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Abstract
In this short paper we prove, using the JKO scheme, that quantities such as the Fisher information

stay bounded or decrease across time for a family of 1-homogeneous diffusive PDEs. As a corollary, we
prove that moduli of continuity are conserved across time for the solutions of those PDEs.

1 Introduction
The now classical JKO scheme, introduced in the seminal paper [15], and generalized later by many authors,
is an approximation scheme used to construct solutions to nonlinear diffusion equations of the type

∂tϱ = ∇ · (ϱ∇c∗(∇f ′(ϱ))),

where c : Rd → R+ ∪{+∞} and f : R+ → R∪{+∞} are convex functions. Among examples of PDEs which
have this form, we can obtain equations of the form ∂tϱ = ∆p(ϕ(ρ)) (which are sometimes written in the
form ∂t(β(u)) = ∆pu, using u = ϕ(ρ) and β = ϕ−1). These equations are usually called doubly nonlinear:
they are a combination of porous-medium type equations (of the form ∂tρ = ∆(ϕ(ρ)), see [20]) and parabolic
p−Laplacian equations (of the form ∂tu = ∆pu).

The (generalized) JKO scheme consists in building a time discrete approximation of such equations, which
is of the form

ϱh
k+1 = argminρ Wch

(ρ, ϱh
k) + F (ρ),

where h > 0 is the discrete time step, Wch
is the transport cost for the cost ch = hc( ·

h ) (when c(z) = 1
p |z|p

we obtain Wch
= 1

php−1W
p
p ) and F (ϱ) =

´
f(ϱ(x)) dx. To prove the convergence of this scheme, it is often

useful to derive estimates on the discrete solutions (ϱh
k) to gain some compactness that allows to pass to the

limit, as it is done for example in [2, 17, 14] and many other papers. Some other estimates, derived on the
discrete scheme, may be used to study the behaviour of the limit continuous PDE, see for instance [12, 10, 6].
In [19], the authors use discrete estimates obtained on the scheme to prove it stronger convergence in the
case of the Fokker-Planck equation than what was originally proven. This proof used, for instance, a bound
on the Hölder norms, obtained from a non-optimal W 1,p assumption on the initial condition.

We restrict our analysis to the case where F (ϱ) = E (ϱ) =
´
ϱ log(ϱ) dx, meaning ∇f ′(ϱ) = ∇ log(ϱ).

This equation is in some sense the most linear one, for fixed cost c, among the doubly non-linear equations
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that we presented at the beginning. Its almost linear behavior lies in the fact that with this logarithmic
choice the equation becomes 1-homogeneous: if ρ is a solution, then λρ as well for any λ > 0. This class of
equations has already been widely studied, and we cite for instance [13] for an existing result( the relevant
case in such a paper is case II), [8] for its connections with functional inequalities, and [1, 3] for the study of
the trend to equilibrium (the 1-homogeneous case is called in [3] “Generalized heat equation”. As an example
of this class of equations, we can think at the following one: ∂tρ = ∆p(ρq−1), where p and q are conjugate
exponents (so that (p− 1)(q − 1) = 1).

For this very class of PDEs we can adapt results from [10] which readily generalize in our context thanks
to the recent extension of the so called ”five gradients inequality” (see [5, 9]) to other transport costs than
the quadratic one. We prove that the Fisher information, as well as many generalizations of this quantity,
decreases along the scheme, and therefore also decreases in time for the limit PDE. We underline that a
direct computation of the time-derivative of the Fisher information on the limit equation does not show in a
straightforward way that these quantities decrease in time. This reminds a similar result (on very different
equations) recently presented in [11]: in such a paper the authors shows that the fisher information decreases
but their analysis is based on clever tricks as its time derivative was not easily seen to be negative.

As a limit case, we also obtain that the Lipschitz constant of log ρ is preserved across the iterations.
This in turn implies that any modulus of continuity of log ρ is also preserved along iterations of the scheme,
and therefore pass to the limit in the time continuous PDE. This analysis is done first for more classical
cost functions c which are finite everywhere and then extended to the so-called ”relativistic” costs used for
example in the construction of solutions to the relativistic heat equation (see [16])

∂tϱ = ∇ ·

(
ϱ

∇ϱ√
ϱ2 + |∇ϱ|2

)
.

