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Abstract. We consider maps T solving the optimal transport problem with a cost c(x−
y) modeled on the p-cost. For Hölder continuous marginals, we prove a C1,α-partial
regularity result for T in the set {|T (x)− x| > 0}.

1. Introduction

In this paper we are concerned with the optimal transportation problem

min
π∈Π(ρ0,ρ1)

ˆ
c(x− y)dπ,(1.1)

where Π(ρ0, ρ1) denotes the set of plans in Rd ×Rd with marginals ρ0 and ρ1. Under mild
assumptions, see e.g. [16, Theorem 2.12], it is known that the minimiser is unique and of
Monge-form, that is π = (x, T (x))#ρ0 for some map T : Rd → Rd. We are concerned with
obtaining a partial regularity result for T in the setting where c is modeled on the cost
|x− y|p for some p > 1.
In order to state our main theorem, let us make our assumptions on the cost function
precise.

Assumption 1. Let p > 1 and α ∈ (0, 1]. We consider a convex cost function c ∈
C2,α(Rd \ {0}) ∩ C1(Rd) satisfying c(0) = 0, ∇c(0) = 0 and for some Λ > 0,

Λ−1(|x|+ |y|)p−2|x− y|2 ≤⟨∇c(x)−∇c(y), x− y⟩, ∀x, y ∈ Rd(1.2)

|∇c(x)−∇c(y)| ≤Λ(|x|+ |y|)p−2|x− y|, ∀x, y ∈ Rd.(1.3)

Let
X = {x : |T (x)− x| > 0} and Y = {y : |y − T−1(y)| > 0}.

Our main result then reads as follows:

Theorem 1. Let p > 1. Suppose c satisfies Assumption (1) and let ρ0, ρ1 ∈ Cα(Rd).
Suppose π = (x, T (x))#ρ0 solves (1.1). Then, there exist open sets X ′ and Y ′ with |X\X ′| =
|Y \Y ′| = 0 and that T is a C1,α-diffeomorphism between the sets X ′ and Y ′.

Partial regularity theorems for (1.1) were obtained by [6] in the case |x−y|2 and for general
non-singular cost c in [4] using Caffarelli’s viscosity approach to solutions of the Monge-
Ampère equation, which is the Euler-Lagrange equation for (1.1). In [9, 7] the result of
[6] was obtained using a variational approach based on the geometric linearisation of the
Monge-Ampère equation, see also [8]. This was later generalised to reprove the results of
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[4] in [15]. Regarding singular cost functions of p−type, to the best of our knowledge, the
only known result is the global regularity for densities defined on convex domains which
are either sufficiently far apart or under the condition that p ≥ 2 with |p − 2| ≪ 1, see
[3]. In this note we thus obtain partial regularity when the domains are neither convex nor
disjoint.
The main (and very natural) idea behind our proof is that away from fixed points, that
is for x ̸= 0, c locally looks like a quadratic cost function. In order to localize and apply
the existing partial regularity theory for non-singular cost-functions from [4, 15] we need
a localized L∞ bound on the displacement. When p ≥ 2, since the Kantorovich potentials
are semi-convex, this follows from Alexandrov theorem (see [4, 15]) while the situation is
more delicate for p < 2. Our second main result is the following L∞-bound.

Theorem 2. Let p > 1 and π be a minimiser for the c-optimal transport problem between
ρ0 and ρ1. Given A ∈ Rd×d, b ∈ Rd and m > 0, denote

Em =

ˆ
B2

|T (x)− x− b− Ax|mdρ0, D = inf
Br⋐B2

ρ0(Br)

rd
.

Assuming D > 0, it holds that for x ∈ B1/2,

|T (x)− x− b− Ax| ≲

{
E

1
m
m if Em ≥ 1

E
1

m+d
m if Em ≤ 1.

The implicit constant depends on D, p, m, d and |A|, but not on b.

