APPROXIMATION OF TOPOLOGICAL SINGULARITIES
THROUGH FREE DISCONTINUITY FUNCTIONALS:
THE CRITICAL AND SUPER-CRITICAL REGIMES
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ABSTRACT. We further investigate the properties of an approach to topological singularities
through free discontinuity functionals of Mumford-Shah type proposed in [28]. We prove the
variational equivalence between such energies, Ginzburg-Landau, and Core-Radius for anti-plane
screw dislocations energies in dimension two, in the relevant energetic regimes |loge|®, a > 1,
where ¢ denotes the linear size of the process zone near the defects.

Further, we remove the a priori restrictive assumptions that the approximating order pa-
rameters have compact jump set. This is obtained by proving a new density result for S'-valued
SBVP functions, approximated through functions with essentially closed jump set, in the strong
BV norm.
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INTRODUCTION

This paper concerns the analysis of topological singularities, which is a central topic in models
arising in Physics and Materials Science. Vortices in superconductivity and superfluidity and
(screw and edge) dislocations in single crystal plasticity are the main examples of such phenomenon
JaL AT, 3, 9, 50, 51].

In the last decades several models have been introduced to describe the emergence of these
objects. Among them, the most celebrated is the Ginzburg-Landau (GL) model, mainly studied in
the context of superconductivity. In such a model, the order parameter is a function u € H*(; R?)
and the energy functional (in its simplest form) reads as

(0.1) ESL(u) = 1/ |Vul|? do + i/ (1- |u|2)2 dz,
2 Q g2 Q

where the parameter ¢ > 0 is referred to as coherence length. Here and below Q@ C R? is a

bounded open set with Lipschitz continuous boundary. A topological singularity is nothing but a

point around which u has non-trivial winding number and hence the main object to look at is the

Jacobian determinant (of u) Ju := det Vu. Denoting by S* the set of unitary vectors in the plane,

we notice that close to a topological singularity, u cannot be S'-valued (a singularity can be seen
1
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somehow as a zero of the order parameter); therefore, the parameter ¢ can be interpreted as the
size of the region where v fails to take values in S' and hence as the core-radius of the topological
singularity.

The variational analysis of the (GL) functional has been first systematized in the monograph
[6] (see also [59] and the references therein for the asymptotic analysis in terms of I'-convergence),
where the (GL) model is compared with (and shown somehow to be “equivalent” to) the so-called
core-radius (CR) approach, in antiplane elasticity. Within this framework, the main variable
is represented by the distribution of topological singularities p = ) a;0¢, (with integer weights
a;) but the energy functional depends both on p - which here plays the role of the Jacobian
in (GL) - and on a map u € H'(Q.(u);S*) “compatible with u”. Here, ¢ is the core-radius,
Q. (p) == Q\U, B:(&) and the notion of compatibility is given by the fact that deg(u, dB:(&;)) = a;
(assuming that the balls B (&;) are pairwise disjoint). The energy of the system thus writes

(0.2) M) = [ |Vul do ot ful(@).

Qe (p)
Here, the quantity ||(€) plays the same role of the potential term in £%, namely, avoids that
the cores cover the whole domain; in other words, it serves only to guarantee compactness and
does not provide any energy contribution in the asymptotics as € — 0.

The (CR) approach is mostly used to model screw dislocations in semi-discrete theories. Loosely
speaking, in pure (anti-plane) elasticity the bulk energy is determined by the Hooke’s law, and
reads as 3 [, [Vw|? dz, where the displacement w lies in H'(€2). In presence of a finite distribution
=Y, a0y, of (scalar) defects, the material has a purely plastic behavior in the cores B, (&;) and,
oversimplifying, such a plastic contribution can be expressed by |u|(€2). Moreover, along a closed
circuit enclosing the singularity &;, a displacement w compatible with p should have a jump [w]
equal to a;. Therefore, the displacement w is only in SBV?(Q.(u)) with [w] € Z and its elastic
energy should be given by % fﬂs ) |[Vw|? do, where Vw is the absolutely continuous part of Dw.
Setting

(0.3) u = 2™
one obtains that the total energy associated to the pair (u,u) is given by 5€CR.

In this paper, we adopt a different viewpoint, following the approach proposed in [28]. The
main feature is that the order parameter is now an S!-valued map, as in the (CR) approach,
defined on the whole Q, as in the (GL) approach. Clearly, in presence of topological singularities,
such a map cannot be in H*(Q;S'). But, instead of removing small disks around the singularities
(as in (CR)) or to weaken the S'-constraint (as in (GL)), the map u is now allowed to jump. More
precisely, u is a special function of bounded variation with square-integrable approximate gradient
(i.e., u € SBV?(Q;Sh)). The energy functional we consider is

(0.4) Fo(u) := / 1|vu|2 dz + 1Hl(su),
Q2 5

where € > 0 is a small parameter determining the size of the jump set S,, of u. Here and throughout
the paper H' denotes the (one-dimensional) Hausdorff measure.

Formally, the functional F. has the structure of the Mumford-Shah functional [56], but the S!-
constraint makes the analysis completely different. Indeed, having in mind the identity and
the (CR) approach for screw dislocations, jumps of the map w correspond to non-integer jumps
of the displacement w and should pay energy. In other words, the (amplitude of the) jump [w] of
the displacement exhibits a transition between integers in a little portion of S,,. The transition is
assumed to have length of the order of €, and corresponds to the presence of singularities. In this
respect, H'(S,) is the analogue of the potential term in (GL) and of the plastic term in (CR) and
the parameter ¢ can be understood also in this case as the core-radius of the singularity.

We highlight that for SBV maps the definition of topological degree as well as that of Jacobian
determinant are not so standard so that the notion of topological singularity is not so clear as in
(GL) and in (CR). Nevertheless, in [28], using the minimal lifting in [45], a notion of Jacobian
determinant is provided also for SBV functions; we recall such a definition in Section [1| (see [53]
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where in a more restrictive setting this notion was first introduced, and see also [9] for a different
definition of Jacobian determinant in dimension 2). In a nutshell, given a map u € SBV (;S%),
the Jacobian Ju of u is defined as the boundary of the 1-current T, defined by

1 1
(0.5) T, ::5(—u1812u2 + u?Op,ut ut Oy, u? — U0, ut) + §(u+ ANu")TL S,

= TP 4715

In [28, Theorem 3.1] the I'-convergence analysis of the functional
1 1 _
(0.6) 0. (u) ::/ Livu? do+ 291 (5,
Q2 €

at the energy regime |loge| has been developed: such an analysis revealed that the functional
G. shares the same compactness and I'-convergence properties of the functionals £® and £
Specifically, as € — 0, the Jacobian determinant tends to concentrate around a finite number
of effective singularities and the I'-limit of the functionals “gﬁ is given (up to multiplicative

constants) by the total variation of the limiting measure of the Jacobians. Since, in view of the
possible presence of short dipoles, a uniform bound on the total variation of the dislocations’
distributions is not available, the natural setting for such an asymptotic analysis is the (strong)
flat convergence for Jacobian determinants, the flat topology being the strong topology in the dual
of Lipschitz continuous functions with compact support in 2.

We stress that the proof of compactness, which is a prominent issue in [28], is based on the ball
construction technique introduced in [44] [B8]: in order to start the corresponding construction,
the original jump set needs to be covered by a finite family of pairwise disjoint balls in such a way
that the sum of the diameters does not exceed a constant times the H' measure of the jump set
(the constant could be also taken arbitrarily close to 1, from above). This is easily ensured if the
jump set is compact, whilst S, could be even dense in Q for a general u € SBV?2(;S!).

In the present paper we generalize the analysis done in [28] along two directions. On the one
hand, we show that the penalization term can be “weakened” considering only the length of the
jump set instead of its closure, i.e., working with the functional F. rather than with G.. Therefore
it is not needed to assume a prior: that the jump set is compact. On the other hand, we show
that the functional F. shares the same asymptotic behavior of the functionals ER and £ST also
in other energy regimes.

The first improvement is obtained by means of a density result in SBVP(£2;S!), p > 1, with
respect to energies F. for fixed ¢ > 0, through functions in SBVP(£);S') with (essentially) closed
jump set, converging in the strong BV norm and such that also the two unilateral traces of the
approximants along the jump set converge; in particular, by using the characterization of Ju as
the boundary of T, in , the strong convergence of Jacobian determinants with respect to flat
norm follows.

Our result hinges on tools developed in a slightly different setting, that is when only the
symmetric part of the diffuse gradient is controlled in some LP, for p > 1, rather than the whole
diffuse gradient. Mechanically, this corresponds to consider fracture models for general linearized
elasticity without the anti-plane assumption, described by the Griffith functional [40] instead of
the Mumford-Shah one.

In fact, the main tool for density results developed in the context of Mumford-Shah functional
is an approximated Poincaré-Wirtinger inequality for SBV? functions with small (%%~ !-measure
of the) jump set, due to De Giorgi-Carriero-Leaci ([25]): given v € SBV? there exists a trun-
cation in WP such that w differs from w on an exceptional set w whose volume is controlled
by (H%1(S,))'", d > 2 being the space dimension and 1* := d/(d—1). In the same paper, this
result has been used to prove that the jump set of Mumford-Shah minimizers is essentially closed,
namely the H9 ! measure of the jump set equals that of its closure. After short time a general-
ization for SBVP(;S*~!) maps has been proven in [16]; by combining such a generalization with
an argument in [8] (cf. Lemma 5.2 therein), one can show that the Mumford-Shah functional in
SBVP(£;S!) can be approximated through SBVP(£2;S!) functions having essentially closed jump
set and converging pointwise. Unfortunately, pointwise convergence of a sequence of functions
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does not guarantee convergence of the corresponding Jacobians; since we need convergence in the
flat norm such an approach is not satisfactory for our purposes. For functions with finite Griffith
energy (with exponent p), that is in the space GSBDP? ([23]), a fundamental tool is the approx-
imated Poincaré-Korn inequality in [10], stating that for any v € GSBDP with small jump set
there exists an infinitesimal rigid motion a (i.e. an affine function with null symmetrized gradient)

such that the L7=T-norm of u — a is estimated by the LP norm of e(u), the symmetrized diffuse
gradient of u, outside an exceptional set w whose volume is controlled by (H%~1(.J,))* . Moreover,
a convolution of ux, + ax, at the same scale of the domain provides a function with LP-norm of
the symmetrized diffuse gradient controlled by those of w.

This result, on which other contribution in this direction rest (see, e.g., the approximation in
GSBDP through functions with essentially closed jump set [19, 1] and the analogue of [25] for
the Griffith functional [20} [I7] [12]), has been generalized by [18] and [13]: here, any v € GSBD?
is approximated, in terms of the Griffith energy, by functions WP on a slightly smaller domain,
with essentially closed jump set, which differ from u on a set w whose boundary is controlled
by H?1(J,); further, in [I8] it is shown that in dimension two it is possible to guarantee that
the approximants coincide with u in the boundary neighborhood where they are not in W2, In
[18] such an approximation is used to prove an integral representation result, while in [I3] the
main result is the approximation of any v € GSBDP, with respect to the Griffith energy, through
functions with essentially closed jump set differing from u on sets of vanishing perimeter.

Moreover, Friedrich [32] proved a piecewise Korn inequality in dimension two, showing that up
to subtracting piecewise rigid functions (finite sums of infinitesimal rigid motions multiplied by
characteristic functions), any v in GSBDP can be approximated by functions in SBV? N L, for
q < p, in particular the diffuse gradient of the approximants is estimated on the whole domain
by e(u); this is a very powerful tool allowing to overcome the lack of a Coarea Formula in GSBD
and then to show, e.g., existence of quasi-static evolutions for Brittle Fracture models (see, for
instance, [34]). In the same spirit, in [33] a similar result has been shown in the Mumford-Shah
setting, namely dealing only with full diffuse gradients.

Eventually, we refer to [29] for the two dimensional analogue of [16] for maps in SBV?()(Q;SF~1),
(with Q C R?) whose approximate gradient is integrable with respect to the variable exponent p(-)
over 2 and whose jump set has finite H'-measure (see also [48] for the variable exponents analogue
of [25]), obtained under the assumption that the function p(-) is regular enough and takes values
in (1,2). This uses the analogue of the approximation of [18], proven by employing retractions
P: RF\ X — S*~! with locally g-integrable gradient for ¢ € [1,2), where X is a smooth complex
of codimension two (cf. e.g. [14]).

We then compare our main density result Corollary with [I3, Theorem 5.1]: we are in
two dimensions and consider the full diffuse gradient instead of its symmetrized part, however we
keep in the approximation the constraint of being S'-valued. We notice that also a version with
symmetrized diffuse gradient is readily shown with essentially the same proof, see Theorem

Since in our application the case p = 2 is the relevant one, we cannot follow a strategy based on
retractions. Moreover, the proof of [I§], [13], and [33] is not compatible with a non-convex target
space such as S'.

Our approach is based on the existence of a lifting ¢ € SBVP(Q) (i.e., such that u = €2™%) with
its BV -seminorm such that 7|¢|py < |u|pv ([24], notice that therein the relation between u and
¢ is u = e and the inequality is |¢|pv < 2|u|pyv ), for which we provide a suitable approximation
(Theorem and then compose the approximants with e?™.