In the whole paper, we will assume that Ω is the closure of an open bounded convex subset of Rd. We
take c : Rd → R+ to be C1, strictly convex, radially symmetric and such that c(0) = 0. Radial symmetry
can be removed from the assumptions, as it will be explained later, and the finiteness of the cost will be
removed in Section 3.2.

2 Preliminaries
We refer to [4, 18, 21] for the general theory of optimal transport and its application to gradient flows, and
we compile below a selection of helpful facts we will use in the sequel.

Theorem 2.1. Let ϱ, g ∈ M+(Ω) be two non-negative measures on Ω. The following statements are classi-
cal :

1. The problem

Wc(µ, ν) := min
{ˆ

Ω×Ω
c(x− y) dγ ; γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) is the set of non-negative measures on Ω × Ω with first marginal µ and second marginal
ν, admits a solution γ∗. If µ = ϱ dx, with ϱ ∈ L1(Ω), then the solution is unique, and given by
γ∗ = (id, T )#ϱ for some T : Ω → Ω which is called the optimal transport map.

2. We have

Wc(µ, ν) = max
{ˆ

Ω
φdµ+

ˆ
Ω
ψ dν ; φ(x) + ψ(y) ≤ c(x− y) ∀x, y ∈ Ω

}
.
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The optimal φ and ψ are called Kantorovich potentials, and they can be taken c-concave, satisfying

φ(x) = inf
y∈Ω

c(x− y) − ψ(y), ψ(y) = φc(y) := inf
x∈Ω

c(x− y) − φ(x),

from which one can prove that φ and φc are Lipschitz continuous.

3. Since c is strictly convex, c∗ ∈ C1 and the optimal transport map T is given by

T (x) = x− ∇c∗(∇φ(x)),

where φ is any Kantorovich potential. It is well defined almost everywhere since a Lipschitz function
is differentiable almost everywhere.

Definition 2.2. We define E : P(Ω) → R∪{+∞} by

E (µ) :=
{´

Ω ϱ log(ϱ) dx if ϱ ≪ dx and ϱ = dµ
dx

+∞ otherwise

Since we will deal only with absolutely continuous measures, we will use the usual abuse of notation of
denoting µ by its density ϱ.

Theorem 2.3. Let g ∈ M(Ω) be a non-negative measure, and set ch(z) := hc(z/h). The problem

ϱ ∈ argminρ Wch
(ρ, g) + E (ρ) (2.1)

admits a unique solution which we denote Π(g). Given g1, g2 two non-negative measures, if g1 ≤ g2, then
Π(g1) ≤ Π(g2), and for λ > 0, Π(λg) = λΠ(g).

Proof. Existence and uniqueness follow from the direct method in the calculus of variations, since both
functionals in the minimization are lower semi-continuous and convex, and E is strictly convex, see for
example [2]. The second claim is a direct application of the L1 contraction principle proved in Theorem 1.3
from [14]. For the last claim, we have

inf
ϱ∈M+(Ω),

´
ϱ=
´

λg
Wch

(ϱ, λg) + E (ϱ) = inf
ϱ∈M+(Ω),

´
ϱ=
´

g
Wch

(λϱ, λg) + E (λϱ)

= λ

(
inf

ϱ∈M+(Ω),
´

ϱ=
´

g
Wch

(ϱ, g) + E (ϱ)
)

+ λ log(λ)
ˆ

Ω
g dx,

so that the solution is λΠ(g).

The following lemma, proved in [5] (see also [9]) as a generalization of the results of [7], is useful to prove
that suitable quantitites decrease along the steps of the JKO scheme.

Lemma 2.4. Let Ω ⊂ Rd be bounded and convex with non-empty interior, ϱ, g ∈ W 1,1(Ω) be two probability
densities and H ∈ C1(Rd \{0}) be a radially symmetric convex function, then the following inequality holds

ˆ
Ω

(
∇ϱ · ∇H(∇φ) + ∇g · ∇H(∇ψ)

)
dx ≥ 0, (2.2)

where (φ,ψ) is a choice of Kantorovich potentials for the optimal transport problem between ϱ and g for the
transport cost given by c, with the convention that ∇H(0) = 0.

