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Let Bn be the unit ball in Rn and let Y be a smooth oriented Riemannian manifold of dimension larger
than or equal to 1, compact, connected, and without boundary, isometrically embedded in some Euclidean
space. Recently there has been quite some interest in the class of maps in the fractional Sobolev space W 1/2

from Bn with values into Y, e.g. [3] [4] [5] [6] [7] [14] [19] for Y equal to the unit circle S1 in R2, and [15]
[16] for manifolds with 1-homology group without torsion.

Similarly to Sobolev maps in W 1,2 with values into a manifold Y, compare e.g. [13], sequences of
smooth maps with equibounded W 1/2-norms show concentration of W 1/2-energy, moreover there exist maps
in W 1/2(Bn, S1) that cannot be approximated in the W 1/2-norm by functions in C∞(Bn, S1).

Two natural questions then arise: identify the weak limits of W 1/2-equibounded sequences of smooth
maps, compute the W 1/2-energy of those limits and in particular the relaxed W 1/2-energy. It turns out that
the natural setting in which we may answer to those questions is the geometric setting of Cartesian currents,
see [13].

In this paper, by specializing the results of [16] to the case Y = S1, we shall recover and survey some of
the known results.

1 W1/2-maps into S1 and their graphs

In this section we discuss some properties of currents carried by graphs of W 1/2-maps.

The class W 1/2(Bn). We recall, see e.g. [1], that the fractional Sobolev space W 1/2(Bn) is the Hilbert
space of real valued functions u which have finite W 1/2-seminorm

|u|21/2,Bn :=
∫

Bn

∫

Bn

|u(x)− u(y)|2
|x− y|n+1

dx dy (1.1)

endowed with the norm
‖u‖21/2,Bn := ‖u‖2L2(Bn) + |u|21/2,Bn .

Moreover, let
W 1/2(Bn, S1) := {u ∈ W 1/2(Bn,R2) : |u(x)| = 1 for a.e. x ∈ Bn} .

Extension of W 1/2-maps. Instead of working with the W 1/2-energy, given by (1.1), we may and shall
work with the equivalent energy E1/2(u) defined as follows. For u ∈ W 1/2(Bn, S1) we define the extension
of u

U := Ext(u) ∈ W 1,2(Cn+1,R2) ,

where Cn+1 is the cylinder
Cn+1 := Bn × I , I := [0, 1] ,

as the harmonic function U which minimizes the Dirichlet integral

D(U) :=
1
2

∫

Cn+1
|DU(x, t)|2 dx dt

among all functions that agree with u on Bn × {0}, and we set

E1/2(u) := D(Ext(u)) .
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It is well-known that
D(Ext(u)) ' |u|1/2,Bn .

Moreover, clearly the image of U is contained in the closed unit disk D2,

U ∈ W 1,2(Cn+1, D2) .

Graphs of W 1/2-maps. To any map u ∈ W 1/2 ∩L∞(Bn,R2) we can associate a current Gu in Dn(Bn×
R2), compare [14]. For this we recall the following facts:

(i) W 1/2 ∩ L∞(Bn) is an algebra, since trivially

|uv|1/2 ≤ ‖u‖∞|v|1/2 + ‖v‖∞|u|1/2 ;

(ii) if u ∈ W 1/2(Bn), then Diu belongs to the dual space W−1/2(Bn) of W 1/2(Bn) for every i = 1, . . . , n
and

|〈Du, v〉| ≤ c |u|1/2|v|1/2 ∀u, v ∈ W 1/2(Bn) ;

(iii) if u ∈ W 1/2(Bn) and v ∈ W 1/2 ∩ L∞(Bn), then v Du defines a distribution in Bn, indeed a linear
continuous functional on W 1/2 ∩ L∞ by

〈v Du, ϕ〉 := 〈Du, v ϕ〉 , ϕ ∈ W 1/2 ∩ L∞(Bn) ;

in fact
|〈v Du, ϕ〉| ≤ c |u|1/2

(
‖v‖∞|ϕ|1/2 + ‖ϕ‖∞|v|1/2

)
.

Every form ω in Dn(Bn × R2) with at most one vertical differential can be written as

ω := ω0(x, y) dx +
n∑

i=1

2∑

j=1

ωi,j(x, y) d̂xi ∧ dyj

where x and y are the variables in Rn and R2, respectively, ω0 and ωi,j are functions in C∞c (Bn × R2),
dx := dx1 ∧ · · · ∧ dxn and d̂xi := dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn. If u ∈ W 1/2 ∩L∞(Bn,R2), then it is
easily seen that also ϕ(x, u(x)) belongs to W 1/2 ∩ L∞(Bn) for every ϕ ∈ C∞c (Bn × R2) and hence, since
Du ∈ W−1/2, we can define the graph current associated to u, compare [14], acting in a distributional sense
on forms with at most one vertical differential as

Gu(ω) :=
∫

Bn

ω0(x, u(x)) dx +
n∑

i=1

2∑

j=1

(−1)n−i〈ωi,j(x, u(x)), Diu
j(x)〉 .

Notice that, if u is smooth, we have Gu = (Id ./ u)#[[Bn ]], where (Id ./ u)(x) := (x, u(x)), i.e.

Gu(ω) =
∫

Bn

(Id ./ u)#ω , ω ∈ Dn(Bn × R2) .

Since every u ∈ W 1/2(Bn, S1) is in L∞, then Gu is well defined as a current in Dn(Bn × S1). However,
even in dimension n = 1 in general Gu is not an i.m. rectifiable current in Bn × S1. Moreover, if uk

converges to u strongly in W 1/2, then Guk
converges to Gu weakly in the sense of currents. Finally, since

Ext(uk) → U := Ext(u) strongly in W 1,2(Cn+1,R2) we have, compare [14],

(−1)n−1∂GU = Gu on Dn(Bn × {0} × S1) . (1.2)

Boundary data. In the sequel we will denote by B̃n a bounded domain in Rn such that Bn ⊂⊂ B̃n and
we let ϕ : B̃n → S1 be a given W 1/2-function, which will always be assumed to be smooth on B̃n, and we
set

W
1/2
ϕ (B̃n, S1) := {u ∈ W 1/2(B̃n, S1) | u = ϕ on B̃n \B

n}
C∞ϕ (B̃n, S1) := {u ∈ C∞(B̃n, S1) | u = ϕ on B̃n \B

n} .
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Density results for W 1/2-maps. If n ≥ 2, let R∞1/2(B
n, S1), respectively R0

1/2(B
n, S1), be the set of all

maps u ∈ W 1/2(Bn, S1) which are smooth, respectively continuous, except on a singular set Σ(u) of the
type

Σ(u) =
r⋃

i=1

Σi , r ∈ N ,

where Σi is a smooth (n− 2)-dimensional subset of Bn with smooth boundary, if n ≥ 3, and Σi is a point
if n = 2. Moreover, let

R∞1/2,ϕ(B̃n, S1) := {u ∈ R∞1/2(B̃
n, S1) | u = ϕ on B̃n \B

n} .

An argument similar to the one in [20] shows that C∞ϕ (B̃n, S1) is dense in W
1/2
ϕ (B̃n, S1) if n = 1, however

C∞ϕ (B̃n, S1) is not dense in W
1/2
ϕ (B̃n, S1) if n ≥ 2. The following density result was proved in [19] in the

case n = 2, and in [15] in the case n ≥ 2 and for more general target manifolds Y.

Theorem 1.1 For every n ≥ 2 the class R∞1/2,ϕ(B̃n, S1) is dense in W
1/2
ϕ (B̃n, S1), and R∞1/2(B

n, S1) is
dense in W 1/2(Bn, S1).

