W1/2_maps into S and currents
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Let B™ be the unit ball in R™ and let ) be a smooth oriented Riemannian manifold of dimension larger
than or equal to 1, compact, connected, and without boundary, isometrically embedded in some Euclidean
space. Recently there has been quite some interest in the class of maps in the fractional Sobolev space W'/2
from B™ with values into Y, e.g. [3] [4] [5] [6] [7] [14] [19] for ) equal to the unit circle S in R? and [15]
[16] for manifolds with 1-homology group without torsion.

Similarly to Sobolev maps in W? with values into a manifold ), compare e.g. [13], sequences of
smooth maps with equibounded W'/2-norms show concentration of W'/2-energy, moreover there exist maps
in W'/2(B" S') that cannot be approximated in the W'/2-norm by functions in C>(B™, S%).

Two natural questions then arise: identify the weak limits of W'/?-equibounded sequences of smooth
maps, compute the W1/2-energy of those limits and in particular the relazed W'/2-energy. It turns out that
the natural setting in which we may answer to those questions is the geometric setting of Cartesian currents,
see [13].

In this paper, by specializing the results of [16] to the case J = S1, we shall recover and survey some of
the known results.

1  WY2-maps into S' and their graphs
In this section we discuss some properties of currents carried by graphs of W'/2-maps.

THE cLAass W1/2(B"). We recall, see e.g. [1], that the fractional Sobolev space W1'/2(B") is the Hilbert
space of real valued functions u which have finite W/2-seminorm

Ju(z) — u(y)l
[ult )2, pn = / / |x— |n+1 dx dy (1.1)

ull¥ /2, 5n = llulliz(gn) + [uli )2 50 -

endowed with the norm

Moreover, let
wWY2(B", §Y) .= {u e WY3(B",R?) : |u(z)| =1 for a.e. x € B"} .

EXTENSION OF W1/2-MAPs. Instead of working with the W'/2-energy, given by (1.1), we may and shall
work with the equivalent energy & o(u) defined as follows. For u € W1/2(B™, S1) we define the extension
of u

U := BExt(u) € WhH2(C" R?),

where C™t! is the cylinder
ctl.=B" x I, I:=10,1],

as the harmonic function U which minimizes the Dirichlet integral

1
D(U) ::5/6 B |DU (z,t)|? dz dt

among all functions that agree with v on B™ x {0}, and we set

51/2(’&) = D(Ext(u)) .



It is well-known that
D(EXt(U)) ~ |U/|1/2$Bn .

Moreover, clearly the image of U is contained in the closed unit disk D2,
Uewht?(ccmt, D?).

GRAPHS OF W/2.MmAPS. To any map u € W'/2N L>(B",R?) we can associate a current G,, in D, (B" x
R?), compare [14]. For this we recall the following facts:

(i) W'/2 0 L>°(B") is an algebra, since trivially
luvf1/2 < [[ufloclvlrjz + lvllooluli/2;

(ii) if u € W'/2(B™), then D;u belongs to the dual space W~1/2(B"™) of W'/2(B") for everyi=1,...,n
and
(Du,v)| < clulijolvlie  Vu,0 € WY2(B);

(iii) if w € WY2(B") and v € W'/2 0 L>(B"), then v Du defines a distribution in B", indeed a linear
continuous functional on W21 L>® by

(v Du, @) := (Du,v @), o e WY2NL>(B");

in fact
(o Du, @) < elulyyo([[olloclielyyz + llloclolyz)

Every form w in D"(B™ x R?) with at most one vertical differential can be written as

n 2
w:=wo(z,y)dr + Z Zwm (z,y) da; A dy’

i=1 j=1

where  and y are the variables in R™ and R?, respectively, wy and w; ; are functions in CZ°(B™ x R?),
dz = dz' A+ Ada™ and dz; = dz' A+ AdatTU AdaitU A Ada. If u e W2 N L>®(B™,R?), then it is
easily seen that also ¢(x,u(x)) belongs to W'/2 N L>(B™) for every ¢ € C®(B™ x R?) and hence, since
Du € W=1/2 we can define the graph current associated to u, compare [14], acting in a distributional sense
on forms with at most one vertical differential as

Gy(w) := /n wo(z,u(z)) dx + Z Z(fl)”fi@i,j (z,u(x)), Diu?(z)) .

Notice that, if u is smooth, we have G,, = (Id > u)x[ B" ], where (Id < u)(x) := (x,u(x)), i.e.
Gu(w) = / (Id = u)#w,  weD"(B™ xR?).

Since every u € W'/2(B", S') is in L, then G, is well defined as a current in D, (B" x S'). However,
even in dimension n = 1 in general G, is not an im. rectifiable current in B™ x S'. Moreover, if uy
converges to u strongly in W1/2, then G, converges to G, weakly in the sense of currents. Finally, since
Ext(ug) — U := Ext(u) strongly in W12(C"*1 R?) we have, compare [14],

(-1)"'0Gy =G,  on D"(B" x {0} x Sh). (1.2)

BOUNDARY DATA. In the sequel we will denote by B" a bounded domain in R™ such that B" cc B" and
we let ¢ : B" — S be a given W'/2-function, which will always be assumed to be smooth on B", and we
set

Wo2(Br,8Y) = {ueWYV2(B",S") [u=¢ onB"\B"}
ce (B, 8Y) = {ueC®B",S) | u=¢ onB"\B'}.



DENSITY RESULTS FOR W1/2-MmaPs. If n > 2, let Ry, (B, S1), respectively R?/Q(B’h S1), be the set of all
maps u € W/2(B" S') which are smooth, respectively continuous, except on a singular set X(u) of the
type

S(w)=J%i, reN,
i=1

where ¥; is a smooth (n — 2)-dimensional subset of B™ with smooth boundary, if n > 3, and ¥; is a point
if n = 2. Moreover, let

0B, 8Y) i={u € RY,(B",S") |[u=¢ onB"\B"}.

An argument similar to the one in [20] shows that C’g"(é", S1) is dense in Wg/?(B", S?) if n = 1, however
C:;C(E", S1) is not dense in W;/Q (B™,81) if n > 2. The following density result was proved in [19] in the
case n =2, and in [15] in the case n > 2 and for more general target manifolds ).

Theorem 1.1 For every n > 2 the class R‘f%)(p(gn,Sl) is dense in Wé/Q(E”,Sl), and Rsz(B",Sl) is
dense in W'/?(B",S1).