We observe that, along this scheme, one could be tempted to directly employ the approximation
provided by [I3] Theorem 5.1] to ¢, before composing with the complex exponential; however,
despite the fact that the set on which the traces of the approximants - say ,, - differ from those
of ¢ has small measure, it could be even dense in S, so that a subset of Sy, u, = e2™%n  could
be dense in the integer jump set SI* of . As H'(SI*) is in general comparable to |u|py, thus
larger than H!(S,) by a factor 1/e, see , the procedure just described is not admissible for
our purposes: in fact, since we need approximants with closed jump set we are forced to consider
the closure of S, or, in other words, if we cover S,,, by a family of pairwise disjoint balls (in
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order to start the ball construction) then the sum of their diameters is larger than S, by a factor
1/e.

Therefore we need a more refined density result, which allows to approximate integer jumps
with integer jumps as well. The strategy adopted in the proof of Theorem is to work locally
near points with integer jump at a scale for which the jump is almost flat and assumes a constant
integer value (Step 1). Then locally most of the jump set of ¢ can be transferred (up to a small
error) into a flat segment S on which the jump has the same value (Step 2.1, the modifications
are defined in ); such S can be chosen in such a way that the remaining small jump set of
, on any square with arbitrarily small sidelength with a side contained in S, is small compared
to the sidelength: this follows by a two dimensional argument drawn from [18] (argument at the
beginning of Step 2.1, in particular the need to work in dimension two is discussed below (2.27))).

In this way, the approximation for functions with small jump set of [I8] (cf. Proposit
may be applied at every scale; therefore a Whitney-type argument combined with the fact that the
approximants coincide with the original function on the boundary of any square ensures that the
traces are the same on both sides of S, so the new jump is still integer (Step 2.1, from till
the end). We believe that this strategy may be replicated for different target manifolds, provided
that the universal cover is convex (for instance R¥) and a lifting with good BV bounds as in [24]
exists (in this respect see e.g. [I5]), but limiting to two dimensional domains. At the present stage,
however, our techniques seem to be not applicable to the case of S*-valued maps, with k > 1. We
anticipate here that the fact that our argument is two dimensional is not a real limitation for
the application considered in the present paper, as further substantial issues arise in the three
dimensional framework, see below.

The density result described above allows to develop the I'-convergence analysis for the func-
tional F. also in different energetic regimes (as it applies for fixed € > 0), thus generalizing the
setting of [28].

First, we develop the I'-convergence analysis in the so-called critical regime, that is |loge|?.
Loosely speaking, since |loge| is the energy cost of an isolated singularity, the fact that F.(ue) ~
|log £|? implies that, for e > 0, the number of singularities of the Jacobians Ju. is of order |loge|;
therefore, the Jacobians Ju., once rescaled by |loge|, should converge (in the flat norm) to a
measure g that is not anymore atomic but diffuse. Furthermore, we prove that such a measure p
lies also in H~*(£2). Indeed, by standard compactness results in L?((2), also the fields T, once
scaled by |log |, should converge (weakly in L?(£2)) to a field TP, whose distributional divergence
is shown to be given by —mu. As one may expect, the I'-limit accounts both for the plastic
contribution of y as well as for the elastic energy of TP. That is the reason why the |logel|?
regime is called critical, since in such a case the elastic and plastic effects are of the same order.
The I'-convergence analysis for the functional F. is provided in Theorems [3.3] and [3.4] which are
proved in Section [5l Second, the proofs of the compactness and of the lower bound are obtained
combining the corresponding results for the core-radius approach together with the refined ball
construction machinery introduced in [28] to analyze the |loge| regime.

Finally, adopting the same strategy, in Theorem we analyze also the super-critical regimes
|loge|? < N, < % In such a case, the interaction elastic energy is larger and larger than the core
energy, so that (unless scaling differently the two quantities Ju. and TES ) one keeps track only of
TP and the Jacobian determinants do not play any role when computing the effective energy.

We highlight that the I'-convergence analysis for the functional EEGL in the regime |loge|? has
been developed in [47, [60L [6T], where the authors consider also the case with magnetic field. The
analysis for ES® is provided in Section [4| and is somehow a short self-contained resume of the
results above, along the lines of [2].

However, a similar result in the context of edge dislocations within the (CR) approach is proven
in [35] under the well-separation assumption for the singularities (see also [55] for such an analysis
in the nonlinear elasticity framework); such an assumption has been removed in [39]. In view of
the asymptotic equivalence result [I] between the Ginzburg-Landau model and the purely discrete
models of XY spin systems and screw dislocations, we have that the analysis in the (GL) context
extends also to such discrete models.
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We remark that a similar analysis for space dimension d > 3 seems far from being addressed:
besides the fact that the density result is proven only in two dimensions, for which the analogue
of the ball construction ([44],[58]) cannot even start as discussed earlier, also the whole machinery
requires in several occasion bounds which are available only in two dimensions.

The paper is organized as follows: After recalling some notations and preliminary results in
Section |1} we prove in Section [2| a general density result for SBVP(2) functions in Theorem
which implies, as a consequence, Corollary This is the result we employ to obtain energy
density in the I'-convergence results of Section [3] actually allowing us to restrict such analysis to
S!'-valued functions with essentially closed jump set. The latter results are Theorems and
stated in Section [3] after recalling the main features of our model. In order to prove them we recall
in Section [4] the classical core radius approach, which is the starting point of our analysis. Finally,
the proofs of Theorems [3.3] and [3.4] are given, respectively, in Sections [f] and [6}
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1. PRELIMINARY RESULTS

In this section we collect some preliminary notions on the flat norm of measures and currents,
as well as some properties of BV functions that will be used throughout the paper.

Flat norm of Radon measures. Let n > 1 be an integer and let U C R™ be a bounded and
open set. We denote by M, (U) the space of Radon measures on U with finite total variation. If
€ My(U), we denote by |u|(U) the total variation of . We recall that a sequence ug € My (U)
converges tightly to u € My(U) if py converges to pu weakly* as measure, and |ug|(U) — |u|(U).
We also introduce the concept of flat norm of a measure u, denoted by ||u|lfat , as

(L1) lullaas == sup / o dy.
pecdt(U) JU
”‘P”cﬂ,l(u)gl

Here and below, the Lipschitz norm [[¢|co.1(ry is defined by
lp(z) — eyl
lelcorw) := lellpoe@) + sup a2
z,yclU |z — |
TF#Y

By a density argument we easily see that the supremum in (L.1) can be equivalently computed
among smooth and compactly supported (in U) functions ¢ with [¢[/co.1 ) < 1.
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Flat norm of k-currents. Let n > 2 be an integer and let U C R™ be an open set. For every
k € N with 0 < k < n, we denote by D¥(U) the topological vector space of smooth and compactly
supported k-forms on U, and by Dy (U) its dual, i.e., the space of k-currents on U.
The mass |T| of a current T € Dy(U) is defined as
7] = sup{(T\w) : w € DH(U), [z < 1}

As done in ([1.1)) for measures, we define the flat norm of a current T' € Dy (U) in U by

(1.2) T |lgat, v == sup (T,w),
weD*(U)
lwllrov<1
where
lwllro = l|wll Loy + 1wl Lo () -

In the special case that T is a O-current and has finite mass, then it can be standardly identified
with a measure, and the flat norm of T coincides with the flat norm of the measure T defined in
(1.1). For k > 1, we recall the definition of boundary 0T € Dy_1(U) of a current T € Dy(U),
given by

OT(w) = T(dw)  VYw e D*HU).
By convention the boundary of a O-current is null.

Jacobian for S!'-valued Sobolev maps in R2. Let U C R? be a bounded and open set. Given
a map u € WHL(U;S!) we recall that the distributional Jacobian Ju = Det(Vu) of u is defined
by

(1.3) (Ju, p)y == / Vo -\, dz, for every ¢ € C°(U),
U

where

)

Au ::2(—u O b Txg’u 0x1 b Oz

notice that \, € LY(U;R?).
Moreover, denoting by j(u) € L'(U;R?) the current associated to u, i.e.,

(1.4) 137112 youl | ou? 28u1)

1
(1.5) jlu) == §(u1Vu2 —u?Vul),
one has j*(u) = A, and j(u) = 7Vw, where w is a generic lifting of u, i.e., a map in SBV?(U)
satisfying (0.3) and Vw is the approximate gradient of w. Furthermore, it is easy to check that

Ju = —=Div), = curl j(u) = wcurl(Vw),

holds in the sense of distributions.

In the sequel we will use the fact that a function u € H'(U;S") satisfies Det(Vu) = 0 in the
sense of distributions. Moreover, if u € H(U \ B;S'), where B C U is a ball, then, integrating
by parts,

/ A - Vo dx:/ Ay - v dH? :/ j(u) - T dH!, for every ¢ € C°(U),
U\B dB B

where v is the inner normal vector to B, T = —v* is the counter-clockwise tangent vector to
2 1
OB. Notice that j(u) -7 = %(ul%% - uQ%%) on OB.
We recall that deg(u,dB) € Z is defined as

(1.6) deg(u, OB) := l/ jlu) -7 dH! = l/ Ay v dH!,
oB oB

™ ™

whenever u € Hz(8B;S").
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Jacobian for S'-valued SBV maps in R2. Let U C R? be a bounded and open set. We denote
by |u|py := |Du|(U) the BV-seminorm, and by ||u|py := |u|]lz: + |u|py the BV-norm of a
function of bounded variation u on U. We say that a sequence uy € BV (U;R?) converges strictly
tou € BV (U;R?) if up, — win LY (U) and |Duy|(U) — [Du|(U). In such a case we write ug SEC
For any p € [1,+0c0) the symbol SBVP?(U;R?) denotes the space of functions u € BV (U;R?) such
that the Cantor part D°u = 0, and Vu € LP(U;R?*2), where Vu is the density of D*u, i.e.,
D?u := Vul?. The space SBVP(U;S!') denotes the set of the functions u € SBVP(U;R?) such
that |u| =1 a.e. in U.

The following result, proven in [28] Corollary 2.1], is specialized here to maps taking values in
R2.

Proposition 1.1. Let u € SBV(U;R?) N L>(U;R?) ; then there exists a unique measure v, €
My (U; R2X2X2) sych that, whenever {v}ren C CHU;R?) N WHH(U;R?) N L>°(U;R?) satisfies

|kl Loe (sr2y < C < 400 for all k > 1 and vy Uy in BV (U;R?), then vy ® Vug — v, , where

(I/u);’h is defined (for all p € C.(U)) by
[ e@ o= [ oot @0, u'(a) ds
U U\S,

" % /S $(x) (uF () + u 7 (@) (u" T (2) — ub ™ (2)y; (x) dH (2),

for every i, j,h € {1,2} . Finally, if {ug}reny C SBV (U;R?) N L>®(U;R?) with
(L.7) ukllzeewre) < C,

strict

for some constant C > 0, and uj, ~— u in BV (U;R?), then
(1.8) Uy, — Uy in My (U;R?*2X2)
In the following, for every map u € SBV (U;R?) N L*°(U;RR?), we set
[W'"Dju’] == (v,)5", i,j.he{1,2},
For any map u € SBV (U;R?) N L>=°(U;R?) we introduce the 1-current T;, defined by

1
T, ::5(—[U1D2u2] + [u”Dau'], [u'D1u’] — [u”Diu'])
1 1
(1.9) 25(—u18x2u2 w200t w0y u? — w20, ut) + §(U+ Au)TL S,
= TP+ 75,

where we have noted a A 3 = —a - B+ = det(a, B). Notice that TP € L'(U;R?) and that, if
u € WHY(U;SY), then T, = TP = A\, with A\, defined in (1.4). Finally, we highlight that if
u € SBV(U;SY), for any lifting w € SBV (U) of v, i.e., satisfying (0.3]), it holds that

(1.10) TP .= nVtw; T8 = %sin(Qﬂ'(UF —wh))TLS,.
The distributional Jacobian Ju € Dy(U) of u is defined as the boundary of T, namely
(1.11) Ju = 0T, in Dy(U).
Essentially by definition, it easily follows that
[Jullgar,y < Cllull sy,
for all u € SBV(Q;S!), for a universal constant C' > 0 (see [28, Theorems 2.2 and 2.5]).

Remark 1.2. We point out that in general Ju is not a Radon measure. This notion of Jaco-
bian determinant was first introduced in [53] under some special hypotheses on u. Under these
hypotheses it turns out that Ju is also a Radon measure.
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2. DENSITY RESULTS IN SBVP(Q;S?!)

In this section we prove that any function u € SBV?(§;S') can be approximated - in the strong
BV norm - by (sequence of) functions in SBVP?(Q;S!) with closed jump set. As a consequence
(see Proposition , we deduce that the corresponding currents can be approximated in the flat
norm.

