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Introduction

This paper concerns the analysis of topological singularities, which is a central topic in models
arising in Physics and Materials Science. Vortices in superconductivity and superfluidity and
(screw end edge) dislocations in single crystal plasticity are the main examples of such phenomenon
[4, 41, 43, 49, 50, 51].

In the last decades several models have been introduced to describe the emergency of these
objects. Among them, the most celebrated is the Ginzburg-Landau (GL) model, mainly studied in
the context of superconductivity. In such a model, the order parameter is a function u ∈ H1(Ω;R2)
and the energy functional (in its simplest form) reads as

(0.1) EGL
ε (u) :=

1

2

ˆ
Ω

|∇u|2 dx+
1

ε2

ˆ
Ω

(
1− |u|2

)2
dx,

where the parameter ε > 0 is referred to as coherence length. Here and below Ω ⊂ R2 is a
bounded open set with Lipschitz continuous boundary. A topological singularity is nothing but a
point around which u has non-trivial winding number and hence the main object to look at is the
Jacobian determinant (of u) Ju := det∇u. Denoting by S1 the set of unitary vectors in the plane,
we notice that close to a topological singularity, u cannot be S1-valued (a singularity can be seen

1
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somehow as a zero of the order parameter); therefore, the parameter ε can be interpreted as the
size of the region where u fails to take values in S1 and hence as the core-radius of the topological
singularity.

The variational analysis of the (GL) functional has been first systematized in the monography
[6] (see also [59] and the references therein for the asymptotic analysis in terms of Γ-convergence),
where the (GL) model is compared with (and shown somehow to be “equivalent” to) the so-called
core-radius (CR) approach, in antiplane elasticity. Within this framework, the main variable
is represented by the distribution of topological singularities µ =

∑
αiδξi (with integer weights

αi) but the energy functional depends both on µ - which here plays the role of the Jacobian
in (GL) - and on a map u ∈ H1(Ωε(µ);S1) “compatible with µ”. Here, ε is the core-radius,
Ωε(µ) := Ω\

⋃
iBε(ξi) and the notion of compatibility is given by the fact that deg(u, ∂Bε(ξi)) = αi

(assuming that the balls Bε(ξi) are pairwise disjoint). The energy of the system thus writes

(0.2) ECR
ε (µ, u) :=

1

2

ˆ
Ωε(µ)

|∇u|2 dx+ |µ|(Ω).

Here, the quantity |µ|(Ω) plays the same role of the potential term in ECR
ε , namely, avoids that

the cores do not cover the whole domain; in other words, it serves only to guarantee compactness
and does not provide any energy contribution in the asymptotics as ε→ 0.

The (CR) approach is mostly used to model screw dislocations in semi-discrete theories. Loosely
speaking, in pure (anti-plane) elasticity the bulk energy is determined by the Hooke’s law, and
reads as 1

2

´
Ω
|∇w|2 dx, where the displacement w lies in H1(Ω). In presence of a finite distribution

µ =
∑

i αiδxi
of (scalar) defects, the material has a purely plastic behavior in the cores Bε(ξi) and,

oversimplifying, such a plastic contribution can be expressed by |µ|(Ω). Moreover, along a closed
circuit enclosing the singularity ξi, a displacement w compatible with µ should have a jump [w]
equal to αi. Therefore, the displacement w is only in SBV 2(Ωε(µ)) with [w] ∈ Z and its elastic
energy should be given by 1

2

´
Ωε(µ)

|∇w|2 dx, where ∇w is the absolutely continuous part of Dw.

Setting

(0.3) u = e2πıw,

one obtains that the total energy associated to the pair (µ, u) is given by ECR
ε .

In this paper, we adopt a different viewpoint, following the approach proposed in [28]. The
main feature is that the order parameter is now an S1-valued map, as in the (CR) approach,
defined on the whole Ω, as in the (GL) approach. Clearly, in presence of topological singularities,
such a map cannot be in H1(Ω; S1). But, instead of removing small disks around the singularities
(as in (CR)) or to weaken the S1-constraint (as in (GL)), the map u is now allowed to jump. More
precisely, u is a special function of bounded variation with square-integrable approximate gradient
(i.e., u ∈ SBV 2(Ω;S1)). The energy functional we consider is

(0.4) Fε(u) :=

ˆ
Ω

1

2
|∇u|2 dx+

1

ε
H1(Su),

where ε > 0 is a small parameter determining the size of the jump set Su of u. Here and throughout
the paper H1 denotes the (one-dimensional) Hausdorff measure.

Formally, the functional Fε has the structure of the Mumford-Shah functional [56], but the S1-
constraint makes the analysis completely different. Indeed, having in mind the identity (0.3) and
the (CR) approach for screw dislocations, jumps of the map u correspond to non-integer jumps
of the displacement w and should pay energy. In other words, the (amplitude of the) jump [w] of
the displacement exhibits a transition between integers in a little portion of Sw. The transition is
assumed to have length of the order of ε, and corresponds to the presence of singularities. In this
respect, H1(Su) is the analogue of the potential term in (GL) and of the plastic term in (CR) and
the parameter ε can be understood also in this case as the core-radius of the singularity.

We highlight that for SBV maps the definition of topological degree as well as that of Jacobian
determinant are not so standard so that the notion of topological singularity is not so clear as in
(GL) and in (CR). Nevertheless, in [28], using the minimal lifting in [45], a notion of Jacobian
determinant is provided also for SBV functions; we recall such a definition in Section 1 (see [53]
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where in a more restrictive setting this notion was first introduce, and see also [9] for a different
definition of Jacobian determinant in dimension 2). In a nutshell, given a map u ∈ SBV (Ω;S1),
the Jacobian Ju of u is defined as the boundary of the 1-current Tu defined by

(0.5)
Tu :=

1

2
(−u1∂x2

u2 + u2∂x2
u1;u1∂x1

u2 − u2∂x1
u1) +

1

2
(u+ ∧ u−)τ Su

=:TD
u + TS

u .

We stress that dealing with the energy considered in [28], that is

(0.6) Gε(u) :=

ˆ
Ω

1

2
|∇u|2 dx+

1

ε
H1(Su),

rules out, for instance, SBV 2 functions with jump set dense in the whole Ω; such a fact is crucial
to prove compactness, rendering the analysis more simpler.

In [28, Theorem 3.1] the Γ-convergence analysis of the functional Gε at the energy regime | log ε|
has been developed. As one may expect, such an analysis reveals that the functional Gε shares
the same compactness and Γ-convergence properties of the functionals ECR

ε and EGL
ε . Specifically,

as ε → 0, the Jacobian determinant tends to concentrate around a finite number of effective
singularities and the Γ-limit of the functionals Gε

| log ε| is given (up to multiplicative constants)

by the total variation of the limiting measure of the Jacobians. Since, in view of the possibile
presence of short dipoles, a uniform bound on the total variation of the dislocations’ distributions
is not available, the natural setting for such an asymptotic analysis is the (strong) flat convergence
for Jacobian determinants, the flat topology being the strong topology in the dual of Lipschitz
continuous functions with compact support in Ω.

In the present paper we generalize the analysis done in [28] along two directions. On the one
hand, we show that the penalization term can be “weakened” considering only the length of the
jump set instead of its closure, i.e., working with the functional Fε rather than with Gε. Therefore
it is not needed to assume a priori that the jump set is compact. On the other hand, we show
that the functional Fε shares the same asymptotic behavior of the functionals ECR

ε and EGL
ε also

in other energy regimes.
The first improvement is obtained by means of a density result in SBV p(Ω;S1), p > 1, with

respect to energies Fε for fixed ε > 0, through functions in SBV p(Ω;S1) with (essentially) closed
jump set, converging in the strong BV norm and such that also the two unilateral traces of the
approximants along the jump set converge; in particular, by using the characterization of Ju as
the boundary of Tu in (0.5), the strong convergence of Jacobian determinants with respect to flat
norm follows.

Our result hinges on tools developed in a slightly different setting, that is when only the
symmetric part of the diffuse gradient is controlled in some Lp, for p > 1, rather than the whole
diffuse gradient. Mechanically, this corresponds to consider fracture models for general linearized
elasticity without the anti-plane assumption, described by the Griffith functional [40] instead of
the Mumford-Shah one.

In fact, the main tool for density results developed in the context of Mumford-Shah functional
is an approximated Poincaré-Wirtinger inequality for SBV p functions with small (Hd−1-measure
of the) jump set, due to De Giorgi-Carriero-Leaci ([25]): given u ∈ SBV p there exists a trun-
cation in W 1,p such that u differs from w on an exceptional set ω whose volume is controlled
by (Hd−1(Su))

1∗ , d ≥ 2 being the space dimension and 1∗ := d/d−1. In the same paper, this
result has been used to prove that the jump set of Mumford-Shah minimizers is essentially closed,
namely the Hd−1 measure of the jump set equals that of its closure. After short time a general-
ization for SBV p(Ω;Sk−1) maps has been proven in [16]; by combining such a generalization with
an argument in [8] (cf. Lemma 5.2 therein), one can show that the Mumford-Shah functional in
SBV p(Ω; S1) can be approximated through SBV p(Ω; S1) functions having essentially closed jump
set and converging pointwise. Unfortunately, pointwise convergence of a sequence of functions
does not guarantee convergence of the corresponding Jacobians; since we need convergence in the
flat norm such an approach is not satisfactory for our purposes. For functions with finite Griffith
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energy (with exponent p), that is in the space GSBDp ([23]), a fundamental tool is the approx-
imated Poincaré-Korn inequality in [10], stating that for any u ∈ GSBDp with small jump set
there exists an infinitesimal rigid motion a (i.e. an affine function with null symmetrized gradient)

such that the L
dp

d−1 -norm of u − a is estimated by the Lp norm of e(u), the symmetrized diffuse
gradient of u, outside an exceptional set ω whose volume is controlled by (Hd−1(Ju))

1∗ . Moreover,
a convolution of uχωc + aχω at the same scale of the domain provides a function with Lp-norm of
the symmetrized diffuse gradient controlled by those of u.

This result, on which other contribution in this direction rest (see, e.g.,the approximation in
GSBDp through functions with essentially closed jump set [19, 11] and the analogue of [25] for
the Griffith functional [20, 17, 12]), has been generalized by [18] and [13]: here, any u ∈ GSBDp

is approximated, in terms of the Griffith energy, by functions W 1,p on a slightly smaller domain,
with essentially closed jump set, which differ from u on a set ω whose boundary is controlled
by Hd−1(Ju); further, in [18] it is shown that in dimension two it is possible to guarantee that
the approximants coincide with u in the boundary neighborhood where they are not in W 1,p. In
[18] such an approximation is used to prove an integral representation result, while in [13] the
main result is the approximation of any u ∈ GSBDp, with respect to the Griffith energy, through
functions with essentially closed jump set differing from u on sets of vanishing perimeter.

Moreover, Friedrich [32] proved a piecewise Korn inequality in dimension two, showing that up
to subtracting piecewise rigid functions (finite sums of infinitesimal rigid motions multiplied by
characteristic functions), any u in GSBDp can be approximated by functions in SBV q ∩ L∞, for
q < p, in particular the diffuse gradient of the approximants is estimated on the whole domain
by e(u); this is a very powerful tool allowing to overcome the lack of a Coarea Formula in GSBD
and then to show, e.g., existence of quasi-static evolutions for Brittle Fracture models (see, for
instance, [34]). In the same spirit, in [33] a similar result has been shown in the Mumford Shah
setting, namely dealing only with full diffuse gradients.

Eventually, we refer to [29] for the two dimensional analogue of [16] for maps in SBV p(·)(Ω;Sk−1),
(with Ω ⊂ R2) whose approximate gradient is integrable with respect to the variable exponent p(·)
over Ω and whose jump set has finite H1-measure (see also [48] for the variable exponents analogue
of [25]), obtained under the assumption that the function p(·) is regular enough and takes values
in (1, 2). This uses the analogue of the approximation of [18], proven by employing retractions
P : Rk \ X → Sk−1 with locally q-integrable gradient for q ∈ [1, 2), where X is a smooth complex
of codimension two (cf. e.g. [14]).

We then compare our main density result Corollary 2.2 with [13, Theorem 5.1]: we are in
two dimensions and consider the full diffuse gradient instead of its symmetrized part, however we
keep in the approximation the constraint of being S1-valued. We notice that also a version with
symmetrized diffuse gradient is readily shown with essentially the same proof, see Theorem 2.6.

Since in our application the case p = 2 is the relevant one, we cannot follow a strategy based on
retractions. Moreover, the proof of [18], [13], and [33] is not compatible with a non-convex target
space such as S1.

Our approach is based on the existence of a lifting φ ∈ SBV p(Ω) (i.e., such that u = e2πıφ)
with π∥φ∥BV ≤ ∥u∥BV ([24]), for which we provide a suitable approximation (Theorem 2.1) and
then compose the approximants with e2πı·. We observe that, since in [13, Theorem 5.1] the set on
which the traces of the approximants differ from those of the given function has only finite Hd−1

measure and then could be dense in the original jump set, after an application of [13, Theorem 5.1]
to φ and the composition with e2πı·, one could obtain approximating functions with jump set dense
in the integer jump set of φ, whose H1-measure could be of order ∥u∥BV .

Therefore we need a more refined density result, which allows to approximate integer jumps
with integer jumps as well. The strategy is to work locally near points with integer jump at a
scale for which the jump is almost flat and assumes a constant integer value. Then locally most
of the jump set of φ can be transferred (up to a small error) into a flat segment S on which the
jump has the same value; such S can be chosen in such a way that the remaining small jump set
of φ, on any square with arbitrarily small sidelength with a side contained in S, is small compared
to the sidelength: this follows by a two dimensional argument drawn from [18].
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In this way, the approximation for functions with small jump set of [18] may be applied at every
scale; therefore a Whitney-type argument combined with the fact that the approximants coincide
with the original function on the boundary of any square ensures that the traces are the same
on both sides of S, so the new jump is still integer. This strategy may be replicated for different
target manifolds, provided a lifting with good BV bounds as in [24] exists (in this respect see e.g.
[15]), but limiting to two dimensional domains. We notice that in the present context several hard
issues arise when considering space dimension d ≥ 3, such as the lack of the analogue of the Ball
Construction.

The density result described above allows to develop the Γ-convergence analysis for the func-
tional Fε also in different energetic regimes (as it applies for fixed ε > 0), thus generalizing the
setting of [28].

First, we develop the Γ-convergence analysis in the so-called critical regime, that is | log ε|2.
Loosely speaking, since | log ε| is the energy cost of an isolated singularity, the fact that Fε(uε) ∼
| log ε|2 implies that, for ε > 0, the number of singularities of the Jacobians Juε is of order | log ε|;
therefore, the Jacobians Juε, once rescaled by | log ε|, should converge (in the flat norm) to a
measure µ that is not anymore atomic but diffuse. Furthermore, we prove that such a measure µ
lies also in H−1(Ω). Indeed, by standard compactness results in L2(Ω), also the fields TD

uε
, once

scaled by | log ε|, should converge (weakly in L2(Ω)) to a field TD, whose distributional divergence
is shown to be given by −πµ. As one may expect, the Γ-limit accounts both for the plastic
contribution of µ as well as for the elastic energy of TD. That is the reason why the | log ε|2
regime is called critical, since in such a case the elastic and plastic effects are of the same order.
The Γ-convergence analysis for the functional Fε is provided in Theorems 3.3 and 3.4 which are
proved in Section 5. Second, the proofs of the compactness and of the lower bound are obtained
combining the corresponding results for the core-radius approach together with the refined ball
construction machinery introduced in [28] to analyze the | log ε| regime.

