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ABSTRACT. We derive a strain-gradient theory for plasticity as the I'-limit of discrete dislocation
fractional energies, without the introduction of a core-radius. By using the finite horizon fractional
gradient introduced by Bellido, Cueto, and Mora-Corral [6], we consider a nonlocal model of semi-
discrete dislocations, in which the stored elastic energy is computed via the fractional gradient of
order 1 —a. As a goes to 0, we show that suitably rescaled energies I'-converge to the macroscopic
strain-gradient model of Garroni, Leoni, and Ponsiglione [17].

1. INTRODUCTION

The derivation of macroscopic plasticity from dislocation models is crucial for mathematical
and mechanical purposes, see, e.g., [8, 12, 13, 15, 17, 18, 19, 21, 25, 26, 27]. A well-established
approach starts from a mesoscopic and semi-discrete model where the dislocations are modeled
by an additional constraint on the deformation. In the planar setting, this corresponds to the
assumption that close to an edge dislocation in position xg with Burgers vector £ the strain field 3
satisfies

Curl 8 = €4y, (1.1)

see, e.g., [3]. In particular, the presence of dislocations prevents 5 from having a global gradient
structure. In this scenario, 3 is referred to as an incompatible strain field. Away from dislocations,
the energetics is of elastic type and g locally takes the form of a deformation gradient.

As noticed, e.g., in [8], the constraint (1.1) implies that /3 is not square integrable close to the
dislocation in zg. Therefore, elastic energies with quadratic growth, such as those considered in lin-
earized models, cannot capture the behavior of strains fulfilling (1.1). As a remedy, regularizations
of the energy have to be considered. The probably most common one in the recent literature is the
so called core-radius approach [4, 22], where the energy is computed on a reference configuration
after cutting out an e-ball around each dislocation. In such a perforated domain, the strain field is
L-integrable, but the curl constraint (1.1) has no clear meaning anymore, and has to be reformu-
lated as an integral-circulation-type condition. Following this approach, the asymptotic behavior
for vanishing core-radius parameter € has been investigated under suitable scaling of the energy,
both in the linear [9, 17, 20] and in the nonlinear setting [2, 11, 16, 19, 25, 27]. In the most relevant
scaling, where the number of dislocations scales as |loge| (the order of the self-energy related to
one dislocation), the limit energy accounts for the competition between a bulk elastic energy and a
plastic term with linear growth defined on a Radon measure p. The latter expresses the density of
dislocations and is related to the strain 8 by the identity Curl 5 = p. An alternative approach with
an energy defined on the whole reference configuration has been proposed, for instance, in [13].
There, a regularization of the dislocation density p by standard mollification with compactly sup-
ported mollifiers is considered, resulting in square integrable incompatible fields through the curl
constraint on 5. In the limit of vanishing regularization, the same dislocation model as in [17] is
recovered.
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In the present paper, we take the perspective of considering a nonlocal model for dislocations,
avoiding the core-radius approach. Hereby, we naturally bridge to nonlocal elasticity models de-
pending on fractional gradients, which have been attracting ever increasing interest in recent years,
see e.g. [0, 6, 7, 14, 23, 28, 29]. In a fractional linear elastic model, the stored energy is expressed
as

1
/ CV'™u: V™% dz, (1.2)
2 Ja

where C denotes an elasticity tensor and the fractional gradient V=% is defined by convolution
with a singular potential of Riesz type. As pointed out in [14], when dealing with elastic models, it
is reasonable to postulate that such a singular potential has an integration domain depending on a
ball of size p > 0 while keeping the same singularity as the Riesz one. This corresponds to a finite
horizon of interaction among the particles, as used for instance in peridynamics [30], and amounts
to consider

YV, “u=I3(Vu) = Q) Vu

in place of V!~ in (1.2), for a suitable Riesz-type kernel Z;y supported in a ball of size p. The
precise form of Q;*a is recalled in (2.6) in Section 2.

The above approach naturally extends to incompatible fields satisfying the constraints introduced
in (1.1) if one considers a linear elastic energy on Ig‘aﬁ , where the fractional parameter « is close
to 0 and the horizon parameter p, has to be suitably scaled with «. At this stage, we notice that
the adoption of a fractional regularization allows us to keep the differential constraint (1.1) in a
differential form, without the necessity of passing to a circulation-type condition. Equivalently, one
may rewrite the strain energy in terms of the auxiliary variable Ba =TIy B, corresponding to a soft
regularization of the curl constraint (1.1) with singular kernels in place of mollifiers, see Remark 3.7
for details. Hence, our result described below generalizes the perspective of mollification in [13] to
the case of singular convolution operators (yet, restricted to two dimensions). To our view, this is
both of mathematical interest and relevant for applications to fractional elasticity [30, 31, 32].

The main result of the paper concerns the asymptotic analysis of the model when a — 0 for a
suitable behavior of the horizon p, and a suitable scaling of the energy. We work under the assump-
tion of well-separated dislocations, also expressed in terms of p,, cf. Section 3 and in particular
Remark 3.1. The limiting model is obtained in terms of I'-convergence. In the most relevant sce-
nario, the so called critical regime (see Theorem 3.4), we recover the linear model of strain-gradient
plasticity derived in [17]: the self-energy term reads as

du>
el = ) dlul,
/Q <d!u! a

where the convex and 1-homogeneous function ¢ is obtained by a relaxation procedure of a suitable
cell formula (cf. (3.10) and (4.17)). The core of our proof consists in deriving a quadratic bound from
below for the cell formula, in the form given in Proposition 4.2 and Remark 4.3. Here, we explicitly
exploit the structure of the singular Riesz-type potential to compute the asymptotic behavior of
the energy. This is done in two steps: first in Lemma 4.4 we estimate the approximate energy
in terms of a special field ne. Then, in Lemmas 4.5-4.6 we make use of the explicit expression
of n¢ to derive a formula for the asymptotic limit. Although not necessary for our proof, as a
byproduct, by introducing a suitable multiplicative factor in our model, we are also able to show
that ¢ exactly coincides with the density in [17], see Remark 4.3. Hence, on the one hand, we
recover the same result as in [17]. On the other hand, the cell formula (3.10) does not require
neither excision of a core-radius nor the modification of the curl constraint (1.1), which is kept in
its original differential form. As a consequence, for compactness and the derivation of the I'-liminf
inequality no additional modifications of the strain field 5 need to be performed in order to extract
information from (1.1). We also point out that, while the asymptotics for the cell formula can be



A FRACTIONAL APPROACH TO STRAIN-GRADIENT PLASTICITY 3

derived also for the classical Riesz potential Z¢ (see Remark 4.7), the use of the finite horizon p is
essential for compactness, as explained in Remark 5.1.

Outlook. The results contained in the present work deal with a strain-gradient plasticity model
obtained as the limit of a fractional regularization of a linear semi-discrete dislocation model un-
der the well-separateness assumption. The extension of our analysis to more general dislocation
distributions (see, e.g., [20]) and to nonlinear theories [19, 25, 27] is a natural research line that
will be subject to future investigation. Finally, we would like to mention a related but different
fractional approach to the emergence of topological defects and Ginzburg-Landau energies that has
been recently developed in [1].

Plan of the paper. In Section 2 we recall some basic notation and preliminary facts. We present
the fractional dislocation model in Section 3, together with the statements of the asymptotic results
in the critical, subcritical, and supercritical regimes (see Theorems 3.4, 3.5, and 3.6, respectively).
Section 4 is devoted to the derivation of the cell formula for the critical and the subcritical regime.
Finally, in Sections 5—6 we discuss the proofs of our main results.

2. PRELIMINARIES

2.1. Notation. The space of 2 x 2 matrices with real entries is denoted by R?*2. Given two
matrices A1, Ay € R?*2 their scalar product is denoted by A; : As, and the induced norm of
A € R**2 by |A|. The subspace of symmetric matrices is denoted by ngxn% and the subspace of
skew-symmetric matrices by R%*2. Given A € R?*2, we denote by A™™ := TA+AT) € RZx2
its symmetric part. We use SO(2) to denote the special orthogonal group in R?, consisting of
all matrices A € R?*? satisfying A~! = AT and det A = 1. The identity matrix is denoted by
I € R?*2,

For all 7 > 0 and € R%, we denote by B,(x) the open ball of radius r and center x. If x = 0,
we simply write B, and we set S' := 9B;. Given a measurable set £ C R?, we denote by |E|
the 2-dimensional Lebesgue measure of E, and by yg: R? — {0,1} we denote the corresponding

characteristic function. Given p > 0 and a set E C R?, we define
E, = {z € R? : dist(w, F) < p}. (2.1)

Given an open subset 2 of R?, we denote by M(2;R¥) the space of vector-valued Radon measures
on €. Moreover, the set of all distributions on 2, namely the continuous dual space of C°(; R¥),
endowed with the strong dual topology, is denoted by D’ (£; R¥). We denote by S(R?; R¥) the space
of Schwartz functions ¢: R? — R*. We adopt standard notation for Lebesgue spaces on measurable
subsets £ C R? and Sobolev spaces on open subsets 2 C R?. According to the context, we use
| - lz»(E) to denote the norm in LP(E;RF) for all 1 < p < oo and k € N. A similar convention is
also used to denote the norms in Sobolev spaces. The boundary values of a Sobolev function are
always intended in the sense of traces. Since we often need to consider functions defined in the
whole space, when needed we always assume that a function f € LP(E;RF) is defined on R?, by
setting f = 0 outside F. Given

5= (G 02) e rhowir>)

we define the curl in the sense of distributions as

01 P12 — 02511 /2. 2
18 := D (R*; R“).
Curl 5 <31ﬁ22 - 82521) €DIRGRY

J = (? 01> € 50(2).

Let us define
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Then, we have

Curl 8 = Div(3J) in D'(R%;R?). (2.2)
2.2. A notion of fractional gradient and Riesz potential with finite horizon. We focus on
R? and introduce the notion of fractional gradient V7, and Riesz potential Z) of order s, o € (0,1),

both with finite horizon p > 0. We start by recalling the definition of the usual Riesz potential 7
in R2.

Definition 2.1 (Riesz potential). Let o € (0,2) and f: R? — R be a measurable function satisfying

1f(y)]
WL dy < oo 2.3
=i 23
The a-Riesz potential of f is the function Z¢f: R? — R defined as
1 2°T' (&
I%f(x) == / L)Q_a dy for a.e. z € R?, with v, = Wzi_of),
Yo Jr2 [ — Y| (%)

where I' denotes the Gamma function.

Remark 2.2. 7% f is well-defined for all measurable functions f satisfying (2.3), see Proposition A.1
in the Appendix. Moreover, we have

= 2.

v, = 2m, lim a~y, = 2, lim —12
a—0 a2 2 — «

We now define the fractional gradient with finite horizon V3, for all s € (0,1) (degree of differen-
tiability) and p > 0 (horizon). Following [6, 7], we fix a function w: [0,00) — R which satisfies
(i) w e C*([0,00)) and suppw C [0, 1),
(i1) 0<w < 1in [0,00) and w =1 on [0, 3],
(747) w is nonincreasing on [0,00), i.e., w(s) < w(t) for all 0 <t < s.

For all p > 0, we define w,: [0,00) — R and w,: R*> = R as
t
w,(t) =w () for all t € [0, 00), w,y(x) =w,(|x]) for all z € R?. (2.4)
p

Definition 2.3 (Fractional gradient with finite horizon). Let s € (0,1), p > 0, and ¢ € C°(R?).
The s-fractional gradient with finite horizon p of ¢ is the function Vj¢: R? — R? defined as

s _l+s [ o) —9(y) v —y wy(z —y) 2
Vio(x) = o e e—dl Te—ullz =g dy for all x € R”.