In what follows for every function ¢ € SBVP(Q) (with p > 1) we denote by Sf;ac the fractional
Jjump set of ¢, i.e., Sf;ac ={z € S,:[¢] ¢ Z}, and by S’f;t the integer jump set, namely,
St = S, \ Sgac. Observe that if ¢ € SBVP(Q) is any lifting of u € SBVP?(£;S!), then
S};r ¢ = S,

The main result of this section is the following.

Theorem 2.1. Let Q C R? be a bounded open set with finite perimeter, p € (1,+00), and & > 0.
Then for every o € SBVP(Q) there exist:

e closed sets 't = Tint Tfrac — pfrac - gnite unions of disjoint C* curves;

e a set W = W, finite union of cubes;

e a set of finite perimeter @ = W, ;

e a function § = 0. € SBVP(Q) N WhP(Q\ (T'"t uTHae U G)) ;

such that

(2.1) (Ve #Vocouw, L:{p#0})<e, 0=0inw,
[0)(z) € Z for H'-a.e. x € Tt

(2.2) (1S — HEI™)| + HE(SEADT) + HY(0w) + H' (0'D) < e,
and

(2.3) /Q\VGPD dr < (1 +E)/Q |V|? de.

Moreover, HY (T2 N {0 # ¢t}) + HL(TF2e N {0~ # ¢ }) < &, where 6% and ¢* denote the
traces of 0 and ¢ on the two sides of T'.

Before providing the proof of Theorem [2.I] we state and prove our desired approximation results
for maps in SBVP(2;S!), in the following Corollary and Proposition

Corollary 2.2. Let Q C R? be a bounded open set of finite perimeter, p € (1,4+00), and € > 0.
Then for every u € SBVP(Q;SY) there ewist:

o a closed set T =T, finite union of disjoint C' curves;

e a set W = W, finite union of cubes;

e a set of finite perimeter 0 = W, ; B
e a function v =v. € SBVP(Q; SN WP(Q\ (T Uw);Sh);

such that

(2.4) {Vu#£Vo} caoum, L2({u#v})<e, Vv=0Lae ind,

and

(2.5) HY(SLAT) + HY(0@) + HH(9*B) <&, /Q |[VolP dz < (1 +¢) /Q [Vul? de.

Moreover, H* (T N {vt #ut}) + HX T N{v™ # u~}) < e, where v* and u* denote the traces of
v and u on the two sides of I.

Proof. Let u € SBVP(Q;S!) and let ¢ > 0. Then, by [24, Theorem 1.1], there exists p € SBV?(Q)
such that u = e?™% with 7|p|py < |u|py . (Notice that in [24] the relation between u and ¢ is
u = €' and the inequality is |p|py < 2Ju|py.) Let I'", I8¢ & & be the sets and let § be the
function provided by Theorem [2.1]. We set v := €2 . Then, {Vp = V0} = {Vu = Vv} L%-a..
and {¢ = 0} C {u = v}, so that, by (2.I) we immediately deduce (2.4). Furthermore, since
S’gac =9, , taking I = T'frac_ by Theore we deduce also the last part of the claim. (]
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Proposition 2.3. Let Q C R? be a bounded open set with finite perimeter, let p € (1, +00), and
let w € SBVP(S;SY). Then there exists {uy }nen C SBVP(Q;SY) with HY(S,, \ Su,) = 0 for all
n such that

un — ullBv(;r2) = 0,
(2.6) [Vunl Lo @rzx2y = [[Vul| Leurex2),

H(Su,) = H'(Su).
Furthermore
(2.7) T, — Tul(2) =0,
where Ty, and T, are the measures provided by ; i particular

|Ju — Juy |lfat.0 — 0,

with || - ||fat,0 s the norm defined in (1.2).
Proof. Let u € SBVP(Q;S!) be fixed. For every n € N let u,, be the function provided by Corollary
for e=¢€, = % By and , we have that, for all s € [1,+00),
(28) Cutud) < ol

and

1
Ls(R?) < —,
ns

1
ST

)s

( ) ||Vu — VUHHLI(Q;R2X2) S (||V’LL| LS(Q;RQXZ) + ||Vun| LS(Q;RQXZ)) (|(,T}n| =+ |(Dn
2.9

[Vul

S W L (Q;R2%2) -

Furthermore, since

DSu = (vt —u”) @, LS, dH}, DSu, = (u} —u,) @ vy, LS,, dH',
by triangle inequality, using that v,, = v,,, on S, NS, , we get
ID5u — DSu,|(Q) < (Jut —wb|+u™ —uy [YH (S N Su,)
+lut = uT 1Sy \ Su,) + uf — ug [H (Su, \ Su)
(2.10) CAHYTp N {ul £ ut)) + AHN D, N {u #u”)) + 2HY (S AS,,)
C

Sia
n

where in the last inequality we have used (2.5 and the fact that S, C '), Udw,, to deduce that

HY(SuASy,) SHN T, N (Sy\ Su,)) + HH(S.AT,) + H (0w,)
<SHU D O {uf £ 0t} + MU (T 0 {uy # ™)) + HL(SWAT,) + HA(05,) < 2.

By (2.8)), (2.9), (2.10), we immediately deduce the first claim in (2.6)), whereas the other two easily
follow from (2.5). Notice that (2.6) together with the fact that w,,u € SBV?(Q;S') implies that

(2.11) / I[u] = [un)| @ vy dH' =0 and H'(S,AS.,) — 0 as n — +o00.
SuNSun,

Furthermore, using triangle inequality, (2.8) and (2.9)), it is easy to check that

|T1?—T1]3L (Q) < 4HVU||L1({U¢UH};R2X2)||u—un||Loo(Q;R2)—|—4||un||Loo(Q;R2)HVU—VUTLHU(Q;szz) —0
and that
1
|75 — 15 (Q)gf/ lul Au, —ut AuT| dH!
2 SuNSu,
1 + - 1 1 + - 1 1 3
+ 5 fut A u| dH + - s Ay | dHY < M ({[u] # Jual}) < 2,
2 J$u\Sun 2 JSu,\Su n
since S, C Ty U@, Ud*G, and {[u] # [un]} = (SuASy,) U (Su N Sy, N {[u] # [un]}). O
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In the proof of Theorem we will employ a variant in SBVP of the following fundamental
technical tool, [I8, Proposition 3.2]. In [I8] the result is stated for balls, and it holds for cubes as
well. Moreover, it holds true also for GSBDP functions, in place of SBD? (see e.g. [I7, Proof of
Proposition 3.1]). As usual, @, := (—p,p)*.

Proposition 2.4. For every p € (1,00) there exist ¢ > 0 and n € (0,1) such that if u €
GSBD?(Qa,), ¢ > 0, satisfies

HY(Su N Q2p) < (1 —s)o
for some s € (0,1), then there is a countable family F = {B} of closed balls of radius rp <

2(1 — s)p and center xp € @259 such that their union is compactly contained in Ba,, and a field
w € SBDP(Q2,) such that

(i) o' Xpes L2(B) + Xpes H'(OB) < ¢/n H'(Su N Qy);

(i) H'(SuNUpesdB) = H!((Su N Q2sp) \ Upes B) = 0;

(iii) w=wu L%-a.e. on Q2, \ UpezB;

(iv) w € WhP(Qas0; R?) and H'(Sy \ Su) = 0;

(v)
(2.12) / le(w)[? dz < c/ le(w)[? da.

Upez B Upes B

We now present the modification of the result recalled just above, allowing to obtain the desired
SBV? version.

Proposition 2.5. For every p € (1,00) there exist ¢ > 0 and n € (0,1) such that if ¢ €
SBVP(Qa,), 0 > 0, satisfies

H'(Sp N Qap) < n(l—s)o
for some s € (0,1), then there is a countable family F = {B} of closed balls of radius rp <

2(1 — s)p and center xp € @252 such that their union is compactly contained in Q2,, and a field
w € SBVP(Q2,) such that

() 07" Ypes L2(B) + Xopesr H'(OB) < ¢/n H'(Sy N Q2,);

(ii) H'(Sp NUpez0B) = H'((Sy N Q2sp) \ Uz B) = 0;

(iii) w = ¢ L*-a.e. on Qa, \ Upez B;
)
)

(iv) w e WhP(Qas,) and H'(Sw \ Sy) = 0;
(v
(2.13) / [Vw|P dz < c/ [V|P de.
Upes B Upez B

Proof. We notice that it is enough to follow the proof of [I8 Theorem 2.1], from which [I8]
Proposition 3.2] follows, and use the fact that, if ¢ € SBV?, one can control the components of
the constant matrix Vé(y) in place of those of e(¢(p)) (see (2.12) in [I8] and its consequences;
therein the role of ¢ is played by u and ¢(¢) corresponds to our modification w) by

Vile) - (e =) = ole)a) —s()) = [ (@t
@,y
where % (t) := ¢(z + tv), for v := =1, 2z := (Id — v ® v)x. Moreover, a constant in place of an
infinitesimal rigid motion appears in the Poincaré’s inequality for ¢ on Qz 3. O
We now turn to the proof of Theorem

Proof of Theorem[2.1} Let o, a1, a2 be small positive constants to be determined later. We divide
the proof into three steps.

Step 1: Covering the jump set. Since the sets
§g = Sgac and §; ={z € S, [¢](x) =z} for all z € Z* :=Z\ {0}
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are countably (H!,1) rectifiable with finite H! measure, by [31, Theorem, 3.2.29] for every z € Z
there exists a countable family {M} }ren such that

(2.14) i (§; \ IQ M,j) =0

and, by [3, Theorem 2.76] we may assume that for each z € Z and k € N the manifold M} is
a graph of a C' and Lipschitz function with Lipschitz constant less than ;. Let us fix z € Z
such that "Hl(Sj,) > 0 (in particular, for the application of the present theorem in this paper, this

holds for z = 0). Then, since x has H!-density 1 both for §; and M7 for Hl-ae. x € §fp N Mg
(by Besicovitch-Marstrand-Mattila Theorem, see e.g. [3, Theorem 2.63], being both sets countably
(H', 1) rectifiable), for every k € N and every such 2 € SZ N M} there exists g(az,z) € (0, ¢) such
that

1 (@, (2) N 57) —2r| < 2a0m,  [HN@Q,(x) N M) — 27| < 20,7,

(2.15) _ N
|HY(Q,.(x) N (S5 N M) —2r| < 2aqr.

for every r < g(ws, x), and moreover
(2.16) HU (@, (2) N (SEAM)) < ¥ (@, () N 57),

for every r < o(aq, z); here we recall that Q,(z) denotes the (open) cube Qﬁ(z) (z), centered at x,
with sidelength 2r and with a side normal to v(z), the approximate normal to S, (or S7) at z.

We notice that (2.15) holds also for S, in place of §; or §; N M§, that is, for H'-a.e. x € Sy, we

may also assume
(2.17) H (@, (x) N S,) — 27| < 2asr
for every r < g(ae, z). Now we introduce

M:=S,n |J M.
2€7, keN

We also denote by M c M, the set of points = satisfying (2.15), (2.16), and (2.17). From
what observed, H(M \ M) = 0; so, since the family {Q,(z): * € M, r < p(ag,z)} is a fine
cover of M, Vitali-Besicovitch’s Covering Theorem (see [30, Theorem 1.10] for its version for
cubes) ensures the existence of a disjoint subfamily {Q. (x): x € M'}, for a countable set

r(az,z)

M' = {z;}jen C M C M and r(as,z) < (s, z), such that
H (s.\J@,) =0,
JEN

where we have denoted Q; := Q,;(z;) and 7; := r(ag,z;) for every j € N. Then there exists
J = J(az) € N such that

(2.18) Hl(sw \ DQj) < as.

For every j € {1,...,J}, let k; € N, z; € Z be the indexes such that z; € S N M,’:JJ and (2.15)),
(2.16), (2.17) hold (for all j, such indexes are unique). Then we set

Fj = QJOM/:; .
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We now see that for every j € {1,...,J}, there hold

(a) T, is the graph of a C* and Lipschitz function with Lipschitz constant less than as;
(b)  |H'(Q,.(z;)NT;) —2r| < 2aqr for all 0 < 7 < ry;

() H'(Q;n (gw i)+ M@y 0(8,\52)) < Sazry;

() 7—[1(5 A U ) < ao(1+5H(S,));

j=1

(e) (L_J@ ) < 30H(S,).

