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Abstract. In this paper, we study the problem of minimizing the weighted total variation of a

normalized BV function u plus a penalization on the weighted L1 norm of the trace of u on the
Neumann part Γ of the boundary, while assuming a Dirichlet condition u = 0 on the complement

part Γc ⊂ ∂Ω. We show that this problem is a relaxation of some shape optimization problem of

type Cheeger, that is both problems have the same minimum. Then, we prove that the level sets of
minimizers are optimal sets. Finally, we will also study the regularity as well as some properties of

these optimal sets.

1. Introduction

Let Ω be an open bounded set in RN and Γ is an open subset of ∂Ω. Let ϕ and ψ be two nonnegative
functions over Ω and w be defined on Γ. Then, we are interested in studying the following minimization
problem:

(1.1) inf

{∫
Ω
ψ|Du| −

∫
Γ
w|u|∫

Ω
ϕ|u|

: u ̸= 0 ∈ BV (Ω), u = 0 on Γc := ∂Ω\Γ
}
.

The case when Γ = ∅ has been already considered in [6]. Moreover, the authors of [15] have also
studied Problem (1.1) but in the case where Γ ⊂ ∂Ω and w = 0 on Γ. The interest in studying Problem
(1.1) is motivated by a landslide model (see [10]) in which ϕ and ψ represent the body forces and
the (inhomogeneous) yield limit distribution, respectively. When ϕ = ψ = 1 (which is not a relevant
assumption in landslides modeling) and Γ = ∅, the infimum in (1.1) can be restricted to characteristic
functions u = χA and so, we get

(1.2) min

{
Per(A)

|A|
: A ⊂ Ω

}
where Per(A) denotes the perimeter of the set A in RN in the sense of De Giorgi (see [2]). This
problem is known as Cheeger’s problem [9], its value λ(Ω) is called the Cheeger constant of Ω and its
minimizers are called Cheeger sets of Ω (see aslo [16, 17]). Moreover, λ(Ω) is the first eigenvalue of the
1−Laplacian on Ω ([11, 12]). We note that the existence of an optimal set A⋆ in Problem (1.2) is very
simple and it follows from the direct method in Calculus of Variations. In the case where the densities
ϕ and ψ are not uniform, but w = 0 on Γ ⊂ ∂Ω, Problem (1.1) will be the relaxation of the following
problem:

(1.3) min

{∫
∂A\Γ ψ∫
A
ϕ

: A ⊂ Ω

}
.

This can be seen as a generalization of the Cheeger problem (1.2). However, up to our knowledge,
the case when w ̸= 0 has not been studied before in the literature. In this paper, we will show that
Problem (1.1) is equivalent to the following generalization of (1.3):

(1.4) min

{∫
∂A\Γ ψ −

∫
∂A∩Γ

w∫
A
ϕ

: A ⊂ Ω

}
.
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We note that the existence of an optimal set to Problem (1.4) is not guaranteed here for an arbitrary
weight w on Γ. Indeed, the functional in (1.4) is not a priori lower semicontinuous with respect to the
weak* convergence in BV . Thus, this additional difficulty imposed by the presence of a density w ̸= 0
was the main motivation to write the present paper.

Inspired by [14], one can see that the variational formulation of the stationary anti-plane flow of
an inhomogeneous Bingham (rigid visco-plastic) fluid can be stated as follows: there is a function
u ∈ H1(Ω) with u = 0 on Γc such that

(1.5)

∫
Ω

∇u · ∇(v − u) +

∫
Ω

ψ|∇v| −
∫
Ω

ψ|∇u| ≥
∫
Ω

ϕ(v − u) +

∫
Γ

w(v − u),

for all v ∈ H1(Ω) such that v = 0 on Γc. The velocity field in the domain D = Ω × R ⊂ R3 (here,
we assume N = 2) is given by u = (0, 0, u) with u = u(x1, x2). The viscosity distribution is equal to
1, ψ stands for the yield limit distribution, ϕ denotes the body forces in the x3 direction and, w is an
additional force acting on the Neumann part Γ. A particular case of the Bingham model lies in the
presence of rigid zones located in the interior of the flow of the Bingham solid/fluid. As the yield limit
ψ increases, these rigid zones become larger and may completely block the flow so that u = 0 is the
solution of (1.5). In other words, the Bingham fluid is blocked if and only if

(1.6)

∫
Ω

ψ |∇v| −
∫
Γ

w v ≥
∫
Ω

ϕ v, for all v ∈ H1(Ω), v = 0 on Γc.

When considering oil transport in pipelines, in the process of oil drilling or in the case of metal forming,
the blocking of the solid/fluid is a catastrophic event to be avoided. From (1.6), one can see the
infimum in (1.1) as a safety coefficient. In other words, the Bingham fluid is not blocked if and only
if inf (1.1) < 1. In a completely opposite context, when modeling landslides, the solid is blocked in
its natural configuration and the beginning of a flow can be seen as a disaster. Here, the 1/ inf (1.1)
appears as a safety coefficient.

Notice that Problem (1.1) can be seen as a study of the “eigenvalue problem” for the following
degenerate inhomogeneous equation with mixed Dirichlet-Neumann boundary conditions (where the
first eigenvalue is λ⋆ := inf (1.1)): 

−∇ · [ψ ∇u
|∇u| ] = λϕ, in Ω,

ψ[ ∇u
|∇u| · n] = w, on Γ,

u = 0, on Γc.

On the other hand, the properties of Cheeger sets (i.e. optimal sets in (1.2)) have been studied in
several papers (see [8, 1] and the references therein). One of the very important results concerning
the regularity of Cheeger sets, is that the internal boundary of Cheeger sets have constant curvature.
In [15], the authors have also generalized some of these properties to optimal sets of the generalized
Cheeger problem (1.3). More precisely, they show that the curvature of the boundary of any optimal
set A⋆ at any point x in the interior of Ω is given by

κ(x) =
λ⋆ϕ(x) + ∂nψ(x)

ψ(x)
,

where ∂nψ(x) is the inward normal derivative on ∂A⋆ at x (so, ψ should be at least of class C1).
Moreover, if ∂A⋆ crosses Γ at some point x where Γ is C1 around x, then the tangent line to ∂A⋆ at
x must be orthogonal to Γ.

This paper is organized as follows. In section 2, we will show that Problems (1.1) and (1.4) have
the same minimal value and that each of these two problems has a solution. More precisely, we will
show that from a minimizer of (1.1) one can construct an optimal set of (1.4) simply by considering
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its superlevel sets. Moreover, we will study in Section 3 the regularity properties of these optimal sets.
Finally, we conclude the paper by some examples in Section 4.

2. Existence of solutions

Throughout this section, we assume that Ω ⊂ RN is an open bounded connected domain with
Lipschitz boundary, ϕ(x) ≥ ϕ0 > 0 is a bounded function and, ψ(x) ≥ ψ0 > 0 is a continuous function
on Ω (where ψ0, ϕ0 ∈ R+ are fixed). Let Γ be a closed subset of ∂Ω and w be a bounded function on
Γ. Then, we consider the minimization problem:

(2.1) inf

{∫
Ω
ψ|Du| −

∫
Γ
w|u|∫

Ω
ϕ|u|

: u ∈ BV (Ω), u = 0 on Γc
}
.

We recall that proving existence of a minimizer for Problem (2.1) is a difficult task due to different
facts. First, we do not have a priori compactness: if (un)n is a minimizing sequence then it is not
clear if one can extract a subsequence converging weakly⋆ in BV (Ω) and even so (i.e. assuming that
un ⇀

⋆ u in BV (Ω)), since the trace map is not lower semicontinuous with respect to this topology then
it is not true in general that un ⇀ u in L1(∂Ω) and so, we do not know whether the limit function u
satisfies the Dirichlet condition u = 0 on Γc or not. In particular, it is possible that a solution to this
problem (2.1) does not exist ! So, the idea is to relax the boundary condition u = 0 on Γc by adding
a penality term in the functional; this is a classical tool in the theory of Calculus of Variations and it
has also been used to prove existence of a solution to the BV least gradient problem (see [19]).

Let Ω̃ be an open bounded Lipschitz extension of Ω such that Γ ⊂ ∂Ω̃ and Γc ⊂ Ω̃. Then, we
consider now the following relaxation of (2.1):

(2.2) inf

{∫
Ω̃
ψ|Du| −

∫
Γ
w|u|∫

Ω̃
ϕ|u|

: u ∈ BV (Ω̃), u = 0 on Ω̃\Ω
}
.