Finally, adopting the same strategy, in Theorem 3.4 we analyze also the super-critical regimes
| log ε|2 ≪ Nε ≪ 1

ε . In such a case, the interaction elastic energy is larger and larger than the core

energy, so that (unless scaling differently the two quantities Juε and TD
uε
) one keeps track of the

only TD and the Jacobian determinants do not play any role when computing the effective energy.
We highlight that the Γ-convergence analysis for the functional EGL

ε in the regime | log ε|2 has
been developed in [47, 60, 61], where the authors consider also the case with magnetic field. The
analysis for ECR

ε is provided in Section 4 and is somehow a short self-contained resume of the
results above, along the lines of [2].

However, a similar result in the context of edge dislocations within the (CR) approach is proven
in [35] under the well-separation assumption for the singularities (see also [55] for such an analysis
in the nonlinear elasticity framework); such an assumption has been removed in [39]. In view of
the asymptotic equivalence result [1] between the Ginzburg-Landau model and the purely discrete
models of XY spin systems and screw dislocations, we have that the analysis in the (GL) context
extends also to such discrete models.

The paper is organized as follows: After recalling some notations and preliminary results in
Section 1, we prove in Section 2 a general density result for SBV p(Ω) functions in Theorem 2.1
which implies, as a consequence, Corollary 2.2. This is the result we employ to obtain energy
density in the Γ-convergence results of Section 3, actually allowing us to restrict such analysis to
S1-valued functions with essentially closed jump set. The latter results are Theorems 3.3 and 3.4,
stated in Section 3 after recalling the main features of our model. In order to prove them we recall
in Section 4 the classical core radius approach, which is the starting point of our analysis. Finally,
the proofs of Theorems 3.3 and 3.4 are given, respectively, in Sections 5 and 6.
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1. Preliminary results

In this section we collect some preliminary notions on the flat norm of measures and currents,
as well as some properties of BV functions that will be used throughout the paper.

Flat norm of Radon measures. Let n ≥ 1 be an integer and let U ⊂ Rn be a bounded and
open set. We denote by Mb(U) the space of Radon measures on U with finite total variation. If
µ ∈ Mb(U), we denote by |µ|(U) the total variation of µ . We recall that a sequence µk ∈ Mb(U)
converges tightly to µ ∈ Mb(U) if µk converges to µ weakly* as measure, and |µk|(U) → |µ|(U).
We also introduce the concept of flat norm of a measure µ, denoted by ∥µ∥flat , as

∥µ∥flat := sup
φ∈C0,1

c (U)
∥φ∥C0,1(U)≤1

ˆ
U

φ dµ .(1.1)

Here and below, the Lipschitz norm ∥φ∥C0,1(U) is defined by

∥φ∥C0,1(U) := ∥φ∥L∞(U) + sup
x,y∈U
x ̸=y

|φ(x)− φ(y)|
|x− y|

.

By a density argument we easily see that the supremum in (1.1) can be equivalently computed
among smooth and compactly supported (in U) functions φ with ∥φ∥C0,1(U) ≤ 1 .

Flat norm of k-currents. Let n ≥ 2 be an integer and let U ⊂ Rn be an open set. For every
k ∈ N with 0 ≤ k ≤ n , we denote by Dk(U) the topological vector space of smooth and compactly
supported k-forms on U , and by Dk(U) its dual, i.e., the space of k-currents on U .

The mass |T | of a current T ∈ Dk(U) is defined as

|T | = sup{⟨T, ω⟩ : ω ∈ Dk(U), ∥ω∥L∞ ≤ 1} .
As done in (1.1) for measures, we define the flat norm of a current T ∈ Dk(U) in U by

(1.2) ∥T∥flat,U := sup
ω∈Dk(U)
∥ω∥F,U≤1

⟨T, ω⟩,

where

∥ω∥F,U := ∥ω∥L∞(U) + ∥dω∥L∞(U) .

In the special case that T is a 0-current and has finite mass, then it can be standardly identified
with a measure, and the flat norm of T coincides with the flat norm of the measure T defined in
(1.1).

Jacobian for S1-valued Sobolev maps. Let U ⊂ R2 be a bounded and open set. Given a map
u ∈W 1,1(U ;S1) we recall that the distributional Jacobian Ju = Det(∇u) of u is defined by

(1.3) ⟨Ju, φ⟩U :=

ˆ
U

∇φ · λu dx, for every φ ∈ C∞
c (U),

where

λu :=
1

2

(
− u1

∂u2

∂x2
+ u2

∂u1

∂x2
;u1

∂u2

∂x1
− u2

∂u1

∂x1

)
;(1.4)

notice that λu ∈ L1(U ;R2).
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Moreover, denoting by j(u) ∈ L1(U ;R2) the current associated to u , i.e.,

(1.5) j(u) :=
1

2
(u1∇u2 − u2∇u1) ,

one has j⊥(u) = λu and j(u) = π∇w , where w is a generic lifting of u , i.e., a map in SBV 2(U)
satisfying (0.3) and ∇w is the approximate gradient of w. Furthermore, it is easy to check that

Ju = −Divλu = curl j(u) = πcurl(∇w),
holds in the sense of distributions.

In the sequel we will use the fact that a function u ∈ H1(U ;S1) satisfies Det(∇u) = 0 in the
sense of distributions. Moreover, if u ∈ H1(U \ B;S1), where B ⊂ U is a ball, then, integrating
by parts,ˆ

U\B
λu · ∇φ dx =

ˆ
∂B

λu · νφ dH1 =

ˆ
∂B

j(u) · τφ dH1, for every φ ∈ C∞
c (U),

where ν is the inner normal vector to ∂B, τ = −ν⊥ is the counter-clockwise tangent vector to

∂B. Notice that j(u) · τ = 1
2 (u

1 ∂u2

∂τ − u2 ∂u1

∂τ ) on ∂B.
We recall that deg(u, ∂B) ∈ Z is defined as

deg(u, ∂B) :=
1

π

ˆ
∂B

j(u) · τ dH1 =
1

π

ˆ
∂B

λu · ν dH1 ,(1.6)

whenever u ∈ H
1
2 (∂B;S1).

Jacobian for S1-valued SBV maps. Let U ⊂ R2 be a bounded and open set. For any p ∈
[1,+∞) the symbol SBV p(U ;R2) denotes the space of functions u ∈ BV (A;R2) such that the
Cantor part Dcu ≡ 0 , and ∇u ∈ Lp(A;R2×2), where ∇u is the density of Dau , i.e., Dau := ∇uL2 .
The space SBV p(U ;S1) denotes the set of the functions u ∈ SBV p(U ;R2) such that |u| = 1 a.e.
in U .

The following result, proven in [28, Corollary 2.1], is specialized here to maps taking values in
R2.

Proposition 1.1. Let u ∈ SBV (U ;R2) ∩ L∞(U ;R2) ; then there exists a unique measure νu ∈
Mb(U ;R2×2×2) such that, whenever {vk}k∈N ⊂ C1(U ;R2) ∩W 1,1(U ;R2) ∩ L∞(U ;R2) satisfies

∥vk∥L∞(U ;R2) ≤ C < +∞ for all k ≥ 1 and vk
strict
⇀ u in BV (U ;R2) , then vk ⊗∇vk → νu , where

(νu)
i,h
j is defined (for all φ ∈ Cc(U)) byˆ

U

φ(x) d(νu)
i,h
j =

ˆ
U\Su

ϕ(x)uh(x)∂xju
i(x) dx

+
1

2

ˆ
Su

ϕ(x)(uh,+(x) + uh,−(x))(ui,+(x)− ui,−(x))νj(x) dH1(x) ,

for every i, j, h ∈ {1, 2} . Finally, if {uk}k∈N ⊂ SBV (U ;R2) ∩ L∞(U ;R2) with

(1.7) ∥uk∥L∞(U ;R2) ≤ C,

for some constant C > 0, and uk
strict
⇀ u in BV (U ;R2) , then

(1.8) νuk

∗
⇀ νu in Mb(U ;R2×2×2) .

In the following, for every map u ∈ SBV (U ;R2) ∩ L∞(U ;R2) , we set

[uhDju
i] := (νu)

i,h
j , i, j, h ∈ {1, 2} ,

For any map u ∈ SBV (U ;R2) ∩ L∞(U ;R2) we introduce the 1-current Tu defined by

(1.9)

Tu :=
1

2
(−[u1D2u

2] + [u2D2u
1]; [u1D1u

2]− [u2D1u
1])

=
1

2
(−u1∂x2u

2 + u2∂x2u
1;u1∂x1u

2 − u2∂x1u
1) +

1

2
(u+ ∧ u−)τ Su

=:TD
u + TS

u .
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where we have noted α ∧ β = −α · β⊥ = det(α, β). Notice that TD
u ∈ L1(U ;R2) and that, if

u ∈ W 1,1(U ;S1) , then Tu = TD
u = λu with λu defined in (1.4). Finally, we highlight that if

u ∈ SBV (U ;S1) , for any lifting w ∈ SBV (U) of u, i.e., satisfying (0.3), it holds that

(1.10) TD
u := π∇⊥w; TS

u :=
1

2
sin(2π(w− − w+))τ Su .

The distributional Jacobian Ju ∈ D0(U) of u is defined as the boundary of Tu, namely

Ju := ∂Tu in D0(U).(1.11)

Essentially by definition, it easily follows that

∥Ju∥flat,U ≤ C∥u∥BV ,

for all u ∈ SBV (Ω; S1), for a universal constant C > 0.

Remark 1.2. We point out that in general Ju is not a Radon measure. This notion of Jaco-
bian determinant was first introduced in [53] under some special hypotheses on u. Under these
hypotheses it turns out that Ju is also a Radon measure.

2. Density results in SBV p(Ω; S1)

In this section we prove that any function u ∈ SBV p(Ω; S1) can be approximated - in the strong
BV norm - by (sequence of) functions in SBV p(Ω;S1) with closed jump set. As a consequence
(see Corollary 2.3), we deduce that the corresponding currents can be approximated in the flat
norm.

In what follows for every function φ ∈ SBV p(Ω) (with p ≥ 1) we denote by Sfrac
φ the fractional

jump set of φ , i.e., Sfrac
φ := {x ∈ Sφ : [φ] /∈ Z} , and by Sint

φ the integer jump set , namely,

Sint
φ := Sφ \ Sfrac

φ . The main result of this section is the following.

Theorem 2.1. Let Ω ⊂ R2 be a bounded open set with finite perimeter, p ∈ (1,+∞), and ε > 0.
Then for every φ ∈ SBV p(Ω) there exist:

• closed sets Γint = Γint
ε , Γfrac = Γfrac

ε , finite unions of disjoint C1 curves;
• a set ω̃ = ω̃ε, finite union of cubes;
• a set of finite perimeter ω̂ = ω̂ε;
• a function θ = θε ∈ SBV p(Ω) ∩W 1,p(Ω \ (Γint ∪ Γfrac ∪ ω̃)) ;

such that

(2.1) {∇φ ̸= ∇θ} ⊂ ω̃ ∪ ω̂, L2({φ ̸= θ}) < ε, θ = 0 in ω̃,

[θ](x) ∈ Z for H1-a.e. x ∈ Γint ,

(2.2) |H1(Sint
φ )−H1(Γint)|+H1(Sfrac

φ △Γfrac) +H1(∂ω̃) +H1(∂∗ω̂) ≤ ε,

and

(2.3)

ˆ
Ω

|∇θ|p dx ≤ (1 + ε)

ˆ
Ω

|∇φ|p dx.

Moreover, H1(Γfrac ∩ {θ+ ̸= φ+}) + H1(Γfrac ∩ {θ− ̸= φ−}) ≤ ε, where θ± and φ± denote the
traces of θ and φ on the two sides of Γ.

Before providing the proof of Theorem 2.1 we state and prove our desired approximation results
for maps in SBV p(Ω;S1).

Corollary 2.2. Let Ω ⊂ R2 be a bounded open set of finite perimeter, p ∈ (1,+∞), and ε > 0.
Then for every u ∈ SBV p(Ω; S1) there exist:

• a closed set Γ = Γε, finite union of disjoint C1 curves;
• a set ω̃ = ω̃ε, finite union of cubes;
• a set of finite perimeter ω̂ = ω̂ε;
• a function v = vε ∈ SBV p(Ω;S1) ∩W 1,p(Ω \ (Γ ∪ ω̃); S1);
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such that

(2.4) {∇u ̸= ∇v} ⊂ ω̃ ∪ ω̂, L2({u ̸= v}) < ε, ∇v = 0 L2-a.e. in ω̃,

and

H1(Su△Γ) +H1(∂ω̃) +H1(∂∗ω̂) ≤ ε,

ˆ
Ω

|∇v|p dx ≤ (1 + ε)

ˆ
Ω

|∇u|p dx.(2.5)

Moreover, H1(Γ ∩ {v+ ̸= u+}) +H1(Γ ∩ {v− ̸= u−}) ≤ ε, where v± and u± denote the traces of
v and u on the two sides of Γ.

Proof. Let u ∈ SBV p(Ω;S1) and let ε > 0 . Then, by [24, Theorem 1.1], there exists φ ∈ SBV p(Ω)
such that u = e2πıφ with π∥φ∥BV ≤ ∥u∥BV . Let Γint, Γfrac, ω̃, ω̂ be the sets and let θ be the
function provided by Theorem 2.1 . We set v := e2πıθ . Then, {∇φ = ∇θ} ≡ {∇u = ∇v} L2-a.e.
and {φ = θ} ⊂ {u = v} , so that, by (2.1) we immediately deduce (2.4). Furthermore, since
Sfrac
φ ≡ Su , taking Γ = Γfrac, by Theorem 2.1 we deduce also the last part of the claim. □

Proposition 2.3. Let Ω ⊂ R2 be a bounded open set with finite perimeter, let p ∈ (1,+∞), and
let u ∈ SBV p(Ω; S1). Then there exists {un}n∈N ⊂ SBV p(Ω; S1) with H1(Sun

\ Sun
) = 0 for all

n such that

(2.6)

∥un − u∥BV (Ω;R2) → 0,

∥∇un∥Lp(Ω;R2×2) → ∥∇u∥Lp(Ω;R2×2),

H1(Sun
) → H1(Su).

Furthermore

(2.7) |Tun
− Tu|(Ω) → 0,

where Tu and Tun are the measures provided by (1.9); in particular

∥Ju− Jun∥flat,Ω → 0,

with ∥ · ∥flat,Ω is the norm defined in (1.2).

Proof. Let u ∈ SBV p(Ω; S1) be fixed. For every n ∈ N let un be the function provided by Corollary
2.2 for ε = εn = 1

n . By (2.4), we have that, for all s ∈ [1,+∞),

(2.8) L2({u ̸= un}) ≤
1

n
, ∥u− un∥Ls(Ω;R2) ≤

1

n
1
s

,

and

(2.9)
∥∇u−∇un∥L1(Ω;R2×2) ≤

(
∥∇u∥Lp(Ω;R2×2) + ∥∇un∥Lp(Ω;R2×2)

)(
|ω̃n|+ |ω̂n|

) 1
p′

≤ C

n2
∥∇u∥Lp(Ω;R2×2) .

