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Abstract

The paper presents some short proofs for transport density absolute continuity and Lp es-
timates. Most of the previously existing results which were proven by geometric arguments
are re-proved through a strategy based on displacement interpolation and on approximation by
discrete measures; some of them are partially extended.

1 Introduction

Monge-Kantorovich theory of optimal transportation deals with the minimization

min
{∫

Ω×Ω
|x− y| γ(dx, dy) : γ is a transport plan between µ0 and µ1

}
, (1.1)

where transport plans are those probabilities on Ω× Ω having µ0 and µ1 as marginal measures. In
such a theory it is classical to associate to any optimal transport plan γ a positive measure σ on Ω,
called transport density, which represents the amount of transport taking place in each region of Ω
(Ω is, say, a bounded and convex subset of Rd). This density σ is defined by

〈σ, φ〉 :=
∫

Ω×Ω
γ(dx, dy)

∫ 1

0
φ(ωx,y(t))|ω̇x,y(t)|dt for all φ ∈ C0(Ω) (1.2)

where ωx,y is a curve parametrizing the straight line segment connecting x to y (the same could
be generalized to other Riemannian distances than the euclidean one, and this segment should be
replaced by a geodesic curve). Alternatively, if we look at the action of σ on sets, we have, for every
Borel set A,

σ(A) :=
∫

Ω×Ω
H1(A ∩ [[x, y]]) γ(dx, dy),

where [[x, y]] is the segment joining the two points x and y.
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This positive measure σ is the total variation of a vector measure λ̄ solving the problem

min
{∫

Ω
|λ|(dx), : λ ∈M(Ω; Rd), ∇ · λ = µ1 − µ0

}
, (1.3)

which is the so-called continuous transportation problem proposed by Beckmann in [5].
More precisely, for every transport plan γ we can build a vector measure λ, defined through

〈λ, φ〉 :=
∫

Ω×Ω
γ(dx, dy)

∫ 1

0
φ(ωx,y(t)) · ω̇x,y(t)dt, for all φ ∈ C0(Ω; Rd)

and the λ̄ associated to an optimal γ turns out to be optimal for (1.3). Thanks to our definitions, it
is evident that we have |λ̄| ≤ σ, while the equality comes from the fact that transport rays cannot
cross: if several segments involved by an optimal transport pass through the same point, than they
all share the same direction.

One first natural question is whether the transport density σ is absolutely continuous. This
would for instance allow to set the problem (1.3) in a L1 setting instead of using the spaceM(Ω) of
finite vector measures on Ω. Notice that, to this aim, it would be sufficient to state that there exists
an optimal transport plan γ such that the corresponding σ (or, equivalently, the corresponding λ)
is absolutely continuous (it would not be necessary to prove it for every σ).

Actually, the precise relation betweenλ̄ and σ is λ̄ = σ∇u, where u is a Kantorovich potential
in the transportation from µ0 to µ1. The condition σ << Ld would also allow to write the system

∇ · (σ∇u) = µ1 − µ0 in Ω
|∇u| ≤ 1 in Ω,
|∇u| = 1 a.e. on σ > 0,

(1.4)

without passing through the theory of σ−tangential gradient (see for instance [14] or [8]).
There are several papers, mainly by De Pascale and Pratelli, Evans and Feldmann and McCann,

addressing absolute continuity and more general questions. In [13] the authors show estimates on
the dimension of σ in terms of the dimension of µ0 and µ1, and they get in particular σ << Ld
whenever one of the two source measures µ0 or µ1 is absolutely continuous. In the same paper they
also give several Lp estimates, which are then strengthened in [14] and in [15], where they finally
get the important result

µ0, µ1 ∈ Lp ⇒ σ ∈ Lp for all p ∈ [1,+∞]. (1.5)

Among the other Lp results, [13] proves

µ0 ∈ Lp ⇒ σ ∈ Lq for all q < min
{

(2d)′, 1 +
p− 1

2

}
. (1.6)

Estimates on σ may have various applications: for instance, lower bounds could be used to retrieve
information on the behavior of u as a solution of (1.4) (and, in order to apply standard elliptic
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theory, L∞ estimates as well are needed). Not only, lower bounds would also be useful to prove
some density results on the transport set: the techniques developed by Champion and De Pascale
in [11] would allow in such a case to derive the existence of an optimal transport map in Monge’s
problem. To mention, on the other hand, applications of upper bounds and Lp estimates on the
transport density, we refer to [10], where these results are used to prove well-posedness for congestion
problems and continuous Wardrop equilibria.