Note that
∫
Ω̃
ψ|Du| =

∫
Ω
ψ|Du|+

∫
Γc ψ|u|. But again, it is not easy to show existence of a solution to the

relaxed version (2.2) since in general the map u 7→ −
∫
Γ
w|u| is not lower semicontinuous with respect

to the weak* convergence in BV (Ω̃). More precisely, we will show that the lower semicontinuity of the
functional in (2.2) depends on the L∞−bounds of ψ and w as well as the regularity of the Neumann
part Γ. To motivate this fact, we consider the following examples:

Example 2.0.1. Assume that Ω =]0, 1[2, Γ = ({0}×[0, 1])∪([0, 1]×{0}), ψ = ψ0 > 0 and w = w0 ∈ R.
Set un(x1, x2) = n · χEn

where En := {(x1, x2) ∈ Ω : x1 + x2 ≤ 1
n}. Then, it is clear that un ⇀

⋆ 0 in

BV (Ω). However,
∫
Ω̃
ψ|Dun| −

∫
Γ
w|un| =

√
2ψ0 − 2w0 < 0 as soon as w0

ψ0
>

√
2
2 .

Example 2.0.2. Assume that Ω = B(0, 1), Γ is a smooth arc of ∂Ω, ψ = ψ0 > 0 and w = w0 ∈ R.
Take un(x) = min{|x|, (n − 1)(1 − |x|)}. Then, it is clear that un ⇀

⋆ u := |x| in BV (Ω). But, we
have

∫
Ω̃
ψ|Dun| −

∫
Γ
w|un| = π ψ0[(1 − 1

n )
2 + (n − 1)(1 − (1 − 1

n )
2)] → 3π ψ0 <

∫
Ω̃
ψ|Du| −

∫
Γ
w|u| =

ψ0(π +H1(Γc))− w0 H1(Γ) as soon as w0

ψ0
< −1.

First of all, we start by showing that Problems (2.2) & (2.1) are completely equivalent.

Proposition 2.1. Problems (2.1) & (2.2) have the same minimal value. If u is a solution for Problem
(2.1), then u solves Problem (2.2). In addition, if u is a solution for Problem (2.2) with u = 0 on Γc

then u solves Problem (2.1).

Proof. It is obvious that inf (2.2) ≤ inf (2.1). On the other hand, fix u ∈ BV (Ω̃) such that u = 0 on

Ω̃\Ω. For every n ∈ N⋆, let ηn be a cutoff function such that 0 ≤ ηn ≤ 1, ηn(x) = 0 on Γ and, ηn(x) = 1



4 S. DWEIK

for all x ∈ Ω with dist(x,Γc) > 1
n . Now, set un = ηnu. Then, we have un = 0 on Γc. In addition, it is

clear that un → u in L1(Ω) and so,
∫
Ω
ϕ |un| →

∫
Ω
ϕ |u|. Moreover, one has

(2.3)

∫
Ω

ψ|Dun| =
∫
Ω

ψ|ηnDu+ uDηn| ≤
∫
Ω

ψηn|Du|+
∫
Ω

ψ|Dηn||u| →
∫
Ω

ψ|Du|+
∫
Γc

ψ|u| dHN−1.

Yet, we also have ∫
Γ

w |un|=
∫
Γ

w ηn|u| →
∫
Γ

w |u|.

Hence,

lim
n

[ ∫
Ω

ψ|Dun| −
∫
Γ

w|un|
]
≤

∫
Ω

ψ|Du|+
∫
Γc

ψ|u| −
∫
Γ

w|u|.

Finally, we get that

inf (2.1) ≤ lim
n

[∫
Ω
ψ|Dun| −

∫
Γ
w|un|∫

Ω
ϕ|un|

]
≤

∫
Ω̃
ψ|Du| −

∫
Γ
w|u|∫

Ω̃
ϕ|u|

.

Since u is arbitrary, then we infer that inf (2.1) ≤ inf (2.2). Consequently, the equality inf (2.1) =
inf (2.2) holds. The rest follows immediately from this equality. □

Remark 2.1. We clearly see that one can restrict Problem (2.2) to nonnegative functions (just by
replacing u with |u|) and so,

min (2.2) = min

{∫
Ω̃
ψ|Du| −

∫
Γ
wu∫

Ω̃
ϕu

: u ̸= 0 ∈ BV (Ω̃), u ≥ 0, u = 0 on Ω̃\Ω
}
.

In the sequel, we will only consider nonnegative solutions to (2.2).

In order to prove existence of a solution to the relaxed problem (2.2), we need first to introduce the
following constant:

(2.4) Λ⋆ := sup

{ ∫
Γ
w|u|∫

Ω
ψ|Du|

: u ̸= 0 ∈ BV (Ω), u = 0 on Γc
}
.

Moreover, the analysis will be performed under the following geometric assumption:

Definition 2.1. Suppose that Γ is of class C1. Then, we say that Ω satisfies a C1−extension property
near Γc if there exists an open bounded set Ω̃ with C1 boundary such that Ω ⊂ Ω̃ and ∂Ω ∩ ∂Ω̃ = Γ.

Then, we have the following existence result:

Proposition 2.2. Assume Γ is C1, Ω satisfies a C1−extension property near Γc, ||w||∞ ≤ ψ0 and,
Λ⋆ < 1. Then, Problem (2.2) reaches a minimum.

Proof. Let (un)n be a minimizing sequence in Problem (2.2). For every n ∈ N, set ũn := un∫
Ω̃
ϕ|un| . So,

it is clear that (ũn)n is also a minimizing sequence. In particular, there is a constant C <∞ such that∫
Ω̃

ψ|Dũn| −
∫
Γ

w|ũn| ≤ C, for all n ∈ N.

Hence,

(1− Λ⋆)

∫
Ω̃

ψ|Dũn| ≤
∫
Ω̃

ψ|Dũn| −
∫
Γ

w|ũn| ≤ C, for all n ∈ N.

Since Λ⋆ < 1 and ψ ≥ ψ0 > 0, then we get that

(2.5)

∫
Ω̃

|Dũn| ≤ C, for all n ∈ N.
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Yet, we have ||ϕ ũn||L1 = 1 and ϕ ≥ ϕ0 > 0. Hence, up to a subsequence, ũn converges weakly* in

BV (Ω̃) to some function ũ. In particular, ũn → ũ strongly in L1(Ω̃). This implies that ||ϕ ũn||L1 →
||ϕ ũ||L1 = 1 and ũ = 0 on Ω̃\Ω.

On the other side, inspired by [21, Proposition 1.2], we also claim that the functional in (2.2) is

lower semicontinuous with respect to the weak* convergence in BV (Ω̃) and so, ũ is a minimizer in
(2.2). First, we clearly have∫

Ω̃

ψ|Dũn| −
∫
Γ

w|ũn| −
∫
Ω̃

ψ|Dũ|+
∫
Γ

w|ũ| ≥
∫
Ω̃

ψ|Dũn| −
∫
Ω̃

ψ|Dũ| − ||w||∞
∫
Γ

|ũn − ũ|.

Fix ε > 0. Then, we define Aε := {x ∈ Ω̃ : d(x, ∂Ω̃) ≤ ε}. Let ηε ∈ C∞
0 (Ω̃) be a cutoff function such

that 0 ≤ ηε ≤ 1 and ηε = 1 on Ω̃ε := Ω̃\Aε. Set vε,n := (1− ηε)(ũn − ũ). By the trace inequality for
BV functions (see [3]), there are two constants c1 and c2 such that the following estimate holds:∫

∂Ω

|vε,n| ≤ c1

∫
Aε

|Dvε,n|+ c2

∫
Aε

|vε,n|.

Thus, we get that

(2.6)

∫
Γ

|ũn − ũ| ≤ c1

∫
Aε

(1− ηε)|D(ũn − ũ)|+ c1

∫
Aε

|ũn − ũ||Dηε|+ c2

∫
Aε

(1− ηε)|ũn − ũ|

≤ c1
ψ0

∫
Aε

ψ|D(ũn − ũ)|+ C

ε

∫
Aε

|ũn − ũ|,

where the constant C depends on c2. Hence, one has∫
Ω̃

ψ|Dũn| −
∫
Γ

w|ũn| −
∫
Ω̃

ψ|Dũ|+
∫
Γ

w|ũ|

≥
∫
Ω̃

ψ|Dũn| −
∫
Ω̃

ψ|Dũ| − c1||w||∞
ψ0

∫
Aε

ψ|D(ũn − ũ)| − C||w||∞
ε

∫
Aε

|ũn − ũ|

≥
∫
Ω̃

ψ|Dũn| −
∫
Ω̃

ψ|Dũ| − c1||w||∞
ψ0

∫
Aε

ψ|Dũn| −
c1||w||∞
ψ0

∫
Aε

ψ|Dũ| − C||w||∞
ε

∫
Aε

|ũn − ũ|

≥
∫
Ω̃ε

ψ|Dũn| −
∫
Ω̃ε

ψ|Dũ|+
(
1− c1||w||∞

ψ0

)∫
Aε

ψ|Dũn| −
(
1 +

c1||w||∞
ψ0

)∫
Aε

ψ|Dũ|

−C||w||∞
ε

∫
Aε

|ũn − ũ|.