In order to prove Theorem 1, we will apply Theorem 2 with m = p, in which case Ep is a
standard excess quantity.
Theorem 2 is of interest in its own right and might actually be seen as the main contri-
bution of the note. Global versions of this bound with m = p, b = 0 and A = 0 first
appeared in [2]. As far as local bounds are concerned, in the case p = 2, where by affine
invariance of the cost it is possible to reduce to the case b = 0 and A = 0, such bounds
were obtained in [9, 15, 8]. These bounds played a major role in the variational approach
to regularity theory for optimal transport maps. Still when b = 0 and A = 0 but for p ̸= 2,
Theorem 2 recovers earlier results of [14, 10]. In the case p ≥ 2 (and for homogeneous
costs), Theorem 2 has been proven in [12] (see also the first Arxiv version of [11]) with a
much more complicated proof.

As alluded to, when p ̸= 2, we lose the affine invariance of the cost and Theorem 2 cannot
be reduced to the case b = 0 and A = 0 anymore. Moreover, in this case, the approach
from [9, 15] with the geometric interpretation from [14] seems difficult to implement. Our
argument is much closer in spirit to the original proof in [2]. As in [2], the idea is to use
the c-monotonicity optimality condition for many points which lie on the ray T (x)−x− b.

We anticipate that Theorem 2 might have applications for the derivation of a full partial
regularity result (also including fixed points). This motivated us to include the case A ̸= 0
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in our statement. Let us however point out that an ε−regularity theorem around fixed
points seems to be a very challenging problem for multiple reasons. First, even though an
’harmonic-approximation’ result has been obtained in this context in [14], the approach
of [9] works at the level of C1,α regularity for the map T which requires C2,α regularity
for the solutions of the geometrically linearized equation (here the p′−Laplace equation).
However such regularity is known to fail for p > 2 and is only known qualitatively for d = 2
and p < 2, see [13]. Second, even if we ignore this issue, due to the lack of affine invariance
of the cost, after one-step of the Campanato iteration we lose the structure of having a
cost of the form c(x − y) which is essential for the ’harmonic-approximation’ results of
[9, 8, 14]. Last, in the case p < 2, where one could hope to get the needed C2,α regularity
for the p′−Laplace equation, the Kantorovich potentials are not semi-convex anymore and
we cannot appeal to Alexandrov theorem to prove that around most fixed point the excess
is small. See however [5] where a related partial regularity results has been obtained for
the geometrically linearized problem. We thus leave this problem for future research.

The outline of our paper is as follows. In Section 2 we collect some preliminary comments
from convex analysis and regarding certain quantities related to p-cost. In Section 3 we
prove Theorem 2, while we prove Theorem 1 in Section 4

Notation

The symbols ≃, ≳, ≲ indicate estimates that hold up to a global constant C, which only
depends on the dimension d, the exponent p and the Hölder exponent α (if applicable).
For instance, f ≲ g means that there exists such a constant with f ≤ Cg, f ≃ g means
f ≲ g and g ≲ f . An assumption of the form f ≪ 1 means that there exists ε > 0, only
depending on p, d and α, such that if f ≤ ε, then the conclusion holds.

2. Preliminaries

We collect some well-known facts from convex analysis and regarding certain quantities
naturally related to the type of cost functions we consider.
Let c ∈ C1(Rd) be a convex function. Then for any x, y ∈ Rd,

c(x)− c(y) ≤ ⟨∇c(x), x− y⟩.(2.1)

Furthermore if c is strictly convex, C1 and superlinear, then ∇c is a homeomorphism of
Rd.
(1.2) is equivalent to the assumption that for some Λ > 0 and all x, y ∈ Rd,

c(x) ≥ c(y) + ⟨∇c(y), x− y⟩+ Λ−1(|x|+ |y|)p−2|x− y|2.(2.2)

A further equivalent formulation is that for some Λ > 0 and all x, y ∈ Rd, λ ∈ [0, 1],

c(λx+ (1− λ)y) ≤ λc(x) + (1− λ)c(y)− Λ−1λ(1− λ)(|x|+ |y|)p−2|x− y|2.(2.3)
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Note that (1.3) with y = 0 combined with (1.2) for y = 0 imply |∇c(x)| ∼ |x|p−1. Then
applying (2.2) with x = 0 or y = 0 in combination with this fact, we obtain that

c(x) ∼ |x|p.(2.4)

Notice also that (1.2) together with (1.3) and c ∈ C2(Rd\{0}) implies

(2.5) |∇2c(z)| ≃ |z|p−2.

