
ON FRACTIONAL HARDY-TYPE INEQUALITIES IN GENERAL OPEN SETS

ELEONORA CINTI AND FRANCESCA PRINARI

Abstract. We show that, when sp > N , the sharp Hardy constant hs,p of the punctured space

RN \{0} in the Sobolev-Slobodeckĭı space provides an optimal lower bound for the Hardy constant

hs,p(Ω) of an open Ω ( RN . The proof exploits the characterization of Hardy’s inequality in the
fractional setting in terms of positive local weak supersolutions of the relevant Euler-Lagrange

equation and relies on the construction of suitable supersolutions by means of the distance function
from the boundary of Ω. Moreover, we compute the limit of hs,p as s ↗ 1, as well as the limit

when p↗∞. Finally, we apply our results to establish a lower bound for the non-local eigenvalue

λs,p(Ω) in terms of hs,p when sp > N , which, in turn, gives an improved Cheeger inequality whose
constant does not vanish as p↗∞.
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1. Introduction

This paper deals with Hardy-type inequalities in fractional Sobolev spaces, with special interest
to optimal lower bounds on their sharp contants.

We recall some well known facts on Hardy’s inequalities in the classical (local) setting. For an
open subset Ω of RN , let us define the distance function to the boundary as

dΩ(x) := min
y∈∂Ω

|x− y|, for all x ∈ Ω.

A classical result in the theory of Sobolev spaces states that, under suitable assumptions on the set
Ω, there exists a positive constant C such that

(1.1) C

ˆ
Ω

|u|p

dpΩ
dx ≤

ˆ
Ω

|∇u|p dx, for all u ∈ C∞0 (Ω).

In the huge existing literature concerning the Hardy inequality, some results establish necessary
and sufficient conditions on the open set Ω ensuring the validity of (1.1) (see, for example, the
references in [23]) while other papers are devoted to the interesting related question of determining
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2 CINTI AND PRINARI

the optimal constant C in (1.1), which can be defined in a variational way as

hp(Ω) = inf
u∈C∞0 (Ω)

{ˆ
Ω

|∇u|p :

ˆ
Ω

|u|p

dpΩ
dx = 1

}
.

This has been achieved in some particular cases, e.g. :

• if Ω = RN \ {0}, 1 < p < ∞, p 6= N , then hp(Ω) =
(
|N−p|
p

)p
(see [29] and the references

therein);

• if Ω is convex, 1 < p <∞, then hp(Ω) =
(
p−1
p

)p
(for a proof, see [28, Theorem 11]).

In the particular case p > N , Lewis in [27] and Wannebo in [32] show that the Hardy inequality
(1.1) holds on every open set Ω ⊂ RN . Later, an alternative proof of this result has been given in
[20] by means of a ”pointwise Hardy inequality” and maximal function techniques. However, all
these papers do not provide any explicit (lower) bound for hp(Ω). The latter question is studied in
[2, 18], where it is proved that, when p > N , the optimal Hardy constant of the punctured space
RN \ {0} provides an optimal lower bound for hp(Ω), i.e. for every open set Ω ⊂ RN it holds:

(1.2) hp(Ω) ≥ hp(RN \ {0}) =

(
p−N
p

)p
.

Recently, much interest has been devoted to the study of fractional nonlocal operators, fractional
Sobolev spaces and related functional inequalities. A natural question in this context is whether a
fractional analogue of (1.1) holds true and whether one can determine the sharp constant, at least
in some particular cases.

In order to state our main result, let us start by introducing our notation. For 1 ≤ p < ∞,
0 < s ≤ 1 and Ω ⊆ RN , we define

W s,p(Ω) =
{
ϕ ∈ Lp(Ω) : [ϕ]W s,p(Ω) < +∞

}
,

where

[ϕ]W s,p(Ω) =



(¨
Ω×Ω

|ϕ(x)− ϕ(y)|p

|x− y|N+sp
dx dy

) 1
p

, if 0 < s < 1,

(ˆ
Ω

|∇ϕ|p dx
) 1
p

, if s = 1.

When 1 < p <∞, this is a reflexive space, when endowed with the norm

‖ϕ‖W s,p(Ω) = ‖ϕ‖Lp(Ω) + [ϕ]W s,p(Ω), for every ϕ ∈W s,p(Ω).

We also indicate by W̃ s,p
0 (Ω) the closure of C∞0 (Ω) in W s,p(RN ).

The analogue of the Hardy inequality (1.1) in this context reads as follows:

(1.3) C

ˆ
Ω

|u|p

dspΩ
dx ≤ [u]p

W s,p(RN )
, for all u ∈ C∞0 (Ω).

For an open set Ω ( RN , we introduce its sharp fractional (s, p)-Hardy constant defined as

hs,p(Ω) = inf
u∈C∞0 (Ω)

{
[u]p

W s,p(RN )
:

ˆ
Ω

|u|p

dspΩ
dx = 1

}
.
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We explicitly note that h1,p(Ω) = hp(Ω). Observe that, by definition of W̃ s,p
0 (Ω), we have

(1.4) hs,p(Ω) = inf
u∈W̃ s,p

0 (Ω)

{
[u]p

W s,p(RN )
:

ˆ
Ω

|u|p

dspΩ
dx = 1

}
,

by a standard density argument.
A first result in the determination of the sharp constant in this fractional setting was established

by Frank and Seiringer [16, Theorem 1.1], who proved that, if N ≥ 1, 0 < s < 1 and 1 ≤ p < ∞
are such that sp 6= N , then

hs,p := hs,p(RN \ {0}) = 2

ˆ 1

0

rsp−1
∣∣∣1− rN−spp

∣∣∣p ΦN,s,p(r) dr > 0,

where, for every 0 < r < 1, the quantity ΦN,s,p(r) is given by

ΦN,s,p(r) = |SN−2|
ˆ 1

−1

(1− t2)
N−3

2

(1− 2 t r + r2)
N+sp

2

dt, for N ≥ 2,

and

Φ1,s,p(r) =
1

(1− r)1+sp
+

1

(1 + r)1+sp
.

The case of convex sets has been considered recently in [4], where, in Theorems 6.3 and 6.6, it
has been proved that, if Ω is convex, the optimal constant hs,p(Ω) coincides with the one of the
half-space HN+ := RN−1 × (0,+∞) (whose explicit value is given in formulas (1.9)-(1.10) in [4]) in
the following situations:

• for 1 < p <∞ and 1/p ≤ s < 1;
• for p = 2 and 0 < s < 1.

We note that the paper [4] extends some previous results contained in [5, 15] for the case p = 2.
More precisely in [5, Theorem 1.1], the explicit value of the optimal constant for the half-space has
been computed for p = 2 and any 0 < s < 1, while in [15, Theorem 5], it has been proved that if Ω
is convex, then hs,2(Ω) = hs,2(HN+ ) for any 1/2 ≤ s < 1.

When sp > N , the recent paper [31] shows that the fractional Hardy inequality (1.3) holds on
every open set Ω ⊂ RN , by adapting the technique in [20] to the non-local setting. However, such
an approach does not give any lower estimate on the fractional Hardy constant hs,p(Ω).

