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Abstract
In recent years, Scientific Machine Learning (SciML) methods for solving Partial Differential Equations (PDEs) have gained 
increasing popularity. Within such a paradigm, Physics-Informed Neural Networks (PINNs) are novel deep learning frame-
works for solving initial-boundary value problems involving nonlinear PDEs. Recently, PINNs have shown promising results 
in several application fields. Motivated by applications to gas filtration problems, here we present and evaluate a PINN-based 
approach to predict solutions to strongly degenerate parabolic problems with asymptotic structure of Laplacian type. To 
the best of our knowledge, this is one of the first papers demonstrating the efficacy of the PINN framework for solving such 
kind of problems. In particular, we estimate an appropriate approximation error for some test problems whose analytical 
solutions are fortunately known. The numerical experiments discussed include two and three-dimensional spatial domains, 
emphasizing the effectiveness of this approach in predicting accurate solutions.

Keywords Physics-informed neural network (PINN) · Deep learning · Gas filtration problem · Strongly degenerate 
parabolic equations

1 Introduction

In this paper, we aim to exploit a novel Artificial Intelligence 
(AI) methodology, known as Physics-Informed Neural 
Networks (PINNs), to predict solutions to Cauchy–Dirichlet 
problems of the type

where Ω is a bounded connected open subset of ℝn 
( 2 ≤ n ≤ 3 ) with Lipschitz boundary, f and w are given 
real-valued functions defined over Ω × [0, T] and �parΩT 

respectively, ∇u denotes the spatial gradient of an unknown 
solution u ∶ Ω × [0, T) → ℝ , while ( ⋅ )+ stands for the 
positive part.

A motivation for studying problem (1) can be found in 
gas filtration problems (see [1, 3]). In order to make the 
paper self-contained, we provide a brief explanation in 
Sect. 1.1 below.

As for the parabolic equation (1)1 , the regularity 
properties of its weak solutions have been recently studied 
in [2, 3, 8]. The main novelty of this PDE is that it exhibits 
a strong degeneracy, coming from the fact that its modulus 
of ellipticity vanishes in the region {|∇u| ≤ 1} , and hence 
its principal part behaves like a Laplace operator only at 
infinity.

The regularity of solutions to parabolic problems with 
asymptotic structure of Laplacian type had already been 
investigated in [11], where a BMO1 regularity was proved 
for solutions to asymptotically parabolic systems in the case 
f = 0 (see also [13], where the local Lipschitz continuity 
of weak solutions with respect to the spatial variable is 
established). In addition, we want to mention the results 
contained in [4], where nonhomogeneous parabolic 

(1)

{
�tu − div

(
(|∇u| − 1)+

∇u

|∇u|
)
= f in ΩT ∶= Ω × (0, T),

u = w on �parΩT ,
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problems with an asymptotic regularity in divergence form 
of p-Laplacian type are considered. There, Byun, Oh and 
Wang establish a global Calderón-Zygmund estimate by 
converting a given asymptotically regular problem to a 
suitable regular problem.

Concerning the approach used here, the PINNs are a Sci-
entific Machine Learning (SciML) technique based on Arti-
ficial Neural Networks (ANNs) with the feature of adding 
constraints to make the predicted results more in line with 
the physical laws of the addressed problem. The concept of 
PINNs was introduced in [12, 15–17] to solve PDE-based 
problems. The PINNs predict the solution to a PDE under 
prescribed initial-boundary conditions by training a neural 
network to minimize a cost function, called loss function, 
which penalizes some suitable terms on a set of admissible 
functions u (for more information, we refer the interested 
reader to [6]).

The kind of approach we want to propose here can offer 
effective solutions to real problems such as (1) and can be 
applied in many other different fields: for example, in pro-
duction and advanced engineering [19], for transportation 
problems [7], and for virtual thermal sensors using real-
time simulations [10]. Additionally, it is employed to solve 
groundwater flow equations [5] and address petroleum and 
gas contamination [18].

As far as we know, this is one of the first papers demon-
strating the effectiveness of the PINN framework for solving 
strongly degenerate parabolic problems of the type (1).

1.1  Motivation

Before describing the structure of this paper, we wish to 
motivate our study by pointing out that, in the physical cases 
n = 2 and n = 3 , degenerate equations of the form (1)1 may 
arise in gas filtration problems taking into account the initial 
pressure gradient.

The existence of remarkable deviations from the linear 
Darcy filtration law has been observed in several systems 
consisting of a fluid and a porous medium (e.g., the filtra-
tion of a gas in argillous rocks). One of the manifestations 
of this nonlinearity is the existence of a limiting pressure 
gradient, i.e. the minimum value of the pressure gradient 
for which fluid motion takes place. In general, fluid motion 
still occurs for subcritical values of the pressure gradient, 
but very slowly; when achieving the limiting value of the 
pressure gradient, there is a marked acceleration of the fil-
tration. Therefore, the limiting-gradient concept provides a 
good approximation for velocities that are not too low.

In accordance with some experimental results (see [1]), 
under certain physical conditions one can take the gas filtra-
tion law in the very simple form

where v = v(x, t) is the filtration velocity, k is the rock per-
meability, � is the gas viscosity, p = p(x, t) is the pressure 
and � is a positive constant. Under this assumption we obtain 
a particularly simple expression for the gas mass velocity 
(flux) j , which contains only the gradient of the pressure 
squared, exactly as in the usual gas filtration problems:

where � is the gas density and C is a positive constant. Plug-
ging expression (2) into the gas mass–conservation equation, 
we obtain the basic equation for the pressure:

where m is a positive constant. Equation (3) implies, first 
of all, that the steady gas motion is described by the same 
relations as in the steady motion of an incompressible fluid 
if we replace the pressure of the incompressible fluid with 
the square of the gas pressure. In addition, if the gas pressure 
differs very little from some constant pressure p0 , or if the 
gas pressure differs considerably from a constant value only 
in regions where the gas motion is nearly steady, then the 
equation for the gas filtration in the region of motion can be 
“linearized” following Leibenson, and thus obtaining (see 
[1] again)

Setting u = p2 and performing a suitable scaling, Eq. (4) 
turns into

which is nothing but Eq. (1)1 with f ≡ 0 . This is why (1)1 is 
sometimes called the Leibenson equation in the literature.

The paper is organized as follows. Section 2 is devoted 
to the preliminaries: after a list of some classic notations, 
we provide details on the strongly degenerate parabolic 
problem (1). In Sect. 3, we describe the PINN methodol-
ogy that was employed. Section 4 presents the results that 
were obtained. Finally, Sect. 5 provides the conclusions.

