,(v) V=l
F2 - oo
I A C L R CP F
B [v—wlr By g |v— w2279

IN

IN

1

IA

16
o1

F2
< o) =6 g,
r—0 Qoq B7 Q(v |’U_w‘n

Note that for v € By, \ B(p44,)/2, it holds 9 (v) = 0, hence the integral is non-zero only
when w € B(y44,)/2. Moreover, for any v € By, \ B(y40,)/2 and any w € B(,14,)/2 We have
that v — w| < |v| + |w| < 20, which yields, by Fubini’s Theorem recalling that s € (0, 1),

that
F? —
[ / HOITOETCTI
Usy X(Boy \B gy, )/ Br—g (v) v —wl
2 16
/ F? / %dv dz
Qos Baw, (w) [V — W[
v ood
/ P2 / Vet~ dv
Qoy B201(w) "U—w|n_2(§_8)

&
< F2dz.
- T*Q/ e

r

IA

IA

On the other hand, when v € B(,14,)/2 We have that B(,_,/16(v) C By, and for w €
By, the ball Byi4,)/2 C Bag, (w). Indeed, for w € B(._,)16(v) we have that |w| <
9+01 + 5 < 02 and |v — w| < 205. Then, by Fubini’s Theorem, we obtain

F —
/ / HOIORIOIW
Usy XB gtoy JBr_p(v) v —w|
2 16
Qoy Baw,(w) [V — W[
Qos Baay (w) [0 — w|"~2(z7%)
C
F? dz.
r—o / +d2

r

IN

IN

IN
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All in all, we obtain

C
(3.21) 'M%“NWMSUEWLF“&

Let us focus on the case when s € [1/2,1). We estimate the contribution given by .J;
via duality as in [38, Lemma 4.11]. Since J;(v) is supported in B,,, for any & € W*2(R"),
we have

/ / EO)F W) = 6@) 1\

|’U 7w‘n+25

A S (0)E(v) dv

o1 o1 r—o (U)
16

- ;éﬂﬁﬂm érwfﬂw_ﬁwﬁﬁﬁ_ww”w
+w>4ﬁ@mmwﬁﬁﬁg—wmw "

- ;Aﬂpmw A“Wjaw—%mggg—wwnwjdv
+% /B B £(v) /B i (F+(7~|03: 5|+n(+vz)s)w(w) dw | dv

2 v — w|nt2s

1 (Fy(w) = Fy (v) (@ (w) — ¥(v))
"3 /B+ ) /BMw) i

16

(3.22) = Jip+Ji2+J13,

since the second integral is non-zero only when w € B(,4.4,)/2 Where v is supported.
We separately estimate the integrals above. Starting from J;;, by applying Cauchy-
Schwartz’s Inequality we have that

c€s 2 Vol pee | F5 Nl 2B, )

< _ 1—s
al = 2(1—s) (r—o
(3.23) < ClesalPellram,)
r—e

In a similar fashion we can estimate J; 2 and J; 3. Indeed, for J; o we have

clléllLz@n)[Ft]s,2:8,, Vol Lo
2(1—3s)
clléllzz@ny[Fyls 2B,
r—o0 '

| J1.2] (r—o)'*

(3.24)
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Lastly, noting that for any v € B(,44,)/2 it holds B(T_g)/lﬁ(v) C B,,, we have
clléllzz@ny [Fy]s,2:8,, Vo] L

. < _ 1—s
‘J1’3| _ 2(1 _ 8) (/r g)
Cc 2(rny | F $.2:
(3.25) < €112 ny [F4] 2iBoy
r—e

Then, combining (3.23), (3.24) and (3.25) into (3.22), yields

C
N 0 (”F—FHL?(BUI) + [F+]s,2;B(,1> ;

sup
EeW S 2(R)
l€ls,2<1

/B J1(v)é(v) dv

o1

so that, by definition of the test function ¢, we obtain

C
T2 . ny < Fid /
[Tl z2 ((—o2s 0y xmony < (r — 0)2 (/Q Ul U

91

(3.26) < (T_CQ)Q (/Q P2 dz+/U

o1
Combining (3.20), (3.21), (3.26) yields

P2 5, da dt)

[SDF+]§,2 dx dt) ‘

2 2
||J1 ||L2([—U§S,0]xJR2n) + HJ2||L2([—U§S,0]xR2")

¢ (o) / 2 ¢ / 2
< —i5 Fid — F dz dt
= (r— Q)Q(n+25) o, Fdz+ r—02 /s [¢ +]s,2 £z

T

1-2 ,
N c|@r N{f:, > K} (/ Taﬂ(FJr;Br)pdmdt) ’ )
Ur

(T _ Q)Q(n+2s)

