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Abstract. In this paper we consider a family of non local functionals of convolution-type
depending on a small parameter ¢ > 0 and I'-converging to local functionals defined on Sobolev
spaces as ¢ — 0. We study the asymptotic behaviour of the functionals when the order parameter
is subject to Dirichlet conditions on a periodically perforated domains, given by a periodic array
of small balls of radius 75 centered on a J—periodic lattice, being § > 0 an additional small
parameter and rs = o(d). We highlight differences and analogies with the local case, according
to the interplay between the three scales €, 4 and r5. A fundamental tool in our analysis turns
out to be a non local variant of the classical Gagliardo-Nirenberg-Sobolev inequality in Sobolev
spaces which may be of independent interest and useful for other applications.
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1 Introduction

In the last decades there has been an increasing interest towards the analysis of variational
models involving non local functionals of the form

/ / f(@,y, uly) — ulz)) de dy (L1)
QJQ

where Q is an open set of R, in view of their relevance for applications in different directions,
such as image processing [11], [16], population dynamics [I5], continuum mechanics through the
theory of perydinamics [7, 18], 25] and phase transition problems [T}, 21].



The relation between non local functionals as in ([1.1)) when the energies concentrate on the
diagonal = = y and local functionals of the form

/ f(z,Vu(z)) dzx (1.2)
Q

has been first investigated by Bourgain, Brezis and Mironescu in their seminal paper [§], where
they study the asymptotic behaviour of Gagliardo seminorms [u]y1-<»q) as € — 0, and in
particular, in the case p = 2, show that

)2
elulwi—ez@) = // |y_x‘d+2 T — plaraa-o G dy

approximate as € — 0 the square of the L? norm of Vu, up to a multiplicative constant. The
result has been subsequently extended in [20] in terms of I'-convergence. A general asymptotic
analysis as ¢ — 0 of families of functionals of the form

//fg(x,y,u(y)—u(x))da:dy, (1.3)
aJa

under superlinear growth assumptions in the last variable and concentration of the energies
on & = y, has been recently provided in [2], by using De Giorgi localization methods for T'-
convergence, leading to a general class of energies whose I'-limits are of the form , with a
number of applications, in particular to stochastic homogenization, to energies on point clouds
and to gradient flows, which are just some of the potential directions of the theory.

Purpose of this paper is to investigate the asymptotic behaviour of energies as in when
the order parameter w is subject to pinning conditions, highlighting differences and analogies with
the corresponding local case. Pinning sites are usually modelled as small zones where Dirichlet
conditions are imposed. Here we consider the simplest case (but already presenting most of
the main features) of periodically perforated domains where homogeneous Dirichlet conditions
are imposed on a periodic array Ps of small balls of radius rs centered on a J-periodic lattice,
being 6 > 0 an additional small parameter and rs; = o(d). In the local case there is a wide
literature devoted to the study of minimum problems involving energies as in subject to
this type of constraints and comprising a number of generalizations which cover also general non-
periodic geometries. In particular, we refer to the celebrated paper by Cioranescu and Murat
[12], where the authors study the asymptotic behaviour, as § — 0, of solutions to the minima
of the Dirichlet energy subject to the constraint above, and the paper [5], where the problem is
set in the framework of I'-convergence and extended to general vector energies. The asymptotic
description of the problems becomes non trivial when the growth of f in the gradient variable
in is of order p < d and leads to a critical size of the radii of the perforations, namely
rs = O(6%@=P)) if p < d, and log(rs) = O(6¥(4=1) if p = d. Under this scaling the energetic
contribution near each of the small balls can be decoupled from the others and from the diffused
energy elsewhere and can be computed by means of a capacitary formula. For instance, in the
model case f(z,z) = |z’ and given a forcing term g € L (2), one obtains that minimum
problems

min{/(|Vu|p—gu)dx: u =0 on Pg}
Q

are approximated as § — 0 by

min {/ (IVulP dz + Cplu|? — gu) dm} ,
Q



where C), is the p-capacity of the ball B; in R (see Section ) and the middle term accounts for
the energetic contribution near the perforations.

In this paper we focus on the case p < d and consider energies defined on vector-valued
functions v € LP(€2;R™) and of the form

Eg(u)=;/ﬁ/gf(y;x7u(y);“($)> dz dy

where, for any ¢ € R?, f(¢,-) is p-homogeneous, locally Lipschitz continuous and satisfies suitable
decay assumptions as |£| — 400, ensuring that interactions between points x and y at a long
range distance are negligible as ¢ — 0 (see hypotheses (H), (G) and (L) below). Under this
assumptions, as a particular case of the asymptotic analysis provided in [2], the T-limit of E. is
given by the local functional

Fo(u) = /Q From (V) da,

where fhom(S) is defined by a suitable homogenization formula (see (3.11))). We then impose the
admissible functions u to satisfy the constraint « = 0 on Pjs and study the asymptotic behaviour
of F. as € and § go to 0 according to the interplay between the three scales €, § and r5. A
natural question is whether or not F. and Fj share the same asymptotic behaviour under the
imposed constraint on the admissible functions. We show that this is the case when & goes to 0
faster then r5. Indeed, the first main result of the paper is Theorem where we show that,
if £ = o(rs) and rs = O(6%(4=P)) E. and E,, subject to the constraint v = 0 on Ps, share the
same ['-limit, which is given by

/Q (from(Vu) + ¢(u)) dz, (1.4)

where ¢(z) is described by the capacitary formula induced by Ey(u), see . We point out
that this kind of homogenization problems in the non local setting has been studied in [19], where
the authors treat Dirichlet and Neumann boundary conditions for a non local equation in the
scalar case and when p = 2.

A major difference is when e scales like rg, since in this case the limit functional keeps
memories of the non locality of the approximating energies. Indeed, the second main result of
the paper is Theorem where we show that, if £ = O(rs) and r5; = O(6%(@=P))  the I'-limit of
E., subject to the constraint u = 0 on P, is still of the form , but the density ¢(z) is now
described by a non local capacitary formula, see (3.17). If 75 does not scale like §4/(?=P)_ in both
case € = o(rs) and € = O(rs) the asymptotic behaviour of E. is trivial and it is consistent with
that of local energies of Dirichlet type in periodically perforated domains (see Remark . On
the contrary, in Theorem we show that if ¢ — 0 slower than rs, then, for most of the choice
of the scaling of rs5 with respect to 4, E. is not affected by the constraint v = 0 on Pjs and thus
the I'-limit is still given by Ej.

From a technical viewpoint, in order to prove Theorem [3.5] and Theorem [3.6] we mainly
follow the strategy exploited in [5]. Nevertheless, the non local nature of our approximating
energies does not allow us to simply adapt that argument to our case. The main difficulty we
have encountered in the proof of Theorem is to show the convergence of minimum problems
on unbounded domains, defining the approximating capacitary densities, to the limit energy
density ¢, stated in Proposition [6.7 A crucial result that allowed us to overcome this difficulty
is Theorem [5.1] which can be considered a non local variant of the classical Gagliardo-Nirenberg-
Sobolev inequality in Sobolev spaces and may be of independent interest and useful for other
applications. Specifically, we show that, fixed » > 0, the L? -norm of suitable piecewise constant



interpolations at scale € of any admissible function is uniformly bounded from above, up to a
multiplicative constant, by the energy

d
e = [ f
r JR

which in turn is controlled by E.(u) and plays the role of [, [Vu|P dz in the Gagliardo-Nirenberg-
Sobolev inequality.

We conclude the introduction with some comments about future developments. In our model
we refrain from maximal generality in order to emphasize the main features of the asymptotic
process for our non local functionals under pinning conditions, but it would be worth extending
our analysis to more general integrands. In particular in the critical regime, if one removes the
p-homogeneity assumption on f, then, assuming the existence of

lim 6%/ (@=P) f (g 5=/ Ed=P) 2y = . (€, 2)
5—0

u(x + &) — u(z) " du de
e )

the limit energy should be still of the form , with f replaced by fo,p in the definition of the
capacitary density ¢. A natural follow-up of our results is also the extension to the case p = d
and to the critical regime log(rs) = O(6%(?=1). We point out that a I'-convergence analysis for
local functionals in this setting has been provided in [24]. Furthermore, we believe that some
of the techniques developed in this paper can also be used to extend the analysis to the case of
perforations whose centres are randomly distributed according to a stationary point process (see
[22] for results in this direction in the local case). We finally point out that another class of non
local functionals, namely discrete functionals of the form

1 .
€p+d Z f(za.]auj _ui)a

i,j€L

where £ is a d-dimensional lattice, u : e£ — R™ and w; = u(ei), have been widely investigated
as a discrete approximation of integral functionals of p-growth (see e.g. [3]). In this setting,
an asymptotic analysis similar to the one provided here when ¢ = O(r;s) has been carried on in
[23], where the main result can be considered the discrete analog of Theorem It would be
interesting to extend that analysis also to the case € = o(rs).