THE CURRENTS P(u) AND D(u). We shall denote by 7 : R” x R? — R" and 7 : R® x R? — R? the
orthogonal projections onto the first and the second factor, respectively. Using the same notation, we shall
also denote by 7 : R?" x [ xR? - R", 7:R*"x I xR? — I, and 7 : R" x [ x R? — R? where I := [0, 1], the
orthogonal projections onto the three factors, respectively. Also, we let wg: denote the normalized volume
1-form in S,

L 1,9 9.1
= — (y'dy” —y=dy").
wst = o (Y dy” —ytdy’)
Following [13, Vol. II, Sec. 4.2.5], we now define the current P(u) € D,,_o(B™) by setting
P(u)(¢) = (—=1)"0G,(n* ¢ ANTFwg1) V¢ e D"3(B").

We also define the current D(u) € D,,_1(B") as follows. We let wg1 € D}(R?) be a compactly supported
smooth extension of wg1, we consider a function n € C*°([0,1],[0,1]) with n =1 and 1 = 0 respectively
in a neighborhood of 0 and 1, and we let U = Ext(u). We now define

D(u)(¢) := Gu(r#p A d7TFn ATHDg1)), ¢ € D" Y(B").

We now show that
(=1D)"0D(u) = P(u) . (1.3)

In fact, by (1.2) we have
IGy (n#dp NTHEN AT Dg1) = (—1)" Gy (n?dp AT wgr)
so that, since dwg1 = 0, we compute for every ¢ € D"~2(B")

(D) "P(u)(¢) = OGu (%P ATHws1) = Gu(n#dp N THws1)
= (—1)TL_16GU<7T#CI¢ A %#77 A /71:#&51)
= Gu(r#do Nd(@Fn A T#dos1)) = D(u)(de) = ID(u)(¢) .-

Moreover, we remark that D(u) is a current of finite mass in D,,_;(B") since Ext(u) is a W12-function,
A7 ATFOq1) = TFdn ANTFOg1 + T ATFdigr

and
g1 € DHR?), dwg: € D*(R?). (1.4)

Also, clearly P(u) = 0 if u is smooth, say Lipschitz. Finally, taking into account Theorem 1.1, exactly as
in [13, Vol. II, Sec. 5.4.2], where we take p = 1, by (1.3) we obtain that P(u) is an (n — 2)-dimensional real
flat chain.



Proposition 1.2 Let u € Wé/Q(E’HSl) and let {uy} C R‘l’72,w(§",5’1) converge strongly in W1/2 to w.

Then P(u) is the real flat limit of the currents P(uy). Moreover, P(uy) is an i.m. rectifiable current in

Ro_2(B™), with support contained in B"; in particular in case n = 2 we have P(uy) = 3., dix0,x, where
dix € Z are integer coefficients and the 0,k ’s are Dirac unit measures at points a¥ € B Finally, since the

boundary data ¢ has a smooth extension from B" into St, each P(uy) is the boundary of an i.m. rectifiable
current.

We now show that P(u) is an integral flat chain, see [10].
Proposition 1.3 Let u € W;/Z(E”,Sl) and {ur} C RY9, S0(5”,51) converge strongly in W'/? tou. Then
(i) M(D(ux) —D(u)) = 0 as k — +oo;

(ii) there exists an i.m. rectifiable current L € Rn_l(én), with support sptL C B and finite mass,
M(L) < 400, such that P(u) = OL; in particular P(u) is an integral flat chain;

(iii) 4f Ly, denotes an (n— 1)-dimensional i.m. rectifiable current of least mass with support in B" such
that
OLuyu = P(w) — Plur), (1.5)

then M(Ly, ) — 0 as k — +oo;

(iv) if n = 2, there exist points a;,b; € B such that

P(u) = Z(éai _6171')7 Z|az_bz| < +00.
1=1 i=1

PROOF: Since up — u strongly in W1/2, then Uy, := Ext(uy) — Ext(u) =: U strongly in W2 and hence,
by (1.4), the Lebesgue theorem yields (i). The rest of the theorem is proved as in [13, Vol. II, Sec. 4.2.5]. In
fact, if T is an (n — 1)-dimensional i.m. rectifiable current with compact support in R™ and

mi(T) = inf{M(T)|T € Ro(R"), 9T =T}
my(T) = inf{M(T)|T € D,(R"), 0T =T},

by Hardt-Pitts’ theorem [17] we have that m;(I") = m,.(I"). Therefore by Rmk. 1 in [13, Vol. II, Sec. 5.4.2]
the claims follow. O

2 Cartesian currents with finite W'/2-energy

In this section we introduce the class of Cartesian currents with finite W'/2-energy, see Definitions 2.1, 2.5
and 2.6, collecting some of their main properties. For the sake of clearness, all the proofs are postponed to
the next section except for the proof of the closure theorem, Theorem 2.10.

Definition 2.1 Let T € D, 1(B" x S'). We say that T is a current in & jo-graph(B™ x S') if
OT =0 on D" '(B" xS (2.1)

and T can be decomposed as
T =Gy, + Sr, Sy :=1L(T) x [S'], (2.2)

where up € WY2(B™, SY) and 1(T) is an i.m. rectifiable current in R,_1(B™).

Note that Sz is completely vertical, i.e. Sz(¢(z,y)dr) =0 for any ¢ € C>°(B™ x S'). Moreover, the
graph G, of a W1/2-map u is in & jp-graph(B™ x S!) if it has no inner boundary, i.e.,

0G,=0 on D" Y(B"xS, (2.3)



condition which is automatically satisfied in case of dimension n = 1.

EXTENSION OF &;/5-GRAPHS. Following [14], we now extend currents in & jo-graph(B™ x S') to suitable
currents in Dy, 112(C"T! x R?).

Definition 2.2 Let T € & jp-graph(B™ x S') be such that (2.2) holds. Then the extension T := Ext(T) is
the current T € Dyi12(C"H x R2) defined by

T — (—1)"—1(GUT FIL(T) x [[D?]]), (2.4)

where Ur := Ext(ur) € WH2(C"TY D?) and [ D?] is the i.m. rectifiable current integration on the unit
disk D?, so that

o[D*]=1[S"].