Remark 2.4. The function V5¢ is well-defined in R? and supp(V$¢) C (supp ¢), (recall (2.1)).
Moreover, if ¢ € C2°(R?) and if we replace the function w, with 1 in the definition above (which,
roughly speaking, corresponds to the case p = c0), we obtain the Riesz s-fractional gradient

_lts [ @) —dy) T -y 1
Y-s Jrz |z —yl |z —yl|z—ytTs

We refer to [10, 28, 29] for detailed literature on this operator.

Véo(z) : dy for all 2 € R%

We recall that the Riesz s-fractional gradient V* can be written in terms of a local gradient via
the (1 — s)-Riesz potential. More precisely, for all s € (0,1) and ¢ € C2°(R?) we have

Vig=V(I'"5¢) =T'5(V¢), (2.5)
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see [10, Proposition 2.2] and [28, Theorem 1.2]. A similar property also applies to V7, as shown
in [6, 7, 14]. To formulate this result, we need some additional notation. For all s € (0,1) and
p > 0, we define the functions qy: [0,00) — R and dp: R? - R as

_ wp(r _
7,(t) = (1+ s)tHS/t 7§(+5) dr for all ¢t € [0,00), qp(x) =qp(|z|) forallxe R?.

Moreover, we set Q5: R*\ {0} — [0, 00) as

1 1 14+s [ w,(r) 9
() = ———q¢(x) = dr for all R 0. 2.6
Q)= @) = 5 [T ar oz €2 (0) (2:6)

By [7, Lemma 4.2], for all s € (0,1) and p > 0, we have
Q5 € C®(R*\ {0}) N L'(R?),  supp(Q}) C B,. (2.7)

We have the following relation between the fractional gradient with finite horizon V7 and the
(standard) gradient V.

Proposition 2.5 ([14, Proposition 1 and Equation (2.13)]). Let s € (0,1) and p > 0.
(i) For all ¢ € C®(R?) we have Q3¢ € C*(R?) and

V(Q5x¢) =Q5«Vo=Vi¢p inR>. (2.8)
In particular, if ¢ € S(R?), then Vig € S(R?), and, if ¢ € C(R?), then Vig € C°(R?).
(i4) There exists a linear operator Py S(R?) — S(R?) such that for all $ € S(R?)
S s __ NS s _ . 2
Pp(Qp*¢)_Qp*(Pp¢)_¢ ZTI’R'

For more details on the operator PJ, we refer to [14]. We only point out that in the limit case
p = 00, PJ is nothing else but the %—fractional Laplacian.
Based on (2.5) and Proposition 2.5, we introduce the Riesz potential with finite horizon.

Definition 2.6 (Riesz potential with finite horizon). Let a € (0,1), p > 0, and f € L. .(R?). The
a-Riesz potential with finite horizon p of f is the function Z7' f: R? — R defined as

Zyf(z) = ( 1=y Hz) = /Bp(x) f(y) ;_a(x —y)dy for a.e. z € R2

Remark 2.7. By (2.7) the function Q})_O‘ is well-defined for all « € (0, 1) and it belongs to L (R?).
Therefore, I3 f is well-defined a.e. in R?, see Lemma A.3. We remark that 7y can actually be
defined for a € (0,2) as (2.6)—(2.7) are well-defined for s € (—1,1). Moreover, the definition of
the Riesz potential with finite horizon is consistent with the classical one. Indeed, if f: R? — R
satisfies (2.3) and we replace the function w, in (2.6) by 1, we obtain the Riesz potential Z.

For more information about the fractional gradient V7 and the Riesz potential 70! with finite
horizon p > 0, we refer to [6, 7, 14] and the Appendix below.

3. MAIN PROBLEM

In this section we introduce our model of semi-discrete dislocations and present the main results.



6 S. ALMI, M. CAPONI, M. FRIEDRICH, AND F. SOLOMBRINO

3.1. The model. Let Q C R? be an open, bounded, simply connected set with Lipschitz boundary.
We fix two linearly independent vectors by, by € S', and we define

S = spany{b1, ba}.
Let (pa)ac(o,1) C (0,1) (horizons) and (Na)ae(o,1) € N (numbers of dislocations) be such that
pa— 0 asa—0, alogp, -0 asa—0, (3.1)
Ny — o0 as a— 0, Nop2 -0 asa— 0. (3.2)

Assumptions (3.2) model the fact that the number of dislocations tends to infinity but the area
of the region where the singular integral interacts with the dislocations asymptotically vanishes.
On the other hand, assumption (3.1) prevents p, from going to zero too quickly, so that the
Riesz potential 7 can keep track of the information due to the dislocations as @ — 0 (see also
Corollary A.5 in the Appendix). For all a € (0, 1), we define

M
Xy = {Zfiawi € M(R%;R?) : M €N, & € S\ {0}, B, (i) CQ, |z; — x| > 2p, for i # k} ,
i=1

and, for a given u € X,, we set
Aa(p) ={8 € L}(,,;R2) : Cwrl B = p in D'(Q,;R2)}.

Due to the nonlocality induced by Zj , we assume here well-separated dislocations, namely that
the distance between any pair of dislocation points is at least 2p, and that S is defined in the
neighborhood €2, of Q, see (2.1). Let C: R?*2 — R?*2 be a fourth-order elasticity tensor, satisfying
the following assumptions:

(C1) CF = CF»™ ¢ RZ2 for all F € R>;

(C2) CF, : Fy = Fy : CF, for all Iy, Fy € R?¥?;
(C3) there exist 0 < 11 < 1o such that

V|[F™2 < CF : F < p|F¥™2 for all F € R**2,
Given p € X, and 8 € A,(u), we define the energy

£y, B) = % /Q CI% B(z) : T2 B(z) de. (3.3)

Remark 3.1 (Comparison to core-radius approach and elastic model). (i) When the fractional
order v depends asymptotically on an atomic scale € by

a(e)

our model is closely related to the one in [17] based on standard gradients. In particular, in our
setting the horizon p, plays the same role of the hard core-radius p. in [17]. The assumption [17,
Section 2.1(i)] corresponds to (3.1) (see also the equivalent formulation (i’)) and assumption [17,
Section 2.1(ii)] is exactly (3.2).

(ii) As we detail below in Remark 4.1(ii), for all 4 € A&, there exists ( € A,(u) such that
Ea(,¢) < oco. This is a key difference to the model with standard gradients, where in presence
of dislocations the energy is always infinite, unless the elastic energy is restricted to the domain
outside the so-called core region surrounding the dislocations.

(iii) If we consider the special case 1 = 0 and a regular function 5 € A,(0), then § = Vv in Q,,
for some regular function v. In this case, thanks to (2.8), the energy (3.3) reduces to

~ —0 3.4
Toge] ©°70 (3.4)

Ea(0,8) = E,(0,Vv) = ;/Q(CV;;O‘U(Q:) : V;;av(x) dz, (3.5)
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which can be interpreted as the analogue of a linearized elasticity model in the context of nonlocal
gradients with finite horizon. In this sense, (3.3) is the generalization of (3.5) to the case of
incompatible fields.

Remark 3.2 (Energy regimes). Note that N, does not enter explicitly in the model, but it plays
a key role for the different scaling regimes that we now discuss. The number N, represents the
typical number of dislocations, i.e., in the above model we expect to have measures of the form
w= ZZ]\L % &z, € Xo. The Riesz potential with finite horizon 7, introduces a nonlocality of length
scale p, into the model. Similarly to [17], this motivates to decompose the energy &,(u,[) for
B € Ay(p) into the sum of two terms: the self-energy

1

&M, B) = / CZS B(x) : I5 B(x) du,
2 ¥ By " r

and the interaction energy
7!
2 Ja\UXs By (@)
As shown in Proposition 4.2, for u := £dp, we have
1

. . . 1
Beiﬁrllaf(u) B - CZ, B(z) : I, B(z) dx ~ S sa— 0.

E4 (. B) = CI;, B(x) : Ij, B(x) da.

Therefore, we expect that
. N,
ECNM(,B) ~ =2 asa—0.
«@

Moreover, since the interaction energy is defined outside the singularities, we expect its behavior
to be the same as in the core-radius model, i.e.,

gnter(y B) ~ N2 as a — 0,

see [17, Section 2.2]. Therefore, depending on the regime N, < é, Ny > é, or Ny ~ é as a — 0,
the self-energy is dominant (subcritical regime), the interaction energy is dominant (supercritical
regime), or they are both of the same order (critical regime). With the choice in (3.4), we recover
the same scaling factors and regimes of [17].

Motivated by Remark 3.2, we consider three regimes for the behavior of N, with respect to
a — 0. We define F, F5'P, Fa'P: M(R%;R?) x L (R%;R?*2) — [0, 0] as

loc

(1) Critical regime (No ~ % as a — 0):

20)2E (1, B) if p e X, and B € Aq(p),
Ful B) = {( PEalp, ) i € A () 56)
00 otherwise.
(2) Subcritical regime (No < L as o — 0):
]:sub(# B) = ]2\%504(% B) if p€ Xy and B € Aa(p), (3.7)
¢ ’ 00 otherwise. '
(3) Supercritical regime (No > 1 as a — 0):
Lgcvl%ﬂ if p € Xy and B € Aa(p),
P () = {Nf« ) e . 59
00 otherwise.
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Our goal is to study the I-limit of F,, F5', and F5 . In order to recover the exact same limits
as in [17], the above energies are rescaled accordingly with prefactors 2, see Remark 3.3(ii) below.
To formulate the asymptotic energy, we need to introduce the self-energy density. First, let

£€R? ae(0,1),and p € (0,1) be fixed. We set
A(&, p) = {B € L' (Byp; R**?) : Curl B = {6 in D'(Byy; R?)}, (3.9)

and, since A(&, p) # () by Remark 4.1(i) below, we can consider the infimum problem

1
U a,p):= inf = CZ8B(x) : I B(x) da. 3.10
(& a.p) seen 2 o, pB(x) : I5B(x) (3.10)

Then, for fixed p € (0,1) we define the asymptotic energy ¢: R? — [0, 00) as
V(€)= lim 209(¢, 0, p) for all € € R2. (3.11)
oa—r

In Section 4 below, see (4.7), we will show that 1 is well-defined, i.e., the limit in (3.11) exists and
it is independent of p € (0,1). We will also get that

P(E) > cle]? (3.12)

for some ¢ > 0, see (4.6) below. In particular, this implies that ¥ (¢, a, p) scales like a1, see the

scaling discussed in Remark 3.2 and also Proposition 4.2 below. Finally, we define the self-energy
density : R? — [0, 00) through the following relaxation procedure

M M
o(&) = inf {Z Mep(€) + ) Mkl =& M EN, Ny >0, & € S} for all ¢ € R2. (3.13)
k=1

k=1

Remark 3.3. (i) Asin [17], the self-energy density ¢ is a positively 1-homogeneous convex function,
and it depends only on the elasticity tensor C and the class of admissible Burgers vectors {b1, ba}.
By (3.12), the infimum is actually a minimum.

(ii) In view of the particular choice of 2a in (3.11), we have that ¢ coincides with the self-energy
of the core-radius model, see Proposition 4.2 and Remark 4.3 below. This is the reason why in the
definition of F5'" the scaling factor is chosen as 2a. Eventually, the prefactor (2a)? for F,, ensures

that all three energies F,, F5'°, Fo'* are consistent for Ny = 5.

3.2. Main results. From now on, we consider a fixed sequence («;); converging to 0. For nota-
tional convience, we write (p;); for the corresponding sequence of horizons (pq,); and similarly we
write (IV;); in place of (Nq ) Then (3.1) and (3.2) read as

pj — 0, N;j — o0, ajlog p; — 0, Njp; =0 asj— oc. (3.14)

In the critical regime, the limit energy F: M(2;R?) x L%(Q; R?*%) — [0, 0o] takes the form

L?
1
2/9((36(3:): z)dz + (d| |>d|u| if Curl 8 = p,

otherwise,

Flu, B) = (8.15)

and our main I'-convergence result is the following.