Furthermore, since

DSu = (u+ − u−)⊗ νu Su dH1, DSun = (u+n − u−n )⊗ νun
Sun

dH1 ,

by triangle inequality, using that νu = νun on Su ∩ Sun , we get

(2.10)

|DSu−DSun|(Ω) ≤
(
|u+ − u+n |+ |u− − u−n |

)
H1(Su ∩ Sun)

+ |u+ − u−|H1(Su \ Sun
) + |u+n − u−n |H1(Sun

\ Su)

≤ 4H1(Γn ∩ {u+n ̸= u+}) + 4H1(Γn ∩ {u−n ̸= u−}) + 2H1(Su△Sun
)

≤ C

n
,

where in the last inequality we have used (2.5) and the fact that Sun ⊂ Γn ∪ ∂ω̃n, to deduce that

H1(Su△Sun) ≤H1(Γn ∩ (Su \ Sun)) +H1(Su△Γn) +H1(∂ω̃n)

≤H1(Γn ∩ {u+n ̸= u+}) +H1(Γn ∩ {u−n ̸= u−}) +H1(Su△Γn) +H1(∂ω̃n) ≤
2

n
.
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By (2.8), (2.9), (2.10), we immediately deduce the first condition in (2.6), whereas the other two
easily follow from (2.5). Notice that (2.6) together with the fact that un, u ∈ SBV p(Ω; S1) implies
that

(2.11)

ˆ
Su∩Sun

|[u]− [un]| ⊗ νu dH1 → 0 and H1(Su△Sun
) → 0 as n→ +∞.

Furthermore, using triangle inequality, (2.8) and (2.9), it is easy to check that

|TD
u −TD

un
|(Ω) ≤ 4∥∇u∥L1({u̸=un};R2×2)∥u−un∥L∞(Ω;R2)+4∥un∥L∞(Ω;R2)∥∇u−∇un∥L1(Ω;R2×2) → 0

and that

|TS
u − TS

un
|(Ω) ≤1

2

ˆ
Su∩Sun

|u+n ∧ u−n − u+ ∧ u−| dH1

+
1

2

ˆ
Su\Sun

|u+ ∧ u−| dH1 +
1

2

ˆ
Sun\Su

|u+n ∧ u−n | dH1 ≤ H1({[u] ̸= [un]}) ≤
3

n
,

since Sun
⊂ Γn ∪ ∂ω̃n ∪ ∂∗ω̂n and {[u] ̸= [un]} = (Su△Sun

) ∪ (Su ∩ Sun
∩ {[u] ̸= [un]}). □

We now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let ϱ, α1, α2 be small positive constants to be determined later. We divide
the proof into three steps.

Step 1: Covering the jump set. Since the sets

Ŝ0
u := Sfrac

u and Ŝz
u := {x ∈ Su : [u](x) = z}

for all z ∈ Z∗ := Z\{0} are countably (H1, 1) rectifiable with finite H1 measure, by [31, Theorem,
3.2.29] for every z ∈ Z there exists a countable family {Mz

k}k∈N such that

(2.12) H1
(
Ŝz
u \

∞⋃
k=1

Mz
k

)
= 0

and, by [3, Theorem 2.76] we may assume that for each z ∈ Z and k ∈ N the manifold Mz
k is a

graph of a C1 and Lipschitz function with Lipschitz constant less than α1 . Let us fix z ∈ Z such

that H1(Ŝz
u) > 0 (in particular, for the application of the present theorem in this paper, this holds

for z = 0). Then, since for H1-a.e. x ∈ Ŝz
u ∩Mz

k , x has H1-density 1 both for Ŝz
u and Mz

k , for

every k ∈ N and every such x ∈ Ŝz
u ∩Mz

k there exists η(α2, x) ∈ (0, ϱ) such that

(2.13)
|H1(Qr(x) ∩ Ŝz

u)− 2r| ≤ 2α2r, |H1(Qr(x) ∩Mz
k )− 2r| ≤ 2α2r,

|H1(Qr(x) ∩ (Ŝz
u ∩Mz

k ))− 2r| ≤ 2α2r.

for every r ≤ η(α2, x), and moreover

(2.14) H1(Qr(x) ∩ (Ŝz
u△Mz

k )) ≤ α2H1(Qr(x) ∩ Ŝz
u),

for every r ≤ η(α2, x); here we recall that Qr(x) denotes the (open) cube Q
ν(x)
r (x), centered at x,

with sidelength 2r and with a side normal to ν(x), the approximate normal to Su (or Ŝz
u) at x.

We notice that (2.13) holds also for Su in place of Ŝz
u or Ŝz

u ∩Mz
k , that is, for H1-a.e. x ∈ Su, we

may also assume

(2.15) |H1(Qr(x) ∩ Su)− 2r| ≤ 2α2r

for every r ≤ η(α2, x). Now we introduce

M := Su ∩
⋃

z∈Z, k∈N
Mz

k .

We also denote by M̃ ⊂ M , the set of points x satisfying (2.13), (2.14), and (2.14). From

what observed, H1(M \ M̃) = 0; so, since the family {Qr(x) : x ∈ M, r ≤ η(α2, x)} is a fine

cover of M̃ , Vitali-Besicovitch’s Covering Theorem (see [30, Theorem 1.10] for its version for



JACOBIAN FOR BV MAPS 11

cubes) ensures the existence of a disjoint subfamily {Qr(α2,x)(x) : x ∈ M ′}, for a countable set

M ′ = {xj}j∈N ⊂ M̃ ⊂M and r(α2, x) ≤ η(α2, x), such that

H1
(
Su \

⋃
j∈N

Qj

)
= 0,

where we have noted Qj := Qrj (xj) and rj := r(α2, xj) for every j ∈ N. Then there exists
J = J(α2) ∈ N such that

(2.16) H1
(
Su \

J⋃
j=1

Qj

)
< α2.

For every j ∈ {1, . . . , J}, let kj ∈ N, zj ∈ Z be the indeces such that, xj ∈ Ŝ
zj
u ∩Mzj

kj
, and (2.13),

(2.14), (2.15) hold (for all j, such indeces are unique). Then we set

Γj := Qj ∩M
zj
kj
.

We now see that for every j ∈ {1, . . . , J}, there hold

Γj is the graph of a C1 and Lipschitz function with Lipschitz constant less than α1;(a)

|H1(Qr(xj) ∩ Γj)− 2r| ≤ 2α2r for all 0 < r ≤ rj ;(b)

H1(Qj ∩ (Ŝzj
u △Γj)) +H1(Qj ∩ (Su \ Ŝzj

u )) ≤ 8α2rj ;(c)

H1
(
Su△

J⋃
j=1

Γj

)
≤ α2(1 + 5H1(Su));(d)

L2
( J⋃

j=1

Qj

)
≤ 3ϱH1(Su).(e)

Property (a) follows by definition, since Mz
k are graphs of Lipschitz maps with constant less than

α1. Property (b) follows immediately from (2.13). As for the proof of (c), by (2.14) and (2.13),
choosing

α2 ≤ 1 ,(2.17)

we have that

(2.18) H1(Qj ∩ (Ŝzj
u △Γj)) ≤ α2H1(Qj ∩ Ŝzj

u ) ≤ 2α2(1 + α2)rj ≤ 4α2rj ;

moreover, by (2.15) and (2.13) we have that

H1(Qj ∩ (Su \ Ŝzj
u )) =H1(Qj ∩ Su)−H1(Qj ∩ Ŝzj

u )

≤ 2rj(1 + α2)− 2rj(1− α2) = 4α2rj ,

which, combined with (2.18), yields property (c). Property (d) follows from the decomposition

Su \
J⋃

j=1

Γj =

Su \
J⋃

j=1

Qj

 ∪
J⋃

j=1

(
Qj ∩ (Su \ Γj)

)
,

combined with (2.16) and the estimate

H1
(
Qj ∩ (Su△Γj)

)
=H1

(
Qj ∩ (Ŝzj

u \ Γj)
)
+H1

(
Qj ∩ ((Su \ Ŝzj

u ) \ Γj)
)
+H1

(
Qj ∩ (Γj \ Su)

)
≤H1

(
Qj ∩ (Ŝzj

u △Γj)
)
+H1

(
Qj ∩ (Su \ Ŝzj

u )
)

≤ 8α2rj ≤ 4α2

(
H1(Qj ∩ Su) + 2α2rj)

)
≤ 5α2H1(Qj ∩ Su)
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recalling that the cubes Qj are pairwise disjoint. Here the first inequality follows from the fact

that Ŝ
zj
u ⊂ Su , the second one from (c), the third one from (2.15), the fourth again from (2.15)

choosing

α2 <
1

5
.(2.19)

Eventually, recalling that rj ≤ ϱ for every j, by (2.15), since α2 <
1
5 <

1
3 , and using again that

the cubes Qj are pairwise disjoint, we have

L2
( J⋃
j=1

Qj

)
=

J∑
j=1

4r2j ≤ 2ϱ

J∑
j=1

(
H1(Qj ∩ Su) + 2α2rj

)
≤ 3ϱ

J∑
j=1

H1(Qj ∩ Su) ≤ 3ϱH1(Su),

from which (e) follows. Moreover, using (2.16) with (c), and arguing as done to prove (d), we
obtain that

Γ̂int :=
⋃

j : zj ̸=0

Γj , Γ̂frac :=
⋃

j : zj=0

Γj , Γ̂ := Γ̂int ∪ Γ̂frac =

J⋃
j=1

Γj

are finite unions of disjoint C1 curves and

(2.20) H1(Sint
u △Γ̂int) +H1(Sfrac

u △Γ̂frac) ≤ α2(1 + 5H1(Su)).

Step 2: Approximation in the cubes Qj. We perform two different approximations depending
on whether the cube Qj = Qrj (xj) is such that zj = 0 or not. To shorten the notation, we set
νj := ν(xj), where ν(xj) is the approximate normal to Su at xj .

Step 2.1: The case zj ̸= 0. This implies that [u](xj) = zj ∈ Z∗ . In this case we first show

that there exists a “big” set of segments (parallel to ν⊥j ) in the cube Qj that do not intersect the
jump set Su of u and such that (small) stripes centered at each of this segment contain a “few”
portion of Su \Γj . To this end, denoting by xj +ν

⊥
j the straight line orthogonal to νj and passing

through xj , we define the (signed) distance from such a line as dist(x, xj + ν⊥j ) := (x − xj) · νj .
Moreover, for every γ ∈ (−rj/2, rj/2) we define

T γ
j := Qj ∩ {dist(·, xj + ν⊥j ) = γ}

and, for every k ∈ N , we set

Cγ,k
j := Qj ∩ {dist(·, xj + ν⊥j ) ∈ [γ − 2−krj , γ + 2−krj ]}.

Let

(2.21) η̃ :=
1

160
η,

where η is the constant from Proposition 2.5 below. We set Sj := Qj ∩ (Su \ Γj) . We claim that

there exists a set I η̃j ⊂ (−rj/2, rj/2) with

(2.22) L1(I η̃j ) ≤
160α2

η̃
rj

such that, for every γ ∈ (−rj/2, rj/2) \ I η̃j , it holds

(2.23) H1(Sj ∩ Cγ,k
j ) < η̃2−(k+1)rj for all k ∈ N

and

(2.24) H1(T γ
j ∩ Su) = 0.

Indeed, for δkj := 2−krj , we argue as in the proof of [18, Theorem 2.1], considering the family

(2.25) I η̃
j :=

{
[γ − δkj , γ + δkj ] : H1(Sj ∩ Cγ,k

j ) ≥ η̃

2
δkj , k ∈ N , γ ∈ (−rj/2, rj/2)

}
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and I η̃j :=
⋃

I∈I η̃
j
I . By Vitali’s covering theorem, there exists a countable set {(γl, kl)}l∈N such

that the intervals [γl − δk
l

j , γ
l + δk

l

j ] in I η̃
j are pairwise disjoint and

I η̃j ⊂
⋃
l∈N

[γl − 5δk
l

j , γ
l + 5δk

l

j ] .

By property (c) of Γj we have

8α2rj ≥ H1(Sj ∩Qj) ≥
∑
l∈N

H1(Sj ∩ Cγl,kl

j ) ≥
∑
l∈N

η̃

2
δk

l

j ≥ η̃

20
L1(I η̃j ).

Then (2.22) follows. By definition of I η̃j , every γ ∈ (−rj/2, rj/2)\I η̃j does not belong to any interval

of the family (2.25) and then satisfies (2.23). Since H1(T γ
j ∩ Su) = 0 for every γ ∈ (−rj/2, rj/2)

except at most countable many, we may enforce also (2.24). Then the claim is confirmed.

Let us choose γj ∈ (−rj/2, rj/2) \ I η̃j satisfying (2.23), (2.24) with

(2.26) γj ∈
(
0,

161α2

η̃
rj

)
.

We consider the function

(2.27) ûj := u+ zjχHj in Qj ,

where Hj ⊂ Qj is the closed region delimited by Γj , T
γj

j , and the two segments Σ1
j , Σ

2
j ⊂ ∂Qj

joining the two couples of intersection points of Γj and T
γj

j with the two boundary segments

B±
j := {xj ± rjτj + tνj : |t| < rj} ⊂ ∂Qj ,

being the ‘tangent vector’ τj the unit vector forming an angle of π/2 with νj . By property (c) we
deduce that

H1(Qj ∩ (Sûj
\ T γj

j )) ≤ H1(Qj ∩ (Su \ Γj)) +H1(Γj \ Ŝzj
u ) ≤ 8α2rj ;(2.28)

by (2.24) it holds that

(2.29) H1(T
γj

j ∩ {[ûj ] ̸= zj}) = 0.

Further, for every s ∈ (0, rj), denoting Qj,s := xj + Qs and Σ1
j,s, Σ

2
j,s ⊂ ∂Qj,s the two segments

joining the two couples of intersection points of Γi and T
γj

j with the boundary segments

B±
j,s := {xj ± sτj + tνj : |t| < rj} ⊂ ∂Qj,s,

in view of (a) and (2.26)

(2.30) H1(Σ1
j,s ∪ Σ2

j,s) ≤ 2

(
α1s+

161α2

η̃
rj

)
.

Arguing as done before to ensure (2.23), (2.24) for γ outside a small set, it is possible to find
r̂j ∈ ((1−√

α2)rj , rj) (for α2 small enough) such that, denoting

Q+
j,r̂j

:= {x ∈ Qj : (x− xj) · νj ∈ (γj , γj + r̂j), (x− xj) · τj ∈ (−r̂j , r̂j)},

Q−
j,r̂j

:= {x ∈ Qj : (x− xj) · νj ∈ (γj − r̂j , γj), (x− xj) · τj ∈ (−r̂j , r̂j)},(2.31)

it holds that

H1(Sûj
∩ ∂Q±

j,r̂j
) = 0,

H1
(
Sûj

∩Q±
j,r̂j

∩
(
∂Q±

j,r̂j
+B2−krj (0)

))
< η̃2−(k+1)rj for every k ∈ N.

(2.32)

In fact, the same argument as above shows that there exist sets I±hor, I
±
ver ⊂ (−rj , rj) with

L1(I±hor) ≤
320α2

η̃ rj , L1(I±ver) ≤ 320α2

η̃ rj such that, for

C γ̃,k
hor,− := {x ∈ Qj : (x− xj) · νj ∈ [γ̃, γ̃ + 2−krj ]}, C γ̃,k

hor,+ := {x ∈ Qj : (x− xj) · νj ∈ [γ̃ − 2−krj , γ̃]},

C γ̃,k
ver,− := {x ∈ Qj : (x− xj) · τj ∈ [γ̃, γ̃ + 2−krj ]}, C γ̃,k

ver,+ := {x ∈ Qj : (x− xj) · τj ∈ [γ̃ − 2−krj , γ̃]},
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it holds that for every γ̃ /∈ I±hor, I
±
ver

H1(Sj ∩ C γ̃,k
hor,±) ≤ η̃2−(k+3)rj , H1(Sj ∩ C γ̃,k

ver,±) ≤ η̃2−(k+3)rj for every k ∈ N.

Therefore, for α2 small enough it is possible to find

r̂j ∈ ((1−
√
α2)rj , rj) such that γj ± r̂j /∈ I±hor, ±r̂j /∈ I±ver,

so the second condition in (2.32) is satisfied. Then (2.32) follows, since the first condition holds
true for every r̂j except at most countably many.

