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Abstract. We derive a strain-gradient theory for plasticity as the Γ-limit of discrete dislocation
fractional energies, without the introduction of a core-radius. By using the finite horizon fractional
gradient introduced by Bellido, Cueto, and Mora-Corral [6], we consider a nonlocal model of semi-
discrete dislocations, in which the stored elastic energy is computed via the fractional gradient of
order 1−α. As α goes to 0, we show that suitably rescaled energies Γ-converge to the macroscopic
strain-gradient model of Garroni, Leoni, and Ponsiglione [17].

1. Introduction

The derivation of macroscopic plasticity from dislocation models is crucial for mathematical
and mechanical purposes, see, e.g., [8, 12, 13, 15, 17, 18, 19, 21, 25, 26, 27]. A well-established
approach starts from a mesoscopic and semi-discrete model where the dislocations are modeled
by an additional constraint on the deformation. In the planar setting, this corresponds to the
assumption that close to an edge dislocation in position x0 with Burgers vector ξ the strain field β
satisfies

Curlβ = ξδx0 (1.1)

see, e.g., [3]. In particular, the presence of dislocations prevents β from having a global gradient
structure. In this scenario, β is referred to as an incompatible strain field. Away from dislocations,
the energetics is of elastic type and β locally takes the form of a deformation gradient.

As noticed, e.g., in [8], the constraint (1.1) implies that β is not square integrable close to the
dislocation in x0. Therefore, elastic energies with quadratic growth, such as those considered in lin-
earized models, cannot capture the behavior of strains fulfilling (1.1). As a remedy, regularizations
of the energy have to be considered. The probably most common one in the recent literature is the
so called core-radius approach [4, 22], where the energy is computed on a reference configuration
after cutting out an ε-ball around each dislocation. In such a perforated domain, the strain field is
L2-integrable, but the curl constraint (1.1) has no clear meaning anymore, and has to be reformu-
lated as an integral-circulation-type condition. Following this approach, the asymptotic behavior
for vanishing core-radius parameter ε has been investigated under suitable scaling of the energy,
both in the linear [9, 17, 20] and in the nonlinear setting [2, 11, 16, 19, 25, 27]. In the most relevant
scaling, where the number of dislocations scales as | log ε| (the order of the self-energy related to
one dislocation), the limit energy accounts for the competition between a bulk elastic energy and a
plastic term with linear growth defined on a Radon measure µ. The latter expresses the density of
dislocations and is related to the strain β by the identity Curlβ = µ. An alternative approach with
an energy defined on the whole reference configuration has been proposed, for instance, in [13].
There, a regularization of the dislocation density µ by standard mollification with compactly sup-
ported mollifiers is considered, resulting in square integrable incompatible fields through the curl
constraint on β. In the limit of vanishing regularization, the same dislocation model as in [17] is
recovered.
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In the present paper, we take the perspective of considering a nonlocal model for dislocations,
avoiding the core-radius approach. Hereby, we naturally bridge to nonlocal elasticity models de-
pending on fractional gradients, which have been attracting ever increasing interest in recent years,
see e.g. [5, 6, 7, 14, 23, 28, 29]. In a fractional linear elastic model, the stored energy is expressed
as

1

2

∫
Ω
C∇1−αu : ∇1−αudx , (1.2)

where C denotes an elasticity tensor and the fractional gradient ∇1−αu is defined by convolution
with a singular potential of Riesz type. As pointed out in [14], when dealing with elastic models, it
is reasonable to postulate that such a singular potential has an integration domain depending on a
ball of size ρ > 0 while keeping the same singularity as the Riesz one. This corresponds to a finite
horizon of interaction among the particles, as used for instance in peridynamics [30], and amounts
to consider

∇1−α
ρ u := Iα

ρ (∇u) = Q1−α
ρ ∗ ∇u

in place of ∇1−αu in (1.2), for a suitable Riesz-type kernel Iα
ρ supported in a ball of size ρ. The

precise form of Q1−α
ρ is recalled in (2.6) in Section 2.

The above approach naturally extends to incompatible fields satisfying the constraints introduced
in (1.1) if one considers a linear elastic energy on Iα

ραβ, where the fractional parameter α is close
to 0 and the horizon parameter ρα has to be suitably scaled with α. At this stage, we notice that
the adoption of a fractional regularization allows us to keep the differential constraint (1.1) in a
differential form, without the necessity of passing to a circulation-type condition. Equivalently, one
may rewrite the strain energy in terms of the auxiliary variable β̂α = Iα

ραβ, corresponding to a soft
regularization of the curl constraint (1.1) with singular kernels in place of mollifiers, see Remark 3.7
for details. Hence, our result described below generalizes the perspective of mollification in [13] to
the case of singular convolution operators (yet, restricted to two dimensions). To our view, this is
both of mathematical interest and relevant for applications to fractional elasticity [30, 31, 32].

The main result of the paper concerns the asymptotic analysis of the model when α → 0 for a
suitable behavior of the horizon ρα and a suitable scaling of the energy. We work under the assump-
tion of well-separated dislocations, also expressed in terms of ρα, cf. Section 3 and in particular
Remark 3.1. The limiting model is obtained in terms of Γ-convergence. In the most relevant sce-
nario, the so called critical regime (see Theorem 3.4), we recover the linear model of strain-gradient
plasticity derived in [17]: the self-energy term reads as∫

Ω
φ

(
dµ

d|µ|

)
d|µ|,

where the convex and 1-homogeneous function φ is obtained by a relaxation procedure of a suitable
cell formula (cf. (3.10) and (4.17)). The core of our proof consists in deriving a quadratic bound from
below for the cell formula, in the form given in Proposition 4.2 and Remark 4.3. Here, we explicitly
exploit the structure of the singular Riesz-type potential to compute the asymptotic behavior of
the energy. This is done in two steps: first in Lemma 4.4 we estimate the approximate energy
in terms of a special field ηξ. Then, in Lemmas 4.5–4.6 we make use of the explicit expression
of ηξ to derive a formula for the asymptotic limit. Although not necessary for our proof, as a
byproduct, by introducing a suitable multiplicative factor in our model, we are also able to show
that φ exactly coincides with the density in [17], see Remark 4.3. Hence, on the one hand, we
recover the same result as in [17]. On the other hand, the cell formula (3.10) does not require
neither excision of a core-radius nor the modification of the curl constraint (1.1), which is kept in
its original differential form. As a consequence, for compactness and the derivation of the Γ-liminf
inequality no additional modifications of the strain field β need to be performed in order to extract
information from (1.1). We also point out that, while the asymptotics for the cell formula can be
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derived also for the classical Riesz potential Iα (see Remark 4.7), the use of the finite horizon ρ is
essential for compactness, as explained in Remark 5.1.
Outlook. The results contained in the present work deal with a strain-gradient plasticity model
obtained as the limit of a fractional regularization of a linear semi-discrete dislocation model un-
der the well-separateness assumption. The extension of our analysis to more general dislocation
distributions (see, e.g., [20]) and to nonlinear theories [19, 25, 27] is a natural research line that
will be subject to future investigation. Finally, we would like to mention a related but different
fractional approach to the emergence of topological defects and Ginzburg-Landau energies that has
been recently developed in [1].
Plan of the paper. In Section 2 we recall some basic notation and preliminary facts. We present
the fractional dislocation model in Section 3, together with the statements of the asymptotic results
in the critical, subcritical, and supercritical regimes (see Theorems 3.4, 3.5, and 3.6, respectively).
Section 4 is devoted to the derivation of the cell formula for the critical and the subcritical regime.
Finally, in Sections 5–6 we discuss the proofs of our main results.

2. Preliminaries

2.1. Notation. The space of 2 × 2 matrices with real entries is denoted by R2×2. Given two
matrices A1, A2 ∈ R2×2, their scalar product is denoted by A1 : A2, and the induced norm of
A ∈ R2×2 by |A|. The subspace of symmetric matrices is denoted by R2×2

sym and the subspace of

skew-symmetric matrices by R2×2
skew. Given A ∈ R2×2, we denote by Asym := 1

2(A + AT ) ∈ R2×2
sym

its symmetric part. We use SO(2) to denote the special orthogonal group in R2, consisting of
all matrices A ∈ R2×2 satisfying A−1 = AT and detA = 1. The identity matrix is denoted by
I ∈ R2×2.