7j=1

<

Property @ follows by definition, since M} are graphs of Lipschitz maps with constant less than

aq. Property follows immediately from (2.15)). As for the proof of , by (2.16]) and (2.15]),
choosing 0 < ag < 1 we have that

(2.19) HY(Q,; N (SZAL) < s’ (Q; N SH) < 202(1 + az)rj < daory ;
moreover, by (2.17) and (2.15)) we have that
HU(Q,; N (5, \57) =H'(Q; N S,) —H'(Q;N5)
§27"j(]. + 0[2) — 27’]'(1 — 042) = 40[27"]' s
which, combined with (2.19)), yields property . Property @ follows from the decomposition

Sw\UFj: Sw\Uéj U Q; N (S \Ty)),

combined with and the estimate
Hl(@jm(s¢grj)) H'(Q, N Sz \T5)) +H(Q; N ((S, \SZJ)\ i) +HYQ; N (T;\ Sy))
H'(Q; N (S5 AT;)) +H (@Q; N (S, \ 5%))
< 8042rj <oy (H'(Q; N Sy) + 2aar)))
S 5@27‘[1 (QJ N S(p)

recalling that the cubes @j are pairwise disjoint. Here the first inequality follows from the fact

that §Zj C S, the second one from , the third one from (2.17)), the fourth again from (2.17))
choosing

1
(2.20) az < ¢

Eventually, recalling that r; < ¢ for every j, by -, since ag < 7 < 3 , and using again that
the cubes (); are pairwise disjoint, we have

U Q Z4r < QQZ (Hl(@j NS,)+ Qagrj) < 3927—[1(@]» NS,) < 3Q’H1(S¢),

from which (ED follows. Moreover, using (2.18) with , and arguing as done to prove @, we
obtain that

J
i—w\int — U Fj, ffrac — U Fja f — fint U ffrac — U Fj
J: 270 Jiz5=0 i
are finite unions of disjoint C'' curves and

(2.21) HL(SIEAT™) 4 HI(Sae ATH) < ay(1 + 5H1(S,)).
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Step 2: Approzimation in the cubes QQ;. We perform two different approximations depending
on whether the cube Q; = Q,,(x;) is such that z; = 0 or not. To shorten the notation, we
set vj := v(x;), where v(z;) is the approximate normal to S, at x;, and we denote by 7; the
unit vector such that 7; - v; = 0 and 7; A v; = 1, where we recall (cf. below (L.9)) the notation
aAf=—a- Bt =det(a,B) .

Step 2.1: The case xj ¢ §g, i.e., z; # 0. This implies that [p](z;) = z; € Z*. In this case
we first show that there exists a “big” set of segments (parallel to 7;) in the cube Q; that do not
intersect the jump set S, of ¢ and such that (small) stripes centered at each of these segments
contain a “small” portion of S, \ I';. To this end, for z; + 7;R the straight line orthogonal to v;
and passing through x;, we define the (signed) distance from such a line as dist(z, z; + 7;R) :=
(x — x;) - v; . Moreover, for every v € (—r;/2,7;/2) we define

T} := Q; N{dist(-,z; + ;R) = 7}
and, for every k € N, we set
C}’k = @j N {dist(-,z; + ;R) € [y — 2_krj,fy + Q_krj]}_

Let
1

2.92 = —
(2.22) 7= e

where 7 is the constant from Proposition We set S; := Q; N (S, \T';). We claim that there
exists a set I]ﬁ C (—r;/2,7;/2) with
7 160
(2.23) LI < ﬁO‘Q r;
such that, for every v € (—r;/2,r;/2) \I;’, it holds

(2.24) HH(S;NCPY) < i2m ", forall k€N
and
(2.25) HY(T N S,) =0.

Indeed, for 5;-“ :=27%r;, we argue as in the proof of [I8, Theorem 2.1], considering the family

(2.26) ﬂ:{haf,waﬂ : HAS; NP = Dok, keN, v€(rj/2,rj/2)}

f 2
and I;’ = UIeﬂf’ I. By Vitali’s covering theorem, there exists a countable set {(7', k") };en such
that the intervals [y! — 5§?l,71 + 6;“1] in ,ﬂjﬁ are pairwise disjoint and

17 c | - 56 A4t + 508

lEN
By property of I'; we have
1 1 Lk 7 okl N,y
(2.27) Saar; > HY(S; NQ;) > %H (S;ncy ) > % 20 = 5L (I)).

Then ([2.23)) follows. We stress that in the above estimate it is crucial that the space dimension of
the domain is d=2: in fact, taking for instance d=3, in order to have the analogue of Proposition[2.5]
(see [13} Theorem 3.2]) one would consider the modified set fjn’g in place of .} in ([2.26)), obtained

by replacing the condition H'(S; N C]k) > 16k by H2(S; N C;Yk) > 1(6%)? (in order to guarantee
that for all cubes g of sidelength 6% in the strip Cj%k one has H2(S; Nq) < 17/2H?*(9q)), and then
one would get
Bagr; = HA(S;n Q) = Y HA(S; N )y =3 g(afl)%
leN leN
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from which one cannot conclude the analogue of ( since only >,y 2(5k > %L’l(lj), and
(65')2 < 6%

From and the definition of I/, every v € (—7;/2,7;/2)\I] does not belong to any interval
of the family and then satisfies (2.24). Since H'(T7 N S,) = 0 for every v € (—r;/2,7;/2)
except at most countably many, we may enforce also (]Z% . Then the claim is confirmed.

Let us choose v; € (—7;/2,7;/2) \I;’ satisfying (2.24)), (2.25) with

161ce
(228) i S <Oél7'j - 77] T, Oél’l"j> .
We notice that I'; C {dist(-,z; + 7;,R) € [—ayr;, 17}, due to property (a) and since z; € T';.
Therefore I'; N T;” = ( and T is “above” T]j with respect to the positive orientation of v;,

i.e. for any two points 7; € I'j, 7, € T]j such that (g, — z;) - 7, = (¥ — x;) - 75, it holds that
(U, — ;) -v; > (Y —x;) - vj. Such choice of v; is allowed by ([2.23]). We consider then the function
(2.29) Pj =@+ zjxm, in @j,
where H; C @; is the closed region delimited by I'j, T]j , and the two segments Ejl, E? C 0Q;
joining the two couples of intersection points of I'; and Tj” with the two boundary segments

Bj:t = {xj :|:’/‘jTj +t1/jl ‘t| < ’/’j} C (9@]

The motivation for introducing @; is that this allows us to “transfer” the jump of ¢, which is
approximated by I';, onto the jump set of »; which is approximated by the segment T% In fact,
by property (| . we deduce that

(2.30) HH(Q N (S5, \T}7)) < HNQj N (S, \Ty)) +H' (T \ §7) < Baar;

by (2.25)) it holds that

(2.31) HHT) n{[Z)] # 2}) = 0.

Further, for every s € (0,r;), denoting @, s := z; + @, and Ejl s 25, C 0Qj s the two segments

joining the two couples of intersection points of I'; and T]J with the boundary segments
B]:{:S = {LL']‘ =+ s7; +ty;: |t| < Tj} C (Q)ijs,
in view of (fa) and (2.28))

161
(2.32) HY(SL,ux2,) <2 (2a15 + no‘z j> .

Arguing as done before to ensure (2.24), (2.25) for v outside a small set, provided

2.33 vV -
(2.33) g < 320
it is possible to find 7; € ((1 — \/az2)r;,r;) such that, denoting

Qs ={r€Q;: (w—a;) v € (5,75 +75), (x—x5) - 75 € (=75,7))},

o~ o~

(2.34) Q5 ={r € Q)i (w—uj)-vj € (v —75,%), (w—25) - 75 € (=75,75)},
it holds that

H'(Sp, N0Q5,) =0,
(2.35) 1 + + ~o—(k+1)
H (S@, N ijj N (3ijj + By-kr, (0))) <72 r; for every k € N.
In fact, the same argument as above (in particular we use that the space dimension is 2, as
discussed below (2:27))) shows that there exist sets I1 , I5, C (—rj,7;) with £}(I7F) < 320%”’
LYIE) < 3200‘2 r; such that, for

Ol f{erg—:<xij>-vjem+2*’“m}, Ok ={reQ; (w—w;) v € [F—27Fr; 7]},
C\:/eff —{erj:(x_xj)'Tje[ﬁa§+2_ij]}v CJef+ {‘TEQJ (- ) Tj € [y—2" 7“], 7},
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it holds that for every 3 ¢ I | IE

hor® *ver
HUS;NCLE ) <2~ 7S no%EL) <i2m® e, for every k € N.

Therefore, since ([2.33) implies that \/ap > 32022 it is possible to find

7

?j S ((1 — \/OAQ)T‘]‘, Tj) such that ’)/j :l: ?j ¢ Ilir’ :l:?J ¢ I\:zir’

so the second condition in (2.35)) is satisfied. Then (2.35) follows, since the first condition holds
true for every 7'; except at most countably many.
Let

~ 9 9 7/“\
2.36 5. € (87,167) Nl
(2.36) ! n’n/ mN

so that the rectangles jS,?j are partitioned into cubes of side length gjrj. Moreover, let %j eN
be such that

(2.37) 5; € [27 Rt g=hiy,
By property @, we have that
(2.38) HH((Q1\ Qj7;) NTy) < 2a1y/azr;.

We now subdivide Qj}j into cubes whose sidelength vanishes in a dyadic way towards the bound-
aries such that in any of them there is a small amount of jump of %; compared to the sidelength,
in the sense of Proposition [2.5

Let us assume, for simplicity of notation, that z; = 0 and v; = e3. We introduce two sets Qli of
dyadic squares of sidelength O 1= 2*’“3]- rj, k € N, which refine towards GQ;.%?],? as follows: let Q;‘%o
be the family of squares ¢ € {z+ (0, gjrj]2: z € S\jT’jZQ}, qC jSf,- such that dist(g, 8@?%) > Sjrj;

recursively, for k > 1, let thk be the family of squares ¢ € {z + (0, gk]z: z € Skz2}, qC Q;t?] such
that dist(q, 8@;}]_) > &5, and ¢ does not intersect any cube in jS’l, for | < k; we define

o0
+ . +
Qj T U ijk'
k=0

For each ¢q € Q;[ let ¢’ and ¢” denote squares concentric with ¢ with sidelength 10% and 20%
longer, respectively, so that I(¢') = 131(¢”) and I(¢”) = £i(q); here and below, I(G) denotes the

sidelength of a cube ¢. By (2.22)), (2.30)), and (2.36)), for any ¢ € ijo, we get that

1 15Ud") _ (1- %)w

) .
(2.39) Hq" N Sp;) < Bagry < @djry <nsla) =nge—F = 4

so that all the squares ¢’ “coming from” squares q € jS,o satisfy the hypotheses of Proposition

for s = 1L
2
Moreover, let k£ € N. By (2.22)), (2.35)), (2.36)), and (2.37)), for any ¢q € ka we have
o (kB — ~ 51(q") 11\ 1(q")
2.4 Lg"” Y < g—(ktk—1), s 12 — (1,7>7
(2.40) P N Sg,) < S 10% T 106 4 12) 4

(in particular the first inequality follows from ([2.35)) and the fact that ¢” C 3jS,?j +B, k-2, (0),
J

which in turns follows from (2.37)), the definition of ijfk, and recalling gk = Q_kgj r;) so that all

the squares ¢/ “coming from” squares g € ka satisfy the hypotheses of Propositionﬁfor s = % .
By (2.39) and (2.40) we thus deduce that all the squares ¢” “coming from” squares q € Q;t satisfy

the hypotheses of Proposition for s = %

1«
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Therefore, by Proposition applied to @; € SBVP(q"), for each q € jS there is a set of finite
perimeter w, C ¢, wy = Uz, B and a function w, € SBV?(q") such that

wy, € WHP(q'), w, =3, in ¢"\ w,

1/ 9% <E g 7

/ VugPde<e [ V@, da.
Wq Wq
We define
+
wj = U Wq-
qEjS

Since the cubes ¢ overlap at most 8 times, by the second and third property in (2.41) we deduce
that

j,?j)v

/i [Vwg|? dz < 86/i IV@;|P de
(.Ug UJJ

Following [I3] proof of Theorem 4.1, p. 1198], we construct regularized functions ’U;t on Qf?j
which are convex combinations of the functions w,. We notice that in our setting all the cubes are
“good”, according to the definition in [I3], that is the jump inside has small H!-measure compared

to the sidelength.

N c
H (0" w) < 85 HY (S, N QT
(2.42)

We set
(2.43) 0F = > wydy,
qEQ;J‘E
where
e Y (T _ _ Ua) Ug)\?
A e =) Pra=ar (550 %)

) e C§°((—11/20, 11/20)%; [0, 1]), Y =1on[-1/2,1/2].

By construction, ¢, € C(¢’;[0,1]) and ¢, = 1 in ¢, for any ¢ € jS. Since, by (2.41)), wg €
WLP(g") for every q € Q]i, we deduce that

(2.44) 0F ¢ lep( U q').
qEQji
Eventually, we define

(2.45) 0; := GJXQ;% + HJXQ;?_, wj = w) Uwy .

By [2.30), @.41), (2.42), [2-43), [.45) it follows that

|V0j|p dx S 8c \ch|p dfﬂ, Hj = Q/D\j in ijj \wj,
(2.46) @i g .
H(0"w;) <8 ;Hl (@i, N (S, \T}")) < 645 aers.

We observe that the first estimate above is obtained arguing as in [I3 Step 3.3 in Theorem 5.1]
with the full gradient in place of the symmetrized gradient.
Furthermore, by construction we have that

(247) 6]‘ = @j on an,?’”\j’ [QJ] = [@J] on T;/J
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We observe that the latter property above follows from the fact that we employed a Whitney-type
approximation towards T]J : for details we refer to [I7, discussion between (27) and (28)]. In view

of (232),
1 1 1 2 ~ 3220[2
(248) H (862]‘7;»} n {9J 7& (P}) =H (EjijEjfj) S 4Q1Tj + 77] T,

and, by property (]ED and the definition of T]ﬂ

(2.49) 1 (Qj7, NT;) = H Q)5 NTJ)| < 2007
Step 2.2: The case x; € gg, i.e., z; = 0. In this case, z; € Sgac, and as done before, we find
radii 7; € ((1 — y/a2)r;,r;) such that, denoting Q; s := z; + Q, it holds that

H' (S, N0Q;7,) =0,
(2.50) ) e
H (S@. NQjz N (ijj + By-kr, (0))) < N2 r; for every k € N.