Let1

(2.33) δ̂j ∈
(
8
α2

η̃
, 16

α2

η̃

)
∩ r̂j
rjN

,

so that the rectangles Q±
i,r̂j

are partitioned into cubes of sidelength δ̂jrj . Moreover, let k̂j ∈ N be

such that

(2.34) δ̂j ∈ [2−(k̂j+1), 2−k̂j ).

By property (a), we have that

(2.35) H1((Qj \Qj,r̂j ) ∩ Γj) ≤ 2α1
√
α2rj .

We now subdivide Q±
j,r̂j

into cubes whose sidelength vanishes in a dyadic way towards the bound-

aries such that in any of them there is a small amount of jump of ûj compared to the sidelength,
in the sense of Proposition 2.5.

Let us assume, for simplicity of notation, that xj = 0 and ν(xj) = e2. We introduce two sets Q±
i

of dyadic squares of sidelength δ̃k := 2−k δ̂j rj , k ∈ N, which refine towards ∂Q±
j,r̂j

, as follows: let

Q±
j,0 be the family of squares q ∈ {z+(0, δ̂jrj ]

2 : z ∈ δ̂jrjZ2}, q ⊂ Q±
j,r̂j

such that dist(q, ∂Q±
j,r̂j

) >

δ̂jrj ; recursively, for k ≥ 1, let Q±
j,k be the family of squares q ∈ {z+(0, δ̃k]

2 : x ∈ δ̃kZ2}, q ⊂ Q±
j,r̂j

such that dist(q, ∂Q±
j,r̂j

) > δ̃k and q does not intersect any cube in Q±
j,l, for l < k; we define

Q±
j :=

∞⋃
k=0

Q±
j,k.

For each q ∈ Q±
j let q′ and q′′ denote squares concentric with q with sidelength 10% and 20%

longer, respectively, so that l(q′) = 11
12 l(q

′′) and l(q′′) = 6
5 l(q); here and below, l(q̃) denotes the

sidelength of a cube q̃. By (2.21), (2.28), and (2.33), for any q ∈ Q±
j,0, we get that

(2.36) H1(q′′ ∩ Sûj
) ≤ 8α2rj ≤ η̃δ̂jrj < η

1

40
l(q) = η

1

10

5

6

l(q′′)

4
= η

(
1− 11

12

) l(q′′)
4

,

so that all the squares q′′ “coming from” squares q ∈ Q±
j,0 satisfy the hypotheses of Proposition 2.5

for s = 11
12 .

Moreover, let k ∈ N . By (2.21), (2.32), (2.33), and (2.34), for any q ∈ Q±
j,k we have (since

q′′ ⊂ ∂Q±
j,r̂j

+B
2−(k+k̂j−2)rj

(0))

(2.37) H1(q′′ ∩ Sûj
) ≤ η̃2−(k+k̂j−1)rj <

η

40
δ̃k =

η

10

5

6

l(q′′)

4
= η

(
1− 11

12

) l(q′′)
4

,

so that all the squares q′′ “coming from” squares q ∈ Q±
j,k satisfy the hypotheses of Proposition 2.5

for s = 11
12 . By (2.36) and (2.37) we thus deduce that all the squares q′′ “coming from” squares

q ∈ Q±
j satisfy the hypotheses of Proposition 2.5 for s = 11

12 .

1The intersection can be assumed to be nonempty, up to choosing α2 smaller if necessary.
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Therefore, by Proposition 2.5 applied to ûj ∈ SBV p(q′′), for each q ∈ Q±
j there is a set of finite

perimeter ωq ⊂ q′′, ωq = ∪Fq
B such that

wq ∈W 1,p(q′), wq = ûj in q′′ \ ωq

H1(∂∗ωq) ≤ c/ηH1(Sûj
∩ q′′),ˆ

ωq

|∇wq|p dx ≤ c

ˆ
ωq

|∇ûj |p dx.

(2.38)

We define
ω±
j :=

⋃
q∈Q±

j

ωq.

Since the cubes q′′ overlap at most 8 times, by the second and third property in (2.38) we deduce
that

H1(∂∗ω±
j ) ≤ 8c/ηH1(Sûj

∩Q±
j,r̂j

),ˆ
ω±

j

|∇wq|p dx ≤ 8c

ˆ
ω±

j

|∇ûj |p dx
(2.39)

Following [13, proof of Theorem 4.1], we construct regularized functions v±j on Q±
j,r̂j

which are

convex combinations of the functions wq. We notice that in our setting all the cubes are “good”,
according to the definition in [13], that is the jump inside has small H1-measure compared to the
sidelength.

We set

(2.40) v±j :=
∑

q∈Q±
j

wqφq,

where

φq :=
ψq∑

q̂∈Q±
j
ψq̂
, ψq(x) := ψ

(x− cq
l(q)

)
for q = cq +

(
− l(q)

2
,
l(q)

2

)2

,

ψ ∈ C∞
c

(
(−11/20, 11/20)2; [0, 1]

)
, ψ = 1 on [−1/2, 1/2]2.

By construction, ψq ∈ C∞
c (q′; [0, 1]) and ψq ≡ 1 in q, for any q ∈ Q±

j . Since, by (2.38), wq ∈
W 1,p(q′) for every q ∈ Q±

j , we deduce that

(2.41) v±j ∈W 1,p
( ⋃

q∈Q±
j

q′
)
.

Eventually, we define

(2.42) vj := v+j χQ+
j,r̂j

+ v−j χQ−
j,r̂j

, ωj := ω+
j ∪ ω−

j .

By (2.28), (2.38), (2.39), (2.40), (2.42) it follows thatˆ
ωj

|∇vj |p dx ≤ 8c

ˆ
ωj

|∇u|p dx, vj = ûj in Qj,r̂j \ ωj ,

H1(∂∗ωj) ≤ 8 c/ηH1
(
Qj,r̂j ∩ (Sûj

\ Ŝγj

j )
)
≤ 64 c/η α2rj .

(2.43)

We observe that the first estimate above is obtained arguing as in [13, Step 3.3 in Theorem 5.1]
with the full gradient in place of the symmetrized gradient.

Furthermore, by construction we have that

(2.44) vj = ûj on ∂Qj,r̂j , [vj ] = [ûj ] on T
γj

j .

We observe that the latter property above follows from the fact that we employed a Whitney-type
approximation towards T

γj

j . In view of (2.30),

(2.45) H1(∂Qj,r̂j ∩ {vj ̸= u}) = H1(Σ1
j,r̂j

∩ Σ2
j,r̂j

) ≤ 2α1r̂j +
322α2

η̃
rj ,
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and, by property (b) and the definition of T
γj

j ,

(2.46) |H1(Qj,r̂j ∩ Γj)−H1(Qj,r̂j ∩ T
γj

j )| ≤ 2α2r̂j .

Step 2.2: the case zj = 0. In this case, xj ∈ Sfrac
u , and as done before, we find radii r̂j ∈

((1−√
α2)rj , rj) such that, denoting Qj,s := xj +Qs, it holds that

H1(Sûj
∩ ∂Qj,r̂j ) = 0,

H1
(
Sûj

∩Qj,r̂j ∩
(
Qj,r̂j +B2−krj (0)

))
< η̃2−(k+1)rj for every k ∈ N.

(2.47)

By this choice, we can slightly amend the construction in [13, Theorem 4.1], to find in both

Q±
j,r̂j

connected components of Qj,r̂j \ Γj

two sets of finite perimeter ω±
j and functions v±j ∈ W 1,p(Q±

j,r̂j
) such that, for suitable c±j =

c±j (p) > 0,

v±j = u in Q±
j,r̂j

\ ω±
j ,

ˆ
ω±

j

|∇v±j |
p dx ≤ c±j

ˆ
ω±

j

|∇u|p dx,

H1(∂∗ω±
j ) ≤ c±j H

1(Su ∩Q±
j,r̂j

), H1(∂Qj,r̂j ∩ (ω+
j ∪ ω−

j )) = 0.

(2.48)

We notice that the last condition is new with respect to [13, Theorem 4.1]: it comes from the
Whitney-type construction as in the previous substep, in turn allowed by the choice of r̂j for
which (2.32) holds, which is possible in 2d. Moreover, as in [13, proof of Theorem 5.1, Step 2.2],
one proves that the constant

(2.49) c̃ := max{c±j : j s.t. xj ∈ Sfrac
u }

is bounded uniformly with respect to α2 (in particular, even if the sidelenghts of cubes decrease
and the number of cubes increases; notice that increasing the number of cubes one may assume
that the Lipschitz constant corresponding to Γj decreases). As above, we set

vj := v+j χQ+
j,r̂j

+ v−j χQ−
j,r̂j

, ωj := ω+
j ∪ ω−

j .

Step 3: conclusion. Following the lines of [13, proof of Theorem 5.1, Step 3], let us consider

δ ∈ (0, 0.4
√
2α2 minj=1,...,J rj) and the families:

Q1 :=

{
qz,δ = δz + [0, δ]2 : z ∈ Z2, qz,δ ∩

(
R2 \

J⋃
j=1

Qj,r̂j

)
̸= ∅

}
,

Q2 :=

{
qz,δ = δz + [0, δ]2 : z ∈ Z2, qz,δ /∈ Q1 and intersects some cubes in Q1

}
,

Q := Q1 ∪ Q2.

For each q ∈ Q, let q′ and q′′ be the (closed) cubes concentric with q and having side length
l(q′) = 9

8δ and l(q′′) = 10
8 δ =

10
9 l(q

′), respectively. Let

(2.50) v̂(x) :=


vj(x), x ∈ Qj,r̂j ,

u(x), x ∈ Ω \
⋃

j=1,...,J

Qi,r̂j ,

and, recalling the definition of c, η from Proposition 2.5, set

Qg :=
{
q ∈ Q : H1(Sv̂∩q′′) ≤

1

32
ηδ

}
=

{
q ∈ Q : H1(Sv̂ ∩ q′′) ≤ η

(
1− 9

10

) l(q′′)
4

}
, Qb := Q\Qg.
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For every q ∈ Qg, by Proposition 2.5 applied to v̂ ∈ SBV p(q′′) (in correspondence to s = 0.9)
there exist wq ∈ SBV p(q′′) and ωq ⊂ q′′, ωq = ∪FqB such that

wq ∈W 1,p(q′), wq = v̂ in q′′ \ ωq

H1(∂∗ωq) ≤ c/ηH1(Sv̂ ∩ q′′),ˆ
ωq

|∇wq|p dx ≤ c

ˆ
ωq

|∇v̂|p dx.

(2.51)

Up to reducing the threshold in the definition of Qg, it holds that if q
′∩Γj ̸= ∅ for some j = 1, . . . , J ,

then q /∈ Qg, so that if q ∈ Qg is such that q′ ⊂ Qj,r̂j it holds that q′ ⊂ Q±
j,r̂j

and then wq = v̂

(and ωq ∩ q′ = ∅), since v̂ = vj ∈W 1,p(Q±
j,r̂j

).

We set, recalling (2.42) (and the analogue for j s.t. xj ∈ Sfrac
u )

G :=
⋃

q∈Qg

q, ω̃ :=
⋃

q∈Qb

q,

Γint :=
⋃

j : xj /∈Sfrac
u

(Qj,r̂j ∩ T
γj

j ), Γfrac :=
⋃

j : xj∈Sfrac
u

(Qj,r̂j ∩ Γj), ω̂ :=
⋃

q∈Qg

ωq ∪
⋃

j=1,...,J

ωj ,

and

(2.52) v :=


∑
q∈Qg

wqφq, in G,

0, in ω̃,

v̂, in Ω \ (G ∪ ω̃),

where

φq :=
ψq∑

q̂∈Qg
ψq̂
, ψq(x) := ψ

(x− cq
l(q)

)
for q = cq +

(
− l(q)

2
,
l(q)

2

)2

,

ψ ∈ C∞
c

(
(−9/16, 9/16)2; [0, 1]

)
, ψ = 1 on [−1/2, 1/2]2.

By triangle inequality, (d), (b), (2.15) using that 0 ≤ rj − r̂j ≤
√
α2rj and that the cubes Qj are

pairwise disjoint, we obtain

(2.53)

|H1(Sint
u )−H1(Γint)| ≤H1(Sint

u \ Γ̂int) + |H1(Sint
u ∩ Γ̂int)−H1(Γint)|

≤H1(Sint
u △Γ̂int) +

∑
j:xj /∈Sfrac

u

|H1(Sint
u ∩ Γj)−H1(T

γj

j ∩Qj,r̂j )|

≤H1(Sint
u △Γ̂int) +

∑
j:xj /∈Sfrac

u

H1(Γj \ Sint
u )

+
∑

j:xj /∈Sfrac
u

|H1(Γj)− 2r̂j |

≤H1(Sint
u △Γ̂int) + α2(1 + 5H1(Su)) + (α2 +

√
α2)H1(Su).
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Furthermore, by construction,

Sfrac
u △Γfrac =

(
Sfrac
u \

⋃
j:xj∈Sfrac

u

Qj

)
∪

⋃
j:xj∈Sfrac

u

(
Qj ∩ (Sfrac

u △(Γj ∩Qj,r̂j ))
)

⊆
(
Sfrac
u \

⋃
j:xj∈Sfrac

u

Qj

)
∪

⋃
j:xj∈Sfrac

u

(
Qj ∩ (Sfrac

u △Γj)
)

∪
J⋃

j=1

(
Su ∩ (Qj \Qj,r̂j )

)
=
(
Sfrac
u △Γ̂frac

)
∪

J⋃
j=1

(
Su ∩ (Qj \Qj,r̂j )

)
,

whence, using (2.35) and property (d), we deduce that

(2.54)

H1(Sfrac
u △Γfrac) ≤H1(Sfrac

u △Γ̂frac) +
J∑

j=1

H1(Su ∩ (Qj \Qj,r̂j ))

≤H1(Sfrac
u △Γ̂frac) +

J∑
j=1

H1(Γj ∩ (Qj \Qj,r̂j )) +H1
(
Su△

J⋃
j=1

Γj

)
≤ H1(Sfrac

u △Γ̂frac) + 2α1
√
α2H1(Su) + α2(1 + 5H1(Su)).

By summing (2.53) and (2.54), using (2.20), we obtain

|H1(Sint
u )−H1(Γint)|+H1(Sfrac

u △Γfrac) ≤ α2(3 + 16H1(Su)) +
√
α2(1 + 2α1)H1(Su).

By (2.29) and (2.44) it follows that [v](x) ∈ Z for H1-a.e. x ∈ Γint.

By definition and (2.41), (2.48), (2.51) it is immediate that v ∈ SBV p(Ω) ∩W 1,p(Ω \ (Γ ∪ ω̃)),
that {∇u ̸= ∇v} ⊂ ω̃ ∪ ω̂ (since ∇(ûj − u) = 0 in Qj , see (2.27)), that {u ̸= v} ⊂ {∇u ̸=
∇v} ∪

⋃
j : zj ̸=0Hj (whose L2-measure vanishes with α2 and ϱ from property (e)), and that v = 0

in ω̃.
Summing up (2.51) over q ∈ Qg we obtain (since the cubes q′′ may overlap at most 8 times)

(2.55) H1(∂∗
⋃

q∈Qg

ωq) ≤ 8(c ∨ c̃)/ηH1
(
Sv̂ \

J⋃
j=1

Qj,r̂j

)
≤ C(α1, α2, p)

(c̃ is the constant in (2.49)) with C(α1, α2, p) vanishes with α2 (for α1 ≤ 1/4), since

Sv̂ \
⋃

j=1,...,J

Qj,r̂j ⊂
(
Su \

⋃
j=1,...,J

Qj

)
∪

⋃
j : xj /∈Sfrac

u

(Σ1
j,r̂j

∪Σ2
j,r̂j

)∪
⋃

j : xj /∈Sfrac
u

((Qj \Qj,r̂j )∩ (Γj ∪T
γj

j )

and from the properties of Γj , (2.30), (2.35), (2.45), (2.46). Therefore, adding the estimates of
the H1-measures of ∂∗ωj in (2.43) over j such that xj /∈ Sfrac

u plus ∂∗ω±
j in (2.48) over j such

that xj ∈ Sfrac
u together with (2.55), we conclude that H1(∂∗ω̂) vanishes with α2. In view of the

definition of ω̃ (in particular of Qb) we get

H1(∂ω̃) ≤ 40

9
ηH1

(
Sv̂ \

⋃
j=1,...,J

Qj,r̂j

)
,

where above a factor 8 accounts for the overlapping of squares q′′; as well, H1(∂ω̃) vanishes with
α2 by (2.55).