Lemma 1. Let p > 1 and β ≥ 1. Then for any µ ≥ 0, the function

t→ (µ+ t)p−2tβ

is monotonic increasing in t. In fact, for every C0 > 0 there exists C1 > 0 such that for
every s, t, µ ≥ 0,

(µ+ t)p−2tβ ≤ C0(µ+ s)p−2sβ ⇒ t ≤ C1s.(2.6)

Finally, a Young-type inequality holds: For any ε > 0 there is Cε > 0 such that for any
µ ≥ 0, x, y ∈ Rd,

(µ+ |x|)p−2|x||y| ≤ ε(µ+ |x|)p−2|x|2 + Cε(µ+ |y|)p−2|y|2.(2.7)

Proof. Monotonicity of t 7→ (µ+ t)p−2tα follows directly from checking that the derivative

of the function is non-negative. Let γ = min(β, p−2+β) > 0 and for C0 > 0 set C1 = C
1/β
0 .

If s, t ≥ 0 are such that

(µ+ t)p−2tβ ≤ C0(µ+ s)p−2sβ,

assume for the sake of contradiction that t > C1s. Using the monotonicity we find

C0(µ+ s)p−2sβ ≥ (µ+ t)p−2tβ > (µ+ C1s)
p−2(C1s)

β

≥ Cγ
1 (µ+ s)p−2sβ = C0(µ+ s)p−2sβ.

This gives the desired contradiction.

A proof of (2.7) can be found in [1, Lemma 2.3]. □

3. L∞-bounds

In this section we prove Theorem 2.

Proof of Theorem 2. Step 1: Cyclical monotonicity Let x̃ ∈ B1/2 and write ỹ = T (x̃).
Making the change of variables

x = x̃+ x′, y = x̃+ y′, ρ′0(x
′) = ρ0(x) and ρ′1(y

′) = ρ1(y)

we have by translation invariance of the cost that T ′(x′) = T (x)−x̃ is the optimal transport

map between ρ′0 and ρ′1. Setting b̃ = b+ Ax̃ and

Ẽ =

ˆ
B1

|T ′ − x′ − b̃− Ax′|mdρ′0,
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it is enough to prove that

|T ′(0)− b̃| ≲

{
Ẽ

1
m if Ẽ ≥ 1

Ẽ
1

m+d if Ẽ ≤ 1.
(3.1)

To lighten notation we write T for T ′ and E for Ẽ. Moreover we denote y = ỹ − x̃. Given
(x′, y′) = (x′, T (x′)) ∈ B1 × Rd, by cyclical monotonicity we have

c(y) + c(y′ − x′) ≤ c(y′) + c(y − x′).(3.2)

Let us point out that this is the only form in which we use the minimality of T .
Step 2: Preliminary estimates Note that for

ε <
1

4
|A|−1,(3.3)

we may define vε uniquely as a solution of the equation

vε = ε
(
y − (Avε + b̃)

)
⇔ vε = (Id + εA)−1ε(y − b̃)(3.4)

Further note that, if (3.3) holds and we additionally ensure

ε|y − b̃| ≤ 3

8
,(3.5)

then

|vε| ≤ ∥Id + εA∥−1|ε(y − b̃)| ≤ 1

2
.

We will precise our choice of ε ∈ (0, 1/2) at a later stage, but for now assume that (3.3)
and (3.5) are satisfied. Then for r ∈ (0, |vε|/2) to be fixed at a later stage, we may find
(x′, y′) = (x′, T (x′)) ∈ B1 × Rd such that

|x′ − vε| ≤ r, |y′ − x′ − b′|m ≤ r−dE

D
.(3.6)

where

(3.7) b′ = b̃+ Ax′.

Indeed, suppose that for all (x′, T (x′)) ∈ Br(vε)× Rd ⋐ B2 × Rd and some M > D−1,

|y′ − x′ − b′|m ≥ ME

rd
.