Since Γ is C1 and Ω satisfies a C1−extension property near Γc, then the boundary of Ω̃ is of class
C1 and so, thanks to [3, Theorem 4], one can assume that in (2.6) the constants c1 = 1 + δ and
c2 = c2(Ω, δ), where δ > 0 can be chosen sufficiently small. Let us assume that ||w||∞ < ψ0. Hence,
choosing δ > 0 small enough, we infer that∫

Ω̃

ψ|Dũn| −
∫
Γ

w|ũn| −
∫
Ω̃

ψ|Dũ|+
∫
Γ

w|ũ|

≥
∫
Ω̃ε

ψ|Dũn| −
∫
Ω̃ε

ψ|Dũ| − (2 + δ)

∫
Aε

ψ|Dũ| − C||w||∞
ε

∫
Aε

|ũn − ũ|.

Passing to the limit when n → ∞ and using the lower semicontinuity of the weighted total variation
(see [6, Corollary 1])

lim inf
n

∫
Ω̃ε

ψ|Dũn| ≥
∫
Ω̃ε

ψ|Dũ|

as well as the L1 convergence, we get

lim inf
n

[ ∫
Ω̃

ψ|Dũn| −
∫
Γ

w|ũn|
]
−

∫
Ω̃

ψ|Dũ|+
∫
Γ

w|ũ| ≥ −(2 + δ)

∫
Aε

ψ|Dũ|.
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Let ε→ 0+, this yields that

lim inf
n

[ ∫
Ω̃

ψ|Dũn| −
∫
Γ

w|ũn|
]
−

∫
Ω̃

ψ|Dũ|+
∫
Γ

w|ũ| ≥ 0.

Finally, assume that ||w||∞ = ψ0. So, we will prove lower semicontinuity of the functional in (2.2) by
approximation. More precisely, fix ζ > 0 small enough. Then, we have∫

Ω̃

ψ|Dũn| −
∫
Γ

w|ũn| =
∫
Ω̃

ψ|Dũn| − (1− ζ)

∫
Γ

w|ũn| − ζ

∫
Γ

w|ũn|.

Recalling (2.5) and the fact that Λ⋆ < 1, we infer that

lim inf
n

[ ∫
Ω̃

ψ|Dũn| −
∫
Γ

w|ũn|
]
≥ lim inf

n

[ ∫
Ω̃

ψ|Dũn| − (1− ζ)

∫
Γ

w|ũn|
]
− Cζ

≥
∫
Ω̃

ψ|Dũ| − (1− ζ)

∫
Γ

w|ũ| − Cζ.

Since ζ > 0 is arbitrarily small, then this concludes the proof of our claim. □

Remark 2.2. We note that if w = 0 then the C1 regularity of Γ is not needed and, the existence of a
solution to Problem (2.2) is trivial in this case. In Example 2.0.1, take w0 = ψ0 = 1 then the condition
||w||∞ ≤ ψ0 is well satisfied but, the functional u 7→

∫
Ω̃
ψ|Du| −

∫
Γ
w|u| is not lower semicontinuous

due to the lack of C1−regularity of the arc Γ. However, in Example 2.0.2, the arc Γ is smooth but the
functional is always not lower semicontinuous provided that w0 < −ψ0. This shows the necessity of the
assumptions we made in Proposition 2.2.

Remark 2.3. Although Problem (2.2) has a solution u but it is still not clear whether this solution
solves Problem (2.1), or equivalently if this solution u satisfies the Dirichlet condition (u = 0 on Γc).
In fact, we will see that this is not necessarily the case and, a solution to (2.1) may not exist.

On the other hand, one can also study the summability of a solution u in Problem (2.2). Inspired
by the proof of [12, Proposition 7] (see also [6, Theorem 4]), one can show that any solution of (2.2)
must be bounded. For this aim, we start by the following:

Proposition 2.3. Let H be a Lipschitz nondecreasing function on R+ with H(0) = 0. For any
nonnegative solution u of Problem (2.2), the function H(u) is also a solution for (2.2).

Proof. We note that this proof follows the lines of the proof of [6, Proposition 1]. First, let us assume
that H is smooth. Then, we consider the Cauchy problem:

(2.7)

{
∂ty(t, v) = −H(y(t, v)), t ≥ 0

y(0, v) = v.

Let y(t, v) be the solution of (2.7). Thanks to our assumptions on H, y(t, v) is smooth. For every t ≥ 0,
we define ut = y(t, u) (so, we have u0 = u). Now, we consider the map

h(t) =

∫
Ω̃

ψ|Dut| −
∫
Γ

w ut − λ⋆
∫
Ω̃

ϕut,

where we recall that λ⋆ = min (2.2). Since u0 is a minimizer for Problem (2.2) and ut = 0 on Ω̃\Ω for
every t ≥ 0 (this follows from the fact that y(t, 0) = 0 and the uniqueness of the solution in (2.7)), then
h has a minimum at t = 0. In particular, we have

lim
t→0+

h(t)− h(0)

t
≥ 0.
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Yet,
h(t)− h(0)

t
=

∫
Ω̃

ψ
|Dut| − |Du0|

t
−

∫
Γ

w
ut − u0

t
− λ⋆

∫
Ω̃

ϕ
ut − u0

t
.

For every x ∈ Ω̃ ∪ Γ, we have

ut(x)− u0(x)

t
=
y(t, u(x))− y(0, u(x))

t
−→ −H(u(x)).

Taking the derivative with respect to v in (2.7), we get that{
∂t[∂vy(t, v)] = −H ′(y(t, v)) ∂vy(t, v), t ≥ 0

∂vy(0, v) = 1.

Hence,

∂vy(t, v) = e−
∫ t
0
H′(y(s,v)) ds ≥ 0.

By the chain rule for BV functions (see [2]), we have

|Dut| = ∂vy(t, u)|D̃u|+ [y(t, u+)− y(t, u−)] · HN−1 Ju,

where u+ and u− are respectively the approximate upper and lower limits, Ju is the jump set of u,
and the nonnegative measure |D̃u| is the sum of the absolutely continuous part and the Cantor part of
|Du|. Consequently, we have

|Dut| − |Du0|
t

=
∂vy(t, u)− ∂vy(0, u)

t
|D̃u|+ [y(t, u+)− y(0, u+)]− [y(t, u−)− y(0, u−)]

t
· HN−1 Ju

−→ −H ′(u)|D̃u| − [H(u+)−H(u−)] · HN−1 Ju.

Therefore, ∫
Ω̃

ψH ′(u)|D̃u|+
∫
Ju

ψ [H(u+)−H(u−)]HN−1 −
∫
Γ

wH(u)− λ⋆
∫
Ω̃

ϕH(u) ≤ 0.

Since H ′ ≥ 0 and |D(H(u))| = H ′(u)|D̃u|+ [H(u+)−H(u−)] · HN−1 Ju, this yields that H(u) also
minimizes Problem (2.2). Finally, it remains to extend the result to the case when H is not smooth;
but this can be done by approximation. In fact, one can approximate H with a sequence of smooth
Lipschitz increasing functions Hn with Hn(0) = 0 such that Hn(u) converges weakly* to H(u) in

BV (Ω̃). Hence, Hn(u) is a solution to (2.2), for every n. Yet, recalling the proof of Proposition 2.2,

we know that the functional in (2.2) is lower semicontinuous w.r.t. the weak* convergence in BV (Ω̃).
This yields that H(u) is also a solution. □

Under the assumptions of Proposition 2.2, we get as a consequence of Proposition 2.3 the following
summability result.

Proposition 2.4. Let u be a solution for Problem (2.2), then u belongs to L∞(Ω).

Proof. FixM > 0 large enough. Thanks to Proposition 2.3, we see that uM := min{u,M} is a solution
for Problem (2.2). Therefore, we have

(2.8)

∫
Ω̃

ψ|DuM | −
∫
Γ

wuM = λ⋆
∫
Ω̃

ϕuM ≤ λ⋆||ϕ||∞||uM ||1.

Since Λ⋆ < 1 and ψ ≥ ψ0 > 0, then by (2.8) we get

(2.9)

∫
Ω̃

|DuM | ≤ λ⋆||ϕ||∞
ψ0(1− Λ⋆)

||uM ||1.
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Yet, one has

||uM || N
N−1

≤ C

∫
Ω̃

|DuM |.

Hence,

(2.10) ||uM || N
N−1

≤ C||uM ||1.

