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Abstract. We further investigate the properties of an approach to topological singularities
through free discontinuity functionals of Mumford-Shah type proposed in [28]. We prove the

variational equivalence between such energies, Ginzburg-Landau, and Core-Radius for anti-plane

screw dislocations energies in dimension two, in the relevant energetic regimes | log ε|a, a ≥ 1,
where ε denotes the linear size of the process zone near the defects.

Further, we remove the a priori restrictive assumptions that the approximating order pa-

rameters have compact jump set. This is obtained by proving a new density result for S1-valued
SBV p functions, approximated through functions with essentially closed jump set, in the strong

BV norm.
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Introduction

This paper concerns the analysis of topological singularities, which is a central topic in models
arising in Physics and Materials Science. Vortices in superconductivity and superfluidity and
(screw and edge) dislocations in single crystal plasticity are the main examples of such phenomenon
[4, 41, 43, 49, 50, 51].

In the last decades several models have been introduced to describe the emergence of these
objects. Among them, the most celebrated is the Ginzburg-Landau (GL) model, mainly studied in
the context of superconductivity. In such a model, the order parameter is a function u ∈ H1(Ω;R2)
and the energy functional (in its simplest form) reads as

(0.1) EGL
ε (u) :=

1

2

ˆ
Ω

|∇u|2 dx+
1

ε2

ˆ
Ω

(
1− |u|2

)2
dx,

where the parameter ε > 0 is referred to as coherence length. Here and below Ω ⊂ R2 is a
bounded open set with Lipschitz continuous boundary. A topological singularity is nothing but a
point around which u has non-trivial winding number and hence the main object to look at is the
Jacobian determinant (of u) Ju := det∇u. Denoting by S1 the set of unitary vectors in the plane,
we notice that close to a topological singularity, u cannot be S1-valued (a singularity can be seen

1



2 V. CRISMALE, L. DE LUCA, AND R. SCALA

somehow as a zero of the order parameter); therefore, the parameter ε can be interpreted as the
size of the region where u fails to take values in S1 and hence as the core-radius of the topological
singularity.

The variational analysis of the (GL) functional has been first systematized in the monograph
[6] (see also [59] and the references therein for the asymptotic analysis in terms of Γ-convergence),
where the (GL) model is compared with (and shown somehow to be “equivalent” to) the so-called
core-radius (CR) approach, in antiplane elasticity. Within this framework, the main variable
is represented by the distribution of topological singularities µ =

∑
αiδξi (with integer weights

αi) but the energy functional depends both on µ - which here plays the role of the Jacobian
in (GL) - and on a map u ∈ H1(Ωε(µ);S1) “compatible with µ”. Here, ε is the core-radius,
Ωε(µ) := Ω\

⋃
iBε(ξi) and the notion of compatibility is given by the fact that deg(u, ∂Bε(ξi)) = αi

(assuming that the balls Bε(ξi) are pairwise disjoint). The energy of the system thus writes

(0.2) ECR
ε (µ, u) :=

1

2

ˆ
Ωε(µ)

|∇u|2 dx+ |µ|(Ω).

Here, the quantity |µ|(Ω) plays the same role of the potential term in EGL
ε , namely, avoids that

the cores cover the whole domain; in other words, it serves only to guarantee compactness and
does not provide any energy contribution in the asymptotics as ε→ 0.

The (CR) approach is mostly used to model screw dislocations in semi-discrete theories. Loosely
speaking, in pure (anti-plane) elasticity the bulk energy is determined by the Hooke’s law, and
reads as 1

2

´
Ω
|∇w|2 dx, where the displacement w lies in H1(Ω). In presence of a finite distribution

µ =
∑

i αiδxi
of (scalar) defects, the material has a purely plastic behavior in the cores Bε(ξi) and,

oversimplifying, such a plastic contribution can be expressed by |µ|(Ω). Moreover, along a closed
circuit enclosing the singularity ξi, a displacement w compatible with µ should have a jump [w]
equal to αi. Therefore, the displacement w is only in SBV 2(Ωε(µ)) with [w] ∈ Z and its elastic
energy should be given by 1

2

´
Ωε(µ)

|∇w|2 dx, where ∇w is the absolutely continuous part of Dw.

Setting

(0.3) u = e2πıw,

one obtains that the total energy associated to the pair (µ, u) is given by ECR
ε .

In this paper, we adopt a different viewpoint, following the approach proposed in [28]. The
main feature is that the order parameter is now an S1-valued map, as in the (CR) approach,
defined on the whole Ω, as in the (GL) approach. Clearly, in presence of topological singularities,
such a map cannot be in H1(Ω; S1). But, instead of removing small disks around the singularities
(as in (CR)) or to weaken the S1-constraint (as in (GL)), the map u is now allowed to jump. More
precisely, u is a special function of bounded variation with square-integrable approximate gradient
(i.e., u ∈ SBV 2(Ω;S1)). The energy functional we consider is

(0.4) Fε(u) :=

ˆ
Ω

1

2
|∇u|2 dx+

1

ε
H1(Su),

where ε > 0 is a small parameter determining the size of the jump set Su of u. Here and throughout
the paper H1 denotes the (one-dimensional) Hausdorff measure.

Formally, the functional Fε has the structure of the Mumford-Shah functional [56], but the S1-
constraint makes the analysis completely different. Indeed, having in mind the identity (0.3) and
the (CR) approach for screw dislocations, jumps of the map u correspond to non-integer jumps
of the displacement w and should pay energy. In other words, the (amplitude of the) jump [w] of
the displacement exhibits a transition between integers in a little portion of Sw. The transition is
assumed to have length of the order of ε, and corresponds to the presence of singularities. In this
respect, H1(Su) is the analogue of the potential term in (GL) and of the plastic term in (CR) and
the parameter ε can be understood also in this case as the core-radius of the singularity.

We highlight that for SBV maps the definition of topological degree as well as that of Jacobian
determinant are not so standard so that the notion of topological singularity is not so clear as in
(GL) and in (CR). Nevertheless, in [28], using the minimal lifting in [45], a notion of Jacobian
determinant is provided also for SBV functions; we recall such a definition in Section 1 (see [53]
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where in a more restrictive setting this notion was first introduced, and see also [9] for a different
definition of Jacobian determinant in dimension 2). In a nutshell, given a map u ∈ SBV (Ω;S1),
the Jacobian Ju of u is defined as the boundary of the 1-current Tu defined by

(0.5)
Tu :=

1

2
(−u1∂x2

u2 + u2∂x2
u1,u1∂x1

u2 − u2∂x1
u1) +

1

2
(u+ ∧ u−)τ Su

=:TD
u + T S

u .

In [28, Theorem 3.1] the Γ-convergence analysis of the functional

(0.6) Gε(u) :=

ˆ
Ω

1

2
|∇u|2 dx+

1

ε
H1(Su),

at the energy regime | log ε| has been developed: such an analysis revealed that the functional
Gε shares the same compactness and Γ-convergence properties of the functionals ECR

ε and EGL
ε .

Specifically, as ε → 0, the Jacobian determinant tends to concentrate around a finite number
of effective singularities and the Γ-limit of the functionals Gε

| log ε| is given (up to multiplicative

constants) by the total variation of the limiting measure of the Jacobians. Since, in view of the
possible presence of short dipoles, a uniform bound on the total variation of the dislocations’
distributions is not available, the natural setting for such an asymptotic analysis is the (strong)
flat convergence for Jacobian determinants, the flat topology being the strong topology in the dual
of Lipschitz continuous functions with compact support in Ω.

We stress that the proof of compactness, which is a prominent issue in [28], is based on the ball
construction technique introduced in [44, 58]: in order to start the corresponding construction,
the original jump set needs to be covered by a finite family of pairwise disjoint balls in such a way
that the sum of the diameters does not exceed a constant times the H1 measure of the jump set
(the constant could be also taken arbitrarily close to 1, from above). This is easily ensured if the
jump set is compact, whilst Su could be even dense in Ω for a general u ∈ SBV 2(Ω;S1).

In the present paper we generalize the analysis done in [28] along two directions. On the one
hand, we show that the penalization term can be “weakened” considering only the length of the
jump set instead of its closure, i.e., working with the functional Fε rather than with Gε. Therefore
it is not needed to assume a priori that the jump set is compact. On the other hand, we show
that the functional Fε shares the same asymptotic behavior of the functionals ECR

ε and EGL
ε also

in other energy regimes.
The first improvement is obtained by means of a density result in SBV p(Ω;S1), p > 1, with

respect to energies Fε for fixed ε > 0, through functions in SBV p(Ω;S1) with (essentially) closed
jump set, converging in the strong BV norm and such that also the two unilateral traces of the
approximants along the jump set converge; in particular, by using the characterization of Ju as
the boundary of Tu in (0.5), the strong convergence of Jacobian determinants with respect to flat
norm follows.

Our result hinges on tools developed in a slightly different setting, that is when only the
symmetric part of the diffuse gradient is controlled in some Lp, for p > 1, rather than the whole
diffuse gradient. Mechanically, this corresponds to consider fracture models for general linearized
elasticity without the anti-plane assumption, described by the Griffith functional [40] instead of
the Mumford-Shah one.

In fact, the main tool for density results developed in the context of Mumford-Shah functional
is an approximated Poincaré-Wirtinger inequality for SBV p functions with small (Hd−1-measure
of the) jump set, due to De Giorgi-Carriero-Leaci ([25]): given u ∈ SBV p there exists a trun-
cation in W 1,p such that u differs from w on an exceptional set ω whose volume is controlled
by (Hd−1(Su))

1∗ , d ≥ 2 being the space dimension and 1∗ := d/(d−1). In the same paper, this
result has been used to prove that the jump set of Mumford-Shah minimizers is essentially closed,
namely the Hd−1 measure of the jump set equals that of its closure. After short time a general-
ization for SBV p(Ω;Sk−1) maps has been proven in [16]; by combining such a generalization with
an argument in [8] (cf. Lemma 5.2 therein), one can show that the Mumford-Shah functional in
SBV p(Ω; S1) can be approximated through SBV p(Ω; S1) functions having essentially closed jump
set and converging pointwise. Unfortunately, pointwise convergence of a sequence of functions
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does not guarantee convergence of the corresponding Jacobians; since we need convergence in the
flat norm such an approach is not satisfactory for our purposes. For functions with finite Griffith
energy (with exponent p), that is in the space GSBDp ([23]), a fundamental tool is the approx-
imated Poincaré-Korn inequality in [10], stating that for any u ∈ GSBDp with small jump set
there exists an infinitesimal rigid motion a (i.e. an affine function with null symmetrized gradient)

such that the L
dp

d−1 -norm of u − a is estimated by the Lp norm of e(u), the symmetrized diffuse
gradient of u, outside an exceptional set ω whose volume is controlled by (Hd−1(Ju))

1∗ . Moreover,
a convolution of uχωc + aχω at the same scale of the domain provides a function with Lp-norm of
the symmetrized diffuse gradient controlled by those of u.

This result, on which other contribution in this direction rest (see, e.g., the approximation in
GSBDp through functions with essentially closed jump set [19, 11] and the analogue of [25] for
the Griffith functional [20, 17, 12]), has been generalized by [18] and [13]: here, any u ∈ GSBDp

is approximated, in terms of the Griffith energy, by functions W 1,p on a slightly smaller domain,
with essentially closed jump set, which differ from u on a set ω whose boundary is controlled
by Hd−1(Ju); further, in [18] it is shown that in dimension two it is possible to guarantee that
the approximants coincide with u in the boundary neighborhood where they are not in W 1,p. In
[18] such an approximation is used to prove an integral representation result, while in [13] the
main result is the approximation of any u ∈ GSBDp, with respect to the Griffith energy, through
functions with essentially closed jump set differing from u on sets of vanishing perimeter.

Moreover, Friedrich [32] proved a piecewise Korn inequality in dimension two, showing that up
to subtracting piecewise rigid functions (finite sums of infinitesimal rigid motions multiplied by
characteristic functions), any u in GSBDp can be approximated by functions in SBV q ∩ L∞, for
q < p, in particular the diffuse gradient of the approximants is estimated on the whole domain
by e(u); this is a very powerful tool allowing to overcome the lack of a Coarea Formula in GSBD
and then to show, e.g., existence of quasi-static evolutions for Brittle Fracture models (see, for
instance, [34]). In the same spirit, in [33] a similar result has been shown in the Mumford-Shah
setting, namely dealing only with full diffuse gradients.

Eventually, we refer to [29] for the two dimensional analogue of [16] for maps in SBV p(·)(Ω;Sk−1),
(with Ω ⊂ R2) whose approximate gradient is integrable with respect to the variable exponent p(·)
over Ω and whose jump set has finite H1-measure (see also [48] for the variable exponents analogue
of [25]), obtained under the assumption that the function p(·) is regular enough and takes values
in (1, 2). This uses the analogue of the approximation of [18], proven by employing retractions
P : Rk \ X → Sk−1 with locally q-integrable gradient for q ∈ [1, 2), where X is a smooth complex
of codimension two (cf. e.g. [14]).

We then compare our main density result Corollary 2.2 with [13, Theorem 5.1]: we are in
two dimensions and consider the full diffuse gradient instead of its symmetrized part, however we
keep in the approximation the constraint of being S1-valued. We notice that also a version with
symmetrized diffuse gradient is readily shown with essentially the same proof, see Theorem 2.6.

Since in our application the case p = 2 is the relevant one, we cannot follow a strategy based on
retractions. Moreover, the proof of [18], [13], and [33] is not compatible with a non-convex target
space such as S1.

Our approach is based on the existence of a lifting φ ∈ SBV p(Ω) (i.e., such that u = e2πıφ) with
its BV -seminorm such that π|φ|BV ≤ |u|BV ([24], notice that therein the relation between u and
φ is u = eiφ and the inequality is |φ|BV ≤ 2|u|BV ), for which we provide a suitable approximation
(Theorem 2.1) and then compose the approximants with e2πı·.

We observe that, along this scheme, one could be tempted to directly employ the approximation
provided by [13, Theorem 5.1] to φ, before composing with the complex exponential; however,
despite the fact that the set on which the traces of the approximants - say φn - differ from those
of φ has small measure, it could be even dense in Sφ, so that a subset of Sun

, un := e2πıφn , could
be dense in the integer jump set Sint

φ of φ. As H1(Sint
φ ) is in general comparable to |u|BV , thus

larger than H1(Su) by a factor 1/ε, see (0.4), the procedure just described is not admissible for
our purposes: in fact, since we need approximants with closed jump set we are forced to consider
the closure of Sun

or, in other words, if we cover Sun
by a family of pairwise disjoint balls (in
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order to start the ball construction) then the sum of their diameters is larger than Su by a factor
1/ε.

Therefore we need a more refined density result, which allows to approximate integer jumps
with integer jumps as well. The strategy adopted in the proof of Theorem 2.1 is to work locally
near points with integer jump at a scale for which the jump is almost flat and assumes a constant
integer value (Step 1). Then locally most of the jump set of φ can be transferred (up to a small
error) into a flat segment S on which the jump has the same value (Step 2.1, the modifications
are defined in (2.29)); such S can be chosen in such a way that the remaining small jump set of
φ, on any square with arbitrarily small sidelength with a side contained in S, is small compared
to the sidelength: this follows by a two dimensional argument drawn from [18] (argument at the
beginning of Step 2.1, in particular the need to work in dimension two is discussed below (2.27)).

In this way, the approximation for functions with small jump set of [18] (cf. Proposition 2.5)
may be applied at every scale; therefore a Whitney-type argument combined with the fact that the
approximants coincide with the original function on the boundary of any square ensures that the
traces are the same on both sides of S, so the new jump is still integer (Step 2.1, from (2.41) till
the end). We believe that this strategy may be replicated for different target manifolds, provided
that the universal cover is convex (for instance Rk) and a lifting with good BV bounds as in [24]
exists (in this respect see e.g. [15]), but limiting to two dimensional domains. At the present stage,
however, our techniques seem to be not applicable to the case of Sk-valued maps, with k > 1. We
anticipate here that the fact that our argument is two dimensional is not a real limitation for
the application considered in the present paper, as further substantial issues arise in the three
dimensional framework, see below.

The density result described above allows to develop the Γ-convergence analysis for the func-
tional Fε also in different energetic regimes (as it applies for fixed ε > 0), thus generalizing the
setting of [28].