2 Notation

In what follows d,m € N will be fixed natural numbers denoting the dimension of the reference
and target spaces of the functions we consider, respectively. Given t € R, [t| denotes the integer
part of ¢; for x € RY, r > 0, B,.(z) (if z = 0, simply B,.) stands for the open ball of centre z and
radius 7, @, () (if z = 0, simply Q,) stands for the square z + (—%,5)%. We denote by S4~!
the unit sphere in R%. If A is a subset of R? then dist(z, A) = inf{|]y — x| : y € A}; A™8(A) is
the subfamily of open subsets with Lipschitz boundary. By A CC B we mean that the closure
of A is a compact subset of B. If A CC B, a cut-off function between A and B is a (smooth)

function ¢ with 0 < ¢ < 1, ¢ = 0 on dB and ¢ = 1 on A. Given a real function h(-), we

g9(t)

use the symbols o(h), O(h) respectively, to denote a generic function g such that %irr(l) 0] =0,
—

lim 4D =~ € (0, +00). If E is a measurable subset of R we denote by |E| its Lebesgue measure.

t—0 h(®)
We use standard notation for Lebesgue and Sobolev spaces. If u is an integrable function on a

measurable set F C R,
i,
ug = — | u(zr)dx
A




denotes the average of u on E. We use also standard notation for I'-convergence [9, 13|, indi-
cating the topology with respect to which it is performed. Unless otherwise stated, the letter
C denotes a generic strictly positive constant. Relevant dependencies on parameters will be as
usual emphasised by putting them in parentheses.

3 Setting of the problem and main results

We fix a growth exponent p € (1,d) and we let  C R? be a bounded open set with Lipschitz
boundary. Let d,r5 be given with § > r5 > 0 and set

Ps = Bry(60), (3.1)
€74
LE(R™) :={u e LP(Q;R™) : w =0 on Ps N Q}. (3.2)

Given € > 0 and f : R? x R™ — [0, +00) a positive Borel function, we introduce the non-local
functionals F; 5 : LP(;R™) — [0, +00] defined as

// f(g,Dgu(x))dxdg if u e LE(; R™),
_ e oo

eo(u (3.3)
400 otherwise,
where
Déu(z) = u(z + 655) —u(z) (3.4)
and for every subset A of R? we set
A (&) ={x e Alz+e£ € A}. (3.5)
We consider the following set of assumptions on the function f above:
(H) (p-homogeneity) f(&,tz) = tPf(¢, 2) for every (£,2) € RY x R™ and t > 0;
(G) (growth) the functions m(&) := 1é1df ) f(&,z) and M (&) := sup f(&, z) satisfy:
ze59 zeSd-1
(GO) there exist Ag, 79 > 0 such that m(&) > Ag if |£| < ro;
(1) [ MO +1)dé <+
(L) (p-Lipschitz continuity) there exists C > 0 such that for every ¢ € R?
[f(&w) = f(&2)] < CME)(|2lP" +wP™H)w — 2| Vz,w e R™
We also introduce the ‘truncated’ functionals defined for every T' > 0 as
/ / f(g,Dgu(x))dxdg if u € LE(Q; R™),
Br JQ.(§)
Fls(u) =77 (3.6)

+o00o otherwise.

Note that FETﬁ is of the form (3.3) with f7(¢, 2) := xB,(£)f(&, 2) in place of f(&, 2).



Remark 3.1. Note that assumption (H) yields that m(&)|z|P < f(&,2) < M(&)|z[P for every
(€,2) e REx R™ .

Let us consider also the unconstrained family of functionals F. : LP(Q; R™) — [0, +oo| defined
by

Fo(u) == /]R AE(E)f(f,Dgu(x))dxdg. (3.7)

We also introduce a localized version of such functionals by setting, for any open set A C R?
and u € LP(A4;R™),

Fo(u, A) == /Rd /As(g)f(@Df:u(x))dwdg. (3.8)

Moreover the truncated functionals are defined, for any T' > 0, as

FT (u, A) = /BT /Ai(g)f(f,Dgu(x))dxdf (3.9)

and we drop the dependence on the set if A = €, that is FL (u) := FL' (u, Q).
As a particular case of a more general result, in [2] it was proved the following I'-convergence
result (see [2, Theorem 6.1]).

Theorem 3.2. Let F. be defined by (3.7), with f satisfying assumptions (H) and (G). Then

1 1, .Tm
F(Lp)—gig(l)fﬂ(u): /thom(Vu)da: if ue WhP(Q;R™),

(3.10)
400 otherwise,
where, for S € R™*4,
From(S) = Tim iinf{ Fly— 2, 0(0) — vla))dzdy : v € DH(Qn) ) (3.11)
hom . R oo Rd QR QR y Y y y . R ) .

with
D5(Qr) = {u € LP(R4GR™) s u(z) = Sz for a.e. x € R, dist(z,RN\Qp) < 1}.
Remark 3.3. Note that the p-homogeneity assumption (H) is inherited by fom, that is
From (tS) = 1P from(S) for every t > 0 and S € R™*,
Moreover assumption (G) easily yields that
mo|S|P < from(S) < My|S|P for every S € R™*4
for two suitable strictly positive constants mg, M.

Remark 3.4. Hypothesis (L) trivially holds if we assume that f satisfies (H), (G), and f(¢,-)
is convex for every & € R?. Moreover, under this convexity assumption, the asymptotic formula

(3.11)) reduces to
From($) = [ 1(6.56)d¢
Rd

(see [2, Theorem 6.2]).



The main results of the paper are provided by the following two theorems.

Theorem 3.5 (Local capacitary term). Let F. 5 be defined by (3.3), with f satisfying assump-
tions (H), (G) and (L). Assume moreover that

. s
| = 12
e =P (3.12)

and that § = 6. is such that .
lim — =0 (3.13)

e—0 rs

for some real number 8 > 0. Then

(u) _ ‘/inmm(VU) dx + ﬁd—p‘/ﬂw(u) de ifue WLp(Q;Rm)’

I(LP)-lim F; 5.
=0 400 otherwise,

where from(S) is defined by (3.11) and for every z € R™

loc

o(2) = inf { /]R From(Vv)da : v—z € LP*(RER™), v=0in By, v € Wl’p(Rd;Rm)}. (3.14)

Theorem 3.6 (Nonlocal capacitary term). Let F. s be defined by (3.3), with f satisfying as-
sumptions (H), (G) and (L). Assume moreover that

s
s s b
and that § = . is such that .
lim — =« (3.15)
e—=>0 1§

for some real numbers a, 5 > 0. Then

(u) — /thom(vu) dr + ﬂd—il’ /Q QONL,oz(u) dxr ifu € Wl,p(Q;Rm))

[(LP)-lim F; 5,
=0 400 otherwise,

(3.16)

where from(S) is defined by (3.11)) and for every z € R™

ONL.a(z) :=inf {?a(v,Rd) :v—z€ LP(RLGR™), v=0in B, v — z compactly supported} ,
(3.17)
being F, defined in (3.8)) with € = «.

Remark 3.7. Taking into account the non degeneracy of the capacitary densities 7
proved in Proposition below, and arguing by comparison, one easily infers that the results
stated in Theorem and Theorem can be ”continuously” extended to the case 8 = 0 and
B = +00. More in details, if 3 = 0 and either ([3.13)) or hold, then the functionals F; s
I'- converge to the energy functional defined in7 while, if 8 = +oo and either or
hold, the I'-limit of the functionals F; 5_ is trivially 0 if w = 0 and +oc otherwise. This
phenomenon is consistent with the asymptotic behaviour of local energies of Dirichlet type in
periodically perforated domains. We will see in Section [8| that this is not the case if a = 4o0.



For later use and reader’s convenience we redefine the density functions we have introduced
so far in the case f(&,2) is replaced by fT1(&,2) = xB, (€)f(&, 2). More precisely we set

o (S) = lim I;dinf{/QR 8 STy = 2,0() — v(@)dedy v € DHQR) . (3.18)

0T (2) := inf {/ flo (Vu)dx : v—z € LP*(RGR™), v =0in By, v € VVé’f(Rd;Rm)}, (3.19)
Rd

w%ha(z) := inf {?g(v,Rd) : v—z€ LP(RYR™), v=01in By, v — 2 compactly supported} .
(3.20)

4 Preliminary results

In this section we collect some results that will be used in Section [6l
Capacity

Let us recall the notion of p-capacity for a given exponent p € (1,d) (see for instance [14],[I7]).
Given an open set A C R? and an open set E CC A, the relative p-capacity of E in A is defined
as

cap,(E, A) = inf {/A |VulP dz :u € Wy P(A), u=1a.e. in E} .

If A = R?, we simply write cap,(E). It follows by the very definition that the set function
cap,(E, A) is increasing in the variable £ and decreasing in the variable A. In addition, the
following properties hold true

cap,(F) = inf {/ \VulPdz :w € WP(RY) NLP (RY), u=1 ae. in E}
R

C

(4.1)
= hm cap, (B, Br) = inf cap,(E, Br),
where p* = % is the conjugate exponent of p. It can be also proved that cap,(£) > 0 if
|E| > 0.
Remark 4.1. One may also consider, for z € R™, the vectorial infimum problems
inf {/ \VulP dz:u € Wy P(A;R™), u = 2 a.e. in E} . (4.2)
A

Note that, thanks to the p-homogeneity and the rotational invariance of (4.2)), it holds
inf {/ |VulP dz : u € Wy P(A;R™), u =z a.e. in E}
A
= |z|pinf{/ \VulP dz : u e Wy P (A4;R™), u=(1,0,...,0) a.e in E} ,
A

and the infimum in the last term can be in turn confined to functions v € W, (A; R™) such that
v = (v1,0,...,0). Hence, we can conclude that, for any z € R™,

inf {/ \VulP do : u € Wy P (A;R™), u = z ae. in E} = cap, (£, 4)|z|". (4.3)
A



Convolution-type energies

The following results, contained in [2], extend corresponding results in Sobolev spaces to the case
of convolution-type energies.
Let 7, > 0, and p > 1. We set, for every open set A C R? and u € LP(A4;R™),

GIP(u, A) = / / |D§u(5f3)|p dx d€, (4.4)
BT AE (g)

where DSu(z) and A (€) are defined by (3.4) and (3.5]), respectively.
The next proposition rephrases Lemma 4.1 in [2] where the authors show that long-range energy
contributions can be controlled by the short-range energy GLP.