+
J:Tj

By this choice, we can slightly amend the construction in [I3, Theorem 4.1]: denoting by @
the two connected components of Q; 7, \ I';, namely

Q;'f?j ={y €Qj7: £(y-v;) >r,(y) v} for lr,(y) € Ty s.t. Ur, (y) - 75 = y - 75,

there exist two sets of finite perimeter wji C Qf@ and functions Hj-i € W“’(Qf@) such that, for
suitable cji = c;.t (p) >0,

07 = ¢ in QF: \wi, /wi IVOF|P do < ¢ /wi [Veol? da,

(2.51) :
H (0"w)) < g H (S, NQL), HNOQs5 N (w) Uwy)) =0.

We notice that the last condition is new with respect to [I3] Theorem 4.1]: it comes from the
Whitney-type construction as in the previous substep, in turn allowed by the choice of 7; for
which holds, which is possible in 2d. Moreover, as in [I3] proof of Theorem 5.1, Step 2.2],
one proves that the constant

(2.52) ¢:= max{cji: jst.oz;€ Sf;ac}

is bounded uniformly with respect to s (in particular, even if the side lenghts of cubes decrease
and the number of cubes increases; notice that increasing the number of cubes one may assume
that the Lipschitz constant corresponding to I'; decreases). As above, we set

L .—pt - e T -
0; = 0; XQI@- +0; XQ;%_, wj = w; Uw; .

Step 8: Conclusion. Following the lines of [I3, proof of Theorem 5.1, Step 3], let us consider
6 €(0,0.4 V2as minj—;, . yr;) and the families:

J
2, = {Qz,5 =0z +[0,8]%: 2 € 2%, g5 1 (R2 \ U ijj) 7 Q)},
j=1

9y = {qm =02+1[0,6]%: 2 € Z*, q..s ¢ 2 and intersects some cubes in Ql},

2 =2, U 2.
For each ¢ € 2, let ¢’ and ¢” be the (closed) cubes concentric with ¢ and having side length
(¢") = 36 and I(¢") = 126 = 221(¢’), respectively. Let
0;(x), =€Qjzn,
(2.53) 0@) =N p@), zea\ |J Qs

G=1,...,J
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and, recalling the definition of ¢, i from Proposition [2.5] set

2, = {q €2: H'(S;n¢") < 3—12775}: {q €2: H'(S5Nq") < n(l - 1%) l(iﬁ) } 2 = 2\ 2.

For every ¢ € 24, by Proposition applied to v € SBVP?(¢”) (in correspondence to s = 0.9)
there exist w, € SBVP(q") and wy C ¢, wy = Ur, B such that

wy € WHP(), wy = 0 in q"\ wy

1/ 9% Cain 1"
< = PN
(254) H (a wq) — nH (Sg ﬂq )a

/ [Vwg|P dz < ¢ |V§|p dz.
Up to reducing the threshold in the definition of 2, it holds that if ¢'NI'; # () for some j =1,..., J,
then ¢ ¢ 2, so that if ¢ € 2, is such that ¢’ C @, 7, it holds that ¢’ C Qfﬂ and then w, = 0
(and wy N¢’ = 0), since g = 0; € WhP(Q%. ).

VELN]

We set, recalling (2.45)) (and the analogue for j s.t. z; € Sf;ac)

G:= U q, w:= U q,

q€2, qE2Dy

= | (@ nTY), T™= | (QrnDy), &= |Jwu |J w,

jiwj¢Shac j: xj€Sfrac q€2, J=1,...,J
and
Z WqPq, in G,
qeE2,
(2.55) V= .
0, in w,
v, in Q\ (GUW),
where

o= e =0 () ora = e (<)

v e C((-9/16,9/16)% [0,1]), ¥ = 1 on [-1/2,1/2]%.
By triangle inequality, (d)), (b)), (2-17) using that 0 < r; —7; < \/azr; and that the cubes Q; are
pairwise disjoint, we obtain
|H1(S;1t) _ rHl(Fint)‘ SHl(SEPnt \fint) + |H1(S;nt n fint) _ rHl(l-\int)|
SHYSEEAT™) + > HY(SENT,) = HT N Q)|
iz ¢ Skae
< rHl(S;ntAfint) + Z rHl(Fj \ Sglt)
iz ¢ Shae
Y T -2
Jiz; ¢ Shae

<HUSAT™) 4 an(1+ 5HY(S,)) + (a2 + vazn) H(S,).

(2.56)
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Furthermore, by construction,

SgacAFﬁaC — (Sgac \ U @j) U U (@] N (SgaCA(Fj n ijj )))

j:ijSgaC j::vjESg'aC
f el ) f;
c(seev U @)u U @nsiear)
jiz € Strac iy € Slrac

J
U (Se N (@5 \ Qj7,))

J
:(SgaCAFﬁac U S ﬂ Q \Qg r,)) ,
whence, using (2.38) and property (d), we deduce that
J
Hl(SgaCAFfrac) < Hl(SgaCAffraC) + Z /Hl(S(P N (Q] \ Qj,?j ))

j=1
(2.57) - . ’
< rHl(SforacAFfrac) + Z ( (Qg \ Q] T, ( U )
Jj=1

Jj=1
< Hl(sfmmffm) + 200 \/agH (S,) + aa(1 + 5H(S,)).

By summing and (| -7 using , we obtain

|H1(sj;t) —HY T +H (Sf;aCAFfmC) < aa(3+ 16H(S,)) + az(1+ 2a1)H(S,).

By (2.31)) and (2.47) it follows that [v](z) € Z for H!-a.e. x € T'nt, B
By definition and (2.44), (2.51)), (2.54) it is immediate that v € SBVP(Q) N WhP(Q\ (T'Uw)),
that {Vy # VO} C w UG (since V(@; — ) = 0 in Q;, see (2.29))), that {¢ # 0} C {Vy #
VoY UU;. ., 20 Hj (whose L£?-measure vanishes with o, and o from property (g))), and that v =0
in w.
Summing up (2.54)) over ¢ € &, we obtain (since the cubes ¢’ may overlap at most 8 times)

(2.58) H(@ | wy) < ”C#(SA\UQM) < Cla1,a2,p)

qegy j=1

(¢ is the constant in (2.52))) with C(aq, o, p) vanishing with as and aq 0 since

s\ U @nc(s\ U @)u U Elausiou U (@)\Qe)nIuTy)

Jj=1,...,J j=1,...,J j: xjgsgac g xjesf;ac

and from the properties of I';, (2.32)), (2.38)), (2.48), (2.49). Therefore, adding the estimates of the
H'-measures of 0*w; in (2.46) over j such that z; ¢ Sg“ plus a*wji in (2.51) over j such that

€ Sgac togethgr with (2.58)), we conclude that H!(9*@) vanishes with ap and ;0. In view of
the definition of @ (in particular of 2;) we get

wom) < o (s\ U @),

j=1,...,J

where above a factor 8 accounts for the overlapping of squares ¢”; as well, H!(0&) vanishes with

as and «aq0 by (2.58] -

Eventually, arguing as in [I3] Step 3.1 in Theorem 5.1] for the cubes @; such that z; € Sgac

one proves that (T2 N {#% # p*}) vanishes with ay, while (again following [I3, Step 3.3 in
Theorem 5.1] with the full gradient in place of the symmetrized gradient) one deduces from the
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last estimate in (2.54) that

/s

which together with the estimates on the gradients in (2.46) and (2.51)) gives that

IVOP dz < 8c/ VO dx,

g€ 24 Ya qugzg Wq

/A\vev’ deC'(ag,p)/JV(pV’ du,

for C'(aa,p) a positive constant vanishing with «s and o4 9. Being {Vp # V0} CoU®, § =0 in
w, and since the measure of & vanishes with as and a7 9, we obtain

/ VO dz < (1+ C"(aw, Q,p))/ [Vel? dz,
Q Q2

where C"(ag, p) > 0 vanishes with ay and a4 p.
We conclude since a1, g, ¢ may be fixed arbitrarily small. O

By arguing as in the proof of Theorem |2.1] using Proposition [2.4] in place of Proposition [2.5]
one can show that also the following result holds true.

Theorem 2.6. Let Q@ C R? be a bounded open set of finite perimeter, p € (1,4+00), u €
GSBDP(QY), and € > 0. Then there exist:

closed sets T'™t, T8¢ finite unions of disjoint C' curves;

a set W, finite union of cubes;

a set of finite perimeter &;

a function v € GSBDP(Q) N WLP(Q\ (T UD); R?), where T := I'int y Tfrac,

such that {Vu # Vv} C oUD, L2({u#v}) <&, v=0in®, [v](z) € Z* for H'-a.e. x € T and

L(SI) — LTI A (ST ADER) 4 31 (95) + HA(D'D) < e, / ()P dz < (1 + &) / le(u)[? dz,
0\& Q

where STa¢ = {x € S, [u] ¢ Z*}. Moreover, H*(T N {v* # u*}) < e, where v* and u* denote
the traces of v and u on the two sides of T, and, if u € SBDP(Q), then also v € SBDP().

3. DESCRIPTION OF THE PROBLEM

Let © be a bounded and open subset of R? with Lipschitz continuous boundary and let ' cC Q
be an open set. We introduce

(3.1) AD(Q, Q) = {u € SBV*(;SY) = S, C O},

where S, denotes the jump set of u. For every e > 0, let G. : SBV2(;S!) — [0,00] be the
functional defined by

/ %\Vu|2 dx + é%l(éu) if u € AD(Q, Q)
Q
+00 elsewhere in SBV?2(Q;S!).

(3.2) G.(u) ==

In what follows, we will adopt also localized versions of the functional G.; more precisely, for any
u € AD(Q,8) and for any open set A with Q' CC A CC Q, we will denote by G.(u; A) the
functional in with Q replaced by A.

Notice that, since u € H'(Q\ Q';S!), it follows that

(3.3) supp Ju C Q' for every u € AD(Q, ).
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Indeed, let ¢ € C° (2 \ﬁl) and write

(uela = [ 22 au'Du) - @Dy - 5 [ 22 duDand] - [w?Dan’)
dp [ 4 0u? 5 Out 1 / dp [ ,Ou? 5 Oul
2 ~/Q\Q/ 0z2 (U 0z, " 8171) * 2 e’ Oxq (u Oxo “ 6@) .
= <JU/a Q0>Q\§’ = 07

where the last equality follows since u € H'*! (Q\ﬁl; S') has null distributional Jacobian determinant
in Q \ﬁl.

3.1. T'-convergence in the subcritical regime. We introduce the class of atomic measures,
namely

X(Q) = {ueM( Zz S, 2" € Q, 2" € Z\ {0}, NeN}

In [28] Theorem 3.1], the authors show that the rescaled functional |loge|~1G. I'-converges to
the functional F : X(Q2) — RT defined as F(u) = m|u|(2). Using a density argument, and in
particular Proposition this result can be easily extended to the following setting, where the
energy functional does not take into account of the closure of the jump set: We introduce

1 2 1,1 ) .
(3.4) Fo(u) == /levul dz+ —H'(Su) if ue AD(Q,2)

+o0 elsewhere in SBV?(Q;S!).
Then the following I'-convergence result holds:

Theorem 3.1. Let Q and Q) be as above; then it holds
(i) (Compactness) Let {u.}. C SBV?(;S) be such that

Fe(ue)
3.5 u <
( ) a>18 |10g€‘ o

for some C > 0. Then there exists p € X () with supppu C QO such that, up to a
subsequence, ||Jus — wp|fat,0 — 0 (as e — 0).

(ii) (T-liminf inequality) For every p € X(92) with supppu C QO and for every {us}. C
SBVZ(Q;S') such that ||Jue — wpl|gas.o — 0 (as e — 0), it holds

Fe (ue)

[loge| -

(3.6) mlp| () < hmmf

(iii) (T-limsup inequality) For every u € X (Q) with supp u C Q' there exists {uc}e € SBV?(Q;Sh)
with || Jue — Tpllgas,0 — 0 (as e — 0), such that

Fe(ue)

[logel °

(3.7 |p| () > hmsup

Actually, by arguing as above and going through the proof of [28, Theorem 3.1], one can prove
the following more general result.

