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Abstract. In this paper we consider a family of non local functionals of convolution-type
depending on a small parameter ε > 0 and Γ-converging to local functionals defined on Sobolev
spaces as ε→ 0. We study the asymptotic behaviour of the functionals when the order parameter
is subject to Dirichlet conditions on a periodically perforated domains, given by a periodic array
of small balls of radius rδ centered on a δ–periodic lattice, being δ > 0 an additional small
parameter and rδ = o(δ). We highlight differences and analogies with the local case, according
to the interplay between the three scales ε, δ and rδ. A fundamental tool in our analysis turns
out to be a non local variant of the classical Gagliardo-Nirenberg-Sobolev inequality in Sobolev
spaces which may be of independent interest and useful for other applications.
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1 Introduction

In the last decades there has been an increasing interest towards the analysis of variational
models involving non local functionals of the form∫

Ω

∫
Ω

f(x, y, u(y)− u(x)) dx dy (1.1)

where Ω is an open set of Rd, in view of their relevance for applications in different directions,
such as image processing [11, 16], population dynamics [15], continuum mechanics through the
theory of perydinamics [7, 18, 25] and phase transition problems [1, 21].
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The relation between non local functionals as in (1.1) when the energies concentrate on the
diagonal x = y and local functionals of the form∫

Ω

f(x,∇u(x)) dx (1.2)

has been first investigated by Bourgain, Brezis and Mironescu in their seminal paper [8], where
they study the asymptotic behaviour of Gagliardo seminorms [u]W 1−ε,p(Ω) as ε → 0, and in
particular, in the case p = 2, show that

ε[u]W 1−ε,2(Ω) = ε

∫
Ω

∫
Ω

|u(y)− u(x)|2

|y − x|d+2(1−ε) dx dy

approximate as ε → 0 the square of the L2 norm of ∇u, up to a multiplicative constant. The
result has been subsequently extended in [20] in terms of Γ-convergence. A general asymptotic
analysis as ε→ 0 of families of functionals of the form∫

Ω

∫
Ω

fε(x, y, u(y)− u(x)) dx dy, (1.3)

under superlinear growth assumptions in the last variable and concentration of the energies
on x = y, has been recently provided in [2], by using De Giorgi localization methods for Γ-
convergence, leading to a general class of energies whose Γ-limits are of the form (1.2), with a
number of applications, in particular to stochastic homogenization, to energies on point clouds
and to gradient flows, which are just some of the potential directions of the theory.

Purpose of this paper is to investigate the asymptotic behaviour of energies as in (1.3) when
the order parameter u is subject to pinning conditions, highlighting differences and analogies with
the corresponding local case. Pinning sites are usually modelled as small zones where Dirichlet
conditions are imposed. Here we consider the simplest case (but already presenting most of
the main features) of periodically perforated domains where homogeneous Dirichlet conditions
are imposed on a periodic array Pδ of small balls of radius rδ centered on a δ-periodic lattice,
being δ > 0 an additional small parameter and rδ = o(δ). In the local case there is a wide
literature devoted to the study of minimum problems involving energies as in (1.2) subject to
this type of constraints and comprising a number of generalizations which cover also general non-
periodic geometries. In particular, we refer to the celebrated paper by Cioranescu and Murat
[12], where the authors study the asymptotic behaviour, as δ → 0, of solutions to the minima
of the Dirichlet energy subject to the constraint above, and the paper [5], where the problem is
set in the framework of Γ-convergence and extended to general vector energies. The asymptotic
description of the problems becomes non trivial when the growth of f in the gradient variable
in (1.2) is of order p ≤ d and leads to a critical size of the radii of the perforations, namely
rδ = O(δd/(d−p)), if p < d, and log(rδ) = O(δd/(d−1)), if p = d. Under this scaling the energetic
contribution near each of the small balls can be decoupled from the others and from the diffused
energy elsewhere and can be computed by means of a capacitary formula. For instance, in the
model case f(x, z) = |z|p and given a forcing term g ∈ Lp

′
(Ω), one obtains that minimum

problems

min

{∫
Ω

(|∇u|p − gu) dx : u = 0 on Pδ

}
are approximated as δ → 0 by

min

{∫
Ω

(|∇u|p dx+ Cp|u|p − gu) dx

}
,
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where Cp is the p-capacity of the ball B1 in Rd (see Section 4) and the middle term accounts for
the energetic contribution near the perforations.

In this paper we focus on the case p < d and consider energies defined on vector-valued
functions u ∈ Lp(Ω;Rm) and of the form

Eε(u) =
1

εd

∫
Ω

∫
Ω

f

(
y − x
ε

,
u(y)− u(x)

ε

)
dx dy

where, for any ξ ∈ Rd, f(ξ, ·) is p-homogeneous, locally Lipschitz continuous and satisfies suitable
decay assumptions as |ξ| → +∞, ensuring that interactions between points x and y at a long
range distance are negligible as ε → 0 (see hypotheses (H), (G) and (L) below). Under this
assumptions, as a particular case of the asymptotic analysis provided in [2], the Γ-limit of Eε is
given by the local functional

E0(u) =

∫
Ω

fhom(∇u) dx,

where fhom(S) is defined by a suitable homogenization formula (see (3.11)). We then impose the
admissible functions u to satisfy the constraint u = 0 on Pδ and study the asymptotic behaviour
of Eε as ε and δ go to 0 according to the interplay between the three scales ε, δ and rδ. A
natural question is whether or not Eε and E0 share the same asymptotic behaviour under the
imposed constraint on the admissible functions. We show that this is the case when ε goes to 0
faster then rδ. Indeed, the first main result of the paper is Theorem 3.5, where we show that,
if ε = o(rδ) and rδ = O(δd/(d−p)), Eε and E0, subject to the constraint u = 0 on Pδ, share the
same Γ-limit, which is given by ∫

Ω

(fhom(∇u) + ϕ(u)) dx, (1.4)

where ϕ(z) is described by the capacitary formula induced by E0(u), see (3.14). We point out
that this kind of homogenization problems in the non local setting has been studied in [19], where
the authors treat Dirichlet and Neumann boundary conditions for a non local equation in the
scalar case and when p = 2.

A major difference is when ε scales like rδ, since in this case the limit functional keeps
memories of the non locality of the approximating energies. Indeed, the second main result of
the paper is Theorem 3.6, where we show that, if ε = O(rδ) and rδ = O(δd/(d−p)), the Γ-limit of
Eε, subject to the constraint u = 0 on Pδ, is still of the form (1.4), but the density ϕ(z) is now
described by a non local capacitary formula, see (3.17). If rδ does not scale like δd/(d−p), in both
case ε = o(rδ) and ε = O(rδ) the asymptotic behaviour of Eε is trivial and it is consistent with
that of local energies of Dirichlet type in periodically perforated domains (see Remark 3.7). On
the contrary, in Theorem 8.1 we show that if ε→ 0 slower than rδ, then, for most of the choice
of the scaling of rδ with respect to δ, Eε is not affected by the constraint u = 0 on Pδ and thus
the Γ-limit is still given by E0.

From a technical viewpoint, in order to prove Theorem 3.5 and Theorem 3.6 we mainly
follow the strategy exploited in [5]. Nevertheless, the non local nature of our approximating
energies does not allow us to simply adapt that argument to our case. The main difficulty we
have encountered in the proof of Theorem 3.5 is to show the convergence of minimum problems
on unbounded domains, defining the approximating capacitary densities, to the limit energy
density ϕ, stated in Proposition 6.7. A crucial result that allowed us to overcome this difficulty
is Theorem 5.1, which can be considered a non local variant of the classical Gagliardo-Nirenberg-
Sobolev inequality in Sobolev spaces and may be of independent interest and useful for other
applications. Specifically, we show that, fixed r > 0, the Lp

∗
-norm of suitable piecewise constant
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interpolations at scale ε of any admissible function is uniformly bounded from above, up to a
multiplicative constant, by the energy

Gr,pε (u,Rd) =

∫
Br

∫ d

R

∣∣∣∣u(x+ εξ)− u(x)

ε

∣∣∣∣p dx dξ,
which in turn is controlled by Eε(u) and plays the role of

∫
Rd |∇u|

p dx in the Gagliardo-Nirenberg-
Sobolev inequality.

We conclude the introduction with some comments about future developments. In our model
we refrain from maximal generality in order to emphasize the main features of the asymptotic
process for our non local functionals under pinning conditions, but it would be worth extending
our analysis to more general integrands. In particular in the critical regime, if one removes the
p - homogeneity assumption on f , then, assuming the existence of

lim
δ→0

δdp/(d−p)f(ξ, δ−d/(d−p)z) =: f∞,p(ξ, z)

the limit energy should be still of the form (1.4), with f replaced by f∞,p in the definition of the
capacitary density ϕ. A natural follow-up of our results is also the extension to the case p = d
and to the critical regime log(rδ) = O(δd/(d−1)). We point out that a Γ-convergence analysis for
local functionals in this setting has been provided in [24]. Furthermore, we believe that some
of the techniques developed in this paper can also be used to extend the analysis to the case of
perforations whose centres are randomly distributed according to a stationary point process (see
[22] for results in this direction in the local case). We finally point out that another class of non
local functionals, namely discrete functionals of the form

1

εp+d

∑
i,j∈L

f(i, j, uj − ui),

where L is a d-dimensional lattice, u : εL → Rm and ui = u(εi), have been widely investigated
as a discrete approximation of integral functionals of p-growth (see e.g. [3]). In this setting,
an asymptotic analysis similar to the one provided here when ε = O(rδ) has been carried on in
[23], where the main result can be considered the discrete analog of Theorem 3.6. It would be
interesting to extend that analysis also to the case ε = o(rδ).

2 Notation

In what follows d,m ∈ N will be fixed natural numbers denoting the dimension of the reference
and target spaces of the functions we consider, respectively. Given t ∈ R, btc denotes the integer
part of t; for x ∈ Rd, r > 0, Br(x) (if x = 0, simply Br) stands for the open ball of centre x and
radius r, Qr(x) (if x = 0, simply Qr) stands for the square x + (− r2 ,

r
2 )d. We denote by Sd−1

the unit sphere in Rd. If A is a subset of Rd then dist(x,A) = inf{|y − x| : y ∈ A}; Areg(A) is
the subfamily of open subsets with Lipschitz boundary. By A ⊂⊂ B we mean that the closure
of A is a compact subset of B. If A ⊂⊂ B, a cut-off function between A and B is a (smooth)
function ϕ with 0 ≤ ϕ ≤ 1, ϕ = 0 on ∂B and ϕ = 1 on A. Given a real function h(·), we

use the symbols o(h), O(h) respectively, to denote a generic function g such that lim
t→0

g(t)

h(t)
= 0,

lim
t→0

g(t)
h(t) = γ ∈ (0,+∞). If E is a measurable subset of Rd we denote by |E| its Lebesgue measure.

We use standard notation for Lebesgue and Sobolev spaces. If u is an integrable function on a
measurable set E ⊂ Rd,

uE :=
1

|E|

∫
E

u(x)dx
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denotes the average of u on E. We use also standard notation for Γ-convergence [9, 13], indi-
cating the topology with respect to which it is performed. Unless otherwise stated, the letter
C denotes a generic strictly positive constant. Relevant dependencies on parameters will be as
usual emphasised by putting them in parentheses.