With the aim to provide an optimal lower bound on hs,p(Ω) when Ω ⊂ RN is a general open set
and sp > N , in this paper we give a different proof of the Hardy inequality (1.3) which comes out
with a lower sharp estimate on hs,p(Ω). In particular, our main result extends inequality (1.2) to
the fractional case sp > N .

Theorem 1.1. Let N ≥ 1, 0 < s < 1 and 1 < p < ∞ be such that sp > N . For every open set
Ω ( RN we have

(1.5) hs,p(Ω) ≥ hs,p, where hs,p := hs,p(RN \ {0}).

The proof of this result is based on the so-called supersolution method, which was well known in
the classical local case (see e.g. [1, 23, 13]) and was extensively studied in the fractional setting in
[3, 4]. Such a method allows to give an equivalent “dual” definition of hs,p(Ω), which relies on the
existence of positive supersolutions to the nonlinear fractional equation:

(1.6) (−∆p)
su = λ

|u|p−2u

dspΩ
in Ω,
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where (−∆p)
s denotes the fractional p-Laplacian, whose precise definition will be given later on in

Section 2. We recall that, in [3, Theorem 1.1], it is proved that

(1.7) hs,p(Ω) = sup{λ ≥ 0 : equation (1.6) admits a positive local weak supersolution}.
For the definition of local weak super/subsolution we refer to Definition 2.1 below.

Such result, as well explained in [3], is based on the equivalence between the strict positivity of
hs,p(Ω) and the existence of a positive (local weak) supersolution to (1.6) for some λ. For more
details on the supersolution method see [3] and reference therein.

Thanks to the formula (1.7) above, in order to prove Theorem 1.1, it is enough to find a positive
supersolution to (1.6) for λ = hs,p(RN \ {0}). This is the content of Theorem 2.2 (and, more
precisely, of Corollary 2.4 below), where we give an explicit supersolution to (1.6), in terms of
powers of the distance function.

In the second part of the paper we study the asymptotics, when s↗ 1 of hs,p, as well as its limit
when p ↗ ∞. The strategy adopted in [31] does not allow to perform a quantitative study of the
optimal Hardy constant hs,p(Ω) and of its behaviour as s ↗ 1 and p ↗ ∞. On the contrary, the
application of the supersolution method permits us to prove, that, when p > N , it holds

lim
s↗1

(1− s)hs,p(RN \ {0}) = Kp,N

(
p−N
p

)p
= Kp,Nhp(RN \ {0}),

where Kp,N is an explicit constant depending only on p and N (see Theorem 3.1). This will follow
by combining a limsup-inequality (which is valid for any open subset of RN ) and a liminf -inequality
(proved for Ω = RN \ {0}), which are established in Lemma 3.2-3.4, respectively. We emphasize
that, while for proving the lim sup-inequality, it is sufficient to use the variational definition (1.4)
of hs,p(Ω), for establishing the liminf-inequality the dual formulation (1.7) is better situated (since
there, the Hardy constant is written as a supremum rather than an infimum).

Moreover, by exploiting the lower bound (1.5), in Theorem 3.6 we show that, for every 0 < s < 1,
it holds

(1.8) lim
p→∞

(hs,p(Ω))
1
p = 1,

generalising the result given in [9, Theorem 4.4] when s = 1. Again, this will follow by combining
a liminf and a limsup inequality, both valid, now, for any open set Ω.

In the last section of this paper, we apply Theorem 1.1 to obtain the following Cheeger inequality

(1.9) λs,p(Ω) ≥ hs,p

(
h1(Ω)

N

)sp
,

for sp > N and Ω ( RN open, see Theorem 4.1. Here h1(Ω) is the Cheeger constant of Ω defined
by

(1.10) h1(Ω) = inf

{
P (E)

|E|
: E b Ω smooth, |E| > 0

}
,

and λs,p(Ω) is defined by the following sharp fractional Poincaré inequality

(1.11) λs,p(Ω) = inf
u∈C∞0 (Ω)

{
[u]p

W s,p(RN )
:

ˆ
Ω

|u|p dx = 1

}
.

We explicitly note that, in the case s = 1, when p > N , combining (1.9) with (1.2), we get an
improvement of the classical Cheeger inequality with a constant which does not vanish as p → ∞
(for further details, see Remark 4.2). Finally, thanks to (1.8), we study the asymptotic behaviour
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of the family (λs,p(Ω))
1/p

as p→∞ (see Corollary 4.3), getting a sharp estimate in the limit case
p =∞ (see (4.10)).

Acknowledgments. We wish to thank Lorenzo Brasco for some useful discussions. The authors
are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
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2. An explicit supersolution and the proof of Theorem 1.1

For every 1 < p <∞, we indicate by Jp : R→ R the monotone increasing function defined by

Jp(t) = |t|p−2 t, for every t ∈ R.

For x0 ∈ RN and R > 0, we will denote by BR(x0) the N−dimensional open ball centered at x0,
with radius R. We will use the standard notation ωN for the N−dimensional Lebesgue measure of
B1(0). For an open set Ω ( RN , we denote by

dΩ(x) := min
y∈∂Ω

|x− y|, for every x ∈ Ω,

the distance function from the boundary. We extend dΩ by 0 outside Ω. Moreover, we denote by
rΩ the inradius of Ω, defined by

rΩ = ‖dΩ‖L∞(Ω) = sup
{
r > 0 : there exists x0 ∈ Ω such that Br(x0) ⊆ Ω

}
.

For a pair of open sets E ⊆ Ω ⊆ RN , the symbol E b Ω means that the closure E is a compact
subset of Ω.

For 0 < α <∞, we denote by Lαsp(RN ) the following weighted Lebesgue space

Lαsp(RN ) =

{
u ∈ Lαloc(RN ) :

ˆ
RN

|u|α

(1 + |x|)N+sp
dx < +∞

}
.

For 1 < p <∞, 0 < s < 1, and Ω ( RN open, we will consider the equation

(2.1) (−∆p)
su = λ

|u|p−2u

dspΩ
in Ω,

where λ ≥ 0. Here (−∆p)
s is the fractional p−Laplacian of order s, defined in its weak form by

〈(−∆p)
su, ϕ〉 :=

¨
RN×RN

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy, for every ϕ ∈ C∞0 (RN ).

Definition 2.1. We say that u ∈W s,p
loc (RN ) ∩ Lp−1

sp (RN ) is a

• local weak supersolution of (2.1) if¨
RN×RN

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy ≥ λ

ˆ
RN

|u|p−2u

dspΩ
ϕdx

for every non-negative ϕ ∈ C∞0 (Ω);
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• local weak subsolution of (2.1) if¨
RN×RN

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy ≤ λ

ˆ
RN

|u|p−2u

dspΩ
ϕdx

for every non-negative ϕ ∈ C∞0 (Ω).
• local weak solution of (2.1) if it is both a local weak supersolution and a local weak subso-

lution.

The aim of this section is to prove the following result:

Theorem 2.2. Let sp > N and let Ω ( RN be an open set. Then, the function

UΩ,β := dβΩ, β ∈
(

0,
ps−N
p− 1

)
,

is a positive local weak supersolution of

(2.2) (−∆p)
sUΩ,β = C(β)

Up−1
Ω,β

dspΩ
, in Ω,

where the positive constant C(β) is given by

(2.3) C(β) := 4παN

ˆ 1

0

|1− ρβ |p−2(1− ρβ)
[
ρN−1 − ρps−β(p−1)−1

]
G(ρ2) dρ,

with

αN :=
π
N−3

2

Γ
(
N−1

2

) , G(t) := B

(
N − 1

2
,

1

2

)
F

(
N + ps

2
,
ps+ 2

2
;
N

2
; t

)
.