Theorem 3.2. Let Q and ' be as above; and let {E.}. C (0,+00) with c|loge| < E. < |loge|?
for some constant ¢ > 0 (independent of €). Then the following T'-convergence result holds true.
(i) (Compactness) Let {u.}. C SBV?(2;S) be such that

pZelie) ¢
e>0 €
for some C > 0. Then there exists u € X () with suppp C Q' such that, up to a

subsequence, HH%E‘JUE — ||t — 0 (ase — 0).
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(ii) (T-liminf inequality) For every p € X () with supppu C QO and for every {us}. C
SBV?2(Q;S') such that ||%JUE — mpllfiat.0 — 0 (as e —0), it holds
Fe(ue)
T

€

< Timi
(3.8) mlp|(2) < hgn_gglf

(iii) (T'-limsup inequality) For every p € X () with supp u C Q' there exists {uc}. C SBV?(;Sh)
with ||%Ju5 — mpllfat,0 — 0 (as e — 0), such that

Fe(ue) -

(3.9 |p|(2) > lim sup
e—0

Proof of Theorem[3.1 Although the argument is standard, we briefly discuss how to prove points
(i) and (ii), (iii) being identical to the case of [2§]. Assume (3.5)); by Proposition (applied to
the domain §'), for all € > 0 we choose u. such that

1 1
/ L va.2ds < / L VuPde + e,
Q2 Q2
H'(Sa,) = H'(Sa.) <H'(Su.) +e,
(310) ||Ja5 - JusHﬂat,Q < g,

so that it follows N
up Ge(itc) <C+1
e>0 | IOg E|
The compactness result in [28, Theorem 3.1 (i)] and the third condition in (3.10) imply (i). In a

similar way also (ii) is a consequence of [28, Theorem 3.1 (ii)] and of the same density result. O

We do not discuss the proof of Theorem since it follows from the same result with G, in
place of F, which in turn has the same proof of [28, Theorem 3.1].

3.2. T'-convergence in the critical and supercritical regimes. Our main results are the
following.

Theorem 3.3. The following I'-convergence result holds true.
(i) (Compactness) Let {u.}. C SBV?2(%;S) be such that

Fe(ue)

3.11 <c,
( ) >0 |10g€|2 -

for some C > 0. Then there exist a measure pn € M(Q) N H~1(Q) with supp p C Q0 and

a map TP € L%(Q;R?) with —Div TP = 7y such that, up to a subsequence,

Ju,
F _
(FJ) ||7r| log | “Hﬁat,ﬂ —0
T, D 2 2

ACJ Y= ~T7 in L*(Q;R?).
(ACI) o — TV in LR

(ii) (T-liminf inequality) For every (u, TP) € (M(Q)NH1(Q)) x L*(Q;R?) as in (i) and for
every {u.}. C SBV2(Q;SY) satisfying and (ACJ)), it holds
Fe(ue)

[Togel?”

(3.12) lp () + 2/ |TP|? dz < lim inf
Q e—0

(iii) (D-limsup inequality) For every (u,TP) € (M(Q) N H=Y(Q)) x L?(;R?) as in (i) there
exists {uc}. C SBV2(Q;SY) satisfying and (ACJ)), such that

. Fe(ue)
3.13 || (92 +2/ TP12 dz > limsu .
(313) (@) +2 | (TP do > timsup 2ot

Theorem 3.4. Let {N.}.~¢ be such that |loge| < N. < e L. The following T'-convergence result
holds true.
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(i) (Compactness) Let {u.}. C SBV?(%;S') be such that

f
(3.14) §1>1%) ]\([2 c)
for some C > 0. Then there exist a field TP € L*(Q;R?) such that, up to a subsequence,
TN—% — TP in L2(Q;R?).
(ii) (T-liminf inequality) For every TP € L?(;R?) and for every {u.}. C SBV?(Q;S) with
T 7D o L2(5R2), it holds

< C,

o Fe(ue)
D2
(3.15) 2/Q|T | dxghiri)léleTgs.

(iii) (D-limsup inequality) For every TP € L*(Q;R?) there exists {uc}. C SBV?(;S!) with
D
TN—f — TP in L2(;R?) such that
Fe(ue)
N2
By using the density result in Proposition one can show that Theorems and hold
true also when replacing F. with G..

In order to prove Theorems and we will make use of the corresponding core radius
approach results that for the sake of completeness we state and prove in Section [4] below.

(3.16) 2/ |TP|? dz > lim sup
Q e—0

4. CORE RADIUS APPROACH

We first introduce some notation. Let ¥V C R? be a bounded and open set with Lipschitz
continuous boundary. For every finite family % := {B"},,=1,... v (with N € N) of open balls with
mutually disjoint closures we set

Cz

and we denote by Rad(%) the sum of the radii of the balls B™, namely
N
Rad(#) = > r(B"),
=1

where r(B) denotes the radius of the ball B. Moreover, for every u € X (V) with p # 0 of the
form

N
(4.1) W= Z 2"65(Bn) with 2" € Z\ {0},
n=1
we set
(4.2) A (B, 1, V) :={uec H(V(AB);S") : deg(u,0B™) = 2" for every n =1,...,N}.

Here and below, z(B) denotes the center of the ball B.

Now we provide the notion of merging procedure used in the ball construction introduced by [5§]
and [44] (see also [27]). Although we do not re-prove the ball construction, stated in Proposition
[42] we need it to start the proof of Theorem [3.3]

Definition 4.1 (Merging procedure). Given a finite family 2 = {B,.(z%)}i=1,.. .1 (I € N) of balls
in R?, we define a new family % as follows. If the closures of two balls in % are not disjoint,
then we replace the two balls with a unique ball which contains both of them and has radius less
than or equal to the sum of the radii of the original balls. After this, we repeat this replacement
rgcursively, until as all the balls in the family have mutually disjoint closures. The final family is
%B. The procedure of passing from £ to B is called merging procedure applied to A. Notice that
a merging procedure does not increase the sum of all the radii of the balls in the family.

The following result is proven in [27, Proposition 2.2].
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Proposition 4.2. Let V C R? be a bounded and open set with Lipschitz continuous boundary, let
B be a finite family of open balls with mutually disjoint closures in R?, let u € X (V) be of the
form , and let u € of (B, u, V). Then, there exists a one-parameter family of open balls HB(t)
with t > 0 such that, setting U(t) := UBG%@ B, the following properties hold true:

(1) #(0) =%;

(2) U(t1) C U(te) for any 0 <tq < ta;

(3) the balls in B(t) are have mutually disjoint closures for every t > 0;
(4) for any 0 < t1 < ty and for any open set ACV,

1 14t

7/ 7 VuPdrza S |u(B)|log o2

2 Jwa\T)na 5t 1+t
BCA

(5) for everyt > 0: Z r(B) < (1+1) Z r(B), where r(B) denotes the radius of B .
BeB(t) Be®

For every % and p as in Proposition for every t > 0, we set €(t) :={B € %B(t) : BCV}
and we define

(4.3) =Y w(B)oys) -
Be€(1)

We can now state the crucial result which will be the starting point of the proof of Theorem [3.3]

Theorem 4.3. Let V be a bounded open set with Lipschitz continuous boundary. For every
e >0 let Be :={Bl}n=1...n. (with N. € N) be a (finite) family of open balls having mutually
disjoint closures with Rad(%B.) — 0 ase — 0, pe := Zgil 200y (pry with 2l € Z\ {0} for every
n=1,...,N.. Let moreover {u.}. be such that u. € o (Be, e, V). Assume that

1
SUp —————————5 vus 2 dl‘ S Ca
0 TR RdTT Jyny ™
for some constant C > 0 independent of €. Then, the following facts hold true.
(i) Let fic be the measures defined in ([&.3) with € (1) = 6.(1) = {B € %:(1) : B C V};
then |fi:|(V) < Cllog Rad(%:)|* for all e > 0 with a constant C > 0 independent of «,

and there exist a measure i € M(V) and a function A € L*(V;R?) such that, up to a
subsequence, as € — 0

(4.4)

ljal—V flat
45 _ Mem¥
(45) llog Rad(%.)| "
Ay
(4.6) XVIZ) N weakly in L2(V;R?):

[log Rad(%.)|
(ii) mlp|(V)+2 [, IA]? dz < liminf. o m f\/(%) |Vu|? dz.

Notice that, as u. € (%, u.,V), we have \,, € L?(V(%.);R?), where )\, is defined in
(1.4). In formula (4.6]), symbol A, Xy (#.) denotes the extension of A,_ to the constant (0,0) in
VA V(%)

Proof. We start by proving (i). Our proof closely resembles that of [2, Theorem 3.2] where the
compactness result is proven in the energy regime |log Rad(%.)| .

For every 0 < p < 1 and for every € > 0 we set
1
(47) t? = W — 1, Vg = V[tg] s

where we have set, for t > 0,
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Fix 0 < p < 1. Then, by applying Proposition 4) (with t; = 0 and ¢t2 = 1 and t2 = t?) and by
the energy bound (4.4]), we have that

(4.8) || (V) < C|log Rad(%.)? VE[(V) < C(1 —p)~*|log Rad(%:)|,

whence we deduce the first statement in claim (i) and the existence of a measure p? € M;(V)
such that (up to a not-relabeled subsequence)

vP *
4.9 — P — 0.
(49) logRad(2)] 1" ™°
Now we prove that
1 ~ a

(4.10) o forevery 0 <p <1,

Y S
|log Rad(4.)| (e = 2)
from which we deduce also that p? = p for any 0 < p < 1. To this purpose, we first observe
that p.(B) = vP(B) for any B € 6.(t?) = {B € %.(t£) : B C V}; therefore, using (4.8) and
Proposition 5) together with the very definition of £, for every sequence {p.}. C COH(V)
with [|@c]|cor < 1, we have

1

R Vo SRy

|10gRad(<@5)| |<:u’E V87@6>|
< ; Z / <p ][ 7 dx fie — V2)
~ |log Rad(4.)| : © ¢

Be%é-(t?)
SRR — / )
(4.11) Tog Rad(%.)| oy P4 :

Be%. (tp)\%” (t2)

! m P
= Tlog Rad(7.)] > (sup oc — inf oc) (|7|(B) + [21(B))

Bea.(r) BV
SW Z diam(B) ([fi-|(V) + /2] (V)
& Be%B.(

< CRadP(A.:)|log Rad(.@sﬂ ,

whence (4.10) follows. We highlight that the second inequality in (4.11)) follows from the fact that
for every B € A.(t2) \ €-(t?) we have that inf pny ¢. < 0 so that

/ Pe d(ﬁe - Vsp) < sup ‘PE(|175|(V) + |V§|(V)) < ( sup @ — inf 505) (|/7€|(V) + IVE‘(V))
BNV BNV BNV Bnv

Moreover, by the very definition of A,_ in (1.4]) and by the energy bound (4.4), we immediately
have that

1 1
(4.12) f/ 12X, | do = 7/ |Vu|? dz < C|log Rad(%.)|*,
2 Jv.) 2 v,

thus, up to extracting a further subsequence, there exists A € L?(V;R?) such that (4.6 holds.
Notice that, for p € (0, 1) fixed, since |U(t?)| — 0 as € — 0, we also deduce

A
|log Rad(4.)| XV (2B (L))

Now we prove (ii). To this end, let p € (0, 1) be fixed; by (4.9) and by Proposition (4), we
get

(4.13) — A weakly in L?(V;R?).

1

P
liminf ——mM8M8M ——— A
(4.14) e=0 2|log Rad(%.)|?

Vue 2de >7(1— hmmf—)
/ (E\U(0)) Vel 1-7) |log Rad(%.)|

Zm(1=p)lpl(V).
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Furthermore, by (4.13)), we have that

1 1 2\ 2
lminf— V.| dz =i 'p/’é o d
00" 2log Rad(%. )2 /V(%(tg)ﬂ uel” dz =limnf 5 v | Tlog Rad(#.)|| XV (#-)

>2 / A? da,
v
which, together with (4.14) (letting p — 0), yields (ii). O

5. PROOF OF THEOREM [3.3]

This section is devoted to the proof of Theorem [3:3] Using the density argument as in the proof

of Theorem we can prove Theorem with F¢ replaced by G. in .

The proofs of the compactness and of the lower bound are addressed in Subsection [5.1] and
closely resemble those in the |log | regime treated in [28], whereas the construction of the recovery
sequence is provided in Subsection [5.2

5.1. Proof of compactness and lower bound. By the energy bound (3.11)), together with
Corollary we have that

(5.1) H'(S,.) < Celloge|?,

for every ¢ > 0. By the very definition of Hausdorff measure, since S,,_ is compact, there exists a
finite family 2. of open balls (in R?) such that S, C Jpez, B and Rad(%.) < Ce|loge|? . Notice
that we can always assume (just by enlarging an arbitrarily chosen ball in %.) that Rad(%.) > ¢,
so that, from now on

(5.2) e < Rad(%.) < Ce|loge|?,
for some C > 0. Moreover, by construction,
(5.3) u. € HY(Q(A.);S"),

where we recall that Q(%:) := Q\Upcy. B- By (6.2) and recalling that S,, C @', we can assume
that, for € small enough,

(5.4) U Bca.
Be%B.