Coming back to the simple question of absolute continuity, Feldmann and McCann proved in
[16] that there exists, unique, an L1 transport density for L1 sources. This is another absolute
continuity result and it is coupled with a uniqueness result which is stated as “two L1 functions
which are transport densities, in a certain sense, between the same L1 sources must coincide”. A
more complete uniqueness result may be found in the Lecture Notes by Ambrosio [1], where the
links between σ and the other formulations of the Monge transport problem are well underlined.
The proof of the uniqueness in [1] is based on a decomposition into transport rays and on a one-
dimensional result. Here the result reads as “two different optimal transport plans always induce
the same measure σ, provided at least one of the two source measures is in L1”. In the same lecture
notes, for the absolute continuity proof the reader is addressed to [13].

Yet, we must say that the proofs in [13, 14, 15] and [16] are quite complicated and long. This
is natural since they are actually the first pioneering works on transport density; moreover they
present much wider results (dimensional estimates, existence of the limit of the cost on a ball,
uniqueness. . . ).

What we propose here are very simple proofs for a series of results which are partially already
known. The starting point is a proof of σ << Ld that arose during the preparation of a course on
Optimal Transport at IHP in Paris. One lecture of the course was devoted to divergence-constrained
problems and the goal was to show well-posedness in L1.

The strategy of the proof passes through the absolute continuity of the interpolation measures µt.
To prove that these measures are absolutely continuous we pass through the discrete case and then
get it at the limit. Actually, the absolute continuity of the interpolations is well known, especially in
the case of strictly convex cost function (rather than |x−y|). In this last case it is explicitly stated in
Theorem 8.7 of Part I of the new book on Optimal Transport by Cedric Villani, [19], where a general
Lipschitz result on intermediate transport maps (Theorem 8.5) is used. Yet, here, before passing
to the limit, the maps are actually piecewise linear and this obviously allows easier computations
to be performed. As far as the distance case |x − y| is concerned, there exists a proof of the same
absolute continuity estimates which is presented in [7]. Yet, no application to transport densities
is presented, even if this is the most natural framework to apply those estimates passing to the
limit from the discrete case, since we know that transport density is independent of the particular
transport plan which is selected by the approximation.

Later on, it appeared quite easily that the same technique we use here could be used for Lp

estimates. This gives easily a stronger result than (1.6). On the contrary, for getting (1.5) we need
something more, and precisely we need to guarantee that we can obtain a precise optimal transport
plan as a limit of optima in discrete cases, since we need a double approximation and we want to
be sure that the same plan is selected. But once this is done (in Section 3.1, thanks to techniques
mimicking Γ−convergence developments, see [12]), we also get Lp−Lq −Lr estimates (Theorem 6),
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i.e. something in the spirit of “µ0 ∈ Lp, µ1 ∈ Lq ⇒ σ ∈ Lr, r = r(p, q, d)”. This kind of estimates
(higher integrability if one of the measures belongs to a better space Lp) seems to be novel.

The goal of this paper is to prove these results on transport densities just by using some basic
facts about optimal transports. It is conceived to be read by somebody who knows the main
properties of optimal transport but is not necessarily an expert of transport densities (exactly as
the author is). Moreover, for the sake of backgroundlessness, when possible we sticked to the discrete
approximation technique instead of using more advanced tools (for instance an alternative proof for
(1.5) which is shorter for the reader who is familiar with displacement convexity is only presented
in Remark 9 and it is not our main proof).

No one of the ideas of these proofs occupies more than one page, and the reader has not to be
scared by this long introduction, nor by the long bibliography. Actually, the only bibliographical
references which present specific useful tools for the proofs are [1], [2], [4] and [6], while we refer to
[19], [18] and [12] for the general references on transport, displacement convexity and Γ−convergence;
[5, 13, 14, 15, 16] are the main references for transport densities; [3, 7, 9, 17, 19] are cited as papers
developing similar techniques in different contests and [5, 8, 10, 11] are presented in view of possible
applications of these estimates.