Theorem 3.4 (Critical regime). Let (c); C (0,1) and (p;); C (0,1) be satisfying (3.14) for the
choice

1
N; = —. 3.16
J 2aj ( )
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(i) Compactness. Let (u;,3;); C M(R?* R?) x L} (R*R?*?) be such that

sup}"a] (14, B5) < o0. (3.17)
jeN

There exist a (not relabeled) subsequence of (oj);j, a sequence of skew-symmetric matrices
(S;); € RE2 and (u,8) € (M(R2) N H1(Q;R?)) x L2(Q;R**2) with Curl B = p in

skew ?

D'(Q;R?) such that
205 — i in M(Q;R?) as j — oo, (3.18)
205(Zp7 B — Sj) = B in L*(R*?) as j — oc. (3.19)
(ii) T-liminf inequality. Let (u;, 8;,S;); € M(R%R?) x L (R%R2%2) x RY 2 and (p, B) €
M(;R?) x L2(;R?*2) be satisfying (3.18)~(3.19). Then,

liminf Fo, (15, 85) = F(u, B)- (3.20)
j—o0

(#3i) T-limsup inequality. For all (u,3) € (M(;R?) N HH(Q;R?)) x L2(Q; R**2) with
Curl B = p in D'(§;R?) there is a sequence (u;,Bj); C M(R%R?) x L (R%R2*?) satisfy-

ing (f1j, B;) € Xoy X Aa; (115) for all j € N, (3.18)~(3.19) (with S; = 0), and

j—00

In the subcritical regime, the self-energy is predominant as observed in Remark 3.2. Therefore,
at the limit as o — 0 we expect that 4 and S are no longer related. Indeed, the limit functional
Foubs M(Q;R?) x L2(Q; R?X2) — [0, 0o] takes the form

dp , B
Foub(y / Ch(x x) dz +/ (d] ’> d|p| if Curlg =0, (3.22)

otherwise.
More precisely, we obtain the following I'-limit result.

Theorem 3.5 (Subcritical regime). Let (a;); C (0,1), (p;); C (0,1), and (N;); C N be satisfy-
ing (3.14) and

Nja; =0 asj— oo. (3.23)
(i) Compactness. Let (u;,[;); C M(R%*R?) x L}

loc

(R%;R%2*2) be such that

Supfsu (H]vﬁ]) < 0.
jEN

There exist a (not relabeled) subsequence of (cy);, a sequence of skew-symmetric matrices
(Sj); CRA2 and (u, B) € M(2;R2) x L2(QR**2) with Curl B = 0 in D'(Q; R?) such that
1

N opin M(Q;R?) as j — oo, (3.24)
J

V20 o T2 2x2 ;
N, (Z,) By — Sj) = B in L*(;R77) as j — oo. (3.25)
J

11) I'-liminf inequality. Let Bi,S;); € M(R%R?) x Li
(4i) q y. Hjs Pjs

loc

M(;R?) x L2(£;R?*2) be satzsfymg (3.24)—(3.25). Then,
lim inf F3° (15, 85) = F* (. ).
j—oo 7

(R2; R?*2) x RY2 and (u, ) €

skew
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(iii) T-limsup inequality. For all (u,3) € M(Q;R?) x L2(Q;R?**2) with Curl = 0 in
D' (3 R?) there is a sequence (uj, 8;); C M(R%:R?) x Ll (R%R?*?) satisfying (u;, B;) €
Xo,; X Aa; (1) for all j € N, (3.24)-(3.25) (with S; = 0), and

lim sup F, Ub(u],ﬁj) < F(p, B). (3.26)

j*}OO

In the supercritical regime, the interaction energy is dominant as observed in Remark 3.2. Hence,
in the limit a — 0, the self-energy term disappears. Therefore, as @ — 0, F, I'-converges to the
functional F5'Per: L2(Q R2%2) — [0, 0o] defined as

Sym

Fouwer(g / CA(x) : Blz)dx for all B € L2 RE2). (3.27)

More precisely, we have the following result.

Theorem 3.6 (Supercritical regime). Let (a;); C (0,1), (pj); € (0,1), and (N;); C N be satisfy-
ing (3.14) and

Nja; =00 asj— oo. (3.28)
(i) Compactness. Let (u;,3;); C M(R?R?) x Li _(R%R?*?) be such that
sup}'super(u],ﬁj) < 0.

jEN
There exist a (not relabeled) subsequence of (c;); and 3 € L*(Q; ngxrg) such that
1 .
—Tp B = B in (RS as j — oo. (3.29)

N;j
(44) T-liminf inequality. Let (uj,8;); C M(R%;R?) x L _
satisfying (3.29). Then

lim inf F5IP% (15, B5) > F*P(B).
J—00 J

(R%;R?*2) and B € L?(;R2%2) be

Sym

(i4i) T-limsup inequality. For all 8 € L?(S;R22) there is a sequence (pj, Bj); C M(R%R?) x

sym
Li (R%;R**?) satisfying (17, B;) € Xa,; X Aa,(p5) for all j €N, (3.29), and
limsup F5 (115, ;) < 2P (6). (3.30)

]—>OO

Remark 3.7. By Lemma A.6, we deduce that for all p = Zf\il €0z, € X and B € Ay (1) we have

M
CurlZy 8= &Q, (- —x;) inD/(Q4R?).
i=1
rgherefore7 we could study, in a completely equivalent way, the I'-limit as o — 0 of the functionals
Eo: LM R?) x L2(Q'R2X2) — [0, 00], defined through the energy
/(Cﬁ x)dx for e X, and 3 € A(j),

where
M
X, = {Z& /1];&(- —xz;): M eN, & eS\{0}, By, (xi) CQ, |z; — k| > 2pqy for i # k‘},
i=1

and

A~

A(p) = {B € L2(Q;R?*?) : Curl B = i in D’(Q;RZ)} for fi € X,.
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As explained in the introduction, this is in analogy with [13], where the authors considered a model
of discrete dislocations in which the curl constraint is regularized via mollifiers. We point out that,
compared to [13], we consider singular convolution operators.

4. CELL FORMULA FOR THE SELF-ENERGY

In this section, we compute the asymptotic self-energy stored in a neighborhood of a dislocation.
As in [17], this is done by defining a self-energy through a cell problem. Recall the definitions
of the cell formulas ¥ and % in (3.10) and (3.11), respectively. Our main goal is to show that
1 is well-defined and, as a byproduct, that it coincides with the cell formula for the core-radius
model of [17]. The main statement of this section and its proof are contained in Section 4.1. In
Sections 4.2—4.4 we then give the proof of some auxiliary statements.

Before we start, we construct elements A, (u) for p € X,, which in particular provides useful
competitors for the minimization problem (3.10).

Remark 4.1 (Competitors). (i) Let us consider p = £dp. We introduce the function
13 Jx

ZATE
Then, ¢ € C®(R?\ {0}; R**?) N LY (R%;R?*?) for every p € [1,2) and Curl ¢ = &5y in D'(R?;R?).

In fact, Curl¢ = 0 in R? \ {0}, and for all ® € C°(R?;R?) we have by (2.2) and the divergence
formula

((x) = for x € R?\ {0}.

(Curl ¢, @) pr(r2y = — /R2 C(x)J : VO(x)da = —ii_r)r(l) s C(z)J : VO(x)dx
= — lim Div((¢(z)])T ®(x)) dz
e—0 R2\ B,
—lim— [ £ ®()dz = £ B(0).

e—0 27e 0B,

This shows that ¢ € A(&, p) defined in (3.9) for all p > 0, and thus A(£,p) # (. Moreover,
Lemma A.3 implies Z3¢ € Li, (R* R**?) for each o € (0,1).

(ii) For more general measures i = Zf\il £i6z, € X, we define ¢ = Zf\il Gi(- —x;), where (; is as
in (i) with & in place of £&. Then, ¢ € A, (7)) # ) and we obtain Igf € L%(;R?*2), In particular,

we have &, (j1,() < oo.
4.1. Asymptotic cell formula. In this subsection we show that formula (3.11) is well-defined and

we compute it, similarly to [17]. To this aim, given ¢ € R?, we consider a distributional solution
Ne - R2 — R2X2 to

_ 2
Cw.urlng =&do %n R, (41)
DivCne =0 in R2.
The function 7 is smooth in R? \ {0} and in polar coordinates takes the form
1
ne(rcosf,rsinf) = —T'¢(#) for all r € (0,00) and 0 € [0, 27), (4.2)
r

where the function I'c depends on the elasticity tensor C, is linear in £, and satisfies the bound
ITe(0)] < K|¢| for all 6 € [0,2n) (4.3)

for a constant K = K(v1,v2) > 0. We refer to [4] and [17] for an exhaustive treatment of the
function ne. We have the following result.
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Proposition 4.2. For all ¢ € R? and p € (0,1) we have

21

P(€) = hrrb 20V (& a, p) = hm a/ CZyne(z) : Iyne(z) do = % CIe(0) :Te(0)do.  (4.4)
0

In particular, (&) > c[¢|?, see (4.6) below. Moreover, if (pa)ac(o,1) C (0,1) is such that
alogp, -0 asa—0,

then
lim sup [20%(€, a, pa) — ()] = 0. (4.5)

a—0 gESl

Remark 4.3. Thanks to Proposition 4.2, we derive that our limit energy v is independent of

€ (0,1). Moreover, in view of (4.4), ¥ coincides with the limit energy defined for the core-radius
model in [17, Equation (36)]. This identity is the reason why in Section 3 we defined the energies
Fo and ¥ by using 2« instead of a.

By (4.4), it follows that

P(AE) = N2p(€)  for all € € R? and ) € R, inf (&) = miny(€) = ¢ > 0. (4.6)
£es £es

Indeed, if 1(&) = 0 for some & € S, then, in view of (4.4) and (C3), we find Fzym =0 on [0, 27).
Hence, nzym = 0 in R?\ {0}, thanks to (4.2). Since Curlne = 0 in R? \ {0}, by applying Korn’s
inequality locally in R? \ {0}, we derive that 7 is constant, which contradicts Curlne = &8 in R2.
This implies (4.6), and thus (3.12) holds. If (pa)ae(o,1) C (0,1) is such that

alogp, — 0 asa— 0,
then by (4.5) and (4.6) we derive

lim 20V (€, a, pa) = p(€) for all € € R?. (4.7)

The proof of Proposition 4.2 requires several intermediate results. We state the relevant estimates
and show how they imply Proposition 4.2. Their proofs are deferred to Sections 4.2-4.4. First of
all, along the lines of [17, Lemma 5], we derive the following estimates for the cell formula.

Lemma 4.4. Let £ € R?, o € (0,%), and p € (0,1) be fized. There exists a constant C > 0,

independent of £, a, and p, such that
W(E, ) / CIone(w) : Tome(w) da < W(E,a p) + Cle. (48)

Note that we need a restriction on the range of « to ensure that the constant in the statement
is independent of a. In view of Lemma 4.4, in order to prove (4.4), it suffices to show that for all
€ (0,1) there exists

) N N 1 2m
i%a/jgp CZyne(z) : Iome(x) dz = 2/0 CIe(8) : T¢(0) do.

