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Abstract. In this paper, we study the Γ-limit of a properly rescaled family of energies, defined on a narrow strip, as the width
of the strip tends to zero. The limit energy is one-dimensional and is able to capture (and penalize) concentrations of the
midline curvature. At the best of our knowledge, it is the first paper in the Γ-convergence field for dimension reduction that
predicts elastic hinges. In particular, starting from a purely elastic shell model with “smooth” solutions, we obtain a beam
model where the derivatives of the displacement and/or of the rotation fields may have jump discontinuities. Mechanically
speaking, elastic hinges can occur in the beam.
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1. Introduction

It is a common experience to bend by hands a sufficiently long portion of a carpenter tape measure.
If the imposed rotation at the two ends is sufficiently large in magnitude, the deformation suddenly
localizes approximately at the middle of the tape. Moreover, one can clearly feel the reduction of effort
to maintain the equilibrium in the deformed state after the localization. If the constraints are released,
the tape measure comes back to the initial, unbended configuration, suggesting the deformation is purely
elastic. In Mechanics’ jargon, we are actually bending a transversely curved shallow shell (or transversely
curved ribbon), and the localized deformation is called fold.

Studies on the structure of elastic folds go back to the 1990s. The prototype is the sharp, straight fold
of a piece of paper. In [21], Lobkovsky derived an asymptotic scaling for the boundary layer occurring
in a thin elastic sheet around the sharp crease that would appear in the limit of vanishing thickness. He
obtained, by a formal scaling argument, that the elastic energy (von Kármán type) per unit thickness
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h of the sheet scales as h5/3. Note that a pure membrane (stretching) energy per unit thickness scales
as h0, while a pure bending energy per unit thickness scales as h2. This intermediate regime indicates
the activation of both membrane and bending energy in a non-trivial interplay. Later on, Venkataramani
[31] proved via more rigorous variational techniques that minimizers of the von Kármán energy (per unit
thickness) satisfying appropriate boundary conditions so to make the crease appear, scales as h5/3. In
the full nonlinear elasticity setting, Conti and Maggi [5] gave an optimal construction, inspired by paper
origamis, and proved that the 3D, nonlinear elastic energy (per unit thickness) of a plate of thickness h
scales as h5/3, again under well-defined boundary conditions. We highlight en passant that the Γ-limit
(with respect to some topology) for plates/shells is still not known if the nonlinear elastic energy (per
unit thickness) scales as hβ with 5

3 < β < 2.
It must be pointed out that the occurrence of creases in a flat sheet relies on heavy (and ad hoc)

boundary conditions. No singularities in fact appear when one tries to bend a rectangular sheet of paper
by imposing rotations on two opposite sides. Moreover, it is questionable if in the real life such ridge
singularities are fully reversible, i.e., if the deformation is elastic.

The experiment with the carpenter tape measure suggests that a “cleaner” way to obtain elastic folds
is to introduce an initial transverse curvature in a rectangular plate (hence, a shell) of sufficiently large
aspect ratio. In fact, just trivial Dirichlet boundary conditions at the short sides are needed to trigger
the fold.

Despite the bending of cylindrical shells is actually a classical subject [4,22,33], not much is actually
known if compared to the plate counterparts. The study of tape spring devices has been quite prolific
in the last years in connection to deployable structures and mechanism-free actuation, especially for
the aerospace field [32]. Numerical and experimental simulations can be found in [28,29], where the
authors provided the rotation-reaction moment curve, showing a complicated and high-nonlinear behavior,
characterized by a snap-back instability at a critical valued of the applied rotation. The behavior also
depends on the sign of the mean curvature.

More recently, many rod models with thin-walled flexible cross section have been proposed in the
literature: for instance in [18,19,26], the authors derived different enhanced rod models starting from the
geometrically nonlinear Koiter shell energy. An interesting interpretation of the bending of tape springs
as a multi-phase transition problem has also been proposed in [23]. The comparison is with the well-
known regularized Ericksen bar. The two phases are represented by portions of cylindrical shells having
misaligned zero-curvature axes: they are skew lines forming an angle of 90◦. Dirichlet boundary conditions
(“hard device” in Ericksen bar jargon) for bending imposes that both phases must be present. Hence, the
whole problem is a matter of optimal transition between phases.

One may also wonder whether the scaling h5/3 is still optimal for the bending of tape springs. In [6], a
numerical study suggests that the energy (per unit thickness) is much lower and that the optimal scaling
is close to h2.

It is worth mentioning that a correlated problem to the bending of tape springs has been studied in [3].
The authors study the flattening and clamping, along one short side, of a cylindrical shallow shell with
rectangular planform. Moreover, they propose mechanical non-linear rod models based on inextensible
(on average) Koiter energy and on extensible von Kármán energy. We mention also the work of Percivale
and Tomarelli [25] on variational principles for plastic hinges in beams.

In this paper, we study the Γ-limit of a sequence of variational problems for rectangular, transversely
curved shallow shells, as the width of the planform goes to zero. Despite the energies are defined on
sufficiently smooth functions, the limit energy penalizes concentrations of the longitudinal curvature.
From a mathematical viewpoint, this behavior is entirely triggered by the presence of the transversal
curvature in the natural state of the shell. The mechanical interpretation is the occurrence of localized
elastic hinges, as actually happens, for instance, in the planar bending of tape spring devices.

The paper is structured as follows. In Sect. 2, we recall the main technical tools we will use later on.
In Sect. 3 we introduce the sequence of variational problems we are interested in, together with some
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properties of the minimizers. In the same section, we also prove that the bending of a tape measure
is not an isometry. In particular, Theorem 3 suggests that care must be paid in coupling the isometry
requirement and Dirichlet boundary conditions (see also [15]). In Sect. 4 we study the compactness of
rescaled sequences of displacements and identify the Γ-limit, the main result of the paper.

2. Preliminaries

The Euclidean (Frobenius) product in R
N is indicated with · and the corresponding induced norm by | · |.

Let Ω ⊂ R
N be open. If r ∈ N∪{∞}, then Cr(Ω) denotes the space of real-valued, r-times continuously

differentiable functions on Ω. Cr
0(Ω) denotes the completion with respect to the sup-norm of Cr

c (Ω), the
space of functions belonging to Cr(Ω) that have compact support in Ω.

If not specified, we adopt Einstein’ summation convention for indices, and C denotes a positive constant
that may vary from line to line. We denote the integral average by

∫
Ω

f dx:= 1
|Ω|

∫

Ω

f dx.

For real p ≥ 1 and integer M ≥ 1, we denote by

Lp(Ω, RM ):=
{

u : Ω → R
M : ‖u‖Lp(Ω,RM ) < ∞

}

the Banach space of (equivalence classes of) Lebesgue-integrable functions on Ω with values in R
M , where

‖u‖Lp(Ω,RM ) :=

⎛

⎝
∫

Ω

|u|p dx

⎞

⎠

1/p

.

If M = 1, we will refrain to specify the codomain R in the notation of the functional spaces: for instance,
we will simply write Lp(Ω) instead of Lp(Ω, R), and so forth.

The corresponding Sobolev’ spaces of functions on Ω are the Banach spaces defined as follows:

Wm,p(Ω):=
{

u : Ω → R : u ∈ Lp(Ω),∇iu ∈ Lp(Ω, RNi

) ∀i ≤ M
}

.

They are endowed with the norm

‖u‖p
W m,p(Ω) := ‖u‖p

Lp(Ω) +
m∑

i=1

∥
∥∇iu

∥
∥p

Lp(Ω,RNi )
.

Let 1 ≤ pi ≤ p0 < ∞, i = 1, . . . , N . We introduce the following anisotropic Sobolev space:

W 1,(p0;p1,...,pN )(Ω):={u ∈ Lp0(Ω) : ∂iu ∈ Lpi(Ω), i = 1, . . . , N},

which is a Banach space with the norm

‖u‖W 1,(p0;p1,...,pN )(Ω) := ‖u‖Lp0 (Ω) +
N∑

i=1

‖∂iu‖Lpi (Ω) .