Remark 2.3 Note that from Definition 2.2 and (1.2) we infer that the boundary of T over B™ x {0} x S!
is equal to T'. In fact,

O(L(T) x [D?]) = OL(T) x [D*] + (=1)" " L(T) x 9] D]
and hence, since OL(T) x [ D?] =0 on D*(B™ x S'), we have
(1) OL(T) x [D*]) = L(T) x [S'] on D™(B" x SY).

THE &; /o-ENERGY. We recall, compare [13], that the Dirichlet energy of a current T in D, 1(C"*! x R?)
is defined in such a way that if T is given by (2.4) we have

D) =5 [ 1DV dedi+m MOUT), 7= MID*]) = £2(D%). (2.5)

In particular, if T = Gy for some U € W12(C"H R?), then D(Gy) = D(U).

Definition 2.4 Let T be in & /o-graph(B™ x S1), so that (2.2) holds. The Eijo-energy &1 5(T) of T is

defined as the Dirichlet energy D(T) of the extension T := Ext(T), see (2.4) and (2.5).
If T=G, for some u€ WY2(B", S') and U = Ext(u), we also define
Ext(G,) == (-1)""'Gu, &1/2(Gu) ==D(Gy) =D(U) = [ul12.
Finally, if A C B" is a Borel set, and T € &; /o-graph(B™ x S1), we will denote
E1y2(T, A x S*) :== D(Ext(TL A x R?))
and if u € WY/2(B", S")

E1j2(u, A) := D(Ext(uja), A x I) = %/ |D Bxt (1) dac dt
AxXI

We now give the following

Definition 2.5 Let T € D, (B™ x S'). We say that T is a Cartesian current in cart'/?(B™ x S') if T
belongs to & ja-graph(B" x S1) and the E1ja-energy E1)9(T) of T is finite, see Definitions 2.1 and 2.4.

Definition 2.6 We say that a map v € WY2(B", S') is in cart'/2(B",S") if the current G, associated
to its graph is in cart’/?(B™ x SV).



Therefore, a W'/2-map u is in cart’/?(B", S') if its graph G, has no inner boundary, i.e. (2.3) holds
true. In particular, any smooth map w : B® — S! with finite W'/2-energy belongs to cart!/2 (B", S1).

Finally, if ¢ : B® — S! is a given W'/2-function, which is assumed to be smooth on B”", in the sequel
we will denote

cart}o/2(§”,51) = {uecart!/2(B",8Y) [u=¢ on B"\B"}
carty2(B" x §1) = {T € cart!/2(B" x §1) | (T — G,)L (B"\ B") x R2 = 0}.

THE WEAK CONVERGENCE. We say that {T} C cart'/?(B™ x S') converges to T € D,, 1(B"™ x S') weakly
in cart!'/? if T), = T weakly in D,,(B" x S') and sup, E1/2(Ty) < +oo.

THE 1-DIMENSIONAL CASE. Definition 2.5 is motivated by the following

Theorem 2.7 Let {ur} C C'(B',S') be a sequence of smooth maps with supy |ug|i/2 < +oo. Then,
possibly passing to a subsequence, G, converges weakly in Di(B' x S*) to some current T € cart'/? (B' x

Sb.

Therefore the class cart'/?(B! x S') contains the weak limits in cart!/? of sequences of graphs of smooth
maps with equibounded &; /;-energy. Moreover we have the following lower semicontinuity property.

Proposition 2.8 Let {ux} C CY(B',S') be such that supy lugli/2 < +oo and Gy, — T weakly in
Dy (B x S') to some current T € &, jp-graph(B' x S*). Then T € cart'/?(B x S') and

Epa(T) < lklgligf E172(Guy) -

Finally the following closure theorem holds true.

Theorem 2.9 The classes cart'/?(B' x S') and cart}a/Q(El x S1) are closed under weak convergence in

cart/2.

THE n-DIMENSIONAL CASE. Taking into account Theorem 2.9 and the density result of Theorem 6.1 below,
we also have in any dimension n > 2 the following

Theorem 2.10 (Closure theorem). The classes cart'/?(B" x S') and caurt;/2 (B™x SY) are closed under
weak convergence in cart'/2,

Moreover,

Proposition 2.11 Let {T},} C cart'/2(B" x S') be such that Ty — T weakly in cart'/? to some current
T € & j>-graph(B™ x SY). Then T € cart'/?(B" x S*) and

E1pp(T) < lk@jgg&/z(Tk% (2.6)
Proposition 2.12 Let {Ty} C cart’/?(B" x S') be such that sup, E1/2(Ty) < +oo. Then, possibly passing
to a subsequence we have that Ty, — T weakly in cart’/? to some current T € cart'/?(B™ x S').

The rest of this section is dedicated to outline the proof of Theorem 2.10.

Let {T}} C cart’/?(B"xS") besuch that T — T weakly in cart’/? to some current T € D,, 1(B" xS").
We have to show that T € cart'/2(B™ x S'). To this aim, we first write T} as

Ty = Gu, +L(Tx) x [S*], (2.7)

where u, € WY/2(B", 81 and L(T}) € Rn_1(B"). If Ty := Ext(T}), we have

T, = (71)”*1<GU,€ FL(TE) % [Dﬂ]) , (2.8)



where Uy, = Ext(ug) € WH2(C™, D?). Moreover, since supy, £1/2(Tx) < 400 we have

s:p D(U) < oo, sgp M(L(Ty)) < oo (2.9)

Therefore, from [13], possibly passing to a subsequence we have fk — T to some current T € Dpyp(C™H x
R2) such that T = (71)”’1(GU + §T) for some U € Wh2(C" R2?) and some Sy € Ry (C™H! x R2)
which vanishes on forms with no completely vertical differentials. Now we check that

T=0T=G,+Sr on D"B"x{0}xR?, (2.10)

where u € W'/2(B™, S') is the trace of U on B™ x {0} and St € D, (B" x S') is completely vertical, i.e.
St(¢(z,y)dx) =0 for all ¢ € C(B™ x S'). Moreover, due to the weak convergence we also infer that T
satisfies (2.1). To show that 7" decomposes as in (2.2), we argue as follows.