The currents P(u) and D(u). We shall denote by π : Rn × R2 → Rn and π̂ : Rn × R2 → R2 the
orthogonal projections onto the first and the second factor, respectively. Using the same notation, we shall
also denote by π : Rn× I×R2 → Rn, π̃ : Rn× I×R2 → I, and π̂ : Rn× I×R2 → R2, where I := [0, 1], the
orthogonal projections onto the three factors, respectively. Also, we let ωS1 denote the normalized volume
1-form in S1,

ωS1 :=
1
2π

(y1dy2 − y2dy1) .

Following [13, Vol. II, Sec. 4.2.5], we now define the current P(u) ∈ Dn−2(Bn) by setting

P(u)(φ) = (−1)n∂Gu(π#φ ∧ π̂#ωS1) ∀φ ∈ Dn−2(Bn) .

We also define the current D(u) ∈ Dn−1(Bn) as follows. We let ω̃S1 ∈ D1(R2) be a compactly supported
smooth extension of ωS1 , we consider a function η ∈ C∞([0, 1], [0, 1]) with η ≡ 1 and η ≡ 0 respectively
in a neighborhood of 0 and 1, and we let U = Ext(u). We now define

D(u)(φ) := GU (π#φ ∧ d(π̃#η ∧ π̂#ω̃S1)) , φ ∈ Dn−1(Bn) .

We now show that
(−1)n∂ D(u) = P(u) . (1.3)

In fact, by (1.2) we have

∂GU (π#dφ ∧ π̃#η ∧ π̂#ω̃S1) = (−1)n−1Gu(π#dφ ∧ π̂#ωS1)

so that, since dωS1 = 0, we compute for every φ ∈ Dn−2(Bn)

(−1)n P(u)(φ) = ∂Gu(π#φ ∧ π̂#ωS1) = Gu(π#dφ ∧ π̂#ωS1)
= (−1)n−1∂GU (π#dφ ∧ π̃#η ∧ π̂#ω̃S1)
= GU (π#dφ ∧ d(π̃#η ∧ π̂#dω̃S1)) = D(u)(dφ) = ∂ D(u)(φ) .

Moreover, we remark that D(u) is a current of finite mass in Dn−1(Bn) since Ext(u) is a W 1,2-function,

d(π̃#η ∧ π̂#ω̃S1) = π̃#dη ∧ π̂#ω̃S1 + π̃#η ∧ π̂#dω̃S1 ,

and
ω̃S1 ∈ D1(R2) , dω̃S1 ∈ D2(R2) . (1.4)

Also, clearly P(u) = 0 if u is smooth, say Lipschitz. Finally, taking into account Theorem 1.1, exactly as
in [13, Vol. II, Sec. 5.4.2], where we take p = 1, by (1.3) we obtain that P(u) is an (n− 2)-dimensional real
flat chain.
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Proposition 1.2 Let u ∈ W
1/2
ϕ (B̃n, S1) and let {uk} ⊂ R∞1/2,ϕ(B̃n, S1) converge strongly in W 1/2 to u.

Then P(u) is the real flat limit of the currents P(uk). Moreover, P(uk) is an i.m. rectifiable current in
Rn−2(B̃n), with support contained in B

n
; in particular in case n = 2 we have P(uk) =

∑
i di,kδak

i
, where

di,k ∈ Z are integer coefficients and the δak
i
’s are Dirac unit measures at points ak

i ∈ B
2
. Finally, since the

boundary data ϕ has a smooth extension from B̃n into S1, each P(uk) is the boundary of an i.m. rectifiable
current.

We now show that P(u) is an integral flat chain, see [10].

Proposition 1.3 Let u ∈ W
1/2
ϕ (B̃n, S1) and {uk} ⊂ R∞1/2,ϕ(B̃n, S1) converge strongly in W 1/2 to u. Then

(i) M(D(uk)− D(u)) → 0 as k → +∞ ;

(ii) there exists an i.m. rectifiable current L ∈ Rn−1(B̃n), with support spt L ⊂ B
n

and finite mass,
M(L) < +∞, such that P(u) = ∂L; in particular P(u) is an integral flat chain;

(iii) if Luk,u denotes an (n− 1)-dimensional i.m. rectifiable current of least mass with support in B
n

such
that

∂Luk,u = P(u)− P(uk) , (1.5)

then M(Luk,u) → 0 as k → +∞;

(iv) if n = 2, there exist points ai, bi ∈ B
2

such that

P(u) =
∞∑

i=1

(δai − δbi) ,

∞∑

i=1

|ai − bi| < +∞ .

Proof: Since uk → u strongly in W 1/2, then Uk := Ext(uk) → Ext(u) =: U strongly in W 1,2 and hence,
by (1.4), the Lebesgue theorem yields (i). The rest of the theorem is proved as in [13, Vol. II, Sec. 4.2.5]. In
fact, if Γ is an (n− 1)-dimensional i.m. rectifiable current with compact support in Rn and

mi(Γ) := inf{M(T ) | T ∈ Rn(Rn) , ∂T = Γ}
mr(Γ) := inf{M(T ) | T ∈ Dn(Rn) , ∂T = Γ} ,

by Hardt-Pitts’ theorem [17] we have that mi(Γ) = mr(Γ). Therefore by Rmk. 1 in [13, Vol. II, Sec. 5.4.2]
the claims follow. ¤

2 Cartesian currents with finite W1/2-energy

In this section we introduce the class of Cartesian currents with finite W 1/2-energy, see Definitions 2.1, 2.5
and 2.6, collecting some of their main properties. For the sake of clearness, all the proofs are postponed to
the next section except for the proof of the closure theorem, Theorem 2.10.

Definition 2.1 Let T ∈ Dn,1(Bn × S1). We say that T is a current in E1/2-graph(Bn × S1) if

∂T = 0 on Dn−1(Bn × S1) (2.1)

and T can be decomposed as
T = GuT + ST , ST := L(T )× [[ S1 ]] , (2.2)

where uT ∈ W 1/2(Bn, S1) and L(T ) is an i.m. rectifiable current in Rn−1(Bn).

Note that ST is completely vertical, i.e. ST (φ(x, y) dx) = 0 for any φ ∈ C∞c (Bn × S1). Moreover, the
graph Gu of a W 1/2-map u is in E1/2-graph(Bn × S1) if it has no inner boundary, i.e.,

∂Gu = 0 on Dn−1(Bn × S1) , (2.3)
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condition which is automatically satisfied in case of dimension n = 1.

Extension of E1/2-graphs. Following [14], we now extend currents in E1/2-graph(Bn × S1) to suitable
currents in Dn+1,2(Cn+1 × R2).

Definition 2.2 Let T ∈ E1/2-graph(Bn×S1) be such that (2.2) holds. Then the extension T̃ := Ext(T ) is
the current T̃ ∈ Dn+1,2(Cn+1 × R2) defined by

T̃ = (−1)n−1
(
GUT

+ L(T )× [[D2 ]]
)

, (2.4)

where UT := Ext(uT ) ∈ W 1,2(Cn+1, D2) and [[D2 ]] is the i.m. rectifiable current integration on the unit
disk D2, so that

∂[[ D2 ]] = [[S1 ]] .

Remark 2.3 Note that from Definition 2.2 and (1.2) we infer that the boundary of T̃ over Bn × {0} × S1

is equal to T . In fact,

∂(L(T )× [[ D2 ]]) = ∂ L(T )× [[D2 ]] + (−1)n−1 L(T )× ∂[[ D2 ]]

and hence, since ∂ L(T )× [[ D2 ]] = 0 on Dn(Bn × S1), we have

(−1)n−1∂(L(T )× [[D2 ]]) = L(T )× [[ S1 ]] on Dn(Bn × S1) .