Here Γ, B, and F denote the gamma, the beta, and the hypergeometric functions, respectively1.

Remark 2.3. Observe that, for the choice β = (sp−N)/p, we have that

C
(
sp−N
p

)
= hs,p.

Indeed, with simple algebraic manipulations, this choice gives∣∣∣1− ρ sp−Np ∣∣∣p−2 (
1− ρ

sp−N
p

) [
ρN−1 − ρps−

sp−N
p (p−1)−1

]
=
(

1− ρ
sp−N
p

)p
ρN−1

= ρsp−1 ρN−sp
(

1− ρ
sp−N
p

)p
= ρsp−1

∣∣∣1− ρN−spp

∣∣∣p .
Moreover, as observed in [16], according to [19, equation (3.665)] we have

ΦN,s,p(t) = |S|N−2B

(
N − 1

2
,

1

2

)
F

(
N + ps

2
,
ps+ 2

2
;
N

2
; t

)
= |SN−2|G(t2),

and

|SN−2| = 2
π
N−1

2

Γ
(
N−1

2

) = 2π αN .

1We refer for example to [25, Chapter 1] and [25, Chapter 9] for the definitions and properties of these functions.
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This finally gives

hs,p = 2

ˆ 1

0

ρsp−1
∣∣∣1− ρN−spp

∣∣∣p ΦN,s,p(ρ) dρ = C
(
sp−N
p

)
.

According to the previous remark, when β = (sp−N)/p from Theorem 2.2 we immediately get
the following

Corollary 2.4. Let sp > N and let Ω ( RN be an open set. Then, the function

UΩ := d
sp−N
p

Ω ,

is a positive local weak supersolution of

(−∆p)
sUΩ = hs,p

Up−1
Ω

dspΩ
in Ω.

In order to show Theorem 2.2, we recall that, by [11, Theorem 1.1] (see also [16, Lemma 3.1]),
given z ∈ RN , sp > N and 0 < β < (sp−N)/(p− 1), the function

V (x) := |x− z|β = dβRN\{z}(x),

belongs to W s,p
loc (RN ) ∩ Lp−1

sp (RN ) and is a local weak solution to

(2.4) (−∆p)
sV = C(β)

V p−1

dspRN\{z}
in RN \ {z}.

where C(β) is given by (2.3). Using this fact, we can prove the following preliminary result.

Proposition 2.5. Let sp > N and 0 < β < (sp−N)/(p−1). Let x0, x1 ∈ RN . Then, the function

U1 := dβRN\{x0,x1}

is a local weak supersolution of

(2.5) (−∆p)
sU1 = C(β)

Up−1
1

dspRN\{x0,x1}
, in RN \ {x0, x1},

where C(β) is given by (2.3).

Proof. We start with the obvious (yet crucial) observation that, since β > 0, we have

U1 = dβRN\{x0,x1} =
(
min{dRN\{x0}, dRN\{x1}}

)β
= min

{
dβRN\{x0}, d

β
RN\{x1}

}
= min {V0, V1},

(2.6)

where

Vi(x) = |x− xi|β , for i = 0, 1.

Then the function U1 belongs to W s,p
loc (RN ) ∩ Lp−1

sp (RN ). In order to prove that U1 is a local weak
supersolution of (2.5), we can suitably adapt the strategy applied in the proof of [24, Theorem
1.1], where it is shown that the minimum of two locally weakly (s, p)-superharmonic functions is
itself a locally weakly (s, p)-superharmonic function. In our case we need to handle the additional
nonlinear term on the right-hand side, which is however local.
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Let ϕ ∈ C∞0 (RN \ {x0, x1}) be a nonnegative test function. Then it is admissible for the weak
formulation of the equations satisfied by V0 and V1 (i.e. equation (2.4) with z replaced by x0 and
x1, respectively). For every 0 < ε < 1/4 we define

θε := min

{
1,

(V0 − V1)+

ε

}
.

Then we consider η1 = (1− θε)ϕ as a test function in the equation satisfied by V0, and η2 = θεϕ as
a test function in the equation satisfied by V1. By summing up the corresponding integrals for V0

and V1, we obtain

(2.7) C(β)

ˆ
RN

|V0|p−2V0

dspRN\{x0}
(1− θε)ϕdx+ C(β)

ˆ
RN

|V1|p−2V1

dspRN\{x1}
θεϕdx =

¨
RN×RN

Φε(x, y)

|x− y|N+sp
dx dy,

where

Φε(x, y) = Jp(V0(x)− V0(y))((1− θε(x))ϕ(x)− (1− θε(y))ϕ(y))

+ Jp(V1(x)− V1(y))(θε(x)ϕ(x)− θε(y)ϕ(y)).

As shown in [24, Theorem 1.1], we have that

(2.8) lim sup
ε→0

¨
RN×RN

Φε(x, y)

|x− y|N+sp
dx dy ≤

¨
RN×RN

Jp(U1(x)− U1(y)) (ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy.

We further observe that, by (2.6), we have

(2.9)
Up−1

1 (x)

dspRN\{x0,x1}(x)
=

min{V p−1
0 (x), V p−1

1 (x)}

min
{
dspRN\{x0}(x), dspRN\{x1}(x)

} =



V p−1
0 (x)

dspRN\{x0}(x)
if x ∈ S1,

V p−1
1 (x)

dspRN\{x1}(x)
if x ∈ S2,

where

S1 := {x ∈ RN : |x− x0| ≤ |x− x1|} and S2 := {x ∈ RN : |x− x1| < |x− x0|}.
Moreover, by definition of θε, S1 and S2, we have that

θε = 0 on S1 and θε → 1 pointwise on S2.

Then, taking into account that ϕ ∈ C∞0 (RN \ {x0, x1}), we can apply the Lebesgue Dominated
Convergence Theorem and we get

lim
ε→0

ˆ
RN

V p−1
0

dspRN\{x0}
(1− θε)ϕdx+

ˆ
RN

V p−1
1

dspRN\{x1}
θεϕdx

=

ˆ
S1

V p−1
0

dspRN\{x0}
ϕdx+ lim

ε→0

(ˆ
S2

V p−1
0

dspRN\{x0}
(1− θε)ϕdx+

ˆ
S2

V p−1
1

dspRN\{x1}
θεϕdx

)

=

ˆ
S1

V p−1
0

dspRN\{x0}
ϕdx+

ˆ
S2

V p−1
1

dspRN\{x1}
ϕdx =

ˆ
RN

Up−1
1

dspRN\{x1,x0}
ϕdx,

(2.10)

where the last identity follows thanks to (2.9). Hence, combining (2.8), (2.7) and (2.10), we get the
desired conclusion. �

By repeatedly applying Proposition 2.5, we have the following corollary.
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Corollary 2.6. Let sp > N and 0 < β < (sp−N)/(p− 1). Let n ∈ N and x0, . . . , xn ∈ RN . Then,
the function

Un = dβRN\{x0,...,xn},

is a local weak supersolution of

(2.11) (−∆p)
sUn = C(β)

Up−1
n

dspRN\{x0,...,xn}
, in RN \ {x0, . . . , xn},

where C(β) is given by (2.3).