{
v = −

k

𝜇
∇p

[
1 −

𝛽

|∇p2|
]
if ||∇p2|| ≥ 𝛽,

v = 0 if ||∇p2|| < 𝛽,

(2)

{
j = 𝜚 v = −

k

2𝜇C

[
∇p2 − 𝛽

∇p2

|∇p2|
]
if ||∇p2|| > 𝛽,

j = 0 if ||∇p2|| ≤ 𝛽,

(3)

{
𝜕p

𝜕t
=

k

2m𝜇
div

[
∇p2 − 𝛽

∇p2

|∇p2|
]
if ||∇p2|| > 𝛽,

𝜕p

𝜕t
= 0 if ||∇p2|| ≤ 𝛽,

(4)

⎧⎪⎨⎪⎩

𝜕p2

𝜕t
=

k p0

m𝜇
div

�
∇p2 − 𝛽

∇p2

�∇p2�
�
if ��∇p2�� > 𝛽,

𝜕p2

𝜕t
= 0 if ��∇p2�� ≤ 𝛽.

�u

�t
− div

(
(|∇u| − 1)+

∇u

|∇u|
)

= 0,
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2  Notation and preliminaries

In what follows, the norm we use on ℝn will be the stand-
ard Euclidean one and it will be denoted by | ⋅ | . In par-
ticular, for the vectors �, � ∈ ℝ

n , we write ⟨�, �⟩ for the 
usual inner product and ��� ∶= ⟨�, �⟩ 1

2 for the corresponding 
Euclidean norm. For points in space-time, we will fre-
quently use abbreviations like z = (x, t) or z0 = (x0, t0) , for 
spatial variables x, x0 ∈ ℝ

n and times t, t0 ∈ ℝ . We also 
denote by B𝜌(x0) =

{
x ∈ ℝ

n ∶ ||x − x0
|| < 𝜌

}
 the open ball 

with radius 𝜌 > 0 and center x0 ∈ ℝ
n . Moreover, we use 

the notation

for the backward parabolic cylinder with vertex (x0, t0) and 
width � . Finally, for a general cylinder Q = A × (t1, t2) , 
where A ⊂ ℝ

n and t1 < t2 , we denote by

the usual parabolic boundary of Q.
To give the definition of a weak solution to problem (1), 

we now introduce the function H ∶ ℝ
n → ℝ

n defined by

D e f i n i t i o n  2 . 1  L e t  f ∈ L1
loc
(ΩT )  .  A  f u n c t i o n 

u ∈ C0
(
(0, T);L2(Ω)

)
∩ L2

(
0, T;W1,2(Ω)

)
 is a weak solution 

of Eq. (1)1 if and only if for any test function � ∈ C∞
0
(ΩT ) 

the following integral identity holds:

Definition 2.2 Let w ∈ C0
(
[0, T];L2(Ω)

)
∩ L2

(
0, T;W1,2(Ω)

)
 . 

We identify a function

as a weak solution of the Cauchy–Dirichlet problem (1) if and 
only if (5) holds and, moreover, u ∈ w + L2

(
0, T;W

1,2

0
(Ω)

)
 

and u(⋅, 0) = w(⋅, 0) in the L2-sense, that is

Therefore, the initial condition u = w on Ω × {0} has to be 
understood in the usual L2-sense (6), while the condition 
u = w on the lateral boundary �Ω × (0, T) has to be meant 

in the sense of traces, i.e. (u − w) (⋅, t) ∈ W
1,2

0
(Ω) for almost 

every t ∈ (0, T).

Q𝜌(z0) ∶= B𝜌(x0) × (t0 − 𝜌2, t0), z0 = (x0, t0) ∈ ℝ
n ×ℝ, 𝜌 > 0,

�parQ ∶= (A × {t1}) ∪ (�A × (t1, t2))

H(�) ∶=

{
(|�| − 1)+

�

|�| if � ∈ ℝ
n �{0},

0 if � = 0.

(5)∫
ΩT

�
u ⋅ �t � − ⟨H(∇u),∇�⟩� dz = −∫

ΩT

f� dz.

u ∈ C0
(
[0, T];L2(Ω)

)
∩ L2

(
0, T;W1,2(Ω)

)

(6)lim
t↘ 0

‖u(⋅, t) − w(⋅, 0)‖L2(Ω) = 0.

Taking p = 2 and � = 1 in [3, Theorem 1.1], we immedi-
ately obtain the following spatial Sobolev regularity result:

T h e o r e m   2 . 3  L e t  n ≥ 2  ,  2n+ 4

n+ 4
≤ q < ∞  a n d 

f ∈ Lq
(
0, T;W1,q(Ω)

)
 . Moreover, assume that

is a weak solution of Eq. (1)1 . Then the solution satisfies

Furthermore, the following estimate

h o l d s  t r u e  f o r  a n y  p a ra b o l i c  c y l i n d e r 
Q𝜌(z0) ⊂ QR(z0) ⊂ QR0

(z0) ⋐ ΩT and a positive constant c 
depending on n, q and R0.

From the above result one can easily deduce that u 
admits a weak time derivative ut , which belongs to the 
local Lebesgue space Lmin {2, q}

loc
(ΩT ) . The idea is roughly 

as follows. Consider Eq. (1)1 ; since the previous theorem 
tells us that in a certain pointwise sense the second spa-
tial derivatives of u exist, we may develop the expres-
sion under the divergence symbol; this will give us an 
expression that equals ut , from which we get the desired 
summability of the time derivative. Such an argument has 
been made rigorous in [3, Theorem 1.2], from which we 
can derive the next result.

Theorem 2.4 Under the assumptions of Theorem 2.3, the 
time derivative of the solution exists in the weak sense and 
satisfies

Furthermore, the following estimate

u ∈ C0
(
(0, T);L2(Ω)

)
∩ L2

(
0, T;W1,2(Ω)

)

H(∇u) ∈ L2
loc

(
0, T;W

1,2

loc
(Ω,ℝn)

)
.

�
Q�∕2(z0)

�∇H(∇u)�2dz ≤ c
�
‖∇f‖Lq(QR0

) + ‖∇f‖2
Lq(QR0

)

�

+
c

R2

�
‖∇u‖2

L2(QR0
)
+ 1

�

�tu ∈ L
min {2, q}

loc
(ΩT ).

⎛⎜⎜⎜⎝
�

Q�∕2(z0)

���tu��min {2, q}
dz

⎞⎟⎟⎟⎠

1

min {2, q}

≤ c ‖f‖Lq(QR0
)

+ c
�
‖∇f‖Lq(QR0

) + ‖∇f‖2
Lq(QR0

)

� 1

2

+
c

R

�
‖∇u‖2

L2(QR0
)
+ 1

� 1

2
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h o l d s  t r u e  f o r  a n y  p a ra b o l i c  c y l i n d e r 
Q𝜌(z0) ⊂ QR(z0) ⊂ QR0

(z0) ⋐ ΩT and a positive constant c 
depending on n, q and R0.