Given two functions u, v : R
n → R we define the convolution

u ∗ v(x) :=
∫

Rn

u(x − y)v(y) dy

whenever the integral exists.
We denote strong convergence (convergence in norm) with the symbol →, while weak convergence will

be denoted by ⇀.
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We denote by M(Ω) the space of finite Radon measures on Ω, by LN the N -dimensional Lebesgue
measure, and by H1 the one-dimensional Hausdorff measure in R

2. Indicating by Du the distributional
derivative of u, the spaces of functions of bounded variations and of bounded Hessian are defined as

BV (Ω):={u ∈ L1(Ω) : Du ∈ M(Ω, RN )} (1)

and

BH(Ω):={u ∈ W 1,1(Ω) : D2u ∈ M(Ω, RN×N
sym )}

= {u ∈ W 1,1(Ω) : ∇u ∈ BV (Ω, RN )}.
(2)

For u ∈ BV (Ω), BH(Ω), we set

‖u‖BV (Ω):= ‖u‖L1(Ω) + |Du|(Ω),

‖u‖BH(Ω):= ‖u‖W 1,1(Ω) + |D2u|(Ω),

where |Du|(Ω) is the (total) variation measure of u, defined as

|Du|(Ω):= sup

⎧
⎨

⎩

∫

Ω

u div φ dx : φ ∈ C1
c (Ω, RN ), |φ| ≤ 1

⎫
⎬

⎭
,

and similarly

|D2u|(Ω):= sup

⎧
⎨

⎩

∫

Ω

∇u · div φ dx : φ ∈ C1
c (Ω, RN×N

sym ), |φ| ≤ 1

⎫
⎬

⎭

is the (total) variation measure of ∇u. Note that if u ∈ BV (Ω), ∇u is the (approximate) pointwise
differential of u and represents the density of Du with respect to the Lebesgue measure LN . It is a Sobolev
function. In dimension one, following [25], for any u ∈ BH(R) we use u′′ for the second derivative in the
sense of distributions, ü for its absolutely continuous part, Ju̇ for the jump set of u̇ = u′, [u̇]:=u̇+ − u̇−,
(u′′)s, and (u′′)c for the singular and Cantor part of u′′, respectively.

We recall that (μn) ⊂ M(Ω) converges weakly∗ to μ ∈ M(Ω) (and we write μn
∗
⇀ μ in M(Ω)) if for

every φ ∈ C0(Ω) lim
n↑∞

∫

Ω

φ dμn =
∫

Ω

φ dμ.

We say that (un) ⊂ BV (Ω) converges weakly∗ in BV (Ω) to u ∈ BV (Ω) (and we write un
∗
⇀ u in

BV (Ω)) if un → u in L1(Ω) and Dun
∗
⇀ Du in M(Ω, RN ). Similarly, (un) ⊂ BH(Ω) converges weakly∗

in BH(Ω) to u ∈ BH(Ω) (and we write un
∗
⇀ u in BH(Ω)) if un → u in W 1,1(Ω) and D2un

∗
⇀ D2u in

M(Ω, RN×N
sym ).

We say that (un) ⊂ BV (Ω) converges strictly in BV (Ω) to u ∈ BV (Ω) (and we write un
s
⇀ u in

BV (Ω)) if un → u in L1(Ω) and |Dun|(Ω) → |Du|(Ω) as n ↑ ∞. Similarly, (un) ⊂ BH(Ω) converges
strictly in BH(Ω) to u ∈ BH(Ω) (and we write un

s
⇀ u in BH(Ω)) if un → u in W 1,1(Ω) and |D2un|(Ω) →

|D2u|(Ω) as n ↑ ∞.
The restriction of a measure μ on Ω to a measurable set E ⊂ Ω is the measure μ

¬
E defined as

μ
¬
E(F ):=μ(F ∩ E) for all measurable sets F ⊂ Ω.
Let A,B be two sets and let μ ∈ M(A), ν ∈ M(B). The product measure μ × ν ∈ M(A × B) is the

measure satisfying (μ × ν)(E × F ) = μ(E)ν(F ) for every Borel sets E ∈ A and F ∈ B.
Let φ ∈ C∞

c (Ω). For any sufficiently smooth function u : Ω → R, we define the weak Hessian determi-
nant as the following distribution of order one [7]:

Hu(φ):=
∫

Ω

∂1u ∂12u ∂2φ − ∂1u ∂22u ∂1φ dx. (3)



ZAMP From elastic shallow shells Page 5 of 23   135 

It is well defined, for instance, for u ∈ W 2, 43 (Ω), and if u ∈ W 2,2(Ω) it is equivalent to the usual
distributional Hessian determinant.

We will use also the following anisotropic Sobolev inequality and correlated embedding. To proceed,
we say that a bounded domain Ω ⊂ R

N satisfies the cube condition if there exist a finite family of
subdomains Ωk ⊂ Ω, ∪kΩk = Ω and a family of closed cubes Qk having same edge length, one vertex at
the origin, edges parallel to the coordinate axes, and such that Ωk + Qk ⊂ Ω (Minkowski sum) for all k
(see also [2, §8]).

Theorem 1. ([27, Theorems 1, 2]) Let Ω ⊂ R
N satisfy the cube condition. Then there exists a constant C

such that

‖u‖Lq(Ω) ≤ C

N∑

i=1

‖∂iu‖Lpi (Ω)

for every u ∈ W 1,(p0;p1,...,pN )(Ω), where

q :=

⎧
⎨

⎩
N
(∑N

i=1
1
pi

− 1
)−1

if
∑N

i=1
1
pi

> 1,

[1,∞) otherwise.

Moreover, for every 1 ≤ r < q the embedding

W 1,(p0;p1,...,pN )(Ω) ↪→ Lr(Ω)

is compact.

It is easy to see that a rectangular domain satisfies the cube condition.
We conclude this section by recalling some useful properties of matrices. For every A,B ∈ R

2×2
sym:

det(A ± B) = det A + det B ± A · cof B,

|A|2 ≥ 2|det A|,
A · cof A = 2det A.

(4)

where (cof A)αβ :=EiαEjβAij and E is the Levi-Civita symbol.

3. The problem

Let ε be a sequence of positive numbers converging to zero. Let 	 > 0, I:=(−	/2, 	/2), Wε:=(−ε/2, ε/2)
and let Ωε = I × Wε. For the out-of-plane displacement v ∈ W 2,2(Ωε) we consider the following energy

Iε(v):=
∫

Ωε

1
2
|∇2v − Kε|2 + c|det ∇2v|dx, (5)

with

Kε:=
k

ε
e2 ⊗ e2, (6)

k a nonzero real constant, and c > 0.

Remark. The function v �→ Iε(v) is strictly convex if c < 1.

The natural (stress-free) configuration of the shell is then described by a transversely curved, straight
cylinder. With Kε as in (6), the angle subtended to the curved cross section of the shell is the same for
all terms in the sequence. Moreover, the cross-sections scale homothetically along the sequence. For a
generic ε > 0, Fig. 1 shows the domain and the reference configuration of the shell.
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Fig. 1. Reference configuration and shell planform

3.1. Remarks on the choice of the energy

One could consider energies
∫

Ωε

1
2 |∇2w − Kε|2dx to be minimized (in some function class) under the

Monge-Ampére constraint det ∇2w = 0 a.e. in Ωε. This constrained, von Kármán-type energy has been
rigorously derived via Γ-convergence for plates [16] and shells [20,30] and further studied in the case
of planar ribbons [14]. We want to show that this energy is not suitable if one has in mind to study
particular bending problems for shells.