First, we develop the Γ-convergence analysis in the so-called critical regime, that is | log ε|2.
Loosely speaking, since | log ε| is the energy cost of an isolated singularity, the fact that Fε(uε) ∼
| log ε|2 implies that, for ε > 0, the number of singularities of the Jacobians Juε is of order | log ε|;
therefore, the Jacobians Juε, once rescaled by | log ε|, should converge (in the flat norm) to a
measure µ that is not anymore atomic but diffuse. Furthermore, we prove that such a measure µ
lies also in H−1(Ω). Indeed, by standard compactness results in L2(Ω), also the fields TD

uε
, once

scaled by | log ε|, should converge (weakly in L2(Ω)) to a field TD, whose distributional divergence
is shown to be given by −πµ. As one may expect, the Γ-limit accounts both for the plastic
contribution of µ as well as for the elastic energy of TD. That is the reason why the | log ε|2
regime is called critical, since in such a case the elastic and plastic effects are of the same order.
The Γ-convergence analysis for the functional Fε is provided in Theorems 3.3 and 3.4 which are
proved in Section 5. Second, the proofs of the compactness and of the lower bound are obtained
combining the corresponding results for the core-radius approach together with the refined ball
construction machinery introduced in [28] to analyze the | log ε| regime.

Finally, adopting the same strategy, in Theorem 3.4 we analyze also the super-critical regimes
| log ε|2 ≪ Nε ≪ 1

ε . In such a case, the interaction elastic energy is larger and larger than the core

energy, so that (unless scaling differently the two quantities Juε and TD
uε
) one keeps track only of

TD and the Jacobian determinants do not play any role when computing the effective energy.
We highlight that the Γ-convergence analysis for the functional EGL

ε in the regime | log ε|2 has
been developed in [47, 60, 61], where the authors consider also the case with magnetic field. The
analysis for ECR

ε is provided in Section 4 and is somehow a short self-contained resume of the
results above, along the lines of [2].

However, a similar result in the context of edge dislocations within the (CR) approach is proven
in [35] under the well-separation assumption for the singularities (see also [55] for such an analysis
in the nonlinear elasticity framework); such an assumption has been removed in [39]. In view of
the asymptotic equivalence result [1] between the Ginzburg-Landau model and the purely discrete
models of XY spin systems and screw dislocations, we have that the analysis in the (GL) context
extends also to such discrete models.
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We remark that a similar analysis for space dimension d ≥ 3 seems far from being addressed:
besides the fact that the density result is proven only in two dimensions, for which the analogue
of the ball construction ([44, 58]) cannot even start as discussed earlier, also the whole machinery
requires in several occasion bounds which are available only in two dimensions.

The paper is organized as follows: After recalling some notations and preliminary results in
Section 1, we prove in Section 2 a general density result for SBV p(Ω) functions in Theorem 2.1
which implies, as a consequence, Corollary 2.2. This is the result we employ to obtain energy
density in the Γ-convergence results of Section 3, actually allowing us to restrict such analysis to
S1-valued functions with essentially closed jump set. The latter results are Theorems 3.3 and 3.4,
stated in Section 3 after recalling the main features of our model. In order to prove them we recall
in Section 4 the classical core radius approach, which is the starting point of our analysis. Finally,
the proofs of Theorems 3.3 and 3.4 are given, respectively, in Sections 5 and 6.
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1. Preliminary results

In this section we collect some preliminary notions on the flat norm of measures and currents,
as well as some properties of BV functions that will be used throughout the paper.

Flat norm of Radon measures. Let n ≥ 1 be an integer and let U ⊂ Rn be a bounded and
open set. We denote by Mb(U) the space of Radon measures on U with finite total variation. If
µ ∈ Mb(U), we denote by |µ|(U) the total variation of µ . We recall that a sequence µk ∈ Mb(U)
converges tightly to µ ∈ Mb(U) if µk converges to µ weakly* as measure, and |µk|(U) → |µ|(U).
We also introduce the concept of flat norm of a measure µ, denoted by ∥µ∥flat , as

∥µ∥flat := sup
φ∈C0,1

c (U)
∥φ∥C0,1(U)≤1

ˆ
U

φ dµ .(1.1)

Here and below, the Lipschitz norm ∥φ∥C0,1(U) is defined by

∥φ∥C0,1(U) := ∥φ∥L∞(U) + sup
x,y∈U
x ̸=y

|φ(x)− φ(y)|
|x− y|

.

By a density argument we easily see that the supremum in (1.1) can be equivalently computed
among smooth and compactly supported (in U) functions φ with ∥φ∥C0,1(U) ≤ 1 .
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Flat norm of k-currents. Let n ≥ 2 be an integer and let U ⊂ Rn be an open set. For every
k ∈ N with 0 ≤ k ≤ n , we denote by Dk(U) the topological vector space of smooth and compactly
supported k-forms on U , and by Dk(U) its dual, i.e., the space of k-currents on U .

The mass |T | of a current T ∈ Dk(U) is defined as

|T | = sup{⟨T, ω⟩ : ω ∈ Dk(U), ∥ω∥L∞ ≤ 1} .

As done in (1.1) for measures, we define the flat norm of a current T ∈ Dk(U) in U by

(1.2) ∥T∥flat,U := sup
ω∈Dk(U)
∥ω∥F,U≤1

⟨T, ω⟩,

where

∥ω∥F,U := ∥ω∥L∞(U) + ∥dω∥L∞(U) .

In the special case that T is a 0-current and has finite mass, then it can be standardly identified
with a measure, and the flat norm of T coincides with the flat norm of the measure T defined in
(1.1). For k ≥ 1, we recall the definition of boundary ∂T ∈ Dk−1(U) of a current T ∈ Dk(U),
given by

∂T (ω) = T (dω) ∀ω ∈ Dk−1(U).

By convention the boundary of a 0-current is null.

Jacobian for S1-valued Sobolev maps in R2. Let U ⊂ R2 be a bounded and open set. Given
a map u ∈ W 1,1(U ;S1) we recall that the distributional Jacobian Ju = Det(∇u) of u is defined
by

(1.3) ⟨Ju, φ⟩U :=

ˆ
U

∇φ · λu dx, for every φ ∈ C∞
c (U),

where

λu :=
1

2

(
− u1

∂u2

∂x2
+ u2

∂u1

∂x2
, u1

∂u2

∂x1
− u2

∂u1

∂x1

)
;(1.4)

notice that λu ∈ L1(U ;R2).
Moreover, denoting by j(u) ∈ L1(U ;R2) the current associated to u , i.e.,

(1.5) j(u) :=
1

2
(u1∇u2 − u2∇u1) ,

one has j⊥(u) = λu and j(u) = π∇w , where w is a generic lifting of u , i.e., a map in SBV 2(U)
satisfying (0.3) and ∇w is the approximate gradient of w. Furthermore, it is easy to check that

Ju = −Divλu = curl j(u) = πcurl(∇w),

holds in the sense of distributions.
In the sequel we will use the fact that a function u ∈ H1(U ;S1) satisfies Det(∇u) = 0 in the

sense of distributions. Moreover, if u ∈ H1(U \ B;S1), where B ⊂ U is a ball, then, integrating
by parts,ˆ

U\B
λu · ∇φ dx =

ˆ
∂B

λu · νφ dH1 =

ˆ
∂B

j(u) · τφ dH1, for every φ ∈ C∞
c (U),

where ν is the inner normal vector to ∂B, τ = −ν⊥ is the counter-clockwise tangent vector to

∂B. Notice that j(u) · τ = 1
2 (u

1 ∂u2

∂τ − u2 ∂u1

∂τ ) on ∂B.
We recall that deg(u, ∂B) ∈ Z is defined as

deg(u, ∂B) :=
1

π

ˆ
∂B

j(u) · τ dH1 =
1

π

ˆ
∂B

λu · ν dH1 ,(1.6)

whenever u ∈ H
1
2 (∂B;S1).
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Jacobian for S1-valued SBV maps in R2. Let U ⊂ R2 be a bounded and open set. We denote
by |u|BV := |Du|(U) the BV -seminorm, and by ∥u∥BV := ∥u∥L1 + |u|BV the BV -norm of a
function of bounded variation u on U . We say that a sequence uk ∈ BV (U ;R2) converges strictly

to u ∈ BV (U ;R2) if uk → u in L1(U) and |Duk|(U) → |Du|(U). In such a case we write uk
strict
⇀ u.

For any p ∈ [1,+∞) the symbol SBV p(U ;R2) denotes the space of functions u ∈ BV (U ;R2) such
that the Cantor part Dcu ≡ 0 , and ∇u ∈ Lp(U ;R2×2), where ∇u is the density of Dau , i.e.,
Dau := ∇uL2 . The space SBV p(U ;S1) denotes the set of the functions u ∈ SBV p(U ;R2) such
that |u| = 1 a.e. in U .

The following result, proven in [28, Corollary 2.1], is specialized here to maps taking values in
R2.

Proposition 1.1. Let u ∈ SBV (U ;R2) ∩ L∞(U ;R2) ; then there exists a unique measure νu ∈
Mb(U ;R2×2×2) such that, whenever {vk}k∈N ⊂ C1(U ;R2) ∩W 1,1(U ;R2) ∩ L∞(U ;R2) satisfies

∥vk∥L∞(U ;R2) ≤ C < +∞ for all k ≥ 1 and vk
strict
⇀ u in BV (U ;R2) , then vk ⊗∇vk → νu , where

(νu)
i,h
j is defined (for all φ ∈ Cc(U)) by
ˆ
U

φ(x) d(νu)
i,h
j =

ˆ
U\Su

ϕ(x)uh(x)∂xj
ui(x) dx

+
1

2

ˆ
Su

ϕ(x)(uh,+(x) + uh,−(x))(ui,+(x)− ui,−(x))νj(x) dH1(x) ,

for every i, j, h ∈ {1, 2} . Finally, if {uk}k∈N ⊂ SBV (U ;R2) ∩ L∞(U ;R2) with

(1.7) ∥uk∥L∞(U ;R2) ≤ C,

for some constant C > 0, and uk
strict
⇀ u in BV (U ;R2) , then

(1.8) νuk

∗
⇀ νu in Mb(U ;R2×2×2) .

In the following, for every map u ∈ SBV (U ;R2) ∩ L∞(U ;R2) , we set

[uhDju
i] := (νu)

i,h
j , i, j, h ∈ {1, 2} ,

For any map u ∈ SBV (U ;R2) ∩ L∞(U ;R2) we introduce the 1-current Tu defined by

(1.9)

Tu :=
1

2
(−[u1D2u

2] + [u2D2u
1], [u1D1u

2]− [u2D1u
1])

=
1

2
(−u1∂x2

u2 + u2∂x2
u1, u1∂x1

u2 − u2∂x1
u1) +

1

2
(u+ ∧ u−)τ Su

=:TD
u + T S

u .

where we have noted α ∧ β = −α · β⊥ = det(α, β). Notice that TD
u ∈ L1(U ;R2) and that, if

u ∈ W 1,1(U ;S1) , then Tu = TD
u = λu with λu defined in (1.4). Finally, we highlight that if

u ∈ SBV (U ;S1) , for any lifting w ∈ SBV (U) of u, i.e., satisfying (0.3), it holds that

(1.10) TD
u := π∇⊥w; T S

u :=
1

2
sin(2π(w− − w+))τ Su .

The distributional Jacobian Ju ∈ D0(U) of u is defined as the boundary of Tu, namely

Ju := ∂Tu in D0(U).(1.11)

Essentially by definition, it easily follows that

∥Ju∥flat,U ≤ C∥u∥BV ,

for all u ∈ SBV (Ω; S1), for a universal constant C > 0 (see [28, Theorems 2.2 and 2.5]).

Remark 1.2. We point out that in general Ju is not a Radon measure. This notion of Jaco-
bian determinant was first introduced in [53] under some special hypotheses on u. Under these
hypotheses it turns out that Ju is also a Radon measure.
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2. Density results in SBV p(Ω; S1)

In this section we prove that any function u ∈ SBV p(Ω; S1) can be approximated - in the strong
BV norm - by (sequence of) functions in SBV p(Ω;S1) with closed jump set. As a consequence
(see Proposition 2.3), we deduce that the corresponding currents can be approximated in the flat
norm.

In what follows for every function φ ∈ SBV p(Ω) (with p ≥ 1) we denote by Sfrac
φ the fractional

jump set of φ , i.e., Sfrac
φ := {x ∈ Sφ : [φ] /∈ Z} , and by Sint

φ the integer jump set , namely,

Sint
φ := Sφ \ Sfrac

φ . Observe that if φ ∈ SBV p(Ω) is any lifting of u ∈ SBV p(Ω; S1), then

Sfrac
φ = Su.
The main result of this section is the following.

Theorem 2.1. Let Ω ⊂ R2 be a bounded open set with finite perimeter, p ∈ (1,+∞), and ε > 0.
Then for every φ ∈ SBV p(Ω) there exist:

• closed sets Γint = Γint
ε , Γfrac = Γfrac

ε , finite unions of disjoint C1 curves;
• a set ω̃ = ω̃ε, finite union of cubes;
• a set of finite perimeter ω̂ = ω̂ε;
• a function θ = θε ∈ SBV p(Ω) ∩W 1,p(Ω \ (Γint ∪ Γfrac ∪ ω̃)) ;

such that

(2.1) {∇φ ̸= ∇θ} ⊂ ω̃ ∪ ω̂, L2({φ ̸= θ}) < ε, θ = 0 in ω̃,

[θ](x) ∈ Z for H1-a.e. x ∈ Γint ,

(2.2) |H1(Sint
φ )−H1(Γint)|+H1(Sfrac

φ △Γfrac) +H1(∂ω̃) +H1(∂∗ω̂) ≤ ε,

and

(2.3)

ˆ
Ω

|∇θ|p dx ≤ (1 + ε)

ˆ
Ω

|∇φ|p dx.

Moreover, H1(Γfrac ∩ {θ+ ̸= φ+}) + H1(Γfrac ∩ {θ− ̸= φ−}) ≤ ε, where θ± and φ± denote the
traces of θ and φ on the two sides of Γ.

Before providing the proof of Theorem 2.1 we state and prove our desired approximation results
for maps in SBV p(Ω;S1), in the following Corollary 2.2 and Proposition 2.3.

Corollary 2.2. Let Ω ⊂ R2 be a bounded open set of finite perimeter, p ∈ (1,+∞), and ε > 0.
Then for every u ∈ SBV p(Ω; S1) there exist:

• a closed set Γ = Γε, finite union of disjoint C1 curves;
• a set ω̃ = ω̃ε, finite union of cubes;
• a set of finite perimeter ω̂ = ω̂ε;
• a function v = vε ∈ SBV p(Ω;S1) ∩W 1,p(Ω \ (Γ ∪ ω̃); S1);

such that

(2.4) {∇u ̸= ∇v} ⊂ ω̃ ∪ ω̂, L2({u ̸= v}) < ε, ∇v = 0 L2-a.e. in ω̃,

and

H1(Su△Γ) +H1(∂ω̃) +H1(∂∗ω̂) ≤ ε,

ˆ
Ω

|∇v|p dx ≤ (1 + ε)

ˆ
Ω

|∇u|p dx.(2.5)

Moreover, H1(Γ ∩ {v+ ̸= u+}) +H1(Γ ∩ {v− ̸= u−}) ≤ ε, where v± and u± denote the traces of
v and u on the two sides of Γ.

Proof. Let u ∈ SBV p(Ω;S1) and let ε > 0 . Then, by [24, Theorem 1.1], there exists φ ∈ SBV p(Ω)
such that u = e2πıφ with π|φ|BV ≤ |u|BV . (Notice that in [24] the relation between u and φ is
u = eiφ and the inequality is |φ|BV ≤ 2|u|BV .) Let Γint, Γfrac, ω̃, ω̂ be the sets and let θ be the
function provided by Theorem 2.1 . We set v := e2πıθ . Then, {∇φ = ∇θ} ≡ {∇u = ∇v} L2-a.e.
and {φ = θ} ⊂ {u = v} , so that, by (2.1) we immediately deduce (2.4). Furthermore, since
Sfrac
φ ≡ Su , taking Γ = Γfrac, by Theorem 2.1 we deduce also the last part of the claim. □



10 V. CRISMALE, L. DE LUCA, AND R. SCALA

Proposition 2.3. Let Ω ⊂ R2 be a bounded open set with finite perimeter, let p ∈ (1,+∞), and
let u ∈ SBV p(Ω; S1). Then there exists {un}n∈N ⊂ SBV p(Ω; S1) with H1(Sun \ Sun) = 0 for all
n such that

(2.6)

∥un − u∥BV (Ω;R2) → 0,

∥∇un∥Lp(Ω;R2×2) → ∥∇u∥Lp(Ω;R2×2),

H1(Sun) → H1(Su).

Furthermore

(2.7) |Tun − Tu|(Ω) → 0,

where Tu and Tun
are the measures provided by (1.9); in particular

∥Ju− Jun∥flat,Ω → 0,

with ∥ · ∥flat,Ω is the norm defined in (1.2).