Then

E ≥ ME

rd

ˆ
Br(vε)

dρ0 ≥MED,

giving a contradiction.
Note that since r ∈ (0, |vε|/2), definition (3.4) of vε and (3.3), and definition (3.6) of x′,

(3.8) |x′|+ |vε| ≃ |vε| ≃ ε|y − b̃|.
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Hence it also holds that

(3.9) |y − b̃− Avε| = ε−1|vε| ≃ |y − b̃|.
Finally, using (3.8) and the triangle inequality, we find

|̃b+ Avε + x′|+ |y − x′| ≃ |̃b|+ |y|.(3.10)

Step 3: Applying cyclical monotonicity
We now apply (3.2) with the choice of (x′, y′) given in (3.6) and re-write (3.2) as

c(y) + c(̃b+ Avε)− c(εy + (1− ε)(̃b+ Avε))− c(ε(̃b+ Avε) + (1− ε)y)

≤
[(
c(̃b+ Avε + x′)− c(̃b+ Avε + vε)

)
+ (c(y − x′)− c(y − vε))

]
+
[(
c(̃b+ Avε)− c(̃b+ Avε + x′)

)
+ (c(y′)− c(y′ − x′))

]
=I + II.(3.11)

Using convexity in the form of (2.1) followed by (1.3), we find

I ≲⟨∇c(̃b+ Avε + x′)−∇c(y − x′), x′ − vε⟩

≲(|̃b+ Avε + x′|+ |y − x′|)p−2|̃b+ Avε − y + 2x′||x′ − vε|
(3.6)

≤ (|̃b+ Avε + x′|+ |y − x′|)p−2 |̃b+ Avε − y + 2x′|r.
Using (3.8) and (3.10), we may further simplify the estimate above to

I ≲(|̃b|+ |y|)p−2|̃b− y|r.(3.12)

Similarly,

II ≲⟨∇c(y′)−∇c(̃b+ Avε), x
′⟩

≲(|y′|+ |̃b+ Avε|)p−2|y′ − b̃− Avε||x′|

≲(|y′ − b̃− Avε|+ |̃b+ Avε|)p−2|y′ − b̃− Avε||x′| = II ′.(3.13)

On the one hand, if |y′− b̃−Avε| ≲ ε|y− b̃−Avε|, then we deduce using the monotonicity
from Lemma 1, as well as (3.8) and (3.9),

II ′ ≲εmin(2,p)(|y − b̃− Avε|+ |̃b|)p−2|y − b̃− Avε||y − b̃|

≲εmin(2,p)(|y − b̃− Avε|+ |̃b|)p−2|y − b̃|2

(3.6)

≲ εmin(2,p)(|y − b̃|+ |̃b|)p−2|y − b̃|2.

On the other hand, if |y′ − b̃− Avε| ≫ ε|y − b̃− Avε|, using (3.8) and (3.9),

|x′|+ |Avε| ≲ ε|y − b̃| ≲ ε|y − b̃− Avε| ≪ |y′ − b̃− Avε|.(3.14)

Recalling the definition (3.7) of b′ we have by triangle inequality,

|y′ − b̃− Avε| ≤|y′ − b′ − x′|+ |Avε|+ |x′|+ |Ax′|.
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Using (3.14) to absorb the last three terms on the right-hand side, we have in this case,

|y′ − b̃− Avε| ≲ |y′ − b′ − x′|.(3.15)

Using the monotonicity of Lemma 1, this allows to estimate in this case

II ′ ≲(|y′ − b′ − x′|+ |̃b+ Avε|)p−2|y′ − b′ − x′||x′|.

Using now (3.14) and (3.15) we find

|y′ − b′ − x′|+ |̃b+ Avε| ≃ |y′ − b′ − x′|+ |̃b|

so that we can post-process it to

II ′ ≲ (|y′ − b′ − x′|+ |̃b|)p−2|y′ − b′ − x′||x′|.

Combining both cases we conclude that

(3.16) II ≲ εmin(2,p)(|y − b̃|+ |̃b|)p−2|y − b̃|2 + (|y′ − b′ − x′|+ |̃b|)p−2|y′ − b′ − x′||x′|.

Putting (3.12) and (3.16) together yields

(3.17) I + II ≲ εmin(2,p)(|y − b̃|+ |̃b|)p−2|y − b̃|2

+ (|̃b|+ |y|)p−2|̃b− y|r + (|y′ − b′ − x′|+ |̃b|)p−2|y′ − b′ − x′||x′|.