The E1/2-energy. We recall, compare [13], that the Dirichlet energy of a current T in Dn+1(Cn+1 × R2)
is defined in such a way that if T̃ is given by (2.4) we have

D(T̃ ) =
1
2

∫

Cn+1
|DUT |2 dx dt + π ·M(L(T )) , π = M([[D2 ]]) = L2(D2) . (2.5)

In particular, if T = GU for some U ∈ W 1,2(Cn+1,R2), then D(GU ) = D(U).

Definition 2.4 Let T be in E1/2-graph(Bn × S1), so that (2.2) holds. The E1/2-energy E1/2(T ) of T is
defined as the Dirichlet energy D(T̃ ) of the extension T̃ := Ext(T ), see (2.4) and (2.5).

If T = Gu for some u ∈ W 1/2(Bn, S1) and U = Ext(u), we also define

Ext(Gu) := (−1)n−1GU , E1/2(Gu) := D(GU ) = D(U) ' |u|1/2 .

Finally, if A ⊂ Bn is a Borel set, and T ∈ E1/2-graph(Bn × S1), we will denote

E1/2(T,A× S1) := D(Ext(T A× R2))

and if u ∈ W 1/2(Bn, S1)

E1/2(u,A) := D(Ext(u|A), A× I) =
1
2

∫

A×I

|D Ext(u|A)|2 dx dt .

We now give the following

Definition 2.5 Let T ∈ Dn(Bn × S1). We say that T is a Cartesian current in cart1/2(Bn × S1) if T
belongs to E1/2-graph(Bn × S1) and the E1/2-energy E1/2(T ) of T is finite, see Definitions 2.1 and 2.4.

Definition 2.6 We say that a map u ∈ W 1/2(Bn, S1) is in cart1/2(Bn, S1) if the current Gu associated
to its graph is in cart1/2(Bn × S1).
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Therefore, a W 1/2-map u is in cart1/2(Bn, S1) if its graph Gu has no inner boundary, i.e. (2.3) holds
true. In particular, any smooth map u : Bn → S1 with finite W 1/2-energy belongs to cart1/2(Bn, S1).

Finally, if ϕ : B̃n → S1 is a given W 1/2-function, which is assumed to be smooth on B̃n, in the sequel
we will denote

cart1/2
ϕ (B̃n, S1) := {u ∈ cart1/2(B̃n, S1) | u = ϕ on B̃n \B

n}
cart1/2

ϕ (B̃n × S1) := {T ∈ cart1/2(B̃n × S1) | (T −Gϕ) (B̃n \B
n
)× R2 = 0} .

The weak convergence. We say that {Tk} ⊂ cart1/2(Bn×S1) converges to T ∈ Dn,1(Bn×S1) weakly
in cart1/2 if Tk ⇀ T weakly in Dn(Bn × S1) and supk E1/2(Tk) < +∞.

The 1-dimensional case. Definition 2.5 is motivated by the following

Theorem 2.7 Let {uk} ⊂ C1(B1, S1) be a sequence of smooth maps with supk |uk|1/2 < +∞. Then,
possibly passing to a subsequence, Guk

converges weakly in D1(B1 × S1) to some current T ∈ cart1/2(B1 ×
S1).

Therefore the class cart1/2(B1×S1) contains the weak limits in cart1/2 of sequences of graphs of smooth
maps with equibounded E1/2-energy. Moreover we have the following lower semicontinuity property.

Proposition 2.8 Let {uk} ⊂ C1(B1, S1) be such that supk |uk|1/2 < +∞ and Guk
⇀ T weakly in

D1(B1 × S1) to some current T ∈ E1/2-graph(B1 × S1). Then T ∈ cart1/2(B1 × S1) and

E1/2(T ) ≤ lim inf
k→+∞

E1/2(Guk
) .

Finally the following closure theorem holds true.

Theorem 2.9 The classes cart1/2(B1 × S1) and cart1/2
ϕ (B̃1 × S1) are closed under weak convergence in

cart1/2.

The n-dimensional case. Taking into account Theorem 2.9 and the density result of Theorem 6.1 below,
we also have in any dimension n ≥ 2 the following

Theorem 2.10 (Closure theorem). The classes cart1/2(Bn×S1) and cart1/2
ϕ (B̃n×S1) are closed under

weak convergence in cart1/2.

Moreover,

Proposition 2.11 Let {Tk} ⊂ cart1/2(Bn × S1) be such that Tk ⇀ T weakly in cart1/2 to some current
T ∈ E1/2-graph(Bn × S1). Then T ∈ cart1/2(Bn × S1) and

E1/2(T ) ≤ lim inf
k→+∞

E1/2(Tk) . (2.6)

Proposition 2.12 Let {Tk} ⊂ cart1/2(Bn × S1) be such that supk E1/2(Tk) < +∞. Then, possibly passing
to a subsequence we have that Tk ⇀ T weakly in cart1/2 to some current T ∈ cart1/2(Bn × S1).

The rest of this section is dedicated to outline the proof of Theorem 2.10.

Let {Tk} ⊂ cart1/2(Bn×S1) be such that Tk ⇀ T weakly in cart1/2 to some current T ∈ Dn,1(Bn×S1).
We have to show that T ∈ cart1/2(Bn × S1). To this aim, we first write Tk as

Tk = Guk
+ L(Tk)× [[ S1 ]] , (2.7)

where uk ∈ W 1/2(Bn, S1) and L(Tk) ∈ Rn−1(Bn). If T̃k := Ext(Tk), we have

T̃k = (−1)n−1
(
GUk

+ L(Tk)× [[D2 ]]
)

, (2.8)
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where Uk = Ext(uk) ∈ W 1,2(Cn+1, D2). Moreover, since supk E1/2(Tk) < +∞ we have

sup
k

D(Uk) < ∞ , sup
k

M(L(Tk)) < ∞ . (2.9)

Therefore, from [13], possibly passing to a subsequence we have T̃k ⇀ T̃ to some current T̃ ∈ Dn+1(Cn+1×
R2) such that T̃ = (−1)n−1

(
GU + S̃T

)
for some U ∈ W 1,2(Cn+1,R2) and some S̃T ∈ Rn+1(Cn+1 × R2)

which vanishes on forms with no completely vertical differentials. Now we check that

T = ∂T̃ = Gu + ST on Dn(Bn × {0} × R2) , (2.10)

where u ∈ W 1/2(Bn, S1) is the trace of U on Bn ×{0} and ST ∈ Dn(Bn × S1) is completely vertical, i.e.
ST (φ(x, y) dx) = 0 for all φ ∈ C∞c (Bn × S1). Moreover, due to the weak convergence we also infer that T
satisfies (2.1). To show that T decomposes as in (2.2), we argue as follows.

Structure of the weak limit current. According to [13], the weak limit current T ∈ Dn(Bn × S1)
decomposes as

T = Gu + L(T )× [[S1 ]] on Dn(Bn × S1) , (2.11)

where L(T ) ∈ Dn−1(Bn) is defined by

L(T )(φ) := ST (π#φ ∧ π̂#ωS1) , φ ∈ Dn−1(Bn) , (2.12)

so that it remains to show that L(T ) is an i.m. rectifiable currents in Rn−1(Bn).
To this aim, following [11], taking into account the density of smooth graphs in cart1/2(Bn × S1), see

Theorem 6.1 below, one first shows

Theorem 2.13 The current L(T ) is a flat chain in Bn.