For all r > 0 and x ∈ R2, we denote by Br(x) the open ball of radius r and center x. If x = 0,
we simply write Br, and we set S1 := ∂B1. Given a measurable set E ⊆ R2, we denote by |E|
the 2-dimensional Lebesgue measure of E, and by χE : R2 → {0, 1} we denote the corresponding
characteristic function. Given ρ > 0 and a set E ⊆ R2, we define

Eρ := {x ∈ R2 : dist(x,E) < ρ}. (2.1)

Given an open subset Ω of R2, we denote by M(Ω;Rk) the space of vector-valued Radon measures
on Ω. Moreover, the set of all distributions on Ω, namely the continuous dual space of C∞

c (Ω;Rk),
endowed with the strong dual topology, is denoted by D′(Ω;Rk). We denote by S(R2;Rk) the space
of Schwartz functions ϕ : R2 → Rk. We adopt standard notation for Lebesgue spaces on measurable
subsets E ⊆ R2 and Sobolev spaces on open subsets Ω ⊆ R2. According to the context, we use
∥ · ∥Lp(E) to denote the norm in Lp(E;Rk) for all 1 ≤ p ≤ ∞ and k ∈ N. A similar convention is
also used to denote the norms in Sobolev spaces. The boundary values of a Sobolev function are
always intended in the sense of traces. Since we often need to consider functions defined in the
whole space, when needed we always assume that a function f ∈ Lp(E;Rk) is defined on R2, by
setting f = 0 outside E. Given

β =

(
β11 β12
β21 β22

)
∈ L1

loc(R2;R2×2),

we define the curl in the sense of distributions as

Curlβ :=

(
∂1β12 − ∂2β11
∂1β22 − ∂2β21

)
∈ D′(R2;R2).

Let us define

J :=

(
0 −1
1 0

)
∈ SO(2).
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Then, we have

Curlβ = Div(βJ) in D′(R2;R2). (2.2)

2.2. A notion of fractional gradient and Riesz potential with finite horizon. We focus on
R2 and introduce the notion of fractional gradient ∇s

ρ and Riesz potential Iα
ρ of order s, α ∈ (0, 1),

both with finite horizon ρ > 0. We start by recalling the definition of the usual Riesz potential Iα

in R2.

Definition 2.1 (Riesz potential). Let α ∈ (0, 2) and f : R2 → R be a measurable function satisfying∫
R2

|f(y)|
(1 + |y|)2−α

dy <∞. (2.3)

The α-Riesz potential of f is the function Iαf : R2 → R defined as

Iαf(x) :=
1

γα

∫
R2

f(y)

|x− y|2−α
dy for a.e. x ∈ R2, with γα :=

π2αΓ(α2 )

Γ(2−α
2 )

,

where Γ denotes the Gamma function.

Remark 2.2. Iαf is well-defined for all measurable functions f satisfying (2.3), see Proposition A.1
in the Appendix. Moreover, we have

γ1 = 2π, lim
α→0

αγα = 2π, lim
α→2

γα
2− α

= 2π.

We now define the fractional gradient with finite horizon ∇s
ρ for all s ∈ (0, 1) (degree of differen-

tiability) and ρ > 0 (horizon). Following [6, 7], we fix a function w : [0,∞) → R which satisfies

(i) w ∈ C∞([0,∞)) and suppw ⊂ [0, 1),
(ii) 0 ≤ w ≤ 1 in [0,∞) and w = 1 on

[
0, 12
]
,

(iii) w is nonincreasing on [0,∞), i.e., w(s) ≤ w(t) for all 0 ≤ t ≤ s.

For all ρ > 0, we define wρ : [0,∞) → R and wρ : R2 → R as

wρ(t) := w

(
t

ρ

)
for all t ∈ [0,∞), wρ(x) := wρ(|x|) for all x ∈ R2. (2.4)

Definition 2.3 (Fractional gradient with finite horizon). Let s ∈ (0, 1), ρ > 0, and ϕ ∈ C∞(R2).
The s-fractional gradient with finite horizon ρ of ϕ is the function ∇s

ρϕ : R2 → R2 defined as

∇s
ρϕ(x) :=

1 + s

γ1−s

∫
R2

ϕ(x)− ϕ(y)

|x− y|
x− y

|x− y|
wρ(x− y)

|x− y|1+s
dy for all x ∈ R2.

Remark 2.4. The function ∇s
ρϕ is well-defined in R2 and supp(∇s

ρϕ) ⊂ (suppϕ)ρ (recall (2.1)).

Moreover, if ϕ ∈ C∞
c (R2) and if we replace the function wρ with 1 in the definition above (which,

roughly speaking, corresponds to the case ρ = ∞), we obtain the Riesz s-fractional gradient

∇sϕ(x) :=
1 + s

γ1−s

∫
R2

ϕ(x)− ϕ(y)

|x− y|
x− y

|x− y|
1

|x− y|1+s
dy for all x ∈ R2.

We refer to [10, 28, 29] for detailed literature on this operator.

We recall that the Riesz s-fractional gradient ∇s can be written in terms of a local gradient via
the (1− s)-Riesz potential. More precisely, for all s ∈ (0, 1) and ϕ ∈ C∞

c (R2) we have

∇sϕ = ∇(I1−sϕ) = I1−s(∇ϕ), (2.5)
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see [10, Proposition 2.2] and [28, Theorem 1.2]. A similar property also applies to ∇s
ρ, as shown

in [6, 7, 14]. To formulate this result, we need some additional notation. For all s ∈ (0, 1) and
ρ > 0, we define the functions qsρ : [0,∞) → R and qsρ : R2 → R as

qsρ(t) := (1 + s)t1+s

∫ ∞

t

wρ(r)

r2+s
dr for all t ∈ [0,∞), qsρ(x) := qsρ(|x|) for all x ∈ R2.

Moreover, we set Qs
ρ : R2 \ {0} → [0,∞) as

Qs
ρ(x) :=

1

γ1−s

1

|x|1+s
qsρ(x) =

1 + s

γ1−s

∫ ∞

|x|

wρ(r)

r2+s
dr for all x ∈ R2 \ {0}. (2.6)

By [7, Lemma 4.2], for all s ∈ (0, 1) and ρ > 0, we have

Qs
ρ ∈ C∞(R2 \ {0}) ∩ L1(R2), supp(Qs

ρ) ⊂ Bρ. (2.7)

We have the following relation between the fractional gradient with finite horizon ∇s
ρ and the

(standard) gradient ∇.

Proposition 2.5 ([14, Proposition 1 and Equation (2.13)]). Let s ∈ (0, 1) and ρ > 0.

(i) For all ϕ ∈ C∞(R2) we have Qs
ρϕ ∈ C∞(R2) and

∇(Qs
ρ ∗ ϕ) = Qs

ρ ∗ ∇ϕ = ∇s
ρϕ in R2. (2.8)

In particular, if ϕ ∈ S(R2), then ∇s
ρϕ ∈ S(R2), and, if ϕ ∈ C∞

c (R2), then ∇s
ρϕ ∈ C∞

c (R2).

(ii) There exists a linear operator P s
ρ : S(R2) → S(R2) such that for all ϕ ∈ S(R2)

P s
ρ (Q

s
ρ ∗ ϕ) = Qs

ρ ∗ (P s
ρϕ) = ϕ in R2.

For more details on the operator P s
ρ , we refer to [14]. We only point out that in the limit case

ρ = ∞, P s
ρ is nothing else but the 1−s

2 -fractional Laplacian.
Based on (2.5) and Proposition 2.5, we introduce the Riesz potential with finite horizon.

Definition 2.6 (Riesz potential with finite horizon). Let α ∈ (0, 1), ρ > 0, and f ∈ L1
loc(R2). The

α-Riesz potential with finite horizon ρ of f is the function Iα
ρ f : R2 → R defined as

Iα
ρ f(x) := (Q1−α

ρ ∗ f)(x) =
∫
Bρ(x)

f(y)Q1−α
ρ (x− y) dy for a.e. x ∈ R2.

Remark 2.7. By (2.7) the function Q1−α
ρ is well-defined for all α ∈ (0, 1) and it belongs to L1(R2).

Therefore, Iα
ρ f is well-defined a.e. in R2, see Lemma A.3. We remark that Iα

ρ can actually be
defined for α ∈ (0, 2) as (2.6)–(2.7) are well-defined for s ∈ (−1, 1). Moreover, the definition of
the Riesz potential with finite horizon is consistent with the classical one. Indeed, if f : R2 → R
satisfies (2.3) and we replace the function wρ in (2.6) by 1, we obtain the Riesz potential Iα.

For more information about the fractional gradient ∇s
ρ and the Riesz potential Iα

ρ with finite
horizon ρ > 0, we refer to [6, 7, 14] and the Appendix below.

3. Main Problem

In this section we introduce our model of semi-discrete dislocations and present the main results.
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3.1. The model. Let Ω ⊂ R2 be an open, bounded, simply connected set with Lipschitz boundary.
We fix two linearly independent vectors b1, b2 ∈ S1, and we define

S := spanZ{b1, b2}.