2 One-sided estimates

In all that follows Ω is a compact and convex domain in Rd, µ0 and µ1 two probabilities on Ω, and
at least one of them will be absolutely continuous. Then, by Theorem 7.3 in [1], there will exist one
unique transport density σ associated to those measures, independent of the optimal transport plan
γ (the relation between σ and any γ is given in (1.2)).

2.1 Absolute continuity: µ0 << Ld ⇒ σ << Ld

Theorem 1. Suppose µ0 << Ld, and let σ be the unique transport density associated to the transport
of µ0 onto µ1. Then σ << Ld.

Proof. Let γ be an optimal transport from µ0 to µ1 (recall that we have the right to choose any
particular optimal transport plan, if needed, since σ does not depend on the choice of γ) and µt the
standard interpolation between the two measures: µt = (πt)#γ where πt(x, y) = (1− t)x+ ty (this
is the same, in this framework, as ωx,y(t), when the segments are parametrized at constant speed).

The transport density σ may be easily written as (see [1] or look at the definition (1.2))

σ =
∫ 1

0
(πt)](c · γ)dt,

where c : Ω×Ω→ R is the cost function c(x, y) = |x−y| (hence c ·γ is a positive measure on Ω×Ω).
Since Ω is bounded it is evident that we have

σ ≤ C
∫ 1

0
µt dt. (2.1)
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To prove that σ is absolutely continuous, it is sufficient to prove that almost every measure µt is
absolutely continuous, so that, whenever |A| = 0, we have σ(A) ≤ C

∫ 1
0 µt(A)dt = 0.

We will prove µt << Ld for t < 1. First, we will suppose that µ1 is finitely atomic (the point
(xi)i=1,...,N being its atoms). In this case we will choose γ to be any optimal transport plan induced
by a transport map T (which exists, since µ0 << Ld). Notice that the absolute continuity of σ is
an easy consequence of the behavior of the optimal transport from µ0 to µ1 (which is composed by
N homotheties), but we also want to quantify this absolute continuity, in order to go on with an
approximation procedure.

Remember that µ0 is absolutely continuous and hence there exists a correspondence ε 7→ δ = δ(ε)
such that

|A| < δ(ε)⇒ µ0(A) < ε. (2.2)

Take now a Borel set A and look at µt(A). The domain Ω is the disjoint union of a finite number
of sets Ωi = T−1({xi}). We call Ωi(t) the images of Ωi through the map x 7→ (1 − t)x + tT (x).
These sets are essentially disjoint. Why? because if a point z belongs to Ωi(t) and Ωj(t), then two
transport rays cross at z, the one going from x′i ∈ Ωi to xi and the one from x′j ∈ Ωj to xj . The only
possibility is that these two rays are actually the same, i.e. that the five points x′i, x

′
j , z, xi, xj are

aligned. But this implies that z belongs to one of the lines connecting two atoms xi and xj . Since
we have finitely many of these lines this set is negligible. Notice that this argument only works for
d > 1 (we will not waste time on the case d = 1, since the transport density is always a BV and
hence bounded function). Moreover, if we sticked to the optimal transport which is monotone on
transport rays, we could have actually proved that these sets are truly disjoint, with no negligible
intersection (see the proof of Lemma 4 and the subsequent remark).

Hence we have

µt(A) =
∑
i

µt(A ∩ Ωi(t)) =
∑
i

µ0

(
A ∩ Ωi(t)− txi

1− t

)
= µ0

(⋃
i

A ∩ Ωi(t)− txi
1− t

)
.

Since for every i we have ∣∣∣∣A ∩ Ωi(t)− txi
1− t

∣∣∣∣ =
1

(1− t)d
|A ∩ Ωi(t)|

we have ∣∣∣∣∣⋃
i

A ∩ Ωi(t)− txi
1− t

∣∣∣∣∣ ≤ 1
(1− t)d

|A|.