Slicing by lines. Let P be an oriented straight line in Rn and Pλ := P +
∑n−1

i=1
λiνi the family of oriented

lines parallel to P , where λ = (λ1, . . . , λn−1) ∈ Rn−1, span(ν1, . . . , νn−1) being the orthogonal hyperspace
to P . Since T satisfies (2.10), where D(T̃ ) < +∞, we infer that for Hn−1-a.e. λ the slice T π−1(Pλ) of
T over π−1(Pλ) is a well defined 1-dimensional flat chain in (Bn ∩ Pλ)× S1 and Tk π−1(Pλ) belongs to
cart1/2((Bn ∩ Pλ)× S1) for every k.

Since Tk ⇀ T weakly in cart1/2, for Hn−1-a.e. λ, passing to a subsequence we have Tk π−1(Pλ) ⇀
T π−1(Pλ) weakly in cart1/2. Therefore, from the closure result of Theorem 2.9 we infer that the slice
T π−1(Pλ) ∈ cart1/2((Bn ∩ Pλ)× S1) and hence that L(T ) π−1(Pλ) = L(T π−1(Pλ)) is 0-dimensional
and rectifiable. Since L(T ) is a flat chains, the rectifiability criterion of B. White [21] yields that L(T )
is an i.m. rectifiable currents in Rn−1(Bn). Similarly to [11], we then conclude that T decomposes as in
(2.2) and hence that T ∈ E1/2-graph(Bn × S1). Finally, by lower semicontinuity, Proposition 2.11, we have
E1/2(T ) < +∞ and hence T ∈ cart1/2(Bn × S1). The closure of the class cart1/2

ϕ (B̃n × S1) is obtained in
a similar way.

3 Proofs

In this section we collect for the reader’s convenience the proofs of the results stated in Sec. 2.

Proof of Theorem 2.7: Let R2 ' R2 × {0} ⊂ R3, let S2 be the unit 2-sphere in R3 and let

S2
± := {ỹ = (y, λ) ∈ S2 : y ∈ R2, ±λ ≥ 0} .

Moreover, let
Q+ := B1×]0, 1[ , Q− := B1×]− 1, 0[ , Q := B1×]− 1, 1[

and U+
k : Q+ → S2

+ be the energy minimizing map with boundary condition U+
k |B1×{0} = uk. Of course

D(U+
k , Q+) ' |uk|1/2 .
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Also, let U−
k : Q− → S2

− be given by

U−
k (x, t) := Φ ◦ U+

k (x,−t) , Φ(y, λ) := (y,−λ) .

Finally let Uk : Q → S2 be defined by Uk(x, t) := U±
k (x, t) if ±t ∈ [0, 1[. We notice that U±

k is Hölder
continuous because of Morrey’s theorem [18].

Since supk |uk|1/2 < +∞, we have supk D(Uk, Q) < +∞. Moreover GUk
belongs to the class cart2,1(Q×

S2). Therefore, possibly passing to a subsequence, from [13] we infer that GUk
⇀ T̃ weakly in D2(Q× S2)

to some current T̃ ∈ cart2,1(Q× S2). As a consequence, T̃ may be decomposed as

T̃ = GU +
j0∑

i=1

δxi
× [[S2 ]] , (3.1)

where U ∈ W 1,2(Q,S2) and δxi is the unit Dirac mass at the point xi ∈ Q. Moreover, since Uk ⇀ U
weakly in W 1,2(Q, S2), and ∂GUk

B1 × {0} = Guk
, then the trace of U on B1 × {0} is a function u in

W 1/2(B1, S1) and ∂GU (B1 × {0} × S1) = Gu.
Possibly reordering the indices, we may and will suppose that the points xi in (3.1) belong to B1 ×{0}

if and only if i ∈ {1, . . . , i0} for some given i0 ≤ j0. Due to the symmetry of the functions Uk, we infer that

Guk
= ∂GU+

k
(B1 × {0} × S1) ⇀ Gu +

i0∑

i=1

δxi × [[S1 ]] in D1(B1 × S1) ,

so that T ∈ E1/2-graph(B1 × S1), see Definition 2.1. To conclude that E1/2(T ) < +∞, and hence that
T ∈ cart1/2(B1 × S1) according to Definition 2.5, we argue as in the proof of Proposition 2.8. ¤

Proof of Proposition 2.8: As in the proof of Proposition 2.11, with Tk = Guk
. ¤

Proof of Theorem 2.9: Let {Tk} be a sequence in cart1/2(B1 × S1) such that supk E1/2(Tk) < ∞ and
Tk ⇀ T . In the following section, Theorem 4.1, we will show that for every Tk there exists a sequence
of smooth maps {u(k)

h } in C∞(B1, S1) such that G
u
(k)
h

⇀ Tk in cart1/2 and E1/2(Gu
(k)
h

) → E1/2(Tk) as
h →∞. Therefore, by a diagonal argument we may and will assume that Tk = Guk

for some smooth map
uk ∈ W 1/2(Bn, S1). By Theorem 2.7 we then conclude that T ∈ cart1/2(B1 × S1). ¤

Proof of Proposition 2.11: If Tk and T are given by (2.7) and (2.2), and T̃k := Ext(Tk) and T̃ :=
Ext(T ) by (2.8) and (2.4), respectively, possibly passing to a subsequence we may and will suppose that,
on one side, the lower limit in (2.6) is a finite limit and, on the other side, that T̃k ⇀ T̂ to some current
T̂ ∈ Dn+1(Cn+1 × R2). Due to weak convergence Tk ⇀ T , we infer that T = ∂T̂ on Dn(Bn × {0} × S1).
Moreover, since Uk is the harmonic extension of uk, the energy of Uk does not concentrate in the interior
of Cn+1 as k → +∞. As a consequence we obtain that T̂ = T̃ and hence that E1/2(T ) := D(T̃ ) = D(T̂ ).
Finally, by lower semicontinuity of the Dirichlet energy w.r.t. the weak convergence in Dn+1(Cn+1 × R2),
we get D(T̂ ) ≤ lim infk D(T̃k) and hence the assertion, as D(T̃k) = E1/2(Tk). ¤

Proof of Proposition 2.12: If T̃k := Ext(Tk) then, as in the proof of Theorem 2.10, possibly passing to
a subsequence we infer that T̃k ⇀ T̃ weakly in Dn+1(Cn+1 × R2) to some current T̃ such that if T := ∂T̃
on Dn(Bn × {0} × S1), then T ∈ cart1/2(Bn × S1) and Tk ⇀ T weakly in Dn(B1 × S1), as required. ¤

Proof of Theorem 2.13: In Theorem 6.1 we will show that for every Tk in cart1/2(Bn × S1), respec-
tively in cart1/2

ϕ (B̃n × S1), there exists a sequence of smooth maps {u(k)
h } in C∞(Bn, S1), respectively in

C∞ϕ (B̃n, S1), such that G
u

(k)
h

⇀ Tk in cart1/2 and E1/2(Gu
(k)
h

) → E1/2(Tk) as h → ∞. Therefore, since

T is the weak limit of a sequence {Tk} in cart1/2(Bn × S1) with equibounded E1/2-energy, by a diagonal
argument we may and will assume that Tk = Guk

for some smooth map uk ∈ W 1/2(Bn, S1).
Let L(Guk

) ∈ Dn−1(Bn) be given by

L(Guk
)(φ) := Guk

(π#φ ∧ π̂#ωS1) , φ ∈ Dn−1(Bn).
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Since uk ∈ W 1/2(Bn, S1) is smooth, we infer that L(Guk
) is a flat chain. In fact, since du#

k ωS1 =
u#

k dωS1 = 0, then u#
k ωS1 is a closed 1-form in D1(Bn) and hence u#

k ωS1 = dgk for some gk ∈ C∞c (Bn).
As a consequence, since for every φ ∈ Dn−1(Bn) one has d(φ ∧ gk) = dφ ∧ gk + (−1)n−1φ ∧ dgk, whereas
Guk

= (Id ./ uk)#[[Bn ]], and Guk
has no boundary in Bn × S1, we infer

L(Guk
)(φ) =

∫

Bn

φ ∧ u#
k ωS1 =

∫

Bn

φ ∧ dgk = (−1)n

∫

Bn

dφ ∧ gk

and finally, by the definition of flat norm, see [10],

F
(
L(Guk

)
)

:= sup{L(Guk
)(φ) | φ ∈ Dn−1(Bn) , F(φ) ≤ 1} ≤

∫

Bn

|gk| dx < ∞ ,

where
F(φ) := max{ sup

x∈Bn

‖φ(x)‖ , sup
x∈Bn

‖dφ(x)‖} .