Using Lemma 2.4, one can prove the following :
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Lemma 2.5. Let H be a radially symmetric convex function, g ∈ L1(Ω) be non negative and denote by ϱ
the solution of eq. (2.1). Then we haveˆ

Ω
H(∇ log g) dg ≥

ˆ
H(∇ log ϱ) dϱ

Proof. We follow the proof of Proposition 5.1 from [10]. We start from the case where H ∈ C1(Rd \{0}).
We have from the fact that H is convex,ˆ

Ω
H(∇ log g) dg ≥

ˆ
Ω
H(∇ψ) dg +

ˆ
Ω

∇H(∇ψ) · (∇ log g − ∇ψ)) dg

Using g = T#ϱ and ∇ψ ◦ T = −∇φ, together with the optimality condition of eq. (2.1) ∇φ = −∇ log ϱ, we
have ˆ

Ω
H(∇ψ) dg =

ˆ
Ω
H(∇ψ ◦ T ) dϱ =

ˆ
Ω
H(−∇φ) dϱ =

ˆ
Ω
H(∇ log ϱ) dϱ,

and ˆ
Ω

∇H(∇ψ) · ∇ψ dg = −
ˆ

Ω
∇H(−∇φ) · ∇φdϱ =

ˆ
Ω
H(−∇φ) · ∇ϱdx.

Using Lemma 2.4, we haveˆ
Ω

∇H(∇ψ) · (∇ log g) dg +
ˆ

Ω
∇H(∇φ) · ∇ϱdx =

ˆ
Ω

∇H(∇ψ) · ∇g dx+
ˆ

Ω
∇H(∇φ) · ∇ϱdx ≥ 0,

so that we finally conclude ˆ
Ω
H(∇ log g) dg ≥

ˆ
H(∇ log ϱ) dϱ.

By approximation we can get rid of the assumption H ∈ C1(Rd \{0}) by passing the above inequality to the
limit and obtain the result for any convex and radially symmetric function H.

Remark 2.6. We observe that the assumption that H is radially symmetric can be weakened. H was supposed
to be radial in [5] in order to handle the boundary term in the integration by parts which is needed in the
proof of Lemma 2.4, but it is observed that we do not need neither c nor H to be radial, but only ∇c∗ to
be parallel to ∇H. Then we observe that in our proof (and in that of [5]), we freely moved the minus sign
inside and outside of ∇H, assuming at least H to be even. This assumption can also be removed, but in
this case the five-gradients inequality becomesˆ

Ω

(
∇ϱ · ∇H(∇φ) − ∇g · ∇H(−∇ψ)

)
dx ≥ 0.

With this modification, the result of Lemma 2.5 still holds.

3 Estimates on steps of the JKO Scheme
3.1 Finite costs
Definition 3.1. For h > 0 and ϱ0 ∈ L1(Ω) such that E (ϱ0) < +∞, we recursively define the sequence (ϱh

k)k

by

ϱh
k+1 = argminρ Wch

(ρ, ϱh
k) + E (ρ),

which is well defined because of Theorem 2.3

4



The following theorem is taken from [10] and can directly be generalized to our context thanks to Lem-
mas 2.4 and 2.5 with the same proof.

Theorem 3.2. Let ϱ0 ∈ L1(Ω). We have
ˆ
H(∇ log ϱ0) dϱ0 ≥

ˆ
H(∇ log ϱh

k) dϱh
k

for all h, k, where H is a radially symmetric and convex function. In particular, the following estimates are
uniform in h and k:

1. if log(ϱ0) is L-Lipschitz, then log(ϱh
k) is L-Lipschitz;

2. for p > 1, if ϱ1/p
0 ∈ W 1,p(Ω), then (ϱh

k)1/p ∈ W 1,p(Ω) and ∥(ϱh
k)1/p∥W 1,p ≤ ∥ϱ1/p

0 ∥W 1,p ;

3. if ϱ0 ∈ BV (Ω), then ϱh
k ∈ BV (Ω) and ∥ϱh

k∥BV ≤ ∥ϱ0∥BV .