Hence it is sufficient to suppose |A| < (1 − t)dδ(ε) to get µt(A) < ε. This confirms µt << Ld and
gives an estimate that may pass to the limit.

Take a sequence (µn1 )n of atomic measures converging to µ1. The corresponding optimal transport
plans γn converge to an optimal transport plan γ and µnt converge to the corresponding µt. Hence,
to prove absolute continuity for the transport density σ associated to such a γ it is sufficient to
prove that these µt are absolutely continuous.

Take a set A such that |A| < (1− t)dδ(ε). Since the Lebesgue measure is regular, A is included
in an open set B such that |B| < (1 − t)dδ(ε). Hence µnt (B) < ε. Passing to the limit, thanks to
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weak convergence and semicontinuity on open sets, we have

µt(A) ≤ µt(B) ≤ lim inf
n

µnt (B) ≤ ε.

This proves µt << Ld and hence σ << Ld.

Remark 1. Where did we use the optimality of γ? we did it when we said that the Ωi(t) are disjoint.
For a discrete measure µ1, it is always true that the measures µt corresponding to any transport
plan γ are absolutely continuous for t < 1, but their absolute continuity may degenerate at the limit
if we allow the sets Ωi(t) to superpose (since in this case densities sum up and the estimates may
depend on the number of atoms).

Remark 2. Notice that we strongly used the equivalence between the two different definitions of
absolute continuity, i.e. the ε↔ δ correspondence on the one hand and the condition on negligible
sets on the other. Indeed, to prove that the condition µt << Ld passes to the limit we need the first
one, while to deduce σ << Ld we need the second one, since if we deal with non-negligible sets we
have some (1− t)d factor to deal with. . .

Remark 3. If we did not know any uniqueness result on σ we could have replaced the statement of
Theorem 1 with “there exists a transport density σ which is absolutely continuous”. This would
have been enough for several aims concerning the variational problem (1.3) or System (1.4)).

Remark 4. Where did we use the optimality of γ? we did it when we said that the Ωi(t) are disjoint.
For a discrete measure µ1, it is always true that the measures µt corresponding to any transport
plan γ are absolutely continuous for t < 1, but their absolute continuity may degenerate at the limit
if we allow the sets Ωi(t) to superpose (since in this case densities sum up and the estimates may
depend on the number of atoms).

Remark 5. Last remark: notice that we built an optimal transport plan with the property of having
absolutely continuous interpolating measures, and this was the key point in the proof. Notice that
this property is not satisfied by any optimal transport plan, since for instance the γ which sends
µ0 = L2

|[−2,−1]×[0,1] onto µ1 = L2
|[1,2]×[0,1] moving (x, y) to (−x, y) is such that µ1/2 = H1

|{0}×[0,1].
This answers negatively to a natural question raised by L. De Pascale: “is any optimal transport
plan from µ0 to µ1 approximable through optimal transport plans from µ0 to atomic measures?”.

2.2 Higher summability: µ0 ∈ Lp ⇒ σ ∈ Lp, p < d/(d− 1)

From this section on we will often confuse absolutely continuous measures with their densities and
write ||µ||p for ||f ||Lp(Ω) when µ = f · L.

Theorem 2. Suppose µ0 = f ·Ld, with f ∈ Lp(Ω). The, if p < d′ := d/(d−1), the unique transport
density σ associated to the transport of µ0 onto µ1 belongs to Lp(Ω) as well, and if p ≥ d′ it belongs
to any space Lq(Ω) for q < d′.
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Proof. Start from the case p < d′: following the same strategy (and the same notations) as before,
it is sufficient to prove that each measure µt (for t ∈ [0, 1[) is in Lp and to estimate their Lp norm.
Then we will use

||σ||p ≤ C
∫ 1

0
||µt||pdt,

(which is a consequence of (2.1) and of Minkowski inequality), the conditions on p being chosen
exactly so that this integral converges.

Consider first the discrete case: we know that µt is absolutely continuous and that its density
coincides on each set Ωi(t) with the density of an homothetical image of µ0 on Ωi, the homothety
ratio being (1− t). Hence, if ft is the density of µt, we have∫

Ω
ft(x)pdx =

∑
i

∫
Ωi(t)

ft(x)pdx =
∑
i

∫
Ωi

(
f(x)

(1− t)d

)p
(1− t)ddx

= (1− t)d(1−p)
∑
i

∫
Ωi

f(x)pdx = (1− t)d(1−p)
∫

Ω
f(x)pdx.