But, it is clear that upM is also a solution for Problem (2.2), for all p ≥ 1. Then, thanks to (2.10), we
also have

||upM || N
N−1

≤ C||upM ||1.
This yields that

||uM || Np
N−1

≤ C
1
p ||uM ||p.

Fix n ∈ N. Then, by induction, we get that

||uM ||( N
N−1 )

n ≤ C(N−1
N )n−1

||uM ||( N
N−1 )

n−1 ≤ C [(N−1
N )n−1+(N−1

N )n−2+ ...+1] ||uM ||1.

Consequently,

||uM ||( N
N−1 )

n ≤ CN [1−(N−1
N )n]||u||1, for all n ∈ N.

Passing to the limit when n→ ∞, this yields that

(2.11) ||uM ||∞ ≤ CN ||u||1.

Finally, letting M → ∞ in (2.11), this concludes the proof that u ∈ L∞(Ω). □

In addition, one can show that Problem (2.2) is also equivalent to a shape optimization problem of
type Cheeger and that any superlevel set of a solution u is an optimal set (see [7, 15, 16] for similar
level-sets approach for variational problems involving total variation minimization). More precisely, we
introduce the following problem:

(2.12) min

{
Perψ(A)−

∫
∂⋆A∩Γ

w∫
A
ϕ

: A ⊂ Ω

}
where Perψ(A) :=

∫
Ω̃
ψ|DχA| =

∫
Ω∪Γc ψ|DχA| =

∫
∂⋆A\Γ ψ dHN−1 is the weighted perimeter of A that

is taken relative to Ω̃ (or equivalently, relative to Ω∪Γc since A is assumed to be a subset of Ω) and ∂⋆A
denotes the reduced boundary of A. Under the assumptions of Proposition 2.2, we have the following:

Proposition 2.5. The values of Problems (2.2) and (2.12) coincide (i.e., min (2.2) = min (2.12)). In
addition, a function u solves (2.2) if and only if the superlevel sets At := {u > t} solve (2.12), for
almost all t ≥ 0. In particular, Problem (2.12) admits an optimal set A⋆.

Proof. By considering characteristic functions u := χA where A ⊂ Ω in (2.2), it is obvious that we get

min (2.2) ≤ min (2.12). Now, let us show the reverse inequality. Fix u ∈ BV (Ω̃) with u ≥ 0 and u = 0

on Ω̃\Ω. Using the coarea formula, we have∫
Ω̃

ψ|Du| −
∫
Γ

wu

=

∫ +∞

0

∫
∂⋆At\Γ

ψ dHN−1 −
∫ +∞

0

∫
∂⋆At∩Γ

w dHN−1 dt

=

∫ +∞

0

Perψ(At)−
∫
∂⋆At∩Γ

w dHN−1∫
At
ϕ

(∫
At

ϕ

)
dt

(2.13) ≥ min

{
Perψ(A)−

∫
∂⋆A∩Γ

w∫
A
ϕ

: A ⊂ Ω

} ∫ +∞

0

(∫
At

ϕ

)
dt
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= min

{
Perψ(A)−

∫
∂⋆A∩Γ

w∫
A
ϕ

: A ⊂ Ω

} ∫
Ω̃

ϕu

Hence,

min (2.2) ≥ min

{
Perψ(A)−

∫
∂⋆A∩Γ

w∫
A
ϕ

: A ⊂ Ω

}
.

This yields that min (2.2) = min (2.12). Moreover, if u is a minimizer in Problem (2.2) then the
inequality in (2.13) becomes equality. Yet, this means that for almost every t ≥ 0, we have

Perψ(At)−
∫
∂⋆At∩Γ

w∫
At
ϕ

= min

{
Perψ(A)−

∫
∂⋆A∩Γ

w∫
A
ϕ

: A ⊂ Ω

}
.

Consequently, the superlevel sets At = {u > t} solve (2.12), for a.e. t ≥ 0. The last statement follows
directly from Proposition 2.2. □

Remark 2.4. In fact, one can show in Proposition 2.5 that for every t ≥ 0, the superlevel set At =
{u > t} is optimal for Problem (2.12). Indeed, let (tn)n be a decreasing sequence such that tn → t and
Atn is optimal in (2.12), for all n. Recalling the estimate (2.9), we have

Perψ(Atn) ≤
λ⋆||ϕ||∞
ψ0(1− Λ⋆)

|Atn | ≤
λ⋆||ϕ||∞
ψ0(1− Λ⋆)

|Ω|.

Hence, χAtn
is bounded in BV (Ω) and so, up to a subsequence, χAtn

⇀⋆ χAt
in BV (Ω). In particular,

one has Per(At) < ∞. Finally, the lower semicontinuity of the functional in (2.2) yields that χAt is
also a solution for Problem (2.2).

Remark 2.5. Similarly to the proof of Proposition 2.5 about the equivalence between Problems (2.2)
& (2.12), one can show using the coarea formula again that

Λ⋆ = sup

{ ∫
Γ
w|u|∫

Ω
ψ|Du|

: u ̸= 0 ∈ BV (Ω), u = 0 on Γc
}

= sup

{∫
∂⋆A∩Γ

w

Perψ(A)
: A ⊂ Ω

}
.

In particular, we have Λ⋆ < 1 if and only if

(2.14)

∫
∂⋆A∩Γ

w < Perψ(A), for all A ⊂ Ω.

This condition is always satisfied as soon as w ≤ 0. Otherwise, it holds obviously if for all A ⊂ Ω, we
have

HN−1(∂⋆A ∩ Γ) <
ψ0

||w+||∞
Per(A).

For instance, if ||w+||∞ ≤ ψ0 and Γ is a line segment, then the inequality above is clearly satisfied.
Now, assume that Γ is not a line segment, the distance between the endpoints of Γ is D and the length
of Γ is L. Then, we see that when the ratio L/D increases, the factor ψ0

||w+||∞ should be large enough

in order to guarantee the existence of a solution to Problem (2.12).

We conclude this section by showing that any solution u has a flat part {u = ||u||∞}. This result has
already been proven in [6, Theorem 5] but the proof here is completely different and we also consider
it much simpler. More precisely, we have the follwing:

Proposition 2.6. Let u be a solution of Problem (2.2). Then, we have |{u = ||u||∞}| > 0.

Proof. Let At := {u ≥ t} ̸= ∅ be a superlevel set of u. Thanks to Proposition 2.5, we know that At is
an optimal set in Problem (2.12). Hence, one has

(2.15)

∫
Ω̃

ψ|DχAt
| −

∫
∂⋆At∩Γ

w = λ⋆
∫
At

ϕ.
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From Remark 2.5 and since Λ⋆ < 1, we get

λ⋆||ϕ||∞ |At| ≥ λ⋆
∫
At

ϕ =

∫
Ω̃

ψ|DχAt
| −

∫
∂⋆At∩Γ

w ≥ (1− Λ⋆)

∫
Ω̃

ψ|DχAt
| ≥ c(1− Λ⋆)ψ0 |At|

N−1
N ,

where c > 0 is a universal constant. Therefore, we infer the following estimate:

|At| ≥
(
c(1− Λ⋆)ψ0

λ⋆||ϕ||∞

)N
.

In particular, this yields that

|{u = ||u||∞}| ≥
(
c(1− Λ⋆)ψ0

λ⋆||ϕ||∞

)N
> 0. □

3. Regularity properties of optimal sets

In this section, we study the regularity of an optimal set A⋆ in Problem (2.12). In [15, Theorem 5],
the authors have already studied the regularity of ∂A⋆ but in the particular case when w = 0 on Γ and
N = 2. However, there is a gap in their proof since in order to prove regularity on ∂A⋆ they assume
that ∂A⋆ is in W 1,1; but it is not clear why an arc of ∂A⋆ cannot be for instance the graph of a Cantor
function. Fortunately, this is not the case as the results below show.

Proposition 3.1. Assume that ψ is locally Lipschitz in Ω. Then, there exists a relatively closed set
Σ ⊂ ∂A⋆ ∩ Ω such that HN−2(Σ) = 0 and for every x ∈ (∂A⋆\Σ) ∩ Ω, ∂A⋆ is of class C1, 12 around x.

Proof. First of all, it is clear that if A⋆ minimizes (2.12) then A⋆ solves also the following problem:

(3.1) min

{
Perψ(A)−

∫
∂⋆A∩Γ

w − λ⋆
∫
A

ϕ : A ⊂ Ω

}
where λ⋆ = min (2.2). Fix x0 ∈ ∂A⋆ ∩ Ω and 0 < r0 < d(x0, ∂Ω). Let E ⊂ RN be a set with finite
perimeter such that A⋆∆E ⊂ B(x0, r0). In particular, we have E ⊂ Ω. Thanks to the minimality of
A⋆ in (3.1), we get that

Perψ(A
⋆)−

∫
∂⋆A⋆∩Γ

w − λ⋆
∫
A⋆

ϕ ≤ Perψ(E)−
∫
∂⋆E∩Γ

w − λ⋆
∫
E

ϕ.