Eventually, arguing as in [13, Step 3.1 in Theorem 5.1] for the cubes Qj such that xj ∈ Sfrac
u

one proves that H1(Γfrac ∩ {v± ̸= u±}) vanishes with α2, while (again following [13, Step 3.3 in
Theorem 5.1] with the full gradient in place of the symmetrized gradient) one deduces from the
last estimate in (2.51) thatˆ

⋃
q∈Qg

ωq

|∇v|p dx ≤ 8c

ˆ
⋃

q∈Qg
ωq

|∇v̂|p dx,
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which together with the estimates on the gradients in (2.43) and (2.48) gives thatˆ
ω̂

|∇v|p dx ≤ C ′(α2, p)

ˆ
ω̂

|∇u|p dx,

for C ′(α2, p) a positive constant vanishing with α2. Being {∇u ̸= ∇v} ⊂ ω̃ ∪ ω̂, v = 0 in ω̃, and
since the measure of ω̂ vanishes with α2, we obtainˆ

Ω

|∇v|p dx ≤ (1 + C ′′(α2, ϱ, p))

ˆ
Ω

|∇u|p dx,

where C ′′(α2, p) > 0 vanishes with α2.
We conclude since α1, α2, ϱ may be fixed arbitrarily small. □

We recall a fundamental technical tool, [18, Proposition 3.2]. In [18] the result is stated for
balls, and it holds for cubes as well. Moreover, it holds true also for GSBDp functions, in place
of SBDp (see e.g. [17, Proof of Proposition 3.1]). As usual, Qρ := (−ρ, ρ)2.

Proposition 2.4. For every p ∈ (1,∞) there exist c > 0 and η ∈ (0, 1) such that if u ∈
GSBDp(Q2ϱ), ϱ > 0, satisfies

H1(Su ∩Q2ϱ) < η(1− s)ϱ

for some s ∈ (0, 1), then there is a countable family F = {B} of closed balls of radius rB <
2(1 − s)ϱ and center xB ∈ Q2sϱ such that their union is compactly contained in B2ϱ, and a field
w ∈ SBDp(Q2ϱ) such that

(i) ϱ−1
∑

B∈F L2(B) +
∑

B∈F H1(∂B) ≤ c/η H1(Su ∩Q2ϱ);

(ii) H1(Su ∩ ∪B∈F∂B) = H1
(
(Su ∩Q2sϱ) \ ∪B∈FB

)
= 0;

(iii) w = u L2-a.e. on Q2ϱ \ ∪B∈FB;
(iv) w ∈W 1,p(Q2sϱ;R2) and H1(Sw \ Su) = 0;
(v)

(2.56)

ˆ
∪B∈FB

|e(w)|p dx ≤ c

ˆ
∪B∈FB

|e(u)|p dx.

The previous result may be directly modified to obtain a SBV p version.

Proposition 2.5. For every p ∈ (1,∞) there exist c > 0 and η ∈ (0, 1) such that if u ∈
SBV p(Q2ϱ), ϱ > 0, satisfies

H1(Su ∩Q2ϱ) < η(1− s)ϱ

for some s ∈ (0, 1), then there is a countable family F = {B} of closed balls of radius rB <
2(1 − s)ϱ and center xB ∈ Q2sϱ such that their union is compactly contained in Q2ϱ, and a field
w ∈ SBV p(Q2ϱ) such that

(i) ϱ−1
∑

B∈F L2(B) +
∑

B∈F H1(∂B) ≤ c/η H1(Su ∩Q2ϱ);

(ii) H1(Su ∩ ∪B∈F∂B) = H1
(
(Su ∩Q2sϱ) \ ∪FB

)
= 0;

(iii) w = u L2-a.e. on Q2ϱ \ ∪B∈FB;
(iv) w ∈W 1,p(Q2sϱ) and H1(Sw \ Su) = 0;
(v)

(2.57)

ˆ
∪B∈FB

|∇w|p dx ≤ c

ˆ
∪B∈FB

|∇u|p dx.

Proof. We notice that it is enough to follow the proof of [18, Theorem 2.1], from which [18,
Proposition 3.2] follows, and use the fact that, if u ∈ SBV p, one can control the components of
the constant matrix ∇ϕ(u) in place of those of e(ϕ(u)) (see (2.12) in [18] and its consequences) by

∇ϕ(u) · (x− y) = ϕ(u)(x)− ϕ(u)(y) =

ˆ
Sx,y

(uνz)
′(t) dt,

where uνz(t) := u(z + tν), for ν := x−y
|x−y| , z := (Id − ν ⊗ ν)x. Moreover, a constant in place of an

infinitesimal rigid motion appears in the Poincaré’s inequality for u on Qx,y. □
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By arguing as in the proof of Theorem 2.1, using Proposition 2.4 in place of Proposition 2.5,
one can show that also the following result holds true.

Theorem 2.6. Let Ω ⊂ R2 be a bounded open set of finite perimeter, p ∈ (1,+∞), u ∈
GSBDp(Ω), and ε > 0. Then there exist:

• closed sets Γint, Γfrac, finite unions of disjoint C1 curves;
• a set ω̃, finite union of cubes;
• a set of finite perimeter ω̂;
• a function v ∈ GSBDp(Ω) ∩W 1,p(Ω \ (Γ ∪ ω̃);R2), where Γ := Γi ∪ Γfrac;

such that {∇u ̸= ∇v} ⊂ ω̃∪ ω̂, L2({u ̸= v}) < ε, v = 0 in ω̃, [v](x) ∈ Z2 for H1-a.e. x ∈ Γint, and

|H1(Sint
u )−H1(Γint)|+H1(Sfrac

u △Γfrac) +H1(∂ω̃) +H1(∂∗ω̂) ≤ ε,

ˆ
Ω\ω̃

|e(v)|p dx ≤ (1 + ε)

ˆ
Ω

|e(u)|p dx,

where Sfrac
u := {x ∈ Su : [u] /∈ Z2}. Moreover, H1(Γ ∩ {v± ̸= u±}) ≤ ε, where v± and u± denote

the traces of v and u on the two sides of Γ, and, if u ∈ SBDp(Ω), then also v ∈ SBDp(Ω).

3. Description of the problem

Let Ω be a bounded and open subset of R2 with Lipschitz continuous boundary and let Ω′ ⊂⊂ Ω
be an open set. We introduce

(3.1) AD(Ω,Ω′) := {u ∈ SBV 2(Ω;S1) : Su ⊂ Ω′},

where Su denotes the jump set of u. For every ε > 0 , let Gε : SBV 2(Ω; S1) → [0,∞] be the
functional defined by

(3.2) Gε(u) :=


ˆ
Ω

1

2
|∇u|2 dx+

1

ε
H1(Su) if u ∈ AD(Ω,Ω′)

+∞ elsewhere in SBV 2(Ω; S1) .

In what follows, we will adopt also localized versions of the functional Gε; more precisely, for any
u ∈ AD(Ω,Ω′) and for any open set A with Ω′ ⊂⊂ A ⊂⊂ Ω , we will denote by Gε(u;A) the
functional in (3.2) with Ω replaced by A .

Notice that, since u ∈ H1(Ω \ Ω′
;S1), it follows that

supp Ju ⊆ Ω
′

for every u ∈ AD(Ω,Ω′).(3.3)

Indeed, let φ ∈ C∞
c (Ω \ Ω′

), and write

⟨Ju, φ⟩Ω =
1

2

ˆ
Ω

∂φ

∂x2
d([u1D1u

2]− [u2D1u
1])− 1

2

ˆ
Ω

∂φ

∂x1
d([u1D2u

2]− [u2D2u
1])

=
1

2

ˆ
Ω\Ω′

∂φ

∂x2

(
u1
∂u2

∂x1
− u2

∂u1

∂x1

)
dx− 1

2

ˆ
Ω\Ω′

∂φ

∂x1

(
u1
∂u2

∂x2
− u2

∂u1

∂x2

)
dx

= ⟨Ju, φ⟩Ω\Ω′ = 0,

where the last equality follows since u ∈ H1(Ω\Ω′
;S1) has null distributional Jacobian determinant

in Ω \ Ω′
.

3.1. Γ-convergence in the subcritical regime. We introduce the class of atomic measures,
namely

X(Ω) :=
{
µ ∈ M(Ω) : µ =

N∑
n=1

znδxn , xn ∈ Ω, zn ∈ Z \ {0}, N ∈ N
}
.

In [28, Theorem 3.1], the authors show that the rescaled functional | log ε|−1Gε Γ-converges to
the functional F : X(Ω) → R+ defined as F(µ) = π|µ|(Ω). Using a density argument, and in
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particular Proposition 2.3, this result can be easily extended to the following setting, where the
energy functional does not take into account of the closure of the jump set: We introduce

(3.4) Fε(u) :=


ˆ
Ω

1

2
|∇u|2 dx+

1

ε
H1(Su) if u ∈ AD(Ω,Ω′)

+∞ elsewhere in SBV 2(Ω; S1) .
Then the following Γ-convergence result holds:

Theorem 3.1. Let Ω and Ω′ be as above; then there hold

(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

(3.5) sup
ε>0

Fε(uε)

| log ε|
≤ C,

for some C > 0 . Then there exists µ ∈ X(Ω) with suppµ ⊆ Ω
′
such that, up to a

subsequence, ∥Juε − πµ∥flat,Ω → 0 (as ε→ 0).

(ii) (Γ-liminf inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
and for every {uε}ε ⊂

SBV 2(Ω;S1) such that ∥Juε − πµ∥flat,Ω → 0 (as ε→ 0) , it holds

(3.6) π|µ|(Ω) ≤ lim inf
ε→0

Fε(uε)

| log ε|
.

(iii) (Γ-limsup inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
, there exists {uε}ε ⊂ SBV 2(Ω;S1)

with ∥Juε − πµ∥flat,Ω → 0 (as ε→ 0) , such that

(3.7) π|µ|(Ω) ≥ lim sup
ε→0

Fε(uε)

| log ε|
.

Actually, by arguing as above and going through the proof of [28, Theorem 3.1], one can prove
the following more general result.

Theorem 3.2. Let Ω and Ω′ be as above; and let {Eε}ε ⊂ (0,+∞) with c| log ε| ≤ Eε ≪ | log ε|2
for some constant c > 0 (independent of ε). Then the following Γ-convergence result holds true.

(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

sup
ε>0

Fε(uε)

Eε
≤ C,

for some C > 0. Then there exists µ ∈ X(Ω) with suppµ ⊆ Ω
′
such that, up to a

subsequence, ∥ | log ε|
Eε

Juε − πµ∥flat,Ω → 0 (as ε→ 0).

(ii) (Γ-liminf inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
and for every {uε}ε ⊂

SBV 2(Ω;S1) such that ∥ | log ε|
Eε

Juε − πµ∥flat,Ω → 0 (as ε→ 0) , it holds

(3.8) π|µ|(Ω) ≤ lim inf
ε→0

Fε(uε)

Eε
.

(iii) (Γ-limsup inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
, there exists {uε}ε ⊂ SBV 2(Ω;S1)

with ∥ | log ε|
Eε

Juε − πµ∥flat,Ω → 0 (as ε→ 0) , such that

(3.9) π|µ|(Ω) ≥ lim sup
ε→0

Fε(uε)

Eε
.

Proof of Theorem 3.1. Although the argument is standard, we briefly discuss how to prove points
(i) and (ii), (iii) being identical to the case of [28]. Assume (3.5); by Proposition 2.3 (applied to
the domain Ω′), for all ε > 0 we choose ûε such thatˆ

Ω

1

2
|∇ûε|2dx ≤

ˆ
Ω

1

2
|∇uε|2dx+ ε,

H1(Sûε
) = H1(Sûε

) ≤ H1(Suε
) + ε,

∥Jûε − Juε∥flat,Ω ≤ ε,(3.10)
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so that it follows

sup
ε>0

Gε(ûε)

| log ε|
≤ C + 1.

The compactness result in [28, Theorem 3.1 (i)] and the third condition in (3.10) imply (i). In a
similar way also (ii) is a consequence of [28, Theorem 3.1 (ii)] and of the same density result. □

We do not discuss the proof of Theorem 3.2 since it follows from the same result with Gε in
place of Fε, which in turn has the same proof of [28, Theorem 3.1].

3.2. Γ-convergence in the critical and supercritical regimes. Our main results are the
following.

Theorem 3.3. The following Γ-convergence result holds true.

(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

(3.11) sup
ε>0

Fε(uε)

| log ε|2
≤ C,

for some C > 0 . Then there exist a measure µ ∈ M(Ω) ∩H−1(Ω) with suppµ ⊆ Ω
′
and

a map TD ∈ L2(Ω;R2) with −Div TD = πµ such that, up to a subsequence,∥∥ Juε
π| log ε|

− µ
∥∥
flat,Ω

→ 0(FJ)

TD
uε

| log ε|
⇀ TD in L2(Ω;R2) .(ACJ)

(ii) (Γ-liminf inequality) For every (µ, TD) ∈
(
M(Ω)∩H−1(Ω)

)
×L2(Ω;R2) as in (i) and for

every {uε}ε ⊂ SBV 2(Ω; S1) satisfying (FJ) and (ACJ), it holds

(3.12) π|µ|(Ω) + 2

ˆ
Ω

|TD|2 dx ≤ lim inf
ε→0

Fε(uε)

| log ε|2
.

(iii) (Γ-limsup inequality) For every (µ, TD) ∈ (M(Ω) ∩H−1(Ω)) × L2(Ω;R2) as in (i) there
exists {uε}ε ⊂ SBV 2(Ω;S1) satisfying (FJ) and (ACJ), such that

(3.13) π|µ|(Ω) + 2

ˆ
Ω

|TD|2 dx ≥ lim sup
ε→0

Fε(uε)

| log ε|2
.

Theorem 3.4. Let {Nε}ε>0 be such that | log ε| ≪ Nε ≪ ε−1. The following Γ-convergence result
holds true.

(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

(3.14) sup
ε>0

Fε(uε)

N2
ε

≤ C,

for some C > 0 . Then there exist a field TD ∈ L2(Ω;R2) such that, up to a subsequence,
TD
uε

Nε
⇀ TD in L2(Ω;R2) .

(ii) (Γ-liminf inequality) For every TD ∈ L2(Ω;R2) and for every {uε}ε ⊂ SBV 2(Ω;S1) with
TD
uε

Nε
⇀ TD in L2(Ω;R2) , it holds

(3.15) 2

ˆ
Ω

|TD|2 dx ≤ lim inf
ε→0

Fε(uε)

N2
ε

.

(iii) (Γ-limsup inequality) For every TD ∈ L2(Ω;R2) there exists {uε}ε ⊂ SBV 2(Ω; S1) with
TD
uε

Nε
⇀ TD in L2(Ω;R2) such that

(3.16) 2

ˆ
Ω

|TD|2 dx ≥ lim sup
ε→0

Fε(uε)

N2
ε

.
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By using the density result in Proposition 2.3, one can show that Theorems 3.3 and 3.4 hold
true also when replacing Fε with Gε.