STRUCTURE OF THE WEAK LIMIT CURRENT. According to [13], the weak limit current T € D, (B" x S1)
decomposes as
T=G,+L(T)x[S'] on D"(B"xS, (2.11)

where L(T) € D,,—1(B") is defined by
L(T)(¢) i= Sr(n*o A7twsr), ¢ €D (B, (2.12)

so that it remains to show that L(7) is an i.m. rectifiable currents in R,,_1(B").
To this aim, following [11], taking into account the density of smooth graphs in cart'/2(B™ x S'), see
Theorem 6.1 below, one first shows

Theorem 2.13 The current 1L(T) is a flat chain in B"™.

n—1
SLICING BY LINES. Let P be an oriented straight line in R"™ and P) := P+Z;1 Aiv; the family of oriented
lines parallel to P, where A = (A1,..., \,_1) € R"™L, span(vy,...,v,_1) being the orthogonal hyperspace

to P. Since T satisfies (2.10), where D(T) < oo, we infer that for H" '-a.e. A the slice TL m~(Py) of
T over 7~ 1(Py) is a well defined 1-dimensional flat chain in (B™ N Py) x S! and Ty L 7 1(Py) belongs to
cart!/2((B™ N Py) x S) for every k.

Since T, — T weakly in cart'/?, for H" '-a.e. \, passing to a subsequence we have T} Lr H(Py) —
TL = Y(Py) weakly in cart'/2. Therefore, from the closure result of Theorem 2.9 we infer that the slice
T Y(Py) € cart'/2((B" N Py) x S') and hence that L(T) 7' (Py) = L(T L7 ' (Py)) is 0-dimensional
and rectifiable. Since L(7T") is a flat chains, the rectifiability criterion of B. White [21] yields that L(7)
is an i.m. rectifiable currents in R,_1(B™). Similarly to [11], we then conclude that T' decomposes as in
(2.2) and hence that T € & /-graph(B" x S ). Finally, by lower semicontinuity, Proposition 2.11, we have
E1/2(T) < +oo and hence T € cart'/2(B™ x S'). The closure of the class cart}o/Q(E" x S1) is obtained in
a similar way.

3 Proofs

In this section we collect for the reader’s convenience the proofs of the results stated in Sec. 2.

PROOF OF THEOREM 2.7: Let R? ~ R? x {0} C R3, let S? be the unit 2-sphere in R?® and let
S5 i={y=(y,\) €S*: yeR? £A>0}.

Moreover, let
Q" := B'x]0,1], Q™ := B'x] —1,0], Q:=B'x] - 1,1]

and U,:r QT — Si be the energy minimizing map with boundary condition Ul:r|le{o} = ug. Of course

DU, Q") =~ [uk|y/2 -



Also, let U, : Q= — 52 be given by
Uy, (2,t) = @0 U} (2, 1), D(y, A) = (y,—A).

Finally let Uy : Q — S? be defined by Uy(z,t) := U (2,t) if +t € [0,1]. We notice that U7 is Holder
continuous because of Morrey’s theorem [18].

Since supy, [ug|1/2 < +00, we have sup, D(Uk, Q) < +00. Moreover Gy, belongs to the class cart®!(Q x
52). Therefore, possibly passing to a subsequence, from [13] we infer that Gy, — T weakly in Do(Q x S2)
to some current T' € cart®!(Q x S?). As a consequence, T may be decomposed as

_ Jo
T=Gu+) 0, x[5], (3.1)
i=1
where U € Wh2(Q,S?) and §,, is the unit Dirac mass at the point z; € Q. Moreover, since Uy — U
weakly in W2(Q, S?), and 0Gy, L B* x {0} = G,,, then the trace of U on B! x {0} is a function u in
W'/2(B',SY) and dGy L (B! x {0} x S') = G,.

Possibly reordering the indices, we may and will suppose that the points x; in (3.1) belong to B! x {0}

if and only if ¢ € {1,...,4p} for some given ip < jo. Due to the symmetry of the functions Uy, we infer that

10
Gu, = 0Gys L(B' x {0} x 8') = Gy + ) 6, x[S'] i Di(B' x5,
i1
so that T € & jp-graph(B' x S'), see Definition 2.1. To conclude that & /5(T) < +o0, and hence that
T € cart'/?(B' x S') according to Definition 2.5, we argue as in the proof of Proposition 2.8. O

PRrROOF OF PROPOSITION 2.8: As in the proof of Proposition 2.11, with T} = G, . |

PROOF OF THEOREM 2.9: Let {T}} be a sequence in cart’/?(B! x S') such that supy, & /2(Tk) < oo and
Ty, — T. In the following section, Theorem 4.1, we will show that for every T} there exists a sequence
of smooth maps {uh )} in C>(B,S1) such that G ue = Ty in cart'/? and E12(G (k)) — &12(Tk) as
h — oo. Therefore, by a diagonal argument we may and will assume that Ty = Gy, for some smooth map
up € WY2(B", Sl). By Theorem 2.7 we then conclude that T € cart'/?(B! x S1). O

PROOF OF PROPOSITION 2.11: If T} and T are given by (2.7) and (2.2), and T}, := Ext(T}) and T :=
Ext(T) by (2.8) and (2.4), respectively, possibly passing to a subsequence we may and will suppose that,
on one side, the lower limit in (2.6) is a finite limit and, on the other side, that fk — T to some current
T e Dp1(C™ x R?). Due to weak convergence T — T, we infer that T = dT on D™ (B™ x {0} x S1).
Moreover, since Uy is the harmonic extension of uy, the energy of U, does not concentrate in the interior
of C"*! as k — +o00. As a consequence we obtain that 7' =T and hence that & o(T) := D(T) = D(T).
Finally, by lower 5emicontinuity of the Dirichlet energy w.r.t. the weak convergence in D, ,1(C"*! x R?),
we get D(T) < liminf, D(T;) and hence the assertion, as D(T}) = E1/2(Th). O

PROOF OF PROPOSITION 2.12: If Tvk = Ext(T}) then, as in the proof of Theorem 2.10, possibly passing to

a subsequence we infer that Tk -~ T weakly in DnH(C"“‘1 X RQ) to some current T such that if T := 9T
on D*(B™ x {0} x S'), then T € cart'/?(B™ x ') and Ty — T weakly in D, (B* x S1), as required. [

ProOF OF THEOREM 2.13: In Theorem 6.1 we will show that for every Ty, in cart’/2(B™ x S'), respec-
tively in caurtlw/2 (B™ x S1), there exists a sequence of smooth maps {uh )} in C>°(B™, S, respectively in
Cgo(B”,Sl), such that Gu(hk) — T}, in cart'/? and El/Q(Gu(h)c)) — &1/2(Tx) as h — oco. Therefore, since
T is the weak limit of a sequence {Ty} in cart!/?(B" x S') with equibounded &1 jp-energy, by a diagonal

argument we may and will assume that T = G,, for some smooth map uy € W'/2(B", S1).
Let L(Gy,) € Dp—1(B™) be given by

L(Gu)(9) = Gu, (7% ANTFws1), ¢ €D H(B™).