Proof. Let u ∈ SBV p(Ω; S1) be fixed. For every n ∈ N let un be the function provided by Corollary
2.2 for ε = εn = 1

n . By (2.4) and (2.5) , we have that, for all s ∈ [1,+∞),

(2.8) L2({u ̸= un}) ≤
1

n
, ∥u− un∥Ls(Ω;R2) ≤

1

n
1
s

,

and

(2.9)
∥∇u−∇un∥L1(Ω;R2×2) ≤

(
∥∇u∥Ls(Ω;R2×2) + ∥∇un∥Ls(Ω;R2×2)

)(
|ω̃n|+ |ω̂n|

) 1
s′

≤ C

n2/s′
∥∇u∥Ls(Ω;R2×2) .

Furthermore, since

DSu = (u+ − u−)⊗ νu Su dH1, DSun = (u+n − u−n )⊗ νun
Sun

dH1 ,

by triangle inequality, using that νu = νun on Su ∩ Sun , we get

(2.10)

|DSu−DSun|(Ω) ≤
(
|u+ − u+n |+ |u− − u−n |

)
H1(Su ∩ Sun

)

+ |u+ − u−|H1(Su \ Sun
) + |u+n − u−n |H1(Sun

\ Su)

≤ 4H1(Γn ∩ {u+n ̸= u+}) + 4H1(Γn ∩ {u−n ̸= u−}) + 2H1(Su△Sun
)

≤ C

n
,

where in the last inequality we have used (2.5) and the fact that Sun ⊂ Γn ∪ ∂ω̃n, to deduce that

H1(Su△Sun) ≤H1(Γn ∩ (Su \ Sun)) +H1(Su△Γn) +H1(∂ω̃n)

≤H1(Γn ∩ {u+n ̸= u+}) +H1(Γn ∩ {u−n ̸= u−}) +H1(Su△Γn) +H1(∂ω̃n) ≤
2

n
.

By (2.8), (2.9), (2.10), we immediately deduce the first claim in (2.6), whereas the other two easily
follow from (2.5). Notice that (2.6) together with the fact that un, u ∈ SBV p(Ω;S1) implies that

(2.11)

ˆ
Su∩Sun

|[u]− [un]| ⊗ νu dH1 → 0 and H1(Su△Sun) → 0 as n→ +∞.

Furthermore, using triangle inequality, (2.8) and (2.9), it is easy to check that

|TD
u −TD

un
|(Ω) ≤ 4∥∇u∥L1({u̸=un};R2×2)∥u−un∥L∞(Ω;R2)+4∥un∥L∞(Ω;R2)∥∇u−∇un∥L1(Ω;R2×2) → 0

and that

|T S
u − T S

un
|(Ω) ≤1

2

ˆ
Su∩Sun

|u+n ∧ u−n − u+ ∧ u−| dH1

+
1

2

ˆ
Su\Sun

|u+ ∧ u−| dH1 +
1

2

ˆ
Sun\Su

|u+n ∧ u−n | dH1 ≤ H1({[u] ̸= [un]}) ≤
3

n
,

since Sun
⊂ Γn ∪ ∂ω̃n ∪ ∂∗ω̂n and {[u] ̸= [un]} = (Su△Sun

) ∪ (Su ∩ Sun
∩ {[u] ̸= [un]}). □
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In the proof of Theorem 2.1 we will employ a variant in SBV p of the following fundamental
technical tool, [18, Proposition 3.2]. In [18] the result is stated for balls, and it holds for cubes as
well. Moreover, it holds true also for GSBDp functions, in place of SBDp (see e.g. [17, Proof of
Proposition 3.1]). As usual, Qρ := (−ρ, ρ)2.

Proposition 2.4. For every p ∈ (1,∞) there exist c > 0 and η ∈ (0, 1) such that if u ∈
GSBDp(Q2ϱ), ϱ > 0, satisfies

H1(Su ∩Q2ϱ) < η(1− s)ϱ

for some s ∈ (0, 1), then there is a countable family F = {B} of closed balls of radius rB <
2(1 − s)ϱ and center xB ∈ Q2sϱ such that their union is compactly contained in B2ϱ, and a field
w ∈ SBDp(Q2ϱ) such that

(i) ϱ−1
∑

B∈F L2(B) +
∑

B∈F H1(∂B) ≤ c/η H1(Su ∩Q2ϱ);

(ii) H1(Su ∩ ∪B∈F∂B) = H1
(
(Su ∩Q2sϱ) \ ∪B∈FB

)
= 0;

(iii) w = u L2-a.e. on Q2ϱ \ ∪B∈FB;
(iv) w ∈W 1,p(Q2sϱ;R2) and H1(Sw \ Su) = 0;
(v)

(2.12)

ˆ
∪B∈FB

|e(w)|p dx ≤ c

ˆ
∪B∈FB

|e(u)|p dx.

We now present the modification of the result recalled just above, allowing to obtain the desired
SBV p version.

Proposition 2.5. For every p ∈ (1,∞) there exist c > 0 and η ∈ (0, 1) such that if φ ∈
SBV p(Q2ϱ), ϱ > 0, satisfies

H1(Sφ ∩Q2ϱ) < η(1− s)ϱ

for some s ∈ (0, 1), then there is a countable family F = {B} of closed balls of radius rB <
2(1 − s)ϱ and center xB ∈ Q2sϱ such that their union is compactly contained in Q2ϱ, and a field
w ∈ SBV p(Q2ϱ) such that

(i) ϱ−1
∑

B∈F L2(B) +
∑

B∈F H1(∂B) ≤ c/η H1(Sφ ∩Q2ϱ);

(ii) H1(Sφ ∩ ∪B∈F∂B) = H1
(
(Sφ ∩Q2sϱ) \ ∪FB

)
= 0;

(iii) w = φ L2-a.e. on Q2ϱ \ ∪B∈FB;
(iv) w ∈W 1,p(Q2sϱ) and H1(Sw \ Sφ) = 0;
(v)

(2.13)

ˆ
∪B∈FB

|∇w|p dx ≤ c

ˆ
∪B∈FB

|∇φ|p dx.

Proof. We notice that it is enough to follow the proof of [18, Theorem 2.1], from which [18,
Proposition 3.2] follows, and use the fact that, if φ ∈ SBV p, one can control the components of
the constant matrix ∇ϕ(φ) in place of those of e(ϕ(φ)) (see (2.12) in [18] and its consequences;
therein the role of φ is played by u and ϕ(φ) corresponds to our modification w) by

∇ϕ(φ) · (x− y) = ϕ(φ)(x)− ϕ(φ)(y) =

ˆ
Sx,y

(φν
z )

′(t) dt,

where φν
z (t) := φ(z + tν), for ν := x−y

|x−y| , z := (Id− ν ⊗ ν)x. Moreover, a constant in place of an

infinitesimal rigid motion appears in the Poincaré’s inequality for φ on Qx,y. □

We now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let ϱ, α1, α2 be small positive constants to be determined later. We divide
the proof into three steps.

Step 1: Covering the jump set. Since the sets

Ŝ0
φ := Sfrac

φ and Ŝz
φ := {x ∈ Sφ : [φ](x) = z} for all z ∈ Z∗ := Z \ {0}
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are countably (H1, 1) rectifiable with finite H1 measure, by [31, Theorem, 3.2.29] for every z ∈ Z
there exists a countable family {Mz

k}k∈N such that

(2.14) H1
(
Ŝz
φ \

∞⋃
k=1

Mz
k

)
= 0

and, by [3, Theorem 2.76] we may assume that for each z ∈ Z and k ∈ N the manifold Mz
k is

a graph of a C1 and Lipschitz function with Lipschitz constant less than α1 . Let us fix z ∈ Z
such that H1(Ŝz

φ) > 0 (in particular, for the application of the present theorem in this paper, this

holds for z = 0). Then, since x has H1-density 1 both for Ŝz
φ and Mz

k for H1-a.e. x ∈ Ŝz
φ ∩Mz

k

(by Besicovitch-Marstrand-Mattila Theorem, see e.g. [3, Theorem 2.63], being both sets countably

(H1, 1) rectifiable), for every k ∈ N and every such x ∈ Ŝz
φ ∩Mz

k there exists ϱ(α2, x) ∈ (0, ϱ) such
that

(2.15)
|H1(Qr(x) ∩ Ŝz

φ)− 2r| ≤ 2α2r, |H1(Qr(x) ∩Mz
k )− 2r| ≤ 2α2r,

|H1(Qr(x) ∩ (Ŝz
φ ∩Mz

k ))− 2r| ≤ 2α2r.

for every r ≤ ϱ(α2, x), and moreover

(2.16) H1(Qr(x) ∩ (Ŝz
φ△Mz

k )) ≤ α2H1(Qr(x) ∩ Ŝz
φ),

for every r ≤ ϱ(α2, x); here we recall that Qr(x) denotes the (open) cube Q
ν(x)
r (x), centered at x,

with sidelength 2r and with a side normal to ν(x), the approximate normal to Sφ (or Ŝz
φ) at x.

We notice that (2.15) holds also for Sφ in place of Ŝz
φ or Ŝz

φ ∩Mz
k , that is, for H1-a.e. x ∈ Sφ, we

may also assume

(2.17) |H1(Qr(x) ∩ Sφ)− 2r| ≤ 2α2r

for every r ≤ ϱ(α2, x). Now we introduce

M := Sφ ∩
⋃

z∈Z, k∈N
Mz

k .

We also denote by M̃ ⊂ M , the set of points x satisfying (2.15), (2.16), and (2.17). From

what observed, H1(M \ M̃) = 0; so, since the family {Qr(x) : x ∈ M, r ≤ ϱ(α2, x)} is a fine

cover of M̃ , Vitali-Besicovitch’s Covering Theorem (see [30, Theorem 1.10] for its version for
cubes) ensures the existence of a disjoint subfamily {Qr(α2,x)(x) : x ∈ M ′}, for a countable set

M ′ = {xj}j∈N ⊂ M̃ ⊂M and r(α2, x) ≤ ϱ(α2, x), such that

H1
(
Sφ \

⋃
j∈N

Qj

)
= 0,

where we have denoted Qj := Qrj (xj) and rj := r(α2, xj) for every j ∈ N. Then there exists
J = J(α2) ∈ N such that

(2.18) H1
(
Sφ \

J⋃
j=1

Qj

)
< α2.

For every j ∈ {1, . . . , J}, let kj ∈ N, zj ∈ Z be the indexes such that xj ∈ Ŝ
zj
φ ∩Mzj

kj
and (2.15),

(2.16), (2.17) hold (for all j, such indexes are unique). Then we set

Γj := Qj ∩M
zj
kj
.
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We now see that for every j ∈ {1, . . . , J}, there hold

Γj is the graph of a C1 and Lipschitz function with Lipschitz constant less than α1;(a)

|H1(Qr(xj) ∩ Γj)− 2r| ≤ 2α2r for all 0 < r ≤ rj ;(b)

H1(Qj ∩ (Ŝzj
φ △Γj)) +H1(Qj ∩ (Sφ \ Ŝzj

φ )) ≤ 8α2rj ;(c)

H1
(
Sφ△

J⋃
j=1

Γj

)
≤ α2(1 + 5H1(Sφ));(d)

L2
( J⋃

j=1

Qj

)
≤ 3ϱH1(Sφ).(e)

Property (a) follows by definition, since Mz
k are graphs of Lipschitz maps with constant less than

α1. Property (b) follows immediately from (2.15). As for the proof of (c), by (2.16) and (2.15),
choosing 0 < α2 ≤ 1 we have that

(2.19) H1(Qj ∩ (Ŝzj
φ △Γj)) ≤ α2H1(Qj ∩ Ŝzj

φ ) ≤ 2α2(1 + α2)rj ≤ 4α2rj ;

moreover, by (2.17) and (2.15) we have that

H1(Qj ∩ (Sφ \ Ŝzj
φ )) =H1(Qj ∩ Sφ)−H1(Qj ∩ Ŝzj

φ )

≤ 2rj(1 + α2)− 2rj(1− α2) = 4α2rj ,

which, combined with (2.19), yields property (c). Property (d) follows from the decomposition

Sφ \
J⋃

j=1

Γj =

Sφ \
J⋃

j=1

Qj

 ∪
J⋃

j=1

(
Qj ∩ (Sφ \ Γj)

)
,

combined with (2.18) and the estimate

H1
(
Qj ∩ (Sφ△Γj)

)
=H1

(
Qj ∩ (Ŝzj

φ \ Γj)
)
+H1

(
Qj ∩ ((Sφ \ Ŝzj

φ ) \ Γj)
)
+H1

(
Qj ∩ (Γj \ Sφ)

)
≤H1

(
Qj ∩ (Ŝzj

φ △Γj)
)
+H1

(
Qj ∩ (Sφ \ Ŝzj

φ )
)

≤ 8α2rj ≤ 4α2

(
H1(Qj ∩ Sφ) + 2α2rj)

)
≤ 5α2H1(Qj ∩ Sφ)

recalling that the cubes Qj are pairwise disjoint. Here the first inequality follows from the fact

that Ŝ
zj
φ ⊂ Sφ, the second one from (c), the third one from (2.17), the fourth again from (2.17)

choosing

α2 <
1

5
.(2.20)

Eventually, recalling that rj ≤ ϱ for every j, by (2.17), since α2 <
1
5 <

1
3 , and using again that

the cubes Qj are pairwise disjoint, we have

L2
( J⋃
j=1

Qj

)
=

J∑
j=1

4r2j ≤ 2ϱ

J∑
j=1

(
H1(Qj ∩ Sφ) + 2α2rj

)
≤ 3ϱ

J∑
j=1

H1(Qj ∩ Sφ) ≤ 3ϱH1(Sφ),

from which (e) follows. Moreover, using (2.18) with (c), and arguing as done to prove (d), we
obtain that

Γ̂int :=
⋃

j : zj ̸=0

Γj , Γ̂frac :=
⋃

j : zj=0

Γj , Γ̂ := Γ̂int ∪ Γ̂frac =

J⋃
j=1

Γj

are finite unions of disjoint C1 curves and

(2.21) H1(Sint
φ △Γ̂int) +H1(Sfrac

φ △Γ̂frac) ≤ α2(1 + 5H1(Sφ)).
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Step 2: Approximation in the cubes Qj. We perform two different approximations depending
on whether the cube Qj = Qrj (xj) is such that zj = 0 or not. To shorten the notation, we
set νj := ν(xj), where ν(xj) is the approximate normal to Sφ at xj , and we denote by τj the
unit vector such that τj · νj = 0 and τj ∧ νj = 1, where we recall (cf. below (1.9)) the notation
α ∧ β = −α · β⊥ = det(α, β) .

Step 2.1: The case xj /∈ Ŝ0
φ, i.e., zj ̸= 0. This implies that [φ](xj) = zj ∈ Z∗ . In this case

we first show that there exists a “big” set of segments (parallel to τj) in the cube Qj that do not
intersect the jump set Sφ of φ and such that (small) stripes centered at each of these segments
contain a “small” portion of Sφ \ Γj . To this end, for xj + τjR the straight line orthogonal to νj
and passing through xj , we define the (signed) distance from such a line as dist(x, xj + τjR) :=
(x− xj) · νj . Moreover, for every γ ∈ (−rj/2, rj/2) we define

T γ
j := Qj ∩ {dist(·, xj + τjR) = γ}

and, for every k ∈ N , we set

Cγ,k
j := Qj ∩ {dist(·, xj + τjR) ∈ [γ − 2−krj , γ + 2−krj ]}.

Let

(2.22) η̃ :=
1

160
η,

where η is the constant from Proposition 2.5. We set Sj := Qj ∩ (Sφ \ Γj) . We claim that there

exists a set I η̃j ⊂ (−rj/2, rj/2) with

(2.23) L1(I η̃j ) ≤
160α2

η̃
rj

such that, for every γ ∈ (−rj/2, rj/2) \ I η̃j , it holds

(2.24) H1(Sj ∩ Cγ,k
j ) < η̃2−(k+1)rj for all k ∈ N

and

(2.25) H1(T γ
j ∩ Sφ) = 0.

Indeed, for δkj := 2−krj , we argue as in the proof of [18, Theorem 2.1], considering the family

(2.26) I η̃
j :=

{
[γ − δkj , γ + δkj ] : H1(Sj ∩ Cγ,k

j ) ≥ η̃

2
δkj , k ∈ N , γ ∈ (−rj/2, rj/2)

}
and I η̃j :=

⋃
I∈I η̃

j
I . By Vitali’s covering theorem, there exists a countable set {(γl, kl)}l∈N such

that the intervals [γl − δk
l

j , γ
l + δk

l

j ] in I η̃
j are pairwise disjoint and

I η̃j ⊂
⋃
l∈N

[γl − 5δk
l

j , γ
l + 5δk

l

j ] .