Let (ρα)α∈(0,1) ⊂ (0, 1) (horizons) and (Nα)α∈(0,1) ⊂ N (numbers of dislocations) be such that

ρα → 0 as α→ 0, α log ρα → 0 as α→ 0, (3.1)

Nα → ∞ as α→ 0, Nαρ
2
α → 0 as α→ 0. (3.2)

Assumptions (3.2) model the fact that the number of dislocations tends to infinity but the area
of the region where the singular integral interacts with the dislocations asymptotically vanishes.
On the other hand, assumption (3.1) prevents ρα from going to zero too quickly, so that the
Riesz potential Iα

ρα can keep track of the information due to the dislocations as α → 0 (see also
Corollary A.5 in the Appendix). For all α ∈ (0, 1), we define

Xα :=

{
M∑
i=1

ξiδxi ∈ M(R2;R2) :M ∈ N, ξi ∈ S \ {0}, Bρα(xi) ⊂ Ω, |xi − xk| ≥ 2ρα for i ̸= k

}
,

and, for a given µ ∈ Xα, we set

Aα(µ) :={β ∈ L1(Ωρα ;R2×2) : Curlβ = µ in D′(Ωρα ;R2)}.

Due to the nonlocality induced by Iα
ρα , we assume here well-separated dislocations, namely that

the distance between any pair of dislocation points is at least 2ρα and that β is defined in the
neighborhood Ωρα of Ω, see (2.1). Let C : R2×2 → R2×2 be a fourth-order elasticity tensor, satisfying
the following assumptions:

(C1) CF = CF sym ∈ R2×2
sym for all F ∈ R2×2;

(C2) CF1 : F2 = F1 : CF2 for all F1, F2 ∈ R2×2;
(C3) there exist 0 < ν1 ≤ ν2 such that

ν1|F sym|2 ≤ CF : F ≤ ν2|F sym|2 for all F ∈ R2×2.

Given µ ∈ Xα and β ∈ Aα(µ), we define the energy

Eα(µ, β) :=
1

2

∫
Ω
CIα

ραβ(x) : I
α
ραβ(x) dx. (3.3)

Remark 3.1 (Comparison to core-radius approach and elastic model). (i) When the fractional
order α depends asymptotically on an atomic scale ε by

α(ε) ∼ 1

| log ε|
as ε→ 0, (3.4)

our model is closely related to the one in [17] based on standard gradients. In particular, in our
setting the horizon ρα plays the same role of the hard core-radius ρε in [17]. The assumption [17,
Section 2.1(i)] corresponds to (3.1) (see also the equivalent formulation (i’)) and assumption [17,
Section 2.1(ii)] is exactly (3.2).

(ii) As we detail below in Remark 4.1(ii), for all µ ∈ Xα there exists ζ ∈ Aα(µ) such that
Eα(µ, ζ) < ∞. This is a key difference to the model with standard gradients, where in presence
of dislocations the energy is always infinite, unless the elastic energy is restricted to the domain
outside the so-called core region surrounding the dislocations.

(iii) If we consider the special case µ = 0 and a regular function β ∈ Aα(0), then β = ∇v in Ωρα

for some regular function v. In this case, thanks to (2.8), the energy (3.3) reduces to

Eα(0, β) = Eα(0,∇v) =
1

2

∫
Ω
C∇1−α

ρα v(x) : ∇1−α
ρα v(x) dx, (3.5)
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which can be interpreted as the analogue of a linearized elasticity model in the context of nonlocal
gradients with finite horizon. In this sense, (3.3) is the generalization of (3.5) to the case of
incompatible fields.

Remark 3.2 (Energy regimes). Note that Nα does not enter explicitly in the model, but it plays
a key role for the different scaling regimes that we now discuss. The number Nα represents the
typical number of dislocations, i.e., in the above model we expect to have measures of the form
µ =

∑Nα
i=1 ξiδxi ∈ Xα. The Riesz potential with finite horizon Iα

ρα introduces a nonlocality of length
scale ρα into the model. Similarly to [17], this motivates to decompose the energy Eα(µ, β) for
β ∈ Aα(µ) into the sum of two terms: the self-energy

Eself
α (µ, β) :=

1

2

∫
⋃Nα

i=1 Bρα (xi)
CIα

ραβ(x) : I
α
ραβ(x) dx,

and the interaction energy

E inter
α (µ, β) :=

1

2

∫
Ω\

⋃Nα
i=1 Bρα (xi)

CIα
ραβ(x) : I

α
ραβ(x) dx.

As shown in Proposition 4.2, for µ := ξδ0, we have

inf
β∈Aα(µ)

1

2

∫
Bρα

CIα
ραβ(x) : I

α
ραβ(x) dx ∼ 1

α
as α→ 0.

Therefore, we expect that

Eself
α (µ, β) ∼ Nα

α
as α→ 0.

Moreover, since the interaction energy is defined outside the singularities, we expect its behavior
to be the same as in the core-radius model, i.e.,

E inter
α (µ, β) ∼ N2

α as α→ 0,

see [17, Section 2.2]. Therefore, depending on the regime Nα ≪ 1
α , Nα ≫ 1

α , or Nα ∼ 1
α as α→ 0,

the self-energy is dominant (subcritical regime), the interaction energy is dominant (supercritical
regime), or they are both of the same order (critical regime). With the choice in (3.4), we recover
the same scaling factors and regimes of [17].

Motivated by Remark 3.2, we consider three regimes for the behavior of Nα with respect to
α→ 0. We define Fα,F sub

α ,F super
α : M(R2;R2)× L1

loc(R2;R2×2) → [0,∞] as

(1) Critical regime (Nα ∼ 1
α as α→ 0):

Fα(µ, β) :=

{
(2α)2Eα(µ, β) if µ ∈ Xα and β ∈ Aα(µ),

∞ otherwise.
(3.6)

(2) Subcritical regime (Nα ≪ 1
α as α→ 0):

F sub
α (µ, β) :=

{
2α
Nα

Eα(µ, β) if µ ∈ Xα and β ∈ Aα(µ),

∞ otherwise.
(3.7)

(3) Supercritical regime (Nα ≫ 1
α as α→ 0):

F super
α (µ, β) :=

{
1
N2

α
Eα(µ, β) if µ ∈ Xα and β ∈ Aα(µ),

∞ otherwise.
(3.8)



8 S. ALMI, M. CAPONI, M. FRIEDRICH, AND F. SOLOMBRINO

Our goal is to study the Γ-limit of Fα, F sub
α , and F super

α . In order to recover the exact same limits
as in [17], the above energies are rescaled accordingly with prefactors 2, see Remark 3.3(ii) below.

To formulate the asymptotic energy, we need to introduce the self-energy density. First, let
ξ ∈ R2, α ∈ (0, 1), and ρ ∈ (0, 1) be fixed. We set

A(ξ, ρ) :=
{
β ∈ L1(B2ρ;R2×2) : Curlβ = ξδ0 in D′(B2ρ;R2)

}
, (3.9)

and, since A(ξ, ρ) ̸= ∅ by Remark 4.1(i) below, we can consider the infimum problem

Ψ(ξ, α, ρ) := inf
β∈A(ξ,ρ)

1

2

∫
Bρ

CIα
ρ β(x) : Iα

ρ β(x) dx. (3.10)

Then, for fixed ρ ∈ (0, 1) we define the asymptotic energy ψ : R2 → [0,∞) as

ψ(ξ) := lim
α→0

2αΨ(ξ, α, ρ) for all ξ ∈ R2. (3.11)

In Section 4 below, see (4.7), we will show that ψ is well-defined, i.e., the limit in (3.11) exists and
it is independent of ρ ∈ (0, 1). We will also get that

ψ(ξ) ≥ c|ξ|2 (3.12)

for some c > 0, see (4.6) below. In particular, this implies that Ψ(ξ, α, ρ) scales like α−1, see the
scaling discussed in Remark 3.2 and also Proposition 4.2 below. Finally, we define the self-energy
density φ : R2 → [0,∞) through the following relaxation procedure

φ(ξ) := inf

{
M∑
k=1

λkψ(ξk) :
M∑
k=1

λkξk = ξ, M ∈ N, λk ≥ 0, ξk ∈ S

}
for all ξ ∈ R2. (3.13)

Remark 3.3. (i) As in [17], the self-energy density φ is a positively 1-homogeneous convex function,
and it depends only on the elasticity tensor C and the class of admissible Burgers vectors {b1, b2}.
By (3.12), the infimum is actually a minimum.

(ii) In view of the particular choice of 2α in (3.11), we have that φ coincides with the self-energy
of the core-radius model, see Proposition 4.2 and Remark 4.3 below. This is the reason why in the
definition of F sub

α the scaling factor is chosen as 2α. Eventually, the prefactor (2α)2 for Fα ensures
that all three energies Fα, F sub

α , F super
α are consistent for Nα = 1

2α .