Proposition 4.2. For every r > 0 there exists a positive constant C' such that, for any open set
E C Q, for every £ € R? and u € LP(S;R™), there holds

[ A= g < (e + )62 w0 B + B
E

for any € > 0 such that
er < dist(E + B (r41¢)) Q°). (4.5)

Remark 4.3. Note that if Q = R? then (4.5]) is satisfied for any ¢ > 0 and ¢ € R?, deriving
in particular the following estimate, which will be useful later: for every r > 0, there exists
C = C(r) such that, for every £ € R%, e > 0, and u € LY (R4 R™), with u = 2z on R?\ Br_«,
z € R™, there holds

.

As a consequence of Lemma and a result concerning extension operators (see [2, Theorem
4.1]), the following estimate is derived.

u(x+e€) —u
€

(z) ‘pdm < C(I€P + 1)GTP (u, RY). (4.6)

Corollary 4.4. [[2, Corollary 4.1]] For any open set A € A™8(QQ) and r > 0 there exist two
positive constants C = C(A) and eg = eo(r, A) such that for every ¢ € R? and u € LP(A;R™)

there holds
/Ag(E)

for every e < .

u(e + &) —u(z) "
€

de < C(IEP + 1)(GEP (u, A) + |l ()

The following theorem states the analogue of the classical Poincaré-Wirtinger inequality for
the functionals GLP.

Theorem 4.5. [[2, Proposition 4.2]] Let r > 0 and let A be a bounded connected open set of
R? with Lipschitz boundary. Then for every measurable set E C A with |E| > 0 there erists a
positive constant C = C'(A, E) such that for any u € LP(A;R™) and e > 0

/A |u(z) — up|Pdr < CGLP(u, A). (4.7)

When we replace E and A with a translation of AE and AA, respectively, being A > 0 a scaling
factor, we have the following result.



Proposition 4.6. Let > 0 and let A be a bounded connected open set of R% with Lipschitz
boundary. Then for every measurable set E C A with |E| > 0 there exists a positive constant
C = C(A, E) such that for every o € RY, u € LP(AA + 29; R™) and € > 0

/ |w(z) — Urptao|Pdr < C AP GLP(u, NA + o). (4.8)
AA+xo

Proof. It is not restrictive to assume that zo = 0. If u € LP(AA; R™) the function w(y) = u(Ay)
belongs to LP(A;R™). Writing inequality (4.7) for w with € replaced by $ we get

[ 10) —wePay < (A B) 6 (w, ).
A

On the other hand wg = u)g and the change of variable x = Ay gives the desired result. O

Eventually, the next result accounts for the compactness in the strong LP-topology of se-
quences of functions with uniformly bounded energy on a regular bounded set of R?.

Theorem 4.7. [[2, Theorem 4.2] ] Let A be any bounded open Lipschitz set of R and let
{uc}te C LP(A;R™) be such that for some r >0

su;g{HuEHLp(A;Rm) + Gg’p(uE,A)} < +o0.
£>

Then, for any e; — 0, {uc, }; is relatively compact in LP(A;R™) and every limit of a converging
subsequence lies in WHP(A;R™).

5 Gagliardo-Nirenberg-Sobolev type inequality

In this section we state and prove a crucial result for our analysis which may be of independent
interest and resembles the classical Gagliardo-Nirenberg-Sobolev inequality in Sobolev spaces.
Its proof follows the lines of the proof of the corresponding result in Sobolev spaces. Such a
result will allow us to prove the convergence of the infimum problems defining the approximating
capacitary energy densities (see Proposition .

For r,0 > 0, set

PCy(R%GR™) == {u: RY - R™ : w is constant on ok + [0,0)? V k € Z%}
and, given p > 1, let T : LP(R% R™) — PC7.(R% R™) be defined by

1

T.u(z) = B

/ u(y)dy on Fek + [0,7¢)¢, k € 74, (5.1)
Fek+[0,7e)

where

.
T Vdrt3

In the following result we extend the definition of G%P((u, R%) in ([4.4) for p = 1.

Theorem 5.1 (Gagliardo-Nirenberg-Sobolev type inequality). Let p € [1,d). Then there
exists a constant C = C(p,d,r) > 0 such that for every u € LP(R%;R™)

(/ | Tou(a) [P dl’)p < OGP (u,RY), (5.2)
]Rd

where p* := —d{dp.

10



Proof. By a density argument and the LP-continuity of G7P(-,R?), it is enough to prove the
inequality for u € LP(R%;R™) with compact support.
Let us first consider the case p = 1 and fix such a u. We introduce some notation. For k =
(ki,...,kq) € Z9, set

Q5 := ek + [0, 7¢)?

and, for every j =1,...,d, let lAsj € Z%~1 defined by l%j = (k1,...,kj—1,kj41,...,kq). Moreover,
with fixed k € Z% and j = 1,....d, setl% (h) == (k1,...,kj_1,h, kjq1,..., kq) for every h € Z,

and denote by xj an 1ndependent Varlable lying in the cube Qk " In particular, with the

k1
notation above, we may write u(zy,) = Y. (u(zp) — u(zp-1)), being actually the latter a

h=—oc0
finite sum by the compactness of the support of w. Thus integrating in all the variables x; with

h < ky, we get

/ u(xg, ) deg, | <
H

and, using the definition of T, given in (5.1),

= (re)d Z / / |u(zp) — w(xp_1)| dop_1 dop,

k (h) k1(’1 1)

k1

d—1 1
e Teu(eh)| < € >

h=—00" @5, ) 7 &y ()

u(zp) — u(xp—1)
€

drp—1 dxp,

where C = C(r,d). For every j = 1,--- ,d, we define the stripe SZ = {(x1, - ,zq) € R?:
Toek; < x; < Toe(k; +1),Vi # j}, thus we have

e Tou(ek)| < C GTY(u, S,‘zl).
Analogously, for j =2,--- ,d,

e Tou(ek)| < €GP (u, Szj),
which in turn implies

d
eV Teu(eh)|” < C T G (w, 5),
j=1

or, equivalently,
1

e!|Tu(ek)| 7T f[(G”uSE )"

Summing over k1 € Z and using Holder’s inequality, we get

S etateb < 0 (o)™ X I (6 s) ™

ki€Z ki€Z j=2

C(Grluss ) H(Z Ggl(u,szj)>“.

k1€Z
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Next we sum over ko € Z and we use again Holder’s inequality, obtaining

Z Z e Tou(ek)| 7T

ko€Z k1€EZ
C(ZGQ%U,SEQ) > |G, St HZG”uSE
ki1€Z ko€Z j=3k1€Z

1 1

=1 T d =1
co(Taresy) (Tatws)) 11 (¥ T atws))

k1€Z ko €7 ko€Z k1€Z

We iterate the procedure, finding out

LY
|
|

1=1 k;EZ

ZZ e Teu(ek)| 7T ﬁ iZG” (u, 57) gc(agl(u,w))ﬁ
J=1 i=1 k;EZ
i#£]
On the other hand, we have
/ ITou(y )|1dy_Z/ | Tou(y |1dy—zzm | Tou(ek)| 7T
kezd 1=1 k;€Z
therefore §
([t an)” < caruz, (53)

Thus the theorem is proven for p = 1.

If 1 < p < d, given u € LP((R?;R™) with compact support, we use (5.3)) with |T.u|” in place
of u, for some v > 1 to be chosen later. We obtain

< /. |Tsu<y>|“*dy) <o / /.

[Teu(z + e§)|” — [Teu(z)

dx d¢

T. T
< C/ / (ITeu(z + €)™Y + [ Teu(z) ™) ue +e8) ~Teu@)| )ge
B, JRd €
where now C' depends on , d,r. By using Holder’s inequality with p and p’ = _1, we also get

</Rd |Tsu(y)71*dy>11 <C(/ / (I Tou(z + £6)] OV 4 |Tou(z)|-DP )dzdf)ll

x GoP(Tou,RY) 7 < C (/ | Tou(z)| 0¥ df‘) GLP(Teu, RY) 7,
Rd

R

possibly for a different constant C' = C(v, p,d,r). Choose 7 so that y1* = 7% = (y—=1)p/, and
accordingly v = d%.llp*. Thus

( / |T5u<y>fdy)p < CGIP(Tou, RY).
Rd

12



We now observe that

GUP(Teu, RY) < c/ /
]Rd

e / /

R4

the last term being, up to a multiplicative constant, the functional G7P(u,R%). The first and
the second term on the right hand side may be estimated as follows

Tou(w + €§) — u(z +§) |”
€

T.u(z) — u(x) d de
€

P
dzx d€ + C/ /
B, JRd

+s§ u(z)|”

dz de,

/ / Tulz) — ulw) pdwdf = ‘Brl/ ’Tsu(x) —ul@) pdaz
B, JRrd 9 Rd 3
u(@) |
= |B,| Z/ ][ 7xdy dx
kezd
_ P
<‘B|Z/ ][ uly) —u(z) dy dx
=C> = / / v D 4 4 < € Grp(u,RY,
reze © YRR
where we have used Jensen’s inequality. This concludes the proof. O

By Theorem [5.1] and Theorem [£.7] we deduce the following compactness result.