3 Setting of the problem and main results

We fix a growth exponent p ∈ (1, d) and we let Ω ⊂ Rd be a bounded open set with Lipschitz
boundary. Let δ, rδ be given with δ > rδ > 0 and set

Pδ :=
⋃
i∈Zd

Brδ(δi), (3.1)

Lpδ(Ω;Rm) := {u ∈ Lp(Ω;Rm) : u ≡ 0 on Pδ ∩ Ω}. (3.2)

Given ε > 0 and f : Rd × Rm → [0,+∞) a positive Borel function, we introduce the non-local
functionals Fε,δ : Lp(Ω;Rm)→ [0,+∞] defined as

Fε,δ(u) :=


∫
Rd

∫
Ωε(ξ)

f
(
ξ,Dξ

εu(x)
)
dx dξ if u ∈ Lpδ(Ω;Rm),

+∞ otherwise,

(3.3)

where

Dξ
εu(x) :=

u(x+ εξ)− u(x)

ε
(3.4)

and for every subset A of Rd we set

Aε(ξ) := {x ∈ A |x+ εξ ∈ A}. (3.5)

We consider the following set of assumptions on the function f above:

(H) (p - homogeneity) f(ξ, tz) = tpf(ξ, z) for every (ξ, z) ∈ Rd × Rm and t > 0;

(G) (growth) the functions m(ξ) := inf
z∈Sd−1

f(ξ, z) and M(ξ) := sup
z∈Sd−1

f(ξ, z) satisfy:

(G0) there exist λ0, r0 > 0 such that m(ξ) ≥ λ0 if |ξ| ≤ r0;

(G1)

∫
Rd
M(ξ)(|ξ|p + 1) dξ < +∞;

(L) (p - Lipschitz continuity) there exists C > 0 such that for every ξ ∈ Rd

|f(ξ, w)− f(ξ, z)| ≤ CM(ξ)(|z|p−1 + |w|p−1)|w − z| ∀z, w ∈ Rm.

We also introduce the ‘truncated’ functionals defined for every T > 0 as

FTε,δ(u) :=


∫
BT

∫
Ωε(ξ)

f
(
ξ,Dξ

εu(x)
)
dx dξ if u ∈ Lpδ(Ω;Rm),

+∞ otherwise.

(3.6)

Note that FTε,δ is of the form (3.3) with fT (ξ, z) := χBT (ξ)f(ξ, z) in place of f(ξ, z).
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Remark 3.1. Note that assumption (H) yields that m(ξ)|z|p ≤ f(ξ, z) ≤ M(ξ)|z|p for every
(ξ, z) ∈ Rd × Rm .

Let us consider also the unconstrained family of functionals Fε : Lp(Ω;Rm) → [0,+∞] defined
by

Fε(u) :=

∫
Rd

∫
Ωε(ξ)

f
(
ξ,Dξ

εu(x)
)
dx dξ. (3.7)

We also introduce a localized version of such functionals by setting, for any open set A ⊂ Rd
and u ∈ Lp(A;Rm),

Fε(u,A) :=

∫
Rd

∫
Aε(ξ)

f
(
ξ,Dξ

εu(x)
)
dx dξ. (3.8)

Moreover the truncated functionals are defined, for any T > 0, as

FTε (u,A) :=

∫
BT

∫
Aε(ξ)

f
(
ξ,Dξ

εu(x)
)
dx dξ (3.9)

and we drop the dependence on the set if A = Ω, that is FTε (u) := FTε (u,Ω).
As a particular case of a more general result, in [2] it was proved the following Γ-convergence
result (see [2, Theorem 6.1]).

Theorem 3.2. Let Fε be defined by (3.7), with f satisfying assumptions (H) and (G). Then

Γ(Lp)− lim
ε→0

Fε(u) =


∫

Ω

fhom(∇u) dx if u ∈W 1,p(Ω;Rm),

+∞ otherwise,
(3.10)

where, for S ∈ Rm×d,

fhom(S) := lim
R→∞

1

Rd
inf
{∫

QR

∫
QR

f(y − x, v(y)− v(x))dx dy : v ∈ DS(QR)
}
, (3.11)

with

DS(QR) :=
{
u ∈ Lp(Rd;Rm) : u(x) = Sx for a.e. x ∈ Rd , dist(x,Rd\QR) < 1

}
.

Remark 3.3. Note that the p - homogeneity assumption (H) is inherited by fhom, that is

fhom(tS) = tpfhom(S) for every t > 0 and S ∈ Rm×d.

Moreover assumption (G) easily yields that

m0|S|p ≤ fhom(S) ≤M0|S|p for every S ∈ Rm×d

for two suitable strictly positive constants m0,M0.

Remark 3.4. Hypothesis (L) trivially holds if we assume that f satisfies (H), (G), and f(ξ, ·)
is convex for every ξ ∈ Rd. Moreover, under this convexity assumption, the asymptotic formula
(3.11) reduces to

fhom(S) =

∫
Rd
f(ξ, Sξ) dξ

(see [2, Theorem 6.2]).
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The main results of the paper are provided by the following two theorems.

Theorem 3.5 (Local capacitary term). Let Fε,δ be defined by (3.3), with f satisfying assump-
tions (H), (G) and (L). Assume moreover that

lim
δ→0

rδ

δ
d
d−p

= β (3.12)

and that δ = δε is such that

lim
ε→0

ε

rδε
= 0 (3.13)

for some real number β > 0. Then

Γ(Lp)- lim
ε→0

Fε,δε(u) =


∫

Ω

fhom(∇u) dx+ βd−p
∫

Ω

ϕ(u) dx if u ∈W 1,p(Ω;Rm),

+∞ otherwise,

where fhom(S) is defined by (3.11) and for every z ∈ Rm

ϕ(z) := inf
{∫

Rd
fhom(∇v) dx : v− z ∈ Lp∗(Rd;Rm), v ≡ 0 in B1, v ∈W 1,p

loc (Rd;Rm)
}
. (3.14)

Theorem 3.6 (Nonlocal capacitary term). Let Fε,δ be defined by (3.3), with f satisfying as-
sumptions (H), (G) and (L). Assume moreover that

lim
δ→0

rδ

δ
d
d−p

= β

and that δ = δε is such that

lim
ε→0

ε

rδε
= α (3.15)

for some real numbers α, β > 0. Then

Γ(Lp)- lim
ε→0

Fε,δε(u) =


∫

Ω

fhom(∇u) dx+ βd−p
∫

Ω

ϕNL,α(u) dx if u ∈W 1,p(Ω;Rm),

+∞ otherwise,
(3.16)

where fhom(S) is defined by (3.11) and for every z ∈ Rm

ϕNL,α(z) := inf
{
Fα(v,Rd) : v − z ∈ Lp(Rd;Rm), v ≡ 0 in B1, v − z compactly supported

}
,

(3.17)
being Fα defined in (3.8) with ε = α.

Remark 3.7. Taking into account the non degeneracy of the capacitary densities (3.14), (3.17)
proved in Proposition 6.4 below, and arguing by comparison, one easily infers that the results
stated in Theorem 3.5 and Theorem 3.6 can be ”continuously” extended to the case β = 0 and
β = +∞. More in details, if β = 0 and either (3.13) or (3.15) hold, then the functionals Fε,δε
Γ- converge to the energy functional defined in (3.10), while, if β = +∞ and either (3.13) or
(3.15) hold, the Γ-limit of the functionals Fε,δε is trivially 0 if u ≡ 0 and +∞ otherwise. This
phenomenon is consistent with the asymptotic behaviour of local energies of Dirichlet type in
periodically perforated domains. We will see in Section 8 that this is not the case if α = +∞.
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For later use and reader’s convenience we redefine the density functions we have introduced
so far in the case f(ξ, z) is replaced by fT (ξ, z) = χBT (ξ)f(ξ, z). More precisely we set

fThom(S) := lim
R→∞

1

Rd
inf
{∫

QR

∫
QR

fT (y − x, v(y)− v(x))dx dy : v ∈ DS(QR)
}
, (3.18)

ϕT (z) := inf
{∫

Rd
fThom(∇v) dx : v−z ∈ Lp∗(Rd;Rm), v ≡ 0 in B1, v ∈W 1,p

loc (Rd;Rm)
}
, (3.19)

ϕTNL,α(z) := inf
{
FTα (v,Rd) : v − z ∈ Lp(Rd;Rm), v ≡ 0 in B1, v − z compactly supported

}
.

(3.20)

4 Preliminary results

In this section we collect some results that will be used in Section 6.

Capacity

Let us recall the notion of p-capacity for a given exponent p ∈ (1, d) (see for instance [14],[17]).
Given an open set A ⊂ Rd and an open set E ⊂⊂ A, the relative p-capacity of E in A is defined
as

capp(E,A) = inf

{∫
A

|∇u|p dx : u ∈W 1,p
0 (A), u = 1 a.e. in E

}
.

If A = Rd, we simply write capp(E). It follows by the very definition that the set function
capp(E,A) is increasing in the variable E and decreasing in the variable A. In addition, the
following properties hold true

capp(E) = inf

{∫
Rd
|∇u|p dx : u ∈W 1,p

loc (Rd) ∩ Lp
∗
(Rd), u = 1 a.e. in E

}
= lim
R→+∞

capp(E,BR) = inf
R>0

capp(E,BR),
(4.1)

where p∗ := pd
d−p is the conjugate exponent of p. It can be also proved that capp(E) > 0 if

|E| > 0.

Remark 4.1. One may also consider, for z ∈ Rm, the vectorial infimum problems

inf

{∫
A

|∇u|p dx : u ∈W 1,p
0 (A;Rm), u = z a.e. in E

}
. (4.2)

Note that, thanks to the p - homogeneity and the rotational invariance of (4.2), it holds

inf

{∫
A

|∇u|p dx : u ∈W 1,p
0 (A;Rm), u = z a.e. in E

}
= |z|p inf

{∫
A

|∇u|p dx : u ∈W 1,p
0 (A;Rm), u = (1, 0, . . . , 0) a.e in E

}
,

and the infimum in the last term can be in turn confined to functions v ∈W 1,p
0 (A;Rm) such that

v = (v1, 0, . . . , 0). Hence, we can conclude that, for any z ∈ Rm,

inf

{∫
A

|∇u|p dx : u ∈W 1,p
0 (A;Rm), u = z a.e. in E

}
= capp(E,A)|z|p. (4.3)
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Convolution-type energies

The following results, contained in [2], extend corresponding results in Sobolev spaces to the case
of convolution-type energies.
Let r, ε > 0, and p > 1. We set, for every open set A ⊂ Rd and u ∈ Lp(A;Rm),

Gr,pε (u,A) =

∫
Br

∫
Aε(ξ)

∣∣Dξ
εu(x)

∣∣p dx dξ, (4.4)

where Dξ
εu(x) and Aε(ξ) are defined by (3.4) and (3.5), respectively.

The next proposition rephrases Lemma 4.1 in [2] where the authors show that long-range energy
contributions can be controlled by the short-range energy Gr,pε .

Proposition 4.2. For every r > 0 there exists a positive constant C such that, for any open set
E ⊂ Ω, for every ξ ∈ Rd and u ∈ Lp(Ω;Rm), there holds∫

E

∣∣∣u(x+ εξ)− u(x)

ε

∣∣∣pdx ≤ C(|ξ|p + 1)Gr,pε (u,E +Bε(r+|ξ|)).

for any ε > 0 such that
ε r < dist(E +Bε(r+|ξ|),Ω

c). (4.5)

Remark 4.3. Note that if Ω = Rd then (4.5) is satisfied for any ε > 0 and ξ ∈ Rd, deriving
in particular the following estimate, which will be useful later: for every r > 0, there exists
C = C(r) such that, for every ξ ∈ Rd, ε > 0, and u ∈ Lploc(Rd;Rm), with u ≡ z on Rd \ BR−rε,
z ∈ Rm, there holds ∫

Rd

∣∣∣u(x+ εξ)− u(x)

ε

∣∣∣pdx ≤ C(|ξ|p + 1)Gr,pε (u,Rd). (4.6)

As a consequence of Lemma 4.2 and a result concerning extension operators (see [2, Theorem
4.1]), the following estimate is derived.

Corollary 4.4. [[2, Corollary 4.1]] For any open set A ∈ Areg(Ω) and r > 0 there exist two
positive constants C = C(A) and ε0 = ε0(r,A) such that for every ξ ∈ Rd and u ∈ Lp(A;Rm)
there holds ∫

Aε(ξ)

∣∣∣∣u(x+ εξ)− u(x)

ε

∣∣∣∣p dx ≤ C(|ξ|p + 1)
(
Gr,pε (u,A) + ‖u‖pLp(A;Rm)

)
,

for every ε < ε0.

The following theorem states the analogue of the classical Poincaré-Wirtinger inequality for
the functionals Gr,pε .