By property (c) of Γj we have

(2.27) 8α2rj ≥ H1(Sj ∩Qj) ≥
∑
l∈N

H1(Sj ∩ Cγl,kl

j ) ≥
∑
l∈N

η̃

2
δk

l

j ≥ η̃

20
L1(I η̃j ).

Then (2.23) follows. We stress that in the above estimate it is crucial that the space dimension of
the domain is d=2: in fact, taking for instance d=3, in order to have the analogue of Proposition 2.5
(see [13, Theorem 3.2]) one would consider the modified set I η̃,3

j in place of I η̃
j in (2.26), obtained

by replacing the condition H1(Sj ∩Cγ,k
j ) ≥ η̃

2 δ
k
j by H2(Sj ∩Cγ,k

j ) ≥ η̃
2 (δ

k
j )

2 (in order to guarantee

that for all cubes q̃ of sidelength δkj in the strip Cγ,k
j one has H2(Sj ∩ q̃) ≤ η̃/2H2(∂q̃)), and then

one would get

8α2rj ≥ H2(Sj ∩Qj) ≥
∑
l∈N

H2(Sj ∩ Cγl,kl

j ) ≥
∑
l∈N

η̃

2
(δk

l

j )2,
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from which one cannot conclude the analogue of (2.27) since only
∑

l∈N
η̃
2 δ

kl

j ≥ η̃
20L

1(I η̃j ), and

(δk
l

j )2 ≤ δk
l

j .

From (2.23) and the definition of I η̃j , every γ ∈ (−rj/2, rj/2)\I η̃j does not belong to any interval

of the family (2.26) and then satisfies (2.24). Since H1(T γ
j ∩ Sφ) = 0 for every γ ∈ (−rj/2, rj/2)

except at most countably many, we may enforce also (2.25). Then the claim is confirmed.

Let us choose γj ∈ (−rj/2, rj/2) \ I η̃j satisfying (2.24), (2.25) with

(2.28) γj ∈
(
−α1rj −

161α2

η̃
rj ,−α1rj

)
.

We notice that Γj ⊂ {dist(·, xj + τjR) ∈ [−α1rj , α1rj ]}, due to property (a) and since xj ∈ Γj .
Therefore Γj ∩ T

γj

j = ∅ and Γj is “above” T
γj

j with respect to the positive orientation of νj ,

i.e. for any two points y1 ∈ Γj , y2 ∈ T
γj

j such that (y1 − xj) · τj = (y2 − xj) · τj , it holds that

(y1−xj) ·νj > (y2−xj) ·νj . Such choice of γj is allowed by (2.23). We consider then the function

(2.29) φ̂j := φ+ zjχHj in Qj ,

where Hj ⊂ Qj is the closed region delimited by Γj , T
γj

j , and the two segments Σ1
j , Σ

2
j ⊂ ∂Qj

joining the two couples of intersection points of Γj and T
γj

j with the two boundary segments

B±
j := {xj ± rjτj + tνj : |t| < rj} ⊂ ∂Qj .

The motivation for introducing φ̂j is that this allows us to “transfer” the jump of φ, which is
approximated by Γj , onto the jump set of φ̂j which is approximated by the segment T

γj

j . In fact,

by property (c) we deduce that

H1(Qj ∩ (Sφ̂j
\ T γj

j )) ≤ H1(Qj ∩ (Sφ \ Γj)) +H1(Γj \ Ŝzj
φ ) ≤ 8α2rj ;(2.30)

by (2.25) it holds that

(2.31) H1(T
γj

j ∩ {[φ̂j ] ̸= zj}) = 0.

Further, for every s ∈ (0, rj), denoting Qj,s := xj + Qs and Σ1
j,s, Σ

2
j,s ⊂ ∂Qj,s the two segments

joining the two couples of intersection points of Γi and T
γj

j with the boundary segments

B±
j,s := {xj ± sτj + tνj : |t| < rj} ⊂ ∂Qj,s,

in view of (a) and (2.28)

(2.32) H1(Σ1
j,s ∪ Σ2

j,s) ≤ 2

(
2α1s+

161α2

η̃
rj

)
.

Arguing as done before to ensure (2.24), (2.25) for γ outside a small set, provided

(2.33)
√
α2 <

η̃

320

it is possible to find r̂j ∈ ((1−√
α2)rj , rj) such that, denoting

Q+
j,r̂j

:= {x ∈ Qj : (x− xj) · νj ∈ (γj , γj + r̂j), (x− xj) · τj ∈ (−r̂j , r̂j)},

Q−
j,r̂j

:= {x ∈ Qj : (x− xj) · νj ∈ (γj − r̂j , γj), (x− xj) · τj ∈ (−r̂j , r̂j)},(2.34)

it holds that

H1(Sφ̂j
∩ ∂Q±

j,r̂j
) = 0,

H1
(
Sφ̂j

∩Q±
j,r̂j

∩
(
∂Q±

j,r̂j
+B2−krj (0)

))
< η̃2−(k+1)rj for every k ∈ N.

(2.35)

In fact, the same argument as above (in particular we use that the space dimension is 2, as
discussed below (2.27)) shows that there exist sets I±hor, I

±
ver ⊂ (−rj , rj) with L1(I±hor) ≤

320α2

η̃ rj ,

L1(I±ver) ≤ 320α2

η̃ rj such that, for

C γ̃,k
hor,− := {x ∈ Qj : (x− xj) · νj ∈ [γ̃, γ̃ + 2−krj ]}, C γ̃,k

hor,+ := {x ∈ Qj : (x− xj) · νj ∈ [γ̃ − 2−krj , γ̃]},

C γ̃,k
ver,− := {x ∈ Qj : (x− xj) · τj ∈ [γ̃, γ̃ + 2−krj ]}, C γ̃,k

ver,+ := {x ∈ Qj : (x− xj) · τj ∈ [γ̃ − 2−krj , γ̃]},
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it holds that for every γ̃ /∈ I±hor, I
±
ver

H1(Sj ∩ C γ̃,k
hor,±) ≤ η̃2−(k+3)rj , H1(Sj ∩ C γ̃,k

ver,±) ≤ η̃2−(k+3)rj for every k ∈ N.

Therefore, since (2.33) implies that
√
α2 >

320α2

η̃ , it is possible to find

r̂j ∈ ((1−
√
α2)rj , rj) such that γj ± r̂j /∈ I±hor, ±r̂j /∈ I±ver,

so the second condition in (2.35) is satisfied. Then (2.35) follows, since the first condition holds
true for every r̂j except at most countably many.

Let

(2.36) δ̂j ∈
(
8
α2

η̃
, 16

α2

η̃

)
∩ r̂j
rjN

,

so that the rectangles Q±
j,r̂j

are partitioned into cubes of side length δ̂jrj . Moreover, let k̂j ∈ N
be such that

(2.37) δ̂j ∈ [2−(k̂j+1), 2−k̂j ).

By property (a), we have that

(2.38) H1((Qj \Qj,r̂j ) ∩ Γj) ≤ 2α1
√
α2rj .

We now subdivide Q±
j,r̂j

into cubes whose sidelength vanishes in a dyadic way towards the bound-

aries such that in any of them there is a small amount of jump of ûj compared to the sidelength,
in the sense of Proposition 2.5.

Let us assume, for simplicity of notation, that xj = 0 and νj = e2. We introduce two sets Q±
i of

dyadic squares of sidelength δ̃k := 2−k δ̂j rj , k ∈ N, which refine towards ∂Q±
j,r̂j

, as follows: let Q±
j,0

be the family of squares q ∈ {z+(0, δ̂jrj ]
2 : z ∈ δ̂jrjZ2}, q ⊂ Q±

j,r̂j
such that dist(q, ∂Q±

j,r̂j
) > δ̂jrj ;

recursively, for k ≥ 1, let Q±
j,k be the family of squares q ∈ {z+(0, δ̃k]

2 : z ∈ δ̃kZ2}, q ⊂ Q±
j,r̂j

such

that dist(q, ∂Q±
j,r̂j

) > δ̃k and q does not intersect any cube in Q±
j,l, for l < k; we define

Q±
j :=

∞⋃
k=0

Q±
j,k.

For each q ∈ Q±
j let q′ and q′′ denote squares concentric with q with sidelength 10% and 20%

longer, respectively, so that l(q′) = 11
12 l(q

′′) and l(q′′) = 6
5 l(q); here and below, l(q̃) denotes the

sidelength of a cube q̃. By (2.22), (2.30), and (2.36), for any q ∈ Q±
j,0, we get that

(2.39) H1(q′′ ∩ Sφ̂j
) ≤ 8α2rj ≤ η̃δ̂jrj < η

1

40
l(q) = η

1

10

5

6

l(q′′)

4
= η

(
1− 11

12

) l(q′′)
4

,

so that all the squares q′′ “coming from” squares q ∈ Q±
j,0 satisfy the hypotheses of Proposition 2.5

for s = 11
12 .

Moreover, let k ∈ N . By (2.22), (2.35), (2.36), and (2.37), for any q ∈ Q±
j,k we have

(2.40) H1(q′′ ∩ Sφ̂j
) ≤ η̃2−(k+k̂j−1)rj <

η

40
δ̃k =

η

10

5

6

l(q′′)

4
= η

(
1− 11

12

) l(q′′)
4

,

(in particular the first inequality follows from (2.35) and the fact that q′′ ⊂ ∂Q±
j,r̂j

+B
2−(k+k̂j−2)rj

(0),

which in turns follows from (2.37), the definition of Q±
j,k, and recalling δ̃k = 2−k δ̂j rj) so that all

the squares q′′ “coming from” squares q ∈ Q±
j,k satisfy the hypotheses of Proposition 2.5 for s = 11

12 .

By (2.39) and (2.40) we thus deduce that all the squares q′′ “coming from” squares q ∈ Q±
j satisfy

the hypotheses of Proposition 2.5 for s = 11
12 .
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Therefore, by Proposition 2.5 applied to φ̂j ∈ SBV p(q′′), for each q ∈ Q±
j there is a set of finite

perimeter ωq ⊂ q′′, ωq = ∪Fq
B and a function wq ∈ SBV p(q′′) such that

wq ∈W 1,p(q′), wq = φ̂j in q′′ \ ωq

H1(∂∗ωq) ≤
c

η
H1(Sφ̂j

∩ q′′),
ˆ
ωq

|∇wq|p dx ≤ c

ˆ
ωq

|∇φ̂j |p dx.

(2.41)

We define

ω±
j :=

⋃
q∈Q±

j

ωq.

Since the cubes q′′ overlap at most 8 times, by the second and third property in (2.41) we deduce
that

H1(∂∗ω±
j ) ≤ 8

c

η
H1(Sφ̂j

∩Q±
j,r̂j

),

ˆ
ω±

j

|∇wq|p dx ≤ 8c

ˆ
ω±

j

|∇φ̂j |p dx
(2.42)

Following [13, proof of Theorem 4.1, p. 1198], we construct regularized functions v±j on Q±
j,r̂j

which are convex combinations of the functions wq. We notice that in our setting all the cubes are
“good”, according to the definition in [13], that is the jump inside has small H1-measure compared
to the sidelength.

We set

(2.43) θ±j :=
∑

q∈Q±
j

wqϕq,

where

ϕq :=
ψq∑

q̂∈Q±
j
ψq̂
, ψq(x) := ψ

(x− cq
l(q)

)
for q = cq +

(
− l(q)

2
,
l(q)

2

)2

,

ψ ∈ C∞
c

(
(−11/20, 11/20)2; [0, 1]

)
, ψ = 1 on [−1/2, 1/2]2.

By construction, ψq ∈ C∞
c (q′; [0, 1]) and ψq ≡ 1 in q, for any q ∈ Q±

j . Since, by (2.41), wq ∈
W 1,p(q′) for every q ∈ Q±

j , we deduce that

(2.44) θ±j ∈W 1,p
( ⋃

q∈Q±
j

q′
)
.

Eventually, we define

(2.45) θj := θ+j χQ+
j,r̂j

+ θ−j χQ−
j,r̂j

, ωj := ω+
j ∪ ω−

j .

By (2.30), (2.41), (2.42), (2.43), (2.45) it follows thatˆ
ωj

|∇θj |p dx ≤ 8c

ˆ
ωj

|∇φ|p dx, θj = φ̂j in Qj,r̂j \ ωj ,

H1(∂∗ωj) ≤ 8
c

η
H1

(
Qj,r̂j ∩ (Sφ̂j

\ T γj

j )
)
≤ 64

c

η
α2rj .

(2.46)

We observe that the first estimate above is obtained arguing as in [13, Step 3.3 in Theorem 5.1]
with the full gradient in place of the symmetrized gradient.

Furthermore, by construction we have that

(2.47) θj = φ̂j on ∂Qj,r̂j , [θj ] = [φ̂j ] on T
γj

j .
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We observe that the latter property above follows from the fact that we employed a Whitney-type
approximation towards T

γj

j : for details we refer to [17, discussion between (27) and (28)]. In view

of (2.32),

(2.48) H1(∂Qj,r̂j ∩ {θj ̸= φ}) = H1(Σ1
j,r̂j

∪Σ2
j,r̂j

) ≤ 4α1r̂j +
322α2

η̃
rj ,

and, by property (b) and the definition of T
γj

j ,

(2.49) |H1(Qj,r̂j ∩ Γj)−H1(Qj,r̂j ∩ T
γj

j )| ≤ 2α2r̂j .

Step 2.2: The case xj ∈ Ŝ0
φ, i.e., zj = 0. In this case, xj ∈ Sfrac

φ , and as done before, we find
radii r̂j ∈ ((1−√

α2)rj , rj) such that, denoting Qj,s := xj +Qs, it holds that

H1(Sφ̂j
∩ ∂Qj,r̂j ) = 0,

H1
(
Sφ̂j

∩Qj,r̂j ∩
(
Qj,r̂j +B2−krj (0)

))
< η̃2−(k+1)rj for every k ∈ N.

(2.50)

By this choice, we can slightly amend the construction in [13, Theorem 4.1]: denoting by Q±
j,r̂j

the two connected components of Qj,r̂j \ Γj , namely

Q±
j,r̂j

:= {y ∈ Qj,r̂j : ± (y · νj) > ΠΓj
(y) · νj} for ΠΓj

(y) ∈ Γj s.t. ΠΓj
(y) · τj = y · τj ,

there exist two sets of finite perimeter ω±
j ⊂ Q±

j,r̂j
and functions θ±j ∈ W 1,p(Q±

j,r̂j
) such that, for

suitable c±j = c±j (p) > 0,

θ±j = φ in Q±
j,r̂j

\ ω±
j ,

ˆ
ω±

j

|∇θ±j |
p dx ≤ c±j

ˆ
ω±

j

|∇φ|p dx,

H1(∂∗ω±
j ) ≤ c±j H

1(Sφ ∩Q±
j,r̂j

), H1(∂Qj,r̂j ∩ (ω+
j ∪ ω−

j )) = 0.

(2.51)

We notice that the last condition is new with respect to [13, Theorem 4.1]: it comes from the
Whitney-type construction as in the previous substep, in turn allowed by the choice of r̂j for
which (2.50) holds, which is possible in 2d. Moreover, as in [13, proof of Theorem 5.1, Step 2.2],
one proves that the constant

(2.52) c̃ := max{c±j : j s.t. xj ∈ Sfrac
φ }

is bounded uniformly with respect to α2 (in particular, even if the side lenghts of cubes decrease
and the number of cubes increases; notice that increasing the number of cubes one may assume
that the Lipschitz constant corresponding to Γj decreases). As above, we set

θj := θ+j χQ+
j,r̂j

+ θ−j χQ−
j,r̂j

, ωj := ω+
j ∪ ω−

j .

Step 3: Conclusion. Following the lines of [13, proof of Theorem 5.1, Step 3], let us consider

δ ∈ (0, 0.4
√
2α2 minj=1,...,J rj) and the families:

Q1 :=

{
qz,δ = δz + [0, δ]2 : z ∈ Z2, qz,δ ∩

(
R2 \

J⋃
j=1

Qj,r̂j

)
̸= ∅

}
,

Q2 :=

{
qz,δ = δz + [0, δ]2 : z ∈ Z2, qz,δ /∈ Q1 and intersects some cubes in Q1

}
,

Q := Q1 ∪ Q2.

For each q ∈ Q, let q′ and q′′ be the (closed) cubes concentric with q and having side length
l(q′) = 9

8δ and l(q′′) = 10
8 δ =

10
9 l(q

′), respectively. Let

(2.53) θ̂(x) :=


θj(x), x ∈ Qj,r̂j ,

φ(x), x ∈ Ω \
⋃

j=1,...,J

Qi,r̂j ,
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and, recalling the definition of c, η from Proposition 2.5, set

Qg :=
{
q ∈ Q : H1(Sθ̂∩q

′′) ≤ 1

32
ηδ

}
=

{
q ∈ Q : H1(Sθ̂ ∩ q

′′) ≤ η
(
1− 9

10

) l(q′′)
4

}
, Qb := Q\Qg.

