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Abstract. We prove the existence of multiscale Young measures associated with almost periodic homoge-
nization. We give applications of this tool in the homogenization of nonlinear partial differential equations
with an almost periodic structure, such as scalar conservation laws, nonlinear transport equations, Hamilton-
Jacobi equations and fully nonlinear elliptic equations. Motivated by the application to nonlinear transport
equations, we also prove basic results on flows generated by Lipschitz almost periodic vector fields which are
of interest in their own. In our analysis, an important role is played by the so called Bohr compactification
GN of RN ; this is a natural parameter space for the Young measures. Our homogenization results provide
also the asymptotic behaviour for the whole set of GN -translates of the solutions, which is in the spirit of

recent studies on the homogenization of stationary ergodic processes.

1. Introduction

The purpose of this paper is to introduce the multiscale Young measure associated with almost periodic
homogenization and to apply this tool to address some specific problems for nonlinear partial differential
equations. Multiscale Young measures have been introduced in periodic problems by W. E [22] as a broader
tool extending the previous concept of multiscale convergence introduced by Nguetseng [42] and further
developed by Allaire [1]. It refines to multiple scale analysis the classical concept of Young measures intro-
duced in [50], so fundamentally useful, especially after its striking applications in connection with problems
concerning compactness of solution operators for nonlinear partial differential equations by Tartar [49], Mu-
rat [39], DiPerna [19, 20, 21], etc. .
The extension of the multiscale Young measures from the periodic setting to the almost periodic one requires
the consideration of the so called Bohr compactification GN of RN , which plays in the almost periodic case
the same role played by the torus TN := S1 × · · · × S1 in the periodic case as the domain of the fast scale
variables. As opposed to the torus, the Bohr compactification is a nonseparable compact topological space
and this lack of separability is the source of some difficulties in trying to adapt the arguments from the peri-
odic context to the almost periodic one. Our analysis here is also motivated by the recent growing interest in
the more general setting of homogenization of random stationary ergodic processes (see, e.g., [44], [35], [33],
[17], [48], [38], [14]). This has led us to formulate our applications always considering together with each
almost periodic nonlinear operator under homogenization process its translates by elements of GN , which
are endowed with an additive group structure inherited from RN . In this way, we prove that the action of
RN on GN by the addition operation is ergodic, so that the homogenization results presented may be viewed
very explicitly as special instances of more general results for stationary ergodic processes. In our proofs,
however, ergodicity does not play an explicit role: we need only the averaging properties of almost periodic
functions and the invariance of the average under translations by elements of GN .
Our applications cover nonlinear transport equations, multidimensional conservation laws, Hamilton-Jacobi
equations and fully nonlinear elliptic equations. We leave out from the applications given here some classical
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problems that are very common in general accounts on homogenization theory, such as linear equations, vari-
ational problems and monotone operators (see, e.g., [8], [11], [33], [2], [43], [41], [45], etc.), mostly because
these may be well handled either by the classical methods or by the so-called multiscale convergence, even
in the context of almost periodic homogenization.

The paper is organized as follows. In section 2 we recall concepts and basic facts of the theory of
almost periodic functions. We end the section with the proof of the ergodicity of the action of RN on GN

by addition. In section 3 we prove the main result concerning the construction of Young measures and
also make some further remarks on this topic. In section 4 we analyse flows of Lipschitz almost periodic
fields establishing some basic results of interest in their own, which will be needed in our study of the
homogenization of nonlinear transport equations. In section 5 we consider the application to nonlinear
transport equations extending to the almost periodic setting a previous result of W. E [22] in the periodic
context. In section 6 we give another application concerning multidimensional scalar conservation laws with
external oscillatory forces, extending to the multidimensional and almost periodic context a previous result
by W. E and D. Serre [23]. In section 7 we give an application concerning the homogenization problem for
the Hamilton-Jacobi equation with almost periodic Hamiltonian, following a previous analysis by Ishii [31].
Further, we establish links between the multiscale Young measures and the existence of correctors converting
the weak convergence of the gradients into strong convergence in L1

loc. Finally, in section 8, we consider the
homogenization problem for fully nonlinear elliptic equations, establishing a result analogous to the one of
the previous section. Also here we establish links between the multiscale Young measures and the existence
of correctors.

2. Spaces of Almost Periodic Functions

In this section we recall the basic ingredients of the theory of almost periodic functions, initiated by
H. Bohr. We also present extensions of this concept and prove a few results that will be used later in the
paper. For the basic facts about almost periodic functions and generalizations of this concept we refer to
the classical presentations of Bohr [10] and Besicovitch [9].

Definition 2.1. Let E be a Banach space. We denote by BC(RN ;E) the space of bounded continuous
functions on RN with values in E endowed with the sup norm and by BUC(RN ;E) the subspace of BC(RN ;E)
consisting of those functions which are uniformly continuous. Given f ∈ BC(RN ;E) and ε > 0, we say that
τ ∈ RN is a ε-almost period for f if ‖f(x+ τ) − f(x)‖ < ε for any x ∈ RN . A function f ∈ BC(RN ;E) is
said to be almost periodic if for any ε > 0 the set of ε-almost periods of f is relatively dense, i.e., there is
l = l(ε) > 0 such that any cube with side length l contains at least one ε-almost period.

We denote by AP(RN ;E) the space of almost periodic functions on RN with values in E and set simply
AP(RN ) in case E = R. From the above definition we easily deduce that AP(RN ;E) ⊆ BUC(RN ;E). Below,
we give an important characterization of AP(RN ;E) due to Bochner which will be used frequently in this
paper. We refer to, e.g., [9, 10, 18] for a proof in the case of scalar functions on R which immediately extends
to functions on RN with values in a Banach space E.

Theorem 2.1 (Bochner’s Characterization of AP). A function f ∈ BC(RN ;E) belongs to AP(RN , E) if
and only the family of translates {f(· + t)}t∈RN is relatively compact in BC(RN ;E).

The following is the fundamental fact in the theory of almost periodic functions.

Theorem 2.2 (Bohr). A function in BC(RN ) is in AP(RN ) if and only if it may be uniformly approximated
by finite linear combinations of functions in the set {cos(λ · x), sin(λ · x) : λ ∈ RN}.

The following result was first obtained by Gelfand, Raikov and Chilov [27] as an application of their theory
of commutative Banach algebras. We give here a multidimensional version of the statement presented in
[18].
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Theorem 2.3 (cf. [18], Theorem XI.2.2). The space RN , with the usual addition operation, may be embedded
as a dense subgroup of a compact Abelian topological group GN in such a way as to make AP(RN ) the family
of all restrictions f |RN to RN of functions f in C(GN ). The operation f 7→ f |RN is an isometric ∗-
isomorphism of C(GN ) onto AP(RN ). Moreover, the addition operation + : RN × RN → RN extends
uniquely to the continuous group operation of GN , + : GN × GN → GN . The group GN is called the Bohr
compactification of RN .

Given any f ∈ AP(RN ) we denote in the following by f its canonical extension to GN . As a consequence
of the above result and the Riez Representation Theorem we have:

Theorem 2.4 (cf. [18], Theorem XI.2.5). The space AP(RN )∗, dual to AP(RN ), is isometrically isomorphic
to the space M(GN) of all Radon measures on GN , the Bohr compactification of RN . The isomorphism
x∗ 7→ µx∗ ∈ M(GN) is given by the formula

x∗f =

∫

GN

f dµx∗(y), f ∈ AP(RN ).

In Abelian groups an important role is payed by the so called characters.

Definition 2.2. If G is an Abelian group and e its identity element, then a character of G is a complex
valued function χ defined on G which is such that χ(e) = 1 and χ(st) = χ(s)χ(t) for all s, t in G.

We recall the following basic result on compact Abelian groups of Peter and Weyl.

Theorem 2.5 (Peter-Weyl, cf. [18], Theorem XI.1.5). Let G be a compact Abelian group, with Σ its Borel
field and µ its Haar measure. Then the set of continuous characters is fundamental both in C(G) and in
L2(G,Σ, µ).

The characters of G are determined in the following lemma.

Lemma 2.1 (cf. [18], Lemma XI.2.3). The continuous characters of the compact Abelian group G are the
functions eiλ · : G → C, λ ∈ R.

The following fact is a consequence of the averaging properties of almost periodic functions and of Theo-
rem 2.4 (cf. [28], Proposition 5.7).

Proposition 2.1. For any f ∈ AP(RN ) we have

(2.1)

∫

GN

f dz =

∫

RN

f dx,

where dz is the Haar measure in GN , normalized to be a probability measure, dx is the usual Lebesgue
measure in RN , and by

∫
RN we denote the asymptotic mean value, given by

∫

RN

f dx := lim
L→∞

∫

[−L,L]N
f dx.

Moreover, we have ∫

RN

f dx = lim
i

∫

Qi

f dx

where (Qi) is any sequence of cubes in RN whose sides lengths tend to +∞ as i→ +∞.

It is also easy to check that the trigonometric polynomials satisfy

(2.2)

∫

RN

eiλ·xe−iλ
′·x dx = 0 whenever λ 6= λ′.

Next, we establish a compactness criterion for families of almost periodic functions that easily follows
from Theorem 2.1. It is equivalent to a well known compactness criterion of Lyusternik (see, e.g., [40]).
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Lemma 2.2 (Compactness criterion). A family {uα}α∈Λ ⊆ AP(RN ) is relatively compact if and only if the
following holds:

(i) {uα}α∈Λ is uniformly bounded and equi-continuous.
(ii) Given ε > 0, there are t1, . . . , tr ∈ RN such that for any t ∈ RN , there is a tj ∈ {t1, . . . , tr} with

‖uα(· + t) − uα(· + tj)‖∞ < ε for all α ∈ Λ.

Proof. First, we prove that properties (i) and (ii) imply compactness in AP(RN ). Indeed, given any sequence
{uαj}j∈N, by property (i), there is a subsequence {uαj(k)

}k∈N converging locally uniformly to a function

u ∈ BUC(RN ). Passing to the limit in condition (ii) we find that for any ε > 0, there exist t1, . . . , tr ∈ RN

such that for any t ∈ RN , there is a tj ∈ {t1, . . . , tr} with

(2.3) sup
α∈Λ

‖uα(· + t) − uα(· + tj)‖ ≤ ε, ‖u(· + t) − u(· + tj)‖∞ ≤ ε.

Since ε is arbitrary, this proves that u ∈ AP(RN ). It remains to show that uαj(k)
−u converge to 0 uniformly.

Indeed, by contradiction we can assume, possibly passing to a subsequence, that |uαj(k)
(xk) − u(xk)| ≥

3ε for some ε > 0 and some xk ∈ RN . By applying (2.3) with t = xk we can find tj such that both
|uαj(k)

(xk)− uαj(k)
(tj)| ≤ ε and |u(xk) − u(tj)| ≤ ε hold for infinitely many k. Then, the triangle inequality

immediately gives that |uαj(k)
(tj) − u(tj)| ≥ ε for infinitely many k, a contradiction. In the proof of the

converse implication we use the fact that property (ii) is true for finite families {u1, . . . , up} of almost periodic
functions: indeed, introducing the map U : Rn → Rp whose components are ui, Bochner’s criterion and a
diagonal argument give that the collection of translates {U(t+·)}t∈RN is relatively compact in BUC(RN ; Rp).
The total boundedness of this collection immediately gives property (ii) for the family {u1, . . . , up}. Assume
now that {uα} ⊆ AP(RN ) is relatively compact. Then, given ε > 0, there are functions u1, . . . , up ∈ AP(RN ),
such that, for any α ∈ Λ, there is j ∈ {1, . . . , p} such that ‖uα−uj‖∞ < ε/3. Then, since property (ii) is true
for finite families of functions, there are points t1, . . . , tr, such that, for any t ∈ RN , for some k ∈ {1, . . . , r},
we have ‖uj(· + t) − uj(· + tk)‖∞ < ε/3 for any j. Hence, the points t1, . . . , tr verify (ii). Assertion (i) is
obvious. �

The previous compactness criterion yields the extension of Theorem 2.3 to E-valued almost periodic maps,
where E is any Banach space.

Theorem 2.6. The space AP(RN ;E) is canonically isomorphic and isometric to C(GN ;E). The isomor-

phism associates to f ∈ AP(RN ;E) a map f̃ ∈ C(GN ;E) such that

(2.4) 〈L, f〉 = 〈L, f̃〉 ∈ C(GN ) ∀L ∈ E∗.

Furthermore, for any sequence of cubes Qi ⊆ RN whose sides lengths tend to ∞ the mean values
∫
Qi
f dx

weakly converge in E to the vector
∫

RN f dx, characterized by

〈L,

∫

RN

f〉 =

∫

RN

〈L, f〉 dx ∀L ∈ E∗.

Proof. Fix f ∈ AP(RN ;E). For L ∈ E∗ we consider the function Lf(x) = 〈L, f(x)〉. It is immediate to
check, using the definition of AP(RN ;E), that Lf ∈ AP(RN ). Furthermore L 7→ Lf is linear and the family

F := {Lf : L ∈ E∗, ‖L‖ ≤ 1}

is compact in AP(RN ). To see this, notice that all functions in F are equi-bounded and have the same
modulus of continuity, so that the family is relatively compact with respect to local uniform convergence
in RN . On the other hand, the compactness of the closed unit ball of E∗ yields that any limit point
is still in F . These two facts imply that condition (i) in Lemma 2.2 is fulfilled. Condition (ii) follows
immediately by the fact that for any ε > 0 we can find t1, . . . , tr ∈ RN such that for any t ∈ RN we have
supx∈RN ‖f(· + t) − f(· + tj)‖E < ε for some j ∈ {1, . . . , r}. Now for any ω ∈ GN we consider the map
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L 7→ Lf(ω). This is a linear map on E∗ and the compactness of F yields that this map is continuous with

respect to the topology σ(E∗, E): indeed, if Li → L in the w∗-topology, then the maps Lif → Lf pointwise

and compactness yields that they converge also in AP(RN ). As a consequence Lif converges uniformly

in GN to Lf . Hence, for any ω ∈ GN we can find an element of E, that we denote by f̃(ω), such that

Lf (ω) = 〈L, f̃(ω)〉 for any L ∈ E∗.

This proves (2.4) and it remains to show that f̃ is a continuous map. This is again a compactness
argument based on the compactness of the family F := {f : f ∈ F}: if ωi → ω then, by the compactness of
F and the Hahn-Banach theorem, Lf (ωi) → Lf(ω) uniformly with respect to L in the unit ball of E∗. As a

consequence f̃(ωi) → f̃(ω) in E. �

Since functions f ∈ AP(RN ) correspond to restrictions, f = f |RN , of functions f ∈ C(GN ), a natural

question is whether it is possible to define a class of functions f : RN → R which correspond to “restrictions”,
f |RN of functions f ∈ L1(GN). This motivates the following definition.

Definition 2.3. Given p ∈ [1,∞) and a Banach space E, the space BAPp(RN ;E), of Besicovitch’s gener-
alized almost periodic functions on RN , with values in E, consists of those functions f ∈ Lploc(R

N ;E) 1 for
which there exists a sequence {fn}n∈N ⊆ AP(RN ;E) satisfying

(2.5) lim
n→∞

lim sup
L→∞

∫

[−L,L]N
‖fn(x) − f(x)‖pE dx = 0.

We denote BAPp(RN ; R) simply by BAPp(RN ) and BAP1(RN ;E) by BAP(RN ;E).