Corollary 5.2. Letp € (1,d) and let {u.}. C LP(R%R™) be such that for some r > 0

(i) sup |luc| oo (x;mm) < 400 for every compact set K C R4;
e>0

(ii) sup GTP(u.,R%) < 4o00.
e>0

Then, for anye; — 0, {uE }jis relatively compact in LY. (R% R™) and every limit of a converging
subsequence lies in WoP (R4 R™) N LP" (R R™).

Proof. Theorem yields that for any bounded open Lipschitz set A C R {ue, }; is relatively
compact in LP(A;R™) and any limit point lies in W1?(A4;R™). By a standard diagonalization ar-
gument, {u;}; is also relatively compact in L (R% R™) and any limit point lies in W&)’f (R R™).
Let us consider a subsequence (not relabelled) ., and u € WLP(R%GR™) such that uj; — u
strongly in L (R%R™) and pointwise in RY. Then it can be proved that also T u., — u
strongly in LI (R% R™) and pointwise in R? (see also 4, Lemma 2.11] ). Thus, it is enough to

apply Fatou’s Lemma in (5.2)) and use hypothesis (i) to deduce that v € LP" (R4 R™). O
6 Supporting results

In this section we present some key results of technical flavor that we are later going to use for
the proof of Theorem and Theorem

13



6.1 A joining lemma

Here we state and prove the analog of Lemma 3.1 in [5] for our non local functionals and we follow
the lines of its proof. It allows to restrict our attention in our I'-convergence analysis to sequences
of converging functions that are constant on suitable annuli surrounding the perforations.

Lemma 6.1. Let 6; — 0 as j — +oo. Let T > rg be fized and let 0 < g; < p; < 77 with

gj =o(pj) as j — +oo. Let u; converge to u in LP(2, R™) with sup; S’"?J(uj) < 4o00. Set
Z;(Q) := {i € 2% : dist(id;, R* \ Q) > §;}
and, for h € N and i € Z;(2), set

A i={z e Q27" My < |z —id; < 277 p;), (6.1)

; 3
ih | _ o So-h,
u;” = o U Pih 42 Py (6.2)

Then, given N € N, for every i € Z;(Q) there exists k; € {0,--- ,N — 1} and a sequence w; still
converging to u in LP(Q,R™), such that for j sufficiently large

w; = uj on Q \ Uiezj(Q)A;’ki, (63)

w; =uy™ on B,,, (id;) + Bre,, (6.4)
C

FL (wy) = FL (uy)| < N (6.5)

Proof. Notice that, by (H) and (GO0), sup; GTO”’(uJ7 2) < 4o0. Let p = goz’h € CSO(A;»’h) be such
that o = 1on 0B,, ,. (i0;)+ Bre, and [Dep| < =~ and define the function wit = cpu;‘-’th(lfap)uj.

Adding and subtractmg the quantity o(x + sjg)uj( z) in the argument of f, and using (G1) and
the convexity of the power function, we have

S:T( zh Az h)
] <7W?w+ﬂwWﬂ@+€ﬁ)WT¢+U¢WD@vde
Br J(A}™)e; (&)

€j
<C | M / _
Br (AT™)e, (©)

Recalling that |Dyp| < p% and using the Poincaré-Wirtinger inequality in Proposition with
j,h

Plo( +e;6) — (@) |
€j

u;j(z + ;) —uj(z) [

iho
e s u;(x)

J

+

dz dE.

xo =i6; and XA = 3p;», we have

M(¢
Br ()/@47"% ;(©

C
<o | M KP%/

]h

p

Pl ted) —o@)

€j

up" =, (CU)‘

p .
L m)‘ d < C GIo(uz, AL").

On the other hand, taking into account that €; = o(p;) we deduce that, for j sufficiently large,
it holds ‘
A4 By | AV =AY h=0, N1
£=h—1,h,h+1

14



In addition, for j sufficiently large, thanks to the fact that dist(Aj’h, Q\ By, (id;)) ~ p;, we also
have -
ej <1 dist(AY",Q\ B, (id))).
Therefore, using Proposition we get
w;i(z +¢;€) —uj(z)|”
€j

ME [
Br (A2, ()

dx d§

s¢ | M(E)(E]P + 1) dEGTOP (uz, AS")

—in
< C’Gg?’p(uj,A; ).
Hence, the previous estimates yield that

i,h i,h 70, 1%,k
FL(wi", A7) < CGLP(uy, AT"). (6.6)

Since the sets fléh overlap at most 3 times, with fixed N € N, we sum over h =0,--- ,N — 1

and get
N—1

S Gror(uy, A5 < 3G (g, By, (i6))).
h=0
Hence there exists k; € {0,---, N — 1} such that

GroP (uj, ) <

@1 (ug, By, i5,)),
which in turn yields

IT (w4 < Somr(uy, B, (i6)))
Noticing that estimate holds even if we replace wiﬁh with u;, we get

T (g, AP = FL (™, AT | < T (uy, AP + FL (w, A7)

c . .
< S GIP (5, By, (i6;)).

Then (6.3)), (6.4)(6.5) are satisfied by w; defined as

uj(x) if v € Q\ Uiez, (Q)A ’1“7
w;(zx) =
P (@)l (@) + (1= o (@))us(2) if x € AN i€ Z;(9).
We finally prove the convergence of w; to u in LP?(Q;R™). We have

1 i,k; P
/|wj—uj| dx = Z /M +(1_‘Pj )Uj_uj’ dzx
1€2;(Q)
< Z/ W — P de <€ (phOPGIo(uy, AT

i€Z;() At i€Z;(2)
isk;
<Cpp Y GIP(uy, ATM) < C b,
i€Z;(Q)
where we used again Proposition in the second line. Hence, passing to the limit as j tends

to 400 we get the desired convergence.
O
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6.2 Truncation Lemma

By the composition with a suitable lipschitz function, the following technical lemma allows us
to replace a given sequence u; with equibounded energies and LP-norms, by a new sequence
uniformly bounded in L* and with a small gap in energy. The proof is strongly inspired by
Lemma 3.5 in [10].

Lemma 6.2. Let {u;} with sup;(F¢;(u;) + || Lr(@irm)) < +00. Then for every n > 0 and
M > 1 there exist Ryy > M > 0 and a sequence of Lipschitz functions ®; s : R™ — R™ with
Lip(®jm) =1, ®m(2) =2z if |2| < M and @, p(2) =0 if |z| > R, such that it holds

Fe, (M (uy)) < Fey(ug) +n

for every j € N such that e; < g, with eg depending on §2. Moreover we can extract a subsequence
Jx) such that ®;, pr =: @ do not depend on k € N.
Jk>

Proof. Note that, by assumption (GO), Gor (uj, Q) is uniformly bounded. Set

Cl = qu(Gg?’p(Uj, Q) + ||uj||LP(Q;]R""))a (67)
J

Ca=6C( ) [ MO +1)ds. (63

where C(, rg) is the constant obtained by Corollary applied with A = Q and r = rg.

Let n > 0 and M > 0 be fixed. Note that, once the statement is proved for a given positive
constant M, then it holds true also for any M’ < M, hence up to replace M with a bigger value
it is not restrictive to assume that M is an integer and satisfies

20,0y

M>| |+2. (6.9)

For h=1,...,M let ®, : R™ — R™ be a Lipschitz function such that
A [z iflz < MM
ir(2) = { 0 if |2 > MM,

and CD}J(/[ connects linearly in the radial directions the values on the boundary of the annulus
{z € R" : M" < |z| < M"'}. A quick computation shows that for any h = 1,..., M
Lip(®};) < 7= < 1 on the annulus, thus Lip(®};) = 1. Let w? = ®}/(u;) and estimate
F.,(w) from above. Since f(£,0) =0 V¢ € RY, we have that

J

O (u; £)) — " (u;
ffgj(w?) :/ / f (ﬁ, v (ug(x +€58)) M(uj(x))) dz de.
R J{z€Qe ; (€):]u; (z)|Au; (z4e; )| <MIT1} &j

Now, for ¢ € R, we distinguish in €, (£) the points where |u;(2)| < |uj(z + €;€)| from those
where |u;(z)| > |uj(z + €;£)| and we perform a similar analysis in both the two sets.
To this end let us introduce the notation

0L () ={x € Qe; (&) + |uj (2)] < Juj(z + ;I3

Q2 (8) = 2, () \ () = {z € Qc, (&) « [u;(2)] > |uj (2 + 581}
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The sets 27 () N {[u; ()| A [ (2 +2,€)] < M1} and Q2 (6) (1 uy ()] Ay (w+2,€)] < M1
can be in turn decomposed, respectively, as the union of the disjoint sets