Since uy € W'Y2(B",S') is smooth, we infer that I(G,,) is a flat chain. In fact, since dufwy =

uk#dws1 = 0, then uk#LUS1 is a closed 1-form in D!(B") and hence uk#wgl = dgy, for some g, € C>(B™).

As a consequence, since for every ¢ € D"~1(B™) one has d(¢ A gr) = dp A gr + (=1)""1¢ A dg, whereas
Gy, = (Id < ug)x[B™], and G,, has no boundary in B™ x S, we infer

LG = [ onfus = [ onds=1 [ aona

n

and finally, by the definition of flat norm, see [10],

F(L(Gu,)) = sup{L(Gu,)(¢) | ¢ € D"7'(B"), F(¢) <1} < / |gk| d < o0,

n
where

F(¢) := max{ sup [|g(z)|[, sup [ld(z)|}
z€B™ zeB™

We now show that {IL(G.,)}r is a Cauchy sequence w.r.t. the flat norm, i.e., that

F(L(Gu,) — L(Gu,)) = sup{(L(Gu,) = L(Gw,))(¢) | ¢ € D" (B"), F(¢) <1}

is small for k, h large. Similarly to Sec. 1, we choose a smooth extension @wg: € D'(R?) of wg: and a
function n € C*°([0,1],[0,1]) with n =1 and n = 0 respectively in a neighborhood of 0 and 1, and we let
Ui = Ext(ug). For every ¢ € D""1(B") with F(¢) <1, by (1.2) we have

(—1)" ' L(Gu, ) (¢) = OGy, (n*p ATy ATHDg1) = /C+ (d(pAn) AUFGs1 + (=1)" 2o A AU digr) .

Since {Uy} is equibounded in W2, possibly passing to a subsequence U,f&sl — U#og1 and U,fd&sl —
U#dog: weakly in L' for some U € W12(C"*t1 R?), so that we infer that {LL(G,,)(¢)}x is a Cauchy
sequence. As a consequence, if F"~1(B") denotes a countable dense subset of smooth forms ¢ in D"~ (B™)
satisfying F(¢) < 1, by a diagonal argument we infer that

sup{(L(Gu,) — L(Gw,))(¢) | ¢ € F*71(B")}

is small for k, h large. By density of F"~1(B™), we obtain that {LL(Gy,)}x is a Cauchy sequence w.r.t. the
flat norm and hence, due to weak convergence of G,, to T, that the current Ry € D,_1(B")

Rr(¢) =T (r*p A7¥wg), ¢ D" Y(B"),

is a flat chain. Moreover, since T = G, + LL(T) x [ S*], where u € W'/2(B",S), as a consequence of the
strong density result for Cartesian currents in cart'/2, in the next sections we will obtain the sequential weak
density of smooth maps in W'/2(B", S'), see Corollary 6.2. Therefore, setting

Dr(¢) =Gy (n#p ATHwgr1), ¢ € D" Y(B"),

by repeating the previous argument we easily infer that Dp is a flat chain and hence the assertion, being
L(T) = Ry — Dr, see (2.12). O

4 The density result in dimension 1

In this section we prove the following

Theorem 4.1 Let n = 1. For every T € cart1/2(31 x SY) there exists a sequence of smooth maps uy :
B' — S' such that G,, — T weakly in cart'/? and

lim & o(up, B') = & jo(T, B' x S*). (4.1)

k——+o00



Similarly we have

Corollary 4.2 For every T € cart}p/z(él x Sb) there exists a sequence of smooth maps {uy.} C C° (B!, S1)
such that Gy, — T weakly in cart'/? and & jo(uy, BY) — &1 2(T, B* x S') as k — +oo.

We recall by Sec. 2 that every T € cart'/?(B' x S!) has the form

T=Gup + Y 0, x[S'], (4.2)

i=1

where 6, is the Dirac mass in z; € B'. Moreover the &; s2-energy of T'is defined as the Dirichlet energy of
its extension T = Ext(T) := Gy, + Zlil 8z, X [ D*], where Up := Ext(ur) € W42(C?, D?), so that
~ 1 9 .
E12(T) :=D(T) = 3 |Dur|*dx+ 7 - g,
CQ
compare Definition 2.2.

Remark 4.3 For future use, if 0 < § <1 we denote
Dj:={yeD?: dist(y,5') <6},  S;:={yeD?:|yl=¢}

the d-neighborhood of S* in D? and the circle of radius 6. Also, let II; denote the nearest point projection
of D? onto S!. Note that Ils is a well defined Lipschitz map with Lipschitz constant Ls — 17 as § — 0.

In the sequel we will also denote
B =B-nC%* 0B, =0B2n{(x,t)€C?|t>0}, J :=dBF\9 B, = [-rr] x {0}, (43)
where B2 := {(x,t) € R? | 2% + > < r?}, and
BT .= Bf, 0B :=0"B;, J:=Jy.
We will also write
TU) =u
if uw€ W1/2(B" R?) is the trace of a function U € Wh2(C"*1 R?) on B™ x {0}.

The proof of Theorem 4.1 relies on the following density result.

Proposition 4.4 Let U be a smooth WY2-map from C? into D? with trace T(U) € W/2(B',D2). Then
there exist a sequence {Ui} of smooth maps from C? into D?, with traces uy = T(Uy) € Wl/Q(Bl,D?;)
for every k, and a sequence of radii T, \, 0 such that Uy = U outside B and Gy, — Gy + &g x [ D?]
weakly in Da(C? x R?) with

lim D(Uy,C?) = D(U,C?) + .

k—-+o0

To prove Proposition 4.4 we make use of the following

Proposition 4.5 Let P € S} be a given point, § € [1/2,1]. For every € > 0 there exists a Lipschitz
function f.:BY — D? such that f.o+p =P, f-(J) C D}, feu[BY]=[D?], fex[J]=1[5"], and

D(f.,BY) <7 +e.
PROOF: By slightly modifying the identity map from B? onto D?, for any ¢ > 0 we first define a Lipschitz
map g. : B> — D? such that g.x[B%] = [ D?], the mapping area A(g., B?) < 7 + ¢, and such that g.

maps the upper part 9t B of the boundary of B? constantly into the north pole Py = (0,1) € S*. Secondly,
by connecting Py with P in D%, we slightly modify g. in such a way that g. maps 7B constantly into
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the given point P € S}, whereas g.(0B?) C D2, and gg#[[aBQ]] =[S']. Let ¢ : Bt — B’ bea bilipschitz
homeomorphism such that 1 is the 1dent1ty on 0T B. Then fE :=ge0ot): BT — D? is a Lipschitz continuous
function satisfying f5‘8+B =P, f.(J) C fa#[[B"’]] = [D?], and fa#[[J]] = [S1], whereas

A(fe, BT) = A(ge, B*) < m+e.