We now show that {L(Guk
)}k is a Cauchy sequence w.r.t. the flat norm, i.e., that

F
(
L(Guk

)− L(Guh
)
)

:= sup{(L(Guk
)− L(Guh

)
)
(φ) | φ ∈ Dn−1(Bn) , F(φ) ≤ 1}

is small for k, h large. Similarly to Sec. 1, we choose a smooth extension ω̃S1 ∈ D1(R2) of ωS1 and a
function η ∈ C∞([0, 1], [0, 1]) with η ≡ 1 and η ≡ 0 respectively in a neighborhood of 0 and 1, and we let
Uk = Ext(uk). For every φ ∈ Dn−1(Bn) with F(φ) ≤ 1, by (1.2) we have

(−1)n−1 L(Guk
)(φ) = ∂GUk

(π#φ ∧ π̃#η ∧ π̂#ω̃S1) =
∫

Cn+1

(
d(φ ∧ η) ∧ U#

k ω̃S1 + (−1)n−1φ ∧ η ∧ U#
k dω̃S1

)
.

Since {Uk} is equibounded in W 1,2, possibly passing to a subsequence U#
k ω̃S1 → U#ω̃S1 and U#

k dω̃S1 ⇀
U#dω̃S1 weakly in L1 for some U ∈ W 1,2(Cn+1,R2), so that we infer that {L(Guk

)(φ)}k is a Cauchy
sequence. As a consequence, if Fn−1(Bn) denotes a countable dense subset of smooth forms φ in Dn−1(Bn)
satisfying F(φ) ≤ 1, by a diagonal argument we infer that

sup{(L(Guk
)− L(Guh

)
)
(φ) | φ ∈ Fn−1(Bn)}

is small for k, h large. By density of Fn−1(Bn), we obtain that {L(Guk
)}k is a Cauchy sequence w.r.t. the

flat norm and hence, due to weak convergence of Guk
to T , that the current RT ∈ Dn−1(Bn)

RT (φ) := T (π#φ ∧ π̂#ωS1) , φ ∈ Dn−1(Bn),

is a flat chain. Moreover, since T = Gu + L(T ) × [[ S1 ]], where u ∈ W 1/2(Bn, S1), as a consequence of the
strong density result for Cartesian currents in cart1/2, in the next sections we will obtain the sequential weak
density of smooth maps in W 1/2(Bn, S1), see Corollary 6.2. Therefore, setting

DT (φ) := Gu(π#φ ∧ π̂#ωS1) , φ ∈ Dn−1(Bn),

by repeating the previous argument we easily infer that DT is a flat chain and hence the assertion, being
L(T ) = RT −DT , see (2.12). ¤

4 The density result in dimension 1

In this section we prove the following

Theorem 4.1 Let n = 1. For every T ∈ cart1/2(B1 × S1) there exists a sequence of smooth maps uk :
B1 → S1 such that Guk

⇀ T weakly in cart1/2 and

lim
k→+∞

E1/2(uk, B1) = E1/2(T, B1 × S1) . (4.1)
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Similarly we have

Corollary 4.2 For every T ∈ cart1/2
ϕ (B̃1×S1) there exists a sequence of smooth maps {uk} ⊂ C∞ϕ (B̃1, S1)

such that Guk
⇀ T weakly in cart1/2 and E1/2(uk, B̃1) → E1/2(T, B̃1 × S1) as k → +∞.

We recall by Sec. 2 that every T ∈ cart1/2(B1 × S1) has the form

T = GuT
+

i0∑

i=1

δxi × [[S1 ]] , (4.2)

where δxi is the Dirac mass in xi ∈ B1. Moreover the E1/2-energy of T is defined as the Dirichlet energy of

its extension T̃ = Ext(T ) := GUT
+

∑i0

i=1
δxi

× [[ D2 ]], where UT := Ext(uT ) ∈ W 1,2(C2, D2), so that

E1/2(T ) := D(T̃ ) =
1
2

∫

C2
|DuT |2 dx + π · i0 ,

compare Definition 2.2.

Remark 4.3 For future use, if 0 < δ < 1 we denote

D2
δ := {y ∈ D2 : dist(y, S1) ≤ δ} , S1

δ := {y ∈ D2 : |y| = ε}

the δ-neighborhood of S1 in D2 and the circle of radius δ. Also, let Πδ denote the nearest point projection
of D2

δ onto S1. Note that Πδ is a well defined Lipschitz map with Lipschitz constant Lδ → 1+ as δ → 0+.

In the sequel we will also denote

B+
r := B

2

r ∩ C2 , ∂+Br := ∂B2
r ∩ {(x, t) ∈ C2 | t > 0} , Jr := ∂B+

r \ ∂+Br = [−r, r]× {0} , (4.3)

where B2
r := {(x, t) ∈ R2 | x2 + t2 < r2}, and

B+ := B+
1 , ∂+B := ∂+B1 , J := J1 .

We will also write
T(U) = u

if u ∈ W 1/2(Bn,R2) is the trace of a function U ∈ W 1,2(Cn+1,R2) on Bn × {0}.

The proof of Theorem 4.1 relies on the following density result.

Proposition 4.4 Let U be a smooth W 1,2-map from C2 into D2 with trace T(U) ∈ W 1/2(B1, D2
δ). Then

there exist a sequence {Uk} of smooth maps from C2 into D2, with traces uk := T (Uk) ∈ W 1/2(B1, D2
δ)

for every k, and a sequence of radii rk ↘ 0 such that Uk = U outside B+
rk

and GUk
⇀ GU + δ0 × [[D2 ]]

weakly in D2(C2 × R2) with
lim

k→+∞
D(Uk, C2) = D(U, C2) + π .

To prove Proposition 4.4 we make use of the following

Proposition 4.5 Let P ∈ S1
δ be a given point, δ ∈ [1/2, 1]. For every ε > 0 there exists a Lipschitz

function fε : B+ → D2 such that fε|∂+B ≡ P , fε(J) ⊂ D2
δ , fε#[[ B+ ]] = [[D2 ]], fε#[[ J ]] = [[S1 ]], and

D(fε, B
+) ≤ π + ε .

Proof: By slightly modifying the identity map from B2 onto D2, for any ε > 0 we first define a Lipschitz
map gε : B2 → D2 such that gε#[[ B2 ]] = [[ D2 ]], the mapping area A(gε, B

2) ≤ π + ε, and such that gε

maps the upper part ∂+B of the boundary of B2 constantly into the north pole PN = (0, 1) ∈ S1. Secondly,
by connecting PN with P in D2

δ , we slightly modify gε in such a way that gε maps ∂+B constantly into
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the given point P ∈ S1
δ , whereas gε(∂B2) ⊂ D2

δ , and gε#[[ ∂B2 ]] = [[S1 ]]. Let ψ : B+ → B
2

be a bilipschitz
homeomorphism such that ψ is the identity on ∂+B. Then f̃ε := gε◦ψ : B+ → D2 is a Lipschitz continuous
function satisfying f̃ε|∂+B ≡ P , f̃ε(J) ⊂ D2

δ , f̃ε#[[ B+ ]] = [[D2 ]], and f̃ε#[[ J ]] = [[S1 ]], whereas

A(f̃ε, B
+) = A(gε, B

2) ≤ π + ε .