We now estimate I + II from below. As ε ∈ (0, 1), (2.3) applied to the third and fourth
term on the left-hand side in (3.11) allows us to obtain the following lower bound (up to
a constant depending on p only):

ε(1− ε)(|̃b+ Avε|+ |y|)p−2|y − b̃− Avε|2 ≲ I + II.

Choosing ε≪ 1 and employing (3.9), we may replace this by

ε(|̃b|+ |y − b̃|)p−2|y − b̃|2 ≲ I + II.(3.18)

Collecting estimates (3.17) and (3.18) together and choosing ε ≪ 1 to absorb the first
right-hand side term in (3.17), we have shown

ε(|̃b|+ |y − b̃|)p−2|y − b̃|2 ≲(|̃b|+ |y|)p−2 |̃b− y|r

+ (|y′ − b′ − x′|+ |̃b|)p−2|y′ − b′ − x′||x′|

where the implicit constant depends on p, d and |A|. By (3.6) and the monotonicity from
Lemma 1, this implies

ε(|̃b|+ |y − b̃|)p−2|y − b̃|2 ≲(|̃b|+ |y − b̃|)p−2|̃b− y|r(3.19)

+ ((r−dE)
1
m + |̃b|)p−2(r−dE)

1
m |x′|.

Step 4: Proof of (3.1) for E ≥ 1: As E ≥ 1 it suffices to show

|y − b̃| ≲ 1 + E
1
m .(3.20)
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Thus, we may assume without loss of generality that |y− b̃| ≥ 1. We choose for 0 < δ ≪ 1
to be determined ε = δ

|y−b̃|
. If δ is sufficiently small, then (3.3) and (3.5) are satisfied and

ε≪ 1. Choosing r ≪ δ ≃ |vε|, but r ∼ δ, using that |x′| ≤ 1, (3.19) simplifies to

(|̃b|+ |y − b̃|)p−2|y − b̃| ≲(E
1
m + |̃b|)p−2E

1
m .(3.21)

Using (2.6) with β = 1, we deduce (3.20).
Step 5: Proof of (3.1) for E ≤ 1: Note that in order to show (3.20) we did not use

that E ≥ 1. Thus, also if E ≤ 1, (3.20) holds and we may assume that |y − b̃| ≲ 1. In
particular, it suffices to ensure ε ≪ 1 in order for (3.3) and (3.5) to hold. We begin by
using (2.7) to estimate the right-hand side of (3.19) (up to constant) by

(3.22)

ε2(|y− b̃|+ |̃b|)p−2|y− b̃|2+Cε(r+ |̃b|)p−2r2+(|x′|+ |̃b|)p−2|x′|2+((r−dE)
1
m + |̃b|)p−2(r−dE)

2
m

≲ ε2(|y − b̃|+ |̃b|)p−2|y − b̃|2 + Cε(r + |̃b|)p−2r2 + ((r−dE)
1
m + |̃b|)p−2(r−dE)

2
m .

In order to obtain the second line, we used (3.8) together with the monotonicity from
Lemma 1. Note that for ε ≪ 1, the first term may be absorbed on the left-hand side of

(3.19). Choosing r = E
1

m+d we have shown

(|y − b̃|+ |̃b|)p−2|y − b̃|2 ≲ (E
1

m+d + |̃b|)p−2E
2

m+d .

Now (2.6) implies the desired inequality and concludes the proof. □

4. Main argument

This section is devoted to proving Theorem 1.

Proof of Theorem 1. Let T be a minimizer for the c-optimal transport problem between ρ0
and ρ1. Let then u(x) = T (x)− x, v(y) = y − T−1(y). Recall that we have set

X = {x : |u(x)| > 0} Y = {y : |v(y)| > 0}.
We need to show that there exists X ′, and Y ′ open sets such that |X ′\X| = 0 = |Y ′\Y |
and such that T is a C1,α diffeomorphism between X ′ and Y ′. Let η > 0 and set

Xη = {x : |u(x)| > η and x is a Lebesgue point of u}
Y η = {y : |v(y)| > η and y is a Lebesgue point of v}.