We now apply Morrey’s e-conformality theorem [18, Thm. 2.1] and define an orientation preserving diffeo-
morphism WU, : Bt — BT such that, if f. := f. o U, we have

D(fo, BY) < (1+2) A(fo, BY) = (1+ ) A(f, BY) < (1 +¢) (1 +2).

Finally, due to the three points condition, we may and do define ¥, so that it maps 0T B onto 9t B and J
onto J. The assertion easily follows. O

PROOF OF PROPOSITION 4.4: For e > 0 and r € (0,1/2), we let U, : B} — D? be given by

22| —
U( 12 Tz) it r/2<|z|<r
Uer(2) = 2]

)

z = (z,t) € B},
fe(22/7) if |z <r/2

where f. is given by Proposition 4.5, with P = U(0) € D%, and we set U.,(z) =U on C?\ B;". We have

/ |DUT,E\dzgc/ \DU|dz < ¢,
Bi\B:rm B

by absolute continuity, if r = r(g) is small. Moreover,

1

§/+ |DUT7€|dz:D(fE,B+),
Bl)s

so that the claim follows from Proposition 4.5, letting e \, 0. ]

PROOF OF THEOREM 4.1: Since n = 1, adapting an argument by [20], as in [3, Sec. 2.1] we can find a
sequence of smooth maps Uy, : C?2 — D? such that Uy — Ext(ur) strongly in W2(C? R?) and for which
there exists a positive number tg > 0 such that Uy (B! x [0,]) C D%/z for every k. In particular the traces
ug := T(Uy) belong to W'?(B', D} ;) and uj, — u in W'/?(B").

On small half-disks x;+B
to each U and find a sequence of smooth maps {Uj s}, from C? into R?, with traces ugj := T(Ukp) €
W1/2(B1 D%/z) for every h, and a sequence of radii 75, \, 0 as h — +oo such that Uy, = U, outside
z; + B and

Jh

around each x; and contained in C?, see (4.2), we then apply Proposition 4.4

10
GUk,h - GUk + Z(sz X [[D2]] ’ hli»r—ir-looD(Uk’h’CQ) = D(Ukac2) +7

i=1

By a diagonal procedure we therefore find a smooth sequence {Vi.} C C*(C?,R?), again with traces
= T(V,) € WY2(BY, Df/z) such that Gy, — T weakly in Dy(C% x R2) and D(Vj,C2) — D(T) as
k — +oo. Finally, setting uy := Il /3 0 vg, compare Remark 4.3, we obtain the assertion. O

PROOF OF COROLLARY 4.2: Since u is smooth on B'\ B!, we may and do define the sequence Uy, : C2 — R2
so that in particular (G, — Ge)L (B \Fl) x R? = 0 for every k. Moreover, since the points x; in (4.2)
can be taken distant from the boundary of B!, we apply Proposition 4.4 by taking the radii ry small so
that in particular Uy coincides with Uy in a small neighborhood of OB' x I, as required. O

11



5 The dipole construction

In this section we provide the approximation of dipoles, see [8] [12] [13, Vol. II, Sec. 4.2.3], for W'/2-maps
with values in S'. We first fix some notation. We set

=B xI, I1=10,1].
Let A denote the (n — 1)-simplex in B™ given by the convex hull
A :=co({Ogn,ler,lea,....lep1}), 0<l<1,
(e1,...,en) being the standard basis in R™. We will denote by
z = (x,t) = (T, xn,t), Z:=(1,. ., Tn-1),
a generic point z in crtl, Moreover, for § > 0 and 0 < m < 1, in the sequel we let
@5 (y) :== min{my,d},  y=>0,

we denote by
y(Z) := dist(z, 0A)

the distance of Z from the boundary of the (n — 1)-simplex A and we set
o5 (2) 7= (2, 5" (y(@) 2, 05" (y(2))1) ,

so that if
Qr = ¢™(Ax BY), BT :={(xz,,t) e B*|t>0},

then Q7" is a small "neighbor” of the simplex A in C"*!, compare (4.3). Finally, for every non-zero integer
q € Z\ {0} we will denote by ¢[S'] and q[D?] the currents integration of forms on S and D?,
respectively, with integer multiplicity |¢g| and orientation induced by the sign of g.

Proposition 5.1 Let U : C"t! 5 D2 bea W2 map which is smooth in the interior of ngo, for some fized
small mg, dg > 0, and such that v := T(U) € Wé/z(én,sl). Let q € Z. Then for every € >0, 0 < § < dg
and 0 < m < mq there exists a map U. : C"*' — D2, with trace T(U.) € W;/2(B",Sl), such that U, is
smooth in the closure of QF, except for the boundary of A. Moreover Gy, — Gy + [A] x ¢[ D?] weakly
in Dny1(C"T x R2) as € — 07 and

D(U.,C"*Y) < D(U,C"Y) + H' Y(A) - |g| m +e. (5.1)

To prove Proposition 5.1 we make use of

Lemma 5.2 Let V : A x Bt — R? be a Wh2-function and let
Vit(z) == Vo (¢f) Nz), zeQr.

Then there exists an absolute constant ¢ > 0 such that

DV'?dz < D nV|?dz+ ¢é? DV |2 dz
4 (zn,t)
Qpr AxB+ .
axB (5.2)
+ cm? / |De, )V 2 dz .

{(FeAly(@)<6/m}x B+

Moreover, by adapting the proof of Proposition 4.5, we easily obtain the following

12



Proposition 5.3 For every ¢ € Z\{0}, P € S* and ¢ > 0, there exists a Lipschitz function ff : BT — D?
such that fsllij =P, fP(J)c st EP#[[B’L]] =q[D?], fsl;k[[J]] =q[S'], and

D(fZ,B") <|q|7+e¢.