We are now ready to prove Theorem 2.2. The idea is to argue by approximation: we pick a
countable dense subset ∪i∈N{xi} of ∂Ω, we apply Corollary 2.6 on the finite set ∪ni=0{xi}, and
finally we pass to the limit as n→∞.

Proof of Theorem 2.2. Let D = ∪i∈N{xi} be a dense subset of ∂Ω and for every n ∈ N we define

En = RN \ {x0, . . . , xn} and Un = dβEn .

By Corollary 2.6, we know that, for every n ∈ N, the function Un ∈ Lp−1
sp (RN ) is a local weak

supersolution of (2.11) in En ⊇ Ω. Moreover, {dEn}n∈N and {Un}n∈N are decreasing sequences
(being β > 0) and, since D is dense in ∂Ω, we have that for every x ∈ Ω

(2.12) dΩ(x) = min
z∈∂Ω

|x− z| = inf
i∈N
|x− xi| = inf

n∈N
dEn(x) = lim

n→∞
dEn(x),

and

(2.13) UΩ,β(x) = dβΩ(x) = min
z∈∂Ω

|x− z|β = inf
i∈N
|x− xi|β = inf

n∈N
Un(x) = lim

n→∞
Un(x).

In particular, UΩ,β ∈ Lp−1
sp (RN ). In order to show that the function UΩ,β is a local weak superso-

lution of (2.2), let ϕ ∈ C∞0 (Ω) be a non-negative function and we observe that it is an admissible
test function for the weak formulation of the equation satisfied by Un, for any n ∈ N. Indeed, we
have Ω ⊆ En by costruction. Hence, for any n ∈ N, we have

(2.14)

¨
RN×RN

Jp(Un(x)− Un(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy ≥ C(β)

ˆ
Ω

Up−1
n ϕ

dspEn
dx.

Since the integrand in the right-hand side of (2.14) is non-negative, Fatou’s Lemma in conjunction
with (2.12) and (2.13) gives

(2.15) lim inf
n→∞

ˆ
RN

Up−1
n ϕ

dspEn
dx ≥

ˆ
RN

Up−1
Ω,β ϕ

dspΩ
dx.

Let us consider now the left-hand side of (2.14). We recall that ϕ is compactly supported in Ω,
thus, denoting by Sϕ its support, we have that

δ := dist(∂Ω, Sϕ) > 0.

Moreover, we set

Kδ(ϕ) = {y ∈ Ω : dist(y, Sϕ) < δ/2}.
We can write
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¨
RN×RN

Jp(Un(x)− Un(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

=

¨
Sϕ×Sϕ

Jp(Un(x)− Un(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

+ 2

¨
Sϕ×(RN\Sϕ)

Jp(Un(x)− Un(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

=

¨
Sϕ×Sϕ

Jp(Un(x)− Un(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

+ 2

¨
Sϕ×(Kδ(ϕ)\Sϕ)

Jp(Un(x)− Un(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

+ 2

¨
Sϕ×(RN\Kδ(ϕ))

Jp(Un(x)− Un(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy =: I1

n + I2
n + I3

n.

Taking into account the pointwise convergence (2.13), we want to apply the Dominated Conver-
gence Theorem in order to pass to the limit in each Iin. To this aim, we observe that for x, y ∈ Ω
we have

|Un(x)− Un(y)| ≤ β(dEn(x)β−1 + dEn(y)β−1)|dEn(x)− dEn(y)|.

This simply follows from the Fundamental Theorem of Calculus, applied to the function t 7→ tβ .
Moreover, by using that dΩ ≤ dEn , that β − 1 < 0, and the 1−Lipschitz character of the distance
function, we get

|Un(x)− Un(y)| ≤ β(dΩ(x)β−1 + dΩ(y)β−1)|x− y|, for x, y ∈ Ω,

and, in particular, we have that

(2.16) |Un(x)− Un(y)| ≤ C(β, δ)|x− y|, for any x, y ∈ Kδ(ϕ).

Using (2.16) and the Lipschitz continuity of ϕ, we deduce

|Jp(Un(x)− Un(y))||ϕ(x)− ϕ(y)|
|x− y|N+sp

≤ C(β, δ)(p−1)||∇ϕ||L∞(Ω)
1

|x− y|N+p(s−1)
∈ L1(Kδ(ϕ)×Kδ(ϕ)).

This allows to pass to the limit in both I1
n and I2

n, showing that

lim
n→+∞

(I1
n + I2

n) =

¨
Sϕ×Sϕ

Jp(UΩ,β(x)− UΩ,β(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

+ 2

¨
Sϕ×(Kδ(ϕ)\Sϕ)

Jp(UΩ,β(x)− UΩ,β(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy.

(2.17)

It remains to show that

(2.18) lim
n→+∞

I3
n = 2

¨
Sϕ×(RN\Kδ(ϕ))

Jp(UΩ,β(x)− UΩ,β(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy.
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We start by observing that, since {Un}n∈N is a decreasing sequence, we have

2|Jp(Un(x)− Un(y)||ϕ(x)− ϕ(y)|
|x− y|N+sp

≤ 4‖ϕ‖L∞(Ω)
|Un(x)− Un(y)|p−1

|x− y|N+sp

≤ 2p‖ϕ‖L∞(Ω)
|U0(x)|p−1 + |U0(y)|p−1

|x− y|N+sp
.

Equality (2.18) will follow, by applying again the Dominated Convergence Theorem, if we show
that

(2.19) g(x, y) :=
|U0(x)|p−1 + |U0(y)|p−1

|x− y|N+sp
∈ L1(Sϕ × (RN \Kδ(ϕ))).

In order to do that, we note that

(2.20) |x− y| > δ

2
for every x ∈ Sϕ and y ∈ RN \Kδ(ϕ).

Hence we have that

¨
Sϕ×(RN\Kδ(ϕ))

g(x, y) dx dy =

ˆ
Sϕ

|U0(x)|p−1 dx

ˆ
RN\Kδ(ϕ)

1

|x− y|N+sp
dy

+

¨
Sϕ×(RN\Kδ(ϕ))

|U0(y)|p−1

|x− y|N+sp
dx dy

≤ NωN
sp

(
2

δ

)sp ˆ
Sϕ

|U0(x)|p−1 dx+

¨
Sϕ×(RN\Kδ(ϕ))

|U0(y)|p−1

|x− y|N+sp
dx dy.

(2.21)

Since Sϕ is a compact set, the first integral on the right-hand side in (2.21) is finite. For the
second integral, we observe that for every x ∈ Sϕ and for every y ∈ RN \Kδ(ϕ), by applying again
(2.20), it holds

|y|+ 1

|x− y|
≤ |y − x|+ |x|+ 1

|x− y|
≤ 1 +

|x|+ 1

|x− y|
≤ 1 +

2(M + 1)

δ
= C,

where M = maxx∈Sϕ |x|. This implies that

(2.22)
1

|x− y|N+sp
≤ CN+sp

(1 + |y|)N+sp
for every x ∈ Sϕ and y ∈ RN \Kδ(ϕ).