Now, let the assumptions of Theorem 2.3 be in force. For 
� ∈ [0, 1] and a couple of standard, non-negative, radially 
symmetric mollifiers �1 ∈ C∞

0
(B1(0)) and �2 ∈ C∞

0
((−1, 1)) 

we define

where f is meant to be extended by zero outside ΩT . Observe 
that f0 = f  and f� ∈ C∞(ΩT ) for every � ∈ (0, 1].

Next, we consider a domain in space-time denoted by 
Ω�

1,2
∶= Ω� × (t1, t2) , where Ω� ⊆ Ω is a bounded domain 

with smooth boundary and (t1, t2) ⊆ (0, T) . In the follow-
ing, we will need the definitions below.

Definition 2.5 Let � ∈ (0, 1] . A function u� ∈ C0((t1, t2);L2(Ω′)
)

∩ L2
(

t1, t2;W1,2(Ω′)
)

 is a weak solution of the equation

if and only if for any test function � ∈ C∞
0
(Ω�

1,2
) the follow-

ing integral identity holds:

Definition 2.6 Let � ∈ (0, 1] and u ∈ C0([t1, t2];L2(Ω′)
)

∩ L2
(

t1, t2;W1,2(Ω′)
)

 . We identify a function

as a weak solution of the Cauchy–Dirichlet problem 

if and only if (8) holds and, moreover,

u�(⋅, t1) = u(⋅, t1) in the usual L2-sense and the condition 
u� = u on the lateral boundary �Ω� × (t1, t2) holds in the 
sense of traces, i.e. (u� − u) (⋅, t) ∈ W

1,2

0
(Ω�) for almost every 

t ∈ (t1, t2).

Due to the strong degeneracy of Eq. (1)1 , in order to 
prove Theorems 2.3 and 2.4 above, the authors of [3] 
resort to the family of approximating parabolic problems 
(9). These problems exhibit a milder degeneracy than (1) 

f�(x, t) ∶=

1

∫
−1

∫
B1(0)

f (x − �y, t − �s)�1(y)�2(s) dy ds,

(7)�t u� − div
(
H(∇u�) + �∇u�

)
= f� in Ω�

1,2

(8)

∫
Ω�

1,2

�
u� ⋅ �t � − ⟨H(∇u�) + �∇u�,∇�⟩

�
dz = − ∫

Ω�
1,2

f� � dz.

u� ∈ C0
(
[t1, t2];L

2(Ω�)
)
∩ L2

(
t1, t2;W

1,2(Ω�)
)

(9)
{

�t u� − div
(
H(∇u�) + �∇u�

)
= f� in Ω�

1,2
,

u� = u on �parΩ
�
1,2
,

u� ∈ u + L2
(
t1, t2;W

1,2

0
(Ω�)

)
,

and the advantage of considering them stems from the fact 
that the existence of a unique energy solution u� satisfying 
the requirements of Definition 2.6 can be ensured by the 
classic existence theory for parabolic equations (see [14, 
Chap. 2, Theorem 1.2 and Remark 1.2]).

M o r e o v e r ,  i f 
Ω�

1,2
= QR0

(z0) ∶= BR0
(x0) × (t0 − R2

0
, t0) ⋐ ΩT  , then from 

[3, Formulae (4.22) and (4.24)] one can easily deduce

that is

Hence, we can conclude that there exists a sequence {�j}j∈ℕ 
such that:

3  Physics‑informed methodology

PINNs are a type of SciML approach used in neural net-
works to solve PDEs. Unlike traditional neural networks, 
PINNs incorporate physics constraints into the model, 
resulting in predicted outcomes that adhere more closely 
to the natural laws governing the specific problem being 
addressed. The general form of the problem involves a 
PDE along with initial and/or boundary conditions.

In particular, we consider a (well-posed) problem of 
the type

where Ω is a bounded domain in ℝn , F  denotes a nonlinear 
differential operator, � is a parameter associated with the 
physics of the problem, B is an operator defining arbitrary 
initial-boundary conditions, the functions f and w represent 
the problem data, while u(x, t) denotes the unknown solution.

The objective of PINNs is to predict the solution to (11) 
by training the neural network to minimize a cost func-
tion. The neural network’s architecture used for PINNs 
is typically a FeedForward fully-connected Neural Net-
work (FF-DNN), also known as Multi-Layer Perceptron 
(MLP). In an FF-DNN, information flows only forward 
direction, in the sense that the neural network does not 

(10)sup
t∈ (t0−R

2
0
, t0)

‖u�(⋅, t) − u(⋅, t)‖2
L2(BR0

(x0))
→ 0 as � → 0+,

u� → u in L∞(t0 − R2
0
, t0;L

2(BR0
(x0))) as � → 0+.

∙ 0 < �j ≤ 1 for every j ∈ ℕ and �j
↘ 0 monotonically as j → +∞;

∙ u�j (x, t) → u(x, t) almost everywhere in

QR0
(z0) as j → +∞.

(11)
{

F(u(x, t), �) = f if (x, t) ∈ ΩT ∶= Ω × (0, T)

B(u(x, t)) = w if (x, t) ∈ �parΩT ,
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form a loop. Furthermore, all neurons are interconnected. 
Once the number N of hidden layers has been chosen, for 
any i ∈ {1,… ,N} and set z = (x, t) we define

where Wi is the weights matrix of the links between the lay-
ers i − 1 and i, while bi corresponds to the biases vector. 
Then, a generic layer of the neural network is defined by

for some nonlinear activation function �i . The output of the 
FF-DNN, denoted by û𝜃(z) , can be expressed as a composi-
tion of these layers by

where � represents the set of hyperparameters of the neural 
network and the activation function � is assumed to be the 
same for all layers. To solve the differential problem (11) 
using PINNs, the PDE is approximated by finding an optimal 
set �∗ of neural network hyperparameters that minimizes a 
loss function L . This function consists of two components: 
the former, denoted by LF , is related to the differential equa-
tion, while the latter, here denoted by LB , is connected to 
the initial-boundary conditions (see Fig. 1). In particular, the 
loss function can be defined as follows

Γi(zi−1) ∶= Wi zi−1 + bi,

hi(zi−1;Wi, bi) ∶= �i(Γi(zi−1)), i ∈ {1,… ,N},

(12)û𝜃(z) ∶= (ΓN◦𝜑◦ΓN−1◦⋯◦𝜑◦Γ1)(z) ,

(13)

L ∶= �F ∫ΩT

[F(u(z), �) − f ]2 dz

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶LF

+ �B ∫�parΩT

[B(u(z)) − w]2 dHn

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶LB

,

where �F  and �B represent the weights that are usually 
applied to balance the importance of each component. 
Hence, we can write

The aim of this approach is to approximate the solution of 
the PDE satisfying the initial-boundary conditions. This is 
known in the literature as the direct problem, which is the 
only one we will address here.