816 ={z € QL (&) : |uj(z +£;6)] < M"}
Sap; (&) ={z € QL (&) + luy(2)| < M, Ju;(w +€;€)| = M1}
3 (€ ={r € QL (&) : uj(2)] < MM < |uy(x +5€)| < MM}
i) ={z € QL (&) : M" < |u;(@)| < |uy(x + ;)| < MM}
o (€)= {2 € QL) : M" < Juj ()] < MM < Juj(a + ;)]
and B .
Sin (&) ={z€Q; (8 : Ju;(x)] < M"}
o (&) = {2 €QC () : |uj(x +58)| < M", |uy(2)| = M1}
any (&) = {z € Q (&) : luj(z + ;)| < M" < Ju;(a)] < M1}
1 (&) ={z € Q0 (&) : M" < |uj(2 +€;6)] < Juy(x)] < MM}
Ssng (&) ={z € QZ () : M" < Juj(x +56)| < MM < Juy()[}.
Hence, using the growth assumption on f and the Lipschitz continuity of ®, s, we have
) ) gy . p
.rfgj (w;l) < / / f (57 u](z + 6]5) Uj(x)> dxd€ _|_/ M(g)/ L(x) dx df
ReJSE, 5O € R Si,,© 1 €
4 Y|P 5 ‘ EY () |P
+ [ WS geaer Y [ arg [ RSO =nE g e
Re ) €j s IR SE, . (©) €j
where for the sake of notation we have set S;Eh’j &) = th,j(g) US54
Let us now sum over h =1,--- , M and get
M P
1 6 uj(x+€;&) —u,(x
I e O B e
h=1 ' e () J
M
1 / u;(z)|” u;j(z +€;6)|°
T M(€) / s dm—i—/ w5 g,
M hz::l R ( Sin O 1 € S3n,(€) € )
(6.10)

since the families {S;, (&) }nen and {85 n.(E) then, with i = 3,4,5, consist of pairwise disjoint
sets. Using Corollary and , the second term in the right handside of (6.10]) can be

estimated from above by

i MO

6
< 37C@ur0) [ M€ + 1 (62713, + )

u;(r +;€) — u;(x)
£j

p
dx dé

(6.11)

1 . 1
< =0 (G273, ) + i [ g m ) < 77C1C:

C, C
if e; < g9, with g9 as in Corollary Since by we have that }\4 2 < g, we get for

Ej S (07 50)
6
MO,

uj(x +€;6) —uj(x)

p
n
drdé < —. 6.12
. vdg <] (612)
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We are left with the estimate of the last term in the right handside of (6.10). Arguing as in
(6.11)) and taking into account , we deduce that for ¢; € (0,e9)

. E) oy p
0102 / M(é—) u] (.13"‘6]5) u] ($) d.f dé—
S, (9 &j
/ / uj(z + €;§) uj(x) pdmdf
Rd S, 9 €5 €j
ML _ pph Mht+1 Mh
R N e e Gl
R S, (9 &j &j

which in turn yields
Cl 0251-)

[ M©15,,(€)14 < e sy

Exploiting this last estimate and the very definition of 52 ni (&), Sap, ;(€), we also get for g; €

(0,50)
) P ) )P
[ a9 (/ o gy [ |lered dz) s
]Rd S;h J(E) E'j 2 h J(g) Ej (6.13)
Mhe n MNP C Cy
< 7 o M(&)[55,;(§)]dE < C1Cy (MM — MRy~ (M — 1)p°
Since, by , M > 2, we have
Cl CQ Cl CQ C(1 C12 n
< < —. .
(M—1)p*(M—1)*L%J+1<2 (614

Hence, by (6.10), (6.12)), (6.13]) and (6.14)), we eventually deduce that for every j € N such that

gj < go there exists h(j) € {1,--- , M} satisfying
M
h
?Ej(wj(J)) MZ? (w;z) Sg:&-j(uj‘)—FT].

We then define ®; 5y = @%j ). Up to selecting a subsequence, we may also assume that h(j) is a
constant value in {1,--- , M}. O

6.3 Approximating capacitary energy densities

In this subsection we introduce and investigate the main properties of suitable energy densities
defined through minimum problems of capacitary type involving the approximating energies F7 .

For any ¢ >0, T > rg, R> 2+ Te, and z € R™, set
¢er.r(2) :=inf{F (v, Br): v € L? . (Br;R™)}, (6.15)
where F7 is defined in (3.9) and

LY ;. (Br;R™) :={v € L’(Br;R™): v=0in By, v==zon 0T Br}, (6.16)
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with the notation 9°T A := 9A + B.r, for any A C R<.
We identify any v € L? . _(Bgr;R™) with its extension in Lj

loc

(R4;R™) such that v = z in
R4 \ Br. Hence the function ¢. 1 g(2) can be also rewritten as

verr(z) = inf{FT(v,RY) : v — 2z € LP(RLGR™), v =0 in By,v =z in RY\ Bp_.r}.  (6.17)

Note that the request R > 2+ Te is not restrictive, as we are interested in letting R — +4o00; this
assumption will be useful in Proposition [6.4]

Remark 6.3. Note that, if f(¢,-) is convex for every & € R?, the infimum defining ¢. 7 r(2)
in is actually a minimum. Indeed, by the convexity of f(¢,-) also FZ (v, Bg) is convex.
Hence, taking into account Proposition with E = By, A = Bgr, X (v, Bg) is lower semi-
continuous and coercive with respect to the weak topology in LP(Bgr;R™). As the constraints
v=01in By, v = z on 9T By are convex and closed by the strong convergence in LP(Bg;R™)
the existence of minimizers follows by the standard methods.

The properties of the densities ¢. 7 r We are going to state and prove will be instrumental
in Subsection in studying the pointwise and locally uniform limit of ¢ 7 r(-) when the
parameters R, T go to +00, and ¢ either goes to 0 or remains fixed equal to a. These results will
allow us to estimate the energetic contribution near the perforations leading to the appearance
of the density functions ¢ and ¢y, defined by and 7 respectively.

The first result establishes growth conditions of order p of ¢, 7 g.

Proposition 6.4. Let f satisfy assumptions (H) and (G), and let T > rg,eq > 0, and R > 1
be fized such that R — egT > 2. Then, for every 0 < e < ¢ there exists c1,co > 0 such that

calzl? < gerr(z) V2 € R™ (6.18)
verr(2) < eolzlP V2 € R™. (6.19)
In particular, the constant c¢; depends on p,d, \g, 70,0 and the constant co on p,d,rg.

Proof. We first prove (6.18)). The proof relies on a suitable lower bound of & (v, Br) with discrete
energies. In order to avoid too many technicalities, we restrict the proof to the case d = 2; the
argument can be generalised to any dimension (see e.g. the proof of Theorem 2.6 in [26]). Let
us introduce some notation. Given ¢ € R?\ {0}, let L¢ be the lattice in R? defined by

Le =TESLES,

where £+ 1= (=&, &).
Let v € LY . _(Br;R™) and let 0 < 7 < ro. By (H) and (G0), we get

57 (v, Bg) > )\0 Gm’(v Br) = Xo Gip(v R?)

_ (@ +e€) — (@) "

=//

Brkege Jeh @) 5/6{5 £}

dz d¢

(6.20)
oa +2€) — v(a)

3

dz d¢

where

Qg = [07 1)5 D [Oa 1)€L
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Let T5v the function which is constant on each square e(k + Q%), k € L¢, and is defined by
1
Téo(z) = 72/ o(y)dy, z € ekt QF), ke Le.
(€l&N? Je(hrqe)
Then, by (6.20) and Jensen’s inequality, we get

57 (v, Bg) > /Z€|§| >

To(e(k +¢)) — Tho(ek) [”

€ 4
Br k L ’ L
e s [Tl ) TSR .
sv(e(k + —1zv(e
HSNCHEDY o] dg.
T keLle ge{sery

Let ‘J’gt be the triangles defined by

‘J'g[ ={recQ:

+(z,€) < £(z,67) },

and let wé the piecewise affine function obtained by linearly interpolating the values {T5v(ek)}rerc,
on the triangles e(k + ‘J’gi), k € L¢. Note that, for € < gg, if 7 < 5= and £ € By, then wt =0 on
2 e =

_— r £ =
B:i and wt =z on R?\ B iR Moreover, taking into account (4.3]) and m, we easily infer that

ICIEEDS

Tév(e(k +€")) — Téu(ek)|”
kele §e{s,+}

el¢|
> Ccap,(By, Bspg)|z|" = C cap,(

>C’/ |Vws|P da
(6.22)
Byl

In conclusion, selecting 7 := max{ro, 7=}, we get

A
30,50 > o ([ 169 de) Ceam, (81 = cleP

We now prove (6.19)). To this aim, note that, by using a Fubini argument, one can easily shows
that there exists C' = C(rg) such that, for € < g¢, for any u such that u — z € CJ(Bgr—.1;R™),
then

GroP(u,R?) = G7P(u, Br_.1) < C |VulP d.
BR—ET

By (H), (G1) and the density of functions compactly supported in the capacitary problem
we then get

oo zn(z) < 5T (u, Br) < C ( [ meer + 1) dfs) Grow (u, RY)

C( &P +1)d )mf |[Vu|Pdx: w=0in Bl,u—zeCcl(BR,ET;Rm)}
Rd Br_cT
C(/  MEEP +1)ds ) cap, (Br. Brco)|21
R
<C </ M€ + df) cap,,(B1, Ba)|2[" = co|2|P.
Rd
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In the next proposition we show that the functions ¢. 1 r are uniformly Lipschitz continuous on
compact sets.