Since U0 belongs to Lp−1
sp (RN ), the above estimate implies that also the second term on the

right-hand side of (2.21) is finite and thus (2.19) holds true.
Finally, combining (2.17) and (2.18), we deduce that

lim
n→∞

¨
RN×RN

Jp(Un(x)− Un(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy

=

¨
RN×RN

Jp(UΩ,β(x)− UΩ,β(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy.

Putting together the limit above with (2.14) and (2.15), we conclude that UΩ,β is a positive local
weak supersolution of (2.2). �
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Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. By combining formula (1.7) with Theorem 2.2 when β = (sp − N)/p, we
obtain that

hs,p(Ω) ≥ C
(
sp−N
p

)
= hs,p.

The last equality follows from Remark 2.3. �

We conclude this section with the following result. It gives a sufficient condition for the constant
hs,p(Ω) not to be attained.

Proposition 2.7. Let 1 < p < ∞, 0 < s < 1 and let Ω ( RN be an open set. Suppose that there
exists a positive local weak supersolution u of (2.1) with λ = hs,p(Ω), such that

u ≥ 1

C
d
sp−N
p

Ω ,

for some positive constant C. Then, the infimum hs,p(Ω) is not attained.
In particular, when sp > N , the constant hs,p(Ω) is not attained for every open set Ω ( RN such

that

hs,p(Ω) = hs,p.

Proof. The proof follows the one of [4, Proposition 3.5] with some minor changes, and uses some
integrability properties of the distance function. We argue by contradiction and suppose that

v ∈ W̃ s,p
0 (Ω) is a minimizer for hs,p(Ω). Thus, in such a case, we have hs,p(Ω) > 0. Following [4,

Proposition 3.5], we can assume that v is positive. Let us consider now a sequence of functions
vn ∈ C∞0 (Ω) (which we can assume to be nonnegative) approximating v in W s,p(RN ) and almost
everywhere.

By using as a test function in the weak formulation of the inequality satisfied by u, the function

ϕ :=
vpn
up−1

,

and proceeding as in [4], the equality cases of the fractional Picone inequality permits to infer that

u = Cv, a. e. in Ω,

for some positive constant C. Thus, that there exists another, possibly different, positive constant
C such that

v ≥ 1

C
d
sp−N
p

Ω , in Ω.

This contradicts the minimality of v, since we would have

[v]p
W s,p(RN )

= hs,p(Ω)

ˆ
Ω

vp

dspΩ
dx ≥ hs,p(Ω)

Cp

ˆ
Ω

1

dNΩ
dx = +∞,

where the last equality follows from [3, Lemma 3.4].
Finally, if sp > N , let us suppose that hs,p(Ω) = hs,p. Then, thanks to Corollary 2.4, the function

U = d
(sp−N)/p
Ω is a positive local weak supersolution of (2.1) with λ = hs,p = hs,p(Ω). From the

first part of the proof we get the desired conclusion. �
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3. Asymptotics for the sharp constant

3.1. The case s↗ 1. This subsection is devoted to study the limit

lim
s↗1

(1− s) hs,p(Ω),

for p > N . In the case when Ω is a convex set or the punctured space RN \ {0} we can show that

lim
s↗1

(1− s) hs,p(Ω) = Kp,Nhp(Ω),

where

hp(Ω) = inf
u∈C∞0 (Ω)

{
‖∇u‖pLp(Ω) :

ˆ
Ω

|u|p

dpΩ
dx = 1

}
and Kp,N =

1

p

ˆ
SN−1

|〈ω, e1〉|p dHN−1(ω).

We start by recalling the celebrated Bourgain-Brezis-Mironescu formula

(3.1) lim
s↗1

(1− s) [ϕ]p
W s,p(RN )

= Kp,N [ϕ]p
W 1,p(RN )

, for every ϕ ∈ C∞0 (RN ),

which will be useful in the sequel. For a proof of (3.1), see for example [14, Corollary 3.20].
Now we are in a position to state the main result of this section.

Theorem 3.1. Let p > N and let Ω ( RN be an open set such that hp(Ω) = hp. Then

lim
s↗1

(1− s) hs,p(Ω) = Kp,Nhp = Kp,N

(
p−N
p

)p
.

In order to show Theorem 3.1, we start proving the lim sup inequality, which holds true for any
open set and every p.

Lemma 3.2. Let 1 < p <∞, for every open set Ω ( RN , it holds

(3.2) lim sup
s↗1

(1− s) hs,p(Ω) ≤ Kp,Nhp(Ω).

Proof. For every ε > 0, there exists uε ∈ C∞0 (Ω) such that

hp(Ω) + ε ≥
ˆ

Ω

|∇uε|pdx and

∥∥∥∥ uεdΩ

∥∥∥∥
Lp(Ω)

= 1.

Then, by using Fatou’s lemma and (3.1), we get

lim sup
s↗1

(1− s) hs,p(Ω) ≤ lim sup
s↗1

(1− s) [uε]
p
W s,p(RN )∥∥∥ uεdsΩ ∥∥∥Lp(Ω)

≤ Kp,N ‖∇uε‖pLp(RN )
≤ Kp,N

(
hp(Ω) + ε

)
.

By arbitrariness of ε > 0, the latter gives (3.2). �

In order to prove the lim inf inequality, we are going to show that for a Sobolev function u, as
s↗ 1, we have

(1− s) (−∆p)
su→ −∆pu,

in weak sense, up to a normalization constant. In other words, for every test function ϕ we consider
the limit, as s goes to 1, of

(1− s) 〈(−∆p)
su, ϕ〉 := (1− s)

¨
RN×RN

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy,



14 CINTI AND PRINARI

and show that this coincides with

Kp,N

ˆ
Ω

|∇u|p−2∇u · ∇ϕdx.

This extends [10, Theorem 2.8] and [12, Lemma 5.1], by considerably relaxing the assumptions on
the involved functions. The proof will exploit the convexity of the function t 7→ |t|p and (3.1).

Lemma 3.3. Let Ω ⊆ RN be an open set and let ϕ ∈ C∞0 (Ω). Let 0 < s < 1, 1 < p < ∞, and

assume that u ∈W 1,p
loc (Ω) ∩ Lp−1

sp (RN ). Then,

lim
s↗1

(1− s)
¨

RN×RN

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy = Kp,N

ˆ
Ω

|∇u|p−2∇u · ∇ϕdx.

Proof. Let us denote by Sϕ the support of ϕ and let Ω′ b Ω be an open set with Lipschitz boundary
such that Sϕ ⊆ Ω′. By convexity of the map t→ Jp(t), for every t ∈ (0, 1) we have:

1

p
[u+ tϕ]pW s,p(Ω′) −

1

p
[u]pW s,p(Ω′) ≥ t

¨
Ω′×Ω′

Jp(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy.

Multiplying the above inequality by (1−s), letting s↗ 1, and applying [30, Corollary 1], we deduce

Kp,N

p

(
‖∇u+ t∇ϕ‖pLp(Ω′) −‖∇u‖

p
Lp(Ω′)

)
≥ t lim sup

s↗1
(1− s)

¨
Ω′×Ω′

Jp(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy.