We get ||µt||p = (1− t)−d/p′ ||µ0||p, where p′ = p/(p− 1) is the conjugate exponent of p.
This inequality, which is true in the discrete case, stays true at the limit as well. If µ1 is not

atomic, approximate it through a sequence µn1 and take optimal plans γn and interpolating measures
µnt . Up to subsequences we have γn ⇀ γ (for an optimal transport plan γ) and µnt ⇀ µt (for the
corresponding interpolation); by semicontinuity we have

||µt||p ≤ lim inf
n
||µnt ||p ≤ (1− t)−d/p′ ||µ0||p

and we deduce

||σ||p ≤ C
∫ 1

0
||µt||pdt ≤ C||µ0||p

∫ 1

0
(1− t)−d/p′dt.

The last integral is finite whenever p′ > d, i.e. p < d′ = d/(d− 1).
The second part of the statement (the case p ≥ d′) is straightforward once one considers that

any density in Lp also belongs to any Lq space for q < p.

Remark 6. This result improves the one-sided estimate in [13]: the upper bound on the valid
exponent p is d′ instead of (2d)′ and, moreover, we prove that σ belongs to the same Lp space of µ0

(while in [13] for µ0 ∈ Lp no estimate beyond L1+(p−1)/2 was given for σ).

Remark 7. Here and in the following one could use a different strategy, looking for quantitative
estimates of the kind of (2.2). Actually, inequalities such as σ(A) ≤ |A|α imply Lp estimates and
one could get this kind of estimates for the measures µt by the techniques of Theorem (1). Yet, this
approach seems to be weaker than the Lp one and we will not develop it any more.
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3 Two-sided estimates

We saw in the previous section that the measures µt inherit some regularity (absolute continuity
or Lp summability) from µ0 exactly as it happens for homotheties of ratio 1 − t. This regularity
degenerates as t → 1, but we saw two cases where this degeneracy produced no problem: for
proving absolute continuity, where the separate absolute continuous behavior of almost all the µt
was sufficient, and for Lp estimates, provided the degeneracy stays integrable.

It is natural to try to exploit another strategy: suppose both µ0 and µ1 share some regularity
assumption (e.g., they belong to Lp). Then we can give estimate on µt for t ≤ 1/2 starting from µ0

and for t ≥ 1/2 starting from µ1. In this way we have no degeneracy!
This strategy works quite well, but it has an extra difficulty: in our previous estimates we didn’t

know a priori that µt shared the same behavior of piecewise homotheties of µ0, we got it as a
limit from discrete approximations. And, when we pass to the limit, we do not know which optimal
transport γ will be selected as a limit of the optimal plans γn. This was not important in the previous
section, since any optimal γ induces the same transport density σ. Yet, here we would like to glue
together estimates on µt for t ≤ 1/2 which have been obtained by approximating µ1, and estimates
on µt for t ≥ 1/2 which come from the approximation of µ0. Should the two approximations converge
to two different transport plans, we could not put together the two estimates and deduce anything
on σ.

Hence, the main technical issue of this section will be proving that one particular optimal trans-
port plan, i.e. the one which is monotone on transport rays, will be approximable in both directions.
We will exhibit, thanks to a variational approximation in the spirit of Γ−convergence developments
(see [12]), a sequence of properly chosen atomic measures, with their corresponding optimal trans-
port plans, which do the job. Yet, the transport plans we will use in the approximation will not be
optimal for the cost

∫
|x − y|dγ but for some costs

∫
(|x − y| + ε|x − y|2)dγ. We need to do this

in order to force the selected limit optimal transport to be the monotone one (through a secondary
variational problem, say). Anyway, this will not be an issue since these approximating optimal
transport will share the same geometric properties that will imply disjointness for the sets Ωi(t) will
allow for density estimates.

In the whole section all constants C in the estimates could eventually be used to denote larger
constants and their value could possibly change from one line to another.