In order to prove Theorems 3.3 and 3.4, we will make use of the corresponding core radius
approach results that for the sake of completeness we state and prove in Section 4 below.

4. Core radius approach

We first introduce some notation. Let V ⊂ R2 be a bounded and open set with Lipschitz
continuous boundary. For every finite family of pairwise (essentially2) disjoint open balls B :=
{Bn}n=1,...,N (with N ∈ N) we set

V (B) := V \
N⋃

n=1

B
n
,

and we denote by Rad(B) the sum of the radii of the balls Bn, namely

Rad(B) :=
N∑

n=1

r(Bn) ,

where r(B) denotes the radius of the ball B . Moreover, for every µ ∈ X(V ) with µ ̸= 0 of the
form

µ :=

N∑
n=1

znδx(Bn) with zn ∈ Z \ {0} ,(4.1)

we set

(4.2) A (B, µ, V ) := {u ∈ H1(V (B);S1) : deg(u, ∂Bn) = zn for every n = 1, . . . , N} .

Here and below, x(B) denotes the center of the ball B .

Definition 4.1 (Merging procedure). Given a finite family B = {Bri(x
i)}i=1,...,I (I ∈ N) of balls

in R2, we define a new family B̂ as follows. If the closures of two balls in B are not disjoint,
then we replace the two balls with a unique ball which contains both of them and has radius less
than or equal to the sum of the radii of the original balls. After this, we repeat this replacement
recursively, until as all the balls in the family are mutually essentially disjoint. The final family is

B̂. The procedure of passing from B to B̂ is called merging procedure applied to B. Notice that
a merging procedure does not increase the sum of all the radii of the balls in the family.

The following result is proven in [27, Proposition 2.2].

Proposition 4.2. Let V ⊂ R2 be a bounded and open set with Lipschitz continuous boundary, let
B be a finite family of pairwise essentially disjoint balls in R2, let µ ∈ X(V ) be of the form (4.1),
and let u ∈ A (B, µ, V ) . Then, there exists a one-parameter family of open balls B(t) with t ≥ 0
such that, setting U(t) :=

⋃
B∈B(t)B, the following properties hold true:

(1) B(0) = B ;
(2) U(t1) ⊂ U(t2) for any 0 ≤ t1 < t2 ;
(3) the balls in B(t) are pairwise (essentially) disjoint for every t > 0;
(4) for any 0 ≤ t1 < t2 and for any open set A ⊆ V ,

1

2

ˆ
(U(t2)\U(t1))∩A

|∇u|2 dx ≥ π
∑

B∈B(t2)
B⊆A

|µ(B)| log 1 + t2
1 + t1

;

(5) for every t > 0:
∑

B∈B(t)

r(B) ≤ (1 + t)
∑
B∈B

r(B), where r(B) denotes the radius of B .

2That is, whose closures are mutually disjoint.
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For every B and µ as in Proposition 4.2, for every t > 0, we set C (t) := {B ∈ B(t) : B ⊂ V }
and we define

(4.3) µ̃ :=
∑

B∈C (1)

µ(B)δx(B) .

We can now state the crucial result which will be the starting point of the proof of Theorem 3.3.

Theorem 4.3. Let V be a bounded open set with Lipschitz boundary. For every ε > 0 let Bε :=
{Bn

ε }n=1,...,Nε
(with Nε ∈ N) be a (finite) family of pairwise (essentially) disjoint open balls with

Rad(Bε) → 0 as ε → 0 , µε :=
∑Nε

n=1 z
n
ε δx(Bn

ε ) with znε ∈ Z \ {0} for every n = 1, . . . , Nε . Let
moreover {uε}ε be such that uε ∈ A (Bε, µε, V ) . Assume that

(4.4) sup
ε>0

1

2| logRad(Bε)|2

ˆ
V (Bε)

|∇uε|2 dx ≤ C ,

for some constant C > 0 independent of ε . Then, the following facts hold true.

(i) Let µ̃ε be the measures defined in (4.3) with C (1) = Cε(1) = {B ∈ Bε(1) : B ⊂ V };
then |µ̃ε|(V ) ≤ C| logRad(Bε)|2 for all ε > 0 with a constant C > 0 independent of ε,
and there exist a measure µ ∈ M(V ) and a function λ ∈ L2(V ;R2) such that, up to a
subsequence, as ε→ 0

µ̃ε V

| logRad(Bε)|
flat→ µ,(4.5)

λuεχV (Bε)

| logRad(Bε)|
⇀ λ weakly in L2(V ;R2) ;(4.6)

(ii) π|µ|(V ) + 2
´
V
|λ|2 dx ≤ lim infε→0

1
2| logRad(Bε)|2

´
V (Bε)

|∇uε|2 dx .

Notice that, as uε ∈ A (Bε, µε, V ), we have λuε
∈ L2(V (Bε);R2) (see (1.4)). In formula (4.6),

symbol λuεχV (Bε) denotes the extension of λuε to the constant (0, 0) in V \ V (Bε).

Proof. We start by proving (i). Our proof closely resembles that of [2, Theorem 3.2] where the
compactness result is proven in the energy regime | logRad(Bε)| .

For every 0 < p < 1 and for every ε > 0 we set

(4.7) tpε :=
1

Rad1−p(Bε)
− 1 , νpε := ν[tpε ] ,

where we have set, for t ≥ 0,

ν[t] :=
∑

B∈Cε(t)

µε(B)δx(B) .

Fix 0 < p < 1 . Then, by applying Proposition 4.2(4) (with t1 = 0 and t2 = 1 and t2 = tpε) and by
the energy bound (4.4), we have that

(4.8) |µ̃ε|(V ) ≤ C| logRad(Bε)|2 , |νpε |(V ) ≤ C(1− p)−1| logRad(Bε)| ,

whence we deduce the first statement in claim (i) and the existence of a measure µp ∈ Mb(V )
such that (up to a not-relabeled subsequence)

(4.9)
νpε

| logRad(Bε)|
∗
⇀ µp as ε→ 0 .

Now we prove that

(4.10)
1

| logRad(Bε)|
(
µ̃ε − νpε

) flat→ 0 for every 0 < p < 1 ,

from which we deduce also that µp ≡ µ for any 0 < p < 1 . To this purpose, we first observe
that µ̃ε(B) = νpε (B) for any B ∈ Cε(t

p
ε) = {B ∈ Bε(t

p
ε) : B ⊂ V } ; therefore, using (4.8) and
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Proposition 4.2(5) together with the very definition of tpε , for every sequence {φε}ε ⊂ C0,1
c (V )

with ∥φε∥C0,1 ≤ 1 , we have

1

| logRad(Bε)|
∣∣〈µ̃ε − νpε , φε

〉∣∣ ≤ 1

| logRad(Bε)|

∣∣∣∣∣∣
∑

B∈Cε(t
p
ε)

ˆ
B

(
φε −

 
B

φε dx
)
d(µ̃ε − νpε )

∣∣∣∣∣∣
+

1

| logRad(Bε)|

∣∣∣∣∣∣
∑

B∈Bε(t
p
ε)\Cε(t

p
ε)

ˆ
B∩V

φε d(µ̃ε − νpε )

∣∣∣∣∣∣
≤ 1

| logRad(Bε)|
∑

B∈Bε(t
p
ε)

ˆ
B

(
max
B

φε −min
B

φε

)(
|µ̃ε|(B) + |νpε |(B)

)
≤ 1

| logRad(Bε)|
∑

B∈Bε(t
p
ε)

diam(B)
(
|µ̃ε|(V ) + |νpε |(V )

)
≤CRadp(Bε)| logRad(Bε)| ,

whence (4.10) follows.
Moreover, by the very definition of λuε in (1.4) and by the energy bound (4.4), we immediately

have that

(4.11)
1

2

ˆ
V (Bε)

|2λuε
|2 dx =

1

2

ˆ
V (Bε)

|∇uε|2 dx ≤ C| logRad(Bε)|2 ,

thus, up to extracting a further subsequence, there exists λ ∈ L2(V ;R2) such that (4.6) holds.
Notice that, for p ∈ (0, 1) fixed, since |U(tpε)| → 0 as ε→ 0, we also deduce

(4.12)
λuε

| logRad(Bε)|
χV (Bε(t

p
ε)) ⇀ λ weakly in L2(V ;R2).

Now we prove (ii). To this end, let p ∈ (0, 1) be fixed; by (4.9) and by Proposition 4.2(4), we
get

(4.13)
lim inf
ε→0

1

2| logRad(Bε)|2

ˆ
(U(tpε)\U(0))∩V

|∇uε|2 dx ≥π(1− p) lim inf
ε→0

|νpε |(V )

| logRad(Bε)|
≥π(1− p)|µ|(V ) .

Furthermore, by (4.12), we have that

lim inf
ε→0

1

2| logRad(Bε)|2

ˆ
V (Bε(t

p
ε))

|∇uε|2 dx = lim inf
ε→0

1

2

ˆ
V

∣∣∣ 2λuε

| logRad(Bε)|

∣∣∣2χV (Bε(t
p
ε)) dx

≥ 2

ˆ
V

|λ|2 dx ,

which, together with (4.13) (letting p→ 0), yields (ii). □

5. Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3. Using the density argument as in the proof
of Theorem 3.1, we can prove Theorem 3.3 with Fε replaced by Gε in (3.2).

The proofs of the compactness and of the lower bound are addressed in Subsection 5.1 and
closely resemble those in the | log ε| regime treated in [28], whereas the construction of the recovery
sequence is provided in Subsection 5.2.

5.1. Proof of compactness and lower bound. By the energy bound (3.11), together with
Corollary 2.2, we have that

(5.1) H1(Suε
) ≤ Cε| log ε|2 ,

for every ε > 0 . By the very definition of Hausdorff measure, since Suε
is compact, there exists a

finite family Bε of open balls (in R2) such that Suε
⊂

⋃
B∈Bε

B andRad(Bε) ≤ Cε| log ε|2 . Notice
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that we can always assume (just by enlarging an arbitrarily chosen ball in Bε) that Rad(Bε) ≥ ε ,
so that, from now on

(5.2) ε ≤ Rad(Bε) ≤ Cε| log ε|2 ,
for some C > 0 . Moreover, by construction,

(5.3) uε ∈ H1(Ω(Bε);S1) ,

where we recall that Ω(Bε) := Ω\
⋃

B∈Bε
B . By (5.2) and recalling that Suε

⊂ Ω′ , we can assume
that, for ε small enough,

(5.4)
⋃

B∈Bε

B ⊂ Ω .

Up to applying a merging procedure (as described in Definition 4.1) to the balls in Bε , we can
assume without loss of generality that these balls are mutually (essentially) disjoint, and still
satisfy (5.2) and (5.4). For ε > 0 small enough we set

(5.5) µε :=
∑

B∈Bε

deg(uε, ∂B)δx(B) .

By (3.11), (5.2), and (5.3), for ε small enough it holds

(5.6)
1

2

ˆ
Ω(Bε)

|∇uε|2 dx ≤ Gε(uε) ≤ C| log ε|2 ≤ C| logRad(Bε)|2 .

Therefore we can apply Theorem 4.3 to the family {(Bε;µε)}ε . Notice that, in view of the very
definition of Gε , we have that also the family Bε(1) satisfies (5.4) (for ε small enough), so that
Cε(1) ≡ Bε(1) . Setting

µ̃ε :=
∑

B∈Bε(1)

µε(B)δx(B) ,

by Theorem 4.3(i) (more precisely, by (4.5)), using (5.2), we have that, up to a subsequence,

(5.7)
µ̃ε

| log ε|
flat→ µ ,

for some µ ∈ M(Ω) . By construction, suppµ ⊆ Ω′ . Moreover, by arguing verbatim as in the
proof of [28, formula (3.17)] one can prove that

1

| log ε|
∥Juε − πµ̃ε∥flat,Ω → 0 ,

which, combined with (5.7), yields (FJ). Furthermore, by (1.10) and by (3.11), we have that

1

| log ε|2

ˆ
Ω

|2TD
uε
|2 dx =

1

| log ε|2

ˆ
Ω

|∇uε|2 dx ≤ C ,

so that, up to a further subsequence,

(5.8)
TD
uε

| log ε|
⇀ TD in L2(Ω;R2) ,

for some field TD ∈ L2(Ω;R2) . This proves (ACJ).
It remains to show that −Div TD = πµ , which will imply also that µ ∈ H−1(Ω) . To this end,

let φ ∈ C∞
c (Ω) ; then, by (1.10),

(5.9) ⟨Juε, φ⟩ = ⟨Tuε
,∇φ⟩ = ⟨TD

uε
,∇φ⟩+ ⟨TS

uε
,∇φ⟩ ,

for every ε > 0 . By (ACJ), we have that

(5.10)
1

| log ε|
⟨TD

uε
,∇φ⟩ → ⟨TD,∇φ⟩ as ε→ 0 ;

moreover, by (1.10) and (3.11), we have that

(5.11)
∣∣⟨TS

uε
,∇φ⟩

∣∣ ≤ Cε∥∇φ∥L∞ | log ε|2 .
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By, (FJ), (5.9), (5.10), and (5.11),

⟨πµ, φ⟩ = lim
ε→0

1

| log ε|
⟨Juε, φ⟩ = lim

ε→0

1

| log ε|
⟨TD

uε
,∇φ⟩ = ⟨TD,∇φ⟩ = ⟨−DivTD, ϕ⟩ ,

thus concluding the proof of (i).

Now we prove the lower bound (ii). We can assume without loss of generality that (3.11) holds
true. By the first inequality in (5.6) and by Theorem 4.3(ii) we have immediately that

lim inf
ε→0

Gε(uε)

| log ε|2
≥ π|µ|(Ω) + 2

ˆ
Ω

|TD|2 dx ,

where we have used also that the function TD coincides with the field λ in Theorem 4.3. The
claim thus follows.

5.2. Proof of the upper bound. In order to construct the recovery sequence, we first introduce

some notation. Let r > 0 be fixed . For every finite sum of Dirac deltas µ :=
∑N

n=1 δxn with
|xn1 − xn2 | ≥ 2r for n1 ̸= n2 and for every 0 < ρ < r we set

(5.12) µ̂ρ :=
1

2πρ

N∑
n=1

H1 ∂Bρ(x
n) , f̃ρ :=

1

πρ2

N∑
n=1

χBρ(xn) , and µ̃ρ := f̃ρ dx .

For every r > 0 and for every z ∈ R2 , we recall that Qr(z) denotes the (open) square centered at
z with sides parallel to the cartesian axes and side-length equal to 2r , i.e., Qr(z) := z + Qr(0) ,
with Qr(0) := (−r, r)2 .

Lemma 5.1. Let µ :=
∑L

l=1m
lχωldx, where L ∈ N, ml ∈ R and {ωl}l=1,...,L is a partition of Ω

into sets with Lipschitz continuous boundary. Let Nε → +∞ as ε → 0 . For every ε > 0 and for
every l = 1, . . . , L with ml ̸= 0, set

(5.13) rlε :=
1

2
√
Nε|ml|

.

For every l = 1, . . . , L with ml ̸= 0, let Z l
ε := {z ∈ 2rlεZ2 : Qrlε

(z) ⊂ ωl} and N l
ε := ♯Z l

ε . Then,

for every l = 1, . . . , L with ml ̸= 0,

(5.14)
N l

ε

Nε
→ |ml||ωl| as ε→ 0 .