Dividing by t ∈ (0, 1) and letting t↘ 0, we have

Kp,N

ˆ
Ω

|∇u|p−2∇u · ∇ϕdx

≥ lim sup
s↗1

(1− s)
¨

Ω′×Ω′

Jp(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy.

(3.3)

We define

Ts := 2

ˆ
Ω′

ˆ
RN\Ω′

Jp(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy = 2

ˆ
Ω′
ϕ(x)

(ˆ
RN\Ω′

Jp(u(x)− u(y))

|x− y|N+sp
dy

)
dx.

We claim that Ts is uniformly bounded for s0 < s < 1, with a bound degenerating as s0 goes to 0.
Indeed, we note that

δ := dist(∂Ω′, Sϕ) > 0.

Then, we have

|Ts| ≤ 2

ˆ
Sϕ

|ϕ(x)|

(ˆ
RN\Ω′

|Jp(u(x)− u(y))|
|x− y|N+sp

dy

)
dx

≤ 2‖ϕ‖L∞(Ω)

¨
Sϕ×{y∈RN : d(y,Sϕ)>δ/2}

|u(x)− u(y))|p−1

|x− y|N+sp
dx dy

≤ Cp‖ϕ‖L∞(Ω)

¨
Sϕ×{y∈RN : d(y,Sϕ)>δ/2}

|u(x)|p−1 + |u(y)|p−1

|x− y|N+sp
dx dy

≤ Cp‖ϕ‖L∞(Ω)

(
NωN
sp

(
2

δ

)sp ˆ
Sϕ

|u(x)|p−1 dx+

¨
Sϕ×{y∈RN : d(y,Sϕ)>δ/2}

|u(y)|p−1

|x− y|N+sp
dx dy

)
.
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By applying (2.22), for every x ∈ Sϕ we have that

|u(y)|p−1

|x− y|N+sp
≤ CN+sp |u(y)|p−1

(1 + |y|)N+sp
, for every y ∈ RN such that d(y, Sϕ) > δ/2.

Since u belongs to Lp−1
sp (RN ), the above estimate easily implies that {Ts}s0<s<1 is bounded. Thus,

we get

lim
s↗1

(1− s)Ts = 0,

and (3.3) gives

Kp,N

ˆ
Ω

|∇u|p−2∇u · ∇ϕdx ≥ lim sup
s↗1

(1− s)
¨

RN×RN

Jp(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy.

Finally, by replacing ϕ with −ϕ, we get

Kp,N

ˆ
Ω

|∇u|p−2∇u · ∇ϕdx ≤ lim inf
s↗1

(1− s)
¨

RN×RN

Jp(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp
dx dy.

Joining the last two equations, we eventually conclude the proof. �

We can now give the proof of the lim inf inequality, which holds true for the specific case of the
punctured space Ω = RN \ {0}.

Lemma 3.4. Let p > N . Then

lim inf
s↗1

(1− s)hs,p ≥ Kp,Nhp.

Proof. Observe that

β :=
p−N
p
∈
(

0,
sp−N
p− 1

)
,

for s sufficiently close to 1. Hence, for such values of s, by applying again [11, Theorem 1.1], the
function u(x) = |x|β is a positive local weak solution to

(−∆p)
su = Cp,s

up−1

|x|sp
, in RN \ {0},

where Cp,s is the constant given by (2.3) when β = (p−N)/p.
By using again (1.7), we obtain that

(3.4) hs,p ≥ Cp,s,

for s sufficiently close to 1. Moreover, by a direct computation, we have that u satisfies

−∆pu = hp
up−1

|x|p
, in RN \ {0}.

Now, let sj ↗ 1 be such that

lim inf
s↗1

(1− s)hs,p = lim
j→∞

(1− sj)hp,sj .
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Now we apply Lemma 3.3, with a fixed non-negative function ϕ ∈ C∞0 (RN \ {0}) such that ϕ 6= 0
and u defined above. From the equation satisfied by u, we then obtain

Kp,Nhp

ˆ
RN

up−1

|x|p
ϕdx = Kp,N

ˆ
RN
|∇u|p−2∇u · ∇ϕdx

= lim
j→∞

(1− sj)
¨

RN×RN

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+sjp
dx dy

= lim
j→∞

(
(1− sj)Cp,sj

ˆ
RN

up−1

|x|sjp
ϕdx

)
.

(3.5)

If we now apply (3.4) with sj in the place of s, (3.5) implies that

Kp,Nhp

ˆ
RN

up−1

|x|p
ϕdx ≤ lim

j→∞
(1− sj)hp,sj

ˆ
RN

up−1

|x|sjp
ϕdx = lim inf

s↗1
(1− s)hs,p

ˆ
RN

up−1

|x|p
ϕdx.

Hence, the desired conclusion follows, by canceling the common factor. �

Proof of Theorem 3.1. By applying Lemma 3.2, Theorem 1.1 and Lemma 3.4, we have that for
every open set Ω ( RN it holds

Kp,Nhp(Ω) ≥ lim sup
s↗1

(1− s) hs,p(Ω) ≥ lim inf
s↗1

(1− s) hs,p ≥ Kp,Nhp

When hp(Ω) = hp, this implies that

lim
s↗1

(1− s) hs,p(Ω) = hp.

�

Remark 3.5. Actually, with the same proof, one can prove the analogue of Theorem 3.1 for convex
sets. In other words, if 1 < p <∞ and Ω ⊆ RN is a convex set, then we can obtain

(3.6) lim
s↗1

(1− s) hs,p(Ω) = Kp,Nhp(Ω) = Kp,N

(
p− 1

p

)p
.

This is possible since, for fixed p > 1, we have that sp ≥ 1 when s is sufficiently close to 1 and, in
this range, for any convex set Ω it holds

hs,p(Ω) = hs,p(HN+ ), where H+
N := RN−1 × (0,+∞),

see [4, Theorems 6.3]. Moreover, in the specific case of the half-space HN+ , for s sufficiently close

to 1, by [4, Theorem 5.2], we have that u(x) = |x|(p−1)/p is a positive local weak solution to the
equation

(−∆p)
sV = Cp,s

V p−1

dspΩ
, in H+

N ,

with a suitable positive costant Cp,s. By using again formula (1.7), we obtain that

hs,p(H+
N ) ≥ Cp,s.

Moreover, by direct verification we see that such a function u is also a (actually classical) positive
solution of the equation

−∆pV =

(
p− 1

p

)p
V p−1

dpΩ
, in H+

N .
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Hence, by using such a function u and arguing exactly as in (3.5), we can conclude that

lim inf
s↗1

(1− s)hs,p(Ω) = lim inf
s↗1

(1− s)hs,p(H+
N ) ≥ Kp,Nhp(H+

N ) = Kp,N

(
p− 1

p

)p
.

The lim sup inequality is provided by Lemma 3.2. Hence the limit (3.6) follows.

3.2. The case p↗∞. In this subsection we show the following theorem.

Theorem 3.6. Let 0 < s ≤ 1 and let Ω ( RN be an open set. Then

(3.7) lim
p→∞

(hs,p(Ω))
1
p = 1.