In view of (4.2)-(4.3), we get that e satisfies (2.3). Therefore, its Riesz potential Z%n¢ is well-

defined by Proposition A.1. We first prove that for all £ € R? and p € (0,1)
1 2w
lim a / CIne(x) : Tne(a) do = 5 [ CT(6) : Te(6) o,
0

and then we use some uniform estimates to pass from Z%n¢ to Z;ne.
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Lemma 4.5. Let ¢ € R? and p € (0,1) be fized. We have

a—0

2
lim a/Bp CZ%¢(x) : I%ne(x) da = ;/0 CI'¢(9) : T'¢(0) d6. (4.9)

Moreover, if (pa)ac(o,1) C (0,1) is such that
alogp, =0 asa— 0,

then
27
lim sup CZ%¢(x) : I%ne(x) do — 1 Cr¢(0) : Te(9) dﬁ‘ =0. (4.10)

a—0 EESl Bpa 2 0

Next, we control the difference of Zgn:(w) and I%n¢(w) as a — 0, uniformly in (£, 0,w) €
St x (1,00) x St. Later, this will be applied for o = I%I’ for p € (0,1) and = € B, \ {0}.

Lemma 4.6. Let £ € R?, o € (O, %), 0 € (1,00), and w € S' be fizred. There exists a constant
C > 0, independent of £, a, o, and w, such that
| Zg e (w) — I (w)| < Cl¢]a. (4.11)

The proofs of the previous three statements are deferred to Sections 4.2—4.4, respectively. As
the previous lemma is only formulated for w € S', we need to make use of the following scaling
arguments. Using (4.2), one can check that for all £ € R? and « € (0,1) we have

(6% 1 (0% €
e (z) = WI N (5U|> for all z € R?\ {0}. (4.12)
Moreover, for p € (0,1) it holds
o x
Ione(x) = PR <!m\> for all = € R?\ {0}. (4.13)

To see this, in view of (2.4), (2.6), and (4.2), for all x € R?\ {0} and A > 0 we calculate
Zne(ha) = (@4 wn)Oha) = [ ney)Qf " (r =) dy

= )\2/ ne(Az2) /1)_0‘()@ —Az)dz = )\/ ne(2) }J_a()\m —Az)dz
R2 2

9 _
=\ O‘/ / Do) 4 4
R2 Mz—z| T
1 2—-«a
= d d
)\1 a /]1%2 /|l’ | 53 a o

1 2—a o We(s) 1,

Ve z—

As a final preparation, we note that there exists a constant C' > 0, independent of £, «, p, and w,
such that for all £ € R%, a € (0,3), p € (0,1), and w € S' it holds

[Z%e(w)| < ClEl, 1ZEne(w)] < Cl. (4.14)
In fact, by using (4.2)—(4.3), Proposition A.2, and y; = 27 we derive that

KI¢| 1 _ 2nK|¢]
Yo Jr2 [Yllw —y2

[ Z%¢ (w)] < for all £ € R?, a € (0,1), and w € S'.

Yi+a
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This yields the first part of (4.14). A similar argument, using (A.1), yields the second part of (4.14).
In particular, by (4.12) and (4.13), we derive that for all £ € R?, o € (0, %), p € (0,1), and x € R?
it holds

Clél

‘$|l—o¢’

clél

|Z%0¢ ()] < Zone(@)| < —=5- (4.15)
||

We can now finally prove Proposition 4.2.

Proof of Proposition 4.2. Let ¢ € R? be fixed. By (4.13), for all a € (0,1) and p € (0,1) we can
write

1 T x
CZy (IS dx = ———CI% — ) : I% — | dz.
o) T o = [ et () 7 () o
By (4.11), (4.14), and (C3) for all & € (0,1), p € (0,1), and = € B, \ {0} we have

X X X X
CI% R A ) = CT | =) T [ = )| < 20CP € P,
2 (7)o (57) o2 (37 - 7 (57| < 2ace

for a constant C' > 0 independent of £, «, p, and x. Therefore, using (4.12)—(4.13), for all « € (0, 1),
and p € (0,1) we have

By

1 27
a/ CZyne(z) : Iome(x) dz — 5 CI'e(8) : T'¢(0) do
B, 0
«a «a 1 o 21¢12 .2 1

<la [ CI%¢(x):I%e(x)dr — < CIe(8) : Te(0) dO| + 202 C* (€ T A

B, 2 Jo B, 17|

1 27

=|a [ CI%g(x):Z%¢(x)de — B CTe(0) : Te(0) dO| + 2m2C? p**|¢ P ar.

B, 0

This implies both (4.4) and (4.5), thanks to Lemma 4.4 and Lemma 4.5. O

Remark 4.7. (i) Without giving details, we mention that the cell formula can also be defined by
introducing an additional parameter > 0 as

A&, p,7) = {B € L'(By4,; R¥*?) : Curl B = &8 in D' (B4 R?) },

1
U a,p,r):= inf = CZSB8(x) : I8 B(x) du.
Copry=, it o[ T T
In this case, we still have ¥(§) = lim,—0 2a¥ (&, a, p,r) for all p € (0,1) and r > 0.

(ii) An analogous result as in Proposition 4.2 can be shown for the classical Riesz potential Z.
More precisely, given

ARieSZ(f) — {ﬁ c LIIOC(RQ;RQ) : Curl 8 = &g in D/(R2§R2)} J

. 1
\IlRleSZ Lo, ) = inf / CIQIB T :Iaﬁ T dSZZ, 4.16
& r) peARies(6) 2 /g, @ @ o

we have (&) = limg_0 2a¥R%(¢ o, r) for all » > 0. Formally, this follows by performing the
arguments of Proposition 4.2 in the case p = co. This also explains why in this case the condition
Curl B = €5y is required on the entire R2.
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4.2. Proof of Lemma 4.4. We start by recalling the Korn’s inequality for incompatible fields
of [17], which will be used in the following.

Proposition 4.8 ([17, Theorem 11]). Let @ C R? be an open, bounded, simply connected set
with Lipschitz boundary. There exists a constant C = C(2) > 0 with the following property: for
all B € L?(Q;R**2) with p = Curl 3 € M(Q;R?), there is a skew-symmetric matriz S € ngxefv
satisfying

18 = Sliz2) < CUB L2 + [1(£2))-

For the proof of Lemma 4.4, we need a further preparation. By Lemma A.6, for all g € A(¢, p)
we have X .
B =I5B € L'(B,;R**?), Curl 8 = £Q, in D'(B,; R?).
Therefore, we can also consider the set
Ale, a,p) = {B € L2(B,; R>?) : Curl § = £Q4 in D/(By; RQ)}
and the infimum problem
. _ 1 .
b ap)= it o[ Ch@): ) de (4.17)
BEA(E;a,p) B,
Comparing with (3.10), we directly get the relation

W& a,p) < U(E, o, p). (4.18)
Now, we want to show that the two cell formulas actually coincide.

Lemma 4.9. For all £ € R?, a € (0,1), and p € (0,1) we have
. 1 R X
U a,p) =V a,p)= min 3 CB(z) : f(x)dz. (4.19)
5€A(£7a7p) BP

Proof. We first show that the minimum in (4.17) is attained. By (4 18) and \I’(g,a p) < 00, see

Remark 4.1(i), we can consider a minimizing sequence (G,)n C A(£,a, p) for W(E, o, p). Since
by (A.1)
(e
I Cur Buloags,y = I [ @by do < 22K
B, AYa
by employing Proposition 4.8 and (C1)—(C3) there exist a constant C' > 0 independent of n, and a
sequence (Sy,), C R%22 such that

skew
1B = Sulli2(s, 0( ; Chn(@) : fu(w) da + \|Curlﬁnrril<3p>> <C.
P

Hence, there exists [3’00 € LQ(Bp; R2*2) such that, up to a not relabeled subsequence,
B — S, — Bso in L*(B,;R**?) as n — oo.
Moreover, for all ® € C°(B,; R?) we have

<CurlﬁAoo,<I)> By = | hm <Curlﬁn, =¢- / Ql *(z) dw
which gives that B € A(E, o, p). Finally, we have
1 (CBOO(I') : Bw( Ydr < hmlnf (C(Bn(x) S E (Bn(il‘) — 5,)da
2 By n—oo 2 B,

= lim L Chn(z) : Bp(z)dz =  inf L CA(z) : B(z) dz.
n—oo 2 B, BeA(¢,a,p) 2 B,
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Hence, the minimum in the minimization problem (4.17) is attained.
We now show the first identity in (4.19). Let 5 € A(§, o, p) and ¢ be the function defined in
Remark 4.1(i) with g := £dp. Lemma A.6 and Remark 4.1(i) imply

Curl(3—Z9¢) =0 inD'(ByR?),  B—I9¢e L*(B,;R>?).
Thus, there exists v € H'(B,; R?) such that
B—1I8¢=Vv inB,.

Let (), C C°(R? R?) be such that ®, — v in H'(B,;R?) as n — co. We consider the linear
operator Ppl_o‘: S(R?; R?) — S(R?;R?) given by Proposition 2.5. We define

Bn=C¢+ V(P *®,) inR.
Hence, 3, € A(&, p) for all n € N. By Proposition 2.5 and (3.10) we get

U a,p) < hm 1nf CZ, Bu(x) : ) Bp(z) dz

By
—Jim + [ CEI() + V() 1 (T2C(x) + V() da
n—oo Bp
:% C(T2¢(x) + Vo(z)) : (T¢(x) + Vo)) de :% Ch(x) : Bz) da.
B, B,
This along with (4.18) implies the first identity in (4.19). O

Remark 4.10. Since the energy in (4.17) is quadratic, we immediately get
TN, o, p) = N2W(E,a,p) for all € € R? and X € R.

Proof of Lemma 4.4. We fix £ € R?, a € (0,%), and p € (0,1). The first inequality in (4.8) is
trivially achieved by observing that ne € A(E, p), see (4.1).

Let us prove the second inequality. To this end, let B € ./Zl(é ,a, p) be a minimizer of (4.17). We
define the annular sets
Cy = sz—k+1 \Bp2_k for all £ € N.

Notice that |,y Ck = B, \ {0}. We define
k := min {k eN: L CH(x) : fla)da < 1/ CZyme(x) « Tyme(x) dx} . (4.20)
2 Je, 2 Je,

Without restriction, we can assume that the set is nonempty and thus k exists, as otherwise we
would have

/ CZyne(x) : Tyne(x) da < % CB(SE) :B(x)da = U(E a,p) = V(& a, p),

which gives (4.8). By (4.15) there exists a constant C' > 0 (independent of &, «, and p) such that

27k+1

1 1
a 2 21 ¢12 _ 2(1¢12
f, Enrar <o [ i =2l [ i ar
,0 22a -1
= c2|g\222 R C|€|2. (4.21)

Since Curl(3 — Zone) = 0 in D'(B,;R?) by Lemma A.6 and 8- Ione € L*(B,; R**%) in view
of (4.15), there exists a function vy € H*(B,;R?) such that

B—1Iime =Vuy in B,. (4.22)
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Thanks to (4.20), (4.21), and (C1)—(C3) we can find a constant C' > 0 (independent of &, «, and
p) such that

L Io@ym R < clep

By Poincare’s and Korn’s inequalities, there exist C' > 0 (independent of £, «, and p), S € ]Rzkxefv,
and m € R? such that

/ |V (z) — S|2dx < C|¢)?, / vy (x) — Sz —m[*dz < p22_2EC|§|2. (4.23)

k Ck

Let ¢ € C2°(R?) be such that

ok @=0mR*\ B 5. (4.24)

0<¢<1inR? |V¢|< QCkinRQ, ¢$=1in B
-

We define the function
vo(x) == ¢(x)(v1(x) — Sz —m) forx € B,,.