4. if ϱ0 ∈ W 1,1(Ω), all ϱh
k belong to a weakly compact subset of W 1,1(Ω).

Proof. We only give the main ideas, as the details can be found in [10]. The first statement is a direct
consequence of Lemma 2.5, iterated along the steps of the scheme. For 1., we pick H to be the indicator of
the centered ball of radius L (by indicator we mean here the function which is 0 on the ball and +∞ outside
it). For 2. we take H(z) = |z|p with p > 1, and 3. is covered by the case p = 1. For 4., one can use the
Dunford-Pettis theorem so find a superlinear convex function H such that H(∇ log(ϱ0)) ∈ L1(ϱ0), which
decreases at each step, thus providing the weak compactness.

Remark 3.3. Many authors use bounds on the generalized Fisher information to help prove the convergence
of the JKO scheme to the limit PDE, see for example [2, 16]. However, most often this bounds are integral
in time, i.e. only bounds on

´ T

0
´
H(∇ϱt) dϱt dt are used, and hence proven.

The above theorem includes that fact that the Lipschitz constant of the logarithm is preserved along the
iterations of this JKO scheme. We want now to extend this to other moduli of continuity. We will use the
following abstract fact.

Theorem 3.4. Let π : L∞(Ω) → L∞(Ω) be an operator such that

1. For all u, v ∈ L∞(Ω), if u ≥ v, then π(u) ≥ π(v).

2. For all λ ∈ R and u ∈ L∞(Ω), π(λ+ u) = λ+ π(u).

3. For all u ∈ L∞(Ω), if u is k-Lipschitz, then π(u) is also k-Lipschitz.

Then, if u admits a concave modulus of continuity ω, then π(u) admits the same modulus of continuity.

Proof. If u admits ω as a modulus of continuity, we start by approximating it with L-Lipschitz functions :
for x ∈ Ω, set

uL(x) = inf
y∈Ω

L|x− y| + u(x),

so that uL is L-Lipschitz. Of course uL satisfies uL ≤ u (by taking y = x). Furthermore, from the inequality

u(x) − u(y) ≤ ω(|x− y|),

we deduce that we have

L|x− y| + u(y) ≥ L|x− y| + u(x) − ω(|x− y|),
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so that, passing to the inf in y, we obtain

uL(x) ≥ u(x) + α(L),

where α(L) = infr>0 Lr − ω(r) ≤ 0. We can therefore conclude that

u ≥ uL ≥ u+ α(L).

Applying π and using its properties 1 and 2 we obtain

π(u) ≥ π(uL) ≥ π(u) + α(L).

For x, y ∈ Ω, since π(uk) is also L-Lipschitz, we can write

π(u)(x) − π(u)(y) ≤ π(uL)(x) − π(uL)(y) − α(L) ≤ L|x− y| − α(L).

Since ω is concave, we define ∂+ω its super-differential. Let us choose L such that L ∈ ∂+ω(|x − y|) (note
that ω is also non-decreasing, so we can take L ≥ 0; also note that the superdifferential is non-empty when
r > 0 because ω is finite on R+). This implies that r 7→ Lr−ω(r) (which is a convex function) is minimized at
r = |x−y| because 0 ∈ ∂(r 7→ Lr−ω(r)). Then we obtain for this L the equality α(L) = L|x−y|−ω(|x−y|),
and thus

π(u)(x) − π(u)(y) ≤ ω(|x− y|),

so that π(u) admits ω as a modulus of continuity.

Using the above theorem, we can then prove the following:

Theorem 3.5. Let ϱ0 ∈ L1(Ω) be such that log(ϱ0) admits ω as a modulus of continuity, then for all k and
h > 0, ϱh

k also admits ω as a modulus of continuity.

Proof. One only has to apply Theorem 3.4 with π = log ◦ Π ◦ exp to the L∞ function log(ϱ0), where Π is
defined in theorem 2.3. Assumptions 1 and 2 are satisfied because of Theorem 2.3 since the log function is
increasing and satisfies log(ab) = log(a) + log(b) for a, b > 0. The last assumption is satisfied because of the
first item of Theorem 3.2. We therefore obtain that ϱh

1 admits ω as a modulus of continuity, and iterating
the above at each step of the JKO scheme gives the result.