Up to applying a merging procedure (as described in Definition 4.1)) to the balls in %, , we can
assume without loss of generality that these balls having mutually disjoint closures, and still satisfy

(5.2) and (5.4). For € > 0 small enough we set

(5.5) pe = ) deg(us,0B)d,p) .
BeA-.
By (3.11)), (5.2)), and (5.3), for £ small enough it holds
1
(5.6) 5/ |Vu.|? de < G.(u.) < C|loge|* < C|log Rad(%.)|* .
Q(2:)

Therefore we can apply Theorem to the family {(%.; uc)}. . Notice that, in view of the very
definition of G., we have that also the family %.(1) satisfies (5.4)) (for ¢ small enough), so that
¢-(1) = B.(1) . Setting
ﬁe = Z ,UE(B)(SQU(B) ,
Be%.(1)
by Theorem [4.3(i) (more precisely, by (4.5))), using (5.2]), we have that, up to a subsequence,

,ZZE flat
5.7 LU
(5.7) Toge] "
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for some u € M(Q). By construction, supp u C €. Moreover, by arguing verbatim as in the
proof of [28| formula (3.17)] one can prove that

1 ~
| Jue — mhie|fat,o — 0,
|1ogs|
which, combined with @, yields (F . Furthermore, by ((1.10) and by (3.11)), we have that
24 2
Vu|* dz < C,
Tiog? Jy P2 45 = s | 19wl da <
so that, up to a further subsequence,
T, D 2 2
(5.8) < T in L*(Q;R?),
|loge|

for some field TP € L?(2;R?). This proves (ACJ].
It remains to show that —Div TP = 7y, which will imply also that x € H~!(Q). To this end,

let p € C°(Q); then, by (L.10),

(5.9) (Jue, 9) = (Tu,, Vo) = (T}, Vi) + (T;7L, Vo),
for every e > 0. By (ACJ)), we have that

1
5.10 TD 0:
(5.10) e TV = (1. Vg)  ase—0;
moreover, by (1.10)), , and -, we have that
(5.11) (T35, V)| < Cel| Vgl logel*.

By (7). 69 E10). and G,

(Jue, @) = lim ———(TP V) = (TP, V) = (~DivTP, 6}

{mia. ) = e—0 |logg|

lim
) |loge|
thus concluding the proof of (i).

Now we prove the lower bound (ii). We can assume without loss of generality that (3.11]) holds
true. By the first inequality in (5.6)) and by Theorem E(ii ) we have immediately that

lim inf gg(u ) || (2 —|—2/ |TP|? dz,

where we have used also that the function TP coincides with the field A in Theorem @ The
claim thus follows.

5.2. Proof of the upper bound. In order to construct the recovery sequence, we first introduce
some notation. Let r > 0 be fixed. For every finite sum of Dirac deltas p := 25:1 Ozn with
|z — a™2| > 2r for ny # ng and for every 0 < p < r we set

N N
1 . 1 I
(5.12) pf = 3 g ’Hll_@Bp(x ), fP= P g XB,(z") » and nf = fPde.
n=1 n=

For every r > 0 and for every z € R?, we recall that Q,.(z) denotes the (open) square centered at
z with sides parallel to the cartesian axes and side-length equal to 2r, i.e., @.(z) := z + @,-(0),
with @,(0) := (—r,7)2.

Lemma 5.1. Let i := Zle mlx idzx, where L € N, m! € R and {wl}lzlj,,qL s a partition of
into sets with Lipschitz continuous boundary. Let N — 400 as e — 0. For every e > 0 and for
every l =1,..., L with m' # 0, set

1
(5.13) e =
2y/N:|m!|

€
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For everyl = 1,..., L withm! # 0, let ZL .= {z € 20 7% : Q,.(2) C W'} and N!:=4Z.. Then,
for every 1 =1,..., L with m! # 0,

Nl
(5.14) == o |m||w! ase — 0.

N,
Moreover, setting ul = Z 10, L (where {xL ”} 2, is the set of points in Z.) for every | =

ooy Lowith m! # 0, ul =0 whenever mt =0, and p. = 21:1 uL, we have that the sequence

{Itete T M(Q) satisfies

(a) for every e > 0 and for every | = 1,..., L with m! # 0 and n = 1,...,N!, the balls

B z( Ln) are pairwise disjoint and contained in w' ;

(b) & Spuin M(Q) ase —0;
(c) ]‘Zf - ;LHH,l(Q) < C’N,;-_i (for e small enough),

l l
where [ie := Zlel ﬁlgra, with ﬁlgrf defined as in (5.12) starting from pl .

Proof. For every | = 1,...,L with m! # 0 we set @’ := U.ez Q,1(2) and we denote by w! :=
int(w!) the set of interior points of @!.. We set R, := max{rl : I = 1,...,L, m! # 0}, and we
notice that R. — 0 as ¢ — 0.

Property is straightforward. Indeed, let I € {1,..., L} with m! # 0; setting (3wl)2rzs =
{z € wh: dist(x,dw') < 2rl}, it is sufficient to observe that |(w'\@L)\ (8wl)2TzE| =0, and hence,
by the Lipschitz continuity of dw!,

(5.15) W'\ @il = O(rl) = O(R:),

where limsup,_,, O(R:)R-! < C < +o00. On the other hand, [@.||m!| = 4(rL)2N!im!| = NS

€

1
which, together with (5.15)), yields |w!| = [w! \ @] + |&L| = O(Re) | ﬁ, and hence ([5.14)).

[mt|

Property (a) follows by construction. Now we prove property (b). Let ¢ € C.(Q2), and let my
be the modulus of continuity of ¢. Then, setting

(5.16) M :=max{|m!|: 1=1,...,L},

we have that, as ¢ — 0,

L
(e o | < 3= m Z/ ) g s+ 3w [ ot ds

l;éO ml#£0
L L
<4M N2 max me(t) + M@ e WI\@| =0,
; a( 5) te[0,2v/3r1] ¢( ) ” H ; | \ 6|
ml#£0 ml#£0

where we have used (5.13)), (5.14)), and (5.15)); this proves (b).

We are left with the proof of (c). We set

L L fire
U W, We 1= U wé, Ne 1= (]\‘/f — ) Xw. s
— — 5
ml#0 ml#£0
so that
s
(5.17) ]\Z =N — X\, -

Let v € HY(Q1(0)) be a solution to

Av = %XBl —1 inQ1(0)
o,v=0 on 9Q1(0).
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We then define for every € > 0 and for every [ =1,...,L,andn =1,..., N!

R

1 x — zbn
L — .
v (x) = IN. (T)7
l,n
notice that Vol (z) = %Vﬁ(r_jf ), SO
(518) valnHLz(Q l(xl "):R2) 4N2HVQ7H%2(Q1(O);R2)
g
and
—Avbm =, in Qn (zL™), dvt™ =0 on 0Q, (zb™).
Integrating by parts, using Holder inequality, (5.18]), and Young inequality, it follows that
L N
Il = sup / sdn= s SS [ eadras
peH;(Q) JQ PEHG(Q) =1 n=17Qu(x")
||¢HH1(Q)51 |‘¢”H1(Q)§1 ml#£0
= sup Z/ V- Vol da
GEH(Q) =1 \n=17@u (")
||¢HH1(Q)§1 ml#0
L N
< s YD IV, eimmn IV g, e
IlchGHS(Qi I=1 n=1
1 1 mt
(5.19) Pt @St mizo
L N}
= sup Z Z IVl (g, s ny.x2) V0l L2(Q1 (0)52)
pEH(Q) =1
11l 10y <1 miz0
L
< swp ( 71Vl o) NIVl g b))

peHi(Q) 1o 4N
||¢HH1(Q)§1 ml#0

L
1 N} 1 C
<3 > = Volliz g, ome) + — < —
=1 NE 4 82 N62

mb=£0

where the last inequality follows from (5.14) and (5.13). Finally, by Holder inequality, (5.13) and
(5.15)), we obtain

1 C
(5.20) [lixenw. lz-1) = sup / ¢ du < sup M{|]|p2(0)|w\we]? < —
PEH(Q) w\we PEH(Q) N&
Vol L2 (o2 <1 IVl L2 (or2) <1
with M defined in (5.16)); this, combined with (5.17)) and (5.19)), yields (c).
U

Proof of Theorem ( i11). We divide the proof into two cases.

Case 1: p = Zlel mlx ide, where L € N, m! € R, and {w'};—;
sets with Lipschitz continuous boundary.

We divide the proof into two steps. In the first one we construct the recovery sequence
{(pte, B.)}e for the core-radius problem; in the second step, we exploit the structure of {(u., 8.)}e
to build up the recovery sequence {u.}. for the functional G. .

L 18 a partition of ) into

.....
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First step: Construction of the discrete measure j. and of the core-radius field 8. . For every
e >0, we set

(5.21) N := [|loge|]
and let
L L N
(5:22) pei= D He= D, D Gun
=1 I=1 n=1
mb+£0

be the measure provided by Lemma Set

(5.23) S :={(0,z2) : z2 <0}
and let ¥ € C*°(R?\ S) be the function defined by
arctan % ifx; >0
z if ty =0and x5 >0
L 2 I T 2
(5.24) I(@) = T + arctan % ifz1 <0
%TF ifzy =0and 22 <O0.

For every | = 1,..., L with m! # 0 and for every n = 1,...,N!, let K!" € L} (R?\ {zL"};R?)
and K™ € L2 _(R?;R?) be the functions defined by

loc

~ 1 1
Kin = VI — ) = — = (. _bn 71 — Ln ,
5 (LII) o7 (.’I} s ) 27T|I _ ’I‘lg’n‘Q( (IQ ma,Q) T xe,l)
and L2
=~ =" Iny 1L In In
Ksn( ) - 27’((7’5)2 Vﬁ(l‘_‘ren) - 27T(7’é)2 <_(x2 —1‘872),%1 _xa,1)7

respectively. Recalling that A, gr(z) := Br(z)\ B,(z) (for every 0 < r < R and for every x € R?),
we define

~ L Né ~ ~ L Ni ~
63) K= SR e Re= S RN

I=1 n=1 I=1 n=1
ml#£0 ml#£0
Now, as in (5.12)), for all I = 1,..., L with m! # 0 and for every 0 < p < 7! we set
Nl
- 1 ~ Ll
it = 2 Y Xp i dz, and =) g
n=1 =1
and analogously
L Lo
P = o7 STHILOB, (), and (=)
s
n=1 =1

Eventually, we introduce

L

E L,
Cse = Ce :

=1

Then, using the notation just introduced, we have
(5.26) curl K. =¢—¢. and  curl K. = Ji. — Ji- .
Let v. € HY(Q) be the solution to

—Av=p.— N in§
v=20 on 0f).

Then, by Poincaré inequality and by Lemma (5.1])(c), we get

(5.27)

3
IVvellZ2 pey < e = Neptll -1 (0 el g ) < COQNE [ Vvel|2(0:m2)



32 V. CRISMALE, L. DE LUCA, AND R. SCALA

whence, recalling (5.21]) we get
Vv,

(5.28) ————— =0 in L*(Q;R?).

VN log el

Let

(5.29) B = —%(TD)L € L*(Q;R?),

and set

(5.30) B.:=N.B+K.— K.+ V'tu,.

By and ,

(5.31) curl B.LQ = Nopp+ ¢E — G — i + G + fie — Nopp = CZ

— [
so that curl 5, = 0 in Qc(pe) := Q\ ULl:l Ugil B.(zl™). Furthermore, by (5.31)), for any
ml#£0

l=1,...,L with m! # 0 and for any n = 1,..., N}, we have
/ B.-TdH =1 for a.e. p € (g,70).
OB, (zc™)

Again by (5.31)), setting
(5.32) b= gln 4 5,
(with S defined in (5.23))) for every l =1,....,L with m' # 0 and n = 1,..., N}, there exists a
function J. € H' (Q (1) \ U =1 U : Sl”) such that
ml#£0

(5.33) B. = V1. a.e. on Qc(pe) \ U U Shn,
=1 n=1
ml#0

In what follows, with a little abuse of notation, we denote by J. and . the zero-extensions of 9.

— 1
and B. to [J"—1 Ufil Be(xb™) | respectively. We now prove that
ml#£0

B.
v/ Nelloge|
On the one hand, by (5.13) and (5.14),

(5.34) — B in L*(O;R?).

1 ~
_ K.|d Kl’” d
\mmmAAxMMMeggyn e

l;éo
e)N! = 0.
«/N |log€ Z
z;,go
On the other hand, recalling (5.14]), we also have
1 .
lim ———— [ |K.|? dz = lim K“”d
ﬂmmmL'Jxewmmd;;M o
(5.35) m!#0
L 1 r!
> =1 N:log =
. ml£0 1 1
= lim oo = 5 ll(®),

e—0 Ne|loge| 2r 2w
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so that
K.
(5.36) —— =0 in L*(Q;R?).