Theorem 4.5. [[2, Proposition 4.2]] Let r > 0 and let A be a bounded connected open set of
Rd with Lipschitz boundary. Then for every measurable set E ⊂ A with |E| > 0 there exists a
positive constant C = C(A,E) such that for any u ∈ Lp(A;Rm) and ε > 0∫

A

|u(x)− uE |pdx ≤ CGr,pε (u,A). (4.7)

When we replace E and A with a translation of λE and λA, respectively, being λ > 0 a scaling
factor, we have the following result.
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Proposition 4.6. Let r > 0 and let A be a bounded connected open set of Rd with Lipschitz
boundary. Then for every measurable set E ⊂ A with |E| > 0 there exists a positive constant
C = C(A,E) such that for every x0 ∈ Rd, u ∈ Lp(λA+ x0;Rm) and ε > 0∫

λA+x0

|u(x)− uλE+x0
|pdx ≤ C λpGr,pε (u, λA+ x0). (4.8)

Proof. It is not restrictive to assume that x0 = 0. If u ∈ Lp(λA;Rm) the function w(y) = u(λy)
belongs to Lp(A;Rm). Writing inequality (4.7) for w with ε replaced by ε

λ we get∫
A

|w(y)− wE |pdy ≤ C(A,E)Gr,pε
λ

(w,A).

On the other hand wE = uλE and the change of variable x = λy gives the desired result.

Eventually, the next result accounts for the compactness in the strong Lp-topology of se-
quences of functions with uniformly bounded energy on a regular bounded set of Rd.

Theorem 4.7. [[2, Theorem 4.2] ] Let A be any bounded open Lipschitz set of Rd and let
{uε}ε ⊂ Lp(A;Rm) be such that for some r > 0

sup
ε>0

{
‖uε‖Lp(A;Rm) +Gr,pε (uε, A)

}
< +∞.

Then, for any εj → 0, {uεj}j is relatively compact in Lp(A;Rm) and every limit of a converging
subsequence lies in W 1,p(A;Rm).

5 Gagliardo-Nirenberg-Sobolev type inequality

In this section we state and prove a crucial result for our analysis which may be of independent
interest and resembles the classical Gagliardo-Nirenberg-Sobolev inequality in Sobolev spaces.
Its proof follows the lines of the proof of the corresponding result in Sobolev spaces. Such a
result will allow us to prove the convergence of the infimum problems defining the approximating
capacitary energy densities (see Proposition 6.7).
For r, σ > 0, set

PCσ(Rd;Rm) := {u : Rd → Rm : u is constant on σk + [0, σ)d ∀ k ∈ Zd}

and, given p ≥ 1, let Tε : Lp(Rd;Rm)→ PCr̃ε(Rd;Rm) be defined by

Tεu(x) :=
1

(r̃ε)d

∫
r̃εk+[0,r̃ε)d

u(y) dy on r̃εk + [0, r̃ε)d, k ∈ Zd, (5.1)

where
r̃ :=

r√
d+ 3

.

In the following result we extend the definition of Gr,pε ((u,Rd) in (4.4) for p = 1.

Theorem 5.1 (Gagliardo-Nirenberg-Sobolev type inequality). Let p ∈ [1, d). Then there
exists a constant C = C(p, d, r) > 0 such that for every u ∈ Lp(Rd;Rm)(∫

Rd
|Tεu(x)|p

∗
dx

) p
p∗

≤ CGr,pε (u,Rd), (5.2)

where p∗ := pd
d−p .
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Proof. By a density argument and the Lp-continuity of Gr,pε (·,Rd), it is enough to prove the
inequality (5.2) for u ∈ Lp(Rd;Rm) with compact support.
Let us first consider the case p = 1 and fix such a u. We introduce some notation. For k =
(k1, . . . , kd) ∈ Zd, set

Qεk := r̃εk + [0, r̃ε)
d

and, for every j = 1, . . . , d, let k̂j ∈ Zd−1 defined by k̂j = (k1, . . . , kj−1, kj+1, . . . , kd). Moreover,

with fixed k ∈ Zd and j = 1, . . . , d, set k̂j(h) := (k1, . . . , kj−1, h, kj+1, . . . , kd) for every h ∈ Z,
and denote by xh an independent variable lying in the cube Qε

k̂j(h)
. In particular, with the

notation above, we may write u(xk1) =
k1∑

h=−∞
(u(xh) − u(xh−1)), being actually the latter a

finite sum by the compactness of the support of u. Thus integrating in all the variables xh with
h ≤ k1, we get∣∣∣∣∣

∫
Qεk

u(xk1) dxk1

∣∣∣∣∣ ≤ 1

(r̃ε)d

k1∑
h=−∞

∫
Qε
k̂1(h)

∫
Qε
k̂1(h−1)

|u(xh)− u(xh−1)| dxh−1 dxh,

and, using the definition of Tε given in (5.1),

εd−1|Tεu(εk)| ≤ C 1

εd

k1∑
h=−∞

∫
Qε
k̂1(h)

∫
Qε
k̂1(h)

∣∣∣∣u(xh)− u(xh−1)

ε

∣∣∣∣ dxh−1 dxh,

where C = C(r, d). For every j = 1, · · · , d, we define the stripe Sε
k̂j

= {(x1, · · · , xd) ∈ Rd :

r̃0εki ≤ xi < r̃0ε(ki + 1),∀i 6= j}, thus we have

εd−1|Tεu(εk)| ≤ C Gr,1ε (u, Sε
k̂1

).

Analogously, for j = 2, · · · , d,

εd−1|Tεu(εk)| ≤ C Gr,1ε (u, Sε
k̂j

),

which in turn implies

εd(d−1)|Tεu(εk)|d ≤ C
d∏
j=1

Gr,1ε (u, Sε
k̂j

),

or, equivalently,

εd|Tεu(εk)|
d
d−1 ≤ C

d∏
j=1

(
Gr,1ε (u, Sε

k̂j
)
) 1
d−1

.

Summing over k1 ∈ Z and using Hölder’s inequality, we get

∑
k1∈Z

εd|Tεu(εk)|
d
d−1 ≤ C

(
Gr,1ε (u, Sε

k̂1
)
) 1
d−1

∑
k1∈Z

d∏
j=2

(
Gr,1ε (u, Sε

k̂j
)
) 1
d−1

≤ C
(
Gr,1ε (u, Sε

k̂1
)
) 1
d−1

d∏
j=2

(∑
k1∈Z

Gr,1ε (u, Sε
k̂j

)

) 1
d−1

.
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Next we sum over k2 ∈ Z and we use again Hölder’s inequality, obtaining∑
k2∈Z

∑
k1∈Z

εd|Tεu(εk)|
d
d−1

≤ C

(∑
k1∈Z

Gr,1ε (u, Sε
k̂2

)

) 1
d−1 ∑

k2∈Z

Gr,1ε (u, Sε
k̂1

)

d∏
j=3

∑
k1∈Z

Gr,1ε (u, Sε
k̂j

)

 1
d−1

≤ C

(∑
k1∈Z

Gr,1ε (u, Sε
k̂2

)

) 1
d−1

(∑
k2∈Z

Gr,1ε (u, Sε
k̂1

)

) 1
d−1 d∏

j=3

(∑
k2∈Z

∑
k1∈Z

Gr,1ε (u, Sε
k̂j

)

) 1
d−1

.

We iterate the procedure, finding out

d∑
i=1

∑
ki∈Z

εd|Tεu(εk)|
d
d−1 ≤ C

d∏
j=1

 d∑
i=1
i6=j

∑
ki∈Z

Gr,1ε (u, Sε
k̂j

)


1
d−1

≤ C
(
Gr,1ε (u,Rd)

) d
d−1 .

On the other hand, we have∫
Rd
|Tεu(y)|1

∗
dy =

∑
k∈Zd

∫
Qεk

|Tεu(y)|1
∗
dy =

d∑
i=1

∑
ki∈Z

(r̃ε)d|Tεu(εk)|
d
d−1 ;

therefore (∫
Rd
|Tεu(y)|1

∗
dy

) 1
1∗

≤ C Gr,1ε (u,Rd). (5.3)

Thus the theorem is proven for p = 1.

If 1 < p < d, given u ∈ Lp((Rd;Rm) with compact support, we use (5.3) with |Tεu|γ in place
of u, for some γ > 1 to be chosen later. We obtain(∫

Rd
|Tεu(y)|γ1∗dy

) 1
1∗

≤ C
∫
Br

∫
Rd

∣∣∣∣ |Tεu(x+ εξ)|γ − |Tεu(x)|γ

ε

∣∣∣∣ dx dξ
≤ C

∫
Br

∫
Rd

(|Tεu(x+ εξ)|γ−1 + |Tεu(x)|γ−1)

∣∣∣∣Tεu(x+ εξ)− Tεu(x)

ε

∣∣∣∣ dx dξ,
where now C depends on γ, d, r. By using Hölder’s inequality with p and p′ = p

p−1 , we also get

(∫
Rd
|Tεu(y)|γ1∗dy

) 1
1∗

≤ C
(∫

Br

∫
Rd

(|Tεu(x+ εξ)|(γ−1)p′ + |Tεu(x)|(γ−1)p′) dx dξ

) 1
p′

×Gr,pε (Tεu,Rd)
1
p ≤ C

(∫
Rd
|Tεu(x)|(γ−1)p′dx

) 1
p′

Gr,pε (Tεu,Rd)
1
p ,

possibly for a different constant C = C(γ, p, d, r). Choose γ so that γ1∗ = γ d
d−1 = (γ− 1)p′, and

accordingly γ = d−1
d p∗. Thus(∫

Rd
|Tεu(y)|p

∗
dy

) p
p∗

≤ C Gr,pε (Tεu,Rd).
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We now observe that

Gr,pε (Tεu,Rd) ≤ C
∫
Br

∫
Rd

∣∣∣∣Tεu(x)− u(x)

ε

∣∣∣∣p dx dξ + C

∫
Br

∫
Rd

∣∣∣∣Tεu(x+ εξ)− u(x+ εξ)

ε

∣∣∣∣p dx dξ
+ C

∫
Br

∫
Rd

∣∣∣∣u(x+ εξ)− u(x)

ε

∣∣∣∣p dx dξ,
the last term being, up to a multiplicative constant, the functional Gr,pε (u,Rd). The first and
the second term on the right hand side may be estimated as follows∫

Br

∫
Rd

∣∣∣∣Tεu(x)− u(x)

ε

∣∣∣∣p dx dξ = |Br|
∫
Rd

∣∣∣∣Tεu(x)− u(x)

ε

∣∣∣∣p dx
= |Br|

∑
k∈Zd

∫
Qεk

∣∣∣∣∣−
∫
Qεk

u(y)− u(x)

ε
dy

∣∣∣∣∣
p

dx

≤ |Br|
∑
k∈Zd

∫
Qεk

−
∫
Qεk

∣∣∣∣u(y)− u(x)

ε

∣∣∣∣p dy dx
= C

∑
k∈Zd

1

εd

∫
Qεk

∫
Qεk

∣∣∣∣u(y)− u(x)

ε

∣∣∣∣p dy dx ≤ C Gr,pε (u,Rd),

where we have used Jensen’s inequality. This concludes the proof.

By Theorem 5.1 and Theorem 4.7, we deduce the following compactness result.

Corollary 5.2. Let p ∈ (1, d) and let {uε}ε ⊂ Lp(Rd;Rm) be such that for some r > 0

(i) sup
ε>0
‖uε‖Lp(K;Rm) < +∞ for every compact set K ⊂ Rd;

(ii) sup
ε>0

Gr,pε (uε,Rd) < +∞.

Then, for any εj → 0, {uεj}j is relatively compact in Lploc(Rd;Rm) and every limit of a converging

subsequence lies in W 1,p
loc (Rd;Rm) ∩ Lp∗(Rd;Rm).

Proof. Theorem 4.7 yields that for any bounded open Lipschitz set A ⊂ Rd {uεj}j is relatively
compact in Lp(A;Rm) and any limit point lies in W 1,p(A;Rm). By a standard diagonalization ar-
gument, {uj}j is also relatively compact in Lploc(Rd;Rm) and any limit point lies in W 1,p

loc (Rd;Rm).

Let us consider a subsequence (not relabelled) uεj and u ∈ W 1,p
loc (Rd;Rm) such that uj → u

strongly in Lploc(Rd;Rm) and pointwise in Rd. Then it can be proved that also Tεjuεj → u
strongly in Lploc(Rd;Rm) and pointwise in Rd (see also [4, Lemma 2.11] ). Thus, it is enough to
apply Fatou’s Lemma in (5.2) and use hypothesis (ii) to deduce that u ∈ Lp∗(Rd;Rm).