(3.27)

where ¢ = ¢(n, s,A) > 0.
Putting together (3.18), (3.20), (3.27) and (3.19), up to relabeling the constant ¢ =
¢(n,s,A) > 0, we finally obtain

C
F.|? < — | su / F 2dxdt+/
|| +||Lq(Q9) (T_Q)2 <t6[_7'£)'g70] QT(SO +) Ur

PO (Lo, > YR . ’
L9 - {J; e 52’)' ( / Tail(Fy; B,)? da dt)

orltyasar)

r

2
G wa) s
+c|Qr N{fz, > K} (/ | hL dz) + =0 Jo, F? dz.

T

So that, by combining the estimate above with (3.11), in view of the previous choice of
test function ¢, it yields the desired result up to translating back to z,. ([l

3.2. Proof of Theorem 1.1. Our proof will generalize the one based on the classical
iterative scheme with tail as firstly seen in [19], and this will be basically thanks to our
integrability gain result in Theorem 1.4, since the standard starting process based on the
Sobolev/Poincaré inequality can not be applied.
For any j € N, define r; := 2(1+277)r and k; := (1 —277)k, where & > 0 will be fixed
1 2s

later on. We apply Theorem 1.4 to fjy1, with % = 5 — 7 and with radii 7;11 and ;. Let
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us begin noticing that

. _z
[Tail((f — Kj+1)+; Br, (UO))H%P(Urj (t07w0))‘QTj (z0) N{f > Hj+1}|1 ?

. _2
<N Tail(f4; B2 (o)) 1o (0, (1o o )| @rs (20) NV = 15 > Kja — 3177

. i _2
< [Tail(F4: By o (0o)) o, 1oy | @ (20) O {F = 1y > 2797 )1

LR\ 2 B -=
(3.28) < 2% (5) (’f 2||(f—’@j)+|\%2(Q,,.j(zo))> ;
by applying Chebyschev’s Inequality and choosing for any ¢ € (0, 1],
(329) K > (5” Tail(f+; BT/Q(’UO))HLp(UT(tOJO)) for § € (O, 1] s
In a similar way by also choosing
(3.30) K 2 |7l L@ (z0))-
we get

_2
Hh||2LP(er(zo))|Q7’j (20) N{f > k1 }|' 77

_2
P

(3.31) <2262 (w2 = 1)+ 1320, o)
Then, combining (3.28), (3.31) together with Theorem 1.4 yields that
1(f = Hj+1)+||2L2(QTjH(zO))
_2
<|I(f - Hj)+|‘%q(QTj+l(zo))|QTj(ZO) N{f>rjpa}l' e

<, bR (m_2||(f =)+ 2@, o)

2

1-2 2
+ (R0 = m)e e, o) 1@ () N > g E

for

2
B - c{vo)
b=b(n,s)>1 and ¢, := ((57‘2(”*‘25)> > 0.

_ )2
Y; ;:/ =)y f”* dz
er(zo)

Thus, once defined Y;

K

and applying once again Chebychev’s Inequality, we get

i a=2 2 2
(3.32) Yii1 <o b (Yj“r 2 +Y.1+(1 2_2 )

27

Now, note that 1 —2/¢g > 0, given that ¢ > 2, and that 1/p < 1/2—1/q, which is in fact

possible for p large enough, say p > p*, where

A1t 11 /1 25y 2s
p* 2 q 2 2 d) d’

which derives from the growth gain given by (1.13).
Hence, up to choosing x such that

(3.33) £ 2 ||+l L2(Qr(z0) -
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we can rewrite (3.32) as follows
}/3+1 < C*bj)/jl+aa

for some positive a = a(n,s) :=1—-2/p—2/q = 2(%5 — %) > 0 and b > 1. Then, up to
choosing

1
o () \*©
K= bETom <5r2<n°+zs>> 1f4 122 @ o)+ Pl @ e
+ 0 || Tail(f4; By y2(vo)) | e (U, (t0,20)) »

in clear accordance with (3.29) and (3.33) and (3.30), the iteration argument of Lemma 2.5
yields that Y; — 0 as j — oo, which gives the desired result. O

4. STRONG HARNACK INEQUALITY AND PROPAGATION
This section is devoted to the completion of the proof of the strong Harnack inequality

in Theorem 1.5 as well as its geometric version in Theorem 4.7.