We remind the following theorem from [2] which proves the convergence of the JKO scheme, under the
additional conditions on the cost function c :

1. lim|z|→+∞
c(z)
|z| = +∞,

2. there exists α, β > 0 such that α|z|p ≤ c(z) ≤ β(1 + |z|p).

Theorem 3.6. Suppose log(ϱ0) ∈ L∞(Ω), and denote by ϱh the piecewise constant (in time) interpolation
of (ϱh

k)k. Then there exists ϱ ∈ L1(Ω) such that log(ϱ) ∈ L∞ and such that ϱh strongly converges to ϱ in
L1(Ω), and ϱ is the unique weak solution of

∂tϱ = ∇ · (ϱ∇c∗(∇ log(ϱ))) (3.1)

Another proof of convergence, in the case where the cost c is exactly a power, is provided in [6]. In this
reference the bound from below and above on the initial density ϱ0 is removed, but only the existence is
proven, not the uniqueness.

From Theorem 3.5 and Theorem 3.6 we deduce the following :
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Theorem 3.7. Let ϱ0 ∈ L1(Ω) be non negative. If log(ϱ0) admits ω as a modulus of continuity, then for all
t > 0, ϱ(t) admits ω as a modulus of continuity, where ϱ is the solution of eq. (3.1).

Proof. Since log(ϱ0) is continuous, we can construct the unique solution of eq. (3.1) using Theorem 3.6.
Applying Theorem 3.5, we have for all k that log(ϱh

k) admits ω as a modulus of continuity, and therefore for
all t ≥ 0, we have

| log(ϱh(t, x)) − log(ϱh(t, y))| ≤ ω(|x− y|).

Passing to the pointwise almost everywhere limit ϱh(t) → ϱ(t) as h → 0 in the above equation allows us to
conclude that ϱ(t) admits ω as a modulus of continuity

When we have uniqueness to eq. (3.1), which is the case for example is we look at bounded solutions, we
can show that the generalized Fisher information decreases along the flow :

Theorem 3.8. Let ϱ0 ∈ L1(Ω) be non negative and such that log(ϱ0) ∈ L∞(Ω). Denote by ϱ the solution of
eq. (3.1), then the generalized Fisher information

ˆ
H(∇ log ϱ) dϱ

is non increasing in time.

Proof. From Theorems 3.2 and 3.6, we know that the discrete solution (ϱ̃h
k)k constructed from the JKO

scheme started from ϱ(t) for any t ≥ 0 satisfies
ˆ
H(∇ log ϱ(t)) dϱ(t) ≥

ˆ
H(∇ log ϱ̃h

k) dϱ̃h
k .

By uniqueness of the solution, and the strong convergence of the discrete solutions provided by theorem 3.6,
we have ϱ̃h(s) → ϱ(t+ s) and the lower semi continuity of the right hand side (because H is convex) gives

ˆ
H(∇ log ϱ(t)) dϱ(t) ≥

ˆ
H(∇ log ϱ(t+ s)) dϱ(t+ s)

for any s ≥ 0.

Remark 3.9. Doing this computation directly at the continuous level by differentiating the generalized Fisher
Information and trying to show that its derivative is non-positive, seems to be, in our opinion, rather
complicated. In particular, after some simplification we obtain the following computations (subject to caution
and ignoring boundary terms), where we denote u = log ϱ. If ϱ solves eq. (3.1) then the equation solved by
u is

∂tu = Kc∗ +Dc∗ , where Dc∗ := ∇ · (∇c∗(∇u)) =
∑
j,k

c∗
jk(∇u)ujk, Kc∗ := ∇u · ∇c∗(∇u) =

∑
i

uic
∗
i (∇u).