Proposition 6.5. Let f satisfy assumptions (H), (G) and (L). Then there exist a constant
C > 0 independent of e,T and R such that for every z,w € R™ we have

|0e 7R (W) = er,r(2)] < C(I2P7" + [wP~H)|w — 2. (6.23)

Proof. Let us prove ((6.23) for fixed z and w. Since the inequality is trivially true when z = 0 or
w = 0, we may suppose both not null and consider the map ¢ : R™ — R™ defined by

o) = '|f|'9%;“<<>7

where RY is a rotation that maps z into %w Note that ¢(0) =0, ¢(z) = w and

Vol < L 196 =11 < L (6.24)
For n >0, let v, € LZ;T’Z(BR;RW) be such that F7 (v,, Bg) < ¢ r.r(2) + 1 and set
Uy = PO V,.
Note that v,, € L? 1 ,,(Br;R™), hence
e, r(W) < F (v, Br) < @er,r(2) + FL (0, Br) — FL (vs, Br) + 1. (6.25)

By hypothesis (L) and (6.24)), we infer that for every ¢ € R?
|/ (&, Dzvw()) = (& Div.(x))| < CM(E)(|Dzvs(2)[P~! + |Divy(2)[P~1)|DEv. (2) — Dévy ()|
< OM(&)(IDzv()[P~! + [ Vo|[5sH [DEv () P~ )|V d = Il oo | D w2 (2))|
1+ ol

|2|P

Thus, by (6.25)), we get

<OM(§) |w — 2[| Dv. ()P

2P~ 4wt
%Iwﬁl M(€) |DSv, (x)[P dx d€ +1n. (6.26)

ver,r(W) < perr(2)+C -
|2 R? (Br)<(©)

By (H), (G0) and (6.19)), we get
GL°P(vz, Br) < CFL(v., Br) < C(perr(2) +1) < C(|2[° +n). (6.27)
Since, by ([4.6)), we have that for any ¢ € R?

/ |DSv.(2)P d < C(EP + )G (v, Br),
(Br)<(§)

inequality (6.26]) and (G1) yields that

z|P +n

peir.n(w) < pern(2) + C( 4wl ™o — 2=

+7n

Taking the limit as 1 tends to 0, and then reversing the role of z and w, (6.23) easily follows. O
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We conclude this subsection with a technical result, yielding that in the minimum problems
defining ¢. 7,r we may reduce to admissible functions uniformly bounded in L>°. The strategy
of the proof is analogous to that of Lemma [6.2] hence we highlight only the main differences.

Proposition 6.6. Let T > rg, a >0, R > 2+Ta and C, My > 0 be fized. Then for everyn > 0
there exists M > My such that for every z € Byy,, given v € LZ,T,Z(BR; R™) such that

55 (v, Bg) < Oz,
then there exists vy € LY, 1o (Br;R™), with ||vasl| L (Brgmy < M, such that
FT(vpr, Br) < FE (v, Br) + 1.
Proof. Given z € By, and R > 0, by (H) and (G0) we have that
G (v, Br) < Cl27,

where the constant C' depends only on C, 79, A\g. So now it suffices to retrace the steps of the

proof of Lemma [6.2] replacing the constants in (6.7) and with

Cy :=sup GL°P(v, Bg) < 400,
R

and

Co=6C(ra) | M) + 1),

respectively, where C(rg) is the constant obtained in Remark and using Remark instead
of Corollary The function vy is obtained through ®;(v) with a suitable choice of M. O

6.4 Asymptotics of the approximating capacitary energy density

We now show that, if R, — 400 as ¢ — 0 the functions ¢, 1 r.(z) approximate the energy
density ¢T'(z) defined in (3.19)). A crucial role in the proof is played by Corollary

Proposition 6.7. Let T and p. 1 g be defined by (3.19) and (6.15), respectively. Then, if
R, — +00 as € — 0, it holds

. _ T
lim pe 7R (2) = ¢ (2) (6.28)
uniformly on compact sets.

Proof. By Proposition it suffices to prove that (6.28]) holds pointwise. We will show that it is
a consequence of Theorem and Corollary With fixed z € R™, let ve € LY ;. (Br.;R™)
be such that

e, (2) = L (ve, Br,) + o(e),
and let u. € LP(R%R™) equal to v. — z on Bg, and u. = 0 on R?\ Bg_. By (H), (G0) and
(6.19), it holds
sup G (ug, RY) < +oo. (6.29)
€
By Theorem applied with A any bounded open Lipschitz set in R? and E = By, we get

sup ||ue || ra;rmy < +00.
£
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Thus, using Corollary we get that, up to a subsequence (not relabelled), u. converge in
LP (R%R™) to a function u € WL (R4 R™) N LP" (R R™) such that uw = —z on B;. Moreover,

loc loc

with fixed R > 0, by Theorem [3.2] we deduce that

lim inf . 7., (2) = lim inf 57 (v., Br.) > lim inf 5T (v., BR) > . fih o (V) de.

Letting R — +o00 we obtain

liminf g. 7. g, (2) 2 / From(Vu) dz > o (2).
e—0 Rd
We now claim that

o7 (2) = inf {/ i (Vu)de :u = —z in By, u € WHP(R% R™) compactly supported}.
Rd

To this aim, let us us fix a cut-off function ¢ between B; and B, and u € LP*(R%R™) N
WeP(REGR™), uw = —z in By, with [y, f,.(Vu)dz < +oo. Note that, taking into account
Remark Vu € LP(RERIX™). We now set, for any n € N, u,(z) = ((x/n)u(z). An easy
computation shows that u, € WY?(R%;R™), u,, is compactly supported and u, = —z in Bj.
Moreover it holds that Vu,, — Vu strongly in LP(R%; R%*™). Indeed, by Holder inequality, we
have

/ [V, — VulP do < C’/ |Vul|P dox + < |ulP dx
Rd RI\B, P JBau\Bn,

c _ . NE
<C [Vul? de + —[Ban \ Bn| "~ #" (/ Juf? d”“")
R4\ B,, np

2n n

< 0/ |Vu|pdx+0(/ jul?” dz)”,
R4\ B, Ban\Bn

and the last two terms tend to 0 as n — +o0o. The claim follows by using the dominated
convergence theorem together with Remark

Thus, taking the claim into account and using a density argument, given n > 0, we may
assume that there exists u € C°(R%;R™) such that u = —z on B; and

[ fon(Vu)de <7 @)
Rd
Let R > 0 such that suppu C Bg. Then, by [2, Proposition 5.3] applied with A = By \ By,

there exists a family of functions u. € LP(Bg;R™), with u. = —2 on B; and u. = 0 on °7 By
such that

lim F7 (u., R?Y) = / fiom (V) da.
e—0 Rd

Hence, set v. := u. + z, we get that v. € LZ;T’Z(BRE;RW) for & small enough, thus

lim sup ez, (=) < limsup 7 (ve, Br.) < / ST (V) dz < 7 (2) + 1
]Rd

e—0 e—0

and the thesis follows by the arbitrariness of n > 0. O
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Note that for any o > 0, T > ro and z € R™, the function R € [2 + aT,4+00) — a1 r(2) is
decreasing, as it is easily seen by (6.17)). Hence, for z € R™, it is well defined thf Ya,1,R(2)
—>+00

and this convergence is also locally uniform by Proposition One can easily shows that

T .
ONLa(2) = Rlirfoo $a,1,R(2),

where @7, , is defined by (3.20).

The properties of the densities ¢, 1 r obtained so far allow to prove the following result about
the L'-convergence of suitable Riemann sums to the capacitary densities ¢ and ¢k Lo

Proposition 6.8. Lete; — 0 and R; — +00 as j — 400 and let (u;) be a bounded sequence in
L (5 R™) such that sup; T (uj) < 400 and uj — u in LP(Q;R™), for some u € WP(Q;R™).

J

Let Aé’ki and uzk, i€ Z;(Q), be as in (6.1) and (6.2), respectively, with p; = O(;) and h = k;,

for an arbitrary choice of k;.
(i) Let \I/f : Q — R be defined by
Lkl
‘I’]T(x) = Z Pe;,T,R; (Uj )XQJEJ, i (@),
iGZj(Q)

where

Q(;Ej (Z) = 56]‘1' + 56]‘ Ql'
Then \IIJT — oT(u) in LY().

(it) Let U7, : Q — R be defined by

i ki
Ul (@)= > ¢arnr, U )XQs.., () (@),
iGZj(Q)

Then W7, = oxp o (u) in L'(Q).

Proof. We prove (i), the proof of (ii) being analogous. We have the following estimate

L@ —eta@ars 3 [ fon a0~ oo, ()] de
5e; ()

’LGZj(Q)

* (u(2)) — e, 1o, (3 (2))] da
iezzj%o)/ngj(i) “P (u( Ve, 1R, (U )|

+/ o7 (u(z))| o =: I} + 12 + I2.
Q\Uj,EZj Q) Qéaj (i)

By Proposition we easily deduce that Ij2 — 0. Since |2\ Uier(Q) Qs. iyl — 0, we also infer
J
that I ]3 — 0. Finally, by Proposition we may estimate [ Jl as follows

Ij1 <C Z / ‘u;kl —uj(z)| de.
i€7;(0) 7 o<, ()
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By Hélder’s inequality and Proposition we have

ik d(p—1)
g P
/ ‘uj — uj(x)‘ dx < 6, /
Qagj (i) Qésj (4)

d(p—1)

<o, 6, (Ggﬁap(uj,Qgsj (Z-))) ,

=

. P
u;’“ — uj(x)‘ dm)

S =

Hence

D=
s

1t < e, (G, 2)” < ce, (9T ()" 0.