Moreover, setting µl
ε :=

∑N l
ε

n=1 δxl,n
ε

(where {xl,nε }N
l
ε

n=1 is the set of points in Z l
ε) for every l =

1, . . . , L with ml ̸= 0, µl
ε ≡ 0 whenever ml = 0, and µε :=

∑L
l=1 µ

l
ε, we have that the sequence

{µε}ε ⊂ M(Ω) satisfies

(a) for every ε > 0 and for every l = 1, . . . , L with ml ̸= 0 and n = 1, . . . , N l
ε , the balls

Brlε
(xl,nε ) are pairwise disjoint and contained in ωl ;

(b) µε

Nε

∗
⇀ µ in M(Ω) as ε→ 0 ;

(c)
∥∥ µ̃ε

Nε
− µ

∥∥
H−1(Ω)

≤ CN
− 1

4
ε (for ε small enough),

where µ̃ε :=
∑L

l=1 µ̃
l,rlε
ε , with µ̃

l,rlε
ε defined as in (5.12) starting from µl

ε .

Proof. For every l = 1, . . . , L with ml ̸= 0 we set ωl
ε :=

⋃
z∈Zl

ε
Qrlε

(z) and we denote by ωl
ε :=

int(ωl
ε) the set of interior points of ωl

ε . We set rε := min{rlε : l = 1, . . . , L} and Rε := max{rlε :
l = 1, . . . , L, ml ̸= 0}, and we notice that rε → 0 as ε→ 0.

Property (5.14) is straightforward. Indeed, let l ∈ {1, . . . , L} with ml ̸= 0; setting (∂ωl)2rlε :=

{x ∈ ωl : dist(x, ∂ωl) < 2rlε} , it is sufficient to observe that
∣∣(ωl \ ωl

ε) \ (∂ωl)2rlε

∣∣ = 0 , and hence,

by the Lipschitz continuity of ∂ωl ,

(5.15) |ωl \ ωl
ε| = O(rlε) = O(Rε) ,
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where lim supε→0 O(Rε)R
−1
ε < C < +∞. On the other hand, |ωl

ε||ml| = 4(rlε)
2N l

ε|ml| = N l
ε

Nε
,

which, together with (5.15), yields |ωl| = |ωl \ ωl
ε|+ |ωl

ε| =
O(Rε)
|ml| +

N l
ε

|ml|Nε
, and hence (5.14).

Property (a) follows by construction. Now we prove property (b). Let ϕ ∈ Cc(Ω) , and let mϕ

be the modulus of continuity of ϕ . Then, setting

(5.16) M := max{|ml| : l = 1, . . . , L},

we have that, as ε→ 0,

∣∣∣〈 µε

Nε
− µ, ϕ

〉
Ω

∣∣∣ ≤ L∑
l=1

ml ̸=0

ml

N l
ε∑

n=1

ˆ
Q

rlε
(xl,n

ε )

|ϕ(xl,nε )− ϕ(x)| dx+

L∑
l=1

ml ̸=0

ml

ˆ
ωl\ωl

ε

|ϕ(x)| dx

≤ 4M

L∑
l=1

ml ̸=0

N l
ε(r

l
ε)

2 max
t∈[0,2

√
2rlε]

mϕ(t) +M∥ϕ∥L∞

L∑
l=1

ml ̸=0

|ωl \ ωl
ε| → 0,

where we have used (5.13), (5.14), and (5.15); this proves (b).
We are left with the proof of (c). We set

ω :=

L⋃
l=1

ml ̸=0

ωl, ωε :=

L⋃
l=1

ml ̸=0

ωl
ε, ηε := (

µ̃rε
ε

Nε
− µ)χωε

,

so that

(5.17)
µ̃rε
ε

Nε
− µ = ηε − µχω\ωε

.

Let v̄ ∈ H1(Q1(0)) be a solution to

{
∆v = 4

πχB1 − 1 in Q1(0)
∂νv = 0 on ∂Q1(0) .

We then define for every ε > 0 and for every l = 1, . . . , L, and n = 1, . . . , N l
ε ,

vl,nε (x) :=
1

2Nε
v̄(
x− xl,nε
rlε

);

notice that ∇vl,nε (x) =
√

ml

Nε
∇v(x−xl,n

ε

rlε
), so

(5.18) ∥∇vl,nε ∥2
L2(Q

rlε
(xl,n

ε );R2)
=

1

4N2
ε

∥∇v̄∥2L2(Q1(0);R2)

and

−∆vl,nε = ηε in Qrlε
(xl,nε ) , ∂νv

l,n
ε = 0 on ∂Qrlε

(xl,nε ).
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Integrating by parts, using Hölder inequality, (5.18), and Young inequality, it follows that

(5.19)

∥ηε∥H−1(Ω) = sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

ˆ
Ω

ϕ dηε = sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
Q

rlε
(xl,n

ε )

ϕ∆vl,nε dx

= sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

 N l
ε∑

n=1

ˆ
Q

rlε
(xl,n

ε )

∇ϕ · ∇vl,nε dx



≤ sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥∇ϕ∥L2(Q
rlε

(xl,n
ε );R2)∥∇v

l,n
ε ∥L2(Q

rlε
(xl,n

ε );R2)

= sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

1

2Nε

N l
ε∑

n=1

∥∇ϕ∥L2(Q
rlε

(xl,n
ε );R2)∥∇v̄∥L2(Q1(0);R2)

≤ sup
ϕ∈H1

0 (Ω)
∥ϕ∥H1(Ω)≤1

L∑
l=1

ml ̸=0

1

4Nε

N l
ε∑

n=1

( 1

N
1
2
ε

∥∇v̄∥2L2(Q1(0);R2) +N
1
2
ε ∥∇ϕ∥2

L2(Q
rlε

(xl,n
ε );R2)

)

≤ 1

2

L∑
l=1

ml ̸=0

N l
ε

N
3
2
ε

∥∇v̄∥2L2(Q1(0);R2) +
1

4N
1
2
ε

≤ C

N
1
2
ε

,

where the last inequality follows from (5.14) and (5.13). Finally, by Hölder inequality, (5.13) and
(5.15), we obtain

(5.20) ∥µχω\ωε
∥H−1(Ω) = sup

ϕ∈H1
0 (Ω)

∥∇ϕ∥L2(Ω;R2)≤1

ˆ
ω\ωε

ϕ dµ ≤ sup
ϕ∈H1

0 (Ω)
∥∇ϕ∥L2(Ω;R2)≤1

M∥ϕ∥L2(Ω)|ω\ωε|
1
2 ≤ C

N
1
4
ε

,

with M defined in (5.16); this, combined with (5.17) and (5.19), yields (c).
□

Proof of Theorem 3.3(iii). We divide the proof into two cases.

Case 1: µ =
∑L

l=1m
lχωldx , where L ∈ N , ml ∈ R , and {ωl}l=1,...,L is a partition of Ω into

sets with Lipschitz continuous boundary.
We divide the proof into two steps. In the first one we construct the recovery sequence

{(µε;βε)}ε for the core-radius problem; in the second step, we exploit the structure of {(µε;βε)}ε
to build up the recovery sequence {uε}ε for the functional Gε .

First step: Construction of the discrete measure µε and of the core-radius field βε . For every
ε > 0 , we set

(5.21) Nε := ⌊| log ε|⌋

and let

(5.22) µε :=

L∑
l=1

µl
ε =

L∑
l=1

ml ̸=0

N l
ε∑

n=1

δxl,n
ε

be the measure provided by Lemma 5.1. Set

(5.23) S := {(0;x2) : x2 < 0}
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and let ϑ ∈ C∞(R2 \ S) be the function defined by

(5.24) ϑ(x) :=


arctan x2

x1
if x1 > 0

π
2 if x1 = 0 and x2 > 0
π + arctan x2

x1
if x1 < 0

3
2π if x1 = 0 and x2 < 0 .

For every l = 1, . . . , L with ml ̸= 0 and for every n = 1, . . . , N l
ε , let K̂

l,n
ε ∈ L2

loc(R2 \ {xl,nε };R2)

and K̃l,n
ε ∈ L2

loc(R2;R2) be the functions defined by

K̂l,n
ε (x) :=

1

2π
∇ϑ(x− xl,nε ) =

1

2π|x− xl,nε |2
(−(x2 − xl,nε,2);x1 − xl,nε,1) ,

and

K̃l,n
ε (x) :=

|x− xl,nε |2

2π(rlε)
2

∇ϑ(x− xl,nε ) =
1

2π(rlε)
2
(−(x2 − xl,nε,2);x1 − xl,nε,1) ,

respectively. Recalling that Ar,R(x) := BR(x)\Br(x) (for every 0 < r < R and for every x ∈ R2) ,
we define

K̂ε :=

L∑
l=1

ml ̸=0

N l
ε∑

n=1

K̂l,n
ε χA

ε,rlε
(xl,n

ε ), K̃ε :=

L∑
l=1

ml ̸=0

N l
ε∑

n=1

K̃l,n
ε χB

rlε
(xl,n

ε ) .

Now, as in (5.12), for all l = 1, . . . , L with ml ̸= 0 and for every 0 < ρ < rlε we set

µ̃l,ρ
ε :=

1

πρ2

N l
ε∑

n=1

χBρ(x
l,n
ε ) dx , and µ̃ε :=

L∑
l=1

µ̃
l,rlε
ε ,

and similarly

µ̂l,ρ
ε :=

1

2πρ

N∑
n=1

H1 ∂Bρ(x
l,n
ε ) , and µ̂ε :=

L∑
l=1

µ̂
l,rlε
ε .

Eventually, we introduce

µ̂ε
ε :=

L∑
l=1

µ̂l,ε
ε

Then, using the notation just introduced, we have

(5.25) curl K̂ε = µ̂ε
ε − µ̂ε and curl K̃ε = µ̃ε − µ̂ε .

Let vε ∈ H1(Ω) be the solution to

(5.26)

{
−∆v = µ̃ε −Nεµ in Ω
v = 0 on ∂Ω .

Then, by Poincaré inequality and by Lemma (5.1)(c), we get

∥∇vε∥2L2(Ω;R2) ≤ ∥µ̃ε −Nεµ∥H−1(Ω)∥vε∥H1
0 (Ω) ≤ C(Ω)N

3
4
ε ∥∇vε∥L2(Ω;R2) ,

whence, recalling (5.21) we get

(5.27)
∇vε√
Nε| log ε|

→ 0 in L2(Ω;R2) .

Let

(5.28) β := − 1

π
(TD)⊥ ∈ L2(Ω;R2) ,

and set

(5.29) βε := Nεβ + K̂ε − K̃ε +∇⊥vε .

By (5.25) and (5.26),

(5.30) curl βε Ω = Nεµ+ µ̂ε
ε − µ̂ε − µ̃ε + µ̂ε + µ̃ε −Nεµ = µ̂ε

ε ,
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so that curl βε = 0 in Ωε(µε) := Ω \
⋃L

l=1
ml ̸=0

⋃N l
ε

n=1Bε(x
l,n
ε ) . Furthermore, by (5.30), for any

l = 1, . . . , L with ml ̸= 0 and for any n = 1, . . . , N l
ε, we haveˆ

∂Bρ(x
l,n
ε )

βε · τ dH1 = 1 for a.e. ρ ∈ (ε, rlε) .

Again by (5.30), setting Sl,n
ε := xl,nε + S (with S defined in (5.23)) for every l = 1, . . . , L with

ml ̸= 0 and n = 1, . . . , N l
ε , there exists a function ϑε ∈ H1

(
Ωε(µε) \

⋃L
l=1

ml ̸=0

⋃N l
ε

n=1 S
l,n
ε

)
such that

βε = ∇ϑε a.e. on Ωε(µε) \
L⋃

l=1
ml ̸=0

N l
ε⋃

n=1

Sl,n
ε .(5.31)

In what follows, with a little abuse of notation, we denote by ϑε and βε the zero-extensions of ϑε

and βε to
⋃L

l=1
ml ̸=0

⋃N l
ε

n=1Bε(x
l,n
ε ) , respectively. We now prove that

(5.32)
βε√

Nε| log ε|
⇀ β in L2(Ω;R2) .

On the one hand,

1√
Nε| log ε|

ˆ
Ω

|K̂ε| dx =
1√

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
A

ε,rlε
(xl,n

ε )

|K̂l,n
ε | dx

=
2π√

Nε| log ε|

L∑
l=1

ml ̸=0

(rlε − ε)N l
ε → 0 .

On the other hand, recalling (5.14), we also have

(5.33)

lim
ε→0

1

Nε| log ε|

ˆ
Ω

|K̂ε|2 dx = lim
ε→0

1

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
A

ε,rlε
(xl,n

ε )

|K̂l,n
ε |2 dx

= lim
ε→0

∑L
l=1

ml ̸=0

N l
ε log

rlε
ε

Nε| log ε|
1

2π
=

1

2π
|µ|(Ω) ,

so that

(5.34)
K̂ε√

Nε| log ε|
⇀ 0 in L2(Ω;R2) .

Moreover, by construction,

(5.35)
1

Nε| log ε|

ˆ
Ω

|K̃ε|2 dx

=
1

Nε| log ε|

L∑
l=1

ml ̸=0

1

4π2(rlε)
2

N l
ε∑

n=1

ˆ
B

rlε
(xl,n

ε )

|x− xl,nε |2 dx→ 0 in L2(Ω;R2) ;

therefore, by the very definition of βε in (5.29) , using (5.34), (5.35), and (5.27), we deduce (5.32).
Moreover, by (5.33), (5.35) and (5.27), we easily get

(5.36) lim
ε→0

1

Nε| log ε|

ˆ
Ω

|βε|2 dx =
1

2π
|µ|(Ω) +

ˆ
Ω

|β|2 dx .
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Second step: Construction of the recovery sequence {uε}ε . Let l̄ ∈ {1, . . . , L} be such that

ml̄ ̸= 0 and n̄ ∈ {1, . . . , N l̄
ε} be fixed. The set Aε,2ε(x

l̄,n̄
ε ) \

⋃L
l=1

ml ̸=0

⋃N l
ε

n=1 S
l,n
ε is either connected

or is given by the union of the two sets

A±
ε,2ε(x

l̄,n̄
ε ) := Aε,2ε(x

l̄,n̄
ε ) ∩ {x1 ≷ xl̄,n̄ε,1}.

We set al̄,n̄,+ε :=
ffl
A+

ε,2ε(x
l̄,n̄
ε )

ϑε dx and al̄,n̄,−ε :=
ffl
A−

ε,2ε(x
l̄,n̄
ε )

ϑε dx , where ϑε is the function in

(5.31). By construction ϑε ∈ H1(A+
ε,2ε(x

l̄,n̄
ε )) and ϑε ∈ H1(A−

ε,2ε(x
l̄,n̄
ε )) , so that, since the sets

A±
ε,2ε(x

l̄,n̄
ε ) have Lipschitz continuous boundary, we can apply the Poincaré-Wirtinger inequality

in H1(A+
ε,2ε(x

l̄,n̄
ε )) and H1(A−

ε,2ε(x
l̄,n̄
ε )) , thus getting

(5.37) ∥ϑε − al̄,n̄,+ε ∥2
L2(A+

ε,2ε(x
l̄,n̄
ε ))

+ ∥ϑε − al̄,n̄,−ε ∥2
L2(A−

ε,2ε(x
l̄,n̄
ε ))

≤ Cε2∥βε∥2L2(Aε,2ε(x
l̄,n̄
ε );R2)

,

for some universal constant C > 0 .
Let σε ∈ C∞(B2ε(0); [0, 1]) be such that σε ≡ 0 in Bε(0) , σε ≡ 1 in A 3

2 ε,2ε
(0) and that

(5.38) |∇σε(x)| ≤
C

ε
for every x ∈ B2ε(0) ,

for some constant C > 0 independent of ε (and of x) . For every ε > 0 we set

ϑε(x) :=


σε(x− xl̄,n̄ε )ϑε(x) + (1− σε(x− xl̄,n̄ε ))al̄,n̄,−ε if x ∈ B−

2ε(x
l̄,n̄
ε ) for some l̄ = 1, . . . , L, n̄ = 1, . . . , N l̄

ε

σε(x− xl̄,n̄ε )ϑε(x) + (1− σε(x− xl̄,n̄ε ))al̄,n̄,+ε if x ∈ B+
2ε(x

l̄,n̄
ε ) for some l̄ = 1, . . . , L, n̄ = 1, . . . , N l̄

ε

ϑε(x) if x ∈ Ω \
⋃L

l=1
ml ̸=0

⋃N l
ε

n=1B2ε(x
l,n
ε ) ,

(where B
±
2ε(x

l,n
ε ) := B2ε(x

l,n
ε ) ∩ {x1 ≷ xl,nε,1} and l̄ is such that ml̄ ̸= 0) and we define uε : Ω → S1

as

(5.39) uε(·) := e2πıϑε(·) .