Finally, for every € > 0 we may and do define ff in such a way that for every o > 0 there exists n > 0
such that
VP, PyeS', |PL—Pl<n = |7 = [P <o

PRrOOF: We first slightly modify the map from B? onto D? given in complex variables by
z=pe? —ple? g ez\{0},

and we define a Lipschitz map g© : B> — D? such that gf#[[B2]] = q[ D?], the mapping area A(g’, B?) <
|g| ™ + ¢, and such that gf maps the upper part dTB of the boundary of B? constantly into the point
P € S'. We then let fg :=g.0v : Bt — D2, where ¢ : Bt — B isa bilipschitz homeomorphism which is
the identity on 0T B. We then proceed as in Proposition 4.5, by means of Morrey’s e-conformality theorem.
The assertion easily follows, since g© may be defined so that it continuously depend on the point P. O

PROOF OF PROPOSITION 5.1: We give the details of the proof in the case n = 2. We refer to [16] for the
more general case n > 3. We first introduce the cylindrical coordinates

z = (x1,22,t) = F(p,0,21) := (x1,pcosb, psinb), p>0, 6e€]l0,n],

so that p = v/x22 + t2. In the sequel we will also denote

o~

Wi(p,0,21) := W(F(p,0,21)).

Since U is smooth in the interior of Q(;moo, possibly taking a barycentric subdivision of A, without loss
of generality we may and will assume that the oscillation of U is smaller than € in the interior of ngo. If
n =2 we have that A is the line segment connecting the points a4 := (1,0,0) and a_ = Ogs. Similarly to
[2], we can choose small half-balls of radius r around at and replace U there by the radial maps

U, (2) = U<ai + Té_ZiJ (5.3)

so that

r

D(U,, B (as) N C?) = - D, U dH? = O(r).

0B3(a4)NC3

where 7 is an orthonormal frame of dB2(ay) and O(r;) — 0 for some sequence 7; \, 0. Moreover, due to
the smoothness of U, without loss of generality we may and do choose m so that

/ DU dH? < o0, (5.4)
K

ay
where K" is the cone of vertex a+ and angle arctanm
K ={z=F(p,0,y) €C® : 0<p=mly—azxl}.
Let now W, : A x BT — R? be given by
WE(.T],J?Q,t) = fgp(xl)(ant) 5
where fgp(xl) is given by Proposition 5.3 in correspondence to the point P(x1) := U(x1,0,0). Setting

D (2) := WEO(¢?)_1(Z), z e QF,

13



by Lemma 5.2 we estimate
D(®., QF") S/ D(fFE), BY)dH! (11) + & < H'(A) - (lg| 7 +¢) +¢
A

if we choose § sufficiently small. Define V. : Q3" — R? in cylindrical coordinates by

_ D.(20,0,7) if 0<p<eP(y)/2
Velp,0,21) := ( ) F@/ 0 e[0,n], x1€int(A),

Ur(p,0,5) it @P@)/2<p <P

where y(z1) := dist(z1,0A) and

B2 (p,0.7) = (éf@ - 1) T2 @).60.9) + (2 - wé?@) (0,6.5),

so that U3 (o7(5).6.5) = U(¢5' (), 6,5) and UF('(5)/2,6.5) = P(a1) = B=(4§(7).6,7). We have
D(V.,{0 < p <@ (@)/2, 0 €[0,7], 1 € A}) =D(®., Q).
Moreover, by (5.3) we estimate

D(Vo, {¢5" (@)/2 < p < 95" (@), 0 €[0,7]), a1 € A}) <
c (i 241t +6 / |DU> dH? +m / |DU? dHQ) :

(0,1)x8BF Kg B, | (ax)
where 75, := 0V 1+ m?/m. Now, since

liminf p / |IDU> dH? =0,
(0,l)xdBSF

p—0F
if we first choose m small, and then § = §(V;,e,m) sufficiently small, by (5.4) we have
D(V, Q") < HY(A) - (g 7 +¢) + 2.

We finally let U. = U on c3 \QP, and U, :=1I. o V. on QF, see Remark 4.3. O

6 The density result in higher dimension

In this section we prove in any dimension the following

Theorem 6.1 Let n > 2. Also, let ¢ : B" — S be a given smooth W/2_function. For every T €
cart'/2(B"™ x SY), respectively T € cart}o/Q(B" x S1), there exists a sequence of smooth maps {uy} in
C>(B", SY), respectively in CgO(B",Sl), such that G, — T weakly in cart'/? and

lim & o(ur) = E12(T) .

k— 400
As a consequence, compare [13], Vol. II, Sec. 4.2.5, we infer the following density results for W1/2-maps.

Corollary 6.2 Every map u in W/2(B" SV, respectively in W;/Q(én, S1), can be approzimated weakly
in W2 by a sequence of maps in C'(B™, SY)NWY2(B", SY), respectively in CL(B™,S" )N wl2(B",sh).
Moreover, u can be approzimated strongly in W2 by a sequence of smooth maps provided that P(u) = 0.
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PROOF OF THEOREM 6.1: We divide the proof in five steps.

STEP 1: REDUCTION TO FINITE MASS SINGULARITIES. We first recall that if T" € cartfp/Q(é”, S1), then T
decomposes as

T =Gy +L(T) x [S'], (6.1)

where ur € W;/Q(Eﬂ,sl) and 1L(T) € Ry_1(B"), with sptIL(T) C B". As a consequence of the results
proved in Sec. 2, we have

Proposition 6.3 There exists a sequence {ug} in RT?QW(E”, S1Y, strongly converging to ur in W'/2, such
that if Ly, uy 15 given by (1.5), then

Tj; = Gy, + (1) Lugur +1L(T)) x [S]

belongs to carti,/Q(g” x 81, and for every k the mass M(O((—1)" Ly, uy +1L(T))) is finite in B™, whereas
T, =T and & j2(Tk) — &1 /2(T) as k — +oo.