6 Supporting results

In this section we present some key results of technical flavor that we are later going to use for
the proof of Theorem 3.5 and Theorem 3.6.
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6.1 A joining lemma

Here we state and prove the analog of Lemma 3.1 in [5] for our non local functionals and we follow
the lines of its proof. It allows to restrict our attention in our Γ-convergence analysis to sequences
of converging functions that are constant on suitable annuli surrounding the perforations.

Lemma 6.1. Let δj → 0 as j → +∞. Let T ≥ r0 be fixed and let 0 < εj < ρj <
δj
2 with

εj = o(ρj) as j → +∞. Let uj converge to u in Lp(Ω,Rm) with supj F
T
εj (uj) < +∞. Set

Zj(Ω) := {i ∈ Zd : dist(iδj ,Rd \ Ω) > δj}

and, for h ∈ N and i ∈ Zj(Ω), set

Ai,hj := {x ∈ Ω : 2−h−1ρj < |x− iδj | < 2−hρj}, (6.1)

ui,hj := −
∫
Ai,hj

uj ρj,h :=
3

4
2−hρj . (6.2)

Then, given N ∈ N, for every i ∈ Zj(Ω) there exists ki ∈ {0, · · · , N − 1} and a sequence wj still
converging to u in Lp(Ω,Rm), such that for j sufficiently large

wj = uj on Ω \ ∪i∈Zj(Ω)A
i,ki
j , (6.3)

wj = ui,kij on ∂Bρj,ki (iδj) +BTεj , (6.4)∣∣∣FTεj (wj)− FTεj (uj)
∣∣∣ ≤ C

N
. (6.5)

Proof. Notice that, by (H) and (G0), supj G
r0,p
εj (uj ,Ω) < +∞. Let ϕ = ϕi,hj ∈ C∞c (Ai,hj ) be such

that ϕ = 1 on ∂Bρj,ki (iδj)+BTεj and |Dϕ| ≤ C
ρj,h

and define the function wi,hj = ϕui,hj +(1−ϕ)uj .

Adding and subtracting the quantity ϕ(x+ εjξ)uj(x) in the argument of f , and using (G1) and
the convexity of the power function, we have

FTεj (w
i,h
j , Ai,hj ) =

=

∫
BT

∫
(Ai,hj )εj (ξ)

f

(
ξ,

(ui,hj ϕ+ (1− ϕ)uj)(x+ εjξ)− (ui,hj ϕ+ (1− ϕ)uj)(x)

εj

)
dx dξ

≤ C
∫
BT

M(ξ)

∫
(Ai,hj )εj (ξ)

∣∣∣∣uj(x+ εjξ)− uj(x)

εj

∣∣∣∣p +
∣∣∣ui,hj − uj(x)

∣∣∣p ∣∣∣∣ϕ(x+ εjξ)− ϕ(x)

εj

∣∣∣∣p dx dξ.
Recalling that |Dϕ| ≤ C

ρj,h
and using the Poincaré-Wirtinger inequality in Proposition 4.6 with

x0 = iδj and λ = 4
3ρj,h, we have∫

BT

M(ξ)

∫
(Ai,hj )εj (ξ)

∣∣∣ui,hj − uj(x)
∣∣∣p ∣∣∣∣ϕ(x+ εjξ)− ϕ(x)

εj

∣∣∣∣p dx dξ
≤ C

ρ pj,h

∫
BT

M(ξ)|ξ|p dξ
∫
Ai,hj

∣∣∣ui,hj − uj(x)
∣∣∣p dx ≤ C Gr0εj (uj , Ai,hj ).

On the other hand, taking into account that εj = o(ρj) we deduce that, for j sufficiently large,
it holds

Ai,hj +Bεj(r0+T ) ⊂
⋃

`=h−1,h,h+1

Ai,`j =: Ãi,hj , h = 0, · · · , N − 1.
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In addition, for j sufficiently large, thanks to the fact that dist(Ãi,hj ,Ω \Bρj (iδj)) ∼ ρj , we also
have

εj < r−1
0 dist(Ãi,hj ,Ω \Bρj (iδj)).

Therefore, using Proposition 4.2, we get∫
BT

M(ξ)

∫
(Ai,hj )εj (ξ)

∣∣∣∣uj(x+ εjξ)− uj(x)

εj

∣∣∣∣p dx dξ
≤ C

∫
BT

M(ξ)(|ξ|p + 1) dξGr0,pεj (uj , Ã
i,h
j )

≤ C Gr0,pεj (uj , Ã
i,h
j ).

Hence, the previous estimates yield that

FTεj (w
i,h
j , Ai,hj ) ≤ C Gr0,pεj (uj , Ã

i,h
j ). (6.6)

Since the sets Ãi,hj overlap at most 3 times, with fixed N ∈ N, we sum over h = 0, · · · , N − 1
and get

N−1∑
h=0

Gr0,pεj (uj , Ã
i,h
j ) ≤ 3Gr0,pεj (uj , Bρj (iδj)).

Hence there exists ki ∈ {0, · · · , N − 1} such that

Gr0,pεj (uj , Ã
i,ki
j ) ≤ 3

N
Gr0,pεj (uj , Bρj (iδj)),

which in turn yields

FTεj (w
i,ki
j , Ai,kij ) ≤ C

N
Gr0,pεj (uj , Bρj (iδj)).

Noticing that estimate (6.6) holds even if we replace wi,hj with uj , we get∣∣∣FTεj (uj , Ai,kij )− FTεj (w
i,ki
j , Ai,kij )

∣∣∣ ≤ FTεj (uj , A
i,ki
j ) + FTεj (w

i,ki
j , Ai,kij )

≤ C

N
Gr0,pεj (uj , Bρj (iδj)).

Then (6.3), (6.4)(6.5) are satisfied by wj defined as

wj(x) :=


uj(x) if x ∈ Ω \ ∪i∈Zj(Ω)A

i,ki
j ,

ϕi,kij (x)ui,kij (x) + (1− ϕi,kij (x))uj(x) if x ∈ Ai,kij , i ∈ Zj(Ω).

We finally prove the convergence of wj to u in Lp(Ω;Rm). We have∫
Ω

|wj − uj |p dx =
∑

i∈Zj(Ω)

∫
A
i,ki
j

∣∣∣ϕi,kij ui,kij + (1− ϕi,kij )uj − uj
∣∣∣p dx

≤
∑

i∈Zj(Ω)

∫
A
i,ki
j

|ui,kij − uj |p dx ≤ C
∑

i∈Zj(Ω)

(ρkij )pGr0,pεj (uj , A
i,ki
j )

≤ C ρpj
∑

i∈Zj(Ω)

Gr0,pεj (uj , A
i,ki
j ) ≤ C ρpj ,

where we used again Proposition 4.6 in the second line. Hence, passing to the limit as j tends
to +∞ we get the desired convergence.
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6.2 Truncation Lemma

By the composition with a suitable lipschitz function, the following technical lemma allows us
to replace a given sequence uj with equibounded energies and Lp-norms, by a new sequence
uniformly bounded in L∞ and with a small gap in energy. The proof is strongly inspired by
Lemma 3.5 in [10].

Lemma 6.2. Let {uj} with supj(Fεj (uj) + ‖uj‖Lp(Ω;Rm)) < +∞. Then for every η > 0 and
M > 1 there exist RM > M > 0 and a sequence of Lipschitz functions Φj,M : Rm → Rm with
Lip(Φj,M ) = 1, Φj,M (z) = z if |z| < M and Φj,M (z) = 0 if |z| > RM , such that it holds

Fεj (Φj,M (uj)) ≤ Fεj (uj) + η

for every j ∈ N such that εj < ε0, with ε0 depending on Ω. Moreover we can extract a subsequence
(jk) such that Φjk,M =: ΦM do not depend on k ∈ N.

Proof. Note that, by assumption (G0), Gr0,pεj (uj ,Ω) is uniformly bounded. Set

C1 := sup
j

(Gr0,pεj (uj ,Ω) + ‖uj‖Lp(Ω;Rm)), (6.7)

C2 = 6C(Ω, r0)

∫
Rd
M(ξ)(|ξ|p + 1) dξ, (6.8)

where C(Ω, r0) is the constant obtained by Corollary 4.4 applied with A = Ω and r = r0.
Let η > 0 and M > 0 be fixed. Note that, once the statement is proved for a given positive

constant M , then it holds true also for any M ′ < M , hence up to replace M with a bigger value
it is not restrictive to assume that M is an integer and satisfies

M > b2C1C2

η
c+ 2. (6.9)

For h = 1, . . . ,M let ΦhM : Rm → Rm be a Lipschitz function such that

ΦhM (z) =

{
z if |z| ≤Mh

0 if |z| > Mh+1.

and ΦhM connects linearly in the radial directions the values on the boundary of the annulus
{z ∈ Rm : Mh < |z| < Mh+1}. A quick computation shows that for any h = 1, . . . ,M
Lip(ΦhM ) ≤ 1

M−1 < 1 on the annulus, thus Lip(ΦhM ) = 1. Let whj = ΦhM (uj) and estimate

Fεj (w
h
j ) from above. Since f(ξ, 0) = 0 ∀ξ ∈ Rd, we have that

Fεj (w
h
j ) =

∫
Rd

∫
{x∈Ωεj (ξ):|uj(x)|∧|uj(x+εjξ)|≤Mh+1}

f

(
ξ,

ΦhM (uj(x+ εjξ))− ΦhM (uj(x))

εj

)
dx dξ.

Now, for ξ ∈ Rd, we distinguish in Ωεj (ξ) the points where |uj(x)| ≤ |uj(x + εjξ)| from those
where |uj(x)| > |uj(x+ εjξ)| and we perform a similar analysis in both the two sets.

To this end let us introduce the notation

Ω+
εj (ξ) = {x ∈ Ωεj (ξ) : |uj(x)| ≤ |uj(x+ εjξ)|},

Ω−εj (ξ) = Ωεj (ξ) \ Ω+
εj (ξ) = {x ∈ Ωεj (ξ) : |uj(x)| > |uj(x+ εjξ)|}.
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The sets Ω+
εj (ξ)∩{|uj(x)|∧ |uj(x+ εjξ)| ≤Mh+1} and Ω−εj (ξ)∩{|uj(x)|∧ |uj(x+ εjξ)| ≤Mh+1}

can be in turn decomposed, respectively, as the union of the disjoint sets

S+
1,h,j(ξ) = {x ∈ Ω+

εj (ξ) : |uj(x+ εjξ)| < Mh}
S+

2,h,j(ξ) = {x ∈ Ω+
εj (ξ) : |uj(x)| < Mh, |uj(x+ εjξ)| ≥Mh+1}

S+
3,h,j(ξ) = {x ∈ Ω+

εj (ξ) : |uj(x)| < Mh ≤ |uj(x+ εjξ)| < Mh+1}
S+

4,h,j(ξ) = {x ∈ Ω+
εj (ξ) : Mh ≤ |uj(x)| ≤ |uj(x+ εjξ)| ≤Mh+1}

S+
5,h,j(ξ) = {x ∈ Ω+

εj (ξ) : Mh ≤ |uj(x)| < Mh+1 ≤ |uj(x+ εjξ)|}

and
S−1,h,j(ξ) = {x ∈ Ω−εj (ξ) : |uj(x)| < Mh}
S−2,h,j(ξ) = {x ∈ Ω−εj (ξ) : |uj(x+ εjξ)| < Mh, |uj(x)| ≥Mh+1}
S−3,h,j(ξ) = {x ∈ Ω−εj (ξ) : |uj(x+ εjξ)| < Mh ≤ |uj(x)| < Mh+1}
S−4,h,j(ξ) = {x ∈ Ω−εj (ξ) : Mh ≤ |uj(x+ εjξ)| ≤ |uj(x)| ≤Mh+1}
S−5,h,j(ξ) = {x ∈ Ω−εj (ξ) : Mh ≤ |uj(x+ εjξ)| < Mh+1 ≤ |uj(x)|}.