Neglecting to specify the subscript ε, let Ω = I ×W . Let θ ∈ C2(Ω̄) describe the natural configuration
of the shell. We look at problems where w ∈ W 2,2(Ω) must satisfy the following Dirichlet boundary
conditions (in the sense of traces):

w

(

∓ 	

2
, ·
)

= θ

(

∓ 	

2
, ·
)

, ∂1w

(

∓ 	

2
, ·
)

= ±Φ (7)

where Φ �= 0 is a given constant.
Given θ that further satisfies det∇2θ = 0, we say w ∈ W 2,2(Ω) is a linearized isometry if and only if

there exists a function u ∈ W 1,2(Ω, R2), unique up to an affine map with skew-symmetric gradient, such
that

2Eu + ∇w ⊗ ∇w − ∇θ ⊗ ∇θ = 0 a.e. in Ω,

where Eu denotes the symmetric part of ∇u.

Proposition 2. Suppose Ω is a simply connected, bounded Lipschitz domain. Let w ∈ W 2,2(Ω), θ ∈ C2(Ω̄)
with det ∇2θ = 0. The equation

2Eu + ∇w ⊗ ∇w − ∇θ ⊗ ∇θ = 0

admits a solution u ∈ W 1,2(Ω, R2) if and only if det ∇2w = 0.

Proof. The proof is essentially the same of [16, Proposition 9]. We provide here the main ideas. Suppose
firstly w is smooth, and let E:= − 1

2∇w ⊗ ∇w + 1
2∇θ ⊗ ∇θ. We have

curl curlE = det ∇2w − det ∇2θ = det ∇2w,

which holds also in the sense of distributions if w ∈ W 2,2(Ω). The existence of u ∈ W 1,2(Ω, R2) such that
E = Eu ∈ L2(Ω, R2×2

sym) is equivalent to the vanishing of the right-hand-side of the previous equation. �

Theorem 3. Let Ω = I × W . Let θ = θ(x2) ∈ C2(Ω̄) be such that ∇2θ is not identically zero. If w ∈
W 2,2(Ω) satisfies (7), then it is not a linearized isometry.
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Proof. Let us pose Γ±:={± �
2} × W . Assume w ∈ W 2,2(Ω) satisfies (7). By Rellich theorem w ∈ C0(Ω̄).

If w is a linearized isometry, then det∇2w = 0. By [16, Proposition 10] w ∈ C1(Ω). Moreover, at every
point x ∈ Ω either (i) ∇w is constant (and so in a neighborhood of x), or (ii) there exists a line segment
which intersects ∂Ω at both ends and on which ∇w is constant [24], [16, Theorem 9].

We will prove that if w satisfies the boundary conditions (7), then both (i) and (ii) are false, so that
det ∇2w cannot vanish identically.

Step 1: Assume w ∈ C2(Ω̄). Near Γ− ∇w is not constant because ∂2θ is not constant. Furthermore, (ii)
does not hold. In fact the fulfilling of the boundary conditions imposes that ∇w|Γ− = (Φ, ∂2θ(x2)), from
which ∇w would be constant on segments parallel to x1 by continuity. Such segments must, however,
intersect Γ+, on which the boundary condition reads ∇w|Γ+ = (−Φ, ∂2θ). Hence the absurd.

Step 2: The conclusions of Step 1 remain valid even if w ∈ W 2,2(Ω). By approximation, there exists
a sequence (wk) ⊂ W 2,2(Ω) ∩ C∞(Ω̄) such that wk → w in W 2,2(Ω) as k ↑ ∞ [10, Theorem 3, Section
4.2]. The trace operator on Γ±, as defined for smooth functions up to the boundary, has then a unique
continuous extension from W 1,2(Ω, R2) to L2(Γ±, R2). �

To study the particular problems, we have in mind the constraint det∇2w = 0 needs to be relaxed.
The term multiplied by c in the energy (5) can be thought as a relaxation of the constraint. Another way
is to take into account the membrane energy. For the “standard” von Kármán energy, it is given by the
squared L2(Ω) norm of Eu + 1

2∇w ⊗ ∇w − 1
2∇θ ⊗ ∇θ. From what we have said, the penalization of the

Hessian determinant of w in (5) can be interpreted as the deviation of w from a linearized isometry in
the L1(Ω) norm. Accordingly, c can be interpreted as the ratio between membrane and bending stiffness.
We pursued this choice so to have the simplest model as possible (depending just on a scalar field) and to
highlight/isolate the effect of the presence of initial curvature. The study of a “standard” Von Kármán
energy will appear somewhere else.

3.2. Properties of the energy functional

We recall the following Theorem, specified for the bidimensional case.

Theorem 4. ([8]) Let Ω be a bounded, open set in R
2. For v : Ω → R

2 let M(∇v):=(∇v,det ∇v), and let
I(v):=

∫

Ω

g(M(∇v)) dx, where g : R
5 → R is a convex, non-negative function. Then,

I(v) ≤ lim inf
n↑∞

I(vn)

if (vn) ⊂ W 1,2(Ω, R2) and vn ⇀ v in W 1,1(Ω, R2) for v ∈ W 1,2(Ω, R2).

Proposition 5. Let ε > 0 be fixed. The functional Iε has minimizer(s) on bounded, weakly closed subsets
Aε ⊂ W 2,2(Ωε).

Proof. We omit to specify the subscript ε.
The energy is clearly well defined for functions in W 2,2(Ω). Let (vn) ⊂ A, v ∈ A such that vn ⇀

v in W 2,2(Ω). Note that I(v) is polyconvex. In fact I(v) =
∫

Ω

g(∇2v,det ∇2v) dx where (A,μ) �→
g(A,μ):=1

2 |A − K|2 + c|μ| is convex. To prove that lim infn↑∞ I(vn) ≥ I(v), we apply Theorem 4. �

Proposition 6. Let ε > 0 be fixed. Suppose there exists a global minimizer v◦ of Iε (in some admissible
class A) such that: (i) the smallest singular value of ∇2v◦ is uniformly bounded from below by some
constant σ0, (ii) there exists a positive constant λ◦ such that supx |det ∇2v◦(x)| ≤ λ0. If c <

σ2
◦

λ◦
, then v◦

is the unique global minimizer.
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Proof. We omit to specify the subscript ε. Suppose v◦ is a minimizer for I. Let

dI(v)(φ):=
∫

Ω

((∇2v − K) + c sgn(det ∇2v) cof ∇2v) · ∇2φ dx,

where sgn denotes the sign function, and the Bregman divergence

B(v, v◦):=
∫

Ω

|det ∇2v| − |det ∇2v◦| − sgn(det ∇2v◦) cof ∇2v◦ · (∇2v − ∇2v◦) dx.

Let v be in A. We have
I(v) − I(v◦) = I(v) − I(v◦) − dI(v◦)(v − v◦)

=
1
2

∥
∥∇2v − ∇2v◦

∥
∥2

L2(Ω,R2×2
sym)

+ cB(v, v◦).

By applying the fundamental theorem of calculus we obtain

B(v, v◦) =
∫

Ω

1∫

0

(
sgn(det ∇2vt) cof ∇2vt − sgn(det ∇2v◦) cof ∇2v◦

) · (∇2vt − ∇2v◦)
t

dt dx

where vt:=tv − (1 − t)v◦ and where we have used the identity (∇2vt−∇2v◦)
t = ∇2v − ∇2v◦.

In [17, Lemma 3.1], it has been proved that for any A,B ∈ R
2×2

(sgn(det A) cof A − sgn(det B) cof B) · (A − B) ≥ −|det A|
σ2

|A − B|2

where σ is the smallest singular value of A. Hence,

B(v, v◦) ≥ −
∫

Ω

|det ∇2v◦|
σ2

0

1∫

0

t

∣
∣
∣
∣
∇2vt − ∇2v◦

t

∣
∣
∣
∣

2

dt dx

= −1
2

∫

Ω

|det ∇2v◦|
σ2◦

|∇2v − ∇2v◦|2 dx

≥ − λ◦
2σ2◦

∫

Ω

|∇2v − ∇2v◦|2 dx

from which

I(v) ≥ I(v◦) +
1
2

(

1 − c
λ◦
σ2◦

)
∥
∥∇2v − ∇2v◦

∥
∥2

L2(Ω,R2×2
sym)

.