For every q ∈ Qg, by Proposition 2.5 applied to v̂ ∈ SBV p(q′′) (in correspondence to s = 0.9)
there exist wq ∈ SBV p(q′′) and ωq ⊂ q′′, ωq = ∪FqB such that

wq ∈W 1,p(q′), wq = θ̂ in q′′ \ ωq

H1(∂∗ωq) ≤
c

η
H1(Sθ̂ ∩ q

′′),

ˆ
ωq

|∇wq|p dx ≤ c

ˆ
ωq

|∇θ̂|p dx.

(2.54)

Up to reducing the threshold in the definition of Qg, it holds that if q
′∩Γj ̸= ∅ for some j = 1, . . . , J ,

then q /∈ Qg, so that if q ∈ Qg is such that q′ ⊂ Qj,r̂j it holds that q′ ⊂ Q±
j,r̂j

and then wq = θ̂

(and ωq ∩ q′ = ∅), since θ̂ = θj ∈W 1,p(Q±
j,r̂j

).

We set, recalling (2.45) (and the analogue for j s.t. xj ∈ Sfrac
φ )

G :=
⋃

q∈Qg

q, ω̃ :=
⋃

q∈Qb

q,

Γint :=
⋃

j : xj /∈Sfrac
φ

(Qj,r̂j ∩ T
γj

j ), Γfrac :=
⋃

j : xj∈Sfrac
φ

(Qj,r̂j ∩ Γj), ω̂ :=
⋃

q∈Qg

ωq ∪
⋃

j=1,...,J

ωj ,

and

(2.55) v :=


∑
q∈Qg

wqϕq, in G,

0, in ω̃,

v̂, in Ω \ (G ∪ ω̃),

where

ϕq :=
ψq∑

q̂∈Qg
ψq̂
, ψq(x) := ψ

(x− cq
l(q)

)
for q = cq +

(
− l(q)

2
,
l(q)

2

)2

,

ψ ∈ C∞
c

(
(−9/16, 9/16)2; [0, 1]

)
, ψ = 1 on [−1/2, 1/2]2.

By triangle inequality, (d), (b), (2.17) using that 0 ≤ rj − r̂j ≤
√
α2rj and that the cubes Qj are

pairwise disjoint, we obtain

(2.56)

|H1(Sint
φ )−H1(Γint)| ≤H1(Sint

φ \ Γ̂int) + |H1(Sint
φ ∩ Γ̂int)−H1(Γint)|

≤H1(Sint
φ △Γ̂int) +

∑
j:xj /∈Sfrac

φ

|H1(Sint
φ ∩ Γj)−H1(T

γj

j ∩Qj,r̂j )|

≤H1(Sint
φ △Γ̂int) +

∑
j:xj /∈Sfrac

φ

H1(Γj \ Sint
φ )

+
∑

j:xj /∈Sfrac
φ

|H1(Γj)− 2r̂j |

≤H1(Sint
φ △Γ̂int) + α2(1 + 5H1(Sφ)) + (α2 +

√
α2)H1(Sφ).
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Furthermore, by construction,

Sfrac
φ △Γfrac =

(
Sfrac
φ \

⋃
j:xj∈Sfrac

φ

Qj

)
∪

⋃
j:xj∈Sfrac

φ

(
Qj ∩ (Sfrac

φ △(Γj ∩Qj,r̂j ))
)

⊆
(
Sfrac
φ \

⋃
j:xj∈Sfrac

φ

Qj

)
∪

⋃
j:xj∈Sfrac

φ

(
Qj ∩ (Sfrac

φ △Γj)
)

∪
J⋃

j=1

(
Sφ ∩ (Qj \Qj,r̂j )

)
=
(
Sfrac
φ △Γ̂frac

)
∪

J⋃
j=1

(
Sφ ∩ (Qj \Qj,r̂j )

)
,

whence, using (2.38) and property (d), we deduce that

(2.57)

H1(Sfrac
φ △Γfrac) ≤H1(Sfrac

φ △Γ̂frac) +

J∑
j=1

H1(Sφ ∩ (Qj \Qj,r̂j ))

≤H1(Sfrac
φ △Γ̂frac) +

J∑
j=1

H1(Γj ∩ (Qj \Qj,r̂j )) +H1
(
Sφ△

J⋃
j=1

Γj

)
≤ H1(Sfrac

φ △Γ̂frac) + 2α1
√
α2H1(Sφ) + α2(1 + 5H1(Sφ)).

By summing (2.56) and (2.57), using (2.21), we obtain

|H1(Sint
φ )−H1(Γint)|+H1(Sfrac

φ △Γfrac) ≤ α2(3 + 16H1(Sφ)) +
√
α2(1 + 2α1)H1(Sφ).

By (2.31) and (2.47) it follows that [v](x) ∈ Z for H1-a.e. x ∈ Γint.

By definition and (2.44), (2.51), (2.54) it is immediate that v ∈ SBV p(Ω) ∩W 1,p(Ω \ (Γ ∪ ω̃)),
that {∇φ ̸= ∇θ} ⊂ ω̃ ∪ ω̂ (since ∇(φ̂j − φ) = 0 in Qj , see (2.29)), that {φ ̸= θ} ⊂ {∇φ ̸=
∇θ} ∪

⋃
j : zj ̸=0Hj (whose L2-measure vanishes with α2 and ϱ from property (e)), and that v = 0

in ω̃.
Summing up (2.54) over q ∈ Qg we obtain (since the cubes q′′ may overlap at most 8 times)

(2.58) H1(∂∗
⋃

q∈Qg

ωq) ≤ 8
c ∨ c̃
η

H1
(
Sv̂ \

J⋃
j=1

Qj,r̂j

)
≤ C(α1, α2, p)

(c̃ is the constant in (2.52)) with C(α1, α2, p) vanishing with α2 and α1ϱ since

Sv̂ \
⋃

j=1,...,J

Qj,r̂j ⊂
(
Sφ \

⋃
j=1,...,J

Qj

)
∪

⋃
j : xj /∈Sfrac

φ

(Σ1
j,r̂j

∪Σ2
j,r̂j

)∪
⋃

j : xj /∈Sfrac
φ

((Qj \Qj,r̂j )∩ (Γj ∪T
γj

j )

and from the properties of Γj , (2.32), (2.38), (2.48), (2.49). Therefore, adding the estimates of the
H1-measures of ∂∗ωj in (2.46) over j such that xj /∈ Sfrac

φ plus ∂∗ω±
j in (2.51) over j such that

xj ∈ Sfrac
φ together with (2.58), we conclude that H1(∂∗ω̂) vanishes with α2 and α1ϱ. In view of

the definition of ω̃ (in particular of Qb) we get

H1(∂ω̃) ≤ 40

9
ηH1

(
Sθ̂ \

⋃
j=1,...,J

Qj,r̂j

)
,

where above a factor 8 accounts for the overlapping of squares q′′; as well, H1(∂ω̃) vanishes with
α2 and α1ϱ by (2.58).

Eventually, arguing as in [13, Step 3.1 in Theorem 5.1] for the cubes Qj such that xj ∈ Sfrac
φ

one proves that H1(Γfrac ∩ {θ± ̸= φ±}) vanishes with α2, while (again following [13, Step 3.3 in
Theorem 5.1] with the full gradient in place of the symmetrized gradient) one deduces from the
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last estimate in (2.54) that
ˆ
⋃

q∈Qg
ωq

|∇θ|p dx ≤ 8c

ˆ
⋃

q∈Qg
ωq

|∇θ̂|p dx,

which together with the estimates on the gradients in (2.46) and (2.51) gives that
ˆ
ω̂

|∇θ|p dx ≤ C ′(α2, p)

ˆ
ω̂

|∇φ|p dx,

for C ′(α2, p) a positive constant vanishing with α2 and α1ϱ. Being {∇φ ̸= ∇θ} ⊂ ω̃ ∪ ω̂, θ = 0 in
ω̃, and since the measure of ω̂ vanishes with α2 and α1ϱ, we obtain

ˆ
Ω

|∇θ|p dx ≤ (1 + C ′′(α2, ϱ, p))

ˆ
Ω

|∇φ|p dx,

where C ′′(α2, p) > 0 vanishes with α2 and α1ϱ.
We conclude since α1, α2, ϱ may be fixed arbitrarily small. □

By arguing as in the proof of Theorem 2.1, using Proposition 2.4 in place of Proposition 2.5,
one can show that also the following result holds true.

Theorem 2.6. Let Ω ⊂ R2 be a bounded open set of finite perimeter, p ∈ (1,+∞), u ∈
GSBDp(Ω), and ε > 0. Then there exist:

• closed sets Γint, Γfrac, finite unions of disjoint C1 curves;
• a set ω̃, finite union of cubes;
• a set of finite perimeter ω̂;
• a function v ∈ GSBDp(Ω) ∩W 1,p(Ω \ (Γ ∪ ω̃);R2), where Γ := Γint ∪ Γfrac;

such that {∇u ̸= ∇v} ⊂ ω̃∪ ω̂, L2({u ̸= v}) < ε, v = 0 in ω̃, [v](x) ∈ Z2 for H1-a.e. x ∈ Γint, and

|H1(Sint
u )−H1(Γint)|+H1(Sfrac

u △Γfrac) +H1(∂ω̃) +H1(∂∗ω̂) ≤ ε,

ˆ
Ω\ω̃

|e(v)|p dx ≤ (1 + ε)

ˆ
Ω

|e(u)|p dx,

where Sfrac
u := {x ∈ Su : [u] /∈ Z2}. Moreover, H1(Γ ∩ {v± ̸= u±}) ≤ ε, where v± and u± denote

the traces of v and u on the two sides of Γ, and, if u ∈ SBDp(Ω), then also v ∈ SBDp(Ω).

3. Description of the problem

Let Ω be a bounded and open subset of R2 with Lipschitz continuous boundary and let Ω′ ⊂⊂ Ω
be an open set. We introduce

(3.1) AD(Ω,Ω′) := {u ∈ SBV 2(Ω;S1) : Su ⊂ Ω′},

where Su denotes the jump set of u. For every ε > 0 , let Gε : SBV 2(Ω; S1) → [0,∞] be the
functional defined by

(3.2) Gε(u) :=


ˆ
Ω

1

2
|∇u|2 dx+

1

ε
H1(Su) if u ∈ AD(Ω,Ω′)

+∞ elsewhere in SBV 2(Ω; S1) .

In what follows, we will adopt also localized versions of the functional Gε; more precisely, for any
u ∈ AD(Ω,Ω′) and for any open set A with Ω′ ⊂⊂ A ⊂⊂ Ω , we will denote by Gε(u;A) the
functional in (3.2) with Ω replaced by A .

Notice that, since u ∈ H1(Ω \ Ω′
;S1), it follows that

supp Ju ⊆ Ω
′

for every u ∈ AD(Ω,Ω′).(3.3)
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Indeed, let φ ∈ C∞
c (Ω \ Ω′

), and write

⟨Ju, φ⟩Ω =
1

2

ˆ
Ω

∂φ

∂x2
d([u1D1u

2]− [u2D1u
1])− 1

2

ˆ
Ω

∂φ

∂x1
d([u1D2u

2]− [u2D2u
1])

=
1

2

ˆ
Ω\Ω′

∂φ

∂x2

(
u1
∂u2

∂x1
− u2

∂u1

∂x1

)
dx− 1

2

ˆ
Ω\Ω′

∂φ

∂x1

(
u1
∂u2

∂x2
− u2

∂u1

∂x2

)
dx

= ⟨Ju, φ⟩Ω\Ω′ = 0,

where the last equality follows since u ∈ H1(Ω\Ω′
;S1) has null distributional Jacobian determinant

in Ω \ Ω′
.

3.1. Γ-convergence in the subcritical regime. We introduce the class of atomic measures,
namely

X(Ω) :=
{
µ ∈ M(Ω) : µ =

N∑
n=1

znδxn , xn ∈ Ω, zn ∈ Z \ {0}, N ∈ N
}
.

In [28, Theorem 3.1], the authors show that the rescaled functional | log ε|−1Gε Γ-converges to
the functional F : X(Ω) → R+ defined as F(µ) = π|µ|(Ω). Using a density argument, and in
particular Proposition 2.3, this result can be easily extended to the following setting, where the
energy functional does not take into account of the closure of the jump set: We introduce

(3.4) Fε(u) :=


ˆ
Ω

1

2
|∇u|2 dx+

1

ε
H1(Su) if u ∈ AD(Ω,Ω′)

+∞ elsewhere in SBV 2(Ω; S1) .

Then the following Γ-convergence result holds:

Theorem 3.1. Let Ω and Ω′ be as above; then it holds

(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

(3.5) sup
ε>0

Fε(uε)

| log ε|
≤ C,

for some C > 0 . Then there exists µ ∈ X(Ω) with suppµ ⊆ Ω
′
such that, up to a

subsequence, ∥Juε − πµ∥flat,Ω → 0 (as ε→ 0).

(ii) (Γ-liminf inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
and for every {uε}ε ⊂

SBV 2(Ω;S1) such that ∥Juε − πµ∥flat,Ω → 0 (as ε→ 0) , it holds

(3.6) π|µ|(Ω) ≤ lim inf
ε→0

Fε(uε)

| log ε|
.

(iii) (Γ-limsup inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
, there exists {uε}ε ⊂ SBV 2(Ω;S1)

with ∥Juε − πµ∥flat,Ω → 0 (as ε→ 0) , such that

(3.7) π|µ|(Ω) ≥ lim sup
ε→0

Fε(uε)

| log ε|
.

Actually, by arguing as above and going through the proof of [28, Theorem 3.1], one can prove
the following more general result.

Theorem 3.2. Let Ω and Ω′ be as above; and let {Eε}ε ⊂ (0,+∞) with c| log ε| ≤ Eε ≪ | log ε|2
for some constant c > 0 (independent of ε). Then the following Γ-convergence result holds true.

(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

sup
ε>0

Fε(uε)

Eε
≤ C,

for some C > 0. Then there exists µ ∈ X(Ω) with suppµ ⊆ Ω
′
such that, up to a

subsequence, ∥ | log ε|
Eε

Juε − πµ∥flat,Ω → 0 (as ε→ 0).



APPROXIMATION OF TOPOLOGICAL SINGULARITIES BY FREE DISCONTINUITY FUNCTIONALS 23

(ii) (Γ-liminf inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
and for every {uε}ε ⊂

SBV 2(Ω;S1) such that ∥ | log ε|
Eε

Juε − πµ∥flat,Ω → 0 (as ε→ 0) , it holds

(3.8) π|µ|(Ω) ≤ lim inf
ε→0

Fε(uε)

Eε
.

(iii) (Γ-limsup inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
, there exists {uε}ε ⊂ SBV 2(Ω;S1)

with ∥ | log ε|
Eε

Juε − πµ∥flat,Ω → 0 (as ε→ 0) , such that

(3.9) π|µ|(Ω) ≥ lim sup
ε→0

Fε(uε)

Eε
.

Proof of Theorem 3.1. Although the argument is standard, we briefly discuss how to prove points
(i) and (ii), (iii) being identical to the case of [28]. Assume (3.5); by Proposition 2.3 (applied to
the domain Ω′), for all ε > 0 we choose ûε such thatˆ

Ω

1

2
|∇ûε|2dx ≤

ˆ
Ω

1

2
|∇uε|2dx+ ε,

H1(Sûε
) = H1(Sûε

) ≤ H1(Suε
) + ε,

∥Jûε − Juε∥flat,Ω ≤ ε,(3.10)

so that it follows

sup
ε>0

Gε(ûε)

| log ε|
≤ C + 1.

The compactness result in [28, Theorem 3.1 (i)] and the third condition in (3.10) imply (i). In a
similar way also (ii) is a consequence of [28, Theorem 3.1 (ii)] and of the same density result. □

We do not discuss the proof of Theorem 3.2 since it follows from the same result with Gε in
place of Fε, which in turn has the same proof of [28, Theorem 3.1].

3.2. Γ-convergence in the critical and supercritical regimes. Our main results are the
following.

Theorem 3.3. The following Γ-convergence result holds true.

(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

(3.11) sup
ε>0

Fε(uε)

| log ε|2
≤ C,

for some C > 0 . Then there exist a measure µ ∈ M(Ω) ∩H−1(Ω) with suppµ ⊆ Ω
′
and

a map TD ∈ L2(Ω;R2) with −Div TD = πµ such that, up to a subsequence,∥∥ Juε
π| log ε|

− µ
∥∥
flat,Ω

→ 0(FJ)

TD
uε

| log ε|
⇀ TD in L2(Ω;R2) .(ACJ)

(ii) (Γ-liminf inequality) For every (µ, TD) ∈
(
M(Ω)∩H−1(Ω)

)
×L2(Ω;R2) as in (i) and for

every {uε}ε ⊂ SBV 2(Ω; S1) satisfying (FJ) and (ACJ), it holds

(3.12) π|µ|(Ω) + 2

ˆ
Ω

|TD|2 dx ≤ lim inf
ε→0

Fε(uε)

| log ε|2
.