Lastly, even if not precisely stated, the reader will be easily be able to check that all the results
of this section stay true for p = +∞ as well.

3.1 Discrete approximation of the ray-monotone optimal transport

For fixed measures µ, ν ∈ P(Ω), consider the following family of minimization problems (Pε):

(Pε) = min
{
W1((π1)#γ, ν) + εC1(γ) + ε2C2(γ) + ε3d+3#((π1)#γ), : γ ∈ P(Ω× Ω), (π0)#γ = µ

}
,

where W1 is the usual Wasserstein distance, i.e. the minimum value of the transport problem for
the cost c(x, y) = |x − y|, Cp(γ) =

∫
|x − y|pγ(dx, dy) for p = 1, 2 and the symbol # denotes

the cardinality of the support of a measure. Concerning W1, we only need to know that it is a
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distance (i.e. it is positive, it satisfies the triangle inequality and it vanishes only when the two
measures coincide) and that it metrizes the usual weak convergence of probability measures on
compact domains (see Chapter 6 in [19]).

Actually, this minimization consists in looking for a transport plan with first marginal equal to
µ satisfying the following criteria with decreasing degree of importance: the second marginal must
be close to ν, the C1 cost of transportation should be small, the C2 as well, and, finally, the second
marginal must be atomic with not too many atoms.

This minimization problem has obviously at least a solution (by the direct method, being Ω
compact). We call γε such a solution and νε := (π1)#γε its second marginal. It is straightforward
that νε is an atomic measure and that γε is the (unique, if µ << Ld, since the cost is strictly convex)
optimal transport from µ to νε for the cost C1 + εC2. Set

γ̄ = argmin {C2(γ) : γ is a C1−optimal transport plan from µ to ν} . (3.1)

This transport plan γ̄ is unique and it is known to be the unique optimal transport plan from µ to
ν which is monotone on transport rays (see for instance [3, 4, 6, 11]; notice that the functional C2

could have been replaced by any functional γ 7→
∫
φ(x− y)dγ for a strictly convex function φ).

Lemma 3. As ε→ 0 we have νε ⇀ ν and γε ⇀ γ̄.

Proof. It is sufficient to prove that any possible limit of subsequences coincide with ν or γ̄, respec-
tively. Let γ0 be one such a limit and ν0 = (π1)#γ0 the limit of the corresponding subsequence of
νε. Moreover, let pn be any measurable map from Ω to a grid Gn ⊂ Ω composed of Cnd points,
with the property |pn(x)− x| ≤ 1/n. Set νn := (pn)#ν and notice #νn ≤ Cnd, as well as νn ⇀ ν.

First step: ν0 = ν. Take γn any transport plan from µ to νn. By optimality of γε we have

W1(νε, ν) ≤W1(νn, ν) + εC1(γn) + ε2C2(γn) + Cε3d+3nd.

Fix n, let ε go to 0 and get

W1(ν0, ν) ≤W1(νn, ν) ≤ 1
n
.

Then let n→∞ and get W1(ν0, ν) = 0, which implies ν0 = ν.
Second step: γ0 is optimal for C1 from µ to ν. Take any optimal transport plan γn (for

the C1 cost) from µ to νn. These plans converge to a certain optimal plan γ̃ from µ to ν. Then, by
optimality, we have

εC1(γε) ≤W1(νn, ν) + εC1(γn) + ε2C2(γn) + Cε3d+3nd ≤ 1
n

+ εC1(γn) + Cε2 + Cε3d+3nd.

Then take n ≈ ε−2 and divide by ε :

C1(γε) ≤ ε+ C1(γn) + Cε+ Cεd+2.

Passing to the limit we get
C1(γ0) ≤ C1(γ̃) = W1(µ, ν),

9



which implies that γ0 is optimal.
Third step: γ0 = γ̄. Take any optimal transport plan γ (for the cost C1) from µ to ν. Set

γn = (id× pn)#γ. We have (π1)#γ
n = νn. Then we have

W1(νε, ν) + εC1(γε) + ε2C2(γε) ≤W1(νn, ν) + εC1(γn) + ε2C2(γn) + Cε3d+3nd.