Hence, inasmuch 1 − cλ◦
σ2◦

> 0, all v ∈ A have higher energy than v◦. �

3.3. The rescaled problem

As it is customary, we map (5) on a fixed domain. To this aim, let

W :=W1, Ω:=Ω1 = I × W.

We introduce the scaled out-of-plane displacement w : Ω → R by setting

w(x1, x2):=v(x1, εx2),
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so that the scaled gradient and Hessian operators reads

∇ε · :=
(

∂1·, 1
ε
∂2·

)T

, ∇2
ε · :=

(
∂11· 1

ε∂12·
1
ε∂21· 1

ε2 ∂22·
)

.

Changing variable in (5), we obtain

Jε(w):=
Iε(v)

ε
=
∫

Ω

1
2
|∇2

εw − Kε|2 + c|det ∇2
εw|dx. (8)

Note that

det ∇2
εw =

1
ε2

det ∇2w = det ∇2 w

ε
. (9)

To avoid rigid motions, we consider functions in

W 2,2
〈0〉 (Ω):=

⎧
⎨

⎩
u ∈ W 2,2(Ω) :

∫

Ω

u(x) dx = 0,

∫

Ω

∇u(x) dx = 0

⎫
⎬

⎭
.

With a slight abuse of notation, we still denote by Jε : BH(Ω) → [0,∞] the augmented functional

Jε(w):=

⎧
⎨

⎩

∫

Ω

1
2 |∇2

εw − Kε|2 + c|det ∇2
εw|dx if w ∈ W 2,2

〈0〉 (Ω),

+∞ otherwise.
(10)

4. Compactness and Γ-limit

Let us introduce the space

BH〈0〉(S):=

⎧
⎨

⎩
u ∈ BH(S),

∫

S

u(x) dx = 0
∫

S

∇u(x) dx = 0

⎫
⎬

⎭
.

Lemma 7. (Compactness) Let (wε) ⊂ BH(Ω) be a sequence such that supε Jε(wε) < ∞. Then, up to a
subsequence, there exist w ∈ BH〈0〉(Ω), ϑ ∈ BH〈0〉(I), r ∈ BH〈0〉(I), γ ∈ L2(Ω) such that

w(x1, x2) = r(x1) + x2ϑ(x1) + k

(
x2

2

2
− 1

24

)

, (11)

wε

ε

∗
⇀ w in BH(Ω), (12)

∇2 wε

ε
L2 ¬

Ω ∗
⇀

(
D11w ϑ̇L2 ¬

Ω
ϑ̇L2 ¬

Ω kL2 ¬
Ω

)

in M(Ω, R2×2
sym), (13)

∇2
εwε − Kε ⇀

(
0 ϑ̇

ϑ̇ γ

)

in L2(Ω, R2×2
sym). (14)

Proof. Let (wε) ⊂ BH(Ω) be a sequence such that supε Jε(wε) < ∞. Since the energy is uniformly
bounded from above, we deduce that

sup
ε

∥
∥∇2

εwε − Kε

∥
∥

L2(Ω,R2×2
sym)

< ∞, sup
ε

∥
∥det ∇2

εwε

∥
∥

L1(Ω)
< ∞ (15)

from which, up to a subsequence,

∇2
εwε − Kε ⇀ A in L2(Ω, R2×2

sym), (16)

with A ∈ L2(Ω, R2×2
sym).
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By (4), it follows that for every ε > 0
∫

Ω

∣
∣
∣
∣det ∇2

εwε − k
∂11wε

ε

∣
∣
∣
∣ dx =

∫

Ω

∣
∣det(∇2

εwε − Kε)
∣
∣ dx ≤ 1

2

∥
∥∇2

εwε − Kε

∥
∥2

L2(Ω,R2×2
sym)

< C < ∞ (17)

and hence, by (15),

|k|
∥
∥
∥∂11

wε

ε

∥
∥
∥

L1(Ω)
≤ C +

∥
∥det ∇2

εwε

∥
∥

L1(Ω)
≤ C < ∞. (18)

Moreover, still from (15), by using Hölder inequality, we have that for any ε > 0
∥
∥
∥∂12

wε

ε

∥
∥
∥

L1(Ω)
≤ C

∥
∥
∥∂12

wε

ε

∥
∥
∥

L2(Ω)
< C, (19)

and
∥
∥
∥∂22

wε

ε

∥
∥
∥

L1(Ω)
≤ C

∥
∥
∥∂22

wε

ε

∥
∥
∥

L2(Ω)
< k + εC, (20)

so that together with (18) we conclude that (∇2 wε

ε ) is uniformly bounded in L1(Ω, R2×2
sym). Identifying

L1(Ω, R2×2
sym) with a subspace of (C0(Ω, R2×2

sym))′ = M(Ω, R2×2
sym), there exists Z ∈ M(Ω, R2×2

sym) such that
∇2 wε

ε L2 ¬
Ω ∗

⇀ Z in the sense of measures. By Poincaré-Wirtinger inequality, (wε/ε) is uniformly bounded
in W 2,1(Ω). By the compact embedding W 2,1(Ω) ↪→ W 1,1(Ω), wε

ε → w strongly in W 1,1(Ω). Hence,
wε

ε

∗
⇀ w in BH(Ω) for some w ∈ BH〈0〉(Ω), so that Z = D2w (in the sense of measures).
From (19), (20), and (15) we have also that ∂12

wε

ε ⇀ A12 in L2(Ω) and ∂22
wε

ε → k in L2(Ω).
Hence, for φ ∈ C∞

c (Ω), we have
∫

Ω

φd(D22w) = lim
ε↓0

∫

Ω

φd
(
∂22

wε

ε
L2

)
= lim

ε↓0

∫

Ω

φ∂22
wε

ε
dL2 =

∫

Ω

φkdL2,

so that D22w = kL2 ¬
Ω.

The element w has a continuous representative up to the boundary (see [9, Theorem 3.3 and Remark
3.2]), hence, by integration, we deduce

w(x1, x2) = k

(
x2

2

2
− 1

24

)

+ ϑ(x1)x2 + r(x1)

with ϑ, r ∈ BH〈0〉(I).
Similarly as before, we deduce that for φ ∈ C∞

c (Ω)
∫

Ω

φd(ϑ̇L2) =
∫

Ω

φd(D12w) = lim
ε↓0

∫

Ω

φd
(
∂12

wε

ε
L2

)
= lim

ε↓0

∫

Ω

φ∂12
wε

ε
dL2 =

∫

Ω

φA12dL2

so that ∂12w = ϑ̇(x1) in the sense of distributions. Moreover, A12 = ϑ by the uniqueness of the limit. It
is further clear that, by (18), A11 = 0. We conclude the characterization of A by posing γ:=A22. �

Remark. The 11-entry in the limit matrix in (14) vanishes because of the presence of curvature in the
natural state. In fact, since k �= 0, we have at our disposal the uniform bound (18), which is not available
in naturally flat ribbons as in [13].

In the next lemma we prove that the jump set of D2w is made of segments orthogonal to e1. Moreover,
only ∂1w has a jump part.

Lemma 8. Let w be as in Lemma 7. The following representation holds:

D2w = ∇2wL2 ¬
Ω + [∇w · e1]e1 ⊗ e1H1 ¬

J∇w + C(∇w). (21)
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Proof. Since w ∈ BH(Ω), by definition ∇w ∈ BV (Ω, R2), so that we have the following representation
(see [12])

D2w = D(∇w) = ∇2wL2 ¬
Ω + [∇w] ⊗ ν∇wH1 ¬

J∇w + C(∇w)

where [·] is the jump of ·, J∇w is the jump set of ∇w, ν∇w is the unit normal across J∇w and C(∇w) is
the Cantor part of D2w, singular to the measure L2 ¬

Ω + H1 ¬
J∇w.