But, we clearly have ∂⋆A⋆∩Γ = ∂⋆E ∩Γ, since A⋆∆E ⊂ B(x0, r0) and r0 < d(x0, ∂Ω). Hence, we infer
that

Perψ(A
⋆) − λ⋆

∫
A⋆

ϕ ≤ Perψ(E) − λ⋆
∫
E

ϕ.

Consequently, we get that

Perψ(A
⋆) ≤ Perψ(E) + λ⋆||ϕ||∞ |A⋆∆E|.

In other words, A⋆ is a (Λ, r0)− minimizer of Perψ(E) in Ω with Λ = λ⋆||ϕ||∞ (see [22]). Then, thanks

to [22, Theorem 1.10], we infer that A⋆ has boundary of class C1, 12 , out of a closed singular set Σ ⊂ ∂A⋆

of dimension d < N − 2. □

Remark 3.1. In fact, we can reduce the dimension of the singular set Σ in Proposition 3.1 to N − 8
but perhaps with less regularity on ∂A⋆. More precisely, thanks to [18, Theorem 3.2], one can show

that ∂A⋆ is of class C1, 14 inside Ω, except at a singular set of dimension N − 8. For this aim, we just
need to show that A⋆ is an almost minimal set in B(x0, r0), for every point x0 ∈ ∂A⋆ and r0 > 0

small enough such that B(x0, r0) ⊂ Ω. Indeed, let x ∈ ∂A⋆ ∩ B(x0, r0) and r > 0 be small enough so
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that Br := B(x, r) ⊂ B(x0, r0). Recalling the proof of Proposition 3.1, for any subset A ⊂ Ω such that
A∆A⋆ ⊂ Br, one has ∫

Br

ψ |DχA⋆ | − λ⋆
∫
A⋆∩Br

ϕ ≤
∫
Br

ψ |DχA| − λ⋆
∫
A∩Br

ϕ.

In particular,∫
Br

|DχA⋆ | ≤ 1

ψ0

∫
Br

ψ |DχA⋆ | ≤ 1

ψ0

[ ∫
∂Br

ψ − λ⋆
∫
Br

ϕ+ λ⋆
∫
A⋆∩Br

ϕ

]
≤ C rN−1.

Yet, we have

ψ(x)

∫
Br

|DχA⋆ |+
∫
Br

[ψ − ψ(x)] |DχA⋆ | − λ⋆
∫
A⋆∩Br

ϕ

≤ ψ(x)

∫
Br

|DχA|+
∫
Br

[ψ − ψ(x)] |DχA| − λ⋆
∫
A∩Br

ϕ.

Since ψ is Lipschitz in B(x0, r0), this implies that |ψ − ψ(x)| ≤ Cr on Br and so, we get the following
estimate: ∫

Br

|DχA⋆ | ≤
∫
Br

|DχA|+ C rN .

Proposition 3.2. Assume that ϕ ∈ C(Ω) and ψ ∈ C1(Ω). Then, the boundary of A⋆, out of the
singular set Σ, is of class C1,α, for all α < 1. Moreover, ∂A⋆\Σ is C2,α inside Ω as soon as
ϕ ∈ C0,α(Ω) and ψ ∈ C1,α(Ω). Moreover, the mean curvature HA⋆ of ∂A⋆ at any point x /∈ Σ is given
by the following formula ( where ∂nψ denotes the interior normal derivative of ψ on ∂A⋆):

(N − 1)HA⋆(x) =
λ⋆ ϕ(x) + ∂nψ(x)

ψ(x)
.

Proof. First, we recall from Proposition 3.1 that there is a closed set Σ ⊂ ∂A⋆ such that ∂A⋆\Σ is C1, 12

inside Ω. Fix a point x0 ∈ (∂A⋆\Σ) ∩ Ω. Without loss of generality, we assume that x0 is the origin.
We may also assume that near x0, ∂A

⋆ is the graph of a function v⋆ : Bε 7→ R, for some ε > 0 small
enough. So, we already know that v⋆ ∈ C1, 12 (Bε). It is clear that v

⋆ minimizes the following problem:

min

{∫
Bε

ψ(x, v(x))
√
1 + |∇v(x)|2 dx+ λ⋆

∫
Bε

∫ v(x)

0

ϕ(x, t) dtdx : v ∈ BV (Bε), v|∂Bε = v⋆|∂Bε
}
.

From the optimality conditions on v⋆, we have

(3.2) ∇ ·

ψ(x, v⋆(x)) ∇v⋆(x)√
1 + |∇v⋆(x)|2

 = ∂xN
ψ(x, v⋆(x))

√
1 + |∇v⋆(x)|2 + λ⋆ ϕ(x, v⋆(x)).

Due to the regularity of v⋆, (3.2) can be written as

∇ ·

 ∇v⋆(x)√
1 + |∇v⋆(x)|2



(3.3) =
− [∇xψ(x,v

⋆(x))+∂xN
ψ(x,v⋆(x))∇v⋆(x)]·∇v⋆(x)√

1+|∇v⋆(x)|2
+ ∂xN

ψ(x, v⋆(x))

√
1 + |∇v⋆(x)|2 + λ⋆ ϕ(x, v⋆(x))

ψ(x, v⋆(x))

or equivalently, ∑
i.j

aijv
⋆
ij = f
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where

(3.4) aij =
(1 + |∇v⋆|2)δij − v⋆i v

⋆
j

(1 + |∇v⋆|2)3/2

and f is the right hand side in (3.3), which is clearly bounded and, it is also Hölder continuous with
exponent α as soon as ϕ ∈ C0,α and ψ ∈ C1,α. It is easy to check that there are two positive constants
0 < λ < Λ < ∞ such that λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2. Moreover, aij ∈ C0,1/2(Bε), for all i, j. Thanks
to the Calderón-Zygmund estimates, we infer that v⋆ is in W 2,p(B ε

2
) for any p < ∞, in particular

v⋆ ∈ C1,α(B ε
2
) for any α < 1. Then, by Schauder estimates (see also [5]), this implies that v⋆ is C2,α

in B ε
2
provided that ϕ ∈ C0,α and ψ ∈ C1,α. In addition, the mean curvature HA⋆ of ∂A⋆ at a point

(x, v⋆(x)) is given by

(N − 1)HA⋆ = ∇ ·

 ∇v⋆(x)√
1 + |∇v⋆(x)|2

 =
λ⋆ ϕ(x, v⋆(x)) + ∂nψ(x, v

⋆(x))

ψ(x, v⋆(x))
. □

In order to extend our regularity result on ∂A⋆ up to the boundary ∂Ω, we need to introduce the
following definition that generalizes the notion that the mean curvature of Γc is bounded from below
in the case when ψ = 1 (see also [4, Definition 1] and [20]). Let us assume that ψ is extendable to a

locally Lipschitz function in Ω̃.

Definition 3.1. We say that Γc is a ψ−almost minimal set if for every x0 ∈ Γc there are constants
r0 > 0 small enough and C <∞ such that the following holds

Perψ(E ∩ Ω) ≤ Perψ(E) + C|E\Ω|, for every set E ⊂ RN such that E\Ω ⊂ B(x0, r0).

Remark 3.2. Assume that N = 2, ψ = 1 and, Γc is convex (as an arc of ∂Ω). Fix a point x0 ∈ Γc.
Then, it is not difficult to check that

Per(E ∩ Ω) ≤ Per(E),

for every set E ⊂ R2 such that E\Ω ⊂ B(x0, r0), where r0 > 0 is small enough. In particular, this
implies that Γc is an almost minimal set in the sense of Definition 3.1.

Proposition 3.3. Assume that Γc is a ψ−almost minimal set. Then, there is a relatively closed
singular set Σb ⊂ ∂A⋆ ∩ Γc with dimension d < N − 2 such that ∂A⋆ ∩ Γc is of class C1, 12 , outside Σb.

Proof. Fix a point x0 ∈ ∂A⋆ ∩ Γc and r0 > 0 small enough. We claim that A⋆ is a (Λ, r0)− minimizer
of Perψ(E) in B(x0, r0). Let E ⊂ RN be a set with finite perimeter such that A⋆∆E ⊂ B(x0, r0).
We note that here E is not necessarily contained in Ω. However, E ∩ Ω is always admissible in (3.1).
Hence, by minimality of A⋆ in (3.1), we infer that

Perψ(A
⋆)−

∫
∂⋆A⋆∩Γ

w − λ⋆
∫
A⋆

ϕ ≤ Perψ(E ∩ Ω)−
∫
∂⋆(E∩Ω)∩Γ

w − λ⋆
∫
E∩Ω

ϕ.