By construction vy € HE(B,;R?). Thanks to (4.20)—(4.24), we can find a constant C > 0 (inde-
pendent of £, «, and p) such that

1

2 /5,

1 A N 1
= 2/ CB(x) : B(z)dx + 2/ CZone(x) : Zyme(x) da
B B

% P\BPQ_E.H

C(Zyne(x) + Voz(x)) : (Zyne(z) + Voa(z)) dz

p2
1

+ 3 /C’ C(Zyne(x) + Voa(z)) : (Zyme(x) + Voa(z)) dz

k

< % . Ch(x) : B(z)dz + % /C EC(Igng(:c) + Vua(x) : (To%e(x) + Vo () da

§\If(f,a,p)—|—ug/ |Ipo‘n§(:p)|2dm+ljg/ \va(x”?d:l?
Cf _

k Ck
UG ap) + O+ | Vo(@)Plor(e) Sz - mfPdo -+ 2 [ (o) Vor(a) - S do
3 3
< W(E,aup) + Ole2 (4.25)
Finally, since DivCne = 0 in D'(R?;R?), see (4.1), for all ® € C°(B,;R?) we have
CIyne(z) : Vo(z)dr = Cne(x) : ZyVe(z) do = Cne(x) : VI @(z)dx =0,
Bﬁ BQp B2p

thanks to Fubini’s theorem, Proposition 2.5, and the fact that Z3® € C2°(Bap; R?), see (2.7). Since
Vg € HOI(BP; R?), by a density argument we conclude that

/ CZyne(z) : Voz(z) dz = 0,
By
which gives

% : CZone(x) : Tyne(x) de < % : C(Zyne(z) + Vua(z)) : (Zyne(z) + Vue(x)) dz. (4.26)

By combining (4.25) and (4.26) we derive (4.8). O
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4.3. Proof of Lemma 4.5. In order to prove Lemma 4.5, we need the following auxiliary lemma,
which states that for all w € S the Riesz potential Zn(w) converges to n¢(w) as a — 0, uniformly
with respect to & € S

Lemma 4.11. Let w € S! be fized. We have

lim sup [Z%n¢(w) — ne(w)| = 0. (4.27)
a—0 5€Sl

In particular, for all £ € R? we derive

lim Z%n¢ (w) = ne(w). (4.28)

a—0
Proof. Let w € S' be fixed and let € > 0. Since 7, is continuous around w for each i € {1,2}, there
is 0 = o(e) € (0,%) such that
1Me; (Y) — ne; (w)| < g for all y € By(w) and i € {1,2}.

For all ¢ € S! we can find § € [0,27) such that
& = cosfley + sinfes.
Since the system (4.1) is linear in &, we derive for each & € S!
ne(y) — ne(w)| < [ cosb][ne, (y) — e, (W)| + [ sin0[ne, (1) — ne, (w)| < e forall y € By(w). (4.29)
We fix £ € St and « € (0,1), and we define
I%e(w) = g7 (w) + 95 (w) + g5 (w)

1 ne(y)

_ = dy + i e (y) 1 Tl¢ (y)

—s — —"=dy.
Yo JBy(w) |0 —y[>~ Yo JB, |0 —yl>~ Yo JR2\(B, (w)UB,) 1@ — Y2
Since
lw—y|>1—0 forallye By,
by (4.2)—(4.3) we derive
K 1 2ro K
TIPS S U
NS o Jp, WY T =
Moreover, thanks to
w—yl>o=0ly+w—yl >0yl —olw—y| forallyeR*\By(w),
together with (4.2)—(4.3) we get
(1+0)2 K 1 27(1+ 0)*> K
95 (W)l < ——5—— R A e 32"
Yo O R2\ B, |y’ (1 O‘)’Yao'
Finally, we have
1 ne(w) 2o
@)= [ Iy ) (1- 7).
¢ Yo J B, (w) jw —y[> ¢ Yo
Therefore, again by (4.2)—(4.3) and by (4.29) we get
2wo® 1 —ne(w 2w 2wo®
gi) = el < el [1 - 2 [ 2 [ OO g, ey 2t 2
o | Yo JByw) lw—yl Y Yo
which yields
2o 2mo® 2ro K 21(1+ 0)> K
sup |Z%n¢(w) — ne(w)| < K ‘1 - +e + = Lto) 39a"
gest QYo Ao Ya(l —0) (1 —a)yao
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Thanks to Remark 2.2, we derive

limsup sup [Z%¢ (w) — ne(w)| < e.
a—0 ¢eSt

As € > 0 was arbitrary, we have (4.27). Let us now show (4.28). If £ = 0, then n¢ = Z%)¢ = 0. On
the other hand, if ¢ € R?\ {0}, by (4.27) and the fact that the system (4.1) is linear in &, we get

[Zne(e) = ne@)| = I [Z0 & (@) = ¢ @)

This proves (4.28). O

—0 asa—0.

Proof of Lemma 4.5. We fix ¢ € R? and p € (0,1). By a change of variables, Fubini’s theorem,
and (4.12), for all a € (0,1), we have

/ CI%¢(x) : T ng(x)dz:a/B WCZ ur: <|33|> : 1% <|x|> dx
P

P 1 2
= a/ 5 dr CZ%¢(cos,sin0) : T%n¢(cos d,sin @) db.
or 0

(4.30)
By (4.2), (4.14), (4.28), and the dominated convergence theorem we conclude that
2w
hm0 CZ%n¢(cos §,sinf) : T%ne(cos 0, sinf) dO
a—
271' 2m
= Cne(cos b, sinf) : ne(cosf,sinf) dd = CI'¢(9) : T'¢(0) db. (4.31)
0 0
Moreover,
. L | . p2°‘ 1
o [ e =l £ = 5 (4.82)

This along with (4.30)—(4.31) shows (4.9). Finally, let (pa)ac(o,1) C (0,1) be such that a’log po — 0

as a — 0, ie., p@ = 1asa— 0. We fix £ € St and a € (0,1). Then, by (4.2)—(4.3), (4.14), (4.30),
and (4.32) we have

1 2
a g CI%¢(x) : IT%ne(x) do — 2 ), CI¢(0) : Te(0)do
Pa
p 2T 1 2T
= % CZ%n¢(cos @,sin0) : T%ne(cos d,sin @) do — 5 Cne(cosB,sin ) : ne(cos b, sinf) do
0 0

< piframax{C, K}/ e (cos 0, sin 0) — ne(cos 0, sin )| dO + (1 — p2*)mve K2
< p2%vy max{C, K}/ sup |Zn¢ (cos 0, sin 0) — ne(cos 0, sin )| A + (1 — p2*)mve K2
0 gest
Therefore, by (4.14), (4.27), and the dominated convergence theorem we obtain (4.10). O
4.4. Proof of Lemma 4.6. This short subsection is devoted to the proof of Lemma, 4.6.
Proof of Lemma 4.6. Let £ € R%, a € (0, %), 0 € (1,00), and w € S! be fixed. By (2.6) and (4.2)—

(4.3) we have

2 - 1-—
a / / ng( )drdy
R2 oy T

|Zgme(w) — e (w
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@K 1 1wy

< — dr dy.
Yo R2 ’y‘ |w—y|

7«3—04

Since 1 —w,(r) = 0 for all r € [0, §], see (2.4), we derive

2—a)K|¢ 1 [ 1
1Z5me (w) — Ine(w)| < ookl [ L S drdy
Yo R2 ’y‘ max{|w—y|, ¢} T
K¢ 1 1
= 1.0 o\2—« dy
Yo Jrz |yl max{lw —y[, §}
222K 1 K 1
Va0 By () |yl Yo Jr2\Bg(w) lyllw =y
As o € (1,00), we have By (w) C Bs,. Therefore,
2
22K 1 22K 1 22231 K 120K
2RI Ly < ZOKEL Ly, 2SR 12K (4.34)
Va0 By (w) |y Va0 Bs, 1Yl Va0 Vo
2

Moreover, we have
w—yl =5 =Zly+w—yl > Jlyl - Slw—y| forallyeR*\By(w),
which gives

0 1
W=yl > 5oyl > gyl forally € R*\ By (w).

“ 240
Hence,
K 1
€ L
Yo Jr2\Bg (@) yllw =yl
K 1 K 1
_Kie oy o
Yo JBABg @) yllw —yl Yo Jr2\(BUBg (W) yllw —yl
227K 1 32K 1 8TK 187K
TR L, STOKE Loy < e+ T jea (4.35)
Yol B, |Vl Yo r2\B, |Vl Yo (1 - a)ava
By (4.33)—(4.35) and Remark 2.2 we derive (4.11). This concludes the proof. O

5. THE CRITICAL REGIME

In this section we prove our I'-limit result in the critical regime (N, ~ é as a — 0), that is

Theorem 3.4. Recall (3.6) and (3.15). Let (a;); and (p;); be two sequences satisfying (3.14), and
let N; = ﬁj, see (3.16).

The proof of Theorem 3.4 is divided into three parts. First, we show a compactness result, which
justifies the topology for the I'-limit. Then we prove the I'-liminf inequality and finally the I-limsup

inequality.

Proof of Theorem 3./(i). By (3.17) we deduce that j; € Xy, and 85 € Aq,(117) for all j € N. In
particular,

M;
Hj = Zgi,jél‘i,j? Cuwrlfj = pj in D/(ij;Rz)’
=1
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where &; ; € S\ {0}, By, (zi;) C Q, and |z;; — x| > 2p; for i # k. We first show that the sequence
(2a5145); € M(;R?) is uniformly bounded. For all j € N, we have

C > 207 /Q CZ,’ Bj(z) : I} Bj(x) dx

M;
> 204]2-2/3 CZ, Bj(x + xij) : Tp! Bj(w + x4 5) da. (5.1)
1=1 ]

Since the functions 8; € L'(Bay, (i;); R?*?) and Curl 8; = & ;0,, ; in D'(Ba, (:7)), we derive
M; M;

20&? Z/B Cl.gjﬁj(:t + xi’j) : Igéfﬂj(m + xi,j) dz > 404? Z \I/(&"j, Qg pj)

i=1"Bp;

i=1
M.

42 - g (S, 59

- ajz|£l,] ’&- ‘|7a]’pj 9 ( . )
i=1 b

where W is the function defined in (3.10) and we used Remark 4.10. Let us set
¢ inf $(E),

£est

where 1) is the function defined in (3.11). We have ¢ > 0 by (3.12). By Proposition 4.2, see (4.5),
we can find jg € N such that

20,50 <|Zj|,aj,pj) > g for all j > jo. (5.3)
Moreover, since &; ; € S\ {0}, there is ¢ > 0 such that
|&ij| > ¢ forallie{l,...,M;} and j € N. (5.4)
By combining (5.1)—(5.4) we can find C' > 0 such that
M; M;
2aj|u5|(Q) = 205 ) |5 < ézajz €4 < C forall j €N, (5.5)
i=1 i=1

Hence, there is u € M(Q;R?) such that, up to a not relabeled subsequence,
2ep; = p in M(Q;R?) as j — oo.

We now show that there is a sequence of skew-symmetric matrices (S;j); C Rzkxezv such that the

sequence (2a; (I;;j B; — S;)); is uniformly bounded in L?*(€2;R?*?). By Lemma A.6 and Proposi-
tion 4.8, there exists a constant C' > 0 (independent of j) and a sequence (S;); C Rzkxefv satisfying

IZo; Bj = Sillr2) < CUIZp) B Il 220y + | Curl Zp) Bjl p1 o) - for all j € N

J J

Here, we used (Z,’ 3;)%™ = I’ B3, which follows directly from Definition 2.6. By (C1)-(C3) we
have
2

 som 4o , .
1205257 85 172 < ,,IJ/QCI%@(JT) : Iy, Bj(x) d < C,

and by (5.5) along with Lemma A.6 and (A.1) it holds that

M;
o 1—o;j
120; Curl Zp? 85 11 () = 205 Y I&',j!/B ( )ij o — ;) da
i=1 P \Tj
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1 2mp M;
4 E = 90,3 16y
|§m|/BP. PERT dz = - 205 2 &5 < C,
J =

'704]11 J ey

where in the last step we also used Remark 2.2. Hence, we can find a constant C' > 0 such that
1205(Zp7 B; — Sj) 120y < € for all j € N.
Therefore, there is 3 € L?(2;R?*2) such that, up to a not relabeled subsequence,
20;(Z, B; — S;) = B in L*(Q;R**?) as j — oo.