Hence, using the growth assumption on f and the Lipschitz continuity of Φh,M , we have

Fεj (w
h
j ) ≤

∫
Rd

∫
S±1,h,j(ξ)

f

(
ξ,
uj(x+ εjξ)− uj(x)

εj

)
dx dξ +

∫
Rd
M(ξ)

∫
S+

2,h,j(ξ)

∣∣∣∣uj(x)

εj

∣∣∣∣p dx dξ
+

∫
Rd
M(ξ)

∫
S−2,h,j(ξ)

∣∣∣∣uj(x+ εjξ)

εj

∣∣∣∣p dx dξ +

5∑
i=3

∫
Rd
M(ξ)

∫
S±i,h,j(ξ)

∣∣∣∣uj(x+ εjξ)− uj(x)

εj

∣∣∣∣p dx dξ,
where for the sake of notation we have set S±i,h,j(ξ) = S+

i,h,j(ξ) ∪ S
−
i,h,j(ξ).

Let us now sum over h = 1, · · · ,M and get

1

M

M∑
h=1

Fεj (w
h
j ) ≤ Fεj (uj) +

6

M

∫
Rd
M(ξ)

∫
Ωεj (ξ)

∣∣∣∣uj(x+ εjξ)− uj(x)

εj

∣∣∣∣p dx dξ
+

1

M

M∑
h=1

∫
Rd
M(ξ)

(∫
S+

2,h,j(ξ)

∣∣∣∣uj(x)

εj

∣∣∣∣p dx+

∫
S−2,h,j(ξ)

∣∣∣∣uj(x+ εjξ)

εj

∣∣∣∣p dx) dξ,
(6.10)

since the families {S+
i,h,j(ξ)}h∈N and {S−i,h,j(ξ)}h∈N, with i = 3, 4, 5, consist of pairwise disjoint

sets. Using Corollary 4.4, (6.7) and (6.8), the second term in the right handside of (6.10) can be
estimated from above by

6

M

∫
Rd
M(ξ)

∫
Ωεj (ξ)

∣∣∣∣uj(x+ εjξ)− uj(x)

εj

∣∣∣∣p dx dξ
≤ 6

M
C(Ω, r0)

∫
Rd
M(ξ)(|ξ|p + 1) dξ

(
Gr0,pεj (uj ,Ω) + ‖uj‖pLp(Ω,Rm)

)
≤ 1

M
C2

(
Gr0,pεj (uj ,Ω) + ‖uj‖pLp(Ω,Rm)

)
≤ 1

M
C1C2,

(6.11)

if εj < ε0, with ε0 as in Corollary 4.4. Since by (6.9) we have that
C1 C2

M
<

η

2
, we get for

εj ∈ (0, ε0)
6

M

∫
Rd
M(ξ)

∫
Ωεj (ξ)

∣∣∣∣uj(x+ εjξ)− uj(x)

εj

∣∣∣∣p dx dξ < η

2
. (6.12)
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We are left with the estimate of the last term in the right handside of (6.10). Arguing as in
(6.11) and taking into account (6.8), we deduce that for εj ∈ (0, ε0)

C1C2 ≥
∫
Rd
M(ξ)

∫
S±2,h,j(ξ)

∣∣∣∣uj(x+ εjξ)− uj(x)

εj

∣∣∣∣p dx dξ
≥
∫
Rd
M(ξ)

∫
S±2,h,j(ξ)

∣∣∣∣∣∣∣∣uj(x+ εjξ)

εj

∣∣∣∣− ∣∣∣∣uj(x)

εj

∣∣∣∣∣∣∣∣p dx dξ
≥
∫
Rd
M(ξ)

∫
S±2,h,j(ξ)

(
Mh+1 −Mh

εj

)p
dx dξ =

(Mh+1 −Mh)p

εpj

∫
Rd
M(ξ)|S±2,h,j(ξ)| dξ,

which in turn yields ∫
Rd
M(ξ)|S±2,h,j(ξ)| dξ ≤

C1C2ε
p
j

(Mh+1 −Mh)p
.

Exploiting this last estimate and the very definition of S+
2,h,j(ξ), S

−
2,h,j(ξ), we also get for εj ∈

(0, ε0) ∫
Rd
M(ξ)

(∫
S+

2,h,j(ξ)

∣∣∣∣uj(x)

εj

∣∣∣∣p dx+

∫
S−2,h,j(ξ)

∣∣∣∣uj(x+ εjξ)

εj

∣∣∣∣p dx
)
dξ

≤ Mhp

εpj

∫
Rd
M(ξ)|S±2,h,j(ξ)| dξ ≤ C1 C2

Mhp

(Mh+1 −Mh)p
=

C1 C2

(M − 1)p
.

(6.13)

Since, by (6.9), M ≥ 2, we have

C1 C2

(M − 1)p
≤ C1 C2

(M − 1)
≤ C1 C2

b 2C1C2

η c+ 1
<
η

2
. (6.14)

Hence, by (6.10), (6.12), (6.13) and (6.14), we eventually deduce that for every j ∈ N such that
εj < ε0 there exists h(j) ∈ {1, · · · ,M} satisfying

Fεj (w
h(j)
j ) ≤ 1

M

M∑
h=1

Fεj (w
h
j ) ≤ Fεj (uj) + η.

We then define Φj,M = Φ
h(j)
M . Up to selecting a subsequence, we may also assume that h(j) is a

constant value in {1, · · · ,M}.

6.3 Approximating capacitary energy densities

In this subsection we introduce and investigate the main properties of suitable energy densities
defined through minimum problems of capacitary type involving the approximating energies FTε .

For any ε > 0, T > r0, R ≥ 2 + Tε, and z ∈ Rm, set

ϕε,T,R(z) := inf{FTε (v,BR) : v ∈ Lpε,T,z(BR;Rm)}, (6.15)

where FTε is defined in (3.9) and

Lpε,T,z(BR;Rm) := {v ∈ Lp(BR;Rm) : v ≡ 0 in B1, v ≡ z on ∂εTBR}, (6.16)
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with the notation ∂εTA := ∂A+BεT , for any A ⊂ Rd.
We identify any v ∈ Lpε,T,z(BR;Rm) with its extension in Lploc(Rd;Rm) such that v ≡ z in

Rd \BR. Hence the function ϕε,T,R(z) can be also rewritten as

ϕε,T,R(z) = inf{FTε (v,Rd) : v − z ∈ Lp(Rd;Rm), v ≡ 0 in B1, v ≡ z in Rd \BR−εT }. (6.17)

Note that the request R ≥ 2 +Tε is not restrictive, as we are interested in letting R→ +∞; this
assumption will be useful in Proposition 6.4.

Remark 6.3. Note that, if f(ξ, ·) is convex for every ξ ∈ Rd, the infimum defining ϕε,T,R(z)
in (6.15) is actually a minimum. Indeed, by the convexity of f(ξ, ·) also FTε (v,BR) is convex.
Hence, taking into account Proposition 4.5 with E = B1, A = BR, FTε (v,BR) is lower semi-
continuous and coercive with respect to the weak topology in Lp(BR;Rm). As the constraints
v ≡ 0 in B1, v ≡ z on ∂εTBR are convex and closed by the strong convergence in Lp(BR;Rm)
the existence of minimizers follows by the standard methods.

The properties of the densities ϕε,T,R we are going to state and prove will be instrumental
in Subsection 6.4 in studying the pointwise and locally uniform limit of ϕε,T,R(·) when the
parameters R, T go to +∞, and ε either goes to 0 or remains fixed equal to α. These results will
allow us to estimate the energetic contribution near the perforations leading to the appearance
of the density functions ϕ and ϕNL,α defined by (3.14) and (3.17), respectively.

The first result establishes growth conditions of order p of ϕε,T,R.

Proposition 6.4. Let f satisfy assumptions (H) and (G), and let T > r0, ε0 > 0, and R > 1
be fixed such that R− ε0T ≥ 2. Then, for every 0 < ε ≤ ε0 there exists c1, c2 > 0 such that

c1|z|p ≤ ϕε,T,R(z) ∀z ∈ Rm (6.18)

ϕε,T,R(z) ≤ c2|z|p ∀z ∈ Rm. (6.19)

In particular, the constant c1 depends on p, d, λ0, r0, ε0 and the constant c2 on p, d, r0.

Proof. We first prove (6.18). The proof relies on a suitable lower bound of Fε(v,BR) with discrete
energies. In order to avoid too many technicalities, we restrict the proof to the case d = 2; the
argument can be generalised to any dimension (see e.g. the proof of Theorem 2.6 in [26]). Let
us introduce some notation. Given ξ ∈ R2 \ {0}, let Lξ be the lattice in R2 defined by

Lξ = Zξ ⊕ Zξ⊥,

where ξ⊥ := (−ξ2, ξ1).
Let v ∈ Lpε,T,z(BR;Rm) and let 0 < r̄ < r0. By (H) and (G0), we get

FTε (v,BR) ≥ λ0G
r̄,p
ε (v,BR) = λ0G

r̄,p
ε (v,R2)

=
λ0

2

∫
Br̄

∫
R2

∑
ξ′∈{ξ,ξ⊥}

∣∣∣∣v(x+ εξ′)− v(x)

ε

∣∣∣∣p dx dξ
=
λ0

2

∫
Br̄

∑
k∈Lξ

∫
ε(k+Qξ)

∑
ξ′∈{ξ,ξ⊥}

∣∣∣∣v(x+ εξ′)− v(x)

ε

∣∣∣∣p dx dξ
(6.20)

where
Qξ := [0, 1)ξ ⊕ [0, 1)ξ⊥.
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Let T ξε v the function which is constant on each square ε(k +Qξ), k ∈ Lξ, and is defined by

T ξε v(x) =
1

(ε|ξ|)2

∫
ε(k+Qξ)

v(y) dy, x ∈ ε(k +Qξ), k ∈ Lξ.

Then, by (6.20) and Jensen’s inequality, we get

FTε (v,BR) ≥ λ0

2

∫
Br̄

∑
k∈Lξ

(ε|ξ|)2
∑

ξ′∈{ξ,ξ⊥}

∣∣∣∣T ξε v(ε(k + ξ′))− T ξε v(εk)

ε

∣∣∣∣p dξ
=
λ0

2

∫
Br̄

|ξ|p
∑
k∈Lξ

(ε|ξ|)2
∑

ξ′∈{ξ,ξ⊥}

∣∣∣∣T ξε v(ε(k + ξ′))− T ξε v(εk)

ε|ξ|

∣∣∣∣p dξ.
(6.21)

Let T±ξ be the triangles defined by

T±ξ := {x ∈ Qξ : ±〈x, ξ〉 ≤ ±〈x, ξ⊥〉 },

and let wξε the piecewise affine function obtained by linearly interpolating the values {T ξε v(εk)}k∈Lξ
on the triangles ε(k+ T±ξ ), k ∈ Lξ. Note that, for ε ≤ ε0, if r̄ ≤ 1

2ε0
and ξ ∈ Br̄, then wξε ≡ 0 on

B 1
2

and wξε ≡ z on R2 \B 3
2R

. Moreover, taking into account (4.3) and (4.1), we easily infer that

∑
k∈Lξ

(ε|ξ|)2
∑

ξ′∈{ξ,ξ⊥}

∣∣∣∣T ξε v(ε(k + ξ′))− T ξε v(εk)

ε|ξ|

∣∣∣∣p ≥ C ∫
R2

|∇wξε |p dx

≥ C capp(B 1
2
, B 3

2R
)|z|p ≥ C capp(B 1

2
)|z|p.

(6.22)

In conclusion, selecting r̄ := max{r0,
1

2ε0
}, we get

FTε (v,BR) ≥ λ0

2

(∫
Br̄

|ξ|p dξ
)
C capp(B 1

2
)|z|p = c1|z|p.

We now prove (6.19). To this aim, note that, by using a Fubini argument, one can easily shows
that there exists C = C(r0) such that, for ε ≤ ε0, for any u such that u− z ∈ C1

c (BR−εT ;Rm),
then

Gr0,pε (u,Rd) = Gr0,pε (u,BR−εT ) ≤ C
∫
BR−εT

|∇u|p dx.