3.2. Main results. From now on, we consider a fixed sequence (αj)j converging to 0. For nota-
tional convience, we write (ρj)j for the corresponding sequence of horizons (ραj )j and similarly we
write (Nj)j in place of (Nαj )j . Then (3.1) and (3.2) read as

ρj → 0, Nj → ∞, αj log ρj → 0, Njρ
2
j → 0 as j → ∞. (3.14)

In the critical regime, the limit energy F : M(Ω;R2)× L2(Ω;R2×2) → [0,∞] takes the form

F(µ, β) :=


1

2

∫
Ω
Cβ(x) : β(x) dx+

∫
Ω
φ

(
dµ

d|µ|

)
d|µ| if Curlβ = µ,

∞ otherwise,
(3.15)

and our main Γ-convergence result is the following.

Theorem 3.4 (Critical regime). Let (αj)j ⊂ (0, 1) and (ρj)j ⊂ (0, 1) be satisfying (3.14) for the
choice

Nj =
1

2αj
. (3.16)
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(i) Compactness. Let (µj , βj)j ⊂ M(R2;R2)× L1
loc(R2;R2×2) be such that

sup
j∈N

Fαj (µj , βj) <∞. (3.17)

There exist a (not relabeled) subsequence of (αj)j, a sequence of skew-symmetric matrices

(Sj)j ⊂ R2×2
skew, and (µ, β) ∈ (M(Ω;R2) ∩ H−1(Ω;R2)) × L2(Ω;R2×2) with Curlβ = µ in

D′(Ω;R2) such that

2αjµj
∗−⇀ µ in M(Ω;R2) as j → ∞, (3.18)

2αj(I
αj
ρj βj − Sj)⇀ β in L2(Ω;R2×2) as j → ∞. (3.19)

(ii) Γ-liminf inequality. Let (µj , βj , Sj)j ⊂ M(R2;R2)× L1
loc(R2;R2×2)× R2×2

skew and (µ, β) ∈
M(Ω;R2)× L2(Ω;R2×2) be satisfying (3.18)–(3.19). Then,

lim inf
j→∞

Fαj (µj , βj) ≥ F(µ, β). (3.20)

(iii) Γ-limsup inequality. For all (µ, β) ∈ (M(Ω;R2) ∩ H−1(Ω;R2)) × L2(Ω;R2×2) with
Curlβ = µ in D′(Ω;R2) there is a sequence (µj , βj)j ⊂ M(R2;R2)×L1

loc(R2;R2×2) satisfy-
ing (µj , βj) ∈ Xαj ×Aαj (µj) for all j ∈ N, (3.18)–(3.19) (with Sj = 0), and

lim sup
j→∞

Fαj (µj , βj) ≤ F(µ, β). (3.21)

In the subcritical regime, the self-energy is predominant as observed in Remark 3.2. Therefore,
at the limit as α → 0 we expect that µ and β are no longer related. Indeed, the limit functional
F sub : M(Ω;R2)× L2(Ω;R2×2) → [0,∞] takes the form

F sub(µ, β) :=


1

2

∫
Ω
Cβ(x) : β(x) dx+

∫
Ω
φ

(
dµ

d|µ|

)
d|µ| if Curlβ = 0,

∞ otherwise.
(3.22)

More precisely, we obtain the following Γ-limit result.

Theorem 3.5 (Subcritical regime). Let (αj)j ⊂ (0, 1), (ρj)j ⊂ (0, 1), and (Nj)j ⊂ N be satisfy-
ing (3.14) and

Njαj → 0 as j → ∞. (3.23)

(i) Compactness. Let (µj , βj)j ⊂ M(R2;R2)× L1
loc(R2;R2×2) be such that

sup
j∈N

F sub
αj

(µj , βj) <∞.

There exist a (not relabeled) subsequence of (αj)j, a sequence of skew-symmetric matrices

(Sj)j ⊂ R2×2
skew, and (µ, β) ∈ M(Ω;R2)×L2(Ω;R2×2) with Curlβ = 0 in D′(Ω;R2) such that

1

Nj
µj

∗−⇀ µ in M(Ω;R2) as j → ∞, (3.24)√
2αj√
Nj

(Iαj
ρj βj − Sj)⇀ β in L2(Ω;R2×2) as j → ∞. (3.25)

(ii) Γ-liminf inequality. Let (µj , βj , Sj)j ⊂ M(R2;R2)× L1
loc(R2;R2×2)× R2×2

skew and (µ, β) ∈
M(Ω;R2)× L2(Ω;R2×2) be satisfying (3.24)–(3.25). Then,

lim inf
j→∞

F sub
αj

(µj , βj) ≥ F sub(µ, β).



10 S. ALMI, M. CAPONI, M. FRIEDRICH, AND F. SOLOMBRINO

(iii) Γ-limsup inequality. For all (µ, β) ∈ M(Ω;R2) × L2(Ω;R2×2) with Curlβ = 0 in
D′(Ω;R2) there is a sequence (µj , βj)j ⊂ M(R2;R2) × L1

loc(R2;R2×2) satisfying (µj , βj) ∈
Xαj ×Aαj (µj) for all j ∈ N, (3.24)–(3.25) (with Sj = 0), and

lim sup
j→∞

F sub
αj

(µj , βj) ≤ F sub(µ, β). (3.26)

In the supercritical regime, the interaction energy is dominant as observed in Remark 3.2. Hence,
in the limit α → 0, the self-energy term disappears. Therefore, as α → 0, Fα Γ-converges to the
functional F super : L2(Ω;R2×2

sym) → [0,∞] defined as

F super(β) =
1

2

∫
Ω
Cβ(x) : β(x) dx for all β ∈ L2(Ω;R2×2

sym). (3.27)

More precisely, we have the following result.

Theorem 3.6 (Supercritical regime). Let (αj)j ⊂ (0, 1), (ρj)j ⊂ (0, 1), and (Nj)j ⊂ N be satisfy-
ing (3.14) and

Njαj → ∞ as j → ∞. (3.28)

(i) Compactness. Let (µj , βj)j ⊂ M(R2;R2)× L1
loc(R2;R2×2) be such that

sup
j∈N

F super
αj

(µj , βj) <∞.

There exist a (not relabeled) subsequence of (αj)j and β ∈ L2(Ω;R2×2
sym) such that

1

Nj
Iαj
ρj β

sym
j ⇀ β in L2(Ω;R2×2

sym) as j → ∞. (3.29)

(ii) Γ-liminf inequality. Let (µj , βj)j ⊂ M(R2;R2)× L1
loc(R2;R2×2) and β ∈ L2(Ω;R2×2

sym) be
satisfying (3.29). Then

lim inf
j→∞

F super
αj

(µj , βj) ≥ F super(β).

(iii) Γ-limsup inequality. For all β ∈ L2(Ω;R2×2
sym) there is a sequence (µj , βj)j ⊂ M(R2;R2)×

L1
loc(R2;R2×2) satisfying (µj , βj) ∈ Xαj ×Aαj (µj) for all j ∈ N, (3.29), and

lim sup
j→∞

F super
αj

(µj , βj) ≤ F super(β). (3.30)

Remark 3.7. By Lemma A.6, we deduce that for all µ =
∑M

i=1 ξiδxi ∈ Xα and β ∈ Aα(µ) we have

Curl Iα
ραβ =

M∑
i=1

ξiQ
1−α
ρα ( · − xi) in D′(Ω;R2).

Therefore, we could study, in a completely equivalent way, the Γ-limit as α→ 0 of the functionals
Êα : L1(Ω;R2)× L2(Ω;R2×2) → [0,∞], defined through the energy

Êα(µ̂, β̂) :=
1

2

∫
Ω
Cβ̂(x) : β̂(x) dx for µ̂ ∈ X̂α and β̂ ∈ Â(µ̂),

where

X̂α :=

{
M∑
i=1

ξiQ
1−α
ρα ( · − xi) :M ∈ N, ξi ∈ S \ {0}, Bρα(xi) ⊂ Ω, |xi − xk| ≥ 2ρα for i ̸= k

}
,

and

Â(µ̂) :=
{
β̂ ∈ L2(Ω;R2×2) : Curl β̂ = µ̂ in D′(Ω;R2)

}
for µ̂ ∈ X̂α.
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As explained in the introduction, this is in analogy with [13], where the authors considered a model
of discrete dislocations in which the curl constraint is regularized via mollifiers. We point out that,
compared to [13], we consider singular convolution operators.

4. Cell formula for the self-energy

In this section, we compute the asymptotic self-energy stored in a neighborhood of a dislocation.
As in [17], this is done by defining a self-energy through a cell problem. Recall the definitions
of the cell formulas Ψ and ψ in (3.10) and (3.11), respectively. Our main goal is to show that
ψ is well-defined and, as a byproduct, that it coincides with the cell formula for the core-radius
model of [17]. The main statement of this section and its proof are contained in Section 4.1. In
Sections 4.2–4.4 we then give the proof of some auxiliary statements.

Before we start, we construct elements Aα(µ) for µ ∈ Xα, which in particular provides useful
competitors for the minimization problem (3.10).

Remark 4.1 (Competitors). (i) Let us consider µ = ξδ0. We introduce the function

ζ(x) :=
ξ

2π
⊗ Jx

|x|2
for x ∈ R2 \ {0}.