The space of generalized almost periodic functions BAPp(R) was introduced by Besicovitch, who also
gave them a structural characterization. We refer to [9] for more details about functions in BAPp(R).
Intuitively, the space BAPp(RN ;E) corresponds to Lp(G;E) in a way similar to the one in which the space
AP(RN ;E) corresponds to C(GN ;E). Indeed, notice first that the definition of BAPp(RN ;E) immediately
gives that the asymptotic mean value

∫
RN‖f‖p dx of a function in BAPp(RN ;E) is well defined; moreover,

any approximating sequence {fn}n∈N ⊆ AP(RN ;E) satisfying (2.5) can be viewed as a Cauchy sequence in
Lp(GN ;E) and, hence, there exists f ∈ Lp(GN ;E) such that fn → f in Lp(GN ;E). Since f is easily seen to

be independent of the approximating sequence, in this way we may associate with each f ∈ BAPp(RN ;E)
a well determined function f ∈ Lp(GN ;E) which we may view as an “extension” of f to GN . Notice that
f 7→ f is a linear map and that the approximation procedure together with Proposition 2.1 show that

(2.6)

∫

RN

‖f‖p dx =

∫

GN

‖f‖p dz ∀f ∈ BAPp(RN ;E).

As a consequence, the kernel of the map f 7→ f is made by the functions f such that the asymptotic mean

value of ‖f‖p is 0.
We endow BAP2(RN ) with the scalar product

〈f, g〉 =

∫

RN

f(x)g(x) dx =

∫

GN

f g dz,

and set ‖f‖2 := 〈f, f〉1/2 (the second equality follows by (2.6) with p = 2, implying that the scalar product
is preserved under f 7→ f). Notice that this norm vanishes on the kernel of f 7→ f , and we denote by

BAP2(RN )/ ∼ the relative quotient space, with the induced scalar product. Concerning the surjectivity of
the map, we are able to give a positive answer only in the case p = 2.

Proposition 2.2. f 7→ f is surjective as a map between BAP2(RN ) and L2(GN).

1When E is not separable we denote by L1(Ω; E) the space of strongly measurable and summable maps from Ω ⊆ RN to
E, or equivalently the L1 closure of C0(Ω; E)
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This proposition is an almost direct consequence of the following theorem of Besicovitch (see [9], p.110).

Theorem 2.7 (Besicovitch-Riesz-Fischer). To any pair of sequences (an) ⊆ R and (λn) ⊆ R with
∑

|an|2 <
+∞ there corresponds a function in BAP2(R) having these coefficients as Fourier coefficients: this means
that, setting

af (λ) :=

∫

R

f(x)eiλx dx,

we have af (λ) = an if λ = λn and af (λ) = 0 otherwise.

The proof of Theorem 2.7 works with minor modifications for functions in RN .

Proof of Proposition 2.2. Notice first that Theorem 2.5, Lemma 2.1, the invariance of the scalar product
and (2.2) give that {eiλ·x}λ∈RN is a complete orthonormal system in L2(GN). Given F ∈ L2(GN ) we define

aF (λ) =

∫

G

F (z)eiλ·z dz

and use Bessel’s inequality to obtain a countable number of λ’s for which aF (λ) 6= 0, with
∑
a2
F (λ) < +∞. By

the N -dimensional version of Theorem 2.7, there exists a function f ∈ BAP2(RN ) such that af (λ) = aF (λ)
for any λ ∈ RN . We claim that f = F , a.e. in GN . Indeed, using again the fact that f 7→ f preserves the
scalar product, we have ∫

GN

(F (z) − f)eiλ·z dz = 0 for all λ ∈ RN .

Hence F − f is orthogonal to C(GN ) and so F − f must vanish a.e. in GN . �

The following Corollary is a direct consequence of Proposition 2.2 and its proof.

Corollary 2.1. The correspondence f 7→ f is an isometric isomorphism between the Hilbert spaces BAP2(RN )/ ∼

and L2(GN ). Moreover {sinλ · x, cosλ · x}λ∈RN is a complete orthogonal basis of L2(GN ).

The following proposition will also be useful in some applications.

Proposition 2.3. Let µ be a Radon measure in GN and assume that 〈µ,∇iϕ〉 = 0 for any i = 1, . . . , N and

any ϕ ∈ AP(RN ) with ∇ϕ ∈ AP(RN ). Then µ is a constant multiple of the Haar measure.

Proof. We clearly have 〈µ, cosλ · z〉 = 〈µ, sinλ · z〉 = 0 whenever λ 6= 0. Hence, considering functions ϕ that
are finite sums of cosλ · z and sinλ · z we immediately see that |〈µ, ϕ〉| ≤ µ(GN )‖ϕ‖2, so that the density

of this class of functions in L2(GN ) (ensured by Proposition 2.2) immediately gives that µ is representable
by some f ∈ L2(GN). Since f is orthogonal to all functions cosλ · z, sinλ · z with λ 6= 0, it must be a
constant. �

We now briefly recall the concept of almost periodic distribution and some of its basic properties, for the
sake of later reference (cf. [47]).

Definition 2.4. We denote by B(RN) the space of C∞ functions in RN which are uniformly bounded
together with all their derivatives of any order, with the topology induced by the seminorms ‖∂αφ‖∞,
α = (α1, . . . , αN), ∂α = ∂α1

x1
· · · ∂αN

xN
and by D(RN ) the subspace of elements of B(RN) with compact

support. We denote by B′(RN ) the dual of B(RN) and by D′(RN ) the dual of D(RN ).

Definition 2.5. We denote by BAP(RN ) the subspace of B(RN) consisting of those functions which, together
with all their derivatives of any order, are in AP(RN ). We say that T ∈ B′(RN ) is an almost periodic
distribution if T ∗ ϕ ∈ BAP(RN ) for any ϕ ∈ D(RN ). We denote by B′AP(RN ) the space of almost periodic
distributions.

Proposition 2.4 (Schwartz [47]). Each of the two following properties is equivalent to T ∈ B′AP(RN ):
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(i) T ∈ B′(RN ) is a finite sum of derivatives of functions in AP(RN );
(iii) T ∈ B′(RN ) and the set of translates {τzT }z∈RN is relatively compact in B′(RN ).

It is also immediate to check that φT ∈ B′AP(RN ) whenever φ ∈ BAP(RN ) and T ∈ B′AP(RN ). The
following lemma shows also the possibility of embedding canonically BAP(RN ) in B′AP(RN ).

Lemma 2.3. Given any f ∈ BAP(RN ), the linear form Tf : BAP(RN ) → R given by

(2.7) 〈Tf , φ〉 =

∫

RN

fφ dx

defines Tf as an element of B′AP(RN ). The map f 7→ Tf is a continuous embedding of BAP into B′AP.

Proof. It is easy to check that fg ∈ BAP(RN ) whenever f ∈ BAP(RN ) and g ∈ AP(RN ), and
∣∣∣∣
∫

RN

fg dx

∣∣∣∣ ≤
∫

RN

|f | dx ‖φ‖∞.

Hence, Tf ∈ B′(RN ). Since τzTf = Tτzf , and the above inequality with τzf replacing f in the left-hand side
also holds, for any z ∈ RN , the assertion follows from Proposition 2.4 (ii) together with well known facts on
the topology of B′(RN ). �

We conclude this section with a brief discussion about the group of translations {τx}x∈RN of GN , defined
by τxw = w + x, where the extended addition is given by Theorem 2.3. The family is clearly a group since
τxτx′w = τx+x′w. Also, by the invariance of the Haar measure, the group is measure preserving. Moreover,
we have the following.

Theorem 2.8. The measure preserving group {τx}x∈RN is ergodic, that is, for any Borel set A ⊆ GN

invariant under the action of the group we have that either mGN (A) = 0 or mGN (A) = 1, where mGN (A)
denotes the normalized Haar measure of A. Moreover mGN (RN ) = 0.

Proof. Let A ⊆ GN be an invariant Borel set. We have

(2.8) mGN (A) = mGN (A ∩ τ−xA) =

∫

GN

χA(z)χA(z + x) dz.

Now, translations are strongly continuous on L2(GN ). Indeed, this is a standard consequence of the density
of C(GN ) in L2(GN ), which follows from Theorem 2.5, and of the invariance of the Haar measure. Therefore,
the right-hand side is a continuous function of x, and so the identity still holds with x ∈ GN . Hence we get,
using Fubini theorem and the invariance of the Haar measure,

mGN (A) =

∫

GN

∫

GN

χA(z)χA(z + w) dz dw =

∫

GN

χA(z) dz

∫

GN

χA(w) dw = m2
GN (A),

from which it follows that mGN (A) ∈ {0, 1}, as asserted.
It remains to show that mGN (RN ) = 0. First we observe that RN is a Borel subset of GN , since it

is the union of a countable family of compact sets, e.g., the images of the cubes [−k, k]N , k ∈ N. Since
RN is invariant under the action of {τx}x∈RN we have mGN (RN ) ∈ {0, 1}. But, for any ω ∈ GN \ RN ,
ω + RN is also an invariant Borel set and RN ∩ {ω + RN} = ∅. By the invariance of the Haar measure
mGN (ω + RN ) = mGN (RN ). Hence, we conclude that mGN (RN ) = 0. �

3. Almost Periodic Multiscale Young Measures

In this section we state and prove our general result on the existence of multiscale Young measure on
almost periodic test functions. Before stating our theorem, let us briefly recall the concepts of net and
subnet in a general topological space (cf. [34], Ch. 2). We say that a binary relation ≥ directs a set D if D
is non-void and

(a) if m,n, p ∈ D, m ≥ n and n ≥ p, then m ≥ p;
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(b) if m ∈ D, then m ≥ m;
(c) if m,n ∈ D, then there is p ∈ D such that p ≥ m and p ≥ n.

A directed set is a pair (D,≥) such that ≥ directs D. A net is a triple (S,D,≥) such that S is a function
with domain D and ≥ directs D. A net {S,D,≥} is eventually in a set A if there is an element m of D such
that Sn ∈ A for all n ∈ D satisfying n ≥ m. It is frequently in A if for each m ∈ D there is n ∈ D such that
n ≥ m and Sn ∈ A. A net (S,D,≥) in a topological space (X, T ) converges to s ∈ X if it is eventually in
each T -neighborhood of s.
Let (D,≥

D
) and (E,≥

E
) be two directed sets. A set {Tm, m ∈ E} is a subnet of a net {Sn, n ∈ D} if there

is a function N : E → D such that

(a) T = S ◦N , or equivalently, Ti = SNi , for each i ∈ E;
(b) for each m ∈ D there is n ∈ E with the property that, if p ≥E n, then Np ≥D m.

A point s is a cluster point of a net S if S is frequently in every neighborhood of s. Consequently, a point
s is a cluster point of a net S if and only if some subnet of S converges to s. We will use the following well
known property of compact topological spaces (see [34], e.g., Ch. 5): A topological space X is compact if
and only if each net has a subnet which converges to some point of X.

Let (F,F) be a measurable space and let K be a compact metric space. We say that a a family {νx}x∈F
of probability measures in K is weakly F -measurable if x 7→ 〈νx, F 〉 is F -measurable for any F ∈ C(K). It
is easy to show (see e.g. Section 2.5 in [4]) that the map

x 7→

∫

K

f(x, y) dνx(y)

is also F -measurable for any nonnegative function f , measurable with respect to the product σ-algebra
F ⊗ B(K), where B(K) is the Borel σ-algebra of K.

We are now ready to state the main result of this section.

Theorem 3.1. Let Ω ⊆ RN be a bounded open set and let {uε(x)}ε>0 be a family of functions in L∞(Ω;K),
for some compact and separable metric space K. Then, given any sequence {uεi}i∈N, with εi → 0 as i→ ∞,
there exist a subnet {uεi(d)

}d∈D, indexed by a certain directed set D, and a family of probability measures on

K, {νz,x}z∈GN ,x∈RN , weakly measurable with respect to the product of the Borel σ-algebras in GN and RN ,

such that for any Φ ∈ AP(RN ;C0(Ω ×K)) we have

(3.1) lim
D

∫

Ω

Φ(
x

εi(d)
, x, uεi(d)

(x)) dx =

∫

Ω

∫

GN

〈νz,x,Φ(z, x, ·)〉 dz dx,

where Φ ∈ C(GN ;C0(Ω ×K)) denotes the unique extension of Φ. Moreover, equality (3.1) can be extended
to functions Φ in the following function spaces:

(a) BAP(RN ;C0(Ω ×K));
(b) BAPp(RN ;C(Ω̄ ×K)) with p > 1;
(c) L1(Ω; AP(RN ;C(K))). 2

Proof. Step 1. (Construction of νz,x) We consider the following linear forms over AP(RN ;C0(Ω ×K)):

〈µi,Φ〉 :=

∫

Ω

Φ(
x

εi
, x, uεi(x)) dx.

We trivially have |〈µi,Φ〉| ≤ |Ω| ‖Φ‖∞, where |Ω| denotes the Lebesgue measure of Ω. Then, recalling that
by Theorem 2.4 any function in AP(RN ;C0(Ω ×K)) can be seen as the restriction to RN of a function in
C(GN ;C0(Ω ×K)) ≡ C0(G

N × Ω ×K), by Riesz Representation Theorem we can view {µi} as a bounded

2As in Section 2, this space has to be understood as the L1 closure of C(Ω; AP(RN ;C(K)))
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sequence of Radon measures on GN ×Ω×K. By Banach-Alaoglu theorem there exists µ ∈ M(GN ×Ω×K)
which is a cluster point of {µi}, hence there exists a subnet {µi(d)}d∈D such that

(3.2) 〈µ,Φ〉 = lim
D

〈µi(d),Φ〉, for all Φ ∈ C0(G
N × Ω ×K).

Now, given F ∈ C(K), consider the Radon measure µF on GN × Ω given by

〈µF , φ〉 := 〈µ, Fφ〉, for all φ ∈ C0(G
N × Ω).

For any f ∈ AP(RN ) and any ϕ ∈ C0(Ω), with supp ϕ ⊆ {x0 + [0, L]N} for some x0 ∈ RN and L > 0, we
have

|〈µF , fϕ〉| ≤ ‖F‖∞ lim sup
D

∫

Ω

|ϕ(x)||f(
x

εi(d)
)| dx

≤ ‖F‖∞‖ϕ‖∞ lim sup
D

∫

x0+[0,L]N
|f(

x

εi(d)
)| dx

≤ LN‖F‖∞‖ϕ‖∞ lim sup
D

∫

x0
εi(d)

+[0, L
εi(d)

]N
|f(x)| dx

= LN‖F‖∞‖ϕ‖∞

∫

RN

|f(x)| dx.

Now, if x0 + [0, L]N ⊆ Ω, we can take a sequence {ϕn} ⊆ C0(Ω), with suppϕn ⊆ {x0 + (0, L)N}, ‖ϕn‖∞ ≤ 1
and converging everywhere to χ{x0+(0,L)N}. Taking the limit as n→ ∞ in the inequality

|〈µF , fϕn〉| ≤ LN‖F‖∞

∫

GN

|f | dz,

using Lebesgue’s dominated convergence theorem in the left-hand side, we obtain

|〈µF , fχ{x0+(0,L)N}〉| ≤ ‖F‖∞

∫

GN

|f | dz

∫

Ω

χ{x0+(0,L)N} dx.