Note that

[∇w] =
[(

ṙ + x2ϑ̇
ϑ + kx2

)]

=
(

[ṙ + x2ϑ̇]
0

)

=
(

[ṙ] + x2[ϑ̇]
0

)

because ϑ + kx2 is a continuous function. Since [∇w] ⊗ ν∇w must be a symmetric, rank one, tensor, we
readily deduce that ν∇w(x) = e1 for H1−a.e. x ∈ J∇w. Moreover, since ṙ, ϑ̇ are functions of x1 only, J∇w

are segments running through the width of Ω. �

Proposition 9. Under the same assumptions of Lemma 7, we have

(det ∇2
εwε)L2 ¬

Ω ∗
⇀ (det ∇2w)L2 ¬

Ω + k(D11w)s in M(Ω). (22)

Proof. By (9) and Lemma 7, we deduce that, up to a subsequence, (det ∇2(wε/ε))L2 ¬
Ω ∗

⇀ η for some
measure η ∈ M(Ω). We shall now characterize η.

We note that for every φ ∈ C∞
c (Ω) and y ∈ W 2,2(Ω), we have

∫

Ω

φ det ∇2y dx =
∫

Ω

(∂11y∂22y − ∂12y∂12y) φ dx

=
∫

Ω

∂1y ∂2(φ∂12y) − ∂1y ∂1(φ∂22y) dx

=
∫

Ω

∂1y ∂12y ∂2φ − ∂1y ∂22y ∂1φ dx,

= Hy(φ),

as defined in (3). In our setting, we have

H
wε

ε
(φ) =

∫

Ω

φ det ∇2 wε

ε
dx =

∫

Ω

∂1
wε

ε
∂12

wε

ε
∂2φ − ∂1

wε

ε
∂22

wε

ε
∂1φ dx.

For w as in Lemma 7, we have that ∂12w and ∂22w belong to L2(Ω), and thus the weak Hessian of w is
still well defined:

Hw(φ) =
∫

Ω

∂1w ∂12w ∂2φ − ∂1w ∂22w ∂1φ dx.

We claim that

lim
ε↓0

∣
∣
∣H

wε

ε
(φ) − Hw(φ)

∣
∣
∣ = 0.
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We have:

∣
∣
∣H

wε

ε
(φ) − Hw(φ)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∫

Ω

(
∂1

wε

ε

)
(∂12

wε

ε
) ∂2φ dx −

∫

Ω

(∂1w) (∂12w) ∂2φ dx

−
∫

Ω

(
∂1

wε

ε

) (
∂22

wε

ε

)
∂1φ dx +

∫

Ω

(∂1w) (∂22w) ∂1φ dx

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫

Ω

∂1
wε

ε
∂12

wε

ε
∂2φ dx −

∫

Ω

∂1w ∂12w ∂2φ dx ±
∫

Ω

∂1w ∂12
wε

ε
∂2φ dx

−
∫

Ω

∂1
wε

ε
∂22

wε

ε
∂1φ dx +

∫

Ω

∂1w ∂22w ∂1φ dx ±
∫

Ω

∂1w ∂22
wε

ε
∂1φ dx

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∫

Ω

∂1w
(
∂12

wε

ε
− ∂12w

)
∂2φ dx

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∫

Ω

∂1w
(
∂22

wε

ε
− ∂22w

)
∂1φ dx

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∫

Ω

(
∂1

wε

ε
− ∂1w

)(
∂12

wε

ε
∂2φ − ∂22

wε

ε
∂1φ

)
dx

∣
∣
∣
∣
∣
∣
.

=: S1 + S2 + S3.

We show the three summands Si converge to zero.
For the first term, notice that ∂1w ∈ BV (Ω) ↪→ L2(Ω), so that ∂1w∂2φ ∈ L2(Ω). Hence, we conclude

because of the weak convergence of ∂12
wε

ε in L2(Ω) to ∂12w.
For the second term, by Hölder inequality we have

S2 ≤ ‖∂1w‖L2(Ω)

∥
∥
∥∂22

wε

ε
− ∂22w

∥
∥
∥

L2(Ω)
≤ C

∥
∥
∥∂22

wε

ε
− ∂22w

∥
∥
∥

L2(Ω)

and we conclude by the strong convergence of ∂22
wε

ε in L2(Ω) to ∂22w(= k).
For the third summand, we need a finer argument. Note that from Lemma 7 we actually have

supε

∥
∥∂1∇wε

ε

∥
∥

L1(Ω,R2)
< ∞ and supε

∥
∥∂2∇wε

ε

∥
∥

L2(Ω,R2)
< ∞. Moreover, by the embedding W 1,1(Ω, R2) ↪→

L2(Ω, R2), we have also supε

∥
∥∇wε

ε

∥
∥

L2(Ω,R2)
< ∞. Hence, (∇wε

ε ) is uniformly bounded in W 1,(2;1,2)(Ω, R2).
By Theorem 1, we conclude that

∇wε

ε
→ ∇w in L2(Ω, R2). (23)

We can thus apply again Hölder inequality to the third summand, so to have

S3 ≤ C
∥
∥
∥∂1

wε

ε
− ∂1w

∥
∥
∥

L2(Ω)
→ 0

thanks to (23).
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To conclude, it suffices to note that

Hw(φ) =
∫

Ω

∂1w ∂12w ∂2φ − ∂1w ∂22w ∂1φ dx

=
∫

Ω

(ṙ + x2ϑ̇) ϑ̇ ∂2φ − (ṙ + x2ϑ̇)k ∂1φ dx

=
∫

Ω

−ϑ̇2 φ dx + k

∫

Ω

φ d(r′′ + x2ϑ
′′)

=
∫

Ω

φ d(k(r′′ + x2ϑ
′′) − ϑ̇2L2)

=
∫

Ω

φ (k(r̈ + x2ϑ̈) − ϑ̇2)
︸ ︷︷ ︸

det ∇2w

dx + k

∫

Ω

φd (r′′ + x2ϑ
′′)s︸ ︷︷ ︸

(D11w)s

.

�
Remark. The convergence of the absolute continuous part of the limit measure in (22) could have been
obtained by applying the following theorem to the sequence (∇wε

ε ).

Theorem 10. ([11, Theorem 2]) Let (yn) be bounded in W 1,N−1(Ω, RN ), (cof ∇yn) ⊂ L
N

N−1 (Ω, RN×N ).
Suppose yn → y in L1(Ω, RN ) to y ∈ BV (Ω, RN ) and that det ∇yn

∗
⇀ η in M(Ω). Then, for LN a.e. x ∈ Ω

det ∇y(x) = dη
dLN (x).

Note that, in dimension two, (cof ∇yn) need not be bounded in L2(Ω, R2×2). Moreover, the condition
(cof ∇yn) ⊂ L2(Ω, R2×2) is equivalent to (∇yn) ⊂ L2(Ω, R2×2). In our setting, we have at our disposal
more ingredients, so that we can characterize also the singular part of the limit measure.

The following results will be particularly useful for the construction of the recovery sequence.

Lemma 11. Let u ∈ BH(I). Then, there exists (un) ⊂ C∞(I) ∩ BH(I) such that un
s
⇀ u in BH(I).