4  Numerical results

In this section we evaluate the accuracy and effectiveness 
of our predictive method, by testing it with five problems 
of the type (1) whose exact solutions are known. For each 
problem, we will denote the exact solution by u, and the pre-
dicted (or approximate) solution by û . Sometimes, by abuse 
of language, for a given time t ≥ 0 we will refer to the partial 
maps u(⋅, t) and û(⋅, t) as the exact solution and the predicted 
(or approximate) solution respectively. The meaning will be 
clear from the context every time. We will deal with each 
test problem separately, so that no confusion can arise. In 
the first three problems, Ω will be a bounded domain of ℝ2 , 
while, in the last two problems, Ω will denote the open unit 
sphere of ℝ3 centered at the origin.

In addition, for each of the test problems, we employed 
the same neural network architecture. This consists of four 
layers, each with 20 neurons. We utilized the hyperbolic 
tangent function as the activation function for both the input 
layer and the hidden layers, while a linear function served 

(14)�∗ ∶= argmin
�

L(�).

Fig. 1  Overall structure of the proposed methodology. An FF-DNN 
serves as the neural network’s architecture. Automatic differentiation 
is employed to calculate the loss terms associated with the model’s 
dynamics. The loss function comprises two components: the physics 

loss, represented by LF  , and the boundary loss denoted by LB . 
During the optimization phase, the objective is to minimize the loss 
function with respect to the set of hyperparameters �
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as the activation function for the output layer. Lastly, to 
train the neural network, we conducted 80,000 epochs with 
a learning rate (lr) of 3 × 10−3 and employed the Adaptive 
Moment Estimation (ADAM) optimizer. The decision to set 
the lr to the constant value 3 × 10−3 was based on the obser-
vation that this specific hyperparameter led to the optimal 
convergence of our method. Experimentation with lr set to 
1 × 10−1 highlighted the network’s inability to achieve con-
vergence, while using an lr of 1 × 10−5 allowed the method 
to converge, albeit requiring a significantly higher number 
of epochs. The latter scenario, while ensuring convergence, 
proved to be less computationally efficient. The experiments 
were performed on a NVIDIA GeForce RTX 3080 GPU 
with AMD Ryzen 9 5950X 16-Core Processor and 128 GB 
of RAM.

4.1  First test problem

The first test problem that we consider is

where Ω = {(x, y) ∈ ℝ
2 ∶ x2 + y2 < 1} . The exact solution 

of this problem is given by

(P1)

⎧
⎪⎨⎪⎩

�tv − div
�
(�∇v� − 1)+

∇v

�∇v�
�
= 1 in ΩT ,

v(x, y, 0) =
1

2
(x2 + y2) if (x, y) ∈ Ω,

v(x, y, t) =
1

2
+ t if (x, y) ∈ �Ω ∧ t ∈ (0, T),

Therefore, for any fixed time t ≥ 0 the graph of the function 
u(⋅, t) is an elliptic paraboloid. As time goes on, this parabo-
loid slides along an oriented vertical axis at a constant veloc-
ity, without deformation, since �tu ≡ 1 over ΩT (see Fig. 2).

To train the neural network, in each experiment we have 
initially used 441 points to suitably discretize the domain Ω 
and its boundary �Ω , and 21 equispaced points in the time 
interval [0, T]. Once the network has been trained, we have 
made a prediction of the solution to problem (P1) at different 
times t (Fig. 2).

What has been verified is that the plot of the predicted 
solution û(⋅, t ) has precisely the same shape and geometric 
properties as the graph of the exact solution u(⋅, t) , for 
both short and long times t. Moreover, the time evolution 
of the approximate solution û exactly mirrors the behavior 
described for the known solution u. A further interesting 
aspect that can be noticed is that the level curves of the 
approximate solution û(⋅, t ) overlap almost perfectly those 
of u(⋅, t ), provided that t is not very large (see Fig. 3).

We have also noted that, at time t = 0 , the approximate 
solution is basically equal to zero in a very tiny region 
around the origin (0, 0) of the xy-plane. This means that the 
said region is composed of “numerical zeros” of the solution 
predicted at time t = 0 , while we know that u(x, y, 0) = 0 
if and only if (x, y) = (0, 0) . However, this discrepancy is 

u(x, y, t) =
1

2
(x2 + y2) + t.

Fig. 2  Plots of the exact solution to problem (P1) (above) and the predicted solution û(⋅, t) (below) for t = 0 (left), t = 2.5 (center) and t = 4.5 
(right)
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actually negligible, since the order of magnitude of u(x, y, 0) 
is not greater than 10−6 within the above region.

To assess the accuracy of our predictive method and the 
numerical convergence of the solution û toward u in a more 
quantitative way, we now look at the time behavior of the 
L2-error ‖û(⋅, t) − u(⋅, t)‖L2(Ω) by considering the natural 
quantities

and

Passing from Cartesian to polar coordinates, one can easily 
find that

and therefore

During our numerical experiments, we have estimated both 
E(T) and Erel(T) for

The results that we have obtained are shown in Table 1. 
The estimates of E(1) and E(10) are equal to 2.24 × 10−5 and 
4.30 × 10−4 respectively, which is very satisfactory, espe-
cially considering that the order of magnitude of Erel(1) and 
Erel(10) is equal to 10−6.

In order to get more accurate estimates for larger values of 
T, for every fixed T ≥ 100 we have used 2.1 × T  equispaced 
points (instead of the initial 21) to discretize the time interval 

(15)E(T) ∶= sup
t∈ (0,T)

‖û(⋅, t) − u(⋅, t)‖2
L2(Ω)

(16)Erel(T) ∶=
E(T)

sup
t∈ (0,T)

‖u(⋅, t)‖2
L2(Ω)

.

‖u(⋅, t)‖2
L2(Ω)

= ∬
Ω

�
1

2
(x2 + y2) + t

�2
dx dy = �

�
t2 +

t

2
+

1

12

�
,

Erel(T) =
12 ⋅ E(T)

� (12 T2 + 6 T + 1)
.

T ∈ {1, 10, 100, 200, 300, 400, 500}.

[0, T]. By doing so, we have observed that the variation of 
the estimate of E(T) displays a monotonically increasing 
behavior, in accordance with the definition (15). However, 
even for 100 ≤ T ≤ 500 , the order of magnitude of Erel(T) 
remains not greater than 10−6 . Therefore, for this first test 
problem, we can conclude that our predictive method is 
indeed very accurate and efficient, on both a short and long 
time scale.

Now, for 0 < 𝜀 ≤ 1 we consider the problem

which is nothing but the approximating problem (9) associ-
ated with (P1). In what follows, we will denote the exact 
solution of (17) by u� , while the predicted solution will be 
denoted by û𝜀.