Since up to a set of Lebesgue measure 0, X = ∪η>0X
η and Y = ∪η>0Y

η it is enough to prove
the statement with Xη and Y η instead of X and Y . Let (ϕ, ψ) be optimal Kantorovich
potentials so that using the same convention as in [4, 15]

(4.1) ψ(x) = sup
y

−ϕ(y)− c(y − x).

We claim that ψ is twice differentiable a.e. in Xη and that ϕ is twice differentiable a.e.
in Y η. Notice that for p ≥ 2, hypothesis (2.5) implies that ϕ and ψ are semi-convex so
that the claim follows by Alexandrov Theorem. We may thus focus on p ≤ 2 (although
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the argument works also for p ≥ 2). Since the argument for ϕ and ψ are the same we only
prove the claim for ψ. We claim that for every x̄ ∈ Xη, there exists R(x̄, η) > 0 such that

(4.2) |u(x)| ≥ η/2 for all x ∈ BR(x̄,η)(x̄).

By translation we assume that x̄ = 0 and set b = u(0). Notice that by definition of Xη we
have |b| > η. Let

E =
1

Rp+d

ˆ
B2R

|u(x)− b|p.

Note that we may assume without loss of generality that ρ0(0) > 0 and hence if R is

sufficiently small, infBr⋐BR

ρ0(Br)
rd

> 0 as ρ0 ∈ C0. By Theorem 2 and scaling we then have
the L∞ bound,

sup
BR/4

|u(x)− b| ≲ R
(
E

1
p+d + E

1
p

)
.

Thus if E ≤ 1 (so that E
1
p ≤ E

1
p+d ) and R is small enough,

sup
BR/4

|u(x)− b| ≲ R ≤ η/2

whereas if E ≥ 1 (so that E
1

p+d ≤ E
1
p ) and R is small enough,

sup
BR/4

|u(x)− b| ≲ RE
1
p =

(
1

Rd

ˆ
BR

|u− b|p
)1/p

≤ η/2

by definition of Lebesgue points. Using triangle inequality this concludes the proof of (4.2).
Let

X̃η = ∪x̄∈XηBR(x̄,η)(x̄)

so that X̃η is an open set with Xη ⊂ X̃η. Recalling that (ϕ, ψ) are optimal Kantorovich
potentials we notice that for every x the supremum in (4.1) is attained at y = T (x). In

particular if x ∈ X̃η we may restrict the supremum to y such that |y−x| ≥ η/2. We finally

claim that in X̃η, ψ is C(η)−semi-concave. Indeed, let x̂ ∈ X̃η. By definition of X̃η, there
exists x̄ ∈ Xη such that x̂ ∈ BR(x̄,η)(x̄). Let r ≪ η be such that Br(x̂) ⊂ BR(x̄,η)(x̄). Then
for every x ∈ Br(x̂), if y is such that |y − x̂| ≤ η/4, we have |y − x| ≤ r + η/4 < η/2 and
thus since x ∈ BR(x̄,η)(x̄), |u(x)| ≥ η/2 > |y − x|. Therefore,

ψ(x) = sup
y∈Bη/4(x̂)

c

−ϕ(y)− c(y − x).

Now for every (x, y) ∈ Br(x̂)×Bη/4(x̂)
c, the function fy(x) = −ϕ(y)− c(y−x) satisfies by

(2.5),
|D2fy(x)| ≲ |x− y|p−2 ≲ ηp−2

and is thus semi-convex with a semi-convexity constant of the order of ηp−2. This concludes
the proof of the claim.

By Alexandrov Theorem, ψ is twice differentiable a.e. in X̃η and thus also inXη as claimed.
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We may now closely follow the argument from [4, 15]. Let Xη
1 ⊂ Xη be the set of points

x̄ such that ψ is twice differentiable at x̄ and define similarly Y η
1 . We let then

X
′

η = Xη
1 ∩ T−1(Y η

1 ) and Y ′
η = Y η

1 ∩ T (Xη
1 ).