We now apply Morrey’s ε-conformality theorem [18, Thm. 2.1] and define an orientation preserving diffeo-
morphism Ψε : B+ → B+ such that, if fε := f̃ε ◦Ψε, we have

D(fε, B
+) ≤ (1 + ε)A(fε, B

+) = (1 + ε)A(f̃ε, B
+) ≤ (1 + ε) (π + ε) .

Finally, due to the three points condition, we may and do define Ψε so that it maps ∂+B onto ∂+B and J
onto J . The assertion easily follows. ¤

Proof of Proposition 4.4: For ε > 0 and r ∈ (0, 1/2), we let Uε,r : B+
r → D2 be given by

Uε,r(z) :=





U
(2|z| − r

|z| z
)

if r/2 ≤ |z| ≤ r

fε(2z/r) if |z| < r/2
z = (x, t) ∈ B+

r ,

where fε is given by Proposition 4.5, with P = U(0) ∈ D2
δ , and we set Uε,r(z) ≡ U on C2 \B+

r . We have
∫

B+
r \B+

r/2

|DUr,ε| dz ≤ C

∫

B+
r

|DU | dz < ε ,

by absolute continuity, if r = r(ε) is small. Moreover,

1
2

∫

B+
r/2

|DUr,ε| dz = D(fε, B
+) ,

so that the claim follows from Proposition 4.5, letting εk ↘ 0. ¤

Proof of Theorem 4.1: Since n = 1, adapting an argument by [20], as in [3, Sec. 2.1] we can find a
sequence of smooth maps Uk : C2 → D2 such that Uk → Ext(uT ) strongly in W 1,2(C2,R2) and for which
there exists a positive number t0 > 0 such that Uk(B1× [0, t0]) ⊂ D2

1/2 for every k. In particular the traces
uk := T(Uk) belong to W 1/2(B1, D2

1/2) and uk → u in W 1/2(B1).
On small half-disks xi+B+

rk,h
around each xi and contained in C2, see (4.2), we then apply Proposition 4.4

to each Uk and find a sequence of smooth maps {Uk,h}h from C2 into R2, with traces uk,h := T(Uk,h) ∈
W 1/2(B1, D2

1/2) for every h, and a sequence of radii rk,h ↘ 0 as h → +∞ such that Uk,h = Uk outside
xi + B+

rk,h
and

GUk,h
⇀ GUk

+
i0∑

i=1

δxi × [[D2 ]] , lim
h→+∞

D(Uk,h, C2) = D(Uk, C2) + π .

By a diagonal procedure we therefore find a smooth sequence {Vk} ⊂ C1(C2,R2), again with traces
vk := T(Vk) ∈ W 1/2(B1, D2

1/2), such that GVk
⇀ T̃ weakly in D2(C2 × R2) and D(Vk, C2) → D(T̃ ) as

k → +∞. Finally, setting uk := Π1/2 ◦ vk, compare Remark 4.3, we obtain the assertion. ¤

Proof of Corollary 4.2: Since u is smooth on B̃1\B1, we may and do define the sequence Uk : C2 → R2

so that in particular (Guk
− Gϕ) (B̃1 \ B

1
) × R2 = 0 for every k. Moreover, since the points xi in (4.2)

can be taken distant from the boundary of B1, we apply Proposition 4.4 by taking the radii rk,h small so
that in particular Uk,h coincides with Uk in a small neighborhood of ∂B1 × I, as required. ¤
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5 The dipole construction

In this section we provide the approximation of dipoles, see [8] [12] [13, Vol. II, Sec. 4.2.3], for W 1/2-maps
with values in S1. We first fix some notation. We set

C̃n+1 := B̃n × I , I = [0, 1] .

Let ∆ denote the (n− 1)-simplex in Bn given by the convex hull

∆ := co ({0Rn , l e1, l e2, . . . , l en−1}) , 0 < l < 1 ,

(e1, . . . , en) being the standard basis in Rn. We will denote by

z = (x, t) = (x̃, xn, t) , x̃ := (x1, . . . , xn−1) ,

a generic point z in C̃n+1. Moreover, for δ > 0 and 0 < m ¿ 1, in the sequel we let

ϕm
δ (y) := min{my, δ} , y ≥ 0 ,

we denote by
y(x̃) := dist(x̃, ∂∆)

the distance of x̃ from the boundary of the (n− 1)-simplex ∆ and we set

φm
δ (z) := (x̃, ϕm

δ (y(x̃))xn, ϕm
δ (y(x̃))t) ,

so that if
Ωm

δ := φm
δ (∆×B+) , B+ := {(xn, t) ∈ B2 | t > 0} ,

then Ωm
δ is a small ”neighbor” of the simplex ∆ in Cn+1, compare (4.3). Finally, for every non-zero integer

q ∈ Z \ {0} we will denote by q [[ S1 ]] and q [[ D2 ]] the currents integration of forms on S1 and D2,
respectively, with integer multiplicity |q| and orientation induced by the sign of q.

Proposition 5.1 Let U : C̃n+1 → D2 be a W 1,2-map which is smooth in the interior of Ωm0
δ0

, for some fixed

small m0, δ0 > 0, and such that u := T(U) ∈ W
1/2
ϕ (B̃n, S1). Let q ∈ Z. Then for every ε > 0, 0 < δ < δ0

and 0 < m < m0 there exists a map Uε : C̃n+1 → D2, with trace T(Uε) ∈ W
1/2
ϕ (Bn, S1), such that Uε is

smooth in the closure of Ωm
δ , except for the boundary of ∆. Moreover GUε ⇀ GU + [[∆ ]]× q [[ D2 ]] weakly

in Dn+1(C̃n+1 × R2) as ε → 0+ and

D(Uε, C̃n+1) ≤ D(U, C̃n+1) +Hn−1(∆) · |q|π + ε . (5.1)

To prove Proposition 5.1 we make use of

Lemma 5.2 Let V : ∆×B+ → R2 be a W 1,2-function and let

V m
δ (z) := V ◦ (φm

δ )−1(z) , z ∈ Ωm
δ .

Then there exists an absolute constant c > 0 such that
∫

Ωm
δ

|DV m
δ |2 dz ≤

∫

∆×B+
|D(xn,t)V |2 dz + c δ2

∫

∆×B+

|DexV |2 dz

+ cm2

∫

{ex∈∆|y(ex)≤δ/m}×B+

|D(xn,t)V |2 dz .
(5.2)

Moreover, by adapting the proof of Proposition 4.5, we easily obtain the following
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Proposition 5.3 For every q ∈ Z\{0}, P ∈ S1 and ε > 0, there exists a Lipschitz function fP
ε : B+ → D2

such that fP
ε|∂+B ≡ P , fP

ε (J) ⊂ S1, fP
ε#[[ B+ ]] = q [[D2 ]], fP

ε#[[ J ]] = q [[ S1 ]], and

D(fP
ε , B+) ≤ |q|π + ε .

Finally, for every ε > 0 we may and do define fP
ε in such a way that for every σ > 0 there exists η > 0

such that
∀P1, P2 ∈ S1 , |P1 − P2| < η =⇒ ‖fP1

ε − fP2
ε ‖L∞(B+) < σ .