Let us choose r0 > 0 small enough so that B(x0, r0)∩Γ = ∅. Then, one has ∂⋆A⋆ ∩Γ = ∂⋆(E ∩Ω)∩Γ,
since A⋆∆E ⊂ B(x0, r0). Hence,

Perψ(A
⋆) − λ⋆

∫
A⋆

ϕ ≤ Perψ(E ∩ Ω) − λ⋆
∫
E∩Ω

ϕ

and so,

Perψ(A
⋆) ≤ Perψ(E ∩ Ω) + λ⋆||ϕ||∞ |A⋆\E|.

On the other hand, Γc is an almost minimizer of Perψ(E), x0 ∈ Γc and E\Ω ⊂ B(x0, r0). Hence, one
has

Perψ(E ∩ Ω) ≤ Perψ(E) + C|E\Ω|.
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Therefore, we get that

Perψ(A
⋆) ≤ Perψ(E) + C|E\Ω| + λ⋆||ϕ||∞ |A⋆∆E|.

Yet, E\Ω ⊂ A⋆∆E. Hence, A⋆ is a (Λ, r0)− minimizer of Perψ(E) in B(x0, r0). Thanks again to

[22, Theorem 1.10], this yields that ∂A⋆ ∩ Γc has boundary of class C1, 12 , out of a closed singular set
Σb ⊂ ∂A⋆ ∩ Γc of dimension d < N − 2. □

Proposition 3.4. Assume that Γc is C1,1, ϕ ∈ C(Ω) and ψ ∈ C1(Ω). Then, (∂A⋆ ∩ Γc)\Σb is of
class C1,1.

Proof. Thanks to Proposition 3.3, there is a relatively closed singular set Σb ⊂ ∂A⋆ ∩ Γc such that
(∂A⋆ ∩ Γc)\Σb is of class C1, 12 . Fix x0 ∈ (∂A⋆ ∩ Γc)\Σb. After rotation and translation of axes, we
may assume that x0 = 0 and that the tangent space to Γc at x0 is the hyperplane xN = 0. Let
us assume that near x0, Γ

c is the graph of h : Br 7→ R (where r > 0 is small enough) and ∂A⋆ is

the graph of v⋆ : Br 7→ R. So, we have that v⋆ ∈ C1, 12 (Br), h ∈ C1,1(Br), h(0) = v⋆(0) = 0 and
∇h(0) = ∇v⋆(0) = 0. Again, we see that v⋆ minimizes the following problem:

min

{∫
Br

ψ(x, v(x))
√
1 + |∇v(x)|2dx+λ⋆

∫
Br

∫ v(x)

0

ϕ(x, t)dtdx : v ∈ BV (Br), v ≥ h, v|∂Br = v⋆|∂Br
}
.

Taking into account the presence of the obstacle v ≥ h on Br, we get instead of (3.3) the following
inequality:

(3.5) −
∑
i.j

aijv
⋆
ij + f ≥ 0,

where aij and f are defined exactly as in the proof of Proposition 3.2 (see (3.3) & (3.4)). Moreover,
the equality in (3.5) holds inside the open set O := {x ∈ Br : v

⋆(x) > h(x)}. Since v⋆ ≥ h on Br and
h ∈ C1,1(Br), then we have

−Cr2 ≤ h(x) ≤ v⋆(x) on Br.

In order to show that v⋆ is C1,1 at the origin, we just need to show the following estimate:

(3.6) −Cr2 ≤ v⋆(x) ≤ Cr2, for all x ∈ B r
2
.

The proof of (3.6) will follow the one in [8, Theorem 2] with some simplification (coming from the
fact that one can always assume that the tangent space to Γc at x0 is the hyperplane xN = 0). Set
w⋆ = v⋆ + Cr2 ≥ 0. Then, w⋆ satisfies the following inequality:

−
∑
i.j

aijw
⋆
ij + f ≥ 0.

Let w0 be the solution of

−
∑
i.j

aijw0 ij + f = 0

with w0 = w⋆ ≥ 0 on ∂Br. Then, by the comparison principle (see [5]), we get that w0 ≤ w⋆ on Br.
Let x⋆ ∈ Br be such that

w⋆(x⋆)− w0(x
⋆) = max

Br

(w⋆ − w0) ≥ 0.

Then, we have two possibilities: either x⋆ ∈ O or x⋆ ∈ ∂O. Assume the latter holds. Hence, we get
that

(3.7) w⋆(x)− w0(x) ≤ w⋆(x⋆)− w0(x
⋆) = v⋆(x⋆) + Cr2 − w0(x

⋆) = h(x⋆) + Cr2 − w0(x
⋆).



14 S. DWEIK

Now, assume that the maximum point x⋆ ∈ O and set r⋆ = dist(x⋆, ∂O) > 0. Then, we should have

−
∑
i.j

aij(w
⋆ − w0)ij = 0 in B(x⋆, r⋆),

But, by the maximum principle [13, Theorem 9.6], w⋆ − w0 cannot achieve a (nonnegative) maximum
in B(x⋆, r⋆) unless it is a constant. Therefore, w⋆(x⋆) − w0(x

⋆) = w⋆(y⋆) − w0(y
⋆) where y⋆ ∈

∂O ∩ ∂B(x⋆, r⋆). Hence, we may always assume that x⋆ ∈ ∂O and so, (3.7) holds.

Now, consider the quadratic function V (x) = γ
2 (|x|

2 − r2), where γ > 0 is to be chosen later. So, we
have V = 0 on ∂Br. Moreover, one can choose the constant γ large enough so that V solves

−
∑
i.j

aijVij + f ≤ 0.

Indeed,

−
∑
i.j

aijVij + f = −γ
∑
i,j

aijδij + f = −γ
∑
i

aii + f ≤ −Nλγ + ||f ||∞,

where in the last inequality we used that aii ≥ λ > 0. Thanks again to the comparison principle and
the fact that V ≤ w0 on ∂Br, we get

V ≤ w0 on Br.

Recalling (3.7) and thanks to the fact that Γc is C1,1 and V (x) ≥ −γ
2 r

2 for all x ∈ Br, we get

(3.8) w⋆(x)− w0(x) ≤ h(x⋆) + Cr2 − V (x⋆) ≤ Cr2, for all x ∈ Br.

But, we have

−
∑
i.j

aij(w0 − V )ij + f = γ
∑
i

aii.

Recalling (3.4), we see that aii ∈ C(Br), for all i. Thanks to [13, Corollary 9.18], we infer that

w0 − V ∈W 2,p
loc (Br) ∩ C(Br), for all p <∞. By [13, Theorem 9.20], we have for any p > 0 that

(3.9) sup
B r

2

(w0 − V ) ≤ C

((
1

|Br|

∫
Br

(w0 − V )p
) 1

p

+
r

λ
||f ||LN (Br)

)
where the constant C does not depend on r. Yet, [13, Theorem 9.22] yields that there are constants p
and C depending only on N , λ and Λ such that

(3.10)

(
1

|Br|

∫
Br

(w0 − V )p
) 1

p

≤ C

(
inf
Br

(w0 − V ) +
r

λ
||f ||LN (Br)

)
.

Combining (3.9) & (3.10), we get the following Harnack inequality:

sup
B r

2

(w0 − V ) ≤ C

(
inf
Br

(w0 − V ) +
r

λ
||f ||LN (Br)

)
≤ C(w0(0)− V (0) + rN+1),

since f ∈ L∞(Br). But, w0(0) ≤ w⋆(0) = v⋆(0) + Cr2 = Cr2 and V (0) = −γ
2 r

2. Hence, we infer that

sup
B r

2

(w0 − V ) ≤ Cr2.

Recalling (3.8), we infer that

w⋆(x) ≤ w0(x) + Cr2 ≤ V (x) + Cr2 ≤ Cr2, for all x ∈ B r
2
.

But, this concludes our claim (3.6). □

Now, our aim is to study the shape of ∂A⋆ near Γ. For this, we need to restrict ourselves to dimension
N = 2. The following proposition is a generalization of [15, Theorem 5] to the case when w ̸= 0.
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Proposition 3.5. Assume that ∂A⋆ touches the interior of Γ at some point x and suppose that Γ is
C1 around x. Then, ∂A⋆\{x} ∩ B(x, δ) is composed of two arcs C1 and C2 such that C2 ⊂ Γ. Let
θ(x) be the angle between the tangent vectors to C1 and C2 at x. Then, we have the following estimate:

tan−1

(
ψ(x)2 − w(x)2

2ψ(x)w(x)

)
≤ θ(x) ≤ π

2
if w(x) ≥ 0

and
π

2
≤ θ(x) ≤ tan−1

(
ψ(x)2 − w(x)2

2ψ(x)w(x)

)
if w(x) ≤ 0.