Throughout our tests, for 10−9 ≤ � ≤ 10−3, for Ω� = Ω and 
for (t1, t2) = (0, T) , we have observed that the plots of the 
predicted solution û𝜀(⋅, t ) and the exact solution u(⋅, t) share 
the same configurations and geometric peculiarities, on both 
a short and long time scale (see, e.g. Fig. 4). Furthermore, 
we have seen that the evolution over time of û𝜀 reflects the 

(17)

⎧⎪⎨⎪⎩

�tv� − div
�
H(∇v�) + �∇v�

�
= 1 in Ω�

1,2
∶= Ω� × (t1, t2),

v�(x, y, t1) =
1

2
(x2 + y2) + t1 if (x, y) ∈ Ω�,

v�(x, y, t) =
1

2
(x2 + y2) + t if (x, y) ∈ �Ω� ∧ t ∈ (t1, t2),

Fig. 3  Superposition of the level curves of the exact solution u(⋅, t) and the predicted solution û(⋅, t) for t = 0 (left), t = 5 (center) and t = 10 
(right). The contour lines corresponding to the same level are almost indistinguishable for any fixed t ∈ [0, 10]

Table 1  Estimates of E(T) and E
rel
(T) for T ∈ {1, 10, 100, 200, 300, 400, 500}

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 2.24 × 10−5 4.50 × 10−6

10 4.30 × 10−4 1.30 × 10−6

100 1.87 × 10−1 5.92 × 10−6

200 2.05 × 10−1 1.63 × 10−6

300 2.45 × 10−1 8.65 × 10−7

400 2.47 × 10−1 4.91 × 10−7

500 2.80 × 10−1 3.56 × 10−7
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behavior depicted for the solution u quite faithfully. In 
addition, the contour lines of û𝜀(⋅, t) perfectly overlap those 
of u(⋅, t) , at least for not very long times t (see Fig. 5).

Let us now assume that

Ω�
1,2

= Q 1

2

(z0) ∶= B 1

2

(0) ×
(
7

4
, 2
)
,

Fig. 4  Plots of the approximate solution û𝜀(⋅, t) for � = 10−3 (above) and � = 10−9 (below), at times t = 0 (left), t = 5 (center) and t = 10 (right). 
Here Ω� = Ω and [t1, t2] = [0, 10]

Fig. 5  Superposition of the level curves of the exact solution u(⋅, t) 
and the predicted solution û𝜀(⋅, t) for � = 10−3 (above) and � = 10−9 
(below), at times t = 0 (left), t = 5 (center) and t = 10 (right). Here 

Ω� = Ω and [t1, t2] = [0, 10] . For every � ∈ [10−9, 10−3] , the contour 
lines of the approximate solution û𝜀(⋅, t) perfectly overlap those of 
u(⋅, t) for any fixed t ∈ [0, 10]
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where z0 = (0, 2) = (0, 0, 2) . Then, the limit in (10) suggests 
that û𝜀 should numerically converge to u as � ↘ 0 . To obtain 
a numerical evidence of such convergence, we have chosen 
Ω� = B1∕2(0) and (t1, t2) = (

7

4
, 2) into (17) and examined 

the time behavior of the L2-error ‖û𝜀(⋅, t) − u(⋅, t)‖L2(Ω�) , by 

evaluating the quantities

and

Switching from Cartesian to polar coordinates, one can eas-
ily compute

from which it immediately follows that

In the testing phase, we have estimated both E� and Erel for 
� ∈ {10−15, 10−14,… , 10−1, 1} . Table 2 shows the results 
obtained and reveals that the predicted solution û𝜀 converges 
to u as � tends to zero, although not very quickly. In fact, the 
estimates of E� and Erel(�) approach zero with a convergence 

E𝜀 ∶= sup
t∈ (

7

4
, 2)

‖û𝜀(⋅, t) − u(⋅, t)‖2
L2(B1∕2(0))

Erel ≡ Erel(�) ∶=
E�

sup
t∈ (

7

4
, 2)

‖u(⋅, t)‖2
L2(B1∕2(0))

.

‖u(⋅, t)‖2
L2 (B1∕2 (0))

= ∬
B 1
2
(0)

[ 1
2
(x2 + y2) + t

]2
dx dy = �

4

(

t2 + t
8
+ 1

192

)

,

Erel =
768E�

817�
.

rate much lower than that of � . Furthermore, they seem to 
start decreasing monotonically, i.e. without oscillations, for 
� ≤ 10−10.

4.2  Second test problem

Let 𝛼 > 0 . As a second test problem we consider

where Ω = {(x, y) ∈ ℝ
2 ∶ x2 + y2 < 1} again and

The exact solution of problem (P2) is given by

At any fixed time t > 0 , the shape and geometric properties 
of the graph of u(⋅, t) strongly depend on the value of the 
parameter �.

If � =
1

2
 , then the graph of u(⋅, t) is a cone whose vertex 

coincides with the origin (0, 0, 0) at any given positive time 
t. As time goes on, the cone in question gets narrower and 
narrower around the vertical axis. In this case, the plot of the 
approximate solution û(⋅, t) has the same form as the graph of 
the exact solution u(⋅, t) for both short and long times t > 0 , 
except near the origin, where the tip of the cone appears to 
have been smoothed out (see Fig. 6, center). However, this 
is not a surprise at all, since we already know that for t > 0 
the function

is not differentiable at the center (0, 0) of Ω.
When 0 < 𝛼 <

1

2
 , the graph of u(⋅, t) is cusp-shaped for 

any fixed time t > 0 , the origin now being a cusp for all posi-
tive times. In this case, a loss on convexity occurs, which is 
also observed in the plot of the predicted solution û(⋅, t ) for 
all times t > 0 (see, e.g. Fig. 6, left).

Lastly, when 𝛼 >
1

2
 the graph of u(⋅, t) is no longer cusp-

shaped and becomes increasingly narrow around the vertical 
axis as t increases. Furthermore, for any fixed t > 0 the exact 
solution u(⋅, t) is convex again and its graph gets flatter and 
flatter near the origin when 𝛼 >> 1 (see Fig. 7).

In all three of the above cases, we have noticed that the plot 
of û(⋅, t ) is basically identical in its shape and geometry to 
the graph of the exact solution u(⋅, t) , for both short and long 
periods t.

(P2)

⎧⎪⎨⎪⎩

�tv − div
�
(�∇v� − 1)+

∇v

�∇v�
�
= f in ΩT ,

v(x, y, 0) = 0 if (x, y) ∈ Ω,

v(x, y, t) = t if (x, y) ∈ �Ω ∧ t ∈ (0, T),

f (x, y, t): =
⎧

⎪

⎨

⎪

⎩

(x2 + y2)� if 2� t (x2 + y2)�−
1
2 ≤ 1,

(x2 + y2)� − 4�2t (x2 + y2)�−1 + 1
√

x2+y2
if 2� t (x2 + y2)�−

1
2 > 1.

u(x, y, t) ≡ u�(x, y, t) ∶= t (x2 + y2)� .