Moreover,
(i) if (sn) ⊂ R is a sequence such that sn ↓ 0, as n ↑ ∞, it is possible to choose (un) so that it also

satisfies limn↑∞ ‖snu′′
n‖L2(I) = 0;

(ii) if u is affine in (−	/2,−	/2 + b1) and (	/2 − b1, 	/2) for some b1 > 0, it is also possible to choose
(un) such that un = u in (−	/2,−	/2 + b2) ∪ (	/2 − b2, 	/2) for some 0 < b2 < b1;

(iii) if v ∈ BH(I) there exists (vn) ⊂ C∞(I) such that vn
s
⇀ v in BH(I) and such that un+αvn

s
⇀ u+αv

in BH(I) for every α ∈ R;
(iv) if (gn) ⊂ L1(I) and g ∈ L1(I) are such that gn → g in L1(I), then

lim
n↑∞

∫

I

|u′′
n + gn|dx1 = |u′′ + gL|(I).

Proof. The result essentially follows by a standard mollification procedure. We briefly sketch the proof.
Recall that I = (−	/2, 	/2) and set Ĩ:=(−	, 	) and

ũ(x):=

⎧
⎪⎨

⎪⎩

u(−	/2) + u̇(−	/2)(x + 	/2) x ∈ (−	,−	/2),
u(x) x ∈ I,

u(	/2) + u̇(	/2)(x − 	/2) x ∈ (	/2, 	).

Let η : R → [0,+∞) be a smooth even function with support in (−1, 1) and such that
∫

R

η(x) dx = 1.

Let (εn) ⊂ R a sequence for which εn ↓ 0 as n ↑ ∞. Let un:=ηεn
∗ u where ηεn

(x):=1/εnη(x/εn). Then,
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un → u in W 1,1(I) and as a consequence lim infn↑∞ |u′′
n|(I) ≥ |u′′|(I). Since for any φ ∈ C1

c (I) such that
|φ| ≤ 1 we have that

∫

I

u′
nφ′ dx =

∫

I

ũ′(ηεn
∗ φ)′ dx ≤ |ũ′′|(Ĩ) = |u′′|(I), (24)

it follows that |u′′
n|(I) ≤ |u′′|(I) and, as a consequence, un

s
⇀ u in BH(I).

To prove i) it suffices to notice that

u′′
n(x) =

1
ε2
n

1∫

−1

η′′(z)ũ(x − εnz) dz ⇒ ‖u′′
n‖L2(I) ≤ C

ε2
n

‖ũ‖L2(Ĩ)

and choose (εn) ⊂ R so that sn/ε2
n ↓ 0 as n goes to infinity.

Statement ii) follows by taking εn smaller than b1/3, for instance, and by noticing that, since η is an
even function whose integral is 1, the mollification of an affine function is the affine function itself.

For statement (iii) we define (vn) in the same way we have defined (un). Clearly, un + αvn → u + αv
in W 1,1(I) and as a consequence lim infn↑∞ |u′′

n + αv′′
n|(I) ≥ |u′′ + αv′′|(I). We conclude by using (24)

with un + αvn in place of un.
Finally, for statement iv), fix δ > 0 and let φ ∈ C1

c (I) such that |φ| ≤ 1 and
∫

I

|u′′
n + gn|dx − δ ≤

∫

I

(u′′
n + gn)φ dx.

Then
∫

I

(u′′
n + gn)φ dx =

∫

I

−ũ′(ηεn
∗ φ)′ + g(ηεn

∗ φ) − g(ηεn
∗ φ) + gnφ dx

=
∫

I

ηεn
∗ φ d(ũ′′ + gL) +

∫

I

−g(ηεn
∗ φ) + gnφ dx

≤ |u′′ + gL|(I) +
∫

I

−g(ηεn
∗ φ) + gnφ dx.

By letting n ↑ ∞ and then δ to zero, we deduce that lim supn↑∞
∫

I

|u′′
n + gn|dx ≤ |u + gL|(I). Also, for

ψ ∈ C1
c (I) such that |ψ| ≤ 1 we have

lim inf
n↑∞

∫

I

|u′′
n + gn|dx ≥ lim

n↑∞

∫

I

(u′′
n + gn)ψ dx =

∫

I

ψ d(ũ′′ + gL)

which implies lim infn↑∞
∫

I

|u′′
n + gn|dx ≥ |u′′ + gL|(I). �

Lemma 12. Let λ, μ be two (not necessarily positive) Radon measures defined on I. Let (μ+x2λ)×L the
measure defined on Ω = I × W by

((μ + x2λ) × L)(B):=
∫

I

∫

W

χB(x1, x2) d(μ + x2λ)(x1)dx2,

for every Borel set B ⊂ Ω. Then,

|(μ + x2λ) × L|(Ω) =
∫

W

|μ + x2λ|(I) dx2.
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Proof. By applying the definition of total variation we have

|(μ + x2λ) × L|(Ω) = sup

{∫

Ω

φ d(μ + x2λ) × L : φ ∈ Cc(Ω), |φ| ≤ 1

}

≥ sup

{∫

W

φ2

∫

I

φ1 d(μ + x2λ)dx2 : φ1 ∈ Cc(I), φ2 ∈ Cc(W ),

|φ1| ≤ 1, |φ2| ≤ 1

}

= sup

{∫

W

φ2|μ + x2λ|(I)dx2 : φ2 ∈ Cc(W ), |φ2| ≤ 1

}

=
∫

W

|μ + x2λ|(I) dx2.

To deduce the opposite inequality it suffices to note that (μ + x2λ) × L ≤ |μ + x2λ| × L and hence
|(μ + x2λ) × L| ≤ |μ + x2λ| × L. �

To state our first Γ-convergence result, we need to make a couple of definitions. Let Ĵ : BH(I) ×
BH(I) → [0,∞) be defined by

Ĵ(r, ϑ):=
∫

I

ϑ̇2 dx1 + c|k(r′′ + x2ϑ
′′) × L − ϑ̇2L2|(Ω), (25)

and let

A(Ω):=
{

w ∈ BH〈0〉(Ω) : ∃r, ϑ ∈ BH〈0〉(I), w = r + x2ϑ + k

(
x2

2

2
− 1

24

)}

,

and

J(w):=

{
Ĵ(r, ϑ) if w ∈ A(Ω) & w = r + x2ϑ + k

(
x2
2
2 − 1

24

)
,

+∞ otherwise in BH(Ω).

Theorem 13. As ε ↓ 0, the sequence of functionals Jε Γ-converges to J in the following sense:

(a) (Liminf inequality) for every sequence (wε) ⊂ BH(Ω) and every w ∈ BH(Ω) such that
wε

ε

∗
⇀ w in BH(Ω),

we have

lim inf
ε↓0

Jε(wε) ≥ J(w);

(b) (Recovery sequence) for every w ∈ BH(Ω) there exists a sequence (wR
ε ) ⊂ BH(Ω), called recovery

sequence, such that

wR
ε

ε

∗
⇀ w in BH(Ω)

and

lim sup
ε↓0

Jε(wR
ε ) ≤ J(w).



  135 Page 16 of 23 R. Paroni and M. Picchi Scardaoni ZAMP

Proof. (a) (Liminf inequality) Without loss of generality, let us assume lim infε↓0 Jε(wε) < ∞, otherwise
there is nothing to prove. Hence, up to a subsequence, supε Jε(wε) < ∞. From Lemma 7, we deduce that
w ∈ A(Ω) and thus w can be written as w = r +x2ϑ+ k(x2

2
2 − 1

24 ) where r, ϑ ∈ BH〈0〉(I). Still by Lemma
7, we have that

∇2
εwε − Kε ⇀

(
0 ϑ̇

ϑ̇ γ

)

in L2(Ω, R2×2
sym),

for some γ ∈ L2(Ω). Let

με:=(det ∇2
εwε)L2 ¬

Ω and μ:=(det ∇2w)L2 ¬
Ω + k(D11w)s.

By Proposition 9 we have that με
∗
⇀ μ in M(Ω). We therefore have

lim inf
ε↓0

Jε(wε) = lim inf
ε↓0

⎛

⎝
∫

Ω

1
2
|∇2

εw − Kε|2dx + c|με|(Ω)

⎞

⎠

≥
∫

I

ϑ̇2 dx1 +
1
2

∫

Ω

|γ|2dx + c lim inf
ε↓0

|με|(Ω)

≥
∫

I

ϑ̇2 dx1 + c lim inf
ε↓0

|με|(Ω).