Proof. First, we recall from Proposition 3.2 that ∂A⋆ is C2,α inside Ω, for all α < 1. Moreover, the
curvature of ∂A⋆ is uniformly bounded in Ω,

κ =
1

ψ(x)

[
λ⋆ ϕ(x) + ∂nψ(x)

]
.

Fix x ∈ ∂A⋆ in the interior of Γ such that ∂A⋆ ∩ B(x, δ) ∩ Ω ̸= ∅, for every δ > 0 small enough.
Assume that Γ is C1 around x. Let C1 and C2 be two different arcs of ∂A⋆ ∩B(x, δ) such that x is an
endpoint of both C1 and C2.

Assume that C1 and C2 are contained in Ω (we note that the case when C1 ∩ Γ ̸= ∅ or C2 ∩ Γ ̸= ∅
can be treated similarly) with 0 ≤ θ(x) < π. After rotation and translation of axes, one can assume
that x is the origin and (s, α(s)) is a parametrization of C1 (s ∈ (0, δ)) and C2 (s ∈ (−δ, 0)) such that
α(0) = 0, α′(0−) < 0 and α′(0+) > 0. For ε > 0 small enough, let sε < 0 be such that α(sε) = α(ε).

Let us denote by Cε := {(s, α(s)) : s ∈ (sε, ε)} and by Ĉε ⊂ Ω the line segment joining the points

(sε, α(sε)) and (ε, α(ε)). Let Aε be such that ∂Aε = (∂A⋆\Cε)∪ Ĉε. Thanks to the minimality of A⋆ in
(3.1), we have

Perψ(Aε)−
∫
∂Aε∩Γ

w − λ⋆
∫
Aε

ϕ−
[
Perψ(A

⋆)−
∫
∂A⋆∩Γ

w − λ⋆
∫
A⋆

ϕ

]
≥ 0.

Hence,

(3.11)

∫ ε

sε

ψ(s, α(ε)) ds−
∫ ε

sε

ψ(s, α(s))

√
1 + α′(s)

2
ds− λ⋆

∫
Aε

ϕ+ λ⋆
∫
A⋆

ϕ ≥ 0.

Yet, we have ∣∣∣∣ ∫
Aε

ϕ−
∫
A⋆

ϕ

∣∣∣∣ = ∣∣∣∣ ∫ ε

sε

∫ α(ε)

α(s)

ϕ(s, t) dtds

∣∣∣∣ ≤ ||ϕ||∞ o(ε),

where the last inequality comes from the fact that the map ε 7→ s(ε) := sε is Lipschitz with s(0) = 0.
Dividing (3.11) by ε and letting ε→ 0+, we get

α′(0+)

[
1−

√
1 + α′(0−)

2

]
− α′(0−)

[
1−

√
1 + α′(0+)

2

]
≥ 0.

But, this is clearly a contradiction.

Let C ⊂ Ω be an arc of ∂A⋆ ∩B(x, δ)∩Ω such that x is an endpoint of C. Let (s, β(s)), s ∈ (−δ, δ),
be a parametrization of Γ such that β(0) = β′(0) = 0. Assume that the angle between the tangent
vector to C at x and < 1, 0 > is less than π

2 . Let (s, α(s)), s ∈ (0, δ), be a parametrization of C with
α(0) = 0. For ε > 0 small enough, we define the set Aε as follows:

∂Aε = [∂A⋆\Cε] ∪ [(ε, α(ε)), (ε, β(ε))] ∪ Γε
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where Cε := {(s, α(s)) : s ∈ (0, ε)} and Γε denotes the arc of Γ between (0, 0) and (ε, β(ε)). Here, we
assume that Γε ∩ ∂A⋆ = ∅. So, one can see easily that

Perψ(Aε)−
∫
∂Aε∩Γ

w − λ⋆
∫
Aε

ϕ−
[
Perψ(A

⋆)−
∫
∂A⋆∩Γ

w − λ⋆
∫
A⋆

ϕ

]
=

∫ α(ε)

β(ε)

ψ(ε, t) dt−
∫ ε

0

w(s, β(s))

√
1 + β′(s)

2
ds−

∫ ε

0

ψ(s, α(s))

√
1 + α′(s)

2
ds− λ⋆

∫
Aε

ϕ+ λ⋆
∫
A⋆

ϕ.

But, one has

lim
ε→0+

∫ α(ε)
β(ε)

ψ(ε, t) dt−
∫ ε
0
ψ(s, α(s))

√
1 + α′(s)

2
ds

ε
=

[
α′(0+)−

√
1 + α′(0+)

2

]
ψ(0, 0)

and ∣∣∣∣ ∫
Aε

ϕ−
∫
A⋆

ϕ

∣∣∣∣ = ∣∣∣∣ ∫ ε

0

∫ α(s)

β(s)

ϕ(s, t) dtds

∣∣∣∣ ≤ ||ϕ||∞ o(ε).

Thanks to the optimality of A⋆ in (3.1), we get that

(3.12)

[
α′(0+)−

√
1 + α′(0+)

2

]
ψ(0, 0)− w(0, 0) ≥ 0.

Hence, w(0, 0) ≤ 0. Using the above estimates, it is easy to check that if w(0, 0) ≤ 0 then Γε cannot
intersect ∂A⋆. Moreover, we have

α′(0+) ≥ w(0, 0)2 − ψ(0, 0)2

2w(0, 0)ψ(0, 0)
.

Now, let us assume that the angle between the tangent vector to C at x and < 1, 0 > is greater than
π
2 . Let (s, α(s)), s ∈ (−δ, 0), be a parametrization of C with α(0) = 0. For ε > 0 small enough, we
define the set Aε as follows:

∂Aε = [∂A⋆\Cε] ∪ [(−ε, α(−ε)), (−ε, β(−ε))]
where Cε := {(s, α(s)) : s ∈ (−ε, 0)}∪{(s, β(s)) : s ∈ (−ε, 0)}. Here, we assume that Cε ⊂ ∂A⋆. Again
from the optimality of A⋆ in (3.1), we must have the following inequality:

Perψ(Aε)−
∫
∂Aε∩Γ

w − λ⋆
∫
Aε

ϕ−
[
Perψ(A

⋆)−
∫
∂A⋆∩Γ

w − λ⋆
∫
A⋆

ϕ

]
≥ 0.

Hence,∫ α(−ε)

β(−ε)
ψ(−ε, t) dt+

∫ 0

−ε
w(s, β(s))

√
1 + β′(s)

2
ds−

∫ 0

−ε
ψ(s, α(s))

√
1 + α′(s)

2
ds−λ⋆

∫
Aε

ϕ+λ⋆
∫
A⋆

ϕ ≥ 0.

Dividing by ε > 0 and letting ε→ 0+, we get that

(3.13)

[
− α′(0−)−

√
1 + α′(0−)

2

]
ψ(0, 0) + w(0, 0) ≥ 0.

In particular, this yields that w(0, 0) ≥ 0. If w(0, 0) ≥ 0 then one can also see that Cε must be contained
in ∂A⋆. In addition, we have the following estimate:

α′(0−) ≤ w(0, 0)2 − ψ(0, 0)2

2w(0, 0)ψ(0, 0)
.

Yet, this concludes the proof. □

We finish this section by some remarks on optimal sets.
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Remark 3.3. We note that an optimal set A⋆ is a priori not connected. For instance, this may happen
when ψ has two minima or when Ω is not convex (like two disks connected by a tube). However, one
can always show that there is an open connected set A⋆ that minimizes Problem (2.12). Indeed, if A⋆

is an optimal set then it is not difficult to check that the interior of A⋆ is optimal too. So, let us
assume that A⋆ is open. Now, let {A⋆i }i∈N be the family of disjoint open connected components of A⋆

(i.e. A⋆ = ∪i∈NA
⋆
i and A⋆i ∩ A⋆j = ∅, for all i ̸= j). In fact, the optimality of A⋆ also implies that

A⋆i ∩A⋆j = ∅, for all i, j. Yet, we have

λ⋆ =
Perψ(A

⋆)−
∫
∂⋆A⋆∩Γ

w∫
A⋆ ϕ

≤
Perψ(A

⋆
i )−

∫
∂⋆A⋆

i ∩Γ
w∫

A⋆
i
ϕ

, for all i.

Hence,

(3.14) λ⋆
∫
A⋆

i

ϕ ≤ Perψ(A
⋆
i )−

∫
∂⋆A⋆

i ∩Γ

w.