(iii) (Γ-limsup inequality) For every (µ, TD) ∈ (M(Ω) ∩H−1(Ω)) × L2(Ω;R2) as in (i) there
exists {uε}ε ⊂ SBV 2(Ω;S1) satisfying (FJ) and (ACJ), such that

(3.13) π|µ|(Ω) + 2

ˆ
Ω

|TD|2 dx ≥ lim sup
ε→0

Fε(uε)

| log ε|2
.

Theorem 3.4. Let {Nε}ε>0 be such that | log ε| ≪ Nε ≪ ε−1. The following Γ-convergence result
holds true.
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(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

(3.14) sup
ε>0

Fε(uε)

N2
ε

≤ C,

for some C > 0 . Then there exist a field TD ∈ L2(Ω;R2) such that, up to a subsequence,
TD
uε

Nε
⇀ TD in L2(Ω;R2) .

(ii) (Γ-liminf inequality) For every TD ∈ L2(Ω;R2) and for every {uε}ε ⊂ SBV 2(Ω;S1) with
TD
uε

Nε
⇀ TD in L2(Ω;R2) , it holds

(3.15) 2

ˆ
Ω

|TD|2 dx ≤ lim inf
ε→0

Fε(uε)

N2
ε

.

(iii) (Γ-limsup inequality) For every TD ∈ L2(Ω;R2) there exists {uε}ε ⊂ SBV 2(Ω;S1) with
TD
uε

Nε
⇀ TD in L2(Ω;R2) such that

(3.16) 2

ˆ
Ω

|TD|2 dx ≥ lim sup
ε→0

Fε(uε)

N2
ε

.

By using the density result in Proposition 2.3, one can show that Theorems 3.3 and 3.4 hold
true also when replacing Fε with Gε.

In order to prove Theorems 3.3 and 3.4, we will make use of the corresponding core radius
approach results that for the sake of completeness we state and prove in Section 4 below.

4. Core radius approach

We first introduce some notation. Let V ⊂ R2 be a bounded and open set with Lipschitz
continuous boundary. For every finite family B := {Bn}n=1,...,N (with N ∈ N) of open balls with
mutually disjoint closures we set

V (B) := V \
N⋃

n=1

B
n
,

and we denote by Rad(B) the sum of the radii of the balls Bn, namely

Rad(B) :=

N∑
n=1

r(Bn) ,

where r(B) denotes the radius of the ball B . Moreover, for every µ ∈ X(V ) with µ ̸= 0 of the
form

µ :=

N∑
n=1

znδx(Bn) with zn ∈ Z \ {0} ,(4.1)

we set

(4.2) A (B, µ, V ) := {u ∈ H1(V (B);S1) : deg(u, ∂Bn) = zn for every n = 1, . . . , N} .
Here and below, x(B) denotes the center of the ball B .

Now we provide the notion of merging procedure used in the ball construction introduced by [58]
and [44] (see also [27]). Although we do not re-prove the ball construction, stated in Proposition
4.2, we need it to start the proof of Theorem 3.3.

Definition 4.1 (Merging procedure). Given a finite family B = {Bri(x
i)}i=1,...,I (I ∈ N) of balls

in R2, we define a new family B̂ as follows. If the closures of two balls in B are not disjoint,
then we replace the two balls with a unique ball which contains both of them and has radius less
than or equal to the sum of the radii of the original balls. After this, we repeat this replacement
recursively, until as all the balls in the family have mutually disjoint closures. The final family is

B̂. The procedure of passing from B to B̂ is called merging procedure applied to B. Notice that
a merging procedure does not increase the sum of all the radii of the balls in the family.

The following result is proven in [27, Proposition 2.2].
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Proposition 4.2. Let V ⊂ R2 be a bounded and open set with Lipschitz continuous boundary, let
B be a finite family of open balls with mutually disjoint closures in R2, let µ ∈ X(V ) be of the
form (4.1), and let u ∈ A (B, µ, V ) . Then, there exists a one-parameter family of open balls B(t)
with t ≥ 0 such that, setting U(t) :=

⋃
B∈B(t)B, the following properties hold true:

(1) B(0) = B ;
(2) U(t1) ⊂ U(t2) for any 0 ≤ t1 < t2 ;
(3) the balls in B(t) are have mutually disjoint closures for every t > 0;
(4) for any 0 ≤ t1 < t2 and for any open set A ⊆ V ,

1

2

ˆ
(U(t2)\U(t1))∩A

|∇u|2 dx ≥ π
∑

B∈B(t2)
B⊆A

|µ(B)| log 1 + t2
1 + t1

;

(5) for every t > 0:
∑

B∈B(t)

r(B) ≤ (1 + t)
∑
B∈B

r(B), where r(B) denotes the radius of B .

For every B and µ as in Proposition 4.2, for every t > 0, we set C (t) := {B ∈ B(t) : B ⊂ V }
and we define

(4.3) µ̃ :=
∑

B∈C (1)

µ(B)δx(B) .

We can now state the crucial result which will be the starting point of the proof of Theorem 3.3.

Theorem 4.3. Let V be a bounded open set with Lipschitz continuous boundary. For every
ε > 0 let Bε := {Bn

ε }n=1,...,Nε
(with Nε ∈ N) be a (finite) family of open balls having mutually

disjoint closures with Rad(Bε) → 0 as ε → 0 , µε :=
∑Nε

n=1 z
n
ε δx(Bn

ε ) with znε ∈ Z \ {0} for every
n = 1, . . . , Nε . Let moreover {uε}ε be such that uε ∈ A (Bε, µε, V ) . Assume that

(4.4) sup
ε>0

1

2| logRad(Bε)|2

ˆ
V (Bε)

|∇uε|2 dx ≤ C ,

for some constant C > 0 independent of ε . Then, the following facts hold true.

(i) Let µ̃ε be the measures defined in (4.3) with C (1) = Cε(1) = {B ∈ Bε(1) : B ⊂ V };
then |µ̃ε|(V ) ≤ C| logRad(Bε)|2 for all ε > 0 with a constant C > 0 independent of ε,
and there exist a measure µ ∈ M(V ) and a function λ ∈ L2(V ;R2) such that, up to a
subsequence, as ε→ 0

µ̃ε V

| logRad(Bε)|
flat→ µ,(4.5)

λuε
χV (Bε)

| logRad(Bε)|
⇀ λ weakly in L2(V ;R2) ;(4.6)

(ii) π|µ|(V ) + 2
´
V
|λ|2 dx ≤ lim infε→0

1
2| logRad(Bε)|2

´
V (Bε)

|∇uε|2 dx .

Notice that, as uε ∈ A (Bε, µε, V ), we have λuε ∈ L2(V (Bε);R2), where λu is defined in
(1.4). In formula (4.6), symbol λuε

χV (Bε) denotes the extension of λuε
to the constant (0, 0) in

V \ V (Bε).

Proof. We start by proving (i). Our proof closely resembles that of [2, Theorem 3.2] where the
compactness result is proven in the energy regime | logRad(Bε)| .

For every 0 < p < 1 and for every ε > 0 we set

(4.7) tpε :=
1

Rad1−p(Bε)
− 1 , νpε := ν[tpε ] ,

where we have set, for t ≥ 0,

ν[t] :=
∑

B∈Cε(t)

µε(B)δx(B) .
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Fix 0 < p < 1 . Then, by applying Proposition 4.2(4) (with t1 = 0 and t2 = 1 and t2 = tpε) and by
the energy bound (4.4), we have that

(4.8) |µ̃ε|(V ) ≤ C| logRad(Bε)|2 , |νpε |(V ) ≤ C(1− p)−1| logRad(Bε)| ,

whence we deduce the first statement in claim (i) and the existence of a measure µp ∈ Mb(V )
such that (up to a not-relabeled subsequence)

(4.9)
νpε

| logRad(Bε)|
∗
⇀ µp as ε→ 0 .

Now we prove that

(4.10)
1

| logRad(Bε)|
(
µ̃ε − νpε

) flat→ 0 for every 0 < p < 1 ,

from which we deduce also that µp ≡ µ for any 0 < p < 1 . To this purpose, we first observe
that µ̃ε(B) = νpε (B) for any B ∈ Cε(t

p
ε) = {B ∈ Bε(t

p
ε) : B ⊂ V } ; therefore, using (4.8) and

Proposition 4.2(5) together with the very definition of tpε , for every sequence {φε}ε ⊂ C0,1
c (V )

with ∥φε∥C0,1 ≤ 1 , we have

(4.11)

1

| logRad(Bε)|
∣∣〈µ̃ε − νpε , φε

〉∣∣
≤ 1

| logRad(Bε)|

∣∣∣∣∣∣
∑

B∈Cε(t
p
ε)

ˆ
B

(
φε −

 
B

φε dx
)
d(µ̃ε − νpε )

∣∣∣∣∣∣
+

1

| logRad(Bε)|

∣∣∣∣∣∣
∑

B∈Bε(t
p
ε)\Cε(t

p
ε)

ˆ
B∩V

φε d(µ̃ε − νpε )

∣∣∣∣∣∣
≤ 1

| logRad(Bε)|
∑

B∈Bε(t
p
ε)

(
sup
B∩V

φε − inf
B∩V

φε

)(
|µ̃ε|(B) + |νpε |(B)

)
≤ 1

| logRad(Bε)|
∑

B∈Bε(t
p
ε)

diam(B)
(
|µ̃ε|(V ) + |νpε |(V )

)
≤CRadp(Bε)| logRad(Bε)| ,

whence (4.10) follows. We highlight that the second inequality in (4.11) follows from the fact that
for every B ∈ Bε(t

p
ε) \ Cε(t

p
ε) we have that infB∩V φε ≤ 0 so thatˆ

B∩V

φε d(µ̃ε − νpε ) ≤ sup
B∩V

φε

(
|µ̃ε|(V ) + |νpε |(V )

)
≤

(
sup
B∩V

φε − inf
B∩V

φε

)(
|µ̃ε|(V ) + |νpε |(V )

)
.

Moreover, by the very definition of λuε
in (1.4) and by the energy bound (4.4), we immediately

have that

(4.12)
1

2

ˆ
V (Bε)

|2λuε |2 dx =
1

2

ˆ
V (Bε)

|∇uε|2 dx ≤ C| logRad(Bε)|2 ,

thus, up to extracting a further subsequence, there exists λ ∈ L2(V ;R2) such that (4.6) holds.
Notice that, for p ∈ (0, 1) fixed, since |U(tpε)| → 0 as ε→ 0, we also deduce

(4.13)
λuε

| logRad(Bε)|
χV (Bε(t

p
ε)) ⇀ λ weakly in L2(V ;R2).

Now we prove (ii). To this end, let p ∈ (0, 1) be fixed; by (4.9) and by Proposition 4.2(4), we
get

(4.14)
lim inf
ε→0

1

2| logRad(Bε)|2

ˆ
(U(tpε)\U(0))∩V

|∇uε|2 dx ≥π(1− p) lim inf
ε→0

|νpε |(V )

| logRad(Bε)|
≥π(1− p)|µ|(V ) .
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Furthermore, by (4.13), we have that

lim inf
ε→0

1

2| logRad(Bε)|2

ˆ
V (Bε(t

p
ε))

|∇uε|2 dx = lim inf
ε→0

1

2

ˆ
V

∣∣∣ 2λuε

| logRad(Bε)|

∣∣∣2χV (Bε(t
p
ε)) dx

≥ 2

ˆ
V

|λ|2 dx ,

which, together with (4.14) (letting p→ 0), yields (ii). □

5. Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3. Using the density argument as in the proof
of Theorem 3.1, we can prove Theorem 3.3 with Fε replaced by Gε in (3.2).

The proofs of the compactness and of the lower bound are addressed in Subsection 5.1 and
closely resemble those in the | log ε| regime treated in [28], whereas the construction of the recovery
sequence is provided in Subsection 5.2.

5.1. Proof of compactness and lower bound. By the energy bound (3.11), together with
Corollary 2.2, we have that

(5.1) H1(Suε) ≤ Cε| log ε|2 ,

for every ε > 0 . By the very definition of Hausdorff measure, since Suε
is compact, there exists a

finite family Bε of open balls (in R2) such that Suε
⊂

⋃
B∈Bε

B andRad(Bε) ≤ Cε| log ε|2 . Notice

that we can always assume (just by enlarging an arbitrarily chosen ball in Bε) that Rad(Bε) ≥ ε ,
so that, from now on

(5.2) ε ≤ Rad(Bε) ≤ Cε| log ε|2 ,

for some C > 0 . Moreover, by construction,

(5.3) uε ∈ H1(Ω(Bε);S1) ,

where we recall that Ω(Bε) := Ω\
⋃

B∈Bε
B . By (5.2) and recalling that Suε

⊂ Ω′ , we can assume
that, for ε small enough,

(5.4)
⋃

B∈Bε

B ⊂ Ω .

Up to applying a merging procedure (as described in Definition 4.1) to the balls in Bε , we can
assume without loss of generality that these balls having mutually disjoint closures, and still satisfy
(5.2) and (5.4). For ε > 0 small enough we set

(5.5) µε :=
∑

B∈Bε

deg(uε, ∂B)δx(B) .

By (3.11), (5.2), and (5.3), for ε small enough it holds

(5.6)
1

2

ˆ
Ω(Bε)

|∇uε|2 dx ≤ Gε(uε) ≤ C| log ε|2 ≤ C| logRad(Bε)|2 .

Therefore we can apply Theorem 4.3 to the family {(Bε;µε)}ε . Notice that, in view of the very
definition of Gε , we have that also the family Bε(1) satisfies (5.4) (for ε small enough), so that
Cε(1) ≡ Bε(1) . Setting

µ̃ε :=
∑

B∈Bε(1)

µε(B)δx(B) ,

by Theorem 4.3(i) (more precisely, by (4.5)), using (5.2), we have that, up to a subsequence,

(5.7)
µ̃ε

| log ε|
flat→ µ ,
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for some µ ∈ M(Ω) . By construction, suppµ ⊆ Ω′ . Moreover, by arguing verbatim as in the
proof of [28, formula (3.17)] one can prove that

1

| log ε|
∥Juε − πµ̃ε∥flat,Ω → 0 ,

which, combined with (5.7), yields (FJ). Furthermore, by (1.10) and by (3.11), we have that

1

| log ε|2

ˆ
Ω

|2TD
uε
|2 dx =

1

| log ε|2

ˆ
Ω

|∇uε|2 dx ≤ C ,

so that, up to a further subsequence,

(5.8)
TD
uε

| log ε|
⇀ TD in L2(Ω;R2) ,

for some field TD ∈ L2(Ω;R2) . This proves (ACJ).
It remains to show that −Div TD = πµ , which will imply also that µ ∈ H−1(Ω) . To this end,

let φ ∈ C∞
c (Ω) ; then, by (1.10),

(5.9) ⟨Juε, φ⟩ = ⟨Tuε ,∇φ⟩ = ⟨TD
uε
,∇φ⟩+ ⟨TS

uε
,∇φ⟩ ,

for every ε > 0 . By (ACJ), we have that

(5.10)
1

| log ε|
⟨TD

uε
,∇φ⟩ → ⟨TD,∇φ⟩ as ε→ 0 ;

moreover, by (1.10), (3.11), and (5.1), we have that

(5.11)
∣∣⟨T S

uε
,∇φ⟩

∣∣ ≤ Cε∥∇φ∥L∞ | log ε|2 .

By (FJ), (5.9), (5.10), and (5.11),

⟨πµ, φ⟩ = lim
ε→0

1

| log ε|
⟨Juε, φ⟩ = lim

ε→0

1

| log ε|
⟨TD

uε
,∇φ⟩ = ⟨TD,∇φ⟩ = ⟨−DivTD, ϕ⟩ ,

thus concluding the proof of (i).

Now we prove the lower bound (ii). We can assume without loss of generality that (3.11) holds
true. By the first inequality in (5.6) and by Theorem 4.3(ii) we have immediately that

lim inf
ε→0

Gε(uε)

| log ε|2
≥ π|µ|(Ω) + 2

ˆ
Ω

|TD|2 dx ,

where we have used also that the function TD coincides with the field λ in Theorem 4.3. The
claim thus follows.

5.2. Proof of the upper bound. In order to construct the recovery sequence, we first introduce

some notation. Let r > 0 be fixed . For every finite sum of Dirac deltas µ :=
∑N

n=1 δxn with
|xn1 − xn2 | ≥ 2r for n1 ̸= n2 and for every 0 < ρ < r we set

(5.12) µ̂ρ :=
1

2πρ

N∑
n=1

H1 ∂Bρ(x
n) , f̃ρ :=

1

πρ2

N∑
n=1

χBρ(xn) , and µ̃ρ := f̃ρ dx .

For every r > 0 and for every z ∈ R2 , we recall that Qr(z) denotes the (open) square centered at
z with sides parallel to the cartesian axes and side-length equal to 2r , i.e., Qr(z) := z + Qr(0) ,
with Qr(0) := (−r, r)2 .