Then, ζ ∈ C∞(R2 \ {0};R2×2) ∩ Lp
loc(R

2;R2×2) for every p ∈ [1, 2) and Curl ζ = ξδ0 in D′(R2;R2).
In fact, Curl ζ = 0 in R2 \ {0}, and for all Φ ∈ C∞

c (R2;R2) we have by (2.2) and the divergence
formula

⟨Curl ζ,Φ⟩D′(R2) = −
∫
R2

ζ(x)J : ∇Φ(x) dx = − lim
ε→0

∫
R2\Bε

ζ(x)J : ∇Φ(x) dx

= − lim
ε→0

∫
R2\Bε

Div((ζ(x)J)TΦ(x)) dx

= lim
ε→0

1

2πε

∫
∂Bε

ξ · Φ(x) dx = ξ · Φ(0).

This shows that ζ ∈ A(ξ, ρ) defined in (3.9) for all ρ > 0, and thus A(ξ, ρ) ̸= ∅. Moreover,
Lemma A.3 implies Iα

ρ ζ ∈ L2
loc(R2;R2×2) for each α ∈ (0, 1).

(ii) For more general measures µ =
∑M

i=1 ξiδxi ∈ Xα, we define ζ =
∑M

i=1 ζi(·−xi), where ζi is as
in (i) with ξi in place of ξ. Then, ζ ∈ Aα(µ) ̸= ∅ and we obtain Iα

ρ ζ ∈ L2(Ω;R2×2). In particular,

we have Eα(µ, ζ) <∞.

4.1. Asymptotic cell formula. In this subsection we show that formula (3.11) is well-defined and
we compute it, similarly to [17]. To this aim, given ξ ∈ R2, we consider a distributional solution
ηξ : R2 → R2×2 to {

Curl ηξ = ξδ0 in R2,

DivCηξ = 0 in R2.
(4.1)

The function ηξ is smooth in R2 \ {0} and in polar coordinates takes the form

ηξ(r cos θ, r sin θ) =
1

r
Γξ(θ) for all r ∈ (0,∞) and θ ∈ [0, 2π), (4.2)

where the function Γξ depends on the elasticity tensor C, is linear in ξ, and satisfies the bound

|Γξ(θ)| ≤ K|ξ| for all θ ∈ [0, 2π) (4.3)

for a constant K = K(ν1, ν2) > 0. We refer to [4] and [17] for an exhaustive treatment of the
function ηξ. We have the following result.
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Proposition 4.2. For all ξ ∈ R2 and ρ ∈ (0, 1) we have

ψ(ξ) := lim
α→0

2αΨ(ξ, α, ρ) = lim
α→0

α

∫
Bρ

CIα
ρ ηξ(x) : Iα

ρ ηξ(x) dx =
1

2

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ. (4.4)

In particular, ψ(ξ) ≥ c|ξ|2, see (4.6) below. Moreover, if (ρα)α∈(0,1) ⊂ (0, 1) is such that

α log ρα → 0 as α→ 0,

then

lim
α→0

sup
ξ∈S1

|2αΨ(ξ, α, ρα)− ψ(ξ)| = 0. (4.5)

Remark 4.3. Thanks to Proposition 4.2, we derive that our limit energy ψ is independent of
ρ ∈ (0, 1). Moreover, in view of (4.4), ψ coincides with the limit energy defined for the core-radius
model in [17, Equation (36)]. This identity is the reason why in Section 3 we defined the energies
Fα and ψ by using 2α instead of α.

By (4.4), it follows that

ψ(λξ) = λ2ψ(ξ) for all ξ ∈ R2 and λ ∈ R, inf
ξ∈S1

ψ(ξ) = min
ξ∈S1

ψ(ξ) = c > 0. (4.6)

Indeed, if ψ(ξ) = 0 for some ξ ∈ S1, then, in view of (4.4) and (C3), we find Γsym
ξ = 0 on [0, 2π).

Hence, ηsymξ = 0 in R2 \ {0}, thanks to (4.2). Since Curl ηξ = 0 in R2 \ {0}, by applying Korn’s

inequality locally in R2 \ {0}, we derive that ηξ is constant, which contradicts Curl ηξ = ξδ0 in R2.
This implies (4.6), and thus (3.12) holds. If (ρα)α∈(0,1) ⊂ (0, 1) is such that

α log ρα → 0 as α→ 0,

then by (4.5) and (4.6) we derive

lim
α→0

2αΨ(ξ, α, ρα) = ψ(ξ) for all ξ ∈ R2. (4.7)

The proof of Proposition 4.2 requires several intermediate results. We state the relevant estimates
and show how they imply Proposition 4.2. Their proofs are deferred to Sections 4.2–4.4. First of
all, along the lines of [17, Lemma 5], we derive the following estimates for the cell formula.

Lemma 4.4. Let ξ ∈ R2, α ∈
(
0, 12
)
, and ρ ∈ (0, 1) be fixed. There exists a constant C > 0,

independent of ξ, α, and ρ, such that

Ψ(ξ, α, ρ) ≤ 1

2

∫
Bρ

CIα
ρ ηξ(x) : Iα

ρ ηξ(x) dx ≤ Ψ(ξ, α, ρ) + C|ξ|2. (4.8)

Note that we need a restriction on the range of α to ensure that the constant in the statement
is independent of α. In view of Lemma 4.4, in order to prove (4.4), it suffices to show that for all
ρ ∈ (0, 1) there exists

lim
α→0

α

∫
Bρ

CIα
ρ ηξ(x) : Iα

ρ ηξ(x) dx =
1

2

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ.

In view of (4.2)–(4.3), we get that ηξ satisfies (2.3). Therefore, its Riesz potential Iαηξ is well-
defined by Proposition A.1. We first prove that for all ξ ∈ R2 and ρ ∈ (0, 1)

lim
α→0

α

∫
Bρ

CIαηξ(x) : Iαηξ(x) dx =
1

2

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ,

and then we use some uniform estimates to pass from Iαηξ to Iα
ρ ηξ.
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Lemma 4.5. Let ξ ∈ R2 and ρ ∈ (0, 1) be fixed. We have

lim
α→0

α

∫
Bρ

CIαηξ(x) : Iαηξ(x) dx =
1

2

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ. (4.9)

Moreover, if (ρα)α∈(0,1) ⊂ (0, 1) is such that

α log ρα → 0 as α→ 0,

then

lim
α→0

sup
ξ∈S1

∣∣∣∣∣α
∫
Bρα

CIαηξ(x) : Iαηξ(x) dx− 1

2

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ

∣∣∣∣∣ = 0. (4.10)

Next, we control the difference of Iα
ϱ ηξ(ω) and Iαηξ(ω) as α → 0, uniformly in (ξ, ϱ, ω) ∈

S1 × (1,∞)× S1. Later, this will be applied for ϱ = ρ
|x| , for ρ ∈ (0, 1) and x ∈ Bρ \ {0}.

Lemma 4.6. Let ξ ∈ R2, α ∈
(
0, 12
)
, ϱ ∈ (1,∞), and ω ∈ S1 be fixed. There exists a constant

C > 0, independent of ξ, α, ϱ, and ω, such that

|Iα
ϱ ηξ(ω)− Iαηξ(ω)| ≤ C|ξ|α. (4.11)

The proofs of the previous three statements are deferred to Sections 4.2–4.4, respectively. As
the previous lemma is only formulated for ω ∈ S1, we need to make use of the following scaling
arguments. Using (4.2), one can check that for all ξ ∈ R2 and α ∈ (0, 1) we have

Iαηξ(x) =
1

|x|1−α
Iαηξ

(
x

|x|

)
for all x ∈ R2 \ {0}. (4.12)

Moreover, for ρ ∈ (0, 1) it holds

Iα
ρ ηξ(x) =

1

|x|1−α
Iα

ρ
|x|
ηξ

(
x

|x|

)
for all x ∈ R2 \ {0}. (4.13)

To see this, in view of (2.4), (2.6), and (4.2), for all x ∈ R2 \ {0} and λ > 0 we calculate

Iα
ρ ηξ(λx) = (Q1−α

ρ ∗ ηξ)(λx) =
∫
R2

ηξ(y)Q
1−α
ρ (λx− y) dy

= λ2
∫
R2

ηξ(λz)Q
1−α
ρ (λx− λz) dz = λ

∫
R2

ηξ(z)Q
1−α
ρ (λx− λz) dz

= λ
2− α

γα

∫
R2

ηξ(z)

∫ ∞

λ|x−z|

wρ(r)

r3−α
dr dz

=
1

λ1−α

2− α

γα

∫
R2

ηξ(z)

∫ ∞

|x−z|

wρ(λs)

s3−α
dsdz

=
1

λ1−α

2− α

γα

∫
R2

ηξ(z)

∫ ∞

|x−z|

w ρ
λ
(s)

s3−α
dsdz =

1

λ1−α
Iα

ρ
λ
ηξ(x).