Proof. The case s = 1 is contained in [9, Theorem 4.4]. In order to show the limit in (3.7) for
hs,p(Ω) when 0 < s < 1, first we show that the lim sup is smaller than or equal to 1. To this aim,
it is sufficient to use a suitable test function. For every x0 ∈ Ω, take r < dΩ(x0) and define

(3.8) ϕε(x) =
(
ε+ (r − |x− x0|)+

)s − εs, for x ∈ RN .

Since ϕε ∈ C0,1(RN ) and vanishes on RN \ Br(x0), we have that ϕε ∈ W̃ s,p
0 (Br(x0)) ⊆ W̃ s,p

0 (Ω).
Thus, by recalling (1.4), we have that

(hs,p(Ω))
1
p ≤

[ϕε]W s,p(RN )∥∥∥∥ϕεdsΩ
∥∥∥∥
Lp(Ω)

.

By sending p to ∞ and by using [8, Lemma 2.4], we obtain that

lim sup
p→∞

(
hs,p(Ω)

) 1
p ≤ lim sup

p→∞

[ϕε]W s,p(RN )∥∥∥∥ϕεdsΩ
∥∥∥∥
Lp(Ω)

=
[ϕε]C0,s(RN )∥∥∥∥ϕεdsΩ
∥∥∥∥
L∞(Br(x0))

.
(3.9)

We now observe that for every x, y ∈ RN

|ϕε(x)− ϕε(y)| =
∣∣(ε+ (r − |x− x0|)+

)s − (ε+ (r − |y − x0|)+

)s∣∣
≤ |(r − |x− x0|)+ − (r − |y − x0|)+|s

≤
∣∣|x− x0| − |y − x0|

∣∣s ≤ |x− y|s,
which shows that

(3.10) [ϕε]C0,s(RN ) ≤ 1.

Thus, from (3.9) we get

lim sup
p→∞

(
hs,p(Ω)

) 1
p ≤ 1∥∥∥∥ϕεdsΩ

∥∥∥∥
L∞(Br(x0))

= inf
x∈Br(x0)

dΩ(x)s(
ε+ (r − |x− x0|)+

)s − εs
≤ dΩ(x0)s

(r + ε)s − εs
.

By first taking the limit as ε goes to 0 and then as r goes to dΩ(x0), we finally obtain

lim sup
p→∞

(
hs,p(Ω)

) 1
p ≤ 1.
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If we show that

(3.11) lim inf
p→∞

(hs,p)
1
p ≥ 1,

in view of Theorem 1.1 and of the previous lim sup, we obtain the desired conclusion (3.7).
We recall that

hs,p = 2

ˆ 1

0

rsp−1
∣∣∣1− rN−spp

∣∣∣p ΦN,s,p(r) dr > 0,

where, for every 0 < r < 1, the quantity ΦN,s,p(r) is given by

ΦN,s,p(r) =


|SN−2|

ˆ 1

−1

(1− t2)
N−3

2

(1− 2 t r + r2)
N+sp

2

dt, if N ≥ 2,

1

(1− r)1+sp
+

1

(1 + r)1+sp
, if N = 1.

By a simple computation, one can see that

(3.12) hs,p = 2

ˆ 1

0

rN−1
(

1− r
sp−N
p

)p
ΦN,s,p(r) dr.

In the case N ≥ 2, we observe that, for any r ∈ (0, 1) and for any t ≥ 1/2, one has

1− 2tr + r2 = 1 + r(r − 2t) ≤ 1 + r(r − 1) ≤ 1.

Hence,

ΦN,s,p(r) ≥ |SN−2|
ˆ 1

1/2

(1− t2)
N−3

2 dt.

In the case N = 1 we have that

ΦN,s,p(r) ≥ ΦN,s,p(0) = 2.

Thus, (3.12) implies that

(
hs,p

) 1
p ≥ C

1
p

N

(ˆ 1

0

rN−1
(

1− r
sp−N
p

)p
dr

) 1
p

,

where we have set

CN :=

{
2|SN−2|

´ 1

1/2
(1− t2)

N−3
2 dt, if N ≥ 2

2 if N = 1.

Since, C
1
p

N → 1 as p↗∞, in order to prove (3.11), it is sufficient to show that, for every N ≥ 1, it
holds

(3.13) lim inf
p→∞

(ˆ 1

0

rN−1
(

1− r
sp−N
p

)p
dr

) 1
p

≥ 1.

In order to do that, we observe that, for any r ∈ (0, 1) and for any p ≥ p0, with p0 fixed such that
p0 s > N , it holds rs−N/p ≤ rs−N/p0 , and thus(ˆ 1

0

rN−1
(

1− r
sp−N
p

)p
dr

) 1
p

≥
(ˆ 1

0

rN−1
(

1− rs−
N
p0

)p
dr

) 1
p

=
∥∥∥1− rs−

N
p0

∥∥∥
Lp
µ((0,1))

,
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where we have denoted by ‖ · ‖Lp
µ((0,1))

the Lp-norm with respect to the measure dµ = rN−1 dr.

Finally, taking the limit as p↗∞, we deduce that

lim inf
p→∞

(ˆ 1

0

rN−1
(

1− r
sp−N
p

)p
dr

) 1
p

≥ sup
r∈(0,1)

|1− rs−
N
p0 | = 1.

This shows (3.13), thus concluding the proof of (3.11). �

4. A Cheeger type inequality

In the main theorem of this section, we provide a lower bound for λs,p(Ω) given by (1.11), in
terms of the classical and fractional Cheeger constants h1(Ω) and hs(Ω). We recall that

hs(Ω) = inf

{
Ps(E)

|E|
: E b Ω smooth, |E| > 0

}
where

Ps(E) = [1E ]W s,1(RN ) =

¨
RN×RN

|1E(x)− 1E(y)|
|x− y|N+s

dx dy

is the nonlocal s-perimeter of E. We explicitly note that our result covers also the case s = 1.

Theorem 4.1. Let 0 < s ≤ 1 and sp > N . Let Ω ( RN be an open set and define

λs,p(Ω) = inf
u∈C∞0 (Ω)

{
[u]p

W s,p(RN )
:

ˆ
Ω

|u|p dx = 1

}
.

If rΩ < +∞ then it holds

(4.1) λs,p(Ω) ≥ hs,p

(
h1(Ω)

N

)sp
,

where h1(Ω) is defined by (1.10). In particular, for 0 < s < 1 we also have

(4.2) λs,p(Ω) ≥ hs,p
Nsp

(
(1− s) s
2NωN

hs(Ω)

)p
.

Proof. Let us suppose that rΩ < +∞. Since sp > N , thanks to Theorem 1.1, we have that Ω
satisfies the Hardy inequality with hs,p(Ω) ≥ hs,p > 0. Then

ˆ
Ω

|u|p dx ≤ rspΩ
ˆ

Ω

|u|p

dspΩ
dx ≤ 1

hs,p(Ω)
rspΩ [u]p

W s,p(RN )
for every u ∈ C∞0 (Ω).

By taking the infimum on C∞0 (Ω), we easily get

(4.3) λs,p(Ω) ≥ hs,p(Ω)

rspΩ
≥ hs,p

rspΩ
.