Proof: We first slightly modify the map from B2 onto D2 given in complex variables by

z = ρ eiθ 7→ ρ|q| eiqθ, q ∈ Z \ {0} ,

and we define a Lipschitz map gP
ε : B2 → D2 such that gP

ε#[[ B2 ]] = q [[D2 ]], the mapping area A(gP
ε , B2) ≤

|q|π + ε, and such that gP
ε maps the upper part ∂+B of the boundary of B2 constantly into the point

P ∈ S1. We then let f̃ε := gε ◦ψ : B+ → D2, where ψ : B+ → B
2

is a bilipschitz homeomorphism which is
the identity on ∂+B. We then proceed as in Proposition 4.5, by means of Morrey’s ε-conformality theorem.
The assertion easily follows, since gP

ε may be defined so that it continuously depend on the point P . ¤

Proof of Proposition 5.1: We give the details of the proof in the case n = 2. We refer to [16] for the
more general case n ≥ 3. We first introduce the cylindrical coordinates

z = (x1, x2, t) = F (ρ, θ, x1) := (x1, ρ cos θ, ρ sin θ) , ρ > 0, θ ∈ [0, π] ,

so that ρ =
√

x2
2 + t2. In the sequel we will also denote

Ŵ (ρ, θ, x1) := W (F (ρ, θ, x1)) .

Since U is smooth in the interior of Ωm0
δ0

, possibly taking a barycentric subdivision of ∆, without loss
of generality we may and will assume that the oscillation of U is smaller than ε in the interior of Ωm0

δ0
. If

n = 2 we have that ∆ is the line segment connecting the points a+ := (l, 0, 0) and a− = 0R3 . Similarly to
[2], we can choose small half-balls of radius r around a± and replace U there by the radial maps

Ur(z) := U

(
a± + r

z − a±
|z − a±|

)
(5.3)

so that
D(Ur, B

3
r (a±) ∩ C3) =

r

2

∫

∂B3
r(a±)∩C3

|DτU |2 dH2 = O(r) ,

where τ is an orthonormal frame of ∂B3
r (a±) and O(rj) → 0 for some sequence rj ↘ 0. Moreover, due to

the smoothness of U , without loss of generality we may and do choose m so that
∫

Km
a±

|DU |2 dH2 < ∞ , (5.4)

where Km
a± is the cone of vertex a± and angle arctan m

Km
pi

:= {z = F (ρ, θ, y) ∈ C3 : 0 < ρ = m |y − a±|} .

Let now Wε : ∆×B+ → R2 be given by

Wε(x1, x2, t) := fP (x1)
ε (x2, t) ,

where f
P (x1)
ε is given by Proposition 5.3 in correspondence to the point P (x1) := U(x1, 0, 0). Setting

Φε(z) := Wε ◦ (φm
δ )−1(z) , z ∈ Ωm

δ ,
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by Lemma 5.2 we estimate

D(Φε,Ωm
δ ) ≤

∫

∆

D(fP (x1)
ε , B+) dH1(x1) + ε ≤ H1(∆) · (|q|π + ε) + ε

if we choose δ sufficiently small. Define Vε : Ωm
δ → R2 in cylindrical coordinates by

V̂ε(ρ, θ, x1) :=





Φ̂ε(2ρ, θ, ỹ) if 0 ≤ ρ < ϕm
δ (ỹ)/2

Ψ̂m
δ (ρ, θ, ỹ) if ϕm

δ (ỹ)/2 ≤ ρ < ϕm
δ (ỹ)

θ ∈ [0, π] , x1 ∈ int(∆) ,

where y(x1) := dist(x1, ∂∆) and

Ψ̂m
δ (ρ, θ, ỹ) :=

(
2ρ

ϕm
δ (ỹ)

− 1
)
· Û(ϕm

δ (ỹ), θ, ỹ) +
(

2− 2ρ

ϕm
δ (ỹ)

)
· Û(0, θ, ỹ) ,

so that Ψ̂m
δ (ϕm

δ (ỹ), θ, ỹ) = Û(ϕm
δ (ỹ), θ, ỹ) and Ψ̂m

δ (ϕm
δ (ỹ)/2, θ, ỹ) = P (x1) = Φ̂ε(ϕm

δ (ỹ), θ, ỹ). We have

D(Vε, {0 ≤ ρ < ϕm,i
δ (ỹ)/2 , θ ∈ [0, π] , x1 ∈ ∆}) = D(Φε, Ωm

δ ) .

Moreover, by (5.3) we estimate

D(Vε, {ϕm,i
δ (ỹ)/2 ≤ ρ < ϕm,i

δ (ỹ) , θ ∈ [0, π] , x1 ∈ ∆}) ≤
c

(
δ

m
ε2 + lε2 + δ

∫

(0,l)×∂B+
δ

|DU |2 dH2 + m

∫

Km
a±∩B3

rδ,m
(a±)

|DU |2 dH2

)
,

where rδ,m := δ
√

1 + m2/m. Now, since

lim inf
ρ→0+

ρ

∫

(0,l)×∂B+
ρ

|DU |2 dH2 = 0 ,

if we first choose m small, and then δ = δ(Vε, ε, m) sufficiently small, by (5.4) we have

D(Vε, Ωm
δ ) ≤ H1(∆) · (|q|π + ε) + 2ε .

We finally let Uε ≡ U on C̃3 \ Ωm
δ , and Uε := Πε ◦ Vε on Ωm

δ , see Remark 4.3. ¤

6 The density result in higher dimension

In this section we prove in any dimension the following

Theorem 6.1 Let n ≥ 2. Also, let ϕ : B̃n → S1 be a given smooth W 1/2-function. For every T ∈
cart1/2(Bn × S1), respectively T ∈ cart1/2

ϕ (B̃n × S1), there exists a sequence of smooth maps {uk} in
C∞(Bn, S1), respectively in C∞ϕ (B̃n, S1), such that Guk

⇀ T weakly in cart1/2 and

lim
k→+∞

E1/2(uk) = E1/2(T ) .

As a consequence, compare [13], Vol. II, Sec. 4.2.5, we infer the following density results for W 1/2-maps.

Corollary 6.2 Every map u in W 1/2(Bn, S1), respectively in W
1/2
ϕ (B̃n, S1), can be approximated weakly

in W 1/2 by a sequence of maps in C1(Bn, S1) ∩W 1/2(Bn, S1), respectively in C1
ϕ(B̃n, S1) ∩W 1/2(B̃n, S1).

Moreover, u can be approximated strongly in W 1/2 by a sequence of smooth maps provided that P(u) = 0.
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Proof of Theorem 6.1: We divide the proof in five steps.

Step 1: Reduction to finite mass singularities. We first recall that if T ∈ cart1/2
ϕ (B̃n, S1), then T

decomposes as
T = GuT

+ L(T )× [[ S1 ]] , (6.1)

where uT ∈ W
1/2
ϕ (B̃n, S1) and L(T ) ∈ Rn−1(B̃n), with sptL(T ) ⊂ B

n
. As a consequence of the results

proved in Sec. 2, we have

Proposition 6.3 There exists a sequence {uk} in R∞1/2,ϕ(B̃n, S1), strongly converging to uT in W 1/2, such
that if Luk,uT is given by (1.5), then

Tk := Guk
+ ((−1)nLuk,uT

+ L(T ))× [[S1 ]]

belongs to cart1/2
ϕ (B̃n×S1), and for every k the mass M(∂((−1)nLuk,uT

+L(T ))) is finite in B̃n, whereas
Tk ⇀ T and E1/2(Tk) → E1/2(T ) as k → +∞.

Proof: Since ∂T = 0 on Dn−1(B̃n × S1), by (6.1) we infer that

∂ L(T ) = (−1)n−1 P(uT ) .