Up to a subsequence, we have that |με| ∗
⇀ λ for some λ ∈ M(Ω). Then, lim infε↓0 |με|(Ω) ≥ λ(Ω) and

since λ ≥ |μ| we have that lim infε↓0 |με|(Ω) ≥ |μ|(Ω). Hence,

lim inf
ε↓0

Jε(wε) ≥
∫

I

ϑ̇2 dx1 + c|μ|(Ω)

=
∫

I

ϑ̇2 dx1 + c

∫

Ω

|det ∇2w|dx + c|k(D11w)s|(Ω)

=
∫

I

ϑ̇2 dx1 + c

∫

Ω

|k(r̈ + x2ϑ̈) − ϑ̇|dx + c|k(r′′ + x2ϑ
′′)s|(Ω),

and since (r′′ + x2ϑ
′′)s = ((r′′ + x2ϑ

′′) − ϑ̇2)s, we deduce that

lim inf
ε↓0

Jε(wε) ≥
∫

I

ϑ̇2 dx1 + c|k(r′′ + x2ϑ
′′) × L − ϑ̇2L2|(Ω) = Ĵ(r, ϑ).

(b) (Recovery sequence) We may suppose J(w) finite. Hence, there exist r, ϑ ∈ BH〈0〉(I) such that

w = r + x2ϑ + k(x2
2
2 − 1

24 ). By applying Lemma 11, we find a sequence (r̃ε) ⊂ C∞(I) ∩ BH(I) such that
r̃ε

s
⇀ r in BH(I) and εr̃′′

ε → 0 in L2(I). Set

rε:=r̃ε −
∫

I

r̃ε dx1 − x1

∫

I

r̃′
ε dx1

and note that rε ∈ W 2,2
〈0〉 (I) and that, since r ∈ BH〈0〉(I), rε

s
⇀ r in BH(I) and εr′′

ε → 0 in L2(I).

Similarly we find ϑε ∈ W 2,2
〈0〉 (I) such that ϑε

s
⇀ ϑ in BH(I) and εϑ′′

ε → 0 in L2(I). We define the recovery
sequence as

wR
ε (x1, x2):=ε

(

rε(x1) + x2ϑε(x1) + k

(
x2

2

2
− 1

24

))

.
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Then, wR
ε /ε → w in W 1,1(Ω) and

∇2 wR
ε

ε
=
(

r′′
ε + x2ϑ

′′
ε ϑ̇ε

ϑ̇ε k

)
∗
⇀

(
(r′′ + x2ϑ

′′) × L ϑ̇L2

ϑ̇L2 kL2

)

.

By using (iii) of Lemma 11 and Lemma 12, we conclude that wR
ε /ε

s
⇀ w in BH(Ω).

Since

J(wR
ε ) =

1
2

∫

Ω

|ε(r′′
ε + x2ϑ

′′
ε )|2 dx +

∫

I

|ϑ̇ε|2 dx1 + c

∫

Ω

|k(r′′
ε + x2ϑ

′′
ε ) − ϑ̇2

ε|dx

using that ϑ̇ε → ϑ in L2(I), as follows by the compact embedding BV (I) ↪→ L2(I), and (iii) and (iv) of
Lemma 11, we conclude that

lim
ε↓0

J(wR
ε ) =

∫

I

|ϑ̇|2 dx1 + c

1/2∫

−1/2

|k(r′′ + x2ϑ
′′) × L − ϑ̇2L2|(I) dx2.

The recovery condition statement then follows by applying Lemma 12. �

The Γ-limit can be rewritten using the simple following result.

Lemma 14. For every a, b ∈ R we have

1/2∫

−1/2

|a + bx|dx =

{
|a| if |a| ≥ |b|

2 ,
4a2+b2

4|b| otherwise.

Proof. Let t:=a + bx and let us change variable within the integral:

1/2∫

−1/2

|a + bx|dx =
1
b

a+ b
2∫

a− b
2

|t|dt

=
1
2b

((

a +
b

2

) ∣
∣
∣
∣a +

b

2

∣
∣
∣
∣ −

(

a − b

2

) ∣
∣
∣
∣a − b

2

∣
∣
∣
∣

)

=

{
|a| if |a| ≥ |b|

2 ,
4a2+b2

4|b| otherwise.

Accordingly, let � : R × R → [0,∞) be defined by �

�(a, b):=

{
|a| if |a| ≥ |b|

2 ,
4|a|2+|b|2

4|b| otherwise.
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We then have

Ĵ(r, ϑ) =
∫

I

ϑ̇2 dx1 + c|k(r′′ + x2ϑ
′′) × L − ϑ̇2L2|(Ω)

=
∫

I

ϑ̇2 dx1 + c

∫

I

1/2∫

−1/2

|k(r̈ + x2ϑ̈) − ϑ̇2| dx2 dx1

+ c|k|
∑

Jṙ∪Jϑ̇

1/2∫

−1/2

|[ṙ] + x2[ϑ̇]| dx2 + c|k|
1/2∫

−1/2

|(r′′)c + x2(ϑ′′)c|(I) dx2

=
∫

I

|ϑ̇|2 + c�(kr̈ − ϑ̇2, kϑ̈) dx1 + c|k|
∑

Jṙ∪Jϑ̇

�([ṙ], [ϑ̇])

+ c|k|
1/2∫

−1/2

|(r′′)c + x2(ϑ′′)c|(I) dx2.

(26)

4.1. The case with Dirichlet boundary conditions

We here study the constrained problem discussed in Sect. 3.1. We set

JC
ε (w):=

⎧
⎨

⎩

∫

Ω

1
2 |∇2

εw − Kε|2 + c|det ∇2
εw|dx if w ∈ AC

ε (Ω),

+∞ otherwise in BH(Ω).
(27)

where

AC
ε (Ω):=

{

u ∈ W 2,2(Ω) : u

(

∓ 	

2
, x2

)

=
k

ε

(
(εx2)2

2
− ε2

24

)

, ∂1u

(

∓ 	

2
, x2

)

= ±εΦ
}

(equalities are in the sense of traces), where Φ ∈ R.
The difference with respect to the previous case consists in dealing with boundary traces.
Let

AC(Ω):=
{

w ∈ BH(Ω) : ∃r, ϑ ∈ BH(I), w = r + x2ϑ + k

(
x2

2

2
− 1

24

)

, r

(

∓ 	

2

)

= ϑ

(

∓ 	

2

)

= 0
}

and

JC(w):=

{
Ĵ(r, ϑ) + JBC(r, ϑ) if w ∈ AC(Ω) & w = r + x2ϑ + k

(
x2
2
2 − 1

24

)
,

+∞ otherwise in BH(Ω),
(28)

where Ĵ has been defined in (25) and the functional JBC , that takes into account the jumps at ±	/2, is
defined by

JBC(r, ϑ):=c|k|
1/2∫

−1/2

∣
∣
∣
∣(ṙ

(

− 	

2

)

− Φ + x2ϑ̇

(

− 	

2

)∣
∣
∣
∣ +

∣
∣
∣
∣(ṙ

(
	

2

)

+ Φ + x2ϑ̇

(
	

2

)∣
∣
∣
∣ dx2.
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where ṙ(±	/2) and ϑ̇(±	/2) represent the traces of ṙ and of ϑ̇. By means of the function � it is possible
to rewrite the functional JBC as

JBC(r, ϑ) = c|k|
(

�

(

ṙ

(

− 	

2

)

− Φ, ϑ̇

(

− 	

2

))

+ �

(

ṙ

(
	

2

)

+ Φ, ϑ̇

(
	

2

)))

.

The following diagonalization result will be useful.