PROOF: Since T =0 on D"~ (B" x S1), by (6.1) we infer that
OL(T) = (=1)" ' P(ur).
Due to Theorem 1.1 and Proposition 1.3, by (1.5) we have
O((=1)" Luyur +L(T) = (=1)" " P(ur),

which is an i.m. rectifiable (n — 2)-current (a finite sum of unit Dirac masses if n = 2), see Proposition 1.2.
Moreover _
Gy, = (—1)"P(ug) x [S'] on D" Y(B" xS, (6.2)

whence T} € cartg;l(én x S1), with Ty — T. Now, writing

Ty = Gu, +L(Te) x [S'],  L(Tk) = (=1)"Lupur + L(T)
we have M(IL(Tx) — L(T)) = M(Lu,,,uy) — 0, which yields that &£ /5(Ty) — £1/2(T). O

By Proposition 6.3, arguing as in [11] we may and do suppose

T=Gup+ Y Loxal '], Ti=Fxt(T) = (-1)"*(Gu, + Y Ly xa[D*]),
q€EL q€Z

where Ur := Ext(ur) and the L,’s are i.m. rectifiable currents in R,_1(B™) with multiplicity 1, pairwise
disjoint supports contained in B", and finite boundary mass, > p M(0L4) < oo.

STEP 2: APPROXIMATION BY POLYHEDRAL CHAINS. Since the L,’s are integral currents with pairwise
disjoint supports, using Federer’s polyhedral approximation theorem [9], for every ¢ € Z we find an integral

polyhedral (n — 1)-chain PJ with support contained in a small neighborhood of radius ce in B" of the

support of L4, and a function U, € C>(C™*1, D?), with trace u. := T(U.) € R‘ﬁ%&(gn, S1), such that if

T. = GUE—}—ZPq6 x q[D?*],
qEZ

T. converges weakly in D, (C"*! x R2) to T as € — 0 and

D(U.,C*) + ) qmM(P;) = D(Ur,C") + ) grM(Ly),
q€L q€Z

which yields D(i) — D(T) as € — 0. Moreover, since the L,’s have disjoint supports, we may and do
choose the P;’s so that for every small € > 0 they have pairwise disjoint supports.
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STEP 3: APPROXIMATION BY WELL-INTERSECTING POLYHEDRAL CHAINS. By Step 2 we may suppose

T := Gy, + ZPq x q[S] € cart/?(B" x S, (6.3)
qEZ

where the P,’s are polyhedral (n — 1)-chains with multiplicity 1 and pairwise disjoint supports spt P, C En,
and up € R‘f‘/’Q SD(B", S1) is locally Lipschitz on B™\ | 4 SPt OF,. Moreover, possibly dividing the simplices
of a triangulation of P,, we may and will suppose that every P, is the union of a finite number of (n — 1)-

simplices A which only intersect at the boundary points.

STEP 4: APPROXIMATING THE DIPOLES. Now we first approximate the dipoles A x ¢[S'] by means of
Proposition 5.1. In fact, by taking mg and Jy small we may and will assume that the neighborhoods Qg’;o
corresponding to different simplices A are pairwise interiorly disjoint. _

By a diagonal argument, we then find a sequence {U.} such that u. := T(U,) € RY5, (B X S1) and
the graphs G, weakly converge to 1" with &;/2(Gu.) — €1/2(T). However, u. is smooth except on a
singular set X. of B™ given by the (n — 2)-skeleton of the union of the polyhedral (n — 1)-chains P,, but

0G,. =0 on D" Y(B"). (6.4)
To remove the singular set 3., we finally make use of the following variant of a result from [15].

Proposition 6.4 Under the previous hypotheses, for € > 0 small enough there exists a sequence of smooth
maps {ugﬁ)} C CP(B™,St) which converges to u. strongly in W2 as m — 4o0.

We refer to [16] for the proof of Proposition 6.4 in dimension n > 3, which relies on (6.4) and on the
smoothness of the boundary datum ¢ : B" — S on the whole of B™. In the case n = 2, we do not need to
assume that the boundary datum is smooth, since we actually reduce to remove homologically trivial point
singularities, as follows.

Proposition 6.5 (Removing point singularities). Let u € R‘f72(B2,Sl) be in cart'/?(B2,S"), so that
(6.4) holds, with uw = u. and n = 2. Then there exists a sequence of smooth maps ux C C°°(B2%,SY) which
converges to u strongly in W'/2,

Since we use a local argument, we may assume that v has only one singularity at the origin, i.e., u €
C>=(B%\ {0},8"). For 0 <r <1 we denote

Q,:=Bnc?, 07Q, =0B*Nn{z=(z,t) €C*® |t >0}, F,.:=Q,.N(B*x {0}).

Let U € W12(C?, D?) be the harmonic extension of u. For every fixed e > 0 let 0 < R = R(¢) < 1 be such
that
D(Uv7 QR) S E.

Since n
1
DW.Qr\Qua) = [ dr [ |pUPare,
Rz Jotq.

there exists r = r. € [R/2, R] such that

1 4 4
DW.0°Q.) =5 [ IDUPdH < 1D(U.Qn\Qn) < - (6.5)
0t Qr

To remove the singularity of u, we have to show that
{we WY2(B2,R?) NCO(B., S") | wiop = wopz } # 0, (6.6)

Le., ujppz is homotopic to a constant map in S1. Therefore, it suffices to show that dU‘aB%#WSl =0, ie.,
that wjgpz has zero degree. This follows from condition (6.4) with u = u., as

/(932 u‘aBg#wsl = G“\aBg (%#WSI) = 3Gu‘B% (%#wsl) = Gu‘B% (d%#wsl) = G"\B% (%#del) =0.
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As

Let

a consequence there exists a smooth extension u, : B2 — S1 of ujgp2 With finite W1/2_energy.
Let now V, : @, — D? be the solution of the Dirichlet problem on ), with boundary condition

V,=U on 07Q,
V.,=wu, on F,.

0 < § < r to be fixed later. Define U, : C> — D? by
V(gz> if |z <0
Ur(2) == U(r|z|) it o< |z|<r

U(z) if |z|>r

so that U, € W12(C3 R?) is continuous and with trace T(U,) € W/2(B?,S'). We easily estimate

for

4]
D(U,,C%) < D(U,C%) +erD(U,07Q,) + -D(V:, Qr)
some absolute constant ¢ > 0. Therefore, since r < R, by (6.5) we have

D(U,,C?) < D(U,C?) + 4ce + gD(V,., Q,) <D(U,C*) 4 (4c+ 1) ¢

taking § = §(e) sufficiently small. Letting e — 0 we infer that U,, — U in W12(C3 R?) and finally that
T(U,.) — uin WY2(B? 8", with T(U,.) € W'/2(B2,S") continuous. By a standard argument, we now
approximate T(U,._) by smooth functions, as required. O
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