By (H), (G1), (4.6), and the density of functions compactly supported in the capacitary problem,
we then get

ϕε,T,R(z) ≤ FTε (u,BR) ≤ C
(∫

Rd
M(ξ)(|ξ|p + 1) dξ

)
Gr0,pε (u,Rd)

≤ C
(∫

Rd
M(ξ)(|ξ|p + 1) dξ

)
inf
{∫

BR−εT

|∇u|p dx : u ≡ 0 in B1, u− z ∈ C1
c (BR−εT ;Rm)

}
= C

(∫
Rd
M(ξ)(|ξ|p + 1) dξ

)
capp(B1, BR−εT )|z|p

≤ C
(∫

Rd
M(ξ)(|ξ|p + 1) dξ

)
capp(B1, B2)|z|p = c2|z|p.
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In the next proposition we show that the functions ϕε,T,R are uniformly Lipschitz continuous on
compact sets.

Proposition 6.5. Let f satisfy assumptions (H), (G) and (L). Then there exist a constant
C > 0 independent of ε, T and R such that for every z, w ∈ Rm we have

|ϕε,T,R(w)− ϕε,T,R(z)| ≤ C(|z|p−1 + |w|p−1|)|w − z|. (6.23)

Proof. Let us prove (6.23) for fixed z and w. Since the inequality is trivially true when z = 0 or
w = 0, we may suppose both not null and consider the map φ : Rm → Rm defined by

φ(ζ) =
|w|
|z|

Rwz (ζ),

where Rwz is a rotation that maps z into |z||w|w. Note that φ(0) = 0, φ(z) = w and

‖∇φ‖∞ ≤ C
|w|
|z|
, ‖∇φ− I‖∞ ≤ C

|w − z|
|z|

. (6.24)

For η > 0, let vz ∈ Lpε,T,z(BR;Rm) be such that FTε (vz, BR) ≤ ϕε,T,R(z) + η and set

vw := φ ◦ vz.

Note that vw ∈ Lpε,T,w(BR;Rm), hence

ϕε,T,R(w) ≤ FTε (vw, BR) ≤ ϕε,T,R(z) + FTε (vw, BR)− FTε (vz, BR) + η. (6.25)

By hypothesis (L) and (6.24), we infer that for every ξ ∈ Rd

|f(ξ,Dξ
εvw(x))− f(ξ,Dξ

εvz(x))| ≤ CM(ξ)(|Dξ
εvz(x)|p−1 + |Dξ

εvw(x)|p−1)|Dξ
εvz(x)−Dξ

εvw(x)|
≤ CM(ξ)(|Dξ

εvz(x)|p−1 + ‖∇φ‖p−1
∞ |Dξ

εvz(x)|p−1)‖∇φ− I‖∞|Dξ
εvz(x)|

≤ CM(ξ)
|z|p−1 + |w|p−1

|z|p
|w − z||Dξ

εvz(x)|p.

Thus, by (6.25), we get

ϕε,T,R(w) ≤ ϕε,T,R(z)+C
|z|p−1 + |w|p−1

|z|p
|w−z|

∫
Rd
M(ξ)

∫
(BR)ε(ξ)

|Dξ
εvz(x)|p dx dξ+η. (6.26)

By (H), (G0) and (6.19), we get

Gr0,pε (vz, BR) ≤ C FTε (vz, BR) ≤ C (ϕε,T,R(z) + η) ≤ C(|z|p + η). (6.27)

Since, by (4.6), we have that for any ξ ∈ Rd∫
(BR)ε(ξ)

|Dξ
εvz(x)|p dx ≤ C(|ξ|p + 1)Gr0,pε (vz, BR),

inequality (6.26) and (G1) yields that

ϕε,T,R(w) ≤ ϕε,T,R(z) + C(|z|p−1 + |w|p−1)|w − z| |z|
p + η

|z|p
+ η.

Taking the limit as η tends to 0, and then reversing the role of z and w, (6.23) easily follows.
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We conclude this subsection with a technical result, yielding that in the minimum problems
defining ϕε,T,R we may reduce to admissible functions uniformly bounded in L∞. The strategy
of the proof is analogous to that of Lemma 6.2, hence we highlight only the main differences.

Proposition 6.6. Let T > r0, α > 0, R ≥ 2+Tα and C̄,M0 > 0 be fixed. Then for every η > 0
there exists M > M0 such that for every z ∈ BM0

, given v ∈ Lpα,T,z(BR;Rm) such that

FTα (v,BR) ≤ C̄|z|p,

then there exists vM ∈ Lpα,T,z(BR;Rm), with ‖vM‖L∞(BR;Rm) ≤M , such that

FTα (vM , BR) ≤ FTα (v,BR) + η.

Proof. Given z ∈ BM0 and R > 0, by (H) and (G0) we have that

Gr0,pα (v,BR) ≤ C|z|p,

where the constant C depends only on C̄, r0, λ0. So now it suffices to retrace the steps of the
proof of Lemma 6.2, replacing the constants in (6.7) and (6.8) with

C1 := sup
R
Gr0,pα (v,BR) < +∞,

and

C2 = 6C(r0)

∫
Rd
M(ξ)(|ξ|p + 1) dξ,

respectively, where C(r0) is the constant obtained in Remark 4.3, and using Remark 4.3 instead
of Corollary 4.4. The function vM is obtained through ΦM (v) with a suitable choice of M .

6.4 Asymptotics of the approximating capacitary energy density

We now show that, if Rε → +∞ as ε → 0 the functions ϕε,T,Rε(z) approximate the energy
density ϕT (z) defined in (3.19). A crucial role in the proof is played by Corollary 5.2.

Proposition 6.7. Let ϕT and ϕε,T,R be defined by (3.19) and (6.15), respectively. Then, if
Rε → +∞ as ε→ 0, it holds

lim
ε→0

ϕε,T,Rε(z) = ϕT (z) (6.28)

uniformly on compact sets.

Proof. By Proposition 6.5 it suffices to prove that (6.28) holds pointwise. We will show that it is
a consequence of Theorem 3.2, and Corollary 5.2. With fixed z ∈ Rm, let vε ∈ Lpε,T,z(BRε ;Rm)
be such that

ϕε,T,Rε(z) = FTε (vε, BRε) + o(ε),

and let uε ∈ Lp(Rd;Rm) equal to vε − z on BRε and uε ≡ 0 on Rd \ BRε . By (H), (G0) and
(6.19), it holds

sup
ε
Gr0,pε (uε,Rd) < +∞. (6.29)

By Theorem 4.5 applied with A any bounded open Lipschitz set in Rd and E = B1, we get

sup
ε
‖uε‖Lp(A;Rm) < +∞.
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Thus, using Corollary 5.2 we get that, up to a subsequence (not relabelled), uε converge in
Lploc(Rd;Rm) to a function u ∈W 1,p

loc (Rd;Rm)∩Lp∗(Rd;Rm) such that u = −z on B1. Moreover,
with fixed R > 0, by Theorem 3.2, we deduce that

lim inf
ε→0

ϕε,T,Rε(z) = lim inf
ε→0

FTε (vε, BRε) ≥ lim inf
ε→0

FTε (vε, BR) ≥
∫
BR

fThom(∇u) dx.

Letting R→ +∞ we obtain

lim inf
ε→0

ϕε,T,Rε(z) ≥
∫
Rd
fThom(∇u) dx ≥ ϕT (z).

We now claim that

ϕT (z) = inf
{∫

Rd
fThom(∇u) dx : u ≡ −z in B1, u ∈W 1,p(Rd;Rm) compactly supported

}
.

To this aim, let us us fix a cut-off function ζ between B1 and B2 and u ∈ Lp∗(Rd;Rm) ∩
W 1,p

loc (Rd;Rm), u ≡ −z in B1, with
∫
Rd f

T
hom(∇u) dx < +∞. Note that, taking into account

Remark 3.3, ∇u ∈ Lp(Rd;Rd×m). We now set, for any n ∈ N, un(x) = ζ(x/n)u(x). An easy
computation shows that un ∈ W 1,p(Rd;Rm), un is compactly supported and un ≡ −z in B1.
Moreover it holds that ∇un → ∇u strongly in Lp(Rd;Rd×m). Indeed, by Hölder inequality, we
have ∫

Rd
|∇un −∇u|p dx ≤ C

∫
Rd\Bn

|∇u|p dx+
C

np

∫
B2n\Bn

|u|p dx

≤ C
∫
Rd\Bn

|∇u|p dx+
C

np
|B2n \Bn|1−

p
p∗
(∫

B2n\Bn
|u|p

∗
dx
) p
p∗

≤ C
∫
Rd\Bn

|∇u|p dx+ C
(∫

B2n\Bn
|u|p

∗
dx
) p
p∗
,

and the last two terms tend to 0 as n → +∞. The claim follows by using the dominated
convergence theorem together with Remark 3.3.

Thus, taking the claim into account and using a density argument, given η > 0, we may
assume that there exists u ∈ C∞c (Rd;Rm) such that u ≡ −z on B1 and∫

Rd
fThom(∇u) dx ≤ ϕT (z) + η.

Let R̄ > 0 such that suppu ⊆ BR̄. Then, by [2, Proposition 5.3] applied with A = BR̄ \ B1,
there exists a family of functions uε ∈ Lp(BR̄;Rm), with uε ≡ −z on B1 and uε ≡ 0 on ∂εTBR̄
such that

lim
ε→0

FTε (uε,Rd) =

∫
Rd
fThom(∇u) dx.

Hence, set vε := uε + z, we get that vε ∈ Lpε,T,z(BRε ;Rm) for ε small enough, thus

lim sup
ε→0

ϕε,T,Rε(z) ≤ lim sup
ε→0

FTε (vε, BRε) ≤
∫
Rd
fThom(∇u) dx ≤ ϕT (z) + η

and the thesis follows by the arbitrariness of η > 0.
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Note that for any α > 0, T > r0 and z ∈ Rm, the function R ∈ [2 + αT,+∞) 7→ ϕα,T,R(z) is
decreasing, as it is easily seen by (6.17). Hence, for z ∈ Rm, it is well defined lim

R→+∞
ϕα,T,R(z)

and this convergence is also locally uniform by Proposition 6.5. One can easily shows that

ϕTNL,α(z) = lim
R→+∞

ϕα,T,R(z),

where ϕTNL,α is defined by (3.20).

The properties of the densities ϕε,T,R obtained so far allow to prove the following result about
the L1-convergence of suitable Riemann sums to the capacitary densities ϕT and ϕTNL,α.

Proposition 6.8. Let εj → 0 and Rj → +∞ as j → +∞ and let (uj) be a bounded sequence in
L∞(Ω;Rm) such that supj F

T
εj (uj) < +∞ and uj → u in Lp(Ω;Rm), for some u ∈W 1,p(Ω;Rm).

Let Ai,kij and ui,kij , i ∈ Zj(Ω), be as in (6.1) and (6.2), respectively, with ρj = O(δj) and h = ki,
for an arbitrary choice of ki.

(i) Let ΨT
j : Ω→ R be defined by

ΨT
j (x) =

∑
i∈Zj(Ω)

ϕεj ,T,Rj (u
i,ki
j )χQδεj (i)(x),

where
Qδεj (i) := δεj i+ δεjQ1.

Then ΨT
j → ϕT (u) in L1(Ω).

(ii) Let ΨT
j,α : Ω→ R be defined by

ΨT
j,α(x) =

∑
i∈Zj(Ω)

ϕα,T,Rj (u
i,ki
j )χQδεj (i)(x),

Then ΨT
j,α → ϕTNL,α(u) in L1(Ω).

Proof. We prove (i), the proof of (ii) being analogous. We have the following estimate∫
Ω

|ΨT
j (x)− ϕT (u(x))| dx ≤

∑
i∈Zj(Ω)

∫
Qδεj (i)

∣∣∣ϕεj ,T,Rj (ui,kij )− ϕεj ,T,Rj (uj(x))
∣∣∣ dx

+
∑

i∈Zj(Ω)

∫
Qδεj (i)

∣∣ϕT (u(x))− ϕεj ,T,Rj (uj(x))
∣∣ dx

+

∫
Ω\

⋃
i∈Zj(Ω) Qδεj (i)

|ϕT (u(x))| dx =: I1
j + I2

j + I3
j .

By Proposition 6.7, we easily deduce that I2
j → 0. Since |Ω \

⋃
i∈Zj(Ω)Qδεj (i)| → 0, we also infer

that I3
j → 0. Finally, by Proposition 6.5, we may estimate I1

j as follows

I1
j ≤ C

∑
i∈Zj(Ω)

∫
Qδεj (i)

∣∣∣ui,kij − uj(x)
∣∣∣ dx.