It remains to prove that p € H1(;R?) and Curl3 = p in D'(Q;R?). To this aim, we fix
® € C°(;R?), and we observe that

<CUI'1 B, (I)>’D’(Q) = ]lirgo 2aj(Curl(Igf Bj - Sj), (I)>D’(Q) = ghﬁrgo 20éj <CUI1 Igjj Bj: (I)>D’(Q) .

By Lemma A.6 we have

20, (Curl Z, B;, @ DI(Q) = 20 Zfz] /2 Ql “(x—ai ) de

.7
=205 &y Tl B(xiy) = /R2 Tp! () - d(2cjpu)-
=1

Since p; — 0 as j — oo, we derive that I;;“I) € OX(;R?) for j sufficiently large, see (2.7).
Moreover, I,g] I® — @ in C(Q;R?) as j — oo, see Corollary A.5. Therefore,

(Curl B, ®)pr(q) = lim /II%?Q)(m) -d(2ajpj) = / O(x) - du,
J— JO [¢)
which gives Curl 8 = p in D'(Q;R?). Finally, by (2.2) notice that
</,L,(I)>D/(Q) = (CurlB,¢>D/(Q) = —/ B(IL‘)J : Vq)(l') dz for all ® € CSO(Q,R2)
Q

In particular, since 8 € L?(Q; R?*?) we find that u € H~!(Q;R?). This concludes the proof. O

Remark 5.1. In the proof of the compactness argument, it is important to consider the Riesz
potential with finite horizon, for this allows us to localize the dislocation energy. More precisely,
in (5.2) we used that f; is admissible for the asymptotic energy W(&; ;, oy, p;), since Curl 5; =
§ij0x; ; in Bop,(w;j). On the contrary, when we are dealing with the classical Riesz potential, a
field 8 should satisfy Curl 3 = & jd,, , (in the distributional sense) on the entire R?, see (4.16).

This, however, is not compatible with the fact that Curl 3; = Zf\ijl §i,j0z; ; In R2.
We now prove the I'-liminf inequality.

Proof of Theorem 3./ (ii). Without loss of generality, we may assume that
3 lim Fq,(pj, Bj) < o0, C = sup Fa, (1, Bj) < 0. (5.6)
J]—00 j

In particular, this yields p; = Zf\iﬁ §ij0s; ; € Xo,; and B € Aq,(p5). By arguing as in the proof of
Theorem 3.4(i), see (5.4)—(5.5), there is C' > 0 such that
M; M;
OLij S Caj Z |£’i,j| S COZ]' Z |§i,j|2 é C for all j S N, (57)
i=1 i=1
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and Curl 8 = p in D'(;R?), as well as u € H1(Q;R?). We define
M;
Q; =By, (zi;) CQ forall jeN.

i=1
By (3.14), (3.16), and (5.7) we derive that

2
|Qj|:7erp?§C%—>O as j — oo.
j

Therefore, we have
2a,(Zp7 B; — Sj)xave, = B in L*(Q;R*?) as j — oo,

which yields

J—00

lim inf 204? /Q\Q. CZ,! Bj(z) : Ip? Bj(z) dz > ;/Q(C,B(:c) : B(x) da. (5.8)

Moreover, by (3.10), (3.13), (5.6)—(5.7) as well as (4.6) and Remark 4.10 we get

M;

2a§/ﬂ<cz§y5j( x) 1 I, Bj(x dx—2a2Z/B (CIpajﬁ] (z) : Zp? Bj(x) dw > 403 Y W(& 5, 5, p5)
r 0j (z4,5) =1
M; M;
> 2a; Zw@m —2q; Z ‘52]’ sup 120, W (€, g, ps) — Y(E)]
i=1 i=1

M;
> 20; Y 9(& ;) — C sup 2059 (, ay, pj) — (€))
i=1 ¢est

- /Q () d(2015) — C sup 2059 (€, a5, p3) — ()]

gest

Since ¢ is positively 1-homogeneous and convex, see (3.13) and Remark 3.3(i), by Reshetnyak’s
lower semicontinuity theorem and Proposition 4.2 we derive

o 2 TR
11m1nf2a / CZ,] Bj(x) : Ia Bj(x )dx>hm1nf/ (Cl(a]'u])> d|2a;p5] Z/@(d ) d|pl.
d|200544; d|p

J—00 j—00
This combined with (5.8) concludes the proof of (3.20). O

Remark 5.2. Due to relation (3.16), the prefactor 2¢; in (3.18)—(3.19) can be replaced by both
1/Nj or \/2a;/+/Nj without any change. In the same way, the prefactor (2a;)* in (3.6) can be
replaced by 2a;/N;. By inspection of the previous proofs, we see that the arguments immediately
imply Theorem 3.5(i),(ii), except for the property Curl 3 = 0 in D'(Q; R?).

To prove the I'-limsup inequality, we need to approximate diffusive measures p by suitable sums
of Dirac deltas. This is done in the following lemma, whose proof can be found in [17, Lemma 14].

Lemma 5.3. Let Q be an open, bounded, simply connected set with Lipschitz boundary. Let (N;); C

N be such that N; — oo as j — oo. Let § = zlj‘il A& € R? be such that A\, > 0 and &, € S. Let
us define

for all j. (5.9)

M
1
A= Aks ri=
; 77 2\/AN;
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There exists a sequence of measures (j1;); C M(R?%R?) such that

M My ;
Wi = Zﬁk/‘k,j for all j, P j = Z Oz, ,,; forallk,j, (5.10)
k=1 i=1
with
BT]' (xi,k,j> c fOT’ all ia k?jv ‘xi,k,j - xi’,k',j| > 27’] lf (Z.,a k,) 7& (Z7 k)7 fOT’ all ja
and satisfying
1 * . .
ﬁjm;ﬁj[é)\kxgdx in M(R?) as j — oo forallk=1,..., M, (5.11)
Léxadr  in M(R%:R?) as j — oo. (5.12)

ﬁjﬂj

Remark 5.4. (i) For the sequel, it is convenient to use the following notation. Denoting the centers
(@ik,;)ik by (wi;); with associated (& ;)i C {&1,...,&m} (see (5.10)), we can write

M My, ; M; M
=3 6| D b, | =D Eiden,,  where M= M.
k=1 i=1 i=1 k=1

(ii) The statement of [17, Lemma 14] only says that

ﬁ“‘kﬂ — Apydz in M(Q) as j — oo for all k, N ¢dz  in M(Q;R?) as j — oo.
J J
However, a careful inspection of the construction in its proof together with |0Q| = 0 yield that

actually (5.11)—(5.12) hold.
(iii) Note that % — 0 as j — oo by (3.14). Therefore, yij € X,; for j sufficiently large.

(iv) For later purposes, we note that there exists a constant C' > 0 (independent of ¢ and j) with
M.
&) < C forall i,7, Fj < C for all j. (5.13)

J

The latter follows from the boundedness of y; (see (5.12)) along with the fact that |&; ;| > ¢ > 0
for all i, j, see (5.4).

We can finally prove the I-limsup inequality.

Proof of Theorem 3./ (iii). The proof is divided into three steps. We first assume that p has the
form p = x4 dx for some A C Q (Step 1). Then, we consider piecewise constant p with respect
to a partition of € (Step 2), and finally pass to the general case (Step 3). Step 1 will be further
subdivided into several steps.

Step 1. Let u = &xadx, where € € R? and A C § is an open, bounded, simply connected
set with Lipschitz boundary. Let 8 € L?(2;R?*2) be such that Curl 3 = p in D’(€;R?). Recall-
ing (3.13), we write £ = 22/1:1 A&, where & € S, A\, > 0, such that

M
P(&) =) M (&r). (5.14)
k=1

Step 1.1: Regularization of 5. First, we regularize 8 and extend it outside 2 in such a way that
the condition on the curl is preserved. To this aim we fix R > 0 such that Q CC Bg, and we
consider the function @ € H}(Bgr; R?) which solves

Aw =y in Bg,
w=0 on 0Bg.
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Since u = &xa € L®(Bg;R?), we derive that w € W?P(Bg;R?) for all p € [1,00) by elliptic
regularity. In particular, w € C'(Bgr;R?) by Sobolev embedding theorems. We define 3 := ViaJT €
C(Bgr;R?**?), and by (2.2) we have

Cul(B—B)=p—Aw=p—p=0 inD(QR?).
Hence, there exists a function v € H'(£2;R?) such that
B—F=Vuv in.
Let (®;); C C2°(R% R?) be such that
V®; — Vv in L(Q;R**?) as j — oc. (5.15)

We consider the linear operator P,};aj : S(R?%;R?) — S(R?%;R?) given by Proposition 2.5, and we
define the regularized function

B = 3+ V(B “'®;) in Bp for all j € N, (5.16)
By construction 8} € C(Bg; R2*2) and Curl 8% = pin D'(Bg;R?).

Step 1.2: C’onstructzon of (uj,Bj). We now construct a sequence (uj,3;); C M(R?*R?) x
L'(Bg; R**?) which satisfies (15, 8;) € Xa, X Aq, (1) for all j € N. Let (p;); € M(R?*R?) be the

sequence of measures given by Lemma 5.3 with N; = 17_ for j € N (cf. (3.16)). Using the notation
of Remark 5.4(i), we have
M M;
pj = ka’#k,j = Z&J&%‘ for all j, (5.17)
k=1 i=1
with
B, (wij) C A foralli,j, |zi; — @y j| > 2r; ifi#£d, for all j, (5.18)

and, as j — oo,
20 pn ;| = Aixadz  in M(R?) for all k, 20 p; = p=Exadr in M(R%ER?) . (5.19)

Next, we will modify Bjr-eg to obtain a function whose curl is p;. To this end, let ¢ € C°(B) be
such that 0 < ¢ < 1in R? and ¢ = 1 in B:1. Recalling the function 7 for £ € R? given in (4.1) and
2

using the fact that p; < r; for j large enough (see Remark 5.4(iii)), we define

C@j(ﬂ?) =N (,_’L‘ - xi,j)qb (m) for all z € R? \ {fEi,j}a 1€ {1, RN Mj}, and j € N, (520)
J J

and
j
x) = ZC,J(J:) for all 2 € R?\ {w14,...,2m;,;} and j € N. (5.21)

We have that ¢; € L} (R*R**?) for all p € [1,2), see (4.2)~(4.3), and (supp(j),, C A by (5.18).

loc
Moreover,

i 1 .
Curl ¢ = pj+vj = Z&j m+2ns - 2ig) Jw( p) - i DRARY). (522)
J — Py
reg

It turns out that the curl of the function 2ja ; + ¢ is pj, up to an asymptotically vanishing term.