We conclude this subsection showing the convergence of Lp% Lo 10 ¢NLa as T — +o0.

Proposition 6.9. For any z € R™, it holds

Pim o o(2) = sup @Rp o (2) = enral2),
—+oo

T>rg
where oNL.o(2) is defined in (3.17).
Proof. We first observe that the function ¢%; Lo 18 increasing in 7', hence it is well defined the
limit
Thm ‘PNL a( ) = sup SDNL a( ),
— 400 T>ro

for any z € R™. Since T (v, R%) < F, (v, R?) for every T > 0,

SUp QL a(2) S onLal2).
T>rg

Let v be an admissible function in the minimum problem defining ¢y, o(%). In particular, v — z

satisfies (4.6]), that is
.

where the constant C' depends on rg. We now multiply each side of the previous inequality by
the growth function M (¢), we apply Remark 3.1} integrate on R?\ Br, and finally obtain

/ / ( e ))d d<C M(€)(J€P + 1)dg G2 P (v, RY).
ey e (I¢1>7}

Thanks to (G1), this gives
Fo(v,RY) < FT (v, RY) + o(T) GTOP (v, RY).

e e v P gy < el + 16 0. R,
g

We now choose a function vy such that vy =0 in By, vp — z € LP(R% R™), vp — 2z is compactly
supported, and

Fa (o1, RY) < 9N o(2) +o(T).
Thus, in particular

onLa(2) < Falvr,RY) < FT(vp, RY) + o(T) GToP (vp, RY)

T . d (6.30)
< onpal(?) +o(T) +o(T) GZP(vr, RY).
By finally using that
GrP(vr, RY) < C TG (vr,RY) < C vy o(2) +0(T) < C(J2fP + 1),
the desired conclusion follows letting 7" tend to +oo in . O
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7 Proof of Theorem [3.5 and Theorem 3.6

We will prove the two statements simultaneously, distinguishing the two regimes provided by

assumption and , respectively, only when necessary.

Dividing the proof into three steps, we first show that it suffices to prove the theorems for the
truncated functionals FET s.» and then we deal separately with the I'-liminf and the I'-limsup
inequalities.

Step 1. It is not restrictive to prove both theorems under the additional assumption that there
exists T > 0 such that f(&,2z) =0if [¢] > T.
Indeed, under the hypotheses of Theorem [3.5 assume that for every T' > 0

/ fio o (V) dae +/ ol (u)dz if u € WHP(Q;R™),
(u) =4 Ja Q

400 otherwise,

D(LP) — lim s, (7.1)

where FET s is defined by (3.6) and fi  and ¢T are defined by (3.18) and (3.19)), respectively.
By [2, Lemma 5.1],

Py _ 1; — N P\ _1; T
D(L?) ~ lim g (w) = lim D(LP) = lim F7 (u),

hence, by Monotone Convergence Theorem, the statement follows once we prove that for every
S € R¥™™ and z € R™

: T _ : T\ _

T1—1>I—{-loo fhom(s) - fhom(s)7 T1—1>r—£loo<p (Z) - QD(Z)
The equalities above are, in turn, again a straightforward consequence of Monotone Conver-
gence Theorem. We may argue analogously in the setting of Theorem taking into account

Proposition [6.9}

Step 2. With fixed T' > ry, we now prove the validity of the I'-liminf inequality for FET 5. for
both theorems.

Given €; — 07 as j — +oo, let w € WHP(Q;R™) and let u; — w in LP(£;R™) be such that
sup; Fs:’;ﬁE (uj) < 400. Up to passing to a subsequence (not relabelled), given n > 0 and M > 0,
we may af)ply Lemma and find Ry; > M and a Lipschitz function ®,; : R™ — R™, with
Lip(®pr) =1, Ppr(2) = 2z if |2| < M and @ps(z) =0 if |z| > Ry such that

FE 5 (w)) > FL 5 (@ar(u)) = 1. (7.2)

€5

Notice that ¢nr(u;) = ®ar(u) in LP(€;R™). Given N € N, let {w}'}; the sequence constructed

in Lemma applied with p; = 0., /4 and {®/(u;)}; in place of {u;};. Set

Ei= |J By, (0,0,
i€ Z; (Q)

where p; 1, is defined in Lemma and define

ij(x) ifxeQ\E;
(@ar(uy))r if z € By, (0;1).
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Notice that, by (H), (GO) and Lemma sup; G;'g’p(v;»\/[,Q) < +00, Hence, by Theorem
{U]]»w}j is relatively compact in LP(€; R™). Arguing as in [6], we now show that ’UJI-V[ — @y (u) in
LP(2;R™). Specifically, for h € {0,..., N — 1} set

3 z
= 72_}1_27 h = L ,
Th 4 Xj (.’L’) X 6aj

where y" coincides with XQi\B,, On Q1 and is extended @Q;-periodically in R¢,
Z}={i€Zj(Q):ki=h}, Di:= ] o (i+Q), ¥}):=xpn(a)
i€zl

Recall that

X? Somy =1Q1 \ By, | >0 weakly* in L>°(R?)

and note that,
N-1

Z wjh — 1 strongly in L' ().
h=0

Moreover, since X? > XJQ for every h € {0,..., N — 1}, we have that

N-1 N-1

Xavg, = Y UIE =0 D wl Sme > 0. (7.3)

h=0 h=0
Let us consider a subsequence (not relabelled) such that xo\ g, X g in L™(Q) and o} — v
strongly in LP(2; R™). Hence

M Mo L LP(Q: R™
XO\E, V; gv,  Xo\E,W; gPpr(u) weakly in LP(Q; R™).

Taking into account that xo\g,v;’ = xo\g,w)’, we conclude that v = ®y(u) thanks to the
lower bound on ¢ ensured by (7.3]).

By Lemma, and ([7.2)), we have

C
FE s () 2 FD o (@) — > 57 () — T~
C
z:fngj(w}”,Q\Ej)+§€Tj(w§4,Ej)—n_ﬁ (7.4)
C
> 97 (o) + 97w, By) g - <,
since by definition w}’ = v} in Q\ Ej;, and v} is constant on each 9B, . (9c,1).
By Theorem [3:2] it holds
liminf 7 (U]]w) > / fo (V@ (u)) d. (7.5)
j—+oo J Q

We now turn to the estimate of the contribution on Ej;. At this point we need to distinguish

whether (3.13]) or (3.15) holds.
Case € = o(rs,). With fixed i € Z;(), let

vyi(y) = w00+ 5. y)
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be defined on the ball BR;7 with R; = Pj,kir(s: and extended to (®p7(u;))"* outside this ball.

Setting s; := Ejrgl, we get
e

L (W), By, (0:,1) = 5 PFL (0} Br) 215 " ps, mms (@ar(w)PH). (7.6)
We take 4
i) = ) wsj,T,R;((<I>M(uj))z’k")><@55j(i)(:n).
iEZj(Q)
By (7.6), we get
d—p d—p
Ts. . Ts..
FT (M, E;) > / () de = J / Ul () da. (7.7)
ot Jo 7 577 o’

By Proposition (¢), applied to (®ar(u;)), with s, R} in place of €, R;, respectively, we have

UT — " (®pr(u)) in L'(). (7.8)
Hence, by (7.7), we deduce that
lim inf S"T( M,Ej) > Bd*”/ ol (®p(u)) da. (7.9)
j—4oo Q

Case € = O(r5,). With fixed i € Z;(Q), we now set

M M . &
2 = . 66’ —_ )
v],z(y) wg ( ]7’ + ay

on the ball BRl with RZ = apjre; ", and extend it, as in the previous case, to (®pr(u;))"*
outside this ball. We get
, ey d—
:TZ; (w;-w’Bpj,ki (5€jz)) = (é) ‘('TT( jl’BR7)‘ (710)

s,
Define t; := « Ej” and note that, by (3.15), ¢; = 1. We take

. 0 ifye B
= { o

Yy, U%(y) ify e BR; \ Bi.

Notice that, if ¢; > 1, then v v ; coincides with v . A straightforward computation shows that

FT (M BR1)>3"( Bgi) — C(M)|1 ;. (7.11)

Jl7 .71’

Since 0}; € LZT((}M(“ i ki(BRj.;Rm)7 by (7.10) and (7.11)), we get

TT (B, (0.,0) > () (L@ Br) - CODIL -1,

2 (5

i (7.12)
) (Qar s (@ar(u)™) = COM) L= 15]).
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By taking

Va@) = Y earn (@ar(w))*)xas, o),
1€Z; (Q)

using (7.12)), we obtain
FL(w), B;) > 17~ d(gd-r 4 (1))/ T () dz + o(1). (7.13)
Q

Thanks to Proposition (i1), applied to (®as(u;)), with R; in place of R;, we have
UT = onpa(®a(w) in (D). (7.14)

Hence, by (7.13]), we deduce that

Jj—+o0

lim inf 57 ( JEj) > ﬂdfp/ ¢%L’a(¢M(u)) dx, (7.15)
Q

which is the analogue of (|7.9| . ) in the previous case.