(x, y) ∈ Ω ↦ t (x2 + y2)
1

2

Table 2  Estimates of E� and E
rel
(� ) for � ∈ {10−15, 10−14,… , 10−1, 1}

� Estimate of E
�

Estimate of E
rel

1 5.816 × 10−4 1.74 × 10−4

10−1 1.658 × 10−5 4.96 × 10−6

10−2 2.485 × 10−5 7.44 × 10−6

10−3 9.280 × 10−6 2.78 × 10−6

10−4 5.331 × 10−6 1.60 × 10−6

10−5 9.681 × 10−6 2.90 × 10−6

10−6 7.175 × 10−6 2.15 × 10−6

10−7 2.027 × 10−6 6.06 × 10−7

10−8 8.205 × 10−6 2.45 × 10−6

10−9 3.749 × 10−6 1.12 × 10−6

10−10 4.254 × 10−6 1.27 × 10−6

10−11 3.611 × 10−6 1.08 × 10−6

10−12 2.769 × 10−6 8.28 × 10−7

10−13 2.399 × 10−6 7.18 × 10−7

10−14 2.017 × 10−6 6.03 × 10−7

10−15 1.649 × 10−6 4.94 × 10−7
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Moreover, also for problem (P2) we have verified that the 
time evolution of the predicted solution faithfully reflects the 
trend described for the exact solution in all three previous 

cases. Therefore, we may conclude that � =
1

2
 represents a 

critical value for the global behavior of both the exact and the 
predicted solution.

Fig. 6  Plots of the exact solution (above) and the predicted solution (below) to problem (P2) at time t = 4.5 for � = 0.3 (left), � = 0.5 (center) 
and � = 1.3 (right)

Fig. 7  Plots of the exact solution to problem (P2) (above) and the predicted solution û(⋅, t) (below) for � = 5 , at times t = 0.5 (left), t = 5 (center) 
and t = 10 (right)
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Later, we have examined the contour lines of û𝛼(⋅, t) for 
� ∈ {0.3, 0.5, 1.3, 5} and for not very large times t > 0 . For 
every fixed � ∈ {0.3, 0.5, 1.3} , the level curves of û𝛼(⋅, t) 
overlap quite well those of u�(⋅, t ), with some small differ-
ences between one case and the other. More precisely, for each 
� ∈ {0.5, 1.3} the contour lines corresponding to the same 
level are almost indistinguishable, at least for not very long 
times t (see, for example, Fig. 8, where t = 0.5).

For � = 5 and t > 0 , we have also noted that the 
approximate solution is essentially equal to zero in a fairly 
large region �t around the origin (0, 0) of the xy-plane (see 
Fig. 9). As already said for problem (P1), this means that such 
region consists of numerical zeros of û5(⋅, t) , while for t > 0 we 
know that u5(x, y, t) = 0 if and only if (x, y) = (0, 0) . However, 
this discrepancy is reasonably small for short times, since the 
order of magnitude of u5(x, y, t) does not exceed 10−2 within 
�t for 0 < t ≤ 10.

To evaluate in a more quantitative manner the accuracy of 
our method in solving problem (P2) and the numerical conver-
gence of the solution û toward u, we may now consider again 
the quantities (15) and (16). Passing from Cartesian to polar 
coordinates, we find

so that we now have

During the experimental phase, we have estimated E(T) and 
Erel(T) for � ∈ {0.3, 0.5, 1.3, 5} and T ∈ {1, 10, 20, 40, 100} . 
The results that we have obtained are reported in Tables 3, 
4, 5, 6 and show that, for any fixed value of � , the estimate 
of E(T) follows an increasing trend, as prescribed by (15). 
Furthermore, by analyzing the orders of magnitude of E(T) 

‖u�(⋅, t)‖2L2(Ω) = t2∬
Ω

(x2 + y2)2� dx dy =
� t2

2� + 1
,

rel(T): =
(T)

sup
t∈ (0,T)

‖u� (⋅, t)‖2L2 (Ω)
= 2� + 1

� T2 sup
t∈ (0,T)

‖û� (⋅, t) − u� (⋅, t)‖2L2 (Ω).

and Erel(T) , we may affirm that our approach provides very 
accurate predictions, on both a short and long-term scale.

4.3  Third test problem

We shall now consider the problem

where Ω = (−1, 1) × (−1, 1),

and

The exact solution of this problem is given by

Therefore, for any fixed time t ≥ 0 , the graph of the function 
u(⋅, t) is given by the union of the horizontal region

and the sliding plane

(P3)

⎧⎪⎨⎪⎩

�tv − div
�
(�∇v� − 1)+

∇v

�∇v�
�
= 1 in ΩT ,

v(x, y, 0) = g(x, y) if (x, y) ∈ Ω,

v(x, y, t) = h(x, y, t) if (x, y) ∈ �Ω ∧ t ∈ (0, T),

g(x, y) ∶=

{
1 if − 1 ≤ x ≤ 0 ∧ −1 ≤ y ≤ 1,

1 − x if 0 < x ≤ 1 ∧ −1 ≤ y ≤ 1,

h(x, y, t) ∶=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1 + t if − 1 ≤ x ≤ 0 ∧ y = −1,

1 + t if − 1 ≤ x ≤ 0 ∧ y = 1,

1 + t if x = −1 ∧ −1 ≤ y ≤ 1,

t if x = 1 ∧ −1 ≤ y ≤ 1,

1 − x + t if 0 < x ≤ 1 ∧ y = −1,

1 − x + t if 0 < x ≤ 1 ∧ y = 1.

(18)

u(x, y, t) =

{
1 + t if − 1 ≤ x ≤ 0 ∧ −1 ≤ y ≤ 1,

1 − x + t if 0 < x ≤ 1 ∧ −1 ≤ y ≤ 1.

Ht ∶= {(x, y, 1 + t) ∶ −1 ≤ x ≤ 0, −1 ≤ y ≤ 1}

It ∶= {(x, y, 1 − x + t) ∶ 0 ≤ x ≤ 1, −1 ≤ y ≤ 1}.

Fig. 8  Superposition of the level curves of the exact solution u�(⋅, t) and the predicted solution û𝛼(⋅, t) at time t = 0.5 , for � = 0.3 (left), � = 0.5 
(center) and � = 1.3 (right)
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Let us denote by Gt ∶= Ht ∪ It the graph of u(⋅, t) . Then, as 
time goes by, the set Gt slides along a vertical axis with a 
constant velocity and no deformation, since �tu ≡ 1 over ΩT 
(see Fig. 10, above).