Moreover we have

C1(γε) ≥W1(µ, νε) ≥W1(µ, ν)−W1(νε, ν),

C1(γn) ≤ C1(γ) +
∫
|pn(y)− y|γ(dx, dy) ≤ C1(γ) +

1
n

= W1(µ, ν) +
1
n
.

Hence we have

(1− ε)W1(νε, ν) + εW1(µ, ν) + ε2C2(γε) ≤
1
n

+ εW1(µ, ν) +
ε

n
+ ε2C2(γn) + Cε3d+3nd.

Getting rid of the first term (which is positive) in the left hand side, simplifying εW1(µ, ν), and
dividing by ε2, we get

C2(γε) ≤
1 + ε

nε2
+ C2(γn) + Cε3d+1nd.

Here it is sufficient to take n ≈ ε−3 and pass to the limit to get

C2(γ0) ≤ C2(γ),

which is the condition characterizing γ̄ (C2−optimality among C1−minimizers).

3.2 Lp summabilities

The first tool we need is a uniform Lp estimates of the measures µt in terms of the norm of µ0,
when µt is an interpolation from µ0 to µ1 corresponding to a transport plan γ which is optimal for
another cost, different from |x − y|. In this case we do not have any transport ray argument, but
the result is somehow even stronger under strict convexity assumptions.

Lemma 4. Let γ be an optimal transport plan between µ0 and an atomic measure µ1 for a transport
cost c(x, y) = φ(y − x) where φ : Rd → R is a strictly convex function. Set as usual µt = (πt)#γ.
Then we have ||µt||p ≤ (1− t)−d/p′ ||µ0||p.

Proof. The result is exactly the same as in Theorem 2, where the key tool is the fact that µt
coincides on every set Ωi(t) with an homothety of µ0. The only fact that must be checked again is
the disjointness of the sets Ωi(t).

To do so, take a point x ∈ Ωi(t) ∩ Ωj(t). Hence there exist xi, xj belonging to Ωi and Ωj ,
respectively, so that x = (1− t)xi+ tyi = (1− t)xj + tyj , being yi and yj atoms of µ1. Set a = yi−xi
and b = yj − xj .

The c−cyclical monotonicity of the support of the optimal γ implies

φ(a) + φ(b) ≤ φ(yj − xi) + φ(yi − xj) = φ(tb+ (1− t)a) + φ(ta+ (1− t)b).
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Yet, if yj 6= yi we have a 6= b, and strict convexity implies

φ(tb+ (1− t)a) + φ(ta+ (1− t)b) < tφ(b) + (1− t)φ(a) + tφ(a) + (1− t)φ(b) = φ(a) + φ(b),

which is a contradiction. Hence the sets Ωi(t) are disjoint and this implies the bound on µt.

Remark 8. Disjointness of the sets Ωi(t) is easier in this strictly convex setting. If the cost is |x− y|
this is no more true, but it is anyway true that the two vector a and b should be parallel, i.e. all the
points should be aligned, as we pointed out in Theorem 1. If µ does not give mass to lines, than
the sets are essentially disjoint. Otherwise one can say that they are truly disjoint if one only looks
at the optimal transport which is monotone on transport rays.

Theorem 5. Suppose that µ0 and µ1 are probability measures on Ω, both belonging to Lp(Ω), and
σ the unique transport density associated to the transport of µ0 onto µ1. Then σ belongs to Lp(Ω)
as well.

Proof. Let us consider the optimal transport plan γ̄ from µ0 to µ1 defined by (3.1). We know that
this transport plan may be approximated by plans γε which are optimal for the cost |x−y|+ε|x−y|2
from µ0 to some discrete atomic measures νε. The corresponding interpolation measures µt(ε) satisfy
the Lp estimate from Lemma 4 and, at the limit, we have

||µt||p ≤ lim inf
ε→0

||µt(ε)||p ≤ (1− t)−d/p′ ||µ0||p.

The same estimate may be performed from the other direction, since the same transport plan γ̄
may be approximated by optimal plans for the cost |x− y|+ ε|x− y|2 from atomic measures to µ1.
Putting together the two estimates we have

||µt||p ≤ min
{

(1− t)−d/p′ ||µ0||p, t−d/p
′ ||µ1||p

}
≤ 2d/p

′
max {||µ0||p, ||µ1||p} .