As a final preparation, we note that there exists a constant C > 0, independent of ξ, α, ρ, and ω,
such that for all ξ ∈ R2, α ∈ (0, 12), ρ ∈ (0, 1), and ω ∈ S1 it holds

|Iαηξ(ω)| ≤ C|ξ|, |Iα
ρ ηξ(ω)| ≤ C|ξ|. (4.14)

In fact, by using (4.2)–(4.3), Proposition A.2, and γ1 = 2π we derive that

|Iαηξ(ω)| ≤
K|ξ|
γα

∫
R2

1

|y||ω − y|2−α
dy =

2πK|ξ|
γ1+α

for all ξ ∈ R2, α ∈ (0, 1), and ω ∈ S1.
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This yields the first part of (4.14). A similar argument, using (A.1), yields the second part of (4.14).
In particular, by (4.12) and (4.13), we derive that for all ξ ∈ R2, α ∈ (0, 12), ρ ∈ (0, 1), and x ∈ R2

it holds

|Iαηξ(x)| ≤
C|ξ|
|x|1−α

, |Iα
ρ ηξ(x)| ≤

C|ξ|
|x|1−α

. (4.15)

We can now finally prove Proposition 4.2.

Proof of Proposition 4.2. Let ξ ∈ R2 be fixed. By (4.13), for all α ∈ (0, 1) and ρ ∈ (0, 1) we can
write ∫

Bρ

CIα
ρ ηξ(x) : Iα

ρ ηξ(x) dx =

∫
Bρ

1

|x|2−2α
CIα

ρ
|x|
ηξ

(
x

|x|

)
: Iα

ρ
|x|
ηξ

(
x

|x|

)
dx.

By (4.11), (4.14), and (C3) for all α ∈ (0, 1), ρ ∈ (0, 1), and x ∈ Bρ \ {0} we have∣∣∣∣CIα
ρ
|x|
ηξ

(
x

|x|

)
: Iα

ρ
|x|
ηξ

(
x

|x|

)
− CIαηξ

(
x

|x|

)
: Iαηξ

(
x

|x|

)∣∣∣∣ ≤ 2ν2C
2|ξ|2α,

for a constant C > 0 independent of ξ, α, ρ, and x. Therefore, using (4.12)–(4.13), for all α ∈ (0, 1),
and ρ ∈ (0, 1) we have∣∣∣∣∣α

∫
Bρ

CIα
ρ ηξ(x) : Iα

ρ ηξ(x) dx− 1

2

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ

∣∣∣∣∣
≤

∣∣∣∣∣α
∫
Bρ

CIαηξ(x) : Iαηξ(x) dx− 1

2

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ

∣∣∣∣∣+ 2ν2C
2|ξ|2α2

∫
Bρ

1

|x|2−2α
dx

=

∣∣∣∣∣α
∫
Bρ

CIαηξ(x) : Iαηξ(x) dx− 1

2

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ

∣∣∣∣∣+ 2πν2C
2ρ2α|ξ|2α.

This implies both (4.4) and (4.5), thanks to Lemma 4.4 and Lemma 4.5. □

Remark 4.7. (i) Without giving details, we mention that the cell formula can also be defined by
introducing an additional parameter r > 0 as

A(ξ, ρ, r) :=
{
β ∈ L1(Br+ρ;R2×2) : Curlβ = ξδ0 in D′(Br+ρ;R2)

}
,

Ψ(ξ, α, ρ, r) := inf
β∈A(ξ,ρ,r)

1

2

∫
Br

CIα
ρ β(x) : Iα

ρ β(x) dx.

In this case, we still have ψ(ξ) = limα→0 2αΨ(ξ, α, ρ, r) for all ρ ∈ (0, 1) and r > 0.
(ii) An analogous result as in Proposition 4.2 can be shown for the classical Riesz potential Iα.

More precisely, given

ARiesz(ξ) :=
{
β ∈ L1

loc(R2;R2) : Curlβ = ξδ0 in D′(R2;R2)
}
,

ΨRiesz(ξ, α, r) := inf
β∈ARiesz(ξ)

1

2

∫
Br

CIαβ(x) : Iαβ(x) dx, (4.16)

we have ψ(ξ) = limα→0 2αΨ
Riesz(ξ, α, r) for all r > 0. Formally, this follows by performing the

arguments of Proposition 4.2 in the case ρ = ∞. This also explains why in this case the condition
Curlβ = ξδ0 is required on the entire R2.
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4.2. Proof of Lemma 4.4. We start by recalling the Korn’s inequality for incompatible fields
of [17], which will be used in the following.

Proposition 4.8 ([17, Theorem 11]). Let Ω ⊂ R2 be an open, bounded, simply connected set
with Lipschitz boundary. There exists a constant C = C(Ω) > 0 with the following property: for
all β ∈ L2(Ω;R2×2) with µ := Curlβ ∈ M(Ω;R2), there is a skew-symmetric matrix S ∈ R2×2

skew
satisfying

∥β − S∥L2(Ω) ≤ C(∥βsym∥L2(Ω) + |µ|(Ω)).

For the proof of Lemma 4.4, we need a further preparation. By Lemma A.6, for all β ∈ A(ξ, ρ)
we have

β̂ := Iα
ρ β ∈ L1(Bρ;R2×2), Curl β̂ = ξQ1−α

ρ in D′(Bρ;R2).

Therefore, we can also consider the set

Â(ξ, α, ρ) :=
{
β̂ ∈ L2(Bρ;R2×2) : Curl β̂ = ξQ1−α

ρ in D′(Bρ;R2)
}
,

and the infimum problem

Ψ̂(ξ, α, ρ) := inf
β̂∈Â(ξ,α,ρ)

1

2

∫
Bρ

Cβ̂(x) : β̂(x) dx. (4.17)

Comparing with (3.10), we directly get the relation

Ψ̂(ξ, α, ρ) ≤ Ψ(ξ, α, ρ). (4.18)

Now, we want to show that the two cell formulas actually coincide.

Lemma 4.9. For all ξ ∈ R2, α ∈ (0, 1), and ρ ∈ (0, 1) we have

Ψ(ξ, α, ρ) = Ψ̂(ξ, α, ρ) = min
β̂∈Â(ξ,α,ρ)

1

2

∫
Bρ

Cβ̂(x) : β̂(x) dx. (4.19)

Proof. We first show that the minimum in (4.17) is attained. By (4.18) and Ψ(ξ, α, ρ) < ∞, see

Remark 4.1(i), we can consider a minimizing sequence (β̂n)n ⊂ Â(ξ, α, ρ) for Ψ̂(ξ, α, ρ). Since
by (A.1)

∥Curl β̂n∥L1(Bρ) = |ξ|
∫
Bρ

Q1−α
ρ (x) dx ≤ 2πρα|ξ|

αγα
,

by employing Proposition 4.8 and (C1)–(C3) there exist a constant C > 0 independent of n, and a
sequence (Sn)n ⊂ R2×2

skew such that

∥β̂n − Sn∥2L2(Bρ)
≤ C

(∫
Bρ

Cβ̂n(x) : β̂n(x) dx+ ∥Curl β̂n∥2L1(Bρ)

)
≤ C.

Hence, there exists β̂∞ ∈ L2(Bρ;R2×2) such that, up to a not relabeled subsequence,

β̂n − Sn ⇀ β̂∞ in L2(Bρ;R2×2) as n→ ∞.

Moreover, for all Φ ∈ C∞
c (Bρ;R2) we have

⟨Curl β̂∞,Φ⟩D′(Bρ) = lim
n→∞

⟨Curl β̂n,Φ⟩D′(Bρ) = ξ ·
∫
Bρ

Φ(x)Q1−α
ρ (x) dx,

which gives that β̂∞ ∈ Â(ξ, α, ρ). Finally, we have

1

2

∫
Bρ

Cβ̂∞(x) : β̂∞(x) dx ≤ lim inf
n→∞

1

2

∫
Bρ

C(β̂n(x)− Sn) : (β̂n(x)− Sn) dx

= lim
n→∞

1

2

∫
Bρ

Cβ̂n(x) : β̂n(x) dx = inf
β̂∈Â(ξ,α,ρ)

1

2

∫
Bρ

Cβ̂(x) : β̂(x) dx.
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Hence, the minimum in the minimization problem (4.17) is attained.

We now show the first identity in (4.19). Let β̂ ∈ Â(ξ, α, ρ) and ζ be the function defined in
Remark 4.1(i) with µ := ξδ0. Lemma A.6 and Remark 4.1(i) imply

Curl(β̂ − Iα
ρ ζ) = 0 in D′(Bρ;R2), β̂ − Iα

ρ ζ ∈ L2(Bρ;R2×2).

Thus, there exists v ∈ H1(Bρ;R2) such that

β̂ − Iα
ρ ζ = ∇v in Bρ.