24



By Hölder’s inequality and Proposition 4.6, we have∫
Qδεj (i)

∣∣∣ui,kij − uj(x)
∣∣∣ dx ≤ δ d(p−1)

p
εj

(∫
Qδεj (i)

∣∣∣ui,kij − uj(x)
∣∣∣p dx) 1

p

≤ Cδ
d(p−1)
p

εj δεj

(
Gr0,pεj (uj , Qδεj (i))

) 1
p

,

Hence

I1
j ≤ Cδεj

(
Gr0,pεj (uj ,Ω)

) 1
p ≤ Cδεj

(
FTεj (uj)

) 1
p → 0.

We conclude this subsection showing the convergence of ϕTNL,α to ϕNL,α as T → +∞.

Proposition 6.9. For any z ∈ Rm, it holds

lim
T→+∞

ϕTNL,α(z) = sup
T>r0

ϕTNL,α(z) = ϕNL,α(z),

where ϕNL,α(z) is defined in (3.17).

Proof. We first observe that the function ϕTNL,α is increasing in T , hence it is well defined the
limit

lim
T→+∞

ϕTNL,α(z) = sup
T>r0

ϕTNL,α(z),

for any z ∈ Rm. Since FTα (v,Rd) ≤ Fα(v,Rd) for every T > 0,

sup
T>r0

ϕTNL,α(z) ≤ ϕNL,α(z).

Let v be an admissible function in the minimum problem defining ϕNL,α(z). In particular, v− z
satisfies (4.6), that is ∫

Rd

∣∣∣v(x+ εξ)− v(x)

ε

∣∣∣pdx ≤ C(|ξ|p + 1)Gr0,pε (v,Rd),

where the constant C depends on r0. We now multiply each side of the previous inequality by
the growth function M(ξ), we apply Remark 3.1, integrate on Rd \BT , and finally obtain∫

{|ξ|≥T}

∫
Rd
f

(
ξ,
v(x+ εξ)− v(x)

ε

)
dx dξ ≤ C

∫
{|ξ|≥T}

M(ξ)(|ξ|p + 1)dξ Gr0,pε (v,Rd).

Thanks to (G1), this gives

Fα(v,Rd) ≤ FTα (v,Rd) + o(T )Gr0,pε (v,Rd).

We now choose a function vT such that vT ≡ 0 in B1, vT − z ∈ Lp(Rd;Rm), vT − z is compactly
supported, and

FTα (vT ,Rd) ≤ ϕTNL,α(z) + o(T ).

Thus, in particular

ϕNL,α(z) ≤ Fα(vT ,Rd) ≤ FTα (vT ,Rd) + o(T )Gr0,pε (vT ,Rd)
≤ ϕTNL,α(z) + o(T ) + o(T )Gr0,pε (vT ,Rd).

(6.30)

By finally using that

Gr0,pε (vT ,Rd) ≤ C FTα (vT ,Rd) ≤ C ϕTNL,α(z) + o(T ) ≤ C(|z|p + 1),

the desired conclusion follows letting T tend to +∞ in (6.30).
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7 Proof of Theorem 3.5 and Theorem 3.6

We will prove the two statements simultaneously, distinguishing the two regimes provided by
assumption (3.13) and (3.15), respectively, only when necessary.
Dividing the proof into three steps, we first show that it suffices to prove the theorems for the
truncated functionals FTε,δε , and then we deal separately with the Γ-lim inf and the Γ-lim sup
inequalities.

Step 1. It is not restrictive to prove both theorems under the additional assumption that there
exists T > 0 such that f(ξ, z) = 0 if |ξ| > T .
Indeed, under the hypotheses of Theorem 3.5, assume that for every T > 0

Γ(Lp)− lim
ε→0

FTε,δε(u) =


∫

Ω

fThom(∇u) dx+

∫
Ω

ϕT (u) dx if u ∈W 1,p(Ω;Rm),

+∞ otherwise,
(7.1)

where FTε,δ is defined by (3.6) and fThom and ϕT are defined by (3.18) and (3.19), respectively.
By [2, Lemma 5.1],

Γ(Lp)− lim
ε→0

Fε,δε(u) = lim
T→+∞

Γ(Lp)− lim
ε→0

FTε,δε(u),

hence, by Monotone Convergence Theorem, the statement follows once we prove that for every
S ∈ Rd×m and z ∈ Rm

lim
T→+∞

fThom(S) = fhom(S), lim
T→+∞

ϕT (z) = ϕ(z).

The equalities above are, in turn, again a straightforward consequence of Monotone Conver-
gence Theorem. We may argue analogously in the setting of Theorem 3.6, taking into account
Proposition 6.9.

Step 2. With fixed T > r0, we now prove the validity of the Γ-lim inf inequality for FTε,δε for
both theorems.
Given εj → 0+ as j → +∞, let u ∈ W 1,p(Ω;Rm) and let uj → u in Lp(Ω;Rm) be such that
supj F

T
εj ,δεj

(uj) < +∞. Up to passing to a subsequence (not relabelled), given η > 0 and M > 0,

we may apply Lemma 6.2 and find RM > M and a Lipschitz function ΦM : Rm → Rm, with
Lip(ΦM ) = 1, ΦM (z) = z if |z| < M and ΦM (z) = 0 if |z| > RM such that

FTεj ,δεj
(uj) > FTεj ,δεj

(ΦM (uj))− η. (7.2)

Notice that φM (uj)→ ΦM (u) in Lp(Ω;Rm). Given N ∈ N, let {wMj }j the sequence constructed
in Lemma 6.1 applied with ρj = δεj/4 and {ΦM (uj)}j in place of {uj}j . Set

Ej =
⋃

i∈Zj(Ω)

Bρj,ki (δεj i),

where ρj,ki is defined in Lemma 6.1, and define

vMj (x) :=

{
wMj (x) if x ∈ Ω \ Ej
(ΦM (uj))

i,ki if x ∈ Bρj,ki (δεj i).
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Notice that, by (H), (G0) and Lemma 6.1, supj G
r0,p
εj (vMj ,Ω) < +∞, Hence, by Theorem 4.7,

{vMj }j is relatively compact in Lp(Ω;Rm). Arguing as in [6], we now show that vMj → ΦM (u) in
Lp(Ω;Rm). Specifically, for h ∈ {0, . . . , N − 1} set

rh :=
3

4
2−h−2, χhj (x) := χh

(
x

δεj

)
,

where χh coincides with χQ1\Brh on Q1 and is extended Q1-periodically in Rd,

Zhj := {i ∈ Zj(Ω) : ki = h}, Dh
j :=

⋃
i∈Zhj

δεj (i+Q1) , ψhj (x) := χDhj (x).

Recall that
χhj

∗
⇀mh := |Q1 \Brh | > 0 weakly* in L∞(Rd)

and note that,
N−1∑
h=0

ψhj → 1 strongly in L1(Ω).

Moreover, since χhj ≥ χ0
j for every h ∈ {0, . . . , N − 1}, we have that

χΩ\Ej =

N−1∑
h=0

ψhj χ
h
j ≥ χ0

j

N−1∑
h=0

ψhj
∗
⇀m0 > 0. (7.3)

Let us consider a subsequence (not relabelled) such that χΩ\Ej
∗
⇀ g in L∞(Ω) and vMj → v

strongly in Lp(Ω;Rm). Hence

χΩ\Ejv
M
j ⇀ g v, χΩ\Ejw

M
j ⇀ gΦM (u) weakly in Lp(Ω;Rm).

Taking into account that χΩ\Ejv
M
j = χΩ\Ejw

M
j , we conclude that v = ΦM (u) thanks to the

lower bound on g ensured by (7.3).
By Lemma 6.1 and (7.2), we have

FTεj ,δεj
(uj) ≥ FTεj ,δεj (ΦM (uj))− η ≥ FTεj (w

M
j )− C

N
− η

≥ FTεj (w
M
j ,Ω \ Ej) + FTεj (w

M
j , Ej)− η −

C

N

≥ FTεj (v
M
j ) + FTεj (w

M
j , Ej)− η −

C

N
,

(7.4)

since by definition wMj = vMj in Ω \ Ej , and vMj is constant on each ∂εjTBρj,ki (δεj i).
By Theorem 3.2, it holds

lim inf
j→+∞

FTεj (v
M
j ) ≥

∫
Ω

fThom(∇ΦM (u)) dx. (7.5)

We now turn to the estimate of the contribution on Ej . At this point we need to distinguish
whether (3.13) or (3.15) holds.

Case ε = o(rδε). With fixed i ∈ Zj(Ω), let

vMj,i(y) := wMj (δεj i+ rδεj y)
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be defined on the ball BRij , with Rij := ρj,kir
−1
δεj

and extended to (ΦM (uj))
i,ki outside this ball.

Setting sj := εjr
−1
δεj

, we get

FTεj (w
M
j , Bρj,ki (δεj i)) = rd−pδεj

FTsj (v
M
j,i, BRij ) ≥ r

d−p
δεj

ϕsj ,T,Rij (ΦM (uj))
i,ki). (7.6)

We take
ΨT
j (x) =

∑
i∈Zj(Ω)

ϕsj ,T,Rij ((ΦM (uj))
i,ki)χQδεj (i)(x).

By (7.6), we get

FTεj (w
M
j , Ej) ≥

rd−pδεj

δdεj

∫
Ω

ΨT
j (x) dx =

 rδεj

δ
d
d−p
εj

d−p ∫
Ω

ΨT
j (x) dx. (7.7)

By Proposition 6.8 (i), applied to (ΦM (uj)), with sj , R
i
j in place of εj , Rj , respectively, we have

ΨT
j → ϕT (ΦM (u)) in L1(Ω). (7.8)

Hence, by (7.7), we deduce that

lim inf
j→+∞

FTεj (w
M
j , Ej) ≥ βd−p

∫
Ω

ϕT (ΦM (u)) dx. (7.9)

Case ε = O(rδε). With fixed i ∈ Zj(Ω), we now set

vMj,i(y) := wMj

(
δεj i+

εj
α
y
)

on the ball BRij , with Rij := αρj,kiε
−1
j , and extend it, as in the previous case, to (ΦM (uj))

i,ki

outside this ball. We get

FTεj (w
M
j , Bρj,ki (δεj i)) =

(εj
α

)d−p
FTα (vMj,i, BRij ). (7.10)

Define tj := α
rδεj
εj

and note that, by (3.15), tj → 1. We take

ṽMj,i(y) :=

{
0 if y ∈ B1

vMj,i(y) if y ∈ BRij \B1.

Notice that, if tj > 1, then ṽMj,i coincides with vMj,i. A straightforward computation shows that

FTα (vMj,i, BRij ) ≥ FTα (ṽMj,i, BRij )− C(M)|1− tj |. (7.11)

Since ṽMj,i ∈ L
p

α,T,(ΦM (uj))i,ki
(BRij ;R

m), by (7.10) and (7.11), we get

FTεj (w
M
j , Bρj,ki (δεj i)) ≥

(εj
α

)d−p
(FTα (ṽMj,i, BRij )− C(M)|1− tj |)

≥
(εj
α

)d−p
(ϕα,T,Rij ((ΦM (uj))

i,ki)− C(M)|1− tj |).
(7.12)
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By taking

ΨT
j,α(x) =

∑
i∈Zj(Ω)

ϕα,T,Rij ((ΦM (uj))
i,ki)χQδεj (i)(x),

using (7.12), we obtain

FTεj (w
M
j , Ej) ≥ t

p−d
j (βd−p + o(1))

∫
Ω

ΨT
j,α(x) dx+ o(1). (7.13)

Thanks to Proposition 6.8 (ii), applied to (ΦM (uj)), with Rij in place of Rj , we have

ΨT
j,α → ϕTNL,α(ΦM (u)) in L1(Ω). (7.14)

Hence, by (7.13), we deduce that

lim inf
j→+∞

FTεj (w
M
j , Ej) ≥ βd−p

∫
Ω

ϕTNL,α(ΦM (u)) dx, (7.15)

which is the analogue of (7.9) in the previous case.