Lemma 15. ([1, Corollary 1.18]) Let (X, τ) be a metrizable space and {xν,μ : ν ∈ N, μ ∈ N} a double in-
dexed sequence in X such that:

xν,μ
τ−−−→

ν↑∞
xμ

and

xμ
τ−−−→

μ↑∞
x.

Then, there exists a mapping ν �→ μ(ν) increasing to +∞ such that

xν,μ(ν)
τ−−−→

ν↑∞
x.

We now prove the Γ-convergence theorem for the constrained case.

Theorem 16. As ε ↓ 0, the sequence of functionals JC
ε Γ-converges to JC in the following sense:

(a) (Liminf inequality) for every sequence (wε) ⊂ BH(Ω) and every w ∈ BH(Ω) such that
wε

ε

∗
⇀ w in BH(Ω),

we have

lim inf
ε↓0

JC
ε (wε) ≥ JC(w);

(b) (Recovery sequence) for every w ∈ BH(Ω) there exists a sequence (wR
ε ) ⊂ BH(Ω), called recovery

sequence, such that

wR
ε

ε

∗
⇀ w in BH(Ω)

and

lim sup
ε↓0

JC
ε (wR

ε ) ≤ JC(w).

Proof. (a) (Liminf inequality) Consider the extended domain Ω̃:=Ĩ × W , where Ĩ:=(−	, 	) and let

JC
ε (w;B):=

∫

B

1
2
|∇2

εw − Kε|2 + c|det ∇2
εw|dx,

for every Borel set B. For every w ∈ AC
ε (Ω) we denote by w̃ ∈ BH(Ω̃) the function defined as

w̃(x1, x2):=

⎧
⎪⎪⎨

⎪⎪⎩

k
ε

(
(εx2)

2

2 − ε2

24

)
+ εΦ

(
x1 + �

2

)
if − 	 < x1 ≤ − �

2 ,

w if x1 ∈ I,
k
ε

(
(εx2)

2

2 − ε2

24

)
− εΦ

(
x1 − �

2

)
if �

2 ≤ x1 < 	.

We note that JC
ε (w; Ω) = JC

ε (w̃; Ω̃) for every ε > 0.
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Let (wε) ⊂ BH(Ω) and w ∈ BH(Ω) such that wε

ε

∗
⇀ w in BH(Ω). Then, w̃ε

ε

∗
⇀ ŵ in BH(Ω̃) for some

ŵ ∈ BH(Ω̃). From the definition of w̃, it follows that

ŵ(x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

k
(

x2
2
2 − 1

24

)
+ Φ

(
x1 + �

2

)
if − 	 < x1 ≤ − �

2 ,

w if x1 ∈ I,

k
(

x2
2
2 − 1

24

)
− Φ

(
x1 − �

2

)
if �

2 ≤ x1 < 	.

Without loss of generality, we may assume that, up to a subsequence, supε JC
ε (wε) < ∞, and, as a

consequence JC
ε (wε) = JC

ε (wε; Ω) = JC
ε (w̃ε; Ω̃). By using the boundary conditions, the conclusions of

Lemmata 7, 8, 9 still hold. Thus, there exist r, ϑ ∈ BH(I) and r̂, ϑ̂ ∈ BH(Ĩ) such that

w = r + x2ϑ + k

(
x2

2

2
− 1

24

)

and ŵ = r̂ + x2ϑ̂ + k

(
x2

2

2
− 1

24

)

.

It follows that r = r̂ and ϑ = ϑ̂ in I and ϑ̂′ = 0 in (−	,−	/2) ∪ (	/2, 	). As in the proof of Theorem 13,
we deduce that

lim inf
ε↓0

JC
ε (wε) = lim inf

ε↓0
JC

ε (w̃ε) ≥
∫

Ĩ

(ϑ̂′)2 dx1 + c|k(r̂′′ + x2ϑ̂
′′) − (ϑ̂′)2|(Ω̃),

=
∫

I

ϑ̇2 dx1 + c|k(r′′ + x2ϑ
′′) − ϑ̇2|(Ω)

+ c
∑

x1∈{±�/2}
|k(r′′ + x2ϑ

′′) − ϑ̇2|
(

{x1} ×
(

−1
2
,
1
2

))

= Ĵ(r, ϑ) + c|k|
∑

x1∈{±�/2}

1/2∫

−1/2

|ṙ(x1) ∓ Φ + x2ϑ̇(x1)| dx2.

From the continuity of the traces, we immediately deduce that r(± �
2 ) = ϑ(± �

2 ) = 0.
(b) (Recovery sequence) Fix w ∈ AC(Ω) such that JC(w) is finite. There exist r, ϑ ∈ BH(I), r(± �

2 ) =

ϑ(± �
2 ) = 0, such that w = r+x2ϑ+k(x2

2
2 − 1

24 ). Fix T such that 0 < T < 	/4 and let IT :=(− �
2 +T, �

2 −T ).
Define

r′
T (x1):=

⎧
⎪⎨

⎪⎩

Φ − �
2 < x1 ≤ − �

2 + T

r′ − ∫
IT

r′(t) dt x1 ∈ IT

−Φ �
2 − T ≤ x1 ≤ �

2

,

ϑ′
T (x1):=

⎧
⎪⎨

⎪⎩

0 − �
2 < x1 ≤ − �

2 + T

ϑ′ − ∫
IT

ϑ′(t) dt x1 ∈ IT

0 �
2 − T ≤ x1 ≤ �

2

,

and

rT (x1):=

x1∫

−�/2

r′
T (s) ds, ϑT (x1):=

x1∫

−�/2

ϑ′
T (s) ds.

Note that rT (∓ �
2 ) = ϑT (∓ �

2 ) = 0 and r′
T ∈ {±Φ}, ϑ′

T = 0 in I \ IT .
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For every T , by applying Lemma 11 we find (rT,ε), (ϑT,ε) ⊂ BH(I) ∩ C∞(I) such that rT,ε = rT and
ϑT,ε = ϑT near ±	/2. Let

wR
T,ε(x1, x2):=ε

(

rT,ε(x1) + x2ϑT,ε(x1) + k

(
x2

2

2
− 1

24

))

.

It is clear that (wR
T,ε) ⊂ AC

ε (Ω) and that wR
T,ε

ε

s
⇀ wT :=rT + x2ϑT + k

(
x2
2
2 − 1

24

)
in BH(Ω) as ε ↓ 0. It

follows that wR
T,ε

ε

∗
⇀ wT in BH(Ω) as ε ↓ 0, and by proceeding as in the proof of Theorem 13, we deduce

lim
ε↓0

JC
ε (wR

T,ε) =
∫

I

|ϑ̇T |2dx1 + c
∣
∣
∣k(r′′

T + x2ϑ
′′
T ) − ϑ̇2

T

∣
∣
∣ (Ω)

=
∫

IT

|ϑ̇|2dx1 + c
∣
∣
∣k(r′′ + x2ϑ

′′) − ϑ̇2
∣
∣
∣

(

IT ×
(

−1
2
,
1
2

))

+ c|k|
∑

x1∈{∓�/2±T}

1/2∫

−1/2

|ṙ(x1) ∓ Φ + x2ϑ̇(x1)| dx2,

and hence

lim
T↓0

lim
ε↓0

JC
ε (wR

T,ε) = Ĵ(r, ϑ) + JBC(r, ϑ) = JC(w).

We also have

lim
T↓0

lim
ε↓0

‖wR
T,ε − w‖W 1,1(Ω) = 0.

By applying Lemma 15, we can find a map ε �→ T (ε) decreasing to 0 such that

lim
ε↓0

JC
ε (wR

T (ε),ε) = JC(w) and lim
ε↓0

‖wR
T (ε),ε − w‖W 1,1(Ω) = 0.

We conclude by noticing that |∇2wR
T (ε),ε/ε|(Ω) ≤ C|∇2w|(Ω) and hence wR

T (ε),ε/ε
∗
⇀ w in BH(Ω). �
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