As a final step of the construction, we remove this remainder term: let wi € H}(Bg;R?) be the
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solution to

rem __ _ M 3 :
ij = "3q; ~ V¥ In Bgp, (5.23)
wi™ =0 on 0Bpg,
and define the function ;™ = Vw?emJT € L?(Bg; R?*2). We set
Breg
Bii=5h G+ i Br (5.24)
Recalling that Curl 5;*® = u in D'(Bkg; R2), by construction (use (2.2)) we get
Curl 5; = ,u —|— pj + v — QZ]- vi =p; in D'(Bg;R?), (5.25)

which yields 8; € Aq, () for all j € N.
Step 1.3: C’om;ergence of recovery sequence. We now show that (1, 5;); satisfies (3.18)—(3.19).
To this aim, in view of (5.19), we just need to prove that

20,157 B; — B in L*(R**?) as j — oo. (5.26)
Notice that supp(Z,’(i;) C Br,(2;) by (2.7) and (5.20). By Remark 2.2, Proposition A.2,
and (4.2)—(4.3) we have
K&l 1 1 _ 21 K& | 1
Yoy Jr2 |y — @il v — y?m Moy |2 =it

Thus, by (5.13) in Remark 5.4 and (3.16) we can find a constant C > 0 (independent of j) such
that, for all j € N,

|Zo) Ging ()] < (5.27)

/ 120,257 ¢j(@)]? da = 4o Z/ 1Zp7 G j () da < C’rjg-ajaij <Co;N; <C.  (5.28)

r I'zj

Moreover, we have

/ 120457 ()| da = 2, Z/ Zp7 G ()| da < Coszjrjl-+aj <Cr; forall j€N.
BT x”
Hence, we derive that
20,757 ¢; — 0 in L*(QR**?) as j — oco. (5.29)
As B e C(Br;R?*2), by (5.15)—(5.16), Proposition 2.5, and Corollary A.5 we infer that
LB =T/ B+ Ve — B+ Vu=4 in L*(QR*?) as j — oc. (5.30)
Recalling the definition of v; in (5.22), we claim that
2av + 11— 0 in L®(Bg;R?) as j — oo. (5.31)
First, since (; ; have disjoint supports, there exists a constant C' > 0 (independent of j) such that
2 .
12ajv|| Loo(Br) < C’i2 for all j € N, (5.32)
(rj = pj)

where we used (4.2)—(4.3). Moreover, by Remark 5.4(iii), (3.16), and (5.9) we have

2 .
lim ) 5 = 4A.
j=oo (rj = pj)
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Hence, (2cjvj + p); C L (Bg;R?) is uniformly bounded. Therefore, to prove (5.31), it is enough
to observe that for all ® € C2°(Bg;R?) we have
(20515 + 1, @) pr(pyr) — 0 as j — oo.

Since 20/t X i in M(R?%;R?), we just need to prove that 205 (vj + p1j, ®)pr(By) — 0 as j — o0
for all ® € C°(Bg;R?). We recall v; + uj = Curl{; and, as j — oo, using (2.2) and (4.2)—(4.3),
we estimate

20[] ‘(Curl CJ? (I)>'D/(BR)| = 20@

/ Gi(x)J: VO(z)da
Bgr

M;
< Coy Z/B e, ;(W)| dy < CajM;(rj = pj) < C(rj — pj) = 0,
=1

i =P;
where we also used (3.16) and (5.13). This gives (5.31). Therefore, by the compact embedding of
L?(Bgr;R?) into H~!(Bg;R?) we conclude that 2av; + p — 0 in H~'(Bg;R?) as j — oo. For
wi®™ introduced in (5.23), this implies that
205w™ — 0 in Hy(Bg;R?) as j — oc.
Recall the definition 3j" = Vw?emJT. By Remark 2.2, (A.1), and Young’s convolution inequality,

as j — oo, we have

27?p?j

j Qrem 1-ay rem
1205257 B5™ 1200 < 11Qp; 7 w2y 120585 | L2y <

This together with (5.24), (5.29), and (5.30) gives (5.26).
Step 1.4: Convergence of energies. It remains to prove (3.21). As in the proof of the I'-liminf
inequality, we define

||2aij§em||Lz(BR) — 0. (5.33)

] 1

M;
Q= By, (xi;) CQ foralljeN,
i=1
and by (3.14), (3.16), and (5.13) we derive that
Q] = WMijQ- < CNj,og —0 asj— oo (5.34)

We split the energy as
2 Qg Qj 2 Qg "
Fa, (1, B5) = 203 /Q\Q CI,; Bj(z) : Zp) Bj(x) dz + 20 /Q CZ,) Bj(x) : Z,) B;(x) dz,
i i
and we study the two terms separately.
By (5.30), (5.33), and (5.34) we derive that
Ty 8% x0, = 0 and 2a,T,7 B xq, = 0 in L*(Q;R**?) as j — oo,
which by (5.24) gives
lim sup 204?-/ CIZ,’ Bj(z) : I,? Bj(x) dz = limsup 204?/ CZ,’¢i(x) : Tp? () da. (5.35)

Jj—00 Q; Jj—0o0 Q;
Since i j =g, ; (- — i3) in B, /2(xi ) and pj/rj — 0, see Remark 5.4(iii), we infer that, for
j sufficiently large,

o] Gij =Tp/ne,, (- —wig) in By, ().
Together with Lemma 4.4, (3.16), (4.7), (5.13), (5.14), and (5.17)—(5.19), we conclude that
lim sup 204?/ CZy () : Iy ¢() dw
£

Jj—o0
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—hmsup2a Z/ CIpJJW&J y) : Igjjnfi,j (y) dy

j—00
M;
< lim sup 40422‘1Jf”,oz],p])—i—40a22‘§m|2 (5.36)
j—oo =1 =1

M M d
= tim > 20 s ()20, (6, p5) = S MelAI (&) = 41(6) = [ ¢ (“) dlul.
k=1

st dW

Here, we also used that Zi‘ijl V(& 5,04, p5) = Z]k,wzl |k 3| ()W (€, v, pj) by Remark 5.4(i). Next,

by (3.14), (3.16), (5.13), and (5.27), as j — oo we have

/Q\Q |2aj C]( | dm—4a2Z/ |I§J7Ci7j(x)\2dm

T (xij \BP] Ti,j

smdK? b % 20
< =205 Y |62 = p; ") =0,
14+a; i=1

where in the last step we used pjo-‘j — 1 as j — oo. Hence, together with (5.24), (5.30), (5.33),
and (5.34) we derive that
2ajIgj]ﬂjXQ\Qj — B in L*(Q;R?*?) as j — oo,

which gives

lim 207 /Q\Q_CI,‘i‘;ﬂj(x) I, Bi(x)de = = /(CB( ) : B(z) dz. (5.37)

J—00

Combining (5.35)—(5.37) yields (3.21), and concludes the proof in the case u = £xadz and g €
L2(Q; R?%2),
Step 2. Let 8 € L?(Q;R?*2) be such that

L
Curl 8 = p = Zul, where p!:=¢x dz forallle{l,...,L},
=1

where (¢!); € R?, (A); are open, bounded, simply connected sets with Lipschitz boundary, and
{AL | is a partition of . By arguing as in Step 1, see in particular (5.16) and (5.30), we can find
(B5%); C C(Bg; R**%) such that
Curlﬁ;eg = u in D'(Bg;R?), I,?]?,B;Qg — B in L*(Q;R?*?) as j — .

Moreover, for all [ € {1,...,L} there exist (Mé‘)j C M(R%R?), (Z/]l-)j C L>®(R?%;R?), (le-)j C
Ly (R%R?X2), and ((87™)"); C L?(Br; R**2) such that

(supp(l),, C Al,  forall j €N (5.38)
and, see (5.22)—(5.23),

Ixad
Curl C]l = Hé + yjl. in D/(Rz; ]R2)’ Curl(ﬂ§cm)l = —%44 — I/jl< in D/(BR;R2) for all j € N
@

as well as (see (5.19), (5.29), and (5.33))

2ajué- Ll de in M(R?%;R?), 207, (CJ (B5) =0 in L*(Q;R¥?) as j — .
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We define

L ﬁreg
Z and == —|— Z Cj + (65°™)") Y forall j €N.

Then, we have that (u],ﬂj) € Xo; X Aq,;(py) for all j € N and
205145 S in M(;R?) as j — oo, 2ajij B — B in L*(Q;R**?) as j — oo.

Moreover, as in Step 1, in view of (5.38), for all [ € {1,..., L} we derive
d
limsup2a / Cz,’ : I, Bi(z) do < < (CB( ) : B(x) d:c+/ © (,u) d|pl.

Therefore, since |2\ Uz L Al = 0, we conclude

o o d
limsupZOzj/CIp]]ﬁJ ) T B;(x) da < = /(Cﬁ B(z )dx+/9g0<d|5|> djul.

Jj—o0
Step 3. Let p € M(Q;R?) N H (4 R?) and B € L?(Q;R?*?) be such that Curl 3 = pu in
D'(€;R?). As shown in [17, Proof of Theorem 12, Step 3 of I'-limsup], we can find a sequence
(1™, B C (M(;R?) N HL(Q;R?)) x L2(Q; R?*2) such that
p" = in M(Q;R?) as n — oo, B" — B in L*(Q;R**?) as n — oo, (5.39)
WM(Q) = |p|(Q) asn — oo, Curl " = " in D'(Q;R?) for all n € N, (5.40)

where p" is as in Step 2 for all n € N. In view of (3.15) and (5.39)-(5.40), by Reshetnyak’s
continuity theorem it follows that

lim F(u", 6") = F(p, B)-
n—od
By Step 2, for all n € N there exists a sequence (u}, 87); with (4}, B}) € Xy, x Aq;(p}) for all
j € N such that, as j — oo,
21} ™ in M(Q;R?), Qajlgfﬁgl — B"in L?(Q; R¥*?), lim sup Fo, (17, B) < F(u", 6").
j—o0

Thus, to obtain (3.21) it is enough to use a standard diagonal argument. O

6. THE SUBCRITICAL AND SUPERCRITICAL REGIMES

This section is devoted to the proofs of the I'-limit of F, in the subcritical and supercritical
regime. Since the proofs are similar to those of the critical regime, we only highlight the essential
differences.

6.1. The subcritical regime. In the subcritical regime (N, < é as o — 0), we fix three sequences
()4, (pj)j, and (N;); satisfying (3.14) and (3.23). We recall the functionals defined in (3.7)
and (3.22).

Proof of Theorem 3.5. Compactness and I'-liminf inequality. The proofs are similar to the
ones of Theorem 3.4(i),(ii), see Remark 5.2. We only need to check that the convergences in (3.24)—
(3.25) imply Curl 3 = 0 in D’(€; R?). To this end, we fix ® € C°(; R?). Then, by (3.25),

V29 V29
Curl 8, ®)pr(qy = li Curl(Z,’ D)prqy = li
(Curl 3, @)p ) Ji)rgo \/ﬁj (Curl( Pj 6] ) )D Q) = ]i}lgo \/ﬁ]
and by Lemma A.6, see particularly (A.7), we have

V2 7o
\/ij<CurlI 1B, ® )pr(Q) = V205N / T, ®(x d—u]

<Cu IIP] Bja >'D’ ()




30 S. ALMI, M. CAPONI, M. FRIEDRICH, AND F. SOLOMBRINO

For j sufficiently large, we derive that Z,’® € C2°({;R?) and Z,’® — & in C(Q;R?) as j — oo,
see Corollary A.5. Therefore, by (3.23) and (3.24)

(Curl B, @) pr() = hm vV 2a;N. / aJ(I) d—u] lim /2a;N. / - dp =0,

]*)OO
which gives Curl 3 = 0 in D’'(Q; R?).

I-limsup inequality. As in the proof of Theorem 3.4(iii), we proceed in three steps. We briefly
explain only the first one, as the other two are analogous to the critical regime with the only
difference that in Step 3 we approximate only the measure u, given that g is independent of u.

Let 8 € L?(£;R?*2) with Curl 8 = 0 in D'(Q; R?), and let u := x4 dz, where £ € R? and A C Q
is an open, bounded, simply connected set with Lipschitz boundary. We write £ = ng\/lz 1 Mk
where &, € S and A, > 0, such that o(€) = S0 A\ep(€r), see (3.13).