By (7.4), (7.5), together with (7.9) and (7.15), and by the arbitrariness of η > 0 and N ∈ N, we
infer that

lim inf
j→+∞

FTεj ,δεj
(uj) ≥

∫
Ω

fThom(∇ΦM (u)) dx+ βd−p
∫

Ω

ϕT (ΦM (u)) dx,

under the assumption (3.13), and

lim inf
j→+∞

FTεj ,δεj
(uj) ≥

∫
Ω

fThom(∇ΦM (u)) dx+ βd−p
∫

Ω

ϕTNL,α(ΦM (u)) dx,

if (3.13) is replaced by (3.15). Letting M → +∞, we conclude that, under the assumptions of
Theorem 3.5,

lim inf
j→+∞

FTεj ,δεj
(uj) ≥

∫
Ω

fThom(∇u) dx+ βd−p
∫

Ω

ϕT (u) dx,

and, under the assumption of Theorem 3.6,

lim inf
j→+∞

FTεj ,δεj
(uj) ≥

∫
Ω

fThom(∇u) dx+ βd−p
∫

Ω

ϕTNL,α(u) dx.

Step 3. With fixed T ≥ r0, we now prove the validity of the Γ-lim sup inequality for FTε,δε . By

a density argument it suffices to prove the inequality for u ∈ C∞c (Rd;Rm). For such a u, fixed
an open set Ω′ ∈ Areg(Rd) such that Ω′ ⊃⊃ Ω, and given εj → 0 as j → +∞, by Theorem 3.2
there exists a sequence (ũj), converging in Lp(Ω′;Rm) to u, such that

lim
j→+∞

FTεj (ũj ,Ω
′) =

∫
Ω′
fThom(∇u) dx. (7.16)

Taking into account Lemma 6.2, up to replacing ũj with a suitable truncation, we may also
assume that supj ‖ũj‖L∞(Ω′;Rm) < +∞. Thus, given N ∈ N, we consider the sequence (wj)
constructed in Lemma 6.1 applied with Ω′ in place of Ω, ρj = δεj/4 and ũj in place of uj , so
that

FTεj (wj ,Ω
′) ≤ FTεj (ũj ,Ω

′) +
C

N
. (7.17)
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We now pass to the estimate of the energetic contribution on the set

Ej =
⋃

i∈Zj(Ω′)

Bρj,ki (δεj i).

As previously done, we distinguish whether (3.13) or (3.15) holds.

Case ε = o(rδε). Set

Rij :=
ρj,ki
rδεj

, sj =
εj
rδεj

,

where ρj,ki is defined in Lemma 6.1. For i ∈ Zj(Ω′), let ṽj,i ∈ Lp
sj ,T,u

i,ki
j

(BRij ;R
m) be such that

FTsj (ṽj,i, BRij ) = ϕsj ,T,Rij (u
i,ki
j ) + o(εj).

Then set

vj,i(x) := ṽj,i

(
x− δεj i
rδεj

)
, x ∈ Bρj,ki (δεj i),

and

uj(x) :=

{
wj(x) if x ∈ Ω′ \ Ej
vj,i(x) if x ∈ Bρj,ki (δεj i).

Note that

FTεj (vj,i, Bρj,ki (δεj i)) = rd−pδεj
FTsj (ṽj,i, BRij ) = rd−pδεj

(ϕsj ,T,Rij (u
i,ki
j ) + o(εj)). (7.18)

Moreover uj ∈ Lpδεj (Ω′;Rm) and, arguing as in Step 2, we also deduce that uj → u in Lp(Ω;Rm).

We finally pass to the estimate of the energy. By (7.18), we get

FTεj (uj) ≤ FTεj (wj ,Ω
′) +

∑
i∈Zj(Ω′)

FTεj (uj , Bρj,ki (δεj i))

= FTεj (wj ,Ω
′) +

∑
i∈Zj(Ω′)

rd−pδεj
(ϕsj ,T,Rij (u

i,ki
j ) + o(εj))

(7.19)

Applying Proposition 6.8 (i) as in Step 2, we deduce that∑
i∈Zj(Ω′)

rd−pδεj
ϕsj ,T,Rij (u

i,ki
j )→ βd−p

∫
Ω′
ϕT (u) dx. (7.20)

Case ε = O(rδε). We now set

Rij := α
ρj,ki
εj

,

where ρj,ki is defined in Lemma 6.1. By applying Proposition 6.6 with M0 = supj ‖ũj‖L∞(Ω′;Rm),
given η > 0 there exist M > supj ‖ũj‖L∞(Ω′;Rm) such that for every i ∈ Zj(Ω

′) there exists
ṽj,i ∈ Lp

α,T,u
i,ki
j

(BRij ;R
m) such that ‖ṽj,i‖L∞(Ω′;Rm) ≤M and

FTα (ṽj,i, BRij ) ≤ ϕα,T,Rij (ũ
i,ki
j ) + η.
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Set tj = α
rδεj
εj

and note that, by (3.15), tj → 1. Then define

v̂j,i(y) :=

{
0 if y ∈ Btj
ṽj,i(y) if y ∈ BRij \Btj .

Notice that v̂j,i coincides with ṽj,i if tj ≤ 1. As in Step 2, a straightforward computation shows
that

FTα (v̂j,i, BRij ) ≤ FTα (ṽj,i, BRij ) + C(M)|1− tj |

We take

vj,i(x) := v̂j,i

(
α
x− δεj i
εj

)
x ∈ Bρj,ki (δεj i),

and

uj(x) :=

{
wj(x) if x ∈ Ω′ \ Ej
vj,i(x) if x ∈ Bρj,ki (δεj i).

Note that

FTεj (vj,i, Bρj,ki (δεj i)) = tp−dj rd−pδεj
FTα (v̂j,i, BRij ) ≤ t

p−d
j rd−pδεj

(ϕα,T,Rij (ũ
i,ki
j ) + C(M)|1− tj |+ η).

(7.21)
We notice that uj ∈ Lpδεj

(Ω;Rm) and, as in the previous case, we deduce that uj → u in

Lp(Ω;Rm). By (7.21), we get the counterpart of (7.19)

FTεj (uj) ≤ FTεj (wj ,Ω
′) +

∑
i∈Zj(Ω′)

FTεj (uj , Bρj,ki (δεj i))

≤ FTεj (wj ,Ω
′) + tp−dj

∑
i∈Zj(Ω′)

rd−pδεj
(ϕα,T,Rij (ũ

i,ki
j ) + C|1− tj |+ η).

(7.22)

Applying Proposition 6.8 (ii) as in Step 2, we deduce that∑
i∈Zj(Ω′)

rd−pδεj
ϕα,T,Rij (ũ

i,ki
j )→ βd−p

∫
Ω′
ϕTNL,α(u) dx. (7.23)

which corresponds to (7.20).

Hence, by (7.16), (7.17), together with (7.19), (7.20), (7.22), and (7.23), we get that

lim sup
j→+∞

FTεj (uj) ≤
∫

Ω′
fThom(∇u) dx+ βd−p

∫
Ω′
ϕT (u) dx+

C

N
,

under the assumptions of Theorem 3.5, and

lim sup
j→+∞

FTεj (uj) ≤
∫

Ω′
fThom(∇u) dx+ βd−p

∫
Ω′
ϕTNL,α(u) dx+

C

N
,

under the assumptions of Theorem 3.6. The conclusion follows by the arbitrariness of N ∈ N
and letting Ω′ → Ω.
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8 The scaling regime rδε = o(ε)

Theorems 3.5, 3.6 and Remark 3.7 provide a complete description of the asymptotic behaviour
of Fε,δε when lim

ε→0
εr−1
δε

= α ∈ [0,+∞). In this section we consider the case when ε → 0 slower

than rδε , showing that, for most of the choice of the scaling of rδ with respect to δ, Fε,δε is not
affected by the constraint u ∈ Lpδε(Ω;Rm) and then Γ(Lp)− lim

ε→0
Fε,δε(u) = Γ(Lp)− lim

ε→0
Fε(u).

Assume from now on
lim
δ→0

rδ
δ

= 0, (8.1)

lim
ε→0

ε

rδε
= +∞. (8.2)

First of all let us note that, since Fε,δε(u) ≥ Fε(u), we have that

Γ(Lp)− lim inf
ε→0

Fε,δε(u) ≥ Γ(Lp)− lim inf
ε→0

Fε(u). (8.3)

Given εj → 0 as j → +∞, let u ∈ C∞c (Rd;Rm) and let ũj → u in Lp(Ω;Rm) such that

lim
j→+∞

Fεj (ũj) =

∫
Ω

fhom(∇u) dx.

Arguing as in Step 3 of the proof of Theorems 3.5 and 3.6, we may assume ũj bounded in
L∞(Ω;Rm).

Set then

uj(x) :=

{
ũj(x) if x ∈ Ω \ Pδεj
0 if x ∈ Ω ∩ Pδεj .

Clearly uj ∈ Lpδεj (Ω;Rm) and, by (8.1), uj → u in Lp(Ω;Rm) as j → +∞. By assumption

(ii), we have

Fεj (uj) ≤ Fεj (ũj) +
‖uj‖p∞
εpj

∑
i∈Zd

∫
Rd
M(ξ)|Sξi,j | dξ, (8.4)

where

Sξi,j := Ω ∩
(

(Brδεj
(δεj i) ∩ ((Brδεj

(δεj i))
c − εjξ)) ∪ ((Brδεj

(δεj i))
c ∩ (Brδεj

(δεj i)− εjξ))
)
.

Note that, since Sξi,j ⊆ Brδεj (δεj i) ∪ (Brδεj
(δεj i)− εjξ), then

|Sξi,j | ≤ Cr
d
δεj
.

Thus, by (8.4) and (G1), we get

Fεj (uj) ≤ Fεj (ũj) + C
rdδεj
εpj

1

δdεj
. (8.5)

By (8.3),(8.5) and a density argument, we infer that Γ(Lp) − lim
ε→0

Fε,δε(u) = Γ(Lp) − lim
ε→0

Fε(u)

under the additional condition

lim
ε→0

rdδε
εp

1

δdε
= 0, (8.6)
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which can be written as
lim
ε→0

ε(
rδε
δε

)d/p = +∞.

Note that
rdδε
εp

1

δdε
=
(rδε
ε

)p rd−pδε

δdε
,

which, thanks to (8.2), yields that (8.6) is satisfied if rδ ≤ Cδ
d
d−p . We may then conclude that

the following Γ-convergence result holds.

Theorem 8.1. Let Fε,δ be defined by (3.3), with f satisfying assumptions (H), (G) and (L)
and 1 < p < d. Assume moreover that (8.2) and one of the following two assumptions hold

a) lim sup
δ→0

rδ

δ
d
d−p

< +∞

b) lim
ε→0

ε(
rδε
δε

)d/p = +∞.

Then

Γ(Lp)- lim
ε→0

Fε,δε(u) =


∫

Ω

fhom(∇u) dx if u ∈W 1,p(Ω;Rm),

+∞ otherwise,

where fhom(S) is defined by (3.11).

We have summarized our Γ-convergence results in the following table (see Theorem 3.5,
Theorem 3.6, Remark 3.7, and Theorem 8.1), schematising how the interplay between the various
parameters affects the Γ-limit of the non-local functionals Fε,δ defined in (3.3). The domain of
the Γ-limit is W 1,p(Ω;Rm) if not specified.

ε

δ
lim
δ→0

rδ

δ
d
d−p

= β ≥ 0 lim
δ→0

rδ

δ
d
d−p

= +∞

lim
ε→0

ε

rδε
= 0

∫
Ω

fhom(∇u) dx+ βd−p
∫

Ω

ϕ(u) dx 0 iff u ≡ 0

lim
ε→0

ε

rδε
= α > 0

∫
Ω

fhom(∇u) dx+ βd−p
∫

Ω

ϕNL,α(u) dx 0 iff u ≡ 0

lim
ε→0

ε

rδε
= +∞

∫
Ω

fhom(∇u) dx
if lim
ε→0

1

ε

(
rδε
δε

) d
p

= 0∫
Ω

fhom(∇u) dx

Table 1
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[12] D. Cioranescu and F. Murat, Un term étrange venu d’ailleurs, I and II. Nonlinear Partial
Differential Equations and Their Applications. Collège de France Seminar. Vol. II, 98-138,
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