4.1. Proof of Theorem 1.5. Let r, and ¢ be given by the weak Harnack inequality in
Theorem 2.3. Set 1/2 <o’ <o <1 and 2, := (=14 72%,0,0) and for any 21 € Q,rr,(20)
it holds by (2.3) in Lemma 2.4 that Q., (c—o/)r,)5(21) C Qor,(20). Hence, applying (1.12)
we get

(4.1) J) < o) (/ f2dZ>
[(0— ")) Zp=a \/ Qoro(20)

+0]| Tail(f; Be. (0—0"yro)s WL, 0r)oys (tran) -

1
2

We estimate the nonlocal term. For a.e. (t,z) € U, (5—or)r )5 (t1,21) C Ugp, (=1 4 72%,0)
we have that

[(e(o = 0")r0)]) ™ /Rn\B fow)

_ n+2s
(c*(o'—o'/)'ro)ﬁ(vl) |w U1|

= [(enlo — 0)ro)]* /B Sfaw)

— n+2s
77\ B oy (1) [ 01

Hlleo =) [ T du

"\ By, |w _ U1|n+25

2s

€Ts [t z,w)

<c sup f+ (o—a’)"+25/ T dw,
Qoro(20) R\ By, /2

where we have used the fact that Q ., (o—o/)r)5(21) C Qor,(20) for any 21 € Qorr,(20), 0 >
1, that
PR

|w] |v1 ] o 1

— <1+ ———<14+ —< ——,
|w — vy ] |w| — |v1] oc—o T o—o0o

for any w € R™\ By, and that g > 1.
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Thus, we can estimate the p-contribution of the tail in velocity as follows,

H Taﬂ(f; B(c*(o'—o”)ro)ﬁ (Ul))”LP(U(C*(G_a,)TO);a (t1,21))

C .
(42) S C o SuI() ) f + m H Tall(f, B7'o/2)||LP(UTO(_1+7'ES7O)) s

where we have used that Q(c, (o—o/)r,)5(21) C Qor,(20) C Qr,(20)-
Then, combining (4.2) and (4.1) we arrive at

)l e .-
(4.3) sup < @) | <c§ n > wp f
S AU Ry ) o5
c(o )
+(o’—(0')/)62 H Tall(f’ Bro/2)||LP(UTO(71+T§S’O)) ,

by also making use of an application of Young’s Inequality (with exponents 2/¢ and 2/(2—
(), where 51 = pi(n,p,s) >0 and B2 = B2(n, s) > 0.
Choose ¢ € (0,1) such that

9 _
cd + TC =e<1,
which together with (4.3) yields
[ f e (@uy (z0)) c
f<——"—""2>+¢ sup f+ ————|Tail(f;B,, p(U (—14725 0))-
Qo (20) [(U _ 0')7‘0]51 Qur (20) (0. — 0./)52 H ( T /2)||L (Ury (—14722,0))

Hence, a final application of Lemma 2.6 together with the weak Harnack inequality in
Theorem 2.3 yields the desired (1.14). O

Remark 4.1. Still in theme of Harnack-type inequalities for kinetic equations, it is worth
mentioning the very recent paper [56], in which amongst other interesting results the
author proves a strong Harnack inequality for kinetic integral equations for global solutions,
a priori bounded, periodic in the space variable, and under an integral monotonicity-in-time
assumption (see Definition 2.2 there). The usual nonlocality issues are partially annihilated
by the peculiar global framework there, so that no tail contributions do appear.

4.2. Geometric Harnack inequality. By Chow’s Lemma, we observe that R!*2" is
connected with respect to the group of translations introduced in (1.6), and hence given
any two points z,, 21 € R172" we are able to connect them through an absolutely continuous
integral curve of the vector fields generating the algebra. We are thus allowed to consider
integral curves already employed in the study of the geometrical properties of the local
Kolmogorov equation; see for instance [3], and/or already done by many authors in the
nonlocal framework in order to obtain other types of results; see for instance [2,56].

Definition 4.2. A curve v : [0,T] — R'*2" js admissible if

(4.4) (1) =D wi(M)du, (¥(7)) + (v- Vo = 8,) (7(r))  a.e. in [0,T],
k=1
where wy, . ..,w, € LY([0,T]), and it is absolutely continuous.