Let (x̄, ȳ) ∈ X ′
η×Y ′

η be such that T (x̄) = ȳ =: b. We claim that for r ≪ 1, T ∈ C1,α(Br(x̄)).
By translation invariance of c we may assume that x̄ = 0. Since by hypothesis 0 ∈ X ′

η ⊂ Xη

we have |b| > η. Writing y = b+ y′ (and thus T (x) = b+ T ′(x)), cb(x, y
′) = c(y′ + b− x),

ρ1,b(y
′) = ρ1(y) and ψb(x) = ψ(x) we see that ψb is a cb−convex function and T ′ is the

optimal transport map between ρ0 and ρ1,b with T
′(0) = 0. We then set

ψ̄(x) = ψb(x)− ψb(0) + cb(x, 0)− cb(0, 0) = ψ(x)− ψ(0) + c(b− x)− c(b)

and

c̄(x, y) = cb(x, y)− cb(x, 0)− cb(0, y) + cb(0, 0)

= c(y + b− x)− c(b− x)− c(y + b) + c(b).

Since ψ̄ is a c̄−convex function we see that T ′ is the c̄-optimal transport map from ρ0 to
ρ1,b. Moreover, since ψ and c(b−·) are twice differentiable at 0, ψ̄ is also twice differentiable
at 0 so that for some symmetric matrix A,

∇ψ̄(x) = ∇ψ̄(0) + Ax+ o(|x|).

Since

∇ψ̄(0) = −∇xc̄(0, 0) = 0,

this reduces further to

∇ψ̄(x) = Ax+ o(|x|).
Letting M = −∇xy c̄(0, 0) = ∇2c(b) (which is non-degenerate by (2.5) and |b| > η) we have

(4.3) T ′(x) =M−1Ax+ o(|x|).

In particular, if r is small enough then for x ∈ Br, |T ′(x)| ≪ η ≤ |b|. Arguing similarly we
have that for y ∈ Br also |(T ′)−1(y)| ≪ η ≤ |b|. Let r0 be a small radius such that these
two properties hold and let

ρ̄0 = ρ0χBr0
and ρ̄1,b = T ′#ρ̄0.

By the previous considerations, if r ≪ r0 then

(4.4) ρ̄1,b = ρ1,b in Br.

Moreover, by (2.5),

(4.5) −∇xy c̄(x, y) = ∇2c(y + b− x) ∼b Id in Br0 ×Br0 .

We now make the change of variables (arguing as in [15, Proof of Corollary 1.4] we have

that A is positive definite) x̃ = A
1
2x and ỹ = A− 1

2My and thus

T̃ (x̃) = A− 1
2MT ′(A− 1

2 x̃), c̃(x̃, ỹ) = c̄(A− 1
2 x̃,M−1A

1
2 ỹ).
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Setting

ρ̃0(x̃) =
ρ0(A

− 1
2 x̃)

ρ0(0)
and ρ̃1(ỹ) =

ρ̄1,b(M
−1A

1
2 ỹ)

ρ̄1,b(0)

we may check as in [15, Proof of Corollary 1.4] that T̃ is the optimal transport map between
ρ̃0 and ρ̃1 for the cost c̃. By (4.4) we have for r ≪ r0 that ρ̃i ∈ Cα(Br). Moreover, by
definition, ρ̃0(0) = ρ̃1(0) = 1. With this change of variables (4.3) becomes

T̃ (x̃) = x̃+ o(|x̃|)
so that

lim
R→0

1

R2+d

ˆ
BR

|T̃ − x̃|2ρ̃0 = 0.

Finally, by (4.5), if r ≪ r0,

• c̃ ∈ C2,α(Br ×Br);
• for x ∈ Br, the map y 7→ ∇xc̃(x, y) is one-to-one from Br into Rd;
• for y ∈ Br, the map x 7→ ∇y c̃(x, y) is one-to-one from Br into Rd;
• det∇xy c̃ ̸= 0 for (x, y) ∈ Br ×Br.

We may thus apply [15, Theorem 1.1] and conclude that T ′ ∈ C1,α(BR) for R ≪ r small
enough. Returning back to the original variables we find that T ∈ C1,α(BR) for a (non
relabelled) R small enough. Moreover, if R is sufficiently small, BR ⊂ X ′

η. Arguing

similarly for T−1 we conclude that T is a diffeomorphism between BR and T (BR). In
particular BR × T (BR) ⊂ X ′

η × Y ′
η which is open and it follows that T is a global C1,α

diffeomorphism between X ′
η and Y ′

η . □
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