Now, given any ϕ ∈ C0(Ω), we may define a sequence of functions gn with compact support in Ω of the form∑Jn

j=1 a
n
j χ{xn

j +(0,Ln
j )}, such that gn(x) → ϕ(x) for all x ∈ Ω and ‖gn‖∞ ≤ ‖ϕ‖∞. Since gn clearly satisfies

|〈µF , fgn〉| ≤ ‖F‖∞

∫

GN

|f | dz

∫

Ω

|gn| dx,

taking the limit as n → ∞ and using again Lebesgue’s dominated convergence theorem, now in both sides
of the inequality, we arrive at

(3.3) |〈µF , fϕ〉| ≤ ‖F‖∞

∫

GN

|f | dz

∫

Ω

|ϕ| dx.

Equation (3.3) implies that

|µF | ≤ ‖F‖∞ dz dx.

If ψF (z, x) is a Borel map representing the Radon-Nikodym derivative of µF with respect to dz dx, we then
have

|ψF (z, x)| ≤ ‖F‖∞, for a.e. (z, x) ∈ GN × Ω.

Let S be a countable dense set in C(K) that is also a vector space on the field of rational numbers Q: such
a set exists since K is separable. By the uniqueness of the Radon-Nikodym derivative and the monotonicity
of the depedence of µF on F we can find a Borel negligible set N ⊆ GN × Ω such that F 7→ ψF (z, x) is
Q-linear and monotone on S and moreover

(3.4) |ψF (z, x)| ≤ ‖F‖∞
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for any (z, x) ∈ GN × Ω \ N . For any such (z, x) the Q-linear form 〈νz,x, F 〉 = ψF (z, x) may be uniquely
extended to a monotone and continuous linear functional on C(K). Hence, by Riesz Representation Theorem,
νz,x ∈ M(K) for all (z, x) ∈ GN × Ω \ N . Moreover, proceeding as above, we see that µ1 satisfies

〈µ1, fχQ〉 = |Q|

∫

GN

f dz,

for any N -dimensional cube Q ⊆ Ω and any f ∈ AP(RN ). Hence, as above, we conclude that

〈µ1, fϕ〉 =

∫

GN

f dz

∫

Ω

ϕdx,

for all f ∈ AP(RN ) and ϕ ∈ C0(Ω). Therefore, we have ψ1(z, x) ≡ 1 for a.e. (z, x) ∈ GN×Ω and we conclude
〈νz,x, 1〉 = 1 for almost all (z, x) ∈ GN × Ω \ N , which means that νz,x are probability measures on K for
a.e. (z, x). Defining νz,x in an arbitrary (but Borel) way on N , the weak measurability of νz,x with respect
to (z, x) ∈ GN ×Ω follows directly from the fact that 〈νz,x, F 〉 = ψF (z, x) for any F ∈ C(K) and (z, x) /∈ N .

Recalling the definition of µF , this proves that

〈µ,Φ〉 =

∫

Ω

∫

GN

〈νz,x,Φ(z, x, λ)〉 dz dx

for all test functions Φ of the form F (λ)ϕ(z, x) with F ∈ C(K) and ϕ ∈ C0(G
N × Ω). Since µ is uniquely

determined, as a measure in GN × Ω × K, by the duality with this class of functions, we obtain that the
identity above holds for any Φ ∈ C0(G

N × Ω ×K). Taking (3.2) into account, this proves (3.1).

Step 2. (More general test functions) Now we prove that (3.1) can be extended to Φ ∈ BAP(RN ;C0(Ω×K)).
For Φ1, Φ2 ∈ BAP(RN ;C0(Ω ×K)) we have

lim sup
D

∣∣∣∣
∫

Ω

(
Φ1(

x

εi(d)
, x, uεi(d)) − Φ2(

x

εi(d)
, x, uεi(d))

)
dx

∣∣∣∣

≤ lim sup
D

∫

Ω

‖Φ1(
x

εi(d)
, ·, ·) − Φ2(

x

εi(d)
, ·, ·)‖C0(Ω×K) dx

≤ lim sup
D

∫

{[−L,L]N}

‖Φ1(
x

εi(d)
, ·, ·) − Φ2(

x

εi(d)
, ·, ·)‖C0(Ω×K) dx

≤ (2L)N‖Φ1 − Φ2‖BAP(RN ;C0(Ω×K)),

where L > 0 is such that Ω ⊆ [−L,L]N . On the other hand, we have
∣∣∣∣
∫

Ω

∫

GN

〈νz,x, (Φ1 − Φ2)(z, x, λ)〉 dz dx

∣∣∣∣ ≤ |Ω|

∫

GN

‖Φ1(z, ·, ·) − Φ2(z, ·, ·)‖C0(Ω×K) dz

= |Ω|‖Φ1 − Φ2‖BAP(RN ;C0(Ω×K)).

Hence, since we know that (3.1) holds for Φ ∈ AP(RN ;C0(Ω×K)), and that any function in BAP(RN ;C0(Ω×
K)) may be approximated by functions in AP(RN ;C0(Ω × K)) in the norm of BAP(RN ;C0(Ω × K)), we
obtain the validity of (3.1) from the above estimates by a simple passage to the limit.

As for the extension to Φ ∈ BAPp(RN ;C(Ω̄×K)) with p > 1, we have the following. Let ϕ ∈ C0(Ω). We
have, for q = p/(p− 1) and ψ = 1 − ϕ,

∣∣∣∣
∫

Ω

ψ(x)Φ(
x

εi(d)
, x, uεi(d)

(x)) dx

∣∣∣∣ ≤ ‖ψ‖q

(∫

Ω

|Φ(
x

εi(d)
, x, uεi(d)

(x))|p dx

)1/p

≤ ‖ψ‖q

(
εNi(d)

∫

[−L/εi(d),L/εi(d)]N}

‖Φ(z, ·, ·)‖p
C(Ω̄×K)

dz

)1/p

,
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and so, taking the lim supD we obtain

lim sup
D

∣∣∣∣
∫

Ω

ψ(x)Φ(
x

εi(d)
, x, uεi(d)

(x)) dx

∣∣∣∣ ≤ (2L)N/p‖ψ‖q‖Φ‖BAPp(RN ;C(Ω̄×K)).

On the other hand, we have
∣∣∣∣
∫

Ω

∫

GN

〈νz,x,Φ(z, x, λ)〉ψ(x) dz dx

∣∣∣∣ ≤ ‖ψ‖q‖Φ‖Lp(G;C(Ω̄×K)).

Hence, we may extend (3.1) to Φ ∈ BAPp(RN ;C(Ω̄ × K)) by multiplying Φ by ϕn ∈ C0(Ω), with ϕn →
1 in Lq(Ω), and taking the limit as n → ∞ in the formula (3.1) for Φϕn, which is valid since Φϕn ∈
BAP(RN ;C0(Ω ×K)).

Finally, we prove the assertion for Φ ∈ L1(Ω; AP(RN ;C(K))). Indeed, since
∣∣∣∣
∫

Ω

Φ1(
x

εi(d)
, x, uεi(d)

(x)) dx −

∫

Ω

Φ2(
x

εi(d)
, x, uεi(d)

(x)) dx

∣∣∣∣ ≤
∫

Ω

‖Φ1(·, x, ·) − Φ2(·, x, ·)‖AP(RN ;C(K)) dx

and
∣∣∣∣
∫

Ω

∫

GN

〈νz,x,Φ1(z, x, λ)〉 dz dx−

∫

Ω

∫

GN

〈νz,x,Φ2(z, x, λ)〉 dz dx

∣∣∣∣ ≤
∫

Ω

‖Φ1(·, x, ·)−Φ2(·, x, ·)‖AP(RN ;C(K)) dx,

the validity of (3.1) even for functions Φ ∈ L1(Ω; AP(RN ;C(K))) follows by the density of C0(Ω; AP(RN ;C(K))).
�

Remark 3.1. A similar result holds, with minor adaptations in the proof, for families {uε}ε>0 ⊆ L1(Ω; Rm)
that satisfy the condition

lim
R→∞

lim sup
ε→0

|{|uε| > R}| = 0.

This happens, for instance, when a uniform bound in Lp(Ω; Rm) is available. In this special case, the
representation formula (3.1) is valid for all Φ(z, x, λ) ∈ AP(RN ;C0(Ω, C(Rm))) such that

lim
|λ|→∞

|Φ(z, x, λ)|

|λ|p
= 0 uniformly as (z, x) ∈ RN × Ω.

This extension is analogous to the well known one in the classical theory of Young measures (see, e.g., [7], [4],
[46] etc.). In particular this gives as a corollary an extension to the almost periodic setting of the main result
of the so called two-scale convergence introduced by Nguetseng [42] and further developed by Allaire [1].

As in the classical theory of Young measures (cf. [49]) we have the following consequence of Theorem 3.1
(cf. [22]).

Lemma 3.1 (Strong convergence). Let Ω ⊆ RN be a bounded open set, let {uε} ⊆ L∞(Ω; Rm) be uniformly
bounded and let νz,x be an almost periodic two-scale Young measure generated by a subnet {uε(d)}d∈D,
according to Theorem 3.1. Assume that U belongs either to L1(Ω; AP(RN ; Rm))) or to BAPp(RN ;C(Ω̄; Rm))
for some p > 1. Then

(3.5) νz,x = δU(z,x) if and only if lim
D

‖uε(d)(x) − U(
x

ε(d)
, x)‖L1(Ω) = 0.

Proof. If νz,x = δU(z,x), for some U ∈ L1(Ω; AP(RN ; Rm)), we take in (3.1) Φ(z, x, λ) = |λ − U(z, x)| to

conclude that ‖uε(d)(x) − U( x
ε(d) , x)‖L1(Ω) → 0. On the other hand, if ‖uε(d)(x) − U( x

ε(d) , x)‖L1(Ω) → 0

we must have 〈νz,x, |λ − U(z, x)|〉 = 0 for a.e. (z, x), which implies νz,x = δU(z,x). The case when U ∈

BAPp(RN ;C(Ω̄; Rm)) for some p > 1 is similar. �
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4. Flows Generated by Lipschitz Almost Periodic Vector Fields

Let a ∈ AP∩W 1,∞(RN ; RN ), and let us assume that a is incompressible, i.e.

(4.1) ∇z · a(z) = 0.

Let us consider the Cauchy problem

(4.2)





dX

dt
(z, t) = a(X(z, t)),

X(z, 0) = z.

In some occasions we will denote the map t 7→ X(z, t) by Xt(z).
We are interested in the properties of the map Xt : BUC(RN ) → BUC(RN ) defined by g 7→ g ◦Xt.

Lemma 4.1. g ◦Xt ∈ AP(RN ) for any g ∈ AP(RN ) and

(4.3)

∫

RN

|g(X(z, t))|2 dz =

∫

RN

|g(z)|2 dz.

Therefore Xt can be extended to an operator in BAP2(RN ) satisfying

(4.4)

∫

RN

|Xt(g)|
2 dz =

∫

RN

|g(z)|2 dz ∀g ∈ BAP2(RN ).

Proof. It suffices to prove that Xt(AP(RN )) ⊆ AP(RN ) for each t ∈ R. First, we show that if τ is a ε-period
of (a, g) ∈ AP(RN ; R2) then

(4.5) |Xt(x+ τ) −Xt(x) − τ | ≤
ε

Lip2(a)
(eLip(a)|t| − 1), |g(Xt(x) + τ) − g(Xt(x))| < ε.

Since the second inequality is trivial, we check the first one, in the case when t > 0. So, we have

|Xt(x+ τ) −Xt(x) − τ | =

∣∣∣∣
∫ t

0

(a(Xs(x+ τ)) − a(Xs(x))) ds

∣∣∣∣

≤

∫ t

0

|a(Xs(x+ τ)) − a(Xs(x) + τ)| ds+

∫ t

0

|a(Xs(x) + τ) − a(Xs(x))| ds

≤ Lip(a)

∫ t

0

|Xs(x+ τ) −Xs(x) − τ | ds + εt.

Applying Gronwall’s lemma we arrive at the first inequality in (4.5).
Now, let g ∈ AP(RN ) and let p(s) be a modulus of continuity of g. By (4.5) and the triangle inequality

we get

|g(Xt(z + τ)) − g(Xt(z))| ≤ p

(
ε(eLip(a)|t| − 1)

Lip2(a)

)
+ ε

and since the right hand side is infinitesimal as ε→ 0 the proof of the almost periodicity of Xt(g) is achieved.
Now we prove (4.3). The incompressibility assumption (4.1) implies that the Jacobian determinant of Xt

is a.e. equal to 1, and we have

1

LN

∫

[0,L]N
|g(X(z, t))|2 dz =

1

LN

∫

Xt([0,L]N)

|g(w)|2 dw

=
1

LN

∫

[0,L]N
|g(w)|2 dw −

1

LN

∫

[0,L]N\Xt([0,L]N)

|g(w)|2 dw

+
1

LN

∫

Xt([0,L]N)\[0,L]N
|g(w)|2 dw.
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Taking the limit as L → ∞ and observing that the two last terms in the equality above go to 0 as L → ∞
because

[‖a‖∞t, L− ‖a‖∞t]
N ⊆ Xt([0, L]N ) ⊆ [−‖a‖∞t, L+ ‖a‖∞t]

N

we obtain (4.3). Relation (4.3) immediately implies that Xt can be extended to an operator in BAP2(RN ),
and that Xt fulfils (4.4). �

Remark 4.1. The argument used in Lemma 4.1 can also be used to show that g ◦W ∈ AP(RN ) whenever
W can be written as w1 + w2, with w1 affine and w2 ∈ AP(RN ; RN).

Corollary 4.1. For any t ∈ R the flow map Xt can be uniquely extended to a homeomorphism Xt of GN

and Xt(g) = g(Xt) for any g ∈ L2(GN ).

Proof. Since C(GN ) is isomorphic to AP(RN ), it is a direct consequence of the invariance of AP(RN ) under
Xt and of Lemma 4.2 below, with R = RN , X = GN and W = Xt. �

Lemma 4.2. Let X be a compact Hausdorff topological space, R ⊆ X dense and W : R → R a bijective
map. Suppose that for all g ∈ C(X) the map g ◦W is the restriction to R of a unique g̃ ∈ C(X) and the
same is true for g ◦W−1. Then W can be extended to a homeomorphism W : X → X.

Proof. Let ω ∈ X . Any limit point ω̄ of W (z) as z ∈ X converges to ω must satisfy g̃(ω) = g(ω̄) for any
g ∈ C(X). Since C(X) separates the points of X (because X is a normal space, see [34]), we obtain that
the limit W (ω) of W (z) as z ∈ X → ω exists and satisfies

(4.6) g(W (ω)) = g̃(ω) for all g ∈ C(X).

The identity (4.6) implies that W : X → X is continuous. Indeed, if ωd → ω ∈ X , we have

(4.7) g(W (ωd)) = g̃(ωd) → g̃(ω) = g(W (ω))

and, again, this yields that any limit point ω̄ of W (ωd) must satisfy g(ω̄) = g(W (ω)) for any g ∈ C(X), and
therefore coincide with W (ω).

A similar reasoning gives that W−1 has a continuous extension W−1 as well, and it is easy to check that
W is the inverse of W−1. �

Let S be the closed subspace of BAP2(RN ) defined as follows. Let us consider the equation

(4.8) ∇ · (a(z)v(z)) = 0.