Since Curl 8 = 0 in D’(; R?), there exists v € H'(Q; R?) such that

6=Vv in Q.
Let (®;); C C°(R?;R?) be such that V®; — Vv in L?(Q;R?) as j — oo, and consider the linear
operator Ppljfaj : S(R%;R?) — S(R?;R?) given by Proposition 2.5. We define

1

B =V (P,, “®;) inR?foralljeN,

and by construction ﬁ;eg € S(R?;R?*?) with Curl B;eg =0 in D'(R?%; R?).
Let (uj); € M(R?;R?) be the sequence of measures given by Lemma 5.3 associated to (Nj);.
We consider the functions (; j, (j, and v; defined in (5.20), (5.21), and (5.22), respectively. Let

R > 0 be such that 2 CC Bg. We consider the solution wj*™ € HE(Br; R?) to

{Aw;”»em = —vj in Bp,

wi™ =0 on 0Bg,

and we set 3" = Vw§emJT € L?(Bgr; R**%). We define

N,
B = VLB g 4 g
20zj J J
Arguing as in (5.25), we find by construction that 3; € A, (u;) for all j € N. Moreover, by

proceeding along the lines of (5.29), (5.30), and (5.33), the sequence (15, By); satisfies (3.24)—(3.25).
Only the derivation of (5.33) is slightly different and relies on the estimate (see (5.32))

1/20@'” H < C QOéij
VNG TR = NG (= )2

where we used (3.23), (5.9), and Remark 5.4(iii). Then, we proceed as in Step 1 of the proof of
Theorem 3.4(iii) to obtain (3.26). O

in BR.

—0 asj— oo,

6.2. The supercritical regime. In the supercritical regime (N, > é as a — 0), we fix three
sequences (a;)j, (pj)j, and (INV;); satisfying (3.14) and (3.28). We recall the functionals defined
n (3.8) and (3.27).

Proof of Theorem 3.6. Compactness and I'-liminf inequality. By (C1)—(C3) we have

I B By < / CI% B, (a) 129 By() da < C.
J

Hence, there is 8 € L2(Q; R2X2) such that, up to a not relabeled subsequence,

sym

ﬁjz;,’;ﬁjym — B in L*(REZ)  as j — .
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For the I'-liminf inequality, it is enough to observe that the convergence in (3.29) implies

—h}izgf e / O3 5™ (0) T35 ) o 2 . [ €3l s Bl

I'-limsup inequality. The proof of the I'-limsup inequality is divided into two steps.
Step 1. We fix € C°(Q;RZ2%Y) and we define p := Curl fdz € M(©;R?). By arguing as
in [17, Theorem 18] there exists a constant C' > 0 (depending on || Curl 3|1~ ()) and a sequence

of measures (p;); C M(R? R?) such that

j
M;
Wi = ;&J(Smm for all 7, |&.;] < C  for all j, F < C forall j, (6.1)
with
B, (wij) CQ for all 4,7, @i j — x| > 2r; if i #k, for all j, = \/61;7] for all 7,

and satisfying

1 * .
—p; = in M(R*R?) as j — oo.
N;j
We consider the functions ¢; j, (;, and v; defined in (5.20), (5.21), and (5.22), respectively. Moreover,
let R > 0 be such that 2 CC Bp and let wi™ € H¢(Bg;R?) be the solution to

{Aw;em:— i —v; in Bg,
w§cm =0 on 0Bp.
We define 3, := Vw;emJT € L?(Bg;R?*?) and we set
Bj = N;B+ ¢+ B;*" in Bg.
Similar to (5.25), by construction §; € Aq, (p5) for all j € N, and we claim that

I;‘;ﬁj — f in L*(Q;R?*?) as j — oo. (6.2)
By (3.28), (5.28), and (6.1), we can find a constant C' > 0 (independent of j) such that
C
I/ ¢(z)Pde < ——5 =0 asj— 6.3
v / TG e € s 20 w0, (63)

ie., N%Iz‘]? ¢j — 0 in L*(Q;R?*?) as j — co. Moreover, thanks to Corollary A.5, we derive that
I,)8 — B in L*(Q;R**?) as j — o0, (6.4)
and, by arguing as in (5.33) (note that we can identify 2a; with 1/N; in (5.23) and (5.33)) we have
! Ia]ﬁrem — 01in L?(Q;R?*?) as j — oo. By combining this with (6.3) and (6.4), we obtain (6.2).

Fmally, we use (6.2) to get

lim — / CZ,’ Bj(z) : I,? Bj(x) da = ;/{)Cﬁ(x) : f(z) de,

J*)OO
which proves (3.30) in the case 8 € C2°(Q; RZ52).
Step 2. Let 3 € L?(1); ngxn%) Then, there exists a sequence (8"), C C°(; ]ngxlﬁ) such that

" — B in LA(Q;R2X2) as n — oo,

Sym
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which implies
lim fsuper(ﬁn) — fsuper (/8) .

n—oo
By Step 1, for all n € N there exists a sequence (u7, 87); with (u7, B7) € Xo; x Aq, (p]) for all
j € N such that

1 o . . .
szg‘; B7 = B in L*(Q;R>?) as j — oo, i Fo (1, B7) = F=Pe(87).
Therefore, to obtain (3.30), it is enough to use a standard diagonal argument. O
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APPENDIX A. RIESZ POTENTIALS

In the appendix, we collect some results regarding the Riesz potentials used in this paper. We
start with the classical Riesz potential Z¢.

Proposition A.1. Let o € (0,2) and let f: R? — R be a measurable function satisfying (2.3).
Then I%f(z) is well-defined for a.e. x € R? and I°f € LL (R?).

loc

Proof. Let f: R? — R be satisfying (2.3). The fact that Z%f(x) is well-defined for a.e. z € R? is a
consequence of [24, Theorem 1.1, Chapter 2]. Moreover, in this case, Z*f is locally integrable on
R2, as observed in [24, Section 4.2]. O

We also recall the following composition formula for the Riesz potential.

Proposition A.2 ([24, Theorem 1.6, Chapter 2]). Let o, € (0,2) be such that o+ 5 € (0,2).
Then,

1 1 YoV 1 2
dy = for all x,z € R® with x # z.
/Rz [z =y Jy — 2[>7F Yats |z = 2P707F

Let us now consider the Riesz potential with finite horizon ;. We first show that 7y is well-
defined. Recall (2.1).

Lemma A.3. Let a € (0,1), p >0, and f € LL _(R?). Then I f () is well-defined for a.e. x € R?

loc

and I3 f € Ll (R?). Moreover, if E C R? is a measurable set and f € LP(E,) for some p € [1, %),

loc

then 9 f € LY(E) for all q € [ , 52D ) and

2—ap
IZ5 fll Loy < 1Qp Il _»a )HfHLP(Ep)-

L pa+p—q (RQ

In particular, if f € LP(E,) for allp € [1,2), then I3 f € L?*(E) for all a € (0,1).
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Proof. Let o € (0,1) and p > 0 be fixed. By (2.6) and the fact that 0 <@, < 1 we can derive the

estimate
1 1
0<Qy “z) < —

p ) Yo |2~

Hence, as supp(Q})_O‘) C B, by (2.7), we derive

for all z € R?\ {0}, o € (0,2), and p > 0. (A1)

2
-« (M2
, “€L(R?) forallre [1’2—o¢> and p > 0,
and both statements follow from Young’s convolution inequality. O
Similarly to classical Riesz potential %, we can prove the following asymptotic result for Z7.

Lemma A.4. Let o € (0,1), p > 0, and x € R?. Let f: By(z) — R be continuous in = and
bounded. Then,

27p% || fll oo (B, (2))

« — (6 <
I T2 = f@), T )] < T (4.2)
Proof. For all € > 0 there exists £ = ¢(¢) > 0 such that
lf(y) — f(z)| <e forall y € By(z). (A.3)

We set ¢ := min{/, £} and write

I3 f(x) = gap(®) + g2 p(2) = /

Bs(z)
By Remark 2.2, (2.7), and (A.1), as o — 0, we have

< [ =t
’ Yo JBy(@)\Boy(2) [T — Y17

_ 27l s, / a1 g < 2l By (@) (o) 0. (A4)
B Yo o B Yo

Since by the definition of w it holds that

F)Qy *(x —y)dy + / fW)Qy*(x — y) dy.

R2\Bo (z)

1-w,(s)=0 forallse [0, g],
by using (2.6), Remark 2.2, and the fact that ¢ = min{¢, £}, we derive that

2ro

@ (2 — « *1-—w
o 11—« d / / P d d
il Q, () r

2_ 00 2 —Q 2 o
a / / o dsdr = ;ii < Wpa.
53 Yap Va2

2mo®

f@= [ o(z)f(x)Q})a(x—y)derf(x)(a% - [ ) e (1227,

Therefore, by Remark 2.2, (A.1), and (A.3), we have, as a — 0,

Moreover, we can write

1 2mo® 1 [f(y) — f(z)]
9ap(x) = f(@)| < |f(2)] |1 - +1f(x )I e +7a P P dy
2wo® mp 2mo®
< |f(x |‘1— +|f($)|7a2°‘+80é7a — €.
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Hence, combining with (A.4) we get
lim sup |I§‘f(:c) — f(z)| <e foralle>0,
a—0

which gives the limit in (A.2). Finally, the estimate in (A.2) can be obtained by using (A.1). O

Actually, the same result holds also true in the case of a sequence of horizons (pa)ae(0,1), as long
as alogp, — 0 as a — 0.

Corollary A.5. Let (pa)ac(o,1) C (0,00) be such that
alogp, =0 asa— 0.
Let R = sup{p, : a € (0,1)}, z € R%, and f: Bgr(z) — R be continuous in x and bounded. Then
lim 72 f(x) = f(z).
Moreover, if f € C.(R™), then
. f—[f in C(R?) as o — 0. (A.5)

Proof. We proceed as in Lemma A 4: given ¢ > 0, we choose £ as in (A.3), and then o, := min{¢, &*
for all € (0,1). Therefore, as a — 0, we get
< 27THfHL°°(BR(z))( N 2m0

2. (@) — f(a)| < g - o8) + 1@l 1 - 2

Yo

YOS n E27r0

ey
o
Yal2® o

+ /(@)

— €

)

«

since a7y, — 2m by Remark 2.2 and p2 = e®!98Pc — 1 as a — 0.
Now, consider f € C.(R?). Given ¢ > 0, we can find ¢ > 0, independently of z, such that (A.3)
holds for all € R2. By arguing as before, we get

27T”fHL°°(R2) 2wol mp< 2mo?
125 f = fllzee ) < T(Pg = 0a) 1 fllzeerey |1 - — aa + HfHLoo(JW)%;Y +¢ a,yaa,
which implies (A.5) by the arbitrariness of €. O

We conclude with the following lemma, which allows us to compute CurlZj f on €2 by means of
Curl f on the enlarged domain €2,,.

Lemma A.6. Let a € (0,1), p >0, and & € R? be fived. Let 2 C R? be an open set with 0 € Qand
let f € LY(Q,;R?*?) be such that

Curl f = &5p  in D'(Q,;R?).
Then, I3 f € L'(Q;R**?), CurlZ3 f € L'(Q;R?), and
CurlZ f = £Q,~“ in D'(Q;R?). (A.6)

Proof. Since f € L'(€,;R**?), we get that of = Q})_a * f € LY(;R?*2) by Lemma A.3. Since
Qll)_o‘ € L'(Q), it remains to prove formula (A.6). To this end, we fix ® € C°(Q;R?). By (2.2),
Fubini’s theorem, and the symmetry of Q;*O‘ we have

<CurlIg‘f, ®>D’(Q) = <D1V(ngj>, (I)>D’(Q) = — /QI,?f(.%‘)J : V(I)(QZ) dx
-/ ( [ @)@ =) dy> V() do
Q By(z)

= — : )0V (y — 2)dx
- pr(y)J-</Bp(y)V<I><)p (v >d)dy



A FRACTIONAL APPROACH TO STRAIN-GRADIENT PLASTICITY 35

=, f(y)J : IyVe(y) dy.

By Proposition 2.5 we derive that Z0® € C2°(£,; R?) and ZoV® = VIZ®. Hence, again by (2.2),

(Curl T2 f, &) ey = — /Q )T - VIS®(y) dy

= (Cul LT} B0, = € 00 = [ 060wy (A
Therefore, Curl I3 f € L' (2;R?) and formula (A.6) is satisfied. O
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