Given zo = (to, To, Vo), 2 = (t,x,v) € RIT2" ~ steers z, in z, for t < to, if v(0) = z, and
WT) = =.
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Since the problem at hand (1.1) is backward, we always need to consider a Cauchy
problem with final datum. Hence, in order to have a positive parameter 7 governing the
curve v, we apply a change of variables and replace the vector field v-V,+0; with v-V,—0,
in the definition of above. Furthermore, in (4.4) we identify each vector field with a vector
of R1*2" as follows

v'vm_at'\“ (—1,?]1,"' 71/'71;07"' aO)Ta
and 9, ~ (0,---,0,1,0,---0)" for j=1,....m,

where in the last vector 1 occupies the (1 +n + j)*"-position.
Now, to find a curve 7 defined as in (4.4) we need to solve the following problem

t(r) = -1
& () = v;(7) for j=1,...,n,
05 (1) = wj(7) for j=1,...,n,
where w is a suitable control w = (w1,...,wy,) € (Lz([O7T]))n. Thus, an admissible curve ~

steering 2, in z is defined for a.e. 7 € [0,T] as

71(7—) = tO -7,
T T
YVi+1(T) = Toj + Vo iT +/ / w;i(r')dr’ dr for j=1,...,n,
. Jo Jo
Vian1(T) =vo 3+ [ w;(r) dr for j=1,...,n,
0

where x,; and v,; denote the j-th component of the vector z, and v,, respectively. In
particular, when n =1 we get

v(r) = (to—7,$o+v07+/ / w(r’)dr’dr,v0+/ w(r)dr).
0 0 0

Definition 4.3. Let Q be an open subset of R12" and z, = (to, 2o, Vo) € 2. The attainable
set o, () is defined as

o, (Q):={z€Q: Iy:[0,T] » R admissible curve s.t. v(0) = zo,¥(T) = z}.

Then, to give a geometric characterization of the set on which our Harnack inequality
holds true we rely on a fundamental tool firstly developed in the local uniformly parabolic
case by Aronson and Serrin [9], and later on extended to the local Kolmogorov setting by
Polidoro in [61].

Definition 4.4. A set {zo,...,2¢} C Q is a Harnack chain connecting z, to z; if there
exist £ positive constants ci,...,cy such that

f(z) < ¢if(zj-1) Vi=1,....¢,
for every solution f of (1.1), with h = 0.

Now, for any radius r > 0, we define

1

and for every z, = (to, To, Vo) € R1T2" we have

D, (20) := (to, To, Vo) © D
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We observe that by its definition D, is a subset of Q. (z,).

Lemma 4.5. Let v : [0,T] — R™2" be an admissible curve such that v(0) = 2z =
(to,xo,vo). For any b € [0,T], such that b < 1, for which there exists a positive constant n
such that

b
/ w(e)2de < n,
0

then

W

7(b) € Del((0) with 7 = (2(1 - b))% .

Proof. Firstly, we consider the case where v(0) = (0,0,0), given that by the translation
invariance of the vector fields in (4.4), we can infer every other possible case. Our aim is
to show that there exists n > 0 such that v(b) € D#(0), for some appropriate 7 > 0. Note
that 7 > 0 needs to be chosen in such a way that

1, -~ 1
71+§T =-b = T=(2(1-b))2=.

Now, we will show that for j=1,...,n

b
(4.5) /Owj(g)dg <7 and

For this, we apply Holder’s Inequality, for every j =1,...,n, to get

b b
[ art@1de] < [ lr(@lde < losllagomn V5 < Vb
0 0

For what concerns the second estimate in (4.5), again by Holder’s Inequality, we have

b ro b
| [ wirdodd < [ lwslliaonvade
0 0 0
2 517" 2.,
< lwjllzzo,e) 30" =§szijL2([o7b]),

0=0
and this implies

1
T+2s

b 0 ﬁ
//wj(o)dadg < <§\/7763> .

The proof is finally complete by choosing 7 such that

=2 72(1+2s)
(4.6) n<min{r 97“}.

b4 b
0

Now, we are in a position to prove an intermediate result which will easily lead to the
proof of the desired Geometric Harnack inequality. We have the following

Proposition 4.6. Under the assumptions of Theorem 1.5, if z, € Q, then for every z € JZ{;O
there exists an open neighborhood U(z) and a constant ¢, > 0 such that

¢
sup f <c, (f(zo) + Z [| Tail(f; BTO/Z(Ui))||LP(UTO(1+r§sti,ri))> .

U(z) i—0
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Proof. In view of the result in the preceding Lemma, the proof below can now go in a
similar fashion as in [3]; we just have to take care of the intrinsic substrate and the tail term.
For any given z = (t,z,v) € 42%;0 we construct a finite Harnack chain connecting z with
Zo. By Chow’s Lemma we know that there exists an admissible curve v : [0,7] — R!*2»
steering z, in z. Without loss of generality we assume T > 1.