The above estimate, combined with the well known inequality

(4.4) h1(Ω) ≤ N

rΩ
,

gives (4.1). In order to show (4.2), it is sufficient to note that, thanks to [6, Corollary 4.4], for every
open bounded set E b Ω with smooth boundary, it holds(

P (E)

|E|

)s
≥ Ps(E)

|E|
(1− s)s
2NωN

.
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Hence, by arbitrariness of E we get

(h1(Ω))s ≥ (1− s) s
2NωN

inf

{
Ps(E)

|E|
: E b Ω smooth, |E| > 0

}
=

(1− s) s
2NωN

hs(Ω).

Joining (4.1) with the above inequality, we obtain (4.2). �

Remark 4.2. We note that our estimate (4.1) appears to be new already in the case s = 1, where
it improves (for p > N) the celebrated Cheeger inequality

(4.5) λp(Ω) ≥
(
h1(Ω)

p

)p
,

valid for every 1 < p <∞ and for every open set Ω (for a proof, see [26, 22]). Indeed, when s = 1,
by joining (4.5) and (4.1), we now get

λp(Ω) ≥ max

{(
p−N
N

)p
, 1

} (
h1(Ω)

p

)p
,

which holds for every open set Ω ⊆ RN . The main interest of this results is that this is stable as p
goes ∞, i.e. we have

lim
p↗∞

(
max

{(
p−N
N

)p
, 1

} (
h1(Ω)

p

)p) 1
p

=
h1(Ω)

N
,

while the right-hand side of (4.5) raised to the power 1/p converges to 0.

By combining the estimate (4.3) with the asymptotic behaviour of (hs,p(Ω))1/p as p → ∞, we
get the next result, which clarifies the interest of Remark 4.2.

Proposition 4.3. Let 0 < s ≤ 1 and let Ω ( RN be an open set. Then2

(4.6) lim
p→∞

(λs,p(Ω))
1
p =

1

rsΩ
= λs,∞(Ω),

where λs,∞(Ω) is defined through the following minimization problem

λs,∞(Ω) = inf
u∈C0,s(Ω)

{
[u]C0,s(Ω) : ‖u‖L∞(Ω) = 1, u = 0 on ∂Ω

}
.

Moreover, when rΩ < +∞, a minimizer of the last problem is given by

U =

(
dΩ

rΩ

)s
.

Proof. First of all, we prove that

(4.7) lim sup
p→∞

(
λs,p(Ω)

) 1
p ≤ 1

rsΩ
.

We take r < rΩ, thus there exists x0 ∈ Ω such that Br(x0) ⊆ Ω. For every ε > 0, we take the same
function ϕε defined in (3.8). This implies that(

λs,p(Ω)
) 1
p ≤

[ϕε]W s,p(RN )

‖ϕε‖Lp(Ω)

.

2It is intended that 1/rsΩ = 0, in the case rΩ = +∞.
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By sending p to ∞ (and by using [8, Lemma 2.4] when 0 < s < 1), we obtain that

lim sup
p→∞

(
λs,p(Ω)

) 1
p ≤ lim sup

p→∞

[ϕε]W s,p(RN )

‖ϕε‖Lp(Ω)
=



[ϕε]C0,s(RN )

‖ϕε‖L∞(Ω)
, if 0 < s < 1,

‖∇ϕε‖L∞(RN )

‖ϕε‖L∞(Ω)
, if s = 1.

By observing that

‖∇ϕε‖L∞(RN ) = [ϕε]C0,1(RN ),

we thus obtain

(4.8) lim sup
p→∞

(
λs,p(Ω)

) 1
p ≤

[ϕε]C0,s(RN )

‖ϕε‖L∞(Ω)
, for 0 < s ≤ 1.

We now observe that

‖ϕε‖L∞(Ω) = (r + ε)s − εs.
By recalling also (3.10), from (4.8) we thus obtain for every ε > 0

lim sup
p→∞

(
λs,p(Ω)

) 1
p ≤ 1

(r + ε)s − εs
, for 0 < s ≤ 1.

By taking the limit as ε goes to 0 and using the arbitrariness of r < rΩ, we get (4.7). In particular,
if rΩ = +∞, (4.7) implies that

lim
p→∞

(λs,p(Ω))
1
p = 0 =

1

rsΩ
.

In the case when rΩ <∞, for every 0 < s ≤ 1, we can use (4.3) and (3.7), to obtain that

lim inf
p→∞

(λs,p(Ω))
1
p ≥ lim inf

p→∞

(hs,p(Ω))
1
p

rsΩ
=

1

rsΩ
.

We now prove that

(4.9)
1

rsΩ
= λs,∞(Ω).

Let ϕ ∈ C0,s(Ω) be admissible for the problem defining λs,∞(Ω). For every x ∈ Ω, we take yx ∈ ∂Ω
such that dΩ(x) = |x− yx|. Thus, we have

|ϕ(x)| = |ϕ(x)− ϕ(yx)| ≤ |x− yx|s [ϕ]C0,s(Ω) = dΩ(x)s [ϕ]C0,s(Ω) ≤ r
s
Ω [ϕ]C0,s(Ω).

This shows that
1

rsΩ
≤ [ϕ]C0,s(Ω),

thanks to the normalization on ϕ. It is intended that the left-hand side is zero, in the case rΩ = +∞.
The previous inequality in turn implies that

λs,∞(Ω) ≥ 1

rsΩ
.

Finally, if rΩ < +∞ we take the function

ϕ =
dsΩ
rsΩ
,



22 CINTI AND PRINARI

which is admissible for λs,∞(Ω). This gives

λs,∞(Ω) =
1

rsΩ
[dsΩ]C0,s(Ω) ≤

1

rsΩ
,

thanks to the fact that dsΩ is s−Hölder continuous, with Hölder constant less than or equal to 1.
This shows (4.9) and that r−sΩ dsΩ is a minimizer for the problem defining λs,∞(Ω).

In the case rΩ = +∞, it is sufficient to take M > 0 and use the test function

ϕM =
min{dsΩ,Ms}

Ms
.

This would give

λs,∞(Ω) ≤ lim
M→∞

1

Ms

[
min{dsΩ,Ms}

]
C0,s(Ω)

= lim
M→∞

1

Ms
[dsΩ]C0,s(Ω) ≤ lim

M→∞

1

Ms
= 0,

thus proving (4.9) in the case rΩ = +∞, as well. �

Remark 4.4. We recall that, when s = 1, the limit

lim
p→∞

(λp(Ω))1/p =
1

rΩ

has been shown in [17, Theorem 3.1] and [21, Lemma 1.2], when Ω ⊆ RN is a bounded open set.
Later this result has been extended to every open set in [9, Corollary 6.1].

Remark 4.5. Thanks to the previous result, we can observe that the lower bound (4.1) becomes
sharp in the limit, as p goes to ∞. Indeed, for every 0 < s ≤ 1 and for every open set Ω ⊆ RN , by
combining (4.6) and (4.4), we get the following inequality

(4.10) λs,∞(Ω) = lim
p→∞

(λs,p(Ω))
1
p ≥

(
h1(Ω)

N

)s
.

Such an estimate is sharp, since it becomes an identity when Ω = BR(x0), thanks to the fact that

λs,∞(BR(x0)) =
1

Rs
=

(
h1(BR(x0))

N

)s
.
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