Let (Φn)n ⊂ C∞
c (R2;R2) be such that Φn → v in H1(Bρ;R2) as n → ∞. We consider the linear

operator P 1−α
ρ : S(R2;R2) → S(R2;R2) given by Proposition 2.5. We define

βn := ζ +∇(P 1−α
ρ Φn) in R2.

Hence, βn ∈ A(ξ, ρ) for all n ∈ N. By Proposition 2.5 and (3.10) we get

Ψ(ξ, α, ρ) ≤ lim inf
n→∞

1

2

∫
Bρ

CIα
ρ βn(x) : Iα

ρ βn(x) dx

= lim
n→∞

1

2

∫
Bρ

C(Iα
ρ ζ(x) +∇Φn(x)) : (Iα

ρ ζ(x) +∇Φn(x)) dx

=
1

2

∫
Bρ

C(Iα
ρ ζ(x) +∇v(x)) : (Iα

ρ ζ(x) +∇v(x)) dx =
1

2

∫
Bρ

Cβ̂(x) : β̂(x) dx.

This along with (4.18) implies the first identity in (4.19). □

Remark 4.10. Since the energy in (4.17) is quadratic, we immediately get

Ψ(λξ, α, ρ) = λ2Ψ(ξ, α, ρ) for all ξ ∈ R2 and λ ∈ R.

Proof of Lemma 4.4. We fix ξ ∈ R2, α ∈ (0, 12), and ρ ∈ (0, 1). The first inequality in (4.8) is
trivially achieved by observing that ηξ ∈ A(ξ, ρ), see (4.1).

Let us prove the second inequality. To this end, let β̂ ∈ Â(ξ, α, ρ) be a minimizer of (4.17). We
define the annular sets

Ck := Bρ2−k+1 \Bρ2−k for all k ∈ N.
Notice that

⋃
k∈NCk = Bρ \ {0}. We define

k := min

{
k ∈ N :

1

2

∫
Ck

Cβ̂(x) : β̂(x) dx ≤ 1

2

∫
Ck

CIα
ρ ηξ(x) : Iα

ρ ηξ(x) dx

}
. (4.20)

Without restriction, we can assume that the set is nonempty and thus k exists, as otherwise we
would have

1

2

∫
Bρ

CIα
ρ ηξ(x) : Iα

ρ ηξ(x) dx ≤ 1

2

∫
Bρ

Cβ̂(x) : β̂(x) dx = Ψ̂(ξ, α, ρ) = Ψ(ξ, α, ρ),

which gives (4.8). By (4.15) there exists a constant C > 0 (independent of ξ, α, and ρ) such that∫
Ck

|Iα
ρ ηξ(x)|2 dx ≤ C2|ξ|2

∫
Ck

1

|x|2−2α
dx = 2πC2|ξ|2

∫ ρ2−k+1

ρ2−k

1

r1−2α
dr

= 2πC2|ξ|2 ρ
2α

22αk
22α − 1

2α
≤ C|ξ|2. (4.21)

Since Curl(β̂ − Iα
ρ ηξ) = 0 in D′(Bρ;R2) by Lemma A.6 and β̂ − Iα

ρ ηξ ∈ L2(Bρ;R2×2) in view

of (4.15), there exists a function v1 ∈ H1(Bρ;R2) such that

β̂ − Iα
ρ ηξ = ∇v1 in Bρ. (4.22)
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Thanks to (4.20), (4.21), and (C1)–(C3) we can find a constant C > 0 (independent of ξ, α, and
ρ) such that ∫

Ck

|(∇v1(x))sym|2 dx ≤ C|ξ|2.

By Poincarè’s and Korn’s inequalities, there exist C > 0 (independent of ξ, α, and ρ), S ∈ R2×2
skew,

and m ∈ R2 such that∫
Ck

|∇v1(x)− S|2 dx ≤ C|ξ|2,
∫
Ck

|v1(x)− Sx−m|2 dx ≤ ρ22−2kC|ξ|2. (4.23)

Let ϕ ∈ C∞
c (R2) be such that

0 ≤ ϕ ≤ 1 in R2, |∇ϕ| ≤ C

ρ2−k
in R2, ϕ = 1 in B

ρ2−k , ϕ = 0 in R2 \B
ρ2−k+1 . (4.24)

We define the function

v2(x) := ϕ(x)(v1(x)− Sx−m) for x ∈ Bρ.

By construction v2 ∈ H1
0 (Bρ;R2). Thanks to (4.20)–(4.24), we can find a constant C > 0 (inde-

pendent of ξ, α, and ρ) such that

1

2

∫
Bρ

C(Iα
ρ ηξ(x) +∇v2(x)) : (Iα

ρ ηξ(x) +∇v2(x)) dx

=
1

2

∫
B

ρ2−k

Cβ̂(x) : β̂(x) dx+
1

2

∫
Bρ\B

ρ2−k+1

CIα
ρ ηξ(x) : Iα

ρ ηξ(x) dx

+
1

2

∫
Ck

C(Iα
ρ ηξ(x) +∇v2(x)) : (Iα

ρ ηξ(x) +∇v2(x)) dx

≤ 1

2

∫
Bρ

Cβ̂(x) : β̂(x) dx+
1

2

∫
Ck

C(Iα
ρ ηξ(x) +∇v2(x)) : (Iα

ρ ηξ(x) +∇v2(x)) dx

≤ Ψ(ξ, α, ρ) + ν2

∫
Ck

|Iα
ρ ηξ(x)|2 dx+ ν2

∫
Ck

|∇v2(x)|2 dx

≤ Ψ(ξ, α, ρ) + Cν2|ξ|2 + 2ν2

∫
Ck

|∇ϕ(x)|2|v1(x)− Sx−m|2 dx+ 2ν2

∫
Ck

|ϕ(x)|2|∇v1(x)− S|2 dx

≤ Ψ(ξ, α, ρ) + C|ξ|2. (4.25)

Finally, since DivCηξ = 0 in D′(R2;R2), see (4.1), for all Φ ∈ C∞
c (Bρ;R2) we have∫

Bρ

CIα
ρ ηξ(x) : ∇Φ(x) dx =

∫
B2ρ

Cηξ(x) : Iα
ρ ∇Φ(x) dx =

∫
B2ρ

Cηξ(x) : ∇Iα
ρ Φ(x) dx = 0,

thanks to Fubini’s theorem, Proposition 2.5, and the fact that Iα
ρ Φ ∈ C∞

c (B2ρ;R2), see (2.7). Since

v2 ∈ H1
0 (Bρ;R2), by a density argument we conclude that∫

Bρ

CIα
ρ ηξ(x) : ∇v2(x) dx = 0,

which gives

1

2

∫
Bρ

CIα
ρ ηξ(x) : Iα

ρ ηξ(x) dx ≤ 1

2

∫
Bρ

C(Iα
ρ ηξ(x) +∇v2(x)) : (Iα

ρ ηξ(x) +∇v2(x)) dx. (4.26)

By combining (4.25) and (4.26) we derive (4.8). □
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4.3. Proof of Lemma 4.5. In order to prove Lemma 4.5, we need the following auxiliary lemma,
which states that for all ω ∈ S1 the Riesz potential Iαηξ(ω) converges to ηξ(ω) as α→ 0, uniformly
with respect to ξ ∈ S1.

Lemma 4.11. Let ω ∈ S1 be fixed. We have

lim
α→0

sup
ξ∈S1

|Iαηξ(ω)− ηξ(ω)| = 0. (4.27)

In particular, for all ξ ∈ R2 we derive

lim
α→0

Iαηξ(ω) = ηξ(ω). (4.28)

Proof. Let ω ∈ S1 be fixed and let ε > 0. Since ηei is continuous around ω for each i ∈ {1, 2}, there
is σ = σ(ε) ∈ (0, 12) such that

|ηei(y)− ηei(ω)| <
ε

2
for all y ∈ Bσ(ω) and i ∈ {1, 2}.

For all ξ ∈ S1 we can find θ ∈ [0, 2π) such that

ξ = cos θe1 + sin θe2.

Since the system (4.1) is linear in ξ, we derive for each ξ ∈ S1

|ηξ(y)− ηξ(ω)| ≤ | cos θ||ηe1(y)− ηe1(ω)|+ | sin θ||ηe2(y)− ηe2(ω)| < ε for all y ∈ Bσ(ω). (4.29)

We fix ξ ∈ S1 and α ∈ (0, 1), and we define

Iαηξ(ω) = gα1 (ω) + gα2 (ω) + gα3 (ω)

:=
1

γα

∫
Bσ(ω)

ηξ(y)

|ω − y|2−α
dy +

1

γα

∫
Bσ

ηξ(y)

|ω − y|2−α
dy +

1

γα

∫
R2\(Bσ(ω)∪Bσ)

ηξ(y)

|ω − y|2−α
dy.