By (7.4), (7.5), together with (7.9) and (7.15), and by the arbitrariness of 7 > 0 and N € N, we
infer that

liminf F7 5 (u,) > /Q P (V031(0)) do + 57 [ 7 (@ag(w)

]*} o0 O

under the assumption (3.13)), and

lminf F2 5 (u;) /Q ST (Vo (u)) da + 57 /Q OBt o(@as () de,

Jj—+oo

if (3.13)) is replaced by (3.15). Letting M — +o0o, we conclude that, under the assumptions of
Theorem [3.5]

hmmfF (u]) Z/f,z;m(Vu) dx—i—ﬂd*p/cpT(u) dz,
’ Q

Jj—+oo Q

and, under the assumption of Theorem [3.6]

limint £ () 2 [ f(Vu)do + 57 [ oy (0o
Jj—4o00 Q Q ’
Step 3. With fixed T' > rg, we now prove the validity of the I'-lim sup inequality for FET s.- By

a density argument it suffices to prove the inequality for u € C°(R% R™). For such a u, fixed
an open set €' € A™8(R?) such that ' DD €, and given ¢; — 0 as j — 400, by Theorem
there exists a sequence (), converging in LP(€'; R™) to u, such that

jggloo’f (4,9 / fi (Vu)d (7.16)
Taking into account Lemma up to replacing u; with a suitable truncation, we may also
assume that sup; ||| Lo o/ mm) < +00. Thus, given N € N, we consider the sequence (w;)
constructed in Lemma applied with Q' in place of Q, p; = d.,/4 and @; in place of uj, so
that

FL (w;, ) < FL (a;,9) + % (7.17)
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We now pass to the estimate of the energetic contribution on the set

EBi= |J B, (60
i€Z;()

As previously done, we distinguish whether (3.13)) or (3.15) holds.

Case € = o(rs,). Set
i . Pk _
R: == 55 = ——,
Ts rs

€5 €5

j kg | i . j ) Uj,i ik i; R™
where p; 1, is defined in Lemma For i€ Z;(), let v;; € LP . (Bgi;R™) be such that
. ¢ J

Sjy Uy

- iski
g:z; (Uj,iv BR;) = (ij7T,R'Ji. (U; ) + O(Ej)'

Then set
T — 0.1

’U.]’Z(:L') = ’DJ”L ( rs - > » X € Bpj,ki( 5JZ>7

and
oy owi(z)  ifreQ\E;
uj(7) = { vii(z) itz € B,,, (0,

Note that

. d— ~ d— ik;

Sjg; (Ujﬂﬁ Bpj,ki (551'2)) = Tﬁsjp?z; (vj,iv BR;) = Téejp(gps_j,T,R; (uj ) + O(Ej))' (718)

Moreover u; € L% (€';R™) and, arguing as in Step 2, we also deduce that u; — win LP(; R™).
<
We finally pass to the estimate of the energy. By ([7.18)), we get

FL (uy) < FL (w;, ) + Z FL (uj, By, (6c,1))

J

’L€Z](Q,) (7 19)
=I5 (w, W)+ 30 15 s,y (47 + 0le5) |
gD 0c; N85 T RGAT J
’LGZj(Q,)
Applying Proposition [6.8] (i) as in Step 2, we deduce that
S ey ) 57 [ ) de, (7.20)

i€Z; (V)

Case € = O(rs_.). We now set

where p; 1, is defined in Lemma By applying Propositionwith Mo = sup; || oo (2 ;rm) 5
given 1 > 0 there exist M > sup, ||@;| g (q/rm) such that for every i € Z;(€)') there exists
Vj4 € L Tk (BR;;Rm) such that Hﬁj,iHLoc(Q/;Rm) < M and

« u J

s 4o Uy

~ ~i,k;
Fa ()i, Bri) < Qo m pi (@;") + 1.
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Set t; = aT:j and note that, by (3.15)), ¢; = 1. Then define

. _J0 ify € By,
05.i(y) = v;i(y) ifye BR;'_ \ By,

Notice that 0;; coincides with ©;; if t; < 1. As in Step 2, a straightforward computation shows
that
Fa (03, Bri) < 3 (050, Bri) + C(M)[1 — t;]

We take
~ xr — 653'2- .
'Uj,i(x) =5 | o - x € Bijki (65j7“)’
J
and
oy owi(x)  ifreQ\E;
uj(z) == { vji(x) ifzeB,, (5i).

Note that

} —d_d— N d, d- -
?EJ (Uj,i, Bpj,ki (6€j7‘)) = t§ résjpg'g(vj,h BR;) < t? s, p(spa TR”“( j ) + C( )ll - tj| + 77)'
(7.21)
We notice that u; € Lf (Q R™) and, as in the previous case, we deduce that u; — w in

LP(Q;R™). By (7.2]] -, we get the counterpart of -

ng; (uj) < f}“g; (wjvgl) + Z SFZJ (uj7BPj,k1- (5617'))

iGZj (Q,)
" . 4 d 3 (7.22)
S?EJ(wj?Q>+t§ Z J((paTRl( j )+C|1_t‘+77
iGZ]’(Q')
Applying Proposition [6.8] (i7) as in Step 2, we deduce that
S @) = 87 [ e (7.23)

i€Z;(Q)
which corresponds to ((7.20)).
Hence, by (7.16)), (7.17)), together with (7.19)), (7.20), (7.22), and (7.23)), we get that

hmsupff'~ (uj) < / fio (Vu) de + ﬁdfp/ o7 (u) dx + %,
Q/ ’

j—+oo

under the assumptions of Theorem and

hmsupff"T (uy) / fl o (Vu)dx + g4 p/ @NLQ( )dI'Jr]?[

Jj—+4oo

under the assumptions of Theorem The conclusion follows by the arbitrariness of N € N
and letting Q" — Q.
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8 The scaling regime r5. = o(¢)
Theorems and Remark provide a complete description of the asymptotic behaviour

of F, s, when lin% Ergl =« € [0,+00). In this section we consider the case when ¢ — 0 slower
e— €

than r;_, showing that, for most of the choice of the scaling of rs with respect to d, F; 5. is not
affected by the constraint v € L (;R™) and then I'(L?) — lin}) F.s5.(u) =T(LP) — liH(l) Fo(u).
€ e— e—

Assume from now on

s =0 (8.1)
. €
lim — = +o0. (8.2)
e—0 rs

First of all let us note that, since F, 5_(u) > F.(u), we have that

T S T(IP) — lim ' .
['(LP) hgn_gngs,ég (u) > T'(LP) hrgrgglfffe(u) (8.3)
Given g; — 0 as j — +oo, let u € C°(R% R™) and let @; — u in LP(Q;R™) such that

lim 7. (i) = /Q From (V) da.

Jj—+o0

Arguing as in Step 3 of the proof of Theorems and we may assume «; bounded in
L>(Q;R™).

Set then
) i) ifx e bBs.,
ui(@) =19 itz eQn P, .

Clearly u; € Li (€ R™) and, by 8.1), u; — u in LP(;R™) as j — +oo. By assumption

(ii), we have

, iy 4 uallEe ¢
Fe, (uy) < Fe, (i1) + % Z/RdM(fHSLAd{, (8.4)

€2

where
885 = Q0 ((Bry, (0,0) 0 (B, (8,1))° = £5€)) U (Bro._ (60,0))° N (Bry._ (62,1) = £56))).
Note that, since Sf,j C Bmsj (0c,4) U (Brésj (0c,;7) — €;€), then

15551 < C’r(‘ij.

i,

Thus, by (8.4) and (G1), we get

d
Ts.. 1
P (8.5)

By (8.3),(8.5) and a density argument, we infer that I'(L?) — 1111(1) F.s5.(u) = T(LP) — lim F(u)
e—

e—0
under the additional condition

d
1
Doe 2, (8.6)

1 —_— =
e—0 P §g
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which can be written as
lim —— =
e—0 (Tés)d/p
Oc

d—
Tga 1 (’I“(;E)P s "

ep §d € od

Note that

which, thanks to (8.2)), yields that is satisfied if r5 < C¢ 5. We may then conclude that
the following I'-convergence result holds.

Theorem 8.1. Let F. s be defined by (3.3), with f satisfying assumptions (H), (G) and (L)
and 1 < p < d. Assume moreover that (8.2) and one of the following two assumptions hold

a) limsup T‘j < 400
§—0 dd—»p
. £

b) lim = 4o0.

e—0 W
()
Then
) /fhom(VU) dr if u e WHP(Q;R™),
= Q

T(LP)- lim F 5, (u
+oo

otherwise,

where from(S) is defined by (3.11).

We have summarized our I'-convergence results in the following table (see Theorem (3.5
Theorem Remark and Theorem, schematising how the interplay between the various
parameters affects the I'-limit of the non-local functionals F; s defined in . The domain of
the I-limit is W1P(Q; R™) if not specified.

0 lim 2 =48>0 lim —2— = +4oo
€ §—0 5d7 §—0 6rp
lim — =0 / From(Vu) dz + ﬂd_”/ o(u) dz 0if u=0
e—=0Ts Q Q
lim — =a>0 / fhom(Vu)d:r—&—Bd*p/ ONL,a(u)de 0ifu=0
e—=0Ts Q Q
) d
P
if lim ~ <TL> =0
lim — = 400 / Ffrom (Vu) dz e=0 e \ de
e—=0Ts Q
/fhom(Vu) dx
Q
Table 1
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