We define a class of asymptotic solutions of (4.8) as follows:
(4.9)

S :=

{
v ∈ BAP2(RN ) :

∫

RN

v(z)a(z) · ∇ϕ(z) dz = 0 for all ϕ ∈ AP(RN ) with ∇ϕ ∈ AP(RN ; RN )

}

and its subspace

(4.10) S∗ :=
{
v ∈ AP(RN ) ∩W 1,∞(RN ) : a · ∇v = 0 a.e.

}
.

Equivalently, recalling the canonical isomorphism between BAP2(RN ) and L2(GN ), when v is viewed as a
function in L2(GN ), we can say that v ∈ S if

(4.11)

∫

GN

v(ω)a(ω) · ∇ϕ(ω) dω = 0 for all ϕ ∈ AP(RN ) with ∇ϕ ∈ AP(RN ; RN ).

Given g ∈ BAP2(RN ), we denote by g̃ ∈ S its orthogonal projection on S. Accordingly, we denote by ã
the vector field whose components ãi are the projections on S of ai.

By the properties of orthogonal projections, g̃ is characterized by

(4.12)

∫

GN

gh dω =

∫

GN

g̃h dz, g ∈ L2(GN ), h ∈ S.
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Moreover, the Mean Ergodic Theorem (see [18], Theorem VIII.7.1), which is applicable due to (4.3) and to
the fact that S is the invariant space of Xt (see Proposition 4.1 below) implies that for g ∈ BAP2(RN )

(4.13) lim
t→∞

1

t

∫ t

0

Xsg(z) ds = g̃(z) ∀g ∈ BAP2(RN ),

in the sense of convergence in BAP2(RN ), and one can use this formula to link in a more explicit way g̃ to g.
We summarize some properties of S in the following proposition.

Proposition 4.1 (Characterization of S). S is the invariant subspace under Xt. Moreover, if S∗ is dense
in S, then S ∩ L∞(GN ) is an algebra and

(4.14) g̃r = gr̃ ∀g ∈ S ∩ L∞(GN ), r ∈ L2(GN ).

Proof. If v is invariant, for any almost periodic ϕ with an almost periodic gradient we have

0 =

∫

GN

(v ◦Xt − v)ϕ dω =

∫

GN

v(ϕ ◦X−t − ϕ) dω.

Dividing both sides by t and letting t→ 0 we obtain (4.11). The converse implication is analogous: one can
check that (4.11) implies that the time derivative of t 7→

∫
GN v ◦Xtϕdω vanishes identically.

Let now g ∈ S∗ and r ∈ S. Since a · ∇g = 0, by integrating the identity rga · ∇ϕ+ rϕa · ∇g = ra · ∇(ϕg)

we obtain that gr ∈ S. The density of S∗ immediately gives that S ∩ L∞(GN ) is an algebra.
Finally, let g, r be as in (4.14). For any h ∈ S we have

∫

GN

hg̃r dω =

∫

GN

h(gr) dω =

∫

GN

hgr̃ dω

because hg ∈ S. Since gr̃ ∈ S and h ∈ S is arbitrary this proves that g̃r = gr̃. �

We conclude this section with some remarks on the density of S∗ in S. We still don’t know whether this
property holds in general, but we are able to give a positive answer in special cases.

Lemma 4.3. Suppose that W : RNz → RNw is a bi-Lipschitz map satisfying W (AP(RN )) = AP(RN ) in the
sense that, for all g ∈ AP(RN ), g ◦W ∈ AP(RN ) and g ◦W−1 ∈ AP(RN ). Let J = |∂W∂z | and assume that

J ∈ AP(RN ) and κ ≤ J ≤ K for certain constants 0 < κ ≤ K. Assume that the vector field a(z) satisfies

1

J(z)
a(z) · ∇z(ϕ ◦W ) =

(
∂ϕ

∂wN

)
◦W ∀ϕ ∈ C1(RNw ).

Then S∗ is dense in S.

Proof. Let H = BAP2(RN ). Arguing as in Lemma 4.1 and using the fact that

[−L/C,L/C]N ⊆W ([−L,L]N) ⊆ [−LC,LC]N

for a suitable constant C, it is immediate to check that g ◦W ∈ H if and only if g ∈ H . Now, we consider
on H the bilinear form

(f |g) := lim
L→∞

1

(2L)N

∫

W ([−L,L]N)

f(w)g(w) dw(4.15)

= lim
L→∞

1

(2L)N

∫

[−L,L]N
f(W (z))g(W (z))J dz.

The second equation in (4.15) shows that the limit in the definition of (·|·) exists, due to the almost periodicity
of J . Clearly, (f |g) is also an inner product in H and, using the bounds on J , it is immediate to see that
the norm ||| · ||| defined by by |||f ||| = (f |f)1/2 is equivalent to the norm induced by the usual inner product

of H . Let us denote by H̃, the Hilbert space formed with the same elements of H , endowed with the inner
product (·|·), defined by (4.15). Using the Gauss-Green formula and the fact that the (N − 1)-dimensional
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measure of the boundary of W ([−L,L]N) goes like LN−1 as L → ∞, it is easy to verify that {cosλ · w,
sinλ · w, λ ∈ RN} is also an orthogonal system of functions spanning H̃ . Let ṽ(w) ∈ H̃ satisfy

(4.16) (ṽ|
∂ϕ

∂wN
) = 0 for all ϕ ∈ AP(RN ) such that ∇ϕ ∈ AP(RN ).

Then we have

(4.17) (ṽ| cosλ · w) = (ṽ| sinλ · w) = 0 for all λ ∈ RN such that λN 6= 0.

Conversely, by the density of trigonometric polynomials one can immediately check that if ṽ ∈ H̃ satisfies
(4.17) then ṽ satisfies (4.16). Indeed, any function in AP(RN ) which may be written as ∂ϕ

∂wN
for some

ϕ ∈ AP(RN ) with N -th partial derivative in AP(RN ) is orthogonal to all function sinλ · w, cosλ · w with
λN = 0, and so it can be uniformly approximated by finite combinations of functions in {cosλ·w, sinλ·w, λ ∈
RN , λN 6= 0}. In particular, the subspace SW of the functions ṽ ∈ H̃ satisfying (4.16) is spanned by
FW := {cosλ · w, sinλ · w, λ ∈ RN , λN = 0}.

Now, by assumption, the map g 7→ g ◦W establishes a one-to-one correspondence between SW and S.
Since SW is spanned by FW and the maps ϕ ◦W with ϕ ∈ FW are classical solutions of (4.8), we have that
classical solutions are dense in S as desired. �

Notice that the last assumption of the lemma can be written as

(4.18) a · ∇W i = 0 (1 ≤ i ≤ N − 1), a · ∇WN = J.

Before continuing our general discussion, we analyse the special two-dimensional case where a(z1, z2) =
(G′(z2) + γ, 1), with G, G′ ∈ AP(R) and γ ∈ R. In this case the map W : R2 → R2 defined by

W (z1, z2) = (z1 −G(z2) + γz2, z2),

is a bi-Lipschitz diffeomorphism with

W−1(w1, w2) = (w1 +G(w2) − γw2, w2),

satisfying the hypotheses of Lemma 4.3 (see also Remark 4.1).
It is also easy to check that the flow Xt : R2 → R2 associated to this particular vector field a is given by

Xt(z1, z2) = (z1 +G(z2 + t) −G(z2) + γt, z2 + t),

hence S∗ is dense in S.
The general result for the two-dimensional case, N = 2, is as follows.

Lemma 4.4. Let a(z) = (a1(z), a2(z)) be a vector field in R2 satisfying the conditions:

(i) a ∈ AP(R2) ∩W 1,∞(R2) and ∇z · a = 0;
(ii) there exist constants γ1, γ2 and functions A1 ∈ AP(R) and A2 ∈ AP(R2) such that

a2(z) =
∂A2

∂z1
(z) + γ2 and a1(0, s) =

dA1

ds
+ γ1;

(iii) there exists a function ψ ∈ C1(R2) of the form ψ(z) = c1z1 + c2z2 + g(z), with c1, c2 ∈ R, g ∈
AP(R2) ∩W 1,∞(R2), such that ∇ψ · a ≥ κ > 0 for some κ > 0.

Then, the hypotheses of Lemma 4.3 are satisfied and, in particular, S∗ is dense in S.

Proof. We must exhibit a diffeomorphism W : R2 → R2 with the properties stated in Lemma 4.3. We define
w2(z) = ψ(z) and

w1(z) =

∫ z1

0

a2(r, z2) dr −

∫ z2

0

a1(0, s) ds = A2(z) −A2(0, z2) − γ2z1 −A1(z2) +A1(0) + γ1z2,
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and set W (z) = (w1(z), w2(z)). We observe that the Jacobian matrix of W is given by

DW (z) =

[
a2(z) −a1(z)
∂ψ
∂z1

(z) ∂ψ
∂z2

(z)

]
.

Hence, the Jacobian determinant is J(z) = ∇ψ(z) · a(z) > κ > 0 and the inverse of DW is given by

DW (z)−1 =
1

J

[
∂ψ
∂z2

(z) a1(z)
−∂ψ
∂z1

(z) a2(z)

]
.

In particular, we have that DW (z) and DW (z)−1 are uniformly bounded in R2. Hence, from a classical
theorem of Hadamard, it follows that W is a bi-Lipschitz diffeomorphism of R2 and ∂

∂w2
= J−1a · ∇ (see

(4.18)). By Remark 4.1 we obtain that g ◦W ∈ AP(R2) and g ◦W−1 ∈ AP(R2) for any g ∈ AP(R2), and
this concludes the proof. �

5. Application to Nonlinear Transport equations

In this section we study the homogenization problem for a nonlinear transport equation with an incom-
pressible and autonomous velocity field. More specifically, let a ∈ AP∩W 1,∞(RN ; RN ), and let us assume
that a is incompressible, i.e.

(5.1) ∇z · a(z) = 0.

We consider the equation

(5.2) ∂tu
ε + ∇x · (a(

x

ε
)f(uε)) = 0, t > 0, x ∈ RN ,

with f ∈ C1(R), and the initial data given by

(5.3) uε(x, 0) = U0(
x

ε
, x),

where U0(z, x) ∈ L1
loc(R

N ; AP(RN )). For each ω ∈ GN , we also consider the auxiliary initial value problem
given by

(5.4) Ut + ∇x · (ã(ω)f(U)) = 0, t > 0, x ∈ RN ,

and the initial data

(5.5) U(ω, x, 0) = U0(ω, x), x ∈ RN .

We keep the notation introduced in Section 4. The stability properties of entropy solutions to scalar
conservation laws show (see the argument in Lemma 5.1 below) that, possibly modifying ã in a negligible

set, U may be viewed as a Borel map from GN into L1
loc(R

N+1
+ ), where RN+1

+ = RN × (0,+∞)). Using this

fact, one can for instance find a Borel function Ū , setting

Ū(ω, x, t) := lim inf
ε→0

U(ω, ·, t) ∗ ρε(x).

Hence, in the following we can assume with no loss of generality that U is a Borel map.
We will need the following theorem which provides a comparison principle between two parametrized

families of measures satisfying a first-order differential inequality in conservation form, which extends a
theorem of DiPerna [21].
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Theorem 5.1. Let {µix,t}, (x, t) ∈ RN+1
+ , i = 1, 2, be two weakly measurable parametrized families of

probability measures over a compact separable metric space K. Let {µix,0}x∈RN , i = 1, 2, be two parametrized
families of probability measures over K satisfying

lim
t→0

1

t

∫ t

0

∫

RN

〈µ1
x,s, g〉φ(x) dx ds =

∫

RN

〈µ1
x,0, g〉φ(x) dx,

lim
t→0

∫

{|x|<R}

|〈µ2
x,s, g〉 − 〈µ2

x,0, g〉| dx = 0,

(5.6)

for all g ∈ C(K), φ ∈ Cc(R
N ) and R > 0. Let I : K ×K → R, G : K ×K → RN be continuous functions

with I ≥ 0 and |G(ρ, λ)| ≤ C I(ρ, λ), for some C > 0. Assume

∂t〈µ
1
x,t, I(·, λ)〉 + ∇x · 〈µ

1
x,t, G(·, λ)〉 ≤ 0,

∂t〈µ
2
x,t, I(ρ, ·)〉 + ∇x · 〈µ

2
x,t, G(ρ, ·)〉 ≤ 0,

(5.7)

in the sense of the distributions in RN+1
+ . Then, for a.e. t > 0, we have

(5.8)

∫

{|x|<R}

〈µ1
x,t ⊗ µ2

x,t, I(·, ·)〉 dx ≤

∫

{|x|<R+Ct}

〈µ1
x,0 ⊗ µ2

x,0, I(·, ·)〉 dx.

Proof. The proof follows as in [21] by using Kruzhkov’s doubling variable method [36]. We sketch the proof
as follows. From the first inequality in (5.7) we have

(5.9)

∫

RN+1

〈µ1
x,t, I(·, λ)〉ξt(x, t; y, τ) + 〈µ1

x,t, G(·, λ)〉 · ∇xξ(x, t; y, τ) dx dt ≥ 0, for all (y, τ) ∈ RN+1
+ ,

for all ξ ∈ C∞
c (RN+1

+ × RN+1
+ ). We integrate in the variable λ ∈ K by the measure µ2

y,τ and then integrate

in (y, τ) ∈ RN+1
+ to obtain

(5.10)

∫

RN+1

∫

R
N+1
+

〈µ1
x,t ⊗ µ2

y,τ , I(·, ·)〉ξt + 〈µ1
x,t ⊗ µ2

y,τ , G(·, ·)〉 · ∇xξ dx dt dy dτ ≥ 0.

Analogously, starting with the second inequality in (5.7) and proceeding similarly, exchanging the roles of
µ1
x,t and µ2

y,τ , we obtain

(5.11)

∫

RN+1

∫

R
N+1
+

〈µ1
x,t ⊗ µ2

y,τ , I(·, ·)〉ξτ + 〈µ1
x,t ⊗ µ2

y,τ , G(·, ·)〉 · ∇yξ dx dt dy dτ ≥ 0.

Adding (5.10) and (5.11), we obtain

(5.12)

∫

RN+1

∫

R
N+1
+

〈µ1
x,t ⊗ µ2

y,τ , I(·, ·)〉(ξt + ξτ ) + 〈µ1
x,t ⊗ µ2

y,τ , G(·, ·)〉 · (∇xξ + ∇yξ) dx dt dy dτ ≥ 0.