Due to Theorem 1.1 and Proposition 1.3, by (1.5) we have

∂((−1)nLuk,uT
+ L(T ) = (−1)n−1 P(uk) ,

which is an i.m. rectifiable (n− 2)-current (a finite sum of unit Dirac masses if n = 2), see Proposition 1.2.
Moreover

∂Guk
= (−1)n P(uk)× [[ S1 ]] on Dn−1(B̃n × S1) , (6.2)

whence Tk ∈ cart2,1
ϕ (B̃n × S1), with Tk ⇀ T . Now, writing

Tk = Guk
+ L(Tk)× [[S1 ]] , L(Tk) := (−1)nLuk,uT

+ L(T )

we have M(L(Tk)− L(T )) = M(Luk,uT ) → 0, which yields that E1/2(Tk) → E1/2(T ). ¤

By Proposition 6.3, arguing as in [11] we may and do suppose

T = GuT
+

∑

q∈Z
Lq ×q [[ S1 ]] , T̃ := Ext(T ) = (−1)n−1

(
GUT

+
∑

q∈Z
Lq ×q [[ D2 ]]

)
,

where UT := Ext(uT ) and the Lq’s are i.m. rectifiable currents in Rn−1(B̃n) with multiplicity 1, pairwise
disjoint supports contained in B

n
, and finite boundary mass,

∑
q M(∂ Lq) < ∞.

Step 2: Approximation by polyhedral chains. Since the Lq’s are integral currents with pairwise
disjoint supports, using Federer’s polyhedral approximation theorem [9], for every q ∈ Z we find an integral
polyhedral (n − 1)-chain P ε

q with support contained in a small neighborhood of radius c ε in B
n

of the
support of Lq, and a function Uε ∈ C∞(C̃n+1, D2), with trace uε := T(Uε) ∈ R∞1/2,ϕ(B̃n, S1), such that if

T̃ε := GUε +
∑

q∈Z
P ε

q × q [[D2 ]] ,

T̃ε converges weakly in Dn+1(C̃n+1 × R2) to T̃ as ε → 0 and

D(Uε, C̃n+1) +
∑

q∈Z
q π M(P ε

q ) → D(UT , C̃n+1) +
∑

q∈Z
q π M(Lq) ,

which yields D(T̃ε) → D(T̃ ) as ε → 0. Moreover, since the Lq’s have disjoint supports, we may and do
choose the P ε

q ’s so that for every small ε > 0 they have pairwise disjoint supports.
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Step 3: Approximation by well-intersecting polyhedral chains. By Step 2 we may suppose

T := GuT +
∑

q∈Z
Pq × q [[ S1 ]] ∈ cart1/2

ϕ (B̃n × S1) , (6.3)

where the Pq’s are polyhedral (n− 1)-chains with multiplicity 1 and pairwise disjoint supports sptPq ⊂ B
n
,

and uT ∈ R∞1/2,ϕ(B̃n, S1) is locally Lipschitz on B̃n \⋃
q spt ∂Pq. Moreover, possibly dividing the simplices

of a triangulation of Pq, we may and will suppose that every Pq is the union of a finite number of (n− 1)-
simplices ∆ which only intersect at the boundary points.

Step 4: Approximating the dipoles. Now we first approximate the dipoles ∆ × q [[ S1 ]] by means of
Proposition 5.1. In fact, by taking m0 and δ0 small we may and will assume that the neighborhoods Ωm0

δ0

corresponding to different simplices ∆ are pairwise interiorly disjoint.
By a diagonal argument, we then find a sequence {Uε} such that uε := T(Uε) ∈ R∞1/2,ϕ(B̃n × S1) and

the graphs Guε
weakly converge to T with E1/2(Guε

) → E1/2(T ). However, uε is smooth except on a
singular set Σε of Bn given by the (n− 2)-skeleton of the union of the polyhedral (n− 1)-chains Pq, but

∂Guε = 0 on Dn−1(Bn) . (6.4)

To remove the singular set Σε, we finally make use of the following variant of a result from [15].

Proposition 6.4 Under the previous hypotheses, for ε > 0 small enough there exists a sequence of smooth
maps {u(ε)

m } ⊂ C∞ϕ (B̃n, S1
ε ) which converges to uε strongly in W 1/2 as m → +∞.

We refer to [16] for the proof of Proposition 6.4 in dimension n ≥ 3, which relies on (6.4) and on the
smoothness of the boundary datum ϕ : B̃n → S1 on the whole of B̃n. In the case n = 2, we do not need to
assume that the boundary datum is smooth, since we actually reduce to remove homologically trivial point
singularities, as follows.

Proposition 6.5 (Removing point singularities). Let u ∈ R∞1/2(B
2, S1) be in cart1/2(B2, S1), so that

(6.4) holds, with u = uε and n = 2. Then there exists a sequence of smooth maps uk ⊂ C∞(B2, S1) which
converges to u strongly in W 1/2.

Since we use a local argument, we may assume that u has only one singularity at the origin, i.e., u ∈
C∞(B2 \ {0}, S1). For 0 < r < 1 we denote

Qr := B3
r ∩ C3 , ∂+Qr := ∂B3

r ∩ {z = (x, t) ∈ C3 | t > 0} , Fr := Qr ∩ (B2 × {0}) .

Let U ∈ W 1,2(C3, D2) be the harmonic extension of u. For every fixed ε > 0 let 0 < R = R(ε) ¿ 1 be such
that

D(U,QR) ≤ ε .

Since

D(U,QR \QR/2) =
1
2

∫ R

R/2

dr

∫

∂+Qr

|DU |2 dH2 ,

there exists r = rε ∈ [R/2, R] such that

D(U, ∂+Qr) :=
1
2

∫

∂+Qr

|DU |2 dH2 ≤ 4
R

D(U,QR \QR/2) ≤
4ε

R
. (6.5)

To remove the singularity of u, we have to show that
{
w ∈ W 1/2(B2

r ,R2) ∩ C0(B
2

r, S
1) | w|∂B2

r
= u|∂B2

r

} 6= ∅ , (6.6)

i.e., u|∂B2
r

is homotopic to a constant map in S1. Therefore, it suffices to show that d u|∂B2
r

#ωS1 = 0, i.e.,
that u|∂B2

r
has zero degree. This follows from condition (6.4) with u = uε, as

∫

∂B2
r

u|∂B2
r

#ωS1 = Gu|∂B2
r
(π̂#ωS1) = ∂Gu|B2

r
(π̂#ωS1) = Gu|B2

r
(dπ̂#ωS1) = Gu|B2

r
(π̂#dωS1) = 0 .
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As a consequence there exists a smooth extension ur : B2
r → S1 of u|∂B2

r
with finite W 1/2-energy.

Let now Vr : Qr → D2 be the solution of the Dirichlet problem on Qr with boundary condition
{

Vr = U on ∂+Qr

Vr = ur on Fr .

Let 0 < δ < r to be fixed later. Define Ur : C3 → D2 by

Ur(z) :=





Vr

(
r

δ
z

)
if |z| ≤ δ

U

(
r

z

|z|
)

if δ ≤ |z| ≤ r

U(z) if |z| ≥ r

so that Ur ∈ W 1,2(C3,R2) is continuous and with trace T(Ur) ∈ W 1/2(B2, S1). We easily estimate

D(Ur, C3) ≤ D(U, C3) + c r D(U, ∂+Qr) +
δ

r
D(Vr, Qr)

for some absolute constant c > 0. Therefore, since r < R, by (6.5) we have

D(Ur, C3) ≤ D(U, C3) + 4c ε +
δ

r
D(Vr, Qr) ≤ D(U, C3) + (4c + 1) ε ,

taking δ = δ(ε) sufficiently small. Letting ε → 0 we infer that Urε → U in W 1,2(C3,R2) and finally that
T(Urε) → u in W 1/2(B2, S1), with T(Urε) ∈ W 1/2(B2, S1) continuous. By a standard argument, we now
approximate T(Urε) by smooth functions, as required. ¤
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