Lemma 5.1. Let µ :=
∑L

l=1m
lχωldx, where L ∈ N, ml ∈ R and {ωl}l=1,...,L is a partition of Ω

into sets with Lipschitz continuous boundary. Let Nε → +∞ as ε → 0 . For every ε > 0 and for
every l = 1, . . . , L with ml ̸= 0, set

(5.13) rlε :=
1

2
√
Nε|ml|

.
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For every l = 1, . . . , L with ml ̸= 0, let Z l
ε := {z ∈ 2rlεZ2 : Qrlε

(z) ⊂ ωl} and N l
ε := ♯Z l

ε . Then,

for every l = 1, . . . , L with ml ̸= 0,

(5.14)
N l

ε

Nε
→ |ml||ωl| as ε→ 0 .

Moreover, setting µl
ε :=

∑N l
ε

n=1 δxl,n
ε

(where {xl,nε }N
l
ε

n=1 is the set of points in Z l
ε) for every l =

1, . . . , L with ml ̸= 0, µl
ε ≡ 0 whenever ml = 0, and µε :=

∑L
l=1 µ

l
ε, we have that the sequence

{µε}ε ⊂ M(Ω) satisfies

(a) for every ε > 0 and for every l = 1, . . . , L with ml ̸= 0 and n = 1, . . . , N l
ε , the balls

Brlε
(xl,nε ) are pairwise disjoint and contained in ωl ;

(b) µε

Nε

∗
⇀ µ in M(Ω) as ε→ 0 ;

(c)
∥∥ µ̃ε

Nε
− µ

∥∥
H−1(Ω)

≤ CN
− 1

4
ε (for ε small enough),

where µ̃ε :=
∑L

l=1 µ̃
l,rlε
ε , with µ̃

l,rlε
ε defined as in (5.12) starting from µl

ε .

Proof. For every l = 1, . . . , L with ml ̸= 0 we set ωl
ε :=

⋃
z∈Zl

ε
Qrlε

(z) and we denote by ωl
ε :=

int(ωl
ε) the set of interior points of ωl

ε . We set Rε := max{rlε : l = 1, . . . , L, ml ̸= 0}, and we
notice that Rε → 0 as ε→ 0.

Property (5.14) is straightforward. Indeed, let l ∈ {1, . . . , L} with ml ̸= 0; setting (∂ωl)2rlε :=

{x ∈ ωl : dist(x, ∂ωl) < 2rlε} , it is sufficient to observe that
∣∣(ωl \ ωl

ε) \ (∂ωl)2rlε

∣∣ = 0 , and hence,

by the Lipschitz continuity of ∂ωl ,

(5.15) |ωl \ ωl
ε| = O(rlε) = O(Rε) ,

where lim supε→0 O(Rε)R
−1
ε < C < +∞. On the other hand, |ωl

ε||ml| = 4(rlε)
2N l

ε|ml| = N l
ε

Nε
,

which, together with (5.15), yields |ωl| = |ωl \ ωl
ε|+ |ωl

ε| =
O(Rε)
|ml| +

N l
ε

|ml|Nε
, and hence (5.14).

Property (a) follows by construction. Now we prove property (b). Let ϕ ∈ Cc(Ω) , and let mϕ

be the modulus of continuity of ϕ . Then, setting

(5.16) M := max{|ml| : l = 1, . . . , L},

we have that, as ε→ 0,∣∣∣〈 µε

Nε
− µ, ϕ

〉
Ω

∣∣∣ ≤ L∑
l=1

ml ̸=0

ml

N l
ε∑

n=1

ˆ
Q

rlε
(xl,n

ε )

|ϕ(xl,nε )− ϕ(x)| dx+

L∑
l=1

ml ̸=0

ml

ˆ
ωl\ωl

ε

|ϕ(x)| dx

≤ 4M

L∑
l=1

ml ̸=0

N l
ε(r

l
ε)

2 max
t∈[0,2

√
2rlε]

mϕ(t) +M∥ϕ∥L∞

L∑
l=1

ml ̸=0

|ωl \ ωl
ε| → 0,

where we have used (5.13), (5.14), and (5.15); this proves (b).
We are left with the proof of (c). We set

ω :=

L⋃
l=1

ml ̸=0

ωl, ωε :=

L⋃
l=1

ml ̸=0

ωl
ε, ηε := (

µ̃rε
ε

Nε
− µ)χωε

,

so that

(5.17)
µ̃rε
ε

Nε
− µ = ηε − µχω\ωε

.

Let v̄ ∈ H1(Q1(0)) be a solution to{
∆v = 4

πχB1 − 1 in Q1(0)
∂νv = 0 on ∂Q1(0) .



30 V. CRISMALE, L. DE LUCA, AND R. SCALA

We then define for every ε > 0 and for every l = 1, . . . , L, and n = 1, . . . , N l
ε ,

vl,nε (x) :=
1

2Nε
v̄(
x− xl,nε
rlε

);

notice that ∇vl,nε (x) =
√

ml

Nε
∇v(x−xl,n

ε

rlε
), so

(5.18) ∥∇vl,nε ∥2
L2(Q

rlε
(xl,n

ε );R2)
=

1

4N2
ε

∥∇v̄∥2L2(Q1(0);R2)

and

−∆vl,nε = ηε in Qrlε
(xl,nε ) , ∂νv

l,n
ε = 0 on ∂Qrlε

(xl,nε ).

Integrating by parts, using Hölder inequality, (5.18), and Young inequality, it follows that

(5.19)

∥ηε∥H−1(Ω) = sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

ˆ
Ω

ϕ dηε = sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
Q

rlε
(xl,n

ε )

−ϕ∆vl,nε dx

= sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

 N l
ε∑

n=1

ˆ
Q

rlε
(xl,n

ε )

∇ϕ · ∇vl,nε dx



≤ sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥∇ϕ∥L2(Q
rlε

(xl,n
ε );R2)∥∇v

l,n
ε ∥L2(Q

rlε
(xl,n

ε );R2)

= sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

1

2Nε

N l
ε∑

n=1

∥∇ϕ∥L2(Q
rlε

(xl,n
ε );R2)∥∇v̄∥L2(Q1(0);R2)

≤ sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

1

4Nε

N l
ε∑

n=1

( 1

N
1
2
ε

∥∇v̄∥2L2(Q1(0);R2) +N
1
2
ε ∥∇ϕ∥2

L2(Q
rlε

(xl,n
ε );R2)

)

≤ 1

2

L∑
l=1

ml ̸=0

N l
ε

N
3
2
ε

∥∇v̄∥2L2(Q1(0);R2) +
1

4N
1
2
ε

≤ C

N
1
2
ε

,

where the last inequality follows from (5.14) and (5.13). Finally, by Hölder inequality, (5.13) and
(5.15), we obtain

(5.20) ∥µχω\ωε
∥H−1(Ω) = sup

ϕ∈H1
0 (Ω)

∥∇ϕ∥L2(Ω;R2)≤1

ˆ
ω\ωε

ϕ dµ ≤ sup
ϕ∈H1

0 (Ω)
∥∇ϕ∥L2(Ω;R2)≤1

M∥ϕ∥L2(Ω)|ω\ωε|
1
2 ≤ C

N
1
4
ε

,

with M defined in (5.16); this, combined with (5.17) and (5.19), yields (c).
□

Proof of Theorem 3.3(iii). We divide the proof into two cases.

Case 1: µ =
∑L

l=1m
lχωldx , where L ∈ N , ml ∈ R , and {ωl}l=1,...,L is a partition of Ω into

sets with Lipschitz continuous boundary.
We divide the proof into two steps. In the first one we construct the recovery sequence

{(µε, βε)}ε for the core-radius problem; in the second step, we exploit the structure of {(µε, βε)}ε
to build up the recovery sequence {uε}ε for the functional Gε .
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First step: Construction of the discrete measure µε and of the core-radius field βε . For every
ε > 0 , we set

(5.21) Nε := ⌊| log ε|⌋
and let

(5.22) µε :=

L∑
l=1

µl
ε =

L∑
l=1

ml ̸=0

N l
ε∑

n=1

δxl,n
ε

be the measure provided by Lemma 5.1. Set

(5.23) S := {(0, x2) : x2 < 0}
and let ϑ ∈ C∞(R2 \ S) be the function defined by

(5.24) ϑ(x) :=


arctan x2

x1
if x1 > 0

π
2 if x1 = 0 and x2 > 0
π + arctan x2

x1
if x1 < 0

3
2π if x1 = 0 and x2 < 0 .

For every l = 1, . . . , L with ml ̸= 0 and for every n = 1, . . . , N l
ε , let K̂

l,n
ε ∈ L2

loc(R2 \ {xl,nε };R2)

and K̃l,n
ε ∈ L2

loc(R2;R2) be the functions defined by

K̂l,n
ε (x) :=

1

2π
∇ϑ(x− xl,nε ) =

1

2π|x− xl,nε |2
(−(x2 − xl,nε,2), x1 − xl,nε,1) ,

and

K̃l,n
ε (x) :=

|x− xl,nε |2

2π(rlε)
2

∇ϑ(x− xl,nε ) =
1

2π(rlε)
2
(−(x2 − xl,nε,2), x1 − xl,nε,1) ,

respectively. Recalling that Ar,R(x) := BR(x)\Br(x) (for every 0 < r < R and for every x ∈ R2) ,
we define

(5.25) K̂ε :=

L∑
l=1

ml ̸=0

N l
ε∑

n=1

K̂l,n
ε χA

ε,rlε
(xl,n

ε ), K̃ε :=

L∑
l=1

ml ̸=0

N l
ε∑

n=1

K̃l,n
ε χB

rlε
(xl,n

ε ) .

Now, as in (5.12), for all l = 1, . . . , L with ml ̸= 0 and for every 0 < ρ < rlε we set

µ̃l,ρ
ε :=

1

πρ2

N l
ε∑

n=1

χBρ(x
l,n
ε ) dx , and µ̃ε :=

L∑
l=1

µ̃
l,rlε
ε ,

and analogously

ζl,ρε :=
1

2πρ

N l
ε∑

n=1

H1 ∂Bρ(x
l,n
ε ) , and ζε :=

L∑
l=1

ζ
l,rlε
ε .

Eventually, we introduce

ζεε :=

L∑
l=1

ζl,εε

Then, using the notation just introduced, we have

(5.26) curl K̂ε = ζεε − ζε and curl K̃ε = µ̃ε − µ̂ε .

Let vε ∈ H1(Ω) be the solution to

(5.27)

{
−∆v = µ̃ε −Nεµ in Ω
v = 0 on ∂Ω .

Then, by Poincaré inequality and by Lemma (5.1)(c), we get

∥∇vε∥2L2(Ω;R2) ≤ ∥µ̃ε −Nεµ∥H−1(Ω)∥vε∥H1
0 (Ω) ≤ C(Ω)N

3
4
ε ∥∇vε∥L2(Ω;R2) ,
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whence, recalling (5.21) we get

(5.28)
∇vε√
Nε| log ε|

→ 0 in L2(Ω;R2) .

Let

(5.29) β := − 1

π
(TD)⊥ ∈ L2(Ω;R2) ,

and set

(5.30) βε := Nεβ + K̂ε − K̃ε +∇⊥vε .

By (5.26) and (5.27),

(5.31) curl βε Ω = Nεµ+ ζεε − ζε − µ̃ε + ζε + µ̃ε −Nεµ = ζεε ,

so that curl βε = 0 in Ωε(µε) := Ω \
⋃L

l=1
ml ̸=0

⋃N l
ε

n=1Bε(x
l,n
ε ) . Furthermore, by (5.31), for any

l = 1, . . . , L with ml ̸= 0 and for any n = 1, . . . , N l
ε, we haveˆ

∂Bρ(x
l,n
ε )

βε · τ dH1 = 1 for a.e. ρ ∈ (ε, rlε) .

Again by (5.31), setting

(5.32) Sl,n
ε := xl,nε + S,

(with S defined in (5.23)) for every l = 1, . . . , L with ml ̸= 0 and n = 1, . . . , N l
ε , there exists a

function ϑε ∈ H1
(
Ωε(µε) \

⋃L
l=1

ml ̸=0

⋃N l
ε

n=1 S
l,n
ε

)
such that

βε = ∇ϑε a.e. on Ωε(µε) \
L⋃

l=1
ml ̸=0

N l
ε⋃

n=1

Sl,n
ε .(5.33)

In what follows, with a little abuse of notation, we denote by ϑε and βε the zero-extensions of ϑε

and βε to
⋃L

l=1
ml ̸=0

⋃N l
ε

n=1Bε(x
l,n
ε ) , respectively. We now prove that

(5.34)
βε√

Nε| log ε|
⇀ β in L2(Ω;R2) .

On the one hand, by (5.13) and (5.14),

1√
Nε| log ε|

ˆ
Ω

|K̂ε| dx =
1√

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
A

ε,rlε
(xl,n

ε )

|K̂l,n
ε | dx

=
2π√

Nε| log ε|

L∑
l=1

ml ̸=0

(rlε − ε)N l
ε → 0 .

On the other hand, recalling (5.14), we also have

(5.35)

lim
ε→0

1

Nε| log ε|

ˆ
Ω

|K̂ε|2 dx = lim
ε→0

1

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
A

ε,rlε
(xl,n

ε )

|K̂l,n
ε |2 dx

= lim
ε→0

∑L
l=1

ml ̸=0

N l
ε log

rlε
ε

Nε| log ε|
1

2π
=

1

2π
|µ|(Ω) ,



APPROXIMATION OF TOPOLOGICAL SINGULARITIES BY FREE DISCONTINUITY FUNCTIONALS 33

so that

(5.36)
K̂ε√

Nε| log ε|
⇀ 0 in L2(Ω;R2) .

Moreover, by construction,

(5.37)
1

Nε| log ε|

ˆ
Ω

|K̃ε|2 dx

=
1

Nε| log ε|

L∑
l=1

ml ̸=0

1

4π2(rlε)
2

N l
ε∑

n=1

ˆ
B

rlε
(xl,n

ε )

|x− xl,nε |2 dx→ 0 in L2(Ω;R2) ;

therefore, by the very definition of βε in (5.30) , using (5.36), (5.37), and (5.28), we deduce (5.34).
Moreover, by (5.35), (5.37) and (5.28), we easily get

(5.38) lim
ε→0

1

Nε| log ε|

ˆ
Ω

|βε|2 dx =
1

2π
|µ|(Ω) +

ˆ
Ω

|β|2 dx .

Second step: Construction of the recovery sequence {uε}ε . Let l̄ ∈ {1, . . . , L} be such that

ml̄ ̸= 0 and n̄ ∈ {1, . . . , N l̄
ε} be fixed. Recalling (5.32) and that the mutual distance between the

points xl̄,n̄ε is at least 2ε, the set Aε,2ε(x
l̄,n̄
ε ) \

⋃L
l=1

ml ̸=0

⋃N l
ε

n=1 S
l,n
ε is either connected or is given by

the union of the two sets

A±
ε,2ε(x

l̄,n̄
ε ) := Aε,2ε(x

l̄,n̄
ε ) ∩ {x1 ≷ xl̄,n̄ε,1}.

We set al̄,n̄,+ε :=
ffl
A+

ε,2ε(x
l̄,n̄
ε )

ϑε dx and al̄,n̄,−ε :=
ffl
A−

ε,2ε(x
l̄,n̄
ε )

ϑε dx , where ϑε is the function in

(5.33). By construction ϑε ∈ H1(A+
ε,2ε(x

l̄,n̄
ε )) and ϑε ∈ H1(A−

ε,2ε(x
l̄,n̄
ε )) , so that, since the sets

A±
ε,2ε(x

l̄,n̄
ε ) have Lipschitz continuous boundary, we can apply the Poincaré-Wirtinger inequality

in H1(A+
ε,2ε(x

l̄,n̄
ε )) and H1(A−

ε,2ε(x
l̄,n̄
ε )) , thus getting

(5.39) ∥ϑε − al̄,n̄,+ε ∥2
L2(A+

ε,2ε(x
l̄,n̄
ε ))

+ ∥ϑε − al̄,n̄,−ε ∥2
L2(A−

ε,2ε(x
l̄,n̄
ε ))

≤ Cε2∥βε∥2L2(Aε,2ε(x
l̄,n̄
ε );R2)

,

for some universal constant C > 0 .
Let σε ∈ C∞(B2ε(0); [0, 1]) be such that σε ≡ 0 in Bε(0) , σε ≡ 1 in A 3

2 ε,2ε
(0) and that

(5.40) |∇σε(x)| ≤
C

ε
for every x ∈ B2ε(0) ,

for some constant C > 0 independent of ε (and of x) . For every ε > 0 we set

ϑε(x) :=


σε(x− xl̄,n̄ε )ϑε(x) + (1− σε(x− xl̄,n̄ε ))al̄,n̄,−ε if x ∈ B−

2ε(x
l̄,n̄
ε ) for some l̄ = 1, . . . , L, n̄ = 1, . . . , N l̄

ε

σε(x− xl̄,n̄ε )ϑε(x) + (1− σε(x− xl̄,n̄ε ))al̄,n̄,+ε if x ∈ B+
2ε(x

l̄,n̄
ε ) for some l̄ = 1, . . . , L, n̄ = 1, . . . , N l̄

ε

ϑε(x) if x ∈ Ω \
⋃L

l=1
ml ̸=0

⋃N l
ε

n=1B2ε(x
l,n
ε ) ,

(where B
±
2ε(x

l,n
ε ) := B2ε(x

l,n
ε ) ∩ {x1 ≷ xl,nε,1} and l̄ is such that ml̄ ̸= 0) and we define uε : Ω → S1

as

(5.41) uε(·) := e2πıϑε(·) .