From (5.12) we deduce

(5.13)

∫

RN+1

∫

R
N+1
+

〈µ1
x,t ⊗ µ2

x,t, I(·, ·)〉φt + 〈µ1
x,t ⊗ µ2

x,t, G(·, ·)〉 · ∇xφ dx dt ≥ 0,

for all φ ∈ C∞
c (RN+1

+ ), by taking

ξ(x, t; y, τ) = φ(
x + y

2
,
t+ τ

2
)δn(

x1 − y1
2

) · · · δn(
xN − yN

2
)δn(

t− τ

2
),

where δn(s) = nδ(ns), n ∈ N, with δ ∈ C∞
c (R), δ(−s) = δ(s), δ ≥ 0,

∫
R
δ(s) ds = 1, and then making

n→ ∞. Now, (5.13) implies that ∂t〈µ
1
x,t⊗µ

2
x,t, I(·, ·)〉+∇x · 〈µ

1
x,t⊗µ

2
x,t, G(·, ·)〉 is a (signed) Radon measure

over RN+1
+ , by a well known lemma of Schwartz [47]. We then integrate it over the set

K = {(x, t) ∈ RN+1
+ : |x| < R+ C(t− τ), 0 < τ < t},
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use Gauss-Green formula and the properties of the normal traces of divergence-measure fields (see, e.g., [15]),
to deduce that (5.8) holds for a.e. t > 0, upon using (5.6) and the assumption |G| ≤ CI. More specifically,
we consider t > 0 which is Lebesgue point of the functions

τ 7→

∫

RN

〈µ1
x,τ ⊗ µx,τ , I(·, ·)〉φ(x) dx,

for all φ ∈ Cc(R
N ), a property verified for a.e. t > 0. For those t > 0, the normal trace on ∂K restricted

to ∂K ∩ {τ = t} coincides with 〈µ1
x,t ⊗ µ2

x,t, I(·, ·)〉. On the other hand, the normal trace restricted to
{|x| = R + c(t− τ), 0 < τ < t} is nonnegative due to |G| ≤ C I. Finally, (5.6) guarantees that the normal
trace on ∂K ∩ {τ = 0} coincides with 〈µ1

x,0 ⊗ µ2
x,0, I(·, ·)〉, which concludes the proof.

�

In the following theorem we extend to the context of almost periodic velocity fields and initial data a
result of W. E (cf. [22]), relative to the periodic case. We characterize the weak limit of uε and, under
suitable additional regularity assumptions on U , we prove a strong correctors formula.

Theorem 5.2. Let a ∈ W 1,∞ ∩AP (RN ; RN ) and U0 ∈ L1
loc(R

N ; AP(RN )). Let {uε}ε>0 be the sequence of
entropy solutions of (5.2), (5.3). Assume that f ′(u) 6= 0 for all u ∈ R, that U0 is bounded and satisfies

(5.14) U0(·, x) ∈ S for a.e. x ∈ RN , with S defined in (4.9)

and finally that the set S∗ defined in (4.10) is dense in S.
Then uε weakly star converge in L∞(RN × (0,+∞)) to

(5.15) u(x, t) :=

∫

GN

U(ω, x, t) dω,

where U is the solution of (5.4), (5.5). Suppose further that

(5.16) either U ∈ L1
loc(R

N × [0, T ];C(GN)) or U ∈
⋂

R>0

L2(GN ;C(BR(0) × [0, T ]))

for some T > 0. Then

(5.17) lim
ε→0

uε(x, t) − U(
x

ε
, x, t) = 0 in L1

loc(R
N × [0, T ]).

Proof. We first observe that the entropy solutions uε of (5.2), (5.3) are uniformly bounded in L∞(ΠT ).
Hence, taking into account Lemma 3.1, it suffices to show that any two-scale Young measure generated by
a subnet of {uε}ε>0 satisfies

(5.18) νω,x,t = δU(ω,x,t) for a.e. (ω, x, t) ∈ GN × RN × (0,+∞).

Let then νω,x,t be a two-scale Young measure generated by a subnet of {uε}ε>0 which, for notational sim-
plicity, we still denote by {uε}. For any nonnegative ψ ∈ L1(RN × (0,+∞)) we set also

(5.19) σψω :=

∫

RN

∫ ∞

0

ψ(x, t)νω,x,t dxdt.

We use Theorem 5.1 to prove (5.18). So, let us consider the family of Kruzkhov’s entropies

(5.20) η(λ, k) = |λ− k|, q(λ, k) = sgn(λ− k)(f(λ) − f(k)),

so that the entropy solution of (5.2) satisfies

(5.21) ∂tη(u
ε, k) + ∇x · (a(

x

ε
)q(uε, k)) ≤ 0 ∀k ∈ R,

in the sense of distributions: it means that for all nonnegative φ ∈ C∞
c (RN+1) we have

(5.22)

∫

RN

∫ ∞

0

{η(uε, k)φt + q(uε, k)(a(
x

ε
) · ∇xφ)} dx dt+

∫

RN

η(U0(
x

ε
, x), k)φ(x, 0) dx ≥ 0.
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In (5.22) we take φ(x, t) = εϕ(xε )ψ(x, t), where ϕ ∈ BAP(RN ) and ψ ∈ C∞
c (RN+1) are nonnegative, and let

ε→ 0 to get

(5.23)

∫

GN

〈σψω , q(·, k)〉a(ω) · ∇ϕdω ≥ 0.

By applying this inequality with C ± ϕ, with C = ‖ϕ‖∞, and using the arbitrariness of ϕ we get (recalling
(4.11))

(5.24) ω 7→ 〈σψω , q(·, k)〉 ∈ S.

As in [22], we now observe that equation (5.24) holds not only for functions of the type (5.20). Indeed,
the same argument above works for any C1 entropy-entropy flux pair (η̃, q̃) with η̃ convex or concave. As a
consequence, by approximation it holds for any Lipschitz entropy-entropy flux pair. Choosing η̃ such that
η̃′ = sgn(· − k)/f ′ we obtain q̃ = η(·, k), so that (5.24) gives

(5.25) ω 7→ 〈σψω , η(·, k)〉 ∈ S.

By approximation (5.24) and (5.25) hold for any ψ ∈ L1(RN × (0,+∞)).
Next, we take in (5.22) φ(x, t) = ϕ(xε )ψ(x, t), where ϕ ∈ S∗ and ψ ∈ C∞

c (RN+1) are nonnegative. Passing
to the limit as ε→ 0 we get

∫

RN

∫ ∞

0

∫

GN

{〈νω,x,t, η(·, k)〉ϕψt + 〈νω,x,t, q(·, k)〉ϕ(a · ∇xψ)} dω dx dt(5.26)

+

∫

RN

∫

GN

η(U0(ω, x), k)ϕ(ω)ψ(x, 0) dω dx ≥ 0.

By Proposition 4.1 and (5.24) the maps ω 7→ ϕ(ω)〈σ∂iψ
ω , q(·, k)〉 belong to S. Therefore, taking (4.12) into

account, we can rewrite (5.26) as

∫

RN

∫ ∞

0

∫

GN

{〈νω,x,t, η(·, k)〉ϕψt + 〈νω,x,t, q(·, k)〉ϕ(ã · ∇xψ)} dω dx dt(5.27)

+

∫

RN

∫

GN

η(U0(ω, x), k)ϕ(ω)ψ(x, 0) dω dx ≥ 0,

for all nonnegative ϕ ∈ S∗ and all nonnegative ψ ∈ C∞
c (RN+1). But then, using also the fact that ω 7→

〈σψt
ω , η(·, k)〉 (see (5.25)) and ãi〈σ∂iψ

ω , q(·, k)〉 belong to S and assumption (5.14) on U0, we obtain that (5.27)
holds for all ϕ ∈ L2(GN) (here we use the density of S∗ in S). In particular, for each fixed nonnegative
ψ ∈ C∞

c (RN+1), inequality (5.27) can be strengthened to an inequality a.e. on ω ∈ GN . A density argument
on the class of test functions ψ then gives that for a.e. ω ∈ GN the following property is fulfilled:

∫

RN

∫ ∞

0

{〈νω,x,t, η(·, k)〉ψt + 〈νω,x,t, q(·, k)〉(ã(ω) · ∇xψ)} dx dt

+

∫

RN

η(U0(ω, x), k)ψ(x, 0) dx ≥ 0,

(5.28)

for all nonnegative ψ ∈ C∞
c (RN+1).

We are going to apply Theorem 5.1 to show that νω,x,t is a Dirac measure for almost every (ω, x, t) ∈
GN × RN × (0,+∞). To do this, first we observe that (5.28) implies

(5.29) lim
t→0

1

t

∫ t

0

∫

RN

〈νω,x,τ , g〉φ(x) dx dτ =

∫

RN

〈δU0(ω,x), g〉φ(x) dx,
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for all g ∈ C(R) and φ ∈ Cc(R
N ). Indeed, choosing ψ(x, t) = δh(t)φ(x), with δh(t) = max{h−1(h − t), 0},

for t ≥ 0, h > 0, φ ∈ C∞
c (RN ), φ ≥ 0, in (5.28), we obtain

(5.30) lim
h→0

1

h

∫ h

0

∫

RN

〈νω,x,t, | · −k|〉φ(x) dx dt ≤

∫

RN

|U0(ω, x) − k|φ(x) dx,

for all φ ∈ C∞
c (RN ), φ ≥ 0, and a fortiori also for all nonnegative φ ∈ L1(RN ). Taking advantage of the

flexibility given by the presence of φ ∈ L1(RN ) in (5.30), we may replace k by any function k(x) in L∞(RN ),
in particular, k(x) = U0(ω, x). This proves (5.29).

Now, let U(ω, x, t) be the solution of (5.4), (5.5). The entropy condition states that

(5.31) ∂tη(λ, U) + ∇x · (ã(ω)q(λ, U)) ≤ 0 for all λ ∈ R, ω ∈ GN .

and

(5.32) lim
t→0

∫

{|x|<R}

|U(ω, x, t) − U0(ω, x)| dx = 0, for all R > 0.

Therefore, we can apply Theorem 5.1 with µ1
x,t = νω,x,t, µ

2
x,t = δU(ω,x,t), I = η and G = ã(ω)q, for a.e.

ω ∈ GN . From this we easily deduce that νω,x,t = δU(ω,x,t), for a.e. (ω, x, t) ∈ GN × RN × [0, T ].

To prove the weak convergence uε ⇀ u, with u(x, t) given by (5.15), we argue as follows. Let U δ ∈
C(GN × RN × (0,+∞)) be bounded. Using (3.1) with test function

Φ(λ, ω, x, t) := |λ− U δ(ω, x, t)|ψ(x, t)

with ψ ∈ Cc(R
N × (0,+∞)) nonnegative, we obtain

lim sup
ε→0

∫

RN

∫ ∞

0

ψ(x, t)|uε(x) − U δ(
x

ε
, x, t)| dxdt =

∫

RN

∫ ∞

0

∫

GN

|Uψ − U δψ| dωdxdt.

On the other hand, the continuity of Uδ gives

lim
ε→0

∫

RN

∫ ∞

0

U δ(
x

ε
, x, t)ψ(x, t) dxdt =

∫

RN

∫ ∞

0

∫

GN

U δ(ω, x, t) dωψ(x, t) dxdt.

Hence, combining the previous two formulas, we get

lim sup
ε→0

∣∣∣∣
∫

RN

∫ ∞

0

uε(x)ψ(x, t) − Ū δ(x, t)ψ(x, t) dxdt

∣∣∣∣ ≤ ‖U δψ − Uψ‖L1 ,

with Ū δ(x, t) :=
∫

GN U δ(ω, x, t) dω. By a density argument we obtain the weak star convergence of uε to

limδ Ū
δ, i.e.

∫
GN U(ω, x, t) dω. Finally the fact that uε(x, t) − U(xε , x, t) → 0 in L1

loc(R
N × [0, T ]) as ε → 0,

under assumption (5.16), follows directly by Lemma 3.1. �

Remark 5.1 (Convergence of translates). We can easily show that the same convergence statement, with the
same limit u, holds for the solutions uεω associated to the vectorfields aω(z) := a(z+ω) with the initial data
U0ω(z, x) := U0(ω+z, x), for any ω ∈ GN . We may obtain these translates by uniform continuity as functions
in AP∩W 1,∞(RN ; RN ) and AP(RN ;L1

loc(R
N )), respectively. Let Sω be defined as S with a(z) replaced by

a(ω+z) and let Πω be the orthogonal projection of BAP2(RN ) onto Sω. We have Πω(v(ω+ ·)) = Π(v)(ω+ ·)
for all v ∈ AP(RN ). Indeed, w(z) = Π(v)(ω + z) satisfies ∇ · a(ω+ z)w(z) = 0, in the sense of distributions,
that is, w ∈ Sω and for any w′ ∈ Sω we have

∫

RN

(v(ω + z) − w(z))w′(z) dz =

∫

G

v(ω + z)w′(z) dz −

∫

G

Π(v)(z)w′(z − ω) dz = 0,

since w′(· − ω) ∈ S. In particular, Π(a(ω + ·)) = ã(ω + ·) for all ω ∈ GN . The fact that uεω(x, t) − U(ω +
x
ε , x, t) → 0 in L1

loc(R
N × [0, T ]) is then proved as above. In particular, uεω(x, t) converges weakly star in
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L∞(RN × [0, T ]) to

w − lim
ε→0

U(ω +
x

ε
, x, t) =

∫

G

U(ω + z, x, t) dz =

∫

G

U(z, x, t) dz = Ū(x, t).

Concerning (5.16), ensuring the existence of strong correctors, we observe that the first alternative is
trivially satisfied if U0 and ã are independent of z, in which case we may take any T > 0. A simple example
is provided, for N = 2, by the incompressible vector field a(z) = (g(z2), β) with g ∈ AP(R) ∩W 1,∞(R) and
β 6= 0. In this case ã(z) = (

∫
g, β), which follows easily from (4.13). The following lemma gives sufficient

conditions for the verification of the second alternative in (5.16).

Lemma 5.1. If the range of a is contained in a closed convex set P, then U ∈ L2(GN ;C(B(0, R) × [0, T ]))
for any R > 0, for any T > 0 such that the entropy solutions Vb of

(5.33) ∂tVb + ∇x · (bf(Vb)) = 0, t > 0, x ∈ RN ,

(5.34) Vb(x, 0) = U0(z, x), x ∈ RN ,

have locally uniformly bounded Lipschitz constant in RN × [0, T ], with respect to b ∈ P and z ∈ RN .

Proof. By applying (4.13) we obtain that also the range of ã is contained in P . We will prove that U(z, x, t) ∈
L2(G;C(BR(0) × [0, T ])) for any R > 0. Since U is bounded we need only to check its measurability. This
follows by the fact that for any δ > 0 it is possible to find a compact Kδ ⊆ G such that U(z, x, t) ∈
C(Kδ;C(RN× [0, T ])). Indeed, given δ > 0 we may find Kδ such that the restriction of ã to Kδ is continuous.
Now, the stability properties of entropy solutions tell us that ω 7→ U(ω, ·, ·) is continuous from Kδ ⊆ GN into
L1
loc(R

N × [0,+∞)). The local uniform Lipschitz bound then gives continuity with respect to the stronger
topology. �

An example where Lemma 5.1 applies is provided by the case in which all the components of a are
nonnegative, f ′′(u) ≥ 0 for all u ∈ R and ∂U0

∂xi
(z, x) ≥ 0 for all (z, x) ∈ RN ×RN , i = 1, l . . . , N . In this case,

if b ∈ P = [0,M ]N for some M > 0, then it is then well known that the entropy solution Ub of (5.33), (5.34)

can be constructed by the method of characteristics in such a way that Ub ∈ W 1,∞
loc (RN × [0,+∞)) if the

initial datum is a Lipschitz function. We remark that, in general, entropy solutions are discontinuous.

6. Application to Homogenization of Conservation Laws with Oscillatory External

Forces

We consider the homogenization problem for a scalar conservation law in several space variables with a
one-space variable oscillatory external force:

(6.1)





∂tu+

N∑

k=1

∂kf
k(u) =

1

ε
h(
x1

ε
), (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(
x1

ε
, x), x ∈ RN .