By construction,

(5.40) Suε ⊂
L⋃

l=1
ml ̸=0

N l
ε⋃

n=1

B 3
2 ε
(xl,nε ) and H1(Suε) ≤

L∑
l=1

ml ̸=0

N l
ε4ε ,

which, in view of (5.14), implies

(5.41) lim
ε→0

1

Nε| log ε|
1

ε
H1(Suε

) = 0 .

We claim that

(5.42)
∇ϑε√
Nε| log ε|

⇀ β in L2(Ω;R2) ,

which, together with (5.41), in view of (1.10), will imply (ACJ). To show (5.42), we start by

observing that, by the very definition of ϑε in
⋃L

l=1
ml ̸=0

⋃N l
ε

n=1Aε,2ε(x
l,n
ε ) and by (5.37) (applied to
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every l = 1, . . . , L with ml ̸= 0 and n = 1, . . . , N l
ε) , we get

(5.43)
1

Nε| log ε|
∥∇ϑε∥2

L2(
⋃L

l=1
ml ̸=0

⋃Nl
ε

n=1 Aε,2ε(x
l,n
ε );R2)

≤ 2

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥βε∥2L2(Aε,2ε(x
l,n
ε );R2)

+
2

Nε| log ε|
C

ε2

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥ϑε − al,n,+ε ∥2
L2(A+

ε,2ε(x
l,n
ε ))

+
2

Nε| log ε|
C

ε2

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥ϑε − al,n,−ε ∥2
L2(A−

ε,2ε(x
l,n
ε ))

≤ C

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥βε∥2L2(Aε,2ε(x
l,n
ε );R2)

≤ C

| log ε|
+ C∥β∥2

L2(
⋃L

l=1
ml ̸=0

⋃Nl
ε

n=1 Aε,2ε(x
l,n
ε );R2)

+ o(1)

= o(1) → 0 ,

where in the last inequality we used (5.35), (5.33) (with rε replaced by 2ε), and (5.27), to deduce
that

1

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥βε∥2L2(Aε,2ε(x
l,n
ε );R2)

≤ 2

Nε| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥K̂l,n
ε ∥2

L2(Aε,2ε(x
l,n
ε );R2)

+
Nε

| log ε|

L∑
l=1

ml ̸=0

N l
ε∑

n=1

∥β∥2
L2(Aε,2ε(x

l,n
ε );R2)

+ o(1)

≤ C

| log ε|
+ C∥β∥2

L2
(⋃L

l=1
ml ̸=0

⋃Nl
ε

n=1 Aε,2ε(x
l,n
ε );R2

) + o(1) .

Therefore, by (5.43) and (5.32), using the very definition of ϑε , we deduce (5.42). Furthermore,
using (5.36) and again (5.43), recalling (5.28), we get

(5.44)

lim
ε→0

1

Nε| log ε|
1

2

ˆ
Ω

|∇uε|2 dx = lim
ε→0

1

Nε| log ε|
2π2

ˆ
Ω

|βε|2 dx

=π|µ|(Ω) + 2π2

ˆ
Ω

|β|2 dx = π|µ|(Ω) + 2

ˆ
Ω

|TD|2 dx ,

which, combined with (5.41), implies that the sequence {uε}ε satisfies (3.13).

Now, in order to conclude the proof of (iii) of Theorem 3.3 in the case µ =
∑L

l=1m
lχωl dx ,

it remains to prove that also (FJ) is satisfied. To this end, we first observe that, by Hölder
inequality and the very definition of uε in (5.39), for every l = 1, . . . , L with ml ̸= 0 and for every
n = 1, . . . , N l

ε ˆ
A 3

2
ε,2ε

(xl,n
ε )

|∇uε| dx ≤ Cε∥∇ϑε∥L2(A 3
2
ε,2ε

(xl,n
ε );R2)
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which, by Fubini Theorem and by the Mean Value Theorem, implies that (for every l = 1, . . . , L
with ml ̸= 0 and for every n = 1, . . . , N l

ε) there exists 3
2ε < ρl,nε < 2ε such that

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

|∇uε| dH1 ≤ C∥∇ϑε∥L2(A 3
2
ε,2ε

(xl,n
ε );R2) .

Therefore, recalling (5.40), by (5.43), for ε small enough we get

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

d|Tuε | =
L∑

l=1
ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

|TD
uε
| dH1

≤ C
√
Nε∥∇ϑε∥

L2
(⋃L

l=1
ml ̸=0

⋃Nl
ε

n=1 Aε,2ε(x
l,n
ε );R2

)
≤ CNε| log ε|

1
2 .(5.45)

Analogously, again by (5.43) and by (5.40), using also Hölder inequality, we have

|Tuε
|
( L⋃

l=1
ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
≤ 2|Duε|

( L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)

≤ 2ε∥∇ϑε∥
L2(

⋃L
l=1

ml ̸=0

⋃Nl
ε

n=1 B
ρ
l,n
ε

(xl,n
ε );R2)

√√√√√√
L∑

l=1
ml ̸=0

N l
επ + C

L∑
l=1

ml ̸=0

N l
εε

≤ CεNε| log ε|
1
2 .

Recalling the definition of ϑ in (5.24), we define

vε(·) := exp
(
ı

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ϑ(· − xl,nε )
)
;

by construction, vε ∈W 1,p(Ω; S1) for any 1 ≤ p < 2 , and

Jvε = πµε in M(Ω).

Moreover for every x ∈ Ω

(5.46) |Tvε(x)| = |TD
vε (x)| = 2|λvε(x)| ≤ 2π

L∑
l=1

ml ̸=0

N l
ε∑

n=1

|∇ϑ(x− xnε )| = 2π

L∑
l=1

ml ̸=0

N l
ε∑

n=1

1

|x− xl,nε |
.
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Therefore, for every l̄ = 1, . . . , L with ml̄ ̸= 0 and for every n̄ = 1, . . . , N l̄
ε , and for ε small enough

we have

|Tvε |(∂Bρl̄,n̄
ε

(xl̄,n̄ε )) ≤
L∑

l=1
ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l̄,n̄
ε

(xl̄,n̄
ε )

2π

|x− xl,nε |
dH1

≤ 4π2 +

N l̄
ε∑

n=1
n ̸=n̄

ˆ
∂B

ρ
l̄,n̄
ε

(xl̄,n̄
ε )

2π

|x− xl̄,nε |
+

L∑
l=1
l ̸=l̄

ml ̸=0

N l
ε∑

n=1

2π

|x− xl,nε |
dH1

≤ 4π2 + 4πε
N l̄

ε

rl̄ε
+

L∑
l=1
l ̸=l̄

ml ̸=0

N l
ε

4πε

rlε
≤ 4π2 + 4πε

L∑
l=1

|ml||ωl|N
3
2
ε ≤ C ,

where in the last but one inequality we have used (5.14) together with the fact that

inf
n=1,...,N l̄

ε
n ̸=n̄

|xl̄,nε − xl̄,n̄ε | ≥ rl̄ε, inf
l=1,...,L

l ̸=l̄

inf
n=1,...,N l

ε

|xl,nε − xl̄,n̄ε | ≥ rl̄ε,

so that (for ε small enough) dist(∂Bρn
ε
(xl̄,n̄ε ), xl,nε ) ≥ rl̄ε . It follows that

(5.47)

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

|Tvε | dH1 ≤ CNε = C| log ε| .

Analogously, by (5.46), for every l̄ = 1, . . . , L with ml̄ ̸= 0, for every n̄ = 1, . . . , N l̄
ε and for ε small

enough we have

|Tvε |(Bρl̄,n̄
ε

(xl̄,n̄ε )) ≤ 2π

ˆ
B
ρ
l̄,n̄
ε

(xl̄,n̄
ε )

1

|x− xl̄,n̄ε |
dx+ 2π

N l̄
ε∑

n=1
n ̸=n̄

ˆ
B
ρ
l̄,n̄
ε

(xl̄,n̄
ε )

1

|x− xl̄,nε |
dx

+ 2π

L∑
l=1
l ̸=l̄

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l̄,n̄
ε

(xl̄,n̄
ε )

1

|x− xl,nε |
dx

≤Cε+ CN l̄
ε

ε

rl̄ε
+ C

L∑
l=1
l ̸=l̄

ml ̸=0

N l
ε

ε

rlε
≤ CN

3
2
ε ε ,

whence we deduce that

(5.48)
1

| log ε|
|Tvε |

( L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
→ 0 as ε→ 0 .

Let finally φ ∈ C1
c (Ω) be such that ∥φ∥C0,1

c (Ω) ≤ 1 . By the very definition of distributional

Jacobian, integrating by parts and using that

Juε

(
Ω \

L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
= Jvε

(
Ω \

L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
= 0,
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we obtain

⟨Juε, φ⟩Ω =

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTuε
+

ˆ
Ω\

⋃L
l=1

ml ̸=0

⋃Nl
ε

n=1 B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTuε

=

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTuε
−

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

φTuε
· ν dH1 ,

and

⟨Jvε, φ⟩Ω =

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTvε +

ˆ
Ω\

⋃L
l=1

ml ̸=0

⋃Nl
ε

n=1 B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTvε

=

L∑
l=1

ml ̸=0

N l
ε∑

n=1

ˆ
B
ρ
l,n
ε

(xl,n
ε )

∇φ · dTvε −
L∑

l=1
ml ̸=0

N l
ε∑

n=1

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

φTvε · ν dH1 .

Therefore, by (5.45)-(5.48), and using that

Juε(Bρl,n
ε

(xl,nε )) = Jvε(Bρl,n
ε

(xl,nε )), for every l = 1, . . . , L with ml ̸= 0, n = 1, . . . , N l
ε,

we obtain

∣∣⟨Juε − πµε, φ⟩Ω
∣∣ ≤ L∑

l=1
ml ̸=0

N l
ε∑

n=1

∣∣∣ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

φ(Tuε
− Tvε

) · ν dH1
∣∣∣

+ |Tuε |
( L⋃

l=1
ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)
+ |Tvε |

( L⋃
l=1

ml ̸=0

N l
ε⋃

n=1

Bρl,n
ε

(xl,nε )
)

≤
L∑

l=1
ml ̸=0

N l
ε∑

n=1

oscB
ρ
l,n
ε

(xl,n
ε )(φ)

ˆ
∂B

ρ
l,n
ε

(xl,n
ε )

(
|Tuε

|+ |Tvε |
)
dH1

+ | log ε|o(1) .

Since oscB
ρ
l,n
ε

(xl,n
ε )(φ) ≤ Cε, it follows that

1

| log ε|
∥Juε − πµε∥flat,Ω → 0 as ε→ 0 ,

whence (FJ) follows by Lemma 5.1(b).

Case 2: General case. We argue by density, namely we show that for every (µ;TD) ∈
(M(Ω) ∩ H−1(Ω)) × L2(Ω;R2) with suppµ ⊂⊂ Ω and −Div TD = πµ there exists a sequence
{(µk;T

D
k )}k∈N ⊂ (M(Ω)∩H−1(Ω))×L2(Ω;R2) with suppµk ⊂⊂ Ω and −DivTD

k = πµk for every
k ∈ N such that µk is locally constant for every k (and takes the form as in Step 1), and

(5.49) µk
∗
⇀ µ , |µk|(Ω) → |µ|(Ω) , TD

k → TD in L2(Ω;R2) as k → +∞ .

First, let {ρh}h>0 be a sequence of standard mollifiers. We define

fh := µ ∗ ρh , µh := fh dx , TD
h := (TD ∗ ρh) Ω

By construction, −Div TD
h = 2πµh for every h > 0 and, for h small enough, |µh|(∂Ω) = 0 .

Moreover,

µh
∗
⇀ µ , |µh|(Ω) → |µ|(Ω) , TD

h → TD in L2(Ω;R2) .
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Furthermore, since {fh}h>0 ⊂ C∞(Ω) , for every h > 0 , there exists a sequence {f jh}j∈N with f jh
locally constant as in Step 1, such that

∥f jh − fh∥L∞(Ω) → 0 and

ˆ
Ω

(f jh − fh) dx = 0 .

For every h > 0 and j ∈ N , let wj
h be the solution to{

−∆w = f jh − fh in Ω
w = 0 on ∂Ω .

By standard elliptic estimates, we have

∥∇wj
h∥L2(Ω;R2) ≤ C∥f jh − fh∥L2(Ω;R2) .

Finally, for every h > 0 and for any j ∈ N , we set (TD)jh := TD
h +2π∇wj

h , so that −Div (TD)jh =

2πµj
h , and, for every h > 0 ,

(TD)jh → TD
h in L2(Ω;R2) (as j → +∞) .

Using a standard diagonal argument one can find a sequence {(µk;T
D
k )}k∈N satisfying (5.49).

Finally, by arguing as in the second step of Case 1, we can construct the recovery sequence for the
functional Gε . □

6. Proof of Theorem 3.4

This section is devoted to the proof of Theorem 3.4.

Proof of Theorem 3.4. The compactness statement follows immediately by (3.14) and (1.10).
Analogously, the lower bound (3.15) is a consequence of (1.10) and of the lower semicontinuity

of the L2 norm with respect to the weak convergence.
Therefore, it remains to prove only the upper bound. The proof is fully analogous to that of

Theorem 3.3(iii) in Subsection 5.2. We briefly sketch it. Let β ∈ L2(Ω;R2) be such that β⊥ = TD

and we set µ := 1
2π curl β = − 1

2πDivTD . Then µ ∈ M(Ω) ∩H−1(Ω) . Moreover, by construction,
suppµ ⊂⊂ Ω .

We show how to prove the claim only in the case µ = χω dx for some ω ⊂ Ω with Lipschitz
continuous boundary, since the other cases follow by the former by arguing verbatim as in the
proof of Theorem 3.3(iii). Let

(6.1) µε :=

Nω
ε∑

n=1

δxn
ε

be the measure provided by Lemma 5.1 and let βε ∈ L2(Ω;R2) be the field defined in (5.29). By
arguing verbatim as in Case 1 (first step) of the proof of Theorem 3.3(iii), and using that here
Nε ≫ | log ε| , we have that

lim
ε→0

1

N2
ε

ˆ
Ω

|K̂ε|2 dx = lim
ε→0

1

N2
ε

Nε∑
n=1

ˆ
Aε,rε (x

n
ε )

|K̂ε|n dx = lim
ε→0

1

2π

log rε + | log ε|
Nε

= 0 ;

analogously, by arguing as in (5.35) and (5.27), we get

lim
ε→0

1

N2
ε

ˆ
Ω

|K̃ε|2 dx = lim
ε→0

1

N2
ε

ˆ
Ω

|∇vε|2 dx = 0 .

Therefore,

(6.2)
βε

Nε
→ 0 strongly in L2(Ω;R2) .

Finally, defining the sequence {uε}ε as in (5.39), by (5.40) and (5.43), we have that

lim
ε→0

1

N2
ε

Gε(uε) =
1

2

ˆ
Ω

|β|2 dx =
1

2

ˆ
Ω

|TD|2 dx ,

which concludes the proof of the claim in this case. □
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