The plot of the approximate solution û(⋅, t) roughly 
resembles that of u(⋅, t) for both short and long times t ≥ 0 , 
except near the joining line Ht ∩ It , where the graph of 

Fig. 9  Level curves of the exact solution u�(⋅, t) (above) and the predicted solution û𝛼(⋅, t) (below) for � = 5 , at times t = 0.5 (left) and t = 1 
(right)

Table 3  Estimates of E(T) and E
rel
(T) for � = 0.3 and 

T ∈ {1, 10, 20, 40, 100}

� = 0.3

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 2.42 × 10−5 1.23 × 10−5

10 4.23 × 10−4 2.15 × 10−6

20 2.20 × 10−3 2.80 × 10−6

40 1.48 × 10−2 4.71 × 10−6

100 2.54 × 10−1 1.29 × 10−5

Table 4  Estimates of E(T) and E
rel
(T) for � = 0.5 and 

T ∈ {1, 10, 20, 40, 100}

� = 0.5

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 2.81 × 10−5 1.79 × 10−5

10 3.41 × 10−4 2.17 × 10−6

20 1.26 × 10−3 2.01 × 10−6

40 9.41 × 10−2 3.74 × 10−5

100 2.25 × 10−1 1.43 × 10−5



Engineering with Computers 

the solution appears to have been slightly smoothed (see 
Fig. 10, below). However, this is not surprising at all, since 
we already know that, for any fixed t ≥ 0 , the function 
u(⋅, t) ∶ Ω → ℝ defined by (18) is not differentiable at any 
point of the open segment S0 ∶= {(x, y) ∈ Ω ∶ x = 0} . This 
fact also has repercussions in the comparison between the 
level curves of u(⋅, t) and û(⋅, t) , whose superposition is far 
from being perfect on approaching the segment S0 from the 
right, i.e. for x > 0 (see Fig. 11).

Furthermore, we have also observed that the evolution 
of û over time accurately reflects the evolution of the set 
Gt described above.

In order to assess in a more quantitative way the 
accuracy of our method in solving (P3) and the distance 
between the solutions u and û , we resort again to the quan-
tities defined in (15) and (16). Through an easy calcula-
tion, we get

so that we now have

Proceeding as for the previous problems, we have estimated 
E(T) and Erel(T) for

‖u(⋅, t)‖2
L2(Ω)

= 4 t2 + 6 t +
8

3
,

(19)

rel(T): =
(T)

sup
t∈ (0,T)

‖u(⋅, t)‖2
L2(Ω)

= 3
12 T2 + 18 T + 8

sup
t∈ (0,T)

‖û(⋅, t) − u(⋅, t)‖2L2(Ω).

Table 7 contains the results obtained and reveals that the 
estimate of E(T) exhibits again an increasing behavior, as 
expected from (15). Furthermore, from this table, it seems 
that the asymptotic trend of the estimate of Erel(T) may 
encounter a sort of plateau at T = 100 , after which conver-
gence sensibly slows down. We do not know whether this is 
a typical behavior, since we cannot draw information from 
(19) in this sense. In fact, from the definition of Erel(T) it is 
not possible to predict what the combined effect of E(T) and 
sup

t∈ (0,T)

‖u(⋅, t)‖2
L2(Ω)

 is, since Erel(T) is the ratio of two func-

tions which are both increasing with respect to T and we 
cannot determine a priori the growth rate of E(T) . Neverthe-
less, by carefully examining the orders of magnitude of both 
E(T) and Erel(T) , we can conclude that our method produces 
accurate results also in this case, in both short and long-term 
predictions.

4.4  Fourth test problem

We now consider the problem

where Ω = {(x, y, z) ∈ ℝ
3 ∶ x2 + y2 + z2 < 1} . This prob-

lem is the three-dimensional version of problem (P1) and 
its exact solution is given by

To evaluate the accuracy of our method in solving prob-
lem (P4) and the distance between the predicted solution û 
and the exact solution u, we confined ourselves to consider-
ing the quantities (15) and (16). Passing from Cartesian to 
spherical coordinates, one can easily find that

and therefore

Proceeding as for problem (P1), we have estimated both E(T) 
and Erel(T) for

T ∈ {1, 10, 100, 200, 300}.

(P4)

⎧⎪⎨⎪⎩

�tv − div
�
(�∇v� − 1)+

∇v

�∇v�
�
= 1 in ΩT ,

v(x, y, z, 0) =
1

2
(x2 + y2 + z2) if (x, y, z) ∈ Ω,

v(x, y, z, t) =
1

2
+ t if (x, y, z) ∈ �Ω ∧ t ∈ (0, T),

u(x, y, z, t) =
1

2
(x2 + y2 + z2) + t.

‖u(⋅, t)‖2
L2 (Ω)

= ∭
Ω

[ 1
2
(x2 + y2 + z2) + t

]2
dx dy dz = �

( 4
3
t2 + 4

5
t + 1

7

)

,

E
rel
(T) ∶ =

E(T)

sup
t∈ (0,T)

‖u(⋅, t)‖2
L2(Ω)

,

=
105

𝜋 (140 T2 + 84 T + 15)

sup
t∈ (0,T)

‖û(⋅, t) − u(⋅, t)‖2
L2(Ω)

.

Table 5  Estimates of E(T) and E
rel
(T) for � = 1.3 and 

T ∈ {1, 10, 20, 40, 100}

� = 1.3

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 2.85 × 10−5 3.27 × 10−5

10 1.76 × 10−4 2.02 × 10−6

20 1.26 × 10−3 3.61 × 10−6

40 1.51 × 10−3 1.08 × 10−6

100 1.36 × 10−2 1.56 × 10−6

Table 6  Estimates of E(T) and E
rel
(T) for � = 5 and 

T ∈ {1, 10, 20, 40, 100}

� = 5

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 4.09 × 10−4 1.43 × 10−3

10 1.01 × 10−3 3.53 × 10−5

20 1.19 × 10−1 1.04 × 10−3

40 7.51 × 10−1 1.64 × 10−3

100 8.78 × 10−1 3.07 × 10−4
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The data that we have obtained are reported in Table 8 and 
show that the estimate of E(T) is monotonically increasing, 
in agreement with the definition (15). From Table 8 it also 
emerges that the trend of the estimate of Erel(T) has a sort 
of plateau between T = 30 and T = 40 , after which there is 
a slight rise. In this regard, the same considerations made 
for Table 7 apply. However, for every T ≤ 100 the order of 
magnitude of Erel(T) is not greater than 10−5 . Therefore, we 
may affirm that our predictive method is very accurate and 
efficient in this case, on both a short and long time scale.

T ∈ {1, 10, 20, 30, 40, 50, 100}.