Here we assume h = V ′ with h, V ∈ AP(R) and
∫
h = 0. We assume with no loss of generality that also∫

V = 0.
The following result extends to the almost periodic and multidimensional context a previous result of

W. E and D. Serre [23].

Theorem 6.1. Assume that u0(·, x) ∈ AP(R) for any x ∈ RN , that ‖u0‖∞ < +∞, that

(6.2) ∂z1f
1(u0(z1, x)) = h(z1) for a.e. x ∈ RN
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and that the functions fk in (6.1) are bi-Lipschitz and monotone. Denote g = (f1)
−1

and let f̄k be defined
implicitly by

(6.3) p =

∫

R

g(f̄1(p) + V (z1)) dz1,

(6.4) f̄k(p) :=

∫

R

fk ◦ g(f̄1(p) + V (z1)) dz1 2 ≤ k ≤ N.

Let ū(x, t) be the unique entropy solution of

(6.5)





∂tū+
N∑
k=1

∂kf̄
k(ū) = 0, (x, t) ∈ Rd × (0,∞),

ū(x, 0) =
∫

R
u0(z1, x) dz1 x ∈ RN ,

and set

(6.6) U(z1, x, t) = g(V (z1) + f̄1(ū(x, t))).

Then, as ε→ 0, we have uε → ū in the weak star topology of L∞(RN × (0,+∞)) and

(6.7) ‖uε − U(
x1

ε
, x, t)‖L1

loc(R
N×[0,+∞)) → 0.

Proof. We can assume with no loss of generality that all functions fk are increasing. First we observe that
the solutions uε of (6.1) are bounded in L∞(RN × [0,+∞)) uniformly with respect to ε. Indeed, for any
α ∈ R, let Ψα(y) = g(V (y) + α), and notice that Ψα(x1/ε) is a stationary solution of (6.1). Since u0 is
bounded and g(s) → ±∞ as s→ ±∞, we have

g(V (x1/ε) − C) ≤ u0(x1/ε, x) ≤ g(V (x1/ε) + C),

for some constant C and so, by the monotonicity of the solution operator of (6.1), we get

g(V (x1/ε) − C) ≤ uε(x, t) ≤ g(V (x1/ε) + C).

In the sequel we denote by K a closed interval containing the image of all functions uε.
Let νω,x,t ∈ M(K) be the two-scale space-time Young measure associated with a subnet of {uε}ε>0 with

test functions oscillating only on the first variable x1; the theorem will be proved if we can show that νω,x,t
is a Dirac measure for almost every (ω, x, t) ∈ G×RN × (0,+∞), where, in this section, G denotes the Bohr
compactification of R. This will be achieved, as in [23], by adapting DiPerna’s method in [21], that is, with
the application of Theorem 5.1.

Observe that, for every α ∈ R, the entropy solutions of (6.1) satisfy

(6.8) |uε − Ψα(x1/ε)|t +

N∑

k=1

|fk(uε) − fk(Ψα(x1/ε)))|xk
≤ 0

because the monotonicity of fk gives

sgn(uε − Ψα(x1/ε))(f
k(uε) − fk(Ψα(x1/ε))) = |fk(uε) − fk(Ψα(x1/ε))|.

Hence for any nonnegative φ ∈ C∞
c (RN × R) we have

∫

RN

∫ ∞

0

{
|uε − Ψα(x1/ε)|φt + |f1(uε) − f1(Ψα(x1/ε))|φx1(6.9)

+

N∑

k=2

|fk(uε) − fk(Ψα(x1/ε))|φxk

}
dx dt+

∫

RN

|uε0 − Ψα(x1/ε)|φ(x, 0) dx ≥ 0.
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Setting φ(x, t) = εϕ(x1/ε)ψ(x, t), where ϕ ∈ AP(R) and ψ ∈ C∞
c (RN × (0,+∞)) are nonnegative, and

letting ε→ 0, we get
∫

RN

∫ ∞

0

∫

G

ψ(x, t)〈νω,x,t, |f
1(λ) − f1(Ψα(ω))|〉ϕ′(ω) dzdxdt ≥ 0.

Now apply the inequality above to C ± ϕ, with C = ‖ϕ‖∞, to obtain

(6.10)

∫

RN

∫ ∞

0

∫

G

ψ(x, t)〈νω,x,t, |f
1(λ) − f1(Ψα(ω))|〉ϕ′(ω) dzdxdt = 0.

As in [23], we define a new family of parameterized measures µω,x,t by

〈µω,x,t, θ〉 = 〈νω,x,t, θ(f
1(λ) − V (ω))〉 for any θ ∈ C(R),

so that µω,x,t are the image of νω,x,t under the map λ 7→ f1(λ) − V (ω) and are supported in a compact set
K ′ containing all points f1(λ) − V (ω) with λ ∈ K and ω ∈ G. Equation (6.10) can also be rephrased as

(6.11)

∫

RN

∫ ∞

0

∫

G

ψ(x, t)〈µω,x,t, θ〉ϕ
′(ω)dzdxdt = 0

where θ(ρ) = |ρ − α|, α ∈ R. On the other hand, using the same test function as above in the integral
equation defining weak solution of (6.1), we get in a similar way that the same holds when θ is any affine
function. Now, since any continuous function may be locally uniformly approximated in R by finite linear
combinations of affine functions and functions of the form |ρ− α| (because these combinations generate the
piecewise affine functions), we conclude that (6.11) holds for any continuous function θ. Then, we can apply
Proposition 2.3 to obtain that µω,x,t is independent of ω in the following (weak) sense: for any ψ, θ as above
the function

ω 7→

∫

RN

∫ ∞

0

ψ(x, t)〈µω,x,t, θ〉 dxdt

is equivalent to a constant (since G is not separable this does not imply in principle that ω 7→ µω,x,t is
constant for a.e. (x, t)!). Using this fact, and defining

µx,t :=

∫

G

µω,x,t dω ∈ M(K ′),

we have, in particular,
∫

R
N+1
+

ψ(x, t)〈µω,x,t, θ〉 dx dt =

∫

R
N+1
+

ψ(x, t)〈µx,t, θ〉 dx dt, for a.e. ω ∈ G.

Hence,
∫

RN

∫ ∞

0

〈µx,t,

∫

G

w(ω, ·) dω〉ψ(x, t) dxdt(6.12)

=
∑

i

m(Gi)

∫

RN

∫ ∞

0

〈µx,t, θi〉ψ(x, t) dxdt =
∑

i

∫

RN

∫ ∞

0

∫

Gi

〈µω,x,t, θi〉 dω ψ(x, t) dxdt

=

∫

RN

∫ ∞

0

∫

G

〈µω,x,t, w(ω, ·)〉ψ(x, t) dω dxdt

for any simple function w =
∑

i θiχGi from G to C(K ′). By approximation (6.12) holds for any w ∈
C(G ×K ′).
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Next, we take any nonnegative φ ∈ C1
c (R

N+1) in (6.9) and take the limit as ε→ 0, passing to a subnet if
necessary, to get

∫

RN

∫ ∞

0

∫

G

{
〈νω,x,t , |λ− Ψα(ω)|〉φt + 〈νω,x,t, |f

1(λ) − f1(Ψα(ω))|〉φx1(6.13)

+
N∑

k=2

〈
νω,x,t , |f

k(λ) − fk(Ψα(ω))|
〉
φxk

}
dω dx dt+

∫

RN

∫

G

|u0(ω, x) − Ψα(ω)|φ(x, 0) dω dx ≥ 0.

We extend νω,t,x and µω,t,x to negative times with the 0 value. Then, using the substitution formulas
λ = g(ρ+ V (ω)), Ψα(z1) = g(α+ V (ω)), and taking into account (6.12), we can rewrite (6.13) as

(6.14) ∂t〈µx,t, I(·, α)〉 + ∇x · 〈µx,t, G(·, α)〉 ≤ δα ∀α ∈ R

in the sense of distributions in RN × R, with

I(ρ, α) :=

∫

G

|g(ρ+ V (ω)) − g(α+ V (ω)| dω,(6.15)

Gk(ρ, α) :=

∫

G

|mk(ρ+ V (ω)) −mk(α+ V (ω)| dω, (1 ≤ k ≤ N)(6.16)

δα(φ) :=

∫

RN

∫

G

|u0(ω, x) − g(α+ V (ω))|φ(x, 0) dω dx,(6.17)

with mk = fk ◦ g (notice that m1(t) = t). By (6.14) and the definition of δα we obtain

(6.18) ess − lim sup
t↓0

∫

RN

χ(x)〈µx,t, I(·, α)〉 dx ≤

∫

RN

χ(x)

∫

G

|u0(ω, x) − g(α+ V (ω))| dω dx

for any nonnegative χ ∈ C∞
c (RN ) and any α ∈ R, which easily extends to all nonnegative χ ∈ L1(RN ).

Using the flexibility provided by χ ∈ L1(RN ) in (6.18), we deduce that the same inequality still holds if α is
a bounded measurable function α(x); in particular, for α(x) = f1(u0(ω, x))− V (ω) = f̄1(ū(x, 0)), where the
last equality follows from (6.3) and (6.5). For this choice of α(x) we have g(α(x) + V (ω)) = u0(ω, x) and so
(6.18) implies

(6.19) lim
t→0

1

t

∫ t

0

∫

RN

〈µx,τ , g〉φ(x) dx dτ =

∫

RN

〈δf̄1(ū(x,0)), g〉φ(x) dx,

for all g ∈ C(R) and φ ∈ Cc(R
N ).

The idea now is to apply Theorem 5.1 to show that νω,x,t is a Dirac measure for almost every (ω, x, t).
Let ū(x, t) be the entropy solution of (6.5). We have

(6.20) ∂t|γ − ū| +
N∑

k=1

∂xk
|f̄k(γ) − f̄k(ū)| ≤ 0

in the sense of distributions in RN × (0,+∞) for all γ ∈ R, and also

(6.21) lim
t→0

∫

{|x|<R}

|ū(x, t) − ū0(x)| dx = 0, for all R > 0.

Let ξ(x, t) = f̄1(ū(x, t)), ρ = f̄1(γ). Then the definitions of f̄k give

ū(x, t) =

∫

G

g(ξ(x, t) + V (ω)) dω, γ =

∫

G

g(ρ+ V (ω)) dω,

f̄k(ū(x, t)) =

∫

G

mk(ξ(x, t) + V (ω)) dω, f̄k(γ) =

∫

G

mk(ρ+ V (ω)) dω.
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Moreover, since g and all mk are monotone, we have∣∣∣∣
∫

G

(g(ρ+ V (ω)) − g(ξ + V (ω))) dω

∣∣∣∣ =

∫

G

|g(ρ+ V (ω)) − g(ξ + V (ω))| dω,

∣∣∣∣
∫

G

(mk(ρ+ V (ω)) −mk(ξ + V (ω))) dω

∣∣∣∣ =

∫

G

|mk(ρ+ V (ω)) −mk(ξ + V (ω))| dω.

Hence, we can write (6.20) as

∂tI(ρ, ξ(x, t)) + ∇ ·G(ρ, ξ(x, t)) ≤ 0 ∀ρ ∈ R(6.22)

in the distribution sense in RN+1
+ . From (6.21) we also have

lim
t→0

∫

{|x|<R}

|ξ(x, t) − ξ(x, 0)| dx = 0, for all R > 0.(6.23)

We can now apply Theorem 5.1 with µ1
x,t = µx,t, µ

2
x,t = δξ(x,t), I and G as given by (6.15) and (6.16),

to conclude that µt,x is the Dirac mass concentrated at ξ(x, t) for a.e. (x, t). Recalling the definition of µt,x
we have also that µω,x,t is the Dirac mass at ξ(x, t) for a.e. (ω, t, x), and finally that νω,t,x is the Dirac mass
concentrated at g(V (ω) + f̄(ξ(x, t))) for a.e. (ω, t, x). Taking into account Lemma 3.1, this proves (6.7) and
it remains only to show the weak convergence of uε to ū.

By (6.7) it suffices to show the convergence of U(x1/ε, x, t): for any φ ∈ C0(R
N × (0,+∞)), we have

lim
ε→0

∫

RN

∫ ∞

0

U(
x

ε
, x, t)φ(x, t) dx dt =

∫

RN

∫ ∞

0

φ(x, t)

(∫

G

U(z, x, t) dz

)
dx dt

=

∫

RN

∫ ∞

0

φ(x, t)

(∫

G

g(V (z1) + f̄1(ū(x, t))) dz1

)
dx dt

=

∫

RN

∫ ∞

0

φ(x, t)ū(x, t) dx dt,

by the definitions of f̄1 and U . �

Remark 6.1 (Convergence of translates). The convergence statement also applies to the solutions uεω of
the PDE associated to the functions hω(z1) = h(ω + z1), ω ∈ G, with the initial condition u0ω(z1, x) =
u(·, x)(ω+ z1), that (by the averaging properties of almost periodic functions) induce the same initial datum

ū(x, 0) and therefore the same solution ū of the limit scalar conservation law. Hence

(6.24) ‖uεω(x, t) − Uω(
x1

ε
, x, t)‖L1

loc(R
d×[0,+∞)) → 0,

where Uω(x, t) is given by (6.6) with V (z1) replaced by Vω(z1) = V (ω + z1), and uεω → ū in the weak star
topology of L∞(RN × (0,+∞)).

In closing this section we would like to mention that some extension of the theorem of W. E and D. Serre
[23] to equations with non-monotone flux functions has recently been obtained by D. Amadori [3]. We take
the opportunity to thank Debora Amadori for bringing [23] to our attention.

7. Application to homogenization of Hamilton-Jacobi equations

In this section we apply the results of the previous sections to the homogenization problem for the
Hamilton-Jacobi equation

(7.1) u(x) +H(
x

ε
, x,Du(x)) = 0, x ∈ RN ,

where ε is a positive constant. We assume that the Hamiltonian H(z, x, p) is almost periodic in z. The
homogenization of (7.1) in the periodic case was addressed by Lions, Papanicolaou and Varadhan [37] (see
also [24], [11]). In the almost periodic context, the first homogenization result was obtained by Arizawa [5]
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for Hamiltonians which are convex in p; subsequently, this result was extended to more general Hamiltonians
by Ishii [31]. We follow the approach in [31], adding to it further observations that are derived from the
results of the previous sections, in particular, the existence of multiscale Young measures. We also provide
a global statement involving all translates of the Hamiltonian by ω ∈ G.

As is well-known, equation (7.1) does not have a classical solution in general, and we adopt the notion
of viscosity solutions as weak solutions of (7.1). We refer to viscosity solutions, viscosity subsolutions and
viscosity supersolutions simply as solutions, subsolutions and supersolutions (see, e.g., [16] for a detailed
account on the theory of viscosity solutions).

Given x, p ∈ RN fixed, together with (7.1), we consider the following set of auxiliary equations

(7.2) εvε(z) +H(z, x, p+Dvε(z)) = 0, z ∈ RN .

We make the following assumptions on H (cf. [31]):

(H0) H ∈ C(RN × RN × RN ).
(H1) For each R > 0, H(z, x, p) ∈ AP(RN ; BUC(B(0;R) ×B(0;R))).
(H2) limR→∞ inf{H(z, x, p) : z, x, p ∈ RN , |p| ≥ R} = +∞.
(H3) For each R > 0 there is a function ωR ∈ C([0,∞)), with ωR(0) = 0, such that

|H(z, x, p) −H(z, x, q)| ≤ ωR(|p− q|), z, x ∈ RN , p, q ∈ B(0;R).

(H4) sup{|H(z, x, p)| : z, x ∈ RN , p ∈ B(0, R)} <∞.