Some further notation is now required. Denote by C := (—1,1)*27; that is, an open
neighborhood of the origin of R'*2". Thus, thanks to the continuity of the Galilean
change of variable in (1.6) and of the dilation {d,},~¢ in (1.7), for every z; € R**2" the
family (G’“(Zl))r>o given by

Cr(21) :== 21 06,(C)
is a neighborhood basis of the point z;. Then, again in view of the continuity of the group
law and dilation, for every 7 € [0,T] there exists a positive r such that C,(v(7)) C Q. Thus
we can define

(4.7 r(r) :==sup {r >0 : C.(y(r)) € Q}.
Note that the function in (4.7) is continuous (as function of 7 € [0,7]), and thus it is well

defined the positive number 7., given by

4.8 min +— i .
(4.8) r min 7(7)

Since @, (v(7)) C Cr(7(7)) we actually have that, by definition the very definition of (4.8),
Qr(y(1)) €Q for every 7 € [0,T] and r € (0, min).
On the other hand, notice that the function ¥(7) defined by

.
()= | o de
0
is (uniformly) continuous in [0,T]. Then, there exists a positive constant 7 such that

G(r)<n  for every T € [0,77.

- 1
7 1= min {TO, §rmin ,

which is such that ¥ < 1, since we recall that r, € (0,1) is the radius appearing in
Theorem 1.5, and we consider v, =1 — %FQS. If  <n, where 7 is the constant computed
in (4.6) with ¥ = 7, then we proceed to work on the full interval [0,7]. Otherwise, there
exists T € (0,T) such that the desired inequality holds, and the proof will work in the
same fashion.

Now, let us consider

For the sake of the reader, we place ourselves in the first case; i. e., when 1 <7 with our
choice for 7, and we construct our Harnack chain of step 1y. Let ¢ be the unique positive
integer such that (£ —1)v, < T, and v, > T. We define {7;},c(0.1,....e; € [0,7] as follows,

Tj =jvo for 5 =0,1,...,4 -1, and 7, =1T.

Now we apply Lemma 4.5, up to traslating the initial point, to any portion of the curve
originating from 7; and ending in 7;41, and we obtain

V(7i41) € Dr(v(75)),  for j=0,...,0-2,
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and also to the couple 7,1 and ending in 74, and we obtain

Y(7e-1) € Dr, (v(7e)),

for a possibly different 71 (or up to moving v(7¢) further). Now, by its very definition, for
every j = 1,...,£ —1 we have D;i(y(7;)) C Q. (7(75)), and also Q2:(v(7;)) C Q.
Lastly, for some r; € (0,7], we obtain

v(1e) € @y, (V(Te-1))-

It remains to show that (y(7;))
j=1,...,0—2 we get
fO(7j41)) < sup f
Qr (v(73))

< sup f
Qr, (v(73))

j=01,..0 182 Harnack chain. By Theorem 1.5, for every

< ¢ inff || Tail(f; B, 2 (0(75)) e, (~14025 =t(r)) 2(7)))
QL (v(75))

IN

¢ f(y(75)) + ¢ || Tail(f; B, j2 (0(m)) | o (U, (14020 —1(7)r)))
Eventually, we apply Theorem 1.5 to the set @, (v(7¢—1)) C ©, and we obtain

¢
sup f < c. <f(zo) + Z | Taﬂ(f;BrO/2(Ui))|LP(UTO(—l—i-rgS—t,;,z,;))) ;

U(z) i=0
where ¢, = Zle =" and U(z) = Q;, (7(4=1)). This completes the proof. O
We are ready to complete the proof of the geometric Harnack result.

Theorem 4.7 (Geometric Harnack inequality). Under the assumptions of Theorem 1.5,
for every z, €  and for any compact subset D € o7, , there exists a positive constant ¢ > 0,
depending only on n, s p A and D, such that

0
Slll)Pf <c (f(zo) + Z H Tail(f; BTO/Q(vi))||LP(Ur0(—1+T§S—t¢,wi))> :

i=0
Proof. Let D be any compact subset of <, . Hence, if U(z) denotes a neighborhood of
z = (v,z,t) € K, then
D C U U(z).
zeD
Since D is compact, then we can extract a finite covering {U(z;)};=1,..m of it. Then we
apply Proposition 4.6 to every U(z;), with j =1,...,m, obtaining
¢
sup f <c(z5) | f(2) + Z | Tail(f; Br2(vi))ll Lr(Un_ (1472 —t:,2))

Zj i=0
where ¢; is the number of points belonging to the Harnack chain for the specific set
U(z;), each of which begins at the point z,. By choosing ¢ = max{c(z;) : j=1,...,m}
and £ := Z;nzl ¢; the proof is complete. ]
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