Fig. 10  Plots of the exact solution to problem (P3) (above) and the predicted solution û(⋅, t) (below) for t = 0 (left), t = 0.5 (center) and t = 1 
(right)

Fig. 11  Superposition of the level curves of the exact solution u(⋅, t) and the predicted solution û(⋅, t) for t = 0 (left), t = 0.5 (center) and t = 1 
(right)

Table 7  Estimates of E(T) and E
rel
(T) for T ∈ {1, 10, 100, 200, 300}

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 1.67 × 10−1 1.32 × 10−2

10 1.69 × 10−1 3.65 × 10−4

100 3.72 × 10−1 9.16 × 10−6

200 6.92 × 10−1 4.29 × 10−6

300 7.21 × 10−1 1.99 × 10−6
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4.5  Fifth test problem

Let 𝛼 > 0 and � = 2� (2� + 1) . The last problem that we con-
sider is

where Ω = {(x, y, z) ∈ ℝ
3 ∶ x2 + y2 + z2 < 1} and

This problem is nothing but the three-dimensional version 
of (P2) and its exact solution is given by

In order to assess the accuracy of our method in solving (P5) 
and the distance between the approximate solution û and the 
exact solution u, we again limited ourselves to estimating the 
quantities defined in (15) and (16). Switching from Cartesian 
to spherical coordinates, we can easily obtain

(P5)

⎧⎪⎨⎪⎩

�tv − div
�
(�∇v� − 1)+

∇v

�∇v�
�
= f in ΩT ,

v(x, y, z, 0) = 0 if (x, y, z) ∈ Ω,

v(x, y, z, t) = t if (x, y, z) ∈ �Ω ∧ t ∈ (0, T),

f (x, y, z, t) ∶=

�
(x2 + y2 + z2)𝛼 if 2𝛼 t (x2 + y2 + z2)𝛼−

1

2 ≤ 1,

(x2 + y2 + z2)𝛼−1(x2 + y2 + z2 − 𝜔 t) +
2√

x2+y2+z2
if 2𝛼 t (x2 + y2 + z2)𝛼−

1

2 > 1.

u(x, y, z, t) ≡ u�(x, y, z, t) ∶= t (x2 + y2 + z2)� .

‖u�(⋅, t)‖2L2(Ω) = t2∭
Ω

(x2 + y2 + z2)2� dx dy dz =
4� t2

4 � + 3
.

This yields

Proceeding as for problem (P2), we have estimated E(T) and 
Erel(T) for � ∈ {0.3, 0.5, 1.3, 5} and T ∈ {1, 10, 20, 40, 100} . 
The results that have been obtained are shown in Tables 9, 
10, 11, 12 and reveal that, for any fixed value of � , the esti-
mate of E(T) is again monotonically increasing, as expected 
from (15). Nevertheless, by carefully analyzing the orders 
of magnitude of both E(T) and Erel(T) , we can deduce that 
our method provides accurate solutions also in this case, in 
both short and long-term predictions.

5  Conclusions

In this paper, we have explored the ability of PINNs to 
accurately predict the solutions of some strongly degenerate 
parabolic problems arising in gas filtration through porous 
media. Since there are no general methods for finding 
analytical solutions to such problems, it is essential to 
use efficient and accurate numerical methods. One of the 
most prevalent methods for addressing these problems 

Erel(T) =
4 𝛼 + 3

4𝜋 T2
sup

t∈ (0,T)

‖û(⋅, t) − u(⋅, t)‖2
L2(Ω)

.

Table 8  Estimates of E(T) and E
rel
(T) for 

T ∈ {1, 10, 20, 30, 40, 50, 100}

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 6.59 × 10−4 9.21 × 10−5

10 1.21 × 10−3 2.73 × 10−6

20 1.73 × 10−3 1.00 × 10−6

30 2.90 × 10−3 7.54 × 10−7

40 6.13 × 10−3 9.02 × 10−7

50 4.89 × 10−2 4.61 × 10−6

100 1.44 × 10−1 3.42 × 10−6

Table 9  Estimates of E(T) and E
rel
(T) for � = 0.3 and 

T ∈ {1, 10, 20, 40, 100}

� = 0.3

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 1.27 × 10−5 4.25 × 10−6

10 6.93 × 10−4 2.31 × 10−6

20 4.64 × 10−3 3.88 × 10−6

40 2.37 × 10−2 4.95 × 10−6

100 2.58 × 10−1 8.63 × 10−6

Table 10  Estimates of E(T) and E
rel
(T) for � = 0.5 and 

T ∈ {1, 10, 20, 40, 100}

� = 0.5

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 1.02 × 10−5 4.05 × 10−6

10 4.60 × 10−4 1.83 × 10−6

20 2.25 × 10−3 2.24 × 10−6

40 3.44 × 10−2 8.54 × 10−6

100 4.47 × 10−1 1.78 × 10−5

Table 11  Estimates of E(T) and E
rel
(T) for � = 1.3 and 

T ∈ {1, 10, 20, 40, 100}

� = 1.3

Final time T Estimate of E(T) Estimate of E
rel
(T)

1 3.21 × 10−5 2.09 × 10−5

10 9.83 × 10−4 6.42 × 10−6

20 9.73 × 10−3 1.59 × 10−5

40 2.61 × 10−2 1.06 × 10−5

100 1.56 × 10−1 1.02 × 10−5
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is the Finite Difference Method (FDM), wherein PDEs 
are discretized into a system of algebraic equations to be 
solved numerically. However, the FDM necessitates the 
discretization of the domain into a grid of cells or nodes, 
which can become computationally expensive for large and 
intricate systems. Although the primary objective of this 
article is not to prove the effectiveness of a PINN compared 
to a classical numerical method, we engaged in a comparison 
with the FDM. As established in the literature, for problems 
characterized by a less complex domain, the FDM typically 
exhibits a higher level of accuracy compared to PINNs. 
Nevertheless, in our study, the advantage of using a PINN 
lies in the ability to test the model on various presented 
problems (varying the initial/boundary functions and the � 
parameter), once it has been trained. Additionally, the FDM 
can be utilized as a benchmark in cases where the solution to 
the problem is unknown, ensuring a fair comparison under 
equivalent accuracy conditions.

For the test problems discussed here, whose exact solu-
tions are fortunately known, we have compared the plots of 
the predicted solutions with those of the analytical solutions. 
Moreover, to evaluate the accuracy of our predictive method 
in a purely quantitative way, we have also analyzed the error 
trends over time. The proposed approach provides accurate 
results in line with expectations, at least in short-term pre-
dictions. However, some issues remain open, such as how 
to obtain fully reliable plots for the predicted solution when 
the exact (unknown) one is not differentiable somewhere, 
and how to reduce or eliminate some slight discrepancies 
between the contour lines of the predicted solution and those 
of the analytical solution in the case n = 2.

To the best of our knowledge, this is one of the first 
papers demonstrating the effectiveness of the PINN frame-
work for solving strongly degenerate parabolic problems 
with asymptotic structure of Laplacian type.
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