We also use ∂tϱ = ϱ∂tu and with an integration by parts we obtain

d
dt

ˆ
ϱH(∇u) =

ˆ
∂tϱH(∇u) + ϱHi(∇u)∂tui =

ˆ
(ϱH(∇u) − (ϱHi(∇u))i)∂tu

=
ˆ
ϱ(Kc∗ +Dc∗)(H(∇u) −KH −DH),

where KH and DH are defined as for Kc∗ and Dc∗ , i.e. DH :=
∑

j,k Hjk(∇u)ujk, KH :=
∑

i uiHi(∇u).
We do not find it easy to see that the r.h.s. is negative (even in the case H = c∗). On the other hand, the
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Lipschitz regularity result contained in Theorem 3.2 can indeed be recovered by a maximum principle using
the equation satisfied by u = log ϱ: differentiating it provides

∂tuh = c∗
jkl(∇u)ulhujk + c∗

jk(∇u)ujkh + uihHi(∇u) + uiHil(∇u)ulh.

Multipliying by uh and looking at max |∇u|2 allows to obtain

d
dt max |∇u|2 ≤ 0.

Yet, of course, this formal compuation would require to be suitably justified.

3.2 Extension to relativistic costs
In [16], the authors generalize the construction from [2] to ”relativistic” cost functions, meaning cost functions
of the form

c(z) =
{
c̃(z) if |z| ≤ 1
+∞ if |z| > 1,

where c̃ ∈ C([0, 1]) ∩ C2([0, 1)) is a strictly convex function, with |∇c̃(z)| → +∞ when |z| → 1. The main
equation of interest entering in this framework is the so called Relativistic Heat Equation

∂tϱ = ∇ ·

(
ϱ

∇ϱ√
ϱ2 + |∇ϱ|2

)
,

where c̃(z) = 1 −
√

1 − |z|2. Their construction relies on an approximation argument of the irregular cost
function c, by smoother cost functions cε by inf-convolution, which allows us to apply our previous results
before passing to the limit.

Lemma 3.10. Define

cε(z) = inf
w∈Rd

(
c(z − w) + |w|2

2ε

)
,

it is a strictly convex and radially symmetric C2(Rd) function. If we denote by ϱh
ε the solution of eq. (2.1)

with the cost cε, then as ε → 0, ϱh
ε weakly converges to the solution ϱh of eq. (2.1) with the cost c.

Proof. See Section 3.2 and Lemma 3.2 from [16].

As in the prevous section, we recursively define the sequence (ϱh
k)k. And we have the same results as

before :

Theorem 3.11. Let ϱ0 ∈ L1(Ω). The following estimates are uniform in h and k:

1. if log(ϱ0) is L-Lipschitz, then log(ϱh
k) is L-Lipschitz;

2. for p > 1, if ϱ1/p
0 ∈ W 1,p(Ω), then (ϱh

k)1/p ∈ W 1,p(Ω) and ∥(ϱh
k)1/p∥W 1,p ≤ ∥ϱ1/p

0 ∥W 1,p ;

3. if ϱ0 ∈ BV (Ω), then ϱh
k ∈ BV (Ω) and ∥ϱh

k∥BV ≤ ∥ϱ0∥BV .

4. if ϱ0 ∈ W 1,1(Ω), all ϱh
k belong to a weakly compact subset of W 1,1(Ω).
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5. if log(ϱ0) admits ω as a modulus of continuity, then all ϱh
k also admit ω as a modulus of continuity.

Proof. We apply Theorems 3.2 and 3.5 from the previous section to the approximated problem with cε, and
then pass to the limit ε → 0. All estimates pass to the limit by lower semi continuity with respect to the
weak convergence.

Using the convergence result from [16], we have the following :

Theorem 3.12. Let ϱ0 ∈ L1(Ω) be such that log(ϱ0) admits ω as a modulus of continuity. The interpolated
sequence (ϱh) strongly converges to ϱ, a solution in the sense of distributions of

∂tϱ = ∇ · (ϱ∇c∗(∇ log(ϱ))), (3.2)

which is such that log(ϱ(t)) admits ω as a modulus of continuity for all t.

Proof. We use Theorem 1.8 from [16] to have the convergence of the discrete sequence, and use the last point
Theorem 3.11 to prove that the modulus of continuity of log(ϱ0) is propagated. Indeed, for the constant in
time interpolation ϱh, we have for all t ≥ 0

|ϱh(t, x) − ϱ(t, y)| ≤ ω(|x− y|),

and we can pass to the limit h → 0.
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