V/Nolloge]

Moreover, by construction,

1 ~
. _ ngd
(5:37) Ne\10g6|/| I* dz

§ E l,n2 : 2 2
’ dx — 0 nlL QR ;
l' |10g5| 47‘2 2 / ~ e | v ! ( ’ )’

l (:EE

m;ﬁO

therefore, by the very definition of 3, in (5.30]) , using (5.36)), (5.37), and (5.28)), we deduce (5.34)).
Moreover, by (5.35)), (5.37) and (]5 28)), we easily get

2 _ 2
(5.39) tin o [ B de = (@) + [ 817 o

Second step: Construction of the recovery sequence {uc}e. Letl € {1,...,L} be such that
ml#0and n e {1,...,N!} be fixed. Recalling (B and that the mutual distance between the

points zb™ is at least 2¢, the set A, e (zl™)\ U =1 U =, S is either connected or is given by

the union of the two sets

AL, (al™) = Aa,zau?ﬁ) N {z z

We set ab™+ fA?za i")ﬁ dz and al™~ = an_zs( tny Ve dz, where 9. is the function in
(5.33). By construction J. € H' (AL, (x L)) and 9. € H'(AZ 5. (25™)) | so that, since the sets

Af%( ™) have Lipschitz Continuous boundary, we can apply the Poincaré-Wirtinger inequality
in H(AL, (z L)) and H'(AZ,.(zb™)), thus getting

£,2¢e
(5.39) 9. — ab™t |2 ,+ 9. — ab™ < Ce

2
L2(A7, (2™ ”L2<A* (ab™) = 5. HL2<A e (sb™)iR2)

for some universal constant C' > 0.
Let oo € C°(B2:(0); [0, 1]) be such that 0. = 0 in B-(0), 0. =1 in A3 ,.(0) and that

(5.40) Vo.(z)| < g for every z € Ba.(0) |

for some constant C' > 0 independent of € (and of x). For every € > 0 we set

Js(x—mgﬁ)gs(x)—i—(l—os(x—xé ))ag ifx € By (z ( ™) for some [ =1,...,L, n=1,...
9. (x) = o-(z — 2™V (z) + (1 — oc(@ — 2b™))al™*  if 2 € B (2L™) for some [ =1,...,L, n=1,...
€ = ] T
U= () if o € 2\U"=1 UpZ Bac(al™),

ml#£0

(where E;ta(xlg’") = Ba.(z2t")n{z; = mé?} and [ is such that m! # 0) and we define u, : © — S
as

(5.41) () = 2™0=0)

By construction,

L N L
(5.42) Su.c U UBsclat™  and  H'(S.) < Y Nle,
=1 n=1 =
ml#£0 ml#£0
which, in view of ([5.14)), implies
1 1 —
(5.43) lim ———~H'(S,.) =0.

=0 N,|loge| e

o,
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We claim that

Vi,
V/ Ne| loge\
which, together with -7 in view of | and (| -, will imply m To show , we

start by observing that, by the very deﬁmtlon of Y. in U =1 Un L Acoc(2L™) and by -
ml#£0
(applied to every I = 1,...,L with m! #0 and n =1,..., N!), we get

(5.44) — 4  in L*(%R?%),

5.45 2 n
( ) N5‘10g5||| EHLQ(UL _ Uf szs(wlsn)Rz) N |10g€‘ lz; ;HB HLZ(A&QE(ng );R2)
ml#£0 ml 0
l,n,+
N\logs|52 22”79 —ag ||L2A+ (ln
=1 n=1
ml#£0
o &
_ gbn—
+N|10g€| 2 ; le 9" iz )
ml#£0
N
<
NIIogsI lz; ZIHB Mzeca. metaimyme)
ml£0
c 2
1
= Tloge] ”m'LQ(UL 1 UfilAs,%(mé’");RZ)Jro( )
l#o

as € — 0, where in the last inequality we used (5.37)), (5.35]) (with r. replaced by 2¢), and (5.28)),
to deduce that

N, |log<€| Z Z”ﬂ ” Ac e (xl™)iR?) = N |log€\ Z

L2(A5 2e (2L ™)5R2)

I=1 n=1 2 2
ml#£0 =
|10g€| Z ZMHLQ(AE re(abmyzy TO0)
l¢0 n=1
C
=gy 1P, +0o(1).
|log€| H ||L2(ULI:1 Un ) e,2s(91ls’n');R2) ()

ml#0

Therefore, by (5.45) and (5.34)), using the very definition of ¥, , we deduce (5.44). Furthermore,
using (5.38) and again (5.45)), recalling (5.29)), we get

11
lim —— = 24 li o2 24
=50 Ng|10g5|2/9|vu5| T N [loge| |1 ge] / |Be]” da

(5.46)
—lul) + 20 [ |5 do = wlul(@) +2 [ 17 da,
Q Q

which, combined with (5.43), implies that the sequence {u.}. satisfies (3.13).

Now, in order to conclude the proof of (iii) of Theorem in the case p = Zlel mbx i dz,
it remains to prove that also is satisfied. To this end, we first observe that, by Holder
inequality and the very definition of u. in , for every I = 1,..., L with m! # 0 and for every
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/,

e |Vu5| dz < Ce||VY. ||L2(A3 (™))
€,2¢e

which, by Fubini Theorem and by the Mean Value Theorem implies that (for every I =1,...,

with ' # 0 and for every n =1,..., N;) there exists 75 < pb™ < 2¢ such that
1
/aBl ) |Vue| dH! < ouws||L2(A%572E(mé,n);w) ,

Therefore, recalling (5.42)), by (5.45)), for € small enough we get

Z Z/ d|T,.| = Z Z/ |TD | dH!

=1 n=1 Bln(mlsn =1 n=1 Bln(l’lsn
ml#£0 m!#£0
< C+/N:|| VY
o 5” EHLZ(ULl:l Ugé1 AE,ZE(JUI&"”)%RZ)
ml+£0

(5.47) < CN,|log €|%
Analogously, again by (5.45)) and by (5.42)), using also Holder inequality, we have

l

L N Lo
T U U Bt < 2|D“€|< U U B @)
i =
L
< 2Nl e e, U2t et e ; e
mbz£0 mi#0

< CeN,| loge|% .

Recalling the definition of ¢ in (5.24]), we define

ve (- —exp( Z 219 )

=1 n=1
ml#£0

by construction, v. € WP(£;S!) for any 1 < p < 2, and
(5.48) Jve = Tpe in M(Q).
Moreover for every x € )

(5.49) |To.(@)] =|T,) (2)] = 2|\, ()| < 27 Z ZIVﬁx—m )| = 2 Z Z .

=1 n=1 11n1|$_33
ml#£0 ml#£0
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Therefore, for every [ = 1,..., L with mt # 0 and for every n =1, ... ,Ng, and for € small enough
we have
— L 7I-
CRERIEDY z/ an’
=1 Bz n(mlsn |
mi#0
L
<dn? + / H!
Z aB,mux 2 Z T
n;én l:,él
ml#£0

l L 4

<4m? + 47e lf E NI —/ " < 4n® 4 dme g |ml|\wl|]\/'2 <C,
Te =1 =1

1£1

L#O
where in the last but one inequality we have used ([5.14)) together with the fact that

inf |zbm —2b" >l inf inf |zl —2b?| >l
n=1,...,N! =1..,L n=1,....N!
n#EN 1#1

so that (for € small enough) dist(0B,» (zb™), zbm) > rl> 2¢ . 1t follows that

(5.50) Z Z/ T,.| dH' < CN. = C|loge| .
o

l,n
1=1 n=179Bin(z")
ml#£0

Analogously, by (5.49), for every [ = 1,..., L with m! #£0, foreveryn =1,..., Né_ and for ¢ small
enough we have

17,.|(Bgs(al") <2m [

an(xlsn) |l'

dx+27r Z /
Bl —(IE
n;én

+27TZZ/ 7lndx

= n=1 ) IZ‘
l;él
ml#£0
7 E L 5 3
<Ce+CN; - +C ) N <CNZe,
€ 1= €
i
ml#£0
whence we deduce that
Nl
1 IS5
(5.51) @‘TM( U U Bplg,n(xgn)) 50 ase—0.
=1 n=1
ml+£0

Let finally ¢ € C1(Q) be such that [ellcory < 1. By the very definition of distributional
Jacobian, integrating by parts and using that

L N/ L N/
Jul (o [ U Bpetm) =de (20 U U Buat™) =o,

I=1 n=1 =1 n=1
ml#£0 ml£0
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we obtain, using ([5.48]),

L N
(Jue, p)a = / V- dT,, +/ V- dT,,
l:zl 7;1 Bl”(xf ) Q\ULl:1 Ugé1 Bpla,n(xlam/)
ml£0 ml;éO
L N
SN vewm oY S e vae
=1 n=17Bun(") z 1 n=17/0Bn(at )
ml#£0 ml#£0
and
L N
(Jve, ) = / V- dT,, —|—/ V- dT,,
?% 2 Sy e iy Utk e
ml£0 l;eo :
L
_ / A - Y / O, v i
l 1 n—=1 an(zs ) =1 n=1 8B,n(mé")
ml#£0 ml=#£0

Therefore, by (5.47)-(5.51), and using that

Jue(Bjpn (zL™)) = Jve (B, (zLm)), for every I =1,...,L with m' 20, n=1,..., N/,

we obtain

L N!
‘<Ju5—71'/1,5,<p>9| < Z Z‘/ o(Ty. —To.) - Vd’Hl‘
=1 n=1 JOBin(@")

ml_;ﬁO
e e omi( () Qo)
ll;ion 1 7750 n=1
< Z ZoscBl (mln )/ I (ITu.] + T, ) dH!
=1 n=1 OB n(2e™)
ml#0
+ |logelo(1).

Since oscB L (abmy (@) < Ce, it follows that

|10g5\ [l Jue 7T'UEHfiat,Q —0 ase — 0,

whence (FJ) follows by Lemma [5.1](b).
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Case 2: General case. We argue by density, namely we show that for every (u,TP) €
(M(Q) N H1(Q)) x L*(Q;R?) with suppu CC Q and —DivT® = mu there exists a sequence
{1k, TP Yken € (M(Q) N H=HQ)) x L2(;R?) with supp ux, CC Q and —DivI = mpy for
every k € N such that py is locally constant for every k (and takes the form as in Case 1, i.e.,

uw= Zle mlydr, where L € N, m! € R, and {w'};—1,_ 1 is a partition of Q into sets with

Lipschitz continuous boundary), and
(5.52) e =, ler] () = |p|(Q), TP - TP in L*(Q;R?) as k — 4o00.
First, let {pn}n>0 be a sequence of standard mollifiers. We define

foi=pxpn,  opnc=fode, TR = (TP % pp)LQ
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By construction, —DivTP = 2muy for every h > 0 and, for h small enough, |u,|(0Q) = 0.
Moreover,

oS, (@) > @), TP o TP i AR,
Furthermore, since {f,}r~0 C C®°(Q), for every h > 0, there exists a sequence {f,];}jeN with f}Jl
as in Case 1 (ie., f] = Zzle(mgz)lX(wi)l , where L] € N, (m})! € R, and {(w})'},_,
partition of € into sets with Lipschitz continuous boundary), such that

177~ fallomiy =0 and /(ff; ~fy)dz=0.
Q

,,,,,

For every h > 0 and j € N, let wfl be the solution to

—Aw=f] —f, nQ
w=20 on 0f}.

By standard elliptic estimates, we have
IVwh |2 @me) < L = full2e) -

Finally, for every h > 0 and for any j € N, we set (TD){L =TP + 27rwal , so that —Div (TD)fl =
2mp, , and, for every h >0,

(TP) — TP in L*(Q;R?) (as j = +00).
Using a standard diagonal argument one can find a sequence {(ug,TP)}ren satisfying (5.52)).

Finally, by arguing as in the second step of Case 1, we can construct the recovery sequence for the
functional G. . O

6. PROOF OF THEOREM [3.4]
This section is devoted to the proof of Theorem

Proof of Theorem[3.4 The compactness statement follows immediately by and .

Analogously, the lower bound is a consequence of and of the lower semicontinuity
of the L? norm with respect to the weak convergence.

Therefore, it remains to prove only the upper bound. The proof is fully analogous to that of
Theorem |3 .(iii in Subsection We briefly sketch it. Let 8 € L?(2;R?) be such that g+ = TP
and we set p 1= s-curl 8 = f—DlvTD Then p € M(Q) N H~1(2). Moreover, by construction,
supp u CC 2.

We show how to prove the claim only in the case p := Zlel mlx,1dz, where L € N, m! € R and
{wl}lzl,m’ 1, is a partition of ) into sets with Lipschitz continuous boundary. Indeed, the general
case follows by the former by arguing verbatim as in the proof of Theorem iii). Let

L N
(6.1) e = Z Z O in
=1 n=1
be the measure provided by Lemma and let 3. € L?(£;R?) be the field defined in (5.30); in

particular, we recall the fields IA{E and K. defined in (5.25)). By arguing verbatim as in Case 1
(first step) of the proof of Theorem [3.3[(iii), and using that here N, > [loge|, we have that

L N
1 K. de=1li K. d
i i [, IR s =t 3;;/5,% A
l
L e 1 logr +|10g5| .

analogously, by arguing as in and -, we get
1 1
thE/|K| dthNE/|Vvs|2dx0

e—0
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Therefore,

(6.2)

% —0 strongly in L?(Q;R?).

Finally, defining the sequence {u.}. as in (5.41)), by (5.42) and (5.45)), we have that

. 1 71 2 7]‘ D |2
lim 759-0) = 5 [ 13 o =5 [ 1T da

which concludes the proof of the claim in this case. O
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