The following theorem has been proved by H. Ishii in [31], and we reproduce with minor variants his proof
for the reader’s convenience.

Theorem 7.1. Under assumptions (H0), (H1), (H2), (H3) we have the following:

(i) For each ε > 0, there is a unique solution uε ∈ BUC(RN ) of (7.1) and ‖uε‖∞ + ‖Duε‖∞ ≤ A for
some number A > 0 independent of ε.

(ii) For each ε > 0 and x, p ∈ RN fixed, there is a unique solution vε ∈ BUC(RN ) of (7.2), vε(z) =
vε(z;x, p), and ‖εvε‖∞ + ‖Dvε‖∞ ≤ A(x, p) for some number A(x, p) > 0 depending on (x, p) but
independent of ε.

(iii) For each x, p fixed εvε(z) are almost periodic in RN and converge uniformly in RN to a constant
−H̄(x, p).

(iv) H̄ ∈ C(RN × RN ) and, for each R > 0, there is a function νR ∈ C([0,∞)), with νR(0) = 0, such
that

|H̄(x, p) − H̄(x, q)| ≤ νR(|p− q|), x ∈ RN , p, q ∈ B(0;R).

(v) uε → u, as ε→ 0, locally uniformly in RN , where u is the unique solution in BUC(RN ) of

(7.3) u(x) + H̄(x,Du(x)) = 0, x ∈ RN .

Proof. 1. The solution of (7.1) is obtained by Perron’s method (cf. [29]), observing that, for Ã =

sup{|H(z, x, 0)| : z, x ∈ RN}, we have that the functions ũ(x) := Ã and ṽ(x) = −Ã are supersolution

and subsolution of (7.1), respectively. In particular, ‖uε‖∞ ≤ Ã. The fact that ‖Duε‖∞ is uniformly
bounded follows from (H2) and the uniform boundedness of uε. Uniqueness follows by the standard com-
parison principle. Analogously, we prove the existence and the uniqueness of the solution of (7.2), and the
bounds in (ii).

2. Assertion (iii) is the decisive point in the whole theorem. Fix x, p ∈ RN , and denote by vε(z) =
vε(z;x, p) the solution of (7.2). First, we observe that εvε(z)−εvε(0) converges locally uniformly to 0, which
easily follows from the uniform boundedness of Dvε, so item (i) of Lemma 2.2 is satisfied. Also, item (ii)
of Lemma 2.2 is satisfied. Indeed, by assumption (H1), given δ > 0 there are t1, . . . , tr ∈ RN such that,
given any t ∈ RN , there is a tj ∈ {t1, . . . , tr}, |H(z + t, x, q) − H(z + tj , x, q)| < δ for all z, q ∈ RN with

|q| ≤ A+ |p|. For such t ∈ RN , we have that vε(z + t) ± δ
ε is a supersolution (subsolution) of

εv +H(z + tj , x, p+Dv) = 0,
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and, consequently, by comparison, ‖εvε(·+ t)−εvε(·+ tj)‖∞ < δ, uniformly in ε, as was to be shown. Hence,
we have ‖εvε − εvε(0)‖∞ → 0. Since εvε(0) is bounded, we may extract a subsequence εi → 0 such that
εivεi(0) converges to some −λ ∈ R.

3. We claim that εvε(0) → −λ. Indeed, suppose there is another subsequence ε′i → 0 such that ε′ivε′i(0) →
−µ, with µ 6= λ, say, µ < λ. Let δ < (λ− µ)/2. In this case, for ε sufficiently small, it would be possible to
find solutions w, w′ to

H(z, x, p+Dw) ≥ λ− δ, and H(z, x, p+Dw′) ≤ µ+ δ,

which contradicts the following result (cf. [31], Proposition 6).
4. Let G ∈ C(RN × RN ) satisfy the condition: for each R > 0 there is a function νR ∈ C([0,∞)), with

νR(0) = 0, such that

|G(x, p) −G(x, q)| ≤ νR(|p− q|), x ∈ RN , p, q ∈ B(0, R).

Let λ, µ ∈ R. Suppose there are bounded Lipschitz functions, v(x) and w(x), satisfying G(x,Dv(x)) ≥ λ
and G(x,Dw(x)) ≤ µ in RN . Then λ ≤ µ.

We reproduce here the proof of this proposition as in [31] for the sake of completeness. Suppose, by
absurd, that λ > µ and let v and w be as above. Set L = ‖Dw‖∞. Let ρ ∈ (0, 1), and define the function
w̃ ∈ C(RN ) by w̃(x) = w(x) − ρ(|x|2 + 1)1/2. Then we have ‖Dw̃ −Dw‖∞ ≤ ρ and hence w̃ is a solution of

G(x,Dw̃(x)) ≤ µ+ νL+1(ρ) x ∈ RN .

Now, we choose ρ ∈ (0, 1) such that µ+ νL+1(ρ) < λ and consider the function for any σ > 0 the function

w̃(x) − v(y) − σ|x− y|2 (x, y) ∈ RN × RN .

Since w̃(x) → −∞ as |x| → ∞, it is easy to check that this function attains a maximum at some point
(xσ, yσ) ∈ RN × RN with |xσ| ≤ C(ρ), and we have

G(xσ, 2σ(xσ − yσ)) ≤ µ+ νL+1(ρ)

and
G(yσ, 2σ(xσ − yσ)) ≥ λ.

Moreover, the Lipschitz condition on w̃ and v yields that σ(xσ − yσ) is bounded. Hence, sending σ → ∞, we
see that for some x̂, p̂ ∈ RN , λ ≤ G(x̂, p̂) ≤ µ+ νL+1(ρ), which gives a contradiction and proves the claim.

6. Hence, we set H̄(x, p) = − lim
ε→0

εvε(0;x, p), which is well defined.

7. The fact that H̄(x, p) is continuous in x follows from the continuity in x of H(z, x, p), the uniform
boundedness of εvε(z;x, p) for |p| < R, which in turn implies the uniform boundedness of Dvε(z;x, p)
for |p| < R, and comparison principle. These facts imply that for x̃ arbitrarily close to x, εv(0; x̃, p)
will be as close as we wish to εvε(0;x, p), uniformly in ε, and so we will have H̄(x̃, p) arbitrarily close
to H̄(x, p), by passing to the limit when ε → 0. Following the same line of reasoning we prove that
|H̄(x, p) − H̄(x, p)| ≤ νR(|p − q|), uniformly for x ∈ RN and |p|, |q| < R, for some νR ∈ C([0,∞)) with
νR(0) = 0.

8. Since the solutions uε of (7.1) satisfy ‖uε‖∞ + ‖Duε‖∞ ≤ C for some C > 0 independent of ε, the
family {uε : ε > 0} is relatively compact with respect to local uniform convergence in RN . We fix any
sequence εj → 0 such that uεj (x) → ū(x) locally uniformly on RN as j → ∞. We will show that ū is a
solution of (7.3). By the uniqueness of the bounded solution u of (7.3), we conclude that ū = u, which
implies that uε(x) → u(x) locally uniformly in RN .

9. Let ϕ ∈ C1(RN ) and assume that ū−ϕ has a strict maximum at x̂. For simplicity we write uj for uεj .
Possibly replacing ϕ by ϕ(x) + |x− x̂|2 we can assume that ϕ(x) → +∞ as |x| → +∞.

10. Take δ ∈ (0, 1) and let vδ ∈ BUC(RN ) be a solution of (7.2) with x = x̂, p = Dϕ(x̂) and δ > 0
sufficiently small, so that

H(z, x̂,Dϕ(x̂) +Dvδ(z)) ≥ H̄(x̂, Dϕ(x̂)) − δ, z ∈ RN .
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Consider the function uj(x) − ϕ(y) − εjv
δ( yεj

) − σ|x − y|2 on RN × RN and let (xσ , yσ) ∈ RN × RN be one

of its maximum points, whose existence is obviously ensured. We have

uj(xσ) +H(
xσ
εj
, xσ, 2σ(xσ − yσ)) ≤ 0,

H(
yσ
εj
, x̂, Dϕ(x̂) −Dϕ(yσ) + 2σ(xσ − yσ)) ≥ H̄(x̂, Dϕ(x̂)) − δ.

Since ϕ has a quadratic growth at infinity and uj is bounded we have |yσ| ≤ C with C depending only on j.
Since ‖Duj‖∞ ≤ L and hence 2σ|xσ − yσ| ≤ L, sending σ → ∞ and passing to a subsequence if necessary
we get

uj(x̃j) +H(
x̃j
εj
, x̃j , pj) ≤ 0,

H(
x̃j
εj
, x̂, Dϕ(x̂) −Dϕ(x̃j) + pj) ≥ H̄(x̂, Dϕ(x̂)) − δ

for some pj ∈ B(0;L) and some maximizer x̃j of uj − ϕ − εjv
δ(·/εj). Taking the difference of the above

inequalities and letting j → ∞ we can use the fact that x̃j → x̂ to obtain that ū(x̂)+ H̄(x̂, Dϕ(x̂)) ≤ δ, and,
since δ > 0 is arbitrary, it follows that ū is a subsolution of (7.3).
Arguing in an entirely similar way we also obtain that ū is a supersolution of (7.3). �

In the following theorem we analyze the convergence of uε to u from the Young measure viewpoint,
deriving some relation between the effective Hamiltonian H̄ , the Young measures νz,x generated by uε and
the asymptotic mean value of H . Notice that it is still an open problem (to our knowledge, even in the
periodic case) to give a characterization of νz,x and to show full convergence as ε → 0 (i.e. not along
subnets). We are able to characterize νz,x only when the Hamiltonian is strictly convex (or concave) and
the PDE for correctors admits exact solutions. Nevertheless, concerning the latter, we emphasize that we
do not require sublinear growth at infinity for these solutions v(z) (see (7.5) below), since we only impose
conditions on their gradients Dzv(z).

Theorem 7.2 (Strong convergence and correctors). Let H, uε, u, vε as in Theorem 7.1. If νz,x is any
two-scale Young measure associated with D(uε − u), then

(7.4) H̄(x,Du) =

∫

GN

〈νz,x, H(z, x,Du+ ·)〉 dz.

Consequently, in case H(z, x, p) is convex in p, for each z, x ∈ RN , we have

H̄(x,Du) ≥

∫

GN

H(z, x,Du) dz,

and, in case of strict convexity, equality holds if and only if Duε → Du in L1
loc(R

N ; RN ).
More yet, if H(z, x, ·) is strictly convex, then the following two conditions are equivalent:

(a) for a.e. x ∈ RN there is a solution v(z) = v(z;x) of

(7.5) H(z, x,Du(x) +Dzv(z)) = H̄(x,Du(x))

such that x 7→ Dzv(z;x) ∈ L1
loc(R

N ; AP(RN ; RN ));
(b) Duε(x) −Dzv(

x
ε ;x) −Du(x) → 0 in L1

loc(R
N ) with x 7→ Dzv(z;x) ∈ L1

loc(R
N ; AP(RN ; RN )).

Both conditions imply that νz,x = δDu(x)+Dzv(z;x) for a.e. (z, x) ∈ GN × RN .

Proof. Since uε(x) → u(x) locally uniformly in RN and u is a solution of (7.3) we conclude that

H(
x

ε
, x,Duε(x)) → H̄(x,Du(x)) locally uniformly in RN .
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Moreover, we must have Duε → Du in the weak star topology of L∞(RN ; RN ). Hence, given any two-scale
Young measure νz,x generated in Ω = B(0, R) by the sequence of uniformly bounded functions D(uε − u)

(with K = B(0, 2A)), choosing as a test function

Φ(z, x, λ) := H(z, x,Du(x) + λ)ϕ(x) ∈ L1(Ω; AP(RN ;C(K))), ϕ ∈ C∞
c (RN )

we must have ∫

Ω×GN

ϕ(x)〈νz,x, H(z, x,Du(x) + ·)〉 dzdx =

∫

Ω

H̄(x,Du(x))ϕ(x) dx.

Since ϕ is arbitrary we get
∫

GN

〈νz,x, H(z, x,Du(x) + ·)〉 dz = H̄(x,Du(x)) for a.e. x ∈ B(0, R).

When H(z, x, ·) is convex, Jensen’s inequality implies
∫

GN

H(z, x,Du(x)) dz ≤ H̄(x,Du(x)) for a.e. x ∈ B(0, R),

and, in case H(z, x, ·) is strictly convex, equality holds if and only if νz,x is the Dirac measure concentrated
in Du(x), that is, Duε → Du strongly in L1(B(0, R); RN ).

Now we prove the equivalence of (a) and (b). If v(z;x) satisfies (7.5) and g(x, z) ∈ L1
loc(R

N ; AP(RN ; RN)),
with g(x, z) := Dzv(z;x), we have

uε +H(
x

ε
, x,Duε(x)) −H(

x

ε
, x,Du(x) +Dzv(

x

ε
;x)) = −H̄(x,Du(x)).

Multiplying by φ(x)ϕ(xε ) with φ ∈ C0(R
N ), ϕ ∈ AP(RN ), integrating in RN and taking the limit along a

suitable subnet ε(d), d ∈ D, we obtain
∫

RN

∫

GN

{〈νz,x, H(z, x, ·)〉 −H(z, x,Du(x) +Dzv(z;x))}φ(x)ϕ(z) dz dx = 0,

where νz,x is the two-scale Young measure associated with Duε along the subnet ε(d). Since ϕ and φ are
arbitrary, we have

〈νz,x, H(z, x, λ)〉 −H(z, x,Du(x) +Dzv(z;x)) = 0 for a.e. (z, x) ∈ GN × RN .

By the strict convexity of H(z, x, ·) we conclude that

(7.6) νz,x = δDu(x)+Dzv(z;x) for a.e. (z, x) ∈ GN × RN ,

and this implies that Duε(x) −Dzv(
x
ε ;x) −Du(x) → 0 in L1

loc(R
N ) by Lemma 3.1.

Conversely, if Duε(x)−Dzv(
x
ε ;x)−Du(x) → 0 in L1

loc(R
N ) and Dzv(z;x) ∈ L1

loc(R
N ; AP(RN )), again by

Lemma 3.1 we must have (7.6) for a.e. (z, x) ∈ GN ×RN . Then, multiplying by φ(x)ϕ(xε ), with φ ∈ C0(R
N ),

ϕ ∈ AP(RN ), the equation

uε +H(
x

ε
, x,Du(x) +Dzv(

x

ε
;x)) = H(

x

ε
, x,Du(x) +Dzv(

x

ε
;x)) −H(

x

ε
, x,Duε(x)),

which holds for a.e. x ∈ RN , integrating in RN , passing to a suitable subnet {ε(d)}d∈D and using the fact
that uε → u(x) = −H̄(x,Du(x)) for a.e. x ∈ RN , we obtain

∫

RN

∫

GN

H(z, x,Du(x) +Dzv(z;x))φ(x)ϕ(z) dz dx =

∫

RN

∫

GN

H̄(x,Du(x))φ(x)ϕ(z) dz dx,

which implies that v(·;x) satisfies a.e. in RN the PDE (7.5) for a.e. x ∈ RN . �
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An example is provided in the unidimensional case N = 1 by an equation of the form

(7.7) u+H(Dxu) = V (
x

ε
),

where V ∈ AP(R) and H(p) is strictly monotone (increasing or decreasing) and strictly convex (or concave).
In this special case the boundedness of Dxu

ε is still guaranteed by the boundedness of uε, which is again a
consequence of Perron’s method: instead of hypothesis (H2) we use the fact that H is invertible. Clearly,

for each p ∈ R, there is a unique value H̃(p) defined by

p =

∫

R

H−1(V (z) + H̃(p)) dz.