By construction,

(5.42) Suε ⊂
L⋃

l=1
ml ̸=0

N l
ε⋃

n=1

B 3
2 ε
(xl,nε ) and H1(Suε) ≤

L∑
l=1

ml ̸=0

N l
ε4ε ,

which, in view of (5.14), implies

(5.43) lim
ε→0

1

Nε| log ε|
1

ε
H1(Suε

) = 0 .
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We claim that

(5.44)
∇ϑε√
Nε| log ε|

⇀ β in L2(Ω;R2) ,

which, together with (5.43), in view of (1.10) and (5.29), will imply (ACJ). To show (5.44), we

start by observing that, by the very definition of ϑε in
⋃L

l=1
ml ̸=0

⋃N l
ε

n=1Aε,2ε(x
l,n
ε ) and by (5.39)

(applied to every l = 1, . . . , L with ml ̸= 0 and n = 1, . . . , N l
ε) , we get

(5.45)
1

Nε| log ε|
∥∇ϑε∥2

L2(
⋃L

l=1
ml ̸=0

⋃Nl
ε

n=1 Aε,2ε(x
l,n
ε );R2)

≤ 2

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥βε∥2L2(Aε,2ε(x
l,n
ε );R2)

+
2

Nε| log ε|
C

ε2

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥ϑε − al,n,+ε ∥2
L2(A+

ε,2ε(x
l,n
ε ))

+
2

Nε| log ε|
C

ε2

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥ϑε − al,n,−ε ∥2
L2(A−

ε,2ε(x
l,n
ε ))

≤ C

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥βε∥2L2(Aε,2ε(x
l,n
ε );R2)

≤ C

| log ε|
+ C∥β∥2

L2(
⋃L

l=1
ml ̸=0

⋃Nl
ε

n=1 Aε,2ε(x
l,n
ε );R2)

+ o(1) ,

as ε→ 0, where in the last inequality we used (5.37), (5.35) (with rε replaced by 2ε), and (5.28),
to deduce that

1

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥βε∥2L2(Aε,2ε(x
l,n
ε );R2)

≤ 2

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥K̂l,n
ε ∥2

L2(Aε,2ε(x
l,n
ε );R2)

+
Nε

| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥β∥2
L2(Aε,2ε(x

l,n
ε );R2)

+ o(1)

≤ C

| log ε|
+ C∥β∥2

L2
(⋃L

l=1
ml ̸=0

⋃Nl
ε

n=1 Aε,2ε(x
l,n
ε );R2

) + o(1) .

Therefore, by (5.45) and (5.34), using the very definition of ϑε , we deduce (5.44). Furthermore,
using (5.38) and again (5.45), recalling (5.29), we get

(5.46)

lim
ε→0

1

Nε| log ε|
1

2

ˆ
Ω

|∇uε|2 dx = lim
ε→0

1

Nε| log ε|
2π2

ˆ
Ω

|βε|2 dx

=π|µ|(Ω) + 2π2

ˆ
Ω

|β|2 dx = π|µ|(Ω) + 2

ˆ
Ω

|TD|2 dx ,

which, combined with (5.43), implies that the sequence {uε}ε satisfies (3.13).

Now, in order to conclude the proof of (iii) of Theorem 3.3 in the case µ =
∑L

l=1m
lχωl dx ,

it remains to prove that also (FJ) is satisfied. To this end, we first observe that, by Hölder
inequality and the very definition of uε in (5.41), for every l = 1, . . . , L with ml ̸= 0 and for every
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n = 1, . . . , N l
ε

ˆ
A 3

2
ε,2ε

(xl,n
ε )

|∇uε| dx ≤ Cε∥∇ϑε∥L2(A 3
2
ε,2ε

(xl,n
ε );R2)

which, by Fubini Theorem and by the Mean Value Theorem, implies that (for every l = 1, . . . , L
with ml ̸= 0 and for every n = 1, . . . , N l

ε) there exists 3
2ε < ρl,nε < 2ε such that

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

|∇uε| dH1 ≤ C∥∇ϑε∥L2(A 3
2
ε,2ε

(xl,n
ε );R2) .

Therefore, recalling (5.42), by (5.45), for ε small enough we get

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

d|Tuε
| =

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

|TD
uε
| dH1

≤ C
√
Nε∥∇ϑε∥

L2
(⋃L

l=1
ml ̸=0

⋃Nl
ε

n=1 Aε,2ε(x
l,n
ε );R2

)
≤ CNε| log ε|

1
2 .(5.47)

Analogously, again by (5.45) and by (5.42), using also Hölder inequality, we have

|Tuε
|
( L⋃

l=1
ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
≤ 2|Duε|

( L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)

≤ 2ε∥∇ϑε∥
L2(

⋃L
l=1

ml ̸=0

⋃Nl
ε

n=1 B
ρ
l,n
ε

(xl,n
ε );R2)

√√√√√√
L∑

l=1
ml ̸=0

N l
επ + C

L∑
l=1

ml ̸=0

N l
εε

≤ CεNε| log ε|
1
2 .

Recalling the definition of ϑ in (5.24), we define

vε(·) := exp
(
ı

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ϑ(· − xl,nε )
)
;

by construction, vε ∈W 1,p(Ω; S1) for any 1 ≤ p < 2 , and

(5.48) Jvε = πµε in M(Ω).

Moreover for every x ∈ Ω

(5.49) |Tvε(x)| = |TD
vε(x)| = 2|λvε(x)| ≤ 2π

L∑
l=1

ml ̸=0

N l
ε∑

n=1

|∇ϑ(x− xnε )| = 2π

L∑
l=1

ml ̸=0

N l
ε∑

n=1

1

|x− xl,nε |
.
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Therefore, for every l̄ = 1, . . . , L with ml̄ ̸= 0 and for every n̄ = 1, . . . , N l̄
ε , and for ε small enough

we have

|Tvε |(∂Bρl̄,n̄
ε

(xl̄,n̄ε )) ≤
L∑

l=1
ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l̄,n̄
ε

(xl̄,n̄
ε )

2π

|x− xl,nε |
dH1

≤ 4π2 +

N l̄
ε∑

n=1
n ̸=n̄

ˆ
∂B

ρ
l̄,n̄
ε

(xl̄,n̄
ε )

2π

|x− xl̄,nε |
+

L∑
l=1
l ̸=l̄

ml ̸=0

N l
ε∑

n=1

2π

|x− xl,nε |
dH1

≤ 4π2 + 4πε
N l̄

ε

rl̄ε
+

L∑
l=1
l ̸=l̄

ml ̸=0

N l
ε

4πε

rlε
≤ 4π2 + 4πε

L∑
l=1

|ml||ωl|N
3
2
ε ≤ C ,

where in the last but one inequality we have used (5.14) together with the fact that

inf
n=1,...,N l̄

ε
n ̸=n̄

|xl̄,nε − xl̄,n̄ε | ≥ rl̄ε, inf
l=1,...,L

l ̸=l̄

inf
n=1,...,N l

ε

|xl,nε − xl̄,n̄ε | ≥ rl̄ε,

so that (for ε small enough) dist(∂Bρn
ε
(xl̄,n̄ε ), xl,nε ) ≥ rl̄ε≥ 2ε . It follows that

(5.50)

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

|Tvε | dH1 ≤ CNε = C| log ε| .

Analogously, by (5.49), for every l̄ = 1, . . . , L with ml̄ ̸= 0, for every n̄ = 1, . . . , N l̄
ε and for ε small

enough we have

|Tvε |(Bρl̄,n̄
ε

(xl̄,n̄ε )) ≤ 2π

ˆ
B
ρ
l̄,n̄
ε

(xl̄,n̄
ε )

1

|x− xl̄,n̄ε |
dx+ 2π

N l̄
ε∑

n=1
n ̸=n̄

ˆ
B
ρ
l̄,n̄
ε

(xl̄,n̄
ε )

1

|x− xl̄,nε |
dx

+ 2π

L∑
l=1
l ̸=l̄

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l̄,n̄
ε

(xl̄,n̄
ε )

1

|x− xl,nε |
dx

≤Cε+ CN l̄
ε

ε

rl̄ε
+ C

L∑
l=1
l ̸=l̄

ml ̸=0

N l
ε

ε

rlε
≤ CN

3
2
ε ε ,

whence we deduce that

(5.51)
1

| log ε|
|Tvε |

( L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
→ 0 as ε→ 0 .

Let finally φ ∈ C1
c (Ω) be such that ∥φ∥C0,1

c (Ω) ≤ 1 . By the very definition of distributional

Jacobian, integrating by parts and using that

Juε

(
Ω \

L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
= Jvε

(
Ω \

L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
= 0,
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we obtain, using (5.48),

⟨Juε, φ⟩Ω =

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTuε +

ˆ
Ω\

⋃L
l=1

ml ̸=0

⋃Nl
ε

n=1 B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTuε

=

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTuε
−

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

φTuε
· ν dH1 ,

and

⟨Jvε, φ⟩Ω =

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTvε +

ˆ
Ω\

⋃L
l=1

ml ̸=0

⋃Nl
ε

n=1 B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTvε

=

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTvε −
L∑

l=1
ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

φTvε · ν dH1 .

Therefore, by (5.47)-(5.51), and using that

Juε(Bρl,n
ε

(xl,nε )) = Jvε(Bρl,n
ε

(xl,nε )), for every l = 1, . . . , L with ml ̸= 0, n = 1, . . . , N l
ε,

we obtain

∣∣⟨Juε − πµε, φ⟩Ω
∣∣ ≤ L∑

l=1
ml ̸=0

N l
ε∑

n=1

∣∣∣ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

φ(Tuε
− Tvε

) · ν dH1
∣∣∣

+ |Tuε |
( L⋃

l=1
ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
+ |Tvε |

( L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)

≤
L∑

l=1
ml ̸=0

N l
ε∑

n=1

oscB
ρ
l,n
ε

(xl,n
ε )(φ)

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

(
|Tuε |+ |Tvε |

)
dH1

+ | log ε|o(1) .

Since oscB
ρ
l,n
ε

(xl,n
ε )(φ) ≤ Cε, it follows that

1

| log ε|
∥Juε − πµε∥flat,Ω → 0 as ε→ 0 ,

whence (FJ) follows by Lemma 5.1(b).

Case 2: General case. We argue by density, namely we show that for every (µ, TD) ∈
(M(Ω) ∩ H−1(Ω)) × L2(Ω;R2) with suppµ ⊂⊂ Ω and −Div TD = πµ there exists a sequence
{(µk, T

D
k )}k∈N ⊂ (M(Ω) ∩ H−1(Ω)) × L2(Ω;R2) with suppµk ⊂⊂ Ω and −DivTD

k = πµk for
every k ∈ N such that µk is locally constant for every k (and takes the form as in Case 1, i.e.,

µ =
∑L

l=1m
lχωldx , where L ∈ N , ml ∈ R , and {ωl}l=1,...,L is a partition of Ω into sets with

Lipschitz continuous boundary), and

(5.52) µk
∗
⇀ µ , |µk|(Ω) → |µ|(Ω) , TD

k → TD in L2(Ω;R2) as k → +∞ .

First, let {ρh}h>0 be a sequence of standard mollifiers. We define

fh := µ ∗ ρh , µh := fh dx , TD
h := (TD ∗ ρh) Ω
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By construction, −Div TD
h = 2πµh for every h > 0 and, for h small enough, |µh|(∂Ω) = 0 .

Moreover,

µh
∗
⇀ µ , |µh|(Ω) → |µ|(Ω) , TD

h → TD in L2(Ω;R2) .

Furthermore, since {fh}h>0 ⊂ C∞(Ω) , for every h > 0 , there exists a sequence {f jh}j∈N with f jh

as in Case 1 (i.e., f jh =
∑Lj

h

l=1(m
j
h)

lχ(ωj
h)

l , where L
j
h ∈ N , (mj

h)
l ∈ R , and {(ωj

h)
l}l=1,...,Lj

h
is a

partition of Ω into sets with Lipschitz continuous boundary), such that

∥f jh − fh∥L∞(Ω) → 0 and

ˆ
Ω

(f jh − fh) dx = 0 .

For every h > 0 and j ∈ N , let wj
h be the solution to{

−∆w = f jh − fh in Ω
w = 0 on ∂Ω .

By standard elliptic estimates, we have

∥∇wj
h∥L2(Ω;R2) ≤ C∥f jh − fh∥L2(Ω) .

Finally, for every h > 0 and for any j ∈ N , we set (TD)jh := TD
h + 2π∇wj

h , so that −Div (TD)jh =

2πµj
h , and, for every h > 0 ,

(TD)jh → TD
h in L2(Ω;R2) (as j → +∞) .

Using a standard diagonal argument one can find a sequence {(µk, T
D
k )}k∈N satisfying (5.52).

Finally, by arguing as in the second step of Case 1, we can construct the recovery sequence for the
functional Gε . □

6. Proof of Theorem 3.4

This section is devoted to the proof of Theorem 3.4.

Proof of Theorem 3.4. The compactness statement follows immediately by (3.14) and (1.10).
Analogously, the lower bound (3.15) is a consequence of (1.10) and of the lower semicontinuity

of the L2 norm with respect to the weak convergence.
Therefore, it remains to prove only the upper bound. The proof is fully analogous to that of

Theorem 3.3(iii) in Subsection 5.2. We briefly sketch it. Let β ∈ L2(Ω;R2) be such that β⊥ = TD

and we set µ := 1
2π curl β = − 1

2πDivTD . Then µ ∈ M(Ω) ∩H−1(Ω) . Moreover, by construction,
suppµ ⊂⊂ Ω .

We show how to prove the claim only in the case µ :=
∑L

l=1m
lχωldx, where L ∈ N, ml ∈ R and

{ωl}l=1,...,L is a partition of Ω into sets with Lipschitz continuous boundary. Indeed, the general
case follows by the former by arguing verbatim as in the proof of Theorem 3.3(iii). Let

(6.1) µε :=

L∑
l=1

N l
ε∑

n=1

δxl,n
ε

be the measure provided by Lemma 5.1 and let βε ∈ L2(Ω;R2) be the field defined in (5.30); in

particular, we recall the fields K̂ε and K̃ε defined in (5.25). By arguing verbatim as in Case 1
(first step) of the proof of Theorem 3.3(iii), and using that here Nε ≫ | log ε| , we have that

lim
ε→0

1

N2
ε

ˆ
Ω

|K̂ε|2 dx = lim
ε→0

1

N2
ε

L∑
l=1

N l
ε∑

n=1

ˆ
Aε,rε (x

n
ε )

|K̂ε|2 dx

= lim
ε→0

L∑
l=1

N l
ε∑

n=1

1

2π

log rlε + | log ε|
N2

ε

= 0 ;

analogously, by arguing as in (5.37) and (5.28), we get

lim
ε→0

1

N2
ε

ˆ
Ω

|K̃ε|2 dx = lim
ε→0

1

N2
ε

ˆ
Ω

|∇vε|2 dx = 0 .
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Therefore,

(6.2)
βε

Nε
→ 0 strongly in L2(Ω;R2) .

Finally, defining the sequence {uε}ε as in (5.41), by (5.42) and (5.45), we have that

lim
ε→0

1

N2
ε

Gε(uε) =
1

2

ˆ
Ω

|β|2 dx =
1

2

ˆ
Ω

|TD|2 dx ,

which concludes the proof of the claim in this case. □
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[62] Scala, R., Van Goethem, N.: Currents and dislocations at the continuum scale. Methods Appl. Anal. 23 (2016),
1–34.

[63] Scala, R., Van Goethem, N.: A variational approach to single crystals with dislocations. SIAM J. Math. Anal.

51 (2019), 489–531.
[64] Scala, R., Van Goethem, N.: Variational evolution of dislocations in single crystals. J. Nonlinear Sci. 29

(2019), 319–344.

(Vito Crismale) Dipartimento di Matematica “Guido Castelnuovo”, Sapienza Università di Roma, Pi-
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