Since the closures of these sets A⋆i are mutually disjoint, then taking the sum over i in (3.14), we get
the following inequality:

(3.15) λ⋆
∫
A⋆

ϕ = λ⋆
∑
i

∫
A⋆

i

ϕ ≤
∑
i

Perψ(A
⋆
i )−

∑
i

∫
∂⋆A⋆

i ∩Γ

w = Perψ(A
⋆)−

∫
∂⋆A⋆∩Γ

w.

But so, the inequality in (3.15) must be an equality. In particular, it implies that for all i, the inequality
in (3.14) is an equality:

λ⋆
∫
A⋆

i

ϕ = Perψ(A
⋆
i )−

∫
∂⋆A⋆

i ∩Γ

w.

In other words, this means that A⋆i is an optimal set for Problem (2.12), for all i.

In addition, one can show in 2D that any connected optimal set A⋆ is convex as soon as ψ is a
constant function.

Remark 3.4. Assume that ψ = 1. For every point x ∈ ∂A⋆ ∩ Ω, there is an ε > 0 such that
A⋆ ∩ B(x, ε) is convex. Moreover, if x ∈ ∂A⋆ ∩ ∂Ω and Ω ∩ B(x, ε) is convex, then A⋆ ∩ B(x, ε) is
convex. To see this, assume that there are two points x⋆, y⋆ ∈ ∂A⋆ ∩ Ω such that ]x⋆, y⋆[⊂ Ω\A⋆. Let

E be the small region delimited by [x⋆, y⋆] and ∂A⋆. Now, we define Ã = A⋆ ∪ E. Then, it is easy to

see that Per(Ã) < Per(A⋆). Yet, we also have
∫
Ã
ϕ >

∫
A⋆ ϕ and ∂Ã∩Γ = ∂A⋆ ∩Γ. Thanks to (2.14),

we infer that

0 <
Per(Ã)−

∫
∂Ã∩Γ

w∫
Ã
ϕ

<
Per(A⋆)−

∫
∂A⋆∩Γ

w∫
A⋆ ϕ

.

But, this contradicts the optimality of A⋆ in (2.12). We note that this argument does not work in
higher dimension since it is not true when N > 2 that the perimeter of the convex hull of a set is less
than the perimeter of the set itself.

Remark 3.5. Assume that ϕ = 1. Then, one can show that any connected optimal set A⋆ in (2.12)
has to intersect the boundary ∂Ω. Indeed, assume that A⋆ is contained in the interior of Ω. Take t > 1
such that tA⋆ ⊂ Ω. Then, it is clear that

Per(tA⋆) = tPer(A⋆) and |tA⋆| = t2|A⋆|.
Hence, we have

Per(tA⋆)

|tA⋆|
<
Per(A⋆)

|A⋆|
,

which is a contradiction. Hence, A⋆ touches ∂Ω. Moreover, if ∂A⋆ ∩ Γ = ∅ then A⋆ cannot be
translated inside Ω, since if A is a translation of A⋆ inside Ω then we have

Per(A) = Per(A⋆) and |A| = |A⋆|.
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In addition, assume Ω is convex. Then, A⋆ must intersect Γ with H1(∂A⋆∩{x ∈ Γ : w(x) > −1}) > 0.
Indeed, if H1(∂A⋆ ∩ {x ∈ Γ : w(x) > −1}) = 0 then one can move A⋆ in Ω until we obtain a new set
A such that H1(∂A ∩ {x ∈ Γ : w(x) > −1}) > 0. Yet, we clearly have |A| = |A⋆|. Moreover, we have

Per(A)−
∫
∂A∩Γ

w = Per(A)−
∫
∂A∩{x∈Γ :w(x)=−1}

w −
∫
∂A∩{x∈Γ :w(x)>−1}

w

< Per(A,R2) = Per(A⋆,R2) = Per(A⋆)−
∫
∂A⋆ ∩{x∈Γ :w(x)=−1}

w.

Consequently, we get

Per(A)−
∫
∂A∩Γ

w < Per(A⋆)−
∫
∂A⋆∩Γ

w.

4. Examples

We conclude the paper by some examples in 2D where we can find explicitly the optimal set A⋆ in
Problem (2.12).

Example 4.0.1. Assume that Ω := [−1, 1]× [0, 1], Γ = [−1, 1]×{0}, ψ = ϕ = 1 and w = w0 ∈ [0, 1].
Thanks to Proposition 3.5, we know that any arc of ∂A⋆ inside Ω is an arc of circle with radius
R⋆ = 1/λ⋆ and, ∂A⋆ is also of class C1 on Γc. Using Proposition 3.5, one can see that if ∂A⋆ touches
Γ at some point x, then the tangent line to ∂A⋆∩Ω at x must be orthogonal to Γ. Moreover, by Remark
3.5, one has H1(∂A⋆ ∩ Γ) > 0. Thanks to Remark 3.4, A⋆ is also convex.

For every ε ∈]0, 1[, let Aε be the “rounded” rectangle Ω where the corners (1, 1) and (−1, 1) are
cutted off and replaced by arcs of circles with radius ε and centers (1 − ε, 1 − ε) and (−1 + ε, 1 − ε).
We have

Per(Aε) = 4 + (π − 4)ε and |Aε| = 2− 2(1− π

4
)ε2.

Hence,

J (ε) :=
Per(Aε)−

∫
∂Aε∩Γ

w

|Aε|
=

4 + (π − 4)ε− 2w0

2− 2(1− π
4 )ε

2
.

Yet, this function J (ε) reaches a minimum at ε⋆ = (4 − 2w0 − 2
√
π − 4 + (w0 − 2)2)/(4 − π). Then,

we infer that the optimal set A⋆ = Aε⋆ and λ⋆ = 1/ε⋆.

Aε

Γ

Example 4.0.2. Now, assume that Γ = ([−1, 1]×{0})∪({1}× [0, 1]) and w0 = 0. For every ε ∈]0, 1[,
let us denote by Aε the “rounded” rectangle Ω where the corner point (−1, 1) is cutted off and replaced
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by an arc of circle with center (−1 + ε, 1− ε) and radius ε. Again, it is clear that

Per(Aε) = 3 + (
π

2
− 2)ε and |Aε| = 2− (1− π

4
)ε2.

Then, we get that

Per(Aε)

|Aε|
=

3 + (π2 − 2)ε

2− (1− π
4 )ε

2

attains a minimum at ε = 1. Consequently, this implies that the optimal set A⋆ in (2.12) is nothing
else than A1.

Γ

A⋆

Example 4.0.3. In this example, we will see that the situation becomes much complicated when the
penalization w on Γ is negative. Again, assume that Ω := [−1, 1]× [0, 1], Γ = [−1, 1]× {0}, ψ = ϕ = 1
and w = w0, where −1 < w0 < 0. Let A⋆ be a convex optimal set in (2.12). We recall that any part
of ∂A⋆ in the interior of Ω is an arc of circle with radius R⋆ = 1/λ⋆ and, that ∂A⋆ is C1 on Γ with
H1(∂A⋆ ∩ Γ) > 0. Moreover, we know that if ∂A⋆ touches Γ at a point x then the angle θ ∈]π2 , π[
between the tangent line to ∂A⋆ ∩ Ω at x and Γ should satisfy:

(4.1) θ ≤ tan−1

(
1− w2

0

2w0

)
.

For all ε ∈]0, 1[ and δ ∈]0, ε[, we define Aε,δ as the “rounded” rectangle Ω where the corners (1, 1)
and (−1, 1) are cutted off and replaced by arcs of circles with radius ε and centers (1 − ε, 1 − ε) and
(−1 + ε, 1 − ε), while the corners (−1, 0) and (1, 0) are cutted off and replaced by arcs of the circles
(x1 − ε)2 + (x2 − δ)2 = ε2 and (x1 − 1 + ε)2 + (x2 − δ)2 = ε2. Then, it is not difficult to check that

J (ε, δ) =
Per(Aε,δ)−

∫
∂Aε,δ∩Γ

w

|Aε,δ|
=

4 + (π − 4)ε+ 2[ε cos−1(
√
ε2−δ2
ε )− δ]− 2[1− ε+

√
ε2 − δ2]w0

2− (4−π)
2 ε2 − 2δ[ε−

√
ε2 − δ2] + εδ

√
ε2 − δ2 − ε2 cos−1(

√
ε2−δ2
ε )

.

If (ε⋆, δ⋆) is a minimizer of J (ε, δ), then the optimal set A⋆ will be Aε⋆,δ⋆ . Notice that, thanks to (4.1),
we must have the following estimate:

δ⋆ ≤ −2w0√
(1− w2

0)
2 + 4w2

0

ε⋆.
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A⋆

Γ
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della Università di Padova, 66 (1982), 129–135.
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