We claim that H̃(p) = H̄(p). Indeed, if vε = vε(x; z, p) is the solution of

(7.8) εv +H(p+Dzv) = V (z),

we have

Dzvε = H−1(−εvε(z) + V (z)) − p,

and, since −εvε → H̄(p) uniformly in R, after taking the average in R of both sides of the above equation
and sending ε→ 0, we conclude that

p =

∫

R

H−1(H̄(p) + V (z)) dz,

and, so, H̄(p) coincides with H̃(p). Hence, the equation

(7.9) H(p+Dzv) = H̄(p) + V (z)

may be easily solved, and we find

(7.10) Dzv(z; p) = H−1(H̄(p) + V (z)) − p.

So, v is determined up to a constant, and Dzv ∈ AP(R). Therefore, we may apply the above observation to
conclude that Duε −Du(x) −Dv(xε ;Du(x)) → 0 strongly in L1

loc.
In the following remark we consider, together with (3.3) and (3.4), also the families of their translates,

(7.11) uεω(x) +Hω(
x

ε
, x,Duεω(x)) = 0, x ∈ RN , ω ∈ GN ,

and

(7.12) εvεω(z) +Hω(z, x, p+Dvεω(z)) = 0, z ∈ RN , ω ∈ GN ,

with Hω(z, x, p) := H(ω + z, x, p). Here we keep the same notation H(ω + z, x, p) understanding that, if
ω ∈ GN , we are considering the extension of H to GN × RN × RN . A continuity argument shows that the
maps Hω still satisfy (H0)-(H4) (even uniformly with respect to the parameter ω).

Remark 7.1 (Convergence of translates). The solutions uεω(x) of (7.11) converge to u(x), as ε → 0, locally
uniformly in RN , for all ω ∈ GN , where u is still the unique solution in BUC(RN ) of (7.3). It suffices
to notice that the effective Hamiltonian H̄ω(x, p) given by Theorem 7.1 is the (constant) uniform limit of
εvεω(·;x, p) as ε→ 0. In the case when ω ∈ RN we have the obvious relation

vεω(z;x, p) = vε(z + ω;x, p) ∀z ∈ RN ,

that, keeping ε fixed, can be extended to vεω(·;x, p) = vε(· + ω;x, p) for any ω ∈ GN . Passing to the limit
as ε→ 0 we obtain that H̄ω(x, p) = H̄(x, p).
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We conclude by recalling briefly how these results fit in the more general framework of stationary ergodic
processes. Given a probability space (Ω,F , µ), for x ∈ RN let τx : Ω → Ω be a measure preserving and
ergodic transformation group (i.e. τxA = A for all x ∈ RN implies that either µ(A) = 0 or µ(A) = 1). We
say that a measurable function f : Ω × RN → R is stationary if

f(ω; y + z) = f(τzω; y) for all y, z ∈ RN and ω ∈ Ω.

The random variable f : Ω×RN → R is stationary ergodic if it is stationary and the underlying transforma-
tion group is ergodic. In view of Theorem 2.8, for each x, p fixed, the process f(ω; z, x, p) = H(ω + z, x, p)
is clearly stationary ergodic (cf. [33], Ch. 7).

8. Application to Homogenization of Fully Nonlinear Elliptic Equations

In this section we consider the homogenization problem for a fully nonlinear elliptic equation of the form

(8.1) u+ F (
x

ε
, x,D2u) = 0, x ∈ RN .

Here, we make the following basic assumptions on F (z, x,M):

(F1) F (z, x,M) ∈ C(RN × RN × SN ), where SN is the space of symmetric N ×N matrices;
(F2) F (z, x,M) ∈ AP(RN ; BUC(B(0;R) × SNR )), where SNR := {M ∈ SN : ‖M‖ < R};
(F3) λ‖N‖ ≤ F (z, x,M −N) − F (z, x,M) ≤ Λ‖N‖, for certain λ,Λ > 0, for all N ≥ 0;
(F4) sup{|F (z, x,M)| : z, x ∈ RN , M ∈ SNR } <∞.

Here, for M ∈ S, we denote ‖M‖ = sup|y|=1 |My|.

As in the last section, for each x,M ∈ RN × S fixed, we consider the auxiliary equation

(8.2) εv + F (z, x,M +D2v) = 0, z ∈ RN ,

as well as all translates, for ω ∈ G, of both equations:

(8.3) u+ F (ω +
x

ε
, x,D2u) = 0, x ∈ RN ,

and

(8.4) εv + F (ω + z, x,M +D2v) = 0, z ∈ RN .

Before we state our result for the fully nonlinear elliptic equations (8.1), let us recall some facts about the
regularity theory for solutions of (8.1) (cf. [13], Ch. 7). Let us denote

Gε(x,M) = F (
x

ε
, x,M) − F (

x

ε
, x, 0),

and for a uniformly elliptic operator G with ellipticity constants λ,Λ we set

β(x, x0) = sup
M∈SN\{0}

|G(x,M) −G(x0,M)|

‖M‖
.

Let B1 denote the unit ball centered at 0 and let x0 ∈ B1. We say that G(x0, D
2w) = 0 has C1,1 interior

estimates (with constant ce) if for any w0 ∈ C(∂B1) there exists a solution w ∈ C2(B1) ∩ C(B̄1) of
{
G(x0, D

2w(x)) = 0 if x ∈ B1,

w(x) = w0(x) if x ∈ ∂B1

such that

‖w‖C1,1(B̄1/2)
≤ ce‖w0‖L∞(∂B1).

If G(x0,M) is concave (or convex) in M ∈ S for any x0 ∈ B1, then G(D2w, x0) = 0 has C1,1 estimates
with a universal ce, by Theorem 6.6 of [13] (see, in particular, (6.14), p. 57 of [13]). We recall the following
theorem of Caffarelli [12] (cf. [13], Theorem 7.1).
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Theorem 8.1 (cf. Theorem 7.1, [13]). Let u be a bounded solution in B1 of

G(x,D2u) = f(x).

Assume that G(x, 0) ≡ 0 in B1 and that G(x0, D
2w) has C1,1 interior estimates (with constant ce) for any

x0 ∈ B1. Let N < p < ∞ and suppose that f ∈ Lp(B1). Then there exist positive constants β0 and C
depending only on N,λ,Λ, ce and p such that if

(8.5)

(
|Br(x0)|

∫

Br(x0)

β(x, x0)
n dx

)1/n

≤ β0

for any ball Br(x0) ⊆ B1, then u ∈W 2,p(B1/2) and

‖u‖W 2,p(B1/2) ≤ C(‖u‖L∞(B1) + ‖f‖Lp(B1)).

The following result is the analogue of Theorem 7.1 for nonlinear elliptic equation and its proof follows a
similar line of arguments. Assertion (vii) is motivated by the more general discussion developed in [14]. We
also refer to [6] for a related result.

Theorem 8.2. We have the following:

(i) For each ε > 0 there is a unique solution uε ∈ BUC(RN ) of (8.1) and ‖uε‖∞ ≤ A0, for some A0 > 0
independent of ε,and, for any compact K ⊆ RN , [uε]C0,α(K) ≤ A1(K), for some 0 < α < 1 and
A1 > 0 possibly depending on K but independent of ε.

(ii) For each ε > 0 and x ∈ RN , M ∈ SN fixed, there is a unique solution vε ∈ BUC(RN ) of (8.2),
ε‖vε‖∞ ≤ A0(x,M) for some number A0(x,M) > 0, depending on (x,M) but independent of ε and,
for any compact K ⊆ RN , [vε]C0,α(K) ≤ A1(x,M,K) for some 0 < α < 1 and A1 > 0 depending on
K,x,M but independent of ε.

(iii) For each x,M fixed, εvε(z;x,M) converges uniformly for z ∈ RN to a constant −F̄ (x,M).
(iv) F̄ (x,M) satisfies (F1)-(F4).
(v) uε → u as ε→ 0 locally uniformly in RN , where u is the unique solution in BUC(RN ) of

(8.6) u(x) + F̄ (x,D2u(x)) = 0, x ∈ RN .

(vi) Let all Gε(x,M), ε > 0, satisfy (8.5) of Theorem 8.1 and assume that F (z, x,M) has polynomial

growth as ‖M‖ → ∞, uniformly for (z, x) ∈ RN × RN . Then uε is uniformly bounded in W 2,p
loc , for

any N < p <∞. Let νz,x be any two-scale Young measure associated with the sequence D2(uε − u).
Then

(8.7) F̄ (x,D2u) =

∫

GN

〈νz,x, F (z, x,D2u+ ·)〉 dz.

Consequently, if F (z, x, ·) is convex, we have

F̄ (x,D2u) ≥

∫

GN

F (z, x,D2u) dz,

and, in case of strict convexity, equality holds if and only if D2uε → D2u in L1
loc(R

N ; RN). Analogous
conclusions hold when F (z, x, ·) is concave for each z, x ∈ RN .

(vii) More yet, if F (z, x, ·) is strictly convex and has polynomial growth as ‖M‖ → ∞, uniformly for
(z, x) ∈ RN × RN , then the following two conditions are equivalent:
(a) for a.e. x ∈ RN there is a solution v(z) = v(z;x) of

(8.8) F (z, x,D2u(x) +D2
zv(z)) = F̄ (x,Du2(x))

such that x 7→ D2
zv(z;x) ∈ L1

loc(R
N ; AP(RN ;SN ));

(b) D2uε(x)−D2
zv(

x
ε ;x)−D2u(x) → 0 in L1

loc(R
N ) with x 7→ D2

zv(z;x) ∈ L1
loc(R

N ; AP(RN ;SN )).

Both conditions imply that νz,x = δD2u(x)+D2
zv(z;x)

for a.e. (z, x) ∈ GN × RN .
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(viii) More generally, we have for the solutions uεω(x) of (8.3) that uεω(x) → u(x) as ε→ 0 locally uniformly
in RN , for all ω ∈ GN , where u is the unique solution in BUC(RN ) of (8.6).

Proof. The proof follows closely the lines of the proof of Theorem 7.1, the main difference being the usual
changes required in the comparision arguments for Hamilton-Jacobi equations when transported to second
order elliptic equations. In fact, these changes involve crucial ideas that allowed the extension of the theory of
viscosity solutions to second order fully nonlinear elliptic equations, which were primarily due to Jensen [32]
(see also [31] and [16]). Since the rigorous arguments require technical but nowadays standard procedures,
here we will limit ourselves in giving these arguments in a formal way, assuming smoothness of the functions
involved.

1. Existence of a solution of (8.1) is again provided by Perron’s method, through comparison principle, in
view of (F4), and uniqueness also follows by comparison (see, e.g., [30], [16]). Now we do not have a uniform
estimate for Duε, but, instead, we have a local uniform estimate for the Hölder continuity of uε, by a well
known regularity result for fully nonlinear elliptic equations which follows from Harnack inequality (see [13],
Ch. 4). This proves (i). The proof of (ii) is analogous.

2. Concerning assertion (iii), as for the compactness of εvε, it follows again by the compactness criterion
in AP, Lemma 2.2, assumption (F2), and the uniform boundedness of [vε]C0,α(K), for any compact K ⊆ RN .

3. The uniqueness of F̄ (x,M) and, hence, the convergence of the whole sequence εvε follows from the
following analogue of 4. of the proof of Theorem 7.1.

4. Let G ∈ C(RN × RN ) satisfy the ellipticity condition (F3). Let µ, ν ∈ R. Suppose there are bounded
continuous functions, v(x) and w(x), satisfying G(x,D2v(x)) ≥ µ and G(x,D2w(x)) ≤ ν in RN . Then
µ ≤ ν.

We only give the formal argument assuming smoothness of v and w. These arguments may be made
rigorous using regularizations (by means of the so called inf and sup convolutions) of the type introduced in
[32]. So, assume on the contrary that µ > ν and let us try to get a contradiction. We may assume, without
loss of generality that v(0) = w(0) = 0. We consider the function w(x) − v(x) − ρ|x|2, and let xρ be a point
of maximum, which certainly exists. We have, D2w(xρ) − ρI ≤ D2v(xρ) and so, by ellipticity,

µ ≤ G(xρ, D
2v(xρ)) ≤ G(xρ, D

2w(xρ) − ρI) ≤ G(xρ, D
2w(xρ)) + Λρ ≤ ν + Λρ.

Hence, taking Λρ < µ− ν we arrive at a contradiction.
5. The proof of (iv) proceeds again by comparison. For instance, let us prove (F3). We have

F̄ (x,M −N) − F̄ (x,M) = lim
ε→0

(
εvε(z, x,M) − εvε(z, x,M −N)

)
≤ Λ‖N‖,

by comparision, since, by (F3), vε(z, x,M −N) satisfies

εvε(z, x,M −N) + F (z, x,M +D2vε(z, x,M −N)) ≥ −Λ‖N‖.

The other inequality follows similarly.
6. Assertion (v) again requires extreme value arguments and, as above, we here only give their formal

version. Again, by compactness, we have a subsequence uj := uεj converging to a certain u, locally uniformly
in RN . We will show that u is solution (8.6) and, so, by uniqueness, we will have that the whole sequence
uε converges locally uniformly to u. So, let us fix x̂ ∈ RN and, for some δ > 0, consider the function vδ(z)
satisfying

F (z, x̂,D2u(x̂) +D2vδ(z)) ≥ F̄ (x̂, D2u(x̂)) − δ.

Take ρ > 0, and let xj be a point of maximum of

uj(x) − u(x) − ε2jvδ(
x

εj
) − ρ|x− x̂|2 + ρ,

which certainly exists. We clearly have xj → x̂ as j → ∞. We have

uj(xj) + F (xj ,
xj
εj
, D2u(xj) +D2vδ(

xj
εj

) + ρI) ≤ 0,
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and

F (x̂,
xj
εj
, D2u(x̂) +D2vδ(

xj
εj

)) ≥ H̄(x̂, D2u(x̂)) − δ,

which, after subtraction, gives

uj(xj) + F̄ (x̂, D2u(x̂)) ≤ O(|xj − x̂|) +O(ρ) + δ.

Hence, letting j → ∞ we arrive at

u(x̂) + F̄ (x̂, D2u(x̂)) ≤ O(ρ) + δ,

from which it follows that u is a solution of

u(x) + F̄ (x,D2u(x)) ≤ 0.

The other inequality can be proved similarly.
7. Concerning assertion (vi), the fact that ‖uε‖W 2,p

∞

< ∞, uniformly in ε, follows from Theorem 8.1 by

using assumption (F4) and the uniform bound for ‖uε‖∞. The assumption that F (z, x,M) has polynomial
growth in M allows the application of the two-scale Young measure to F (z, x,M). Assertions (vi), (vii)
are proved exactly as the corresponding assertions in Theorem 7.2. Finally, the convergence of translates in
(viii) can be proved by the same argument used in Remark 7.1. �

Remark 8.1. Concerning item (vii) of Theorem 8.2, first, it is important to observe that we do not require the
solution of (8.8) to have subquadratic growth at infinity, since we impose conditions only on D2

zv(z). Second,
it is easy to see that also in the above context of fully nonlinear elliptic equations, the one-dimensional case
provides us with an example analogous to the one given in Section 7 after Theorem 7.2 for Hamilton-Jacobi
equations.
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