Integrating these Lp norms we get the bound on ||σ||p.

Remark 9. The same result could have been obtained in a strongly different way, thanks to the
displacement convexity of the functional µ 7→ ||µ||pp. This functional is actually convex along
geodesics in the space Wq(Ω) for q > 1 (see Theorem 9.3.9 in [2]). This implies that, if we take
an optimal transport plan for the cost cq(x, y) = |x − y|q, the interpolating measures µt satisfy
||µt||p ≤ max {||µ0||p, ||µ1||p}. Then we pass to the limit as q → 1: this gives the result on the inter-
polating measures corresponding to the optimal plan which is obtained as a limit of the cq−optimal
plans. This plan is, by the way, γ̄ again. And the integral estimate comes straightforward.

Hence, why did we not present the proof through this approach? the reason is twofold. First,
the spirit of the proof we presented (approximation by means of discrete transports) is shared by
the other proofs of this paper, and the convexity principle could not have been adapted to the
other results (to Theorems 2 and 6, for instance, because, in order to apply it, we need finite Lp

norms at both sides). Second, the proof we presented uses directly elementary tools such as the
discrete approximation, while Theorem 9.3.9 in [2] requires some more sophisticated tools in optimal
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transport, such as differentiability of the transport map, concavity properties of its Jacobian. . . For
the goals of this paper, which aims to be as much expository as possible, since almost no new result
is presented, we found it better to stick to the kind of proof we presented.

Theorem 6. Suppose µ0 ∈ Lp(Ω) and µ1 ∈ Lq(Ω). For notational simplicity take p > q. Then, if
p < d/(d − 1), the transport density σ belongs to Lp and, if p ≥ d/(d − 1), it belongs to Lr(Ω) for
all the exponents r satisfying

r < r(p, q, d) :=
dq(p− 1)

d(p− 1)− (p− q)
.

Proof. The first part of the statement (the case p < d/(d − 1) is a consequence of Theorem 2. For
the second one, using exactly the same argument as before (Theorem 5) we get

||µt||p ≤ (1− t)−d/p′ ||µ0||p; ||µt||q ≤ t−d/q
′ ||µ1||q.

We then apply standard Hölder inequality to derive the usual interpolation estimate for any exponent
q < r < p:

||f ||r ≤ ||f ||αp ||f ||1−αq with α =
p(r − q)
r(p− q)

, and 1− α =
q(p− r)
r(p− q)

.

This implies

||µt||r ≤ C||µt||p ≤ C||µ0||p for t <
1
2

; ||µt||r ≤ C(1− t)−αd/p′ ||µ0||αp ||µ1||1−αp for t >
1
2
.

Then, take r < r(p, q, d), so that αd/p′ < 1 is ensured and hence the Lr norm is integrable, thus
giving a bound on ||σ||r.

Remark 10. We do not know whether this exponent r(p, q, d) is sharp or not and whether σ belongs
or not to Lr(p,q,d).

On the contrary, Example 4.15 in [13] shows the sharpness of the bound on p that we set in
Theorem 2.
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[8] G. Bouchitté, G. Buttazzo and P. Seppecher, Shape optimization solutions via Monge-
Kantorovich equation. C. R. Acad. Sci. Paris Sér. I Math. 324, n. 10, 1185–1191, 1997.

[9] A. Brancolini, G. Buttazzo and F. Santambrogio, Path Functionals over Wasserstein spaces, J.
Eur. Math. Soc., 8, n. 3, 415–434, 2006.

[10] G. Carlier, C. Jimenez , F. Santambrogio, Optimal transportation with traffic congestion and
Wardrop equilibria, SIAM Journal on Control and Opt. 47, n. 3, 1330–1350, 2008.

[11] T. Champion and L. De Pascale, The Monge problem for strictly convex norms in Rd, preprint,
2008, available online at the page http://cvgmt.sns.it/cgi/get.cgi/papers/chadep08/ .

[12] G. Dal Maso: An Introduction to Γ-convergence. Birkhäuser, Basel, 1992.
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