Since

|ω − y| ≥ 1− σ for all y ∈ Bσ,

by (4.2)–(4.3) we derive

|gα2 (ω)| ≤
K

γα(1− σ)2−α

∫
Bσ

1

|y|
dy =

2πσK

γα(1− σ)2−α
.

Moreover, thanks to

|ω − y| ≥ σ = σ|y + ω − y| ≥ σ|y| − σ|ω − y| for all y ∈ R2 \Bσ(ω),

together with (4.2)–(4.3) we get

|gα3 (ω)| ≤
(1 + σ)2−αK

γασ2−α

∫
R2\Bσ

1

|y|3−α
dy =

2π(1 + σ)2−αK

(1− α)γασ3−2α
.

Finally, we have

ηξ(ω) =
1

γα

∫
Bσ(ω)

ηξ(ω)

|ω − y|2−α
dy + ηξ(ω)

(
1− 2πσα

αγα

)
.

Therefore, again by (4.2)–(4.3) and by (4.29) we get

|gα1 (ω)− ηξ(ω)| ≤ |ηξ(ω)|
∣∣∣∣1− 2πσα

αγα

∣∣∣∣+ 1

γα

∫
Bσ(ω)

|ηξ(y)− ηξ(ω)|
|ω − y|2−α

dy ≤ K

∣∣∣∣1− 2πσα

αγα

∣∣∣∣+ ε
2πσα

αγα
,

which yields

sup
ξ∈S1

|Iαηξ(ω)− ηξ(ω)| ≤ K

∣∣∣∣1− 2πσα

αγα

∣∣∣∣+ ε
2πσα

αγα
+

2πσK

γα(1− σ)2−α
+

2π(1 + σ)2−αK

(1− α)γασ3−2α
.
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Thanks to Remark 2.2, we derive

lim sup
α→0

sup
ξ∈S1

|Iαηξ(ω)− ηξ(ω)| ≤ ε.

As ε > 0 was arbitrary, we have (4.27). Let us now show (4.28). If ξ = 0, then ηξ = Iαηξ = 0. On
the other hand, if ξ ∈ R2 \ {0}, by (4.27) and the fact that the system (4.1) is linear in ξ, we get

|Iαηξ(ω)− ηξ(ω)| = |ξ|
∣∣∣∣Iαη ξ

|ξ|
(ω)− η ξ

|ξ|
(ω)

∣∣∣∣→ 0 as α→ 0.

This proves (4.28). □

Proof of Lemma 4.5. We fix ξ ∈ R2 and ρ ∈ (0, 1). By a change of variables, Fubini’s theorem,
and (4.12), for all α ∈ (0, 1), we have

α

∫
Bρ

CIαηξ(x) : Iαηξ(x) dx = α

∫
Bρ

1

|x|2−2α
CIαηξ

(
x

|x|

)
: Iαηξ

(
x

|x|

)
dx

= α

∫ ρ

0

1

r1−2α
dr

∫ 2π

0
CIαηξ(cos θ, sin θ) : Iαηξ(cos θ, sin θ) dθ.

(4.30)

By (4.2), (4.14), (4.28), and the dominated convergence theorem we conclude that

lim
α→0

∫ 2π

0
CIαηξ(cos θ, sin θ) : Iαηξ(cos θ, sin θ) dθ

=

∫ 2π

0
Cηξ(cos θ, sin θ) : ηξ(cos θ, sin θ) dθ =

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ. (4.31)

Moreover,

lim
α→0

α

∫ ρ

0

1

r1−2α
dr = lim

α→0

ρ2α

2
=

1

2
. (4.32)

This along with (4.30)–(4.31) shows (4.9). Finally, let (ρα)α∈(0,1) ⊂ (0, 1) be such that α log ρα → 0

as α→ 0, i.e., ραα → 1 as α→ 0. We fix ξ ∈ S1 and α ∈ (0, 1). Then, by (4.2)–(4.3), (4.14), (4.30),
and (4.32) we have∣∣∣∣∣α

∫
Bρα

CIαηξ(x) : Iαηξ(x) dx− 1

2

∫ 2π

0
CΓξ(θ) : Γξ(θ) dθ

∣∣∣∣∣
=

∣∣∣∣ρ2αα2
∫ 2π

0
CIαηξ(cos θ, sin θ) : Iαηξ(cos θ, sin θ) dθ −

1

2

∫ 2π

0
Cηξ(cos θ, sin θ) : ηξ(cos θ, sin θ) dθ

∣∣∣∣
≤ ρ2αα ν2max{C,K}

∫ 2π

0
|Iαηξ(cos θ, sin θ)− ηξ(cos θ, sin θ)|dθ + (1− ρ2αα )πν2K

2

≤ ρ2αα ν2max{C,K}
∫ 2π

0
sup
ξ∈S1

|Iαηξ(cos θ, sin θ)− ηξ(cos θ, sin θ)|dθ + (1− ρ2αα )πν2K
2.

Therefore, by (4.14), (4.27), and the dominated convergence theorem we obtain (4.10). □

4.4. Proof of Lemma 4.6. This short subsection is devoted to the proof of Lemma 4.6.

Proof of Lemma 4.6. Let ξ ∈ R2, α ∈
(
0, 12
)
, ϱ ∈ (1,∞), and ω ∈ S1 be fixed. By (2.6) and (4.2)–

(4.3) we have

|Iα
ϱ ηξ(ω)− Iαηξ(ω)| =

2− α

γα

∣∣∣∣∣
∫
R2

ηξ(y)

∫ ∞

|ω−y|

1− wϱ(r)

r3−α
dr dy

∣∣∣∣∣
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≤ (2− α)K|ξ|
γα

∫
R2

1

|y|

∫ ∞

|ω−y|

1− wϱ(r)

r3−α
dr dy.

Since 1− wϱ(r) = 0 for all r ∈ [0, ϱ2 ], see (2.4), we derive

|Iα
ϱ ηξ(ω)− Iαηξ(ω)| ≤

(2− α)K|ξ|
γα

∫
R2

1

|y|

∫ ∞

max{|ω−y|, ϱ
2
}

1

r3−α
dr dy

=
K|ξ|
γα

∫
R2

1

|y|
1

max{|ω − y|, ϱ2}2−α
dy

=
22−αK|ξ|
γαϱ2−α

∫
B ϱ

2
(ω)

1

|y|
dy +

K|ξ|
γα

∫
R2\B ϱ

2
(ω)

1

|y||ω − y|2−α
dy. (4.33)

As ϱ ∈ (1,∞), we have B ϱ
2
(ω) ⊂ B 3ϱ

2
. Therefore,

22−αK|ξ|
γαϱ2−α

∫
B ϱ

2
(ω)

1

|y|
dy ≤ 22−αK|ξ|

γαϱ2−α

∫
B 3ϱ

2

1

|y|
dy =

22−α3πK|ξ|
γαϱ1−α

≤ 12πK

αγα
|ξ|α. (4.34)

Moreover, we have

|ω − y| ≥ ϱ

2
=
ϱ

2
|y + ω − y| ≥ ϱ

2
|y| − ϱ

2
|ω − y| for all y ∈ R2 \B ϱ

2
(ω),

which gives

|ω − y| ≥ ϱ

2 + ϱ
|y| ≥ 1

3
|y| for all y ∈ R2 \B ϱ

2
(ω).

Hence,

K|ξ|
γα

∫
R2\B ϱ

2
(ω)

1

|y||ω − y|2−α
dy

=
K|ξ|
γα

∫
Bϱ\B ϱ

2
(ω)

1

|y||ω − y|2−α
dy +

K|ξ|
γα

∫
R2\(Bϱ∪B ϱ

2
(ω))

1

|y||ω − y|2−α
dy

≤ 22−αK|ξ|
γαϱ2−α

∫
Bϱ

1

|y|
dy +

32−αK|ξ|
γα

∫
R2\Bϱ

1

|y|3−α
dy ≤ 8πK

αγα
|ξ|α+

18πK

(1− α)αγα
|ξ|α. (4.35)

By (4.33)–(4.35) and Remark 2.2 we derive (4.11). This concludes the proof. □

5. The critical regime

In this section we prove our Γ-limit result in the critical regime (Nα ∼ 1
α as α → 0), that is

Theorem 3.4. Recall (3.6) and (3.15). Let (αj)j and (ρj)j be two sequences satisfying (3.14), and
let Nj =

1
2αj

, see (3.16).

The proof of Theorem 3.4 is divided into three parts. First, we show a compactness result, which
justifies the topology for the Γ-limit. Then we prove the Γ-liminf inequality and finally the Γ-limsup
inequality.

Proof of Theorem 3.4(i). By (3.17) we deduce that µj ∈ Xαj and βj ∈ Aαj (µj) for all j ∈ N. In
particular,

µj =

Mj∑
i=1

ξi,jδxi,j , Curlβj = µj in D′(Ωρj ;R
2),
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where ξi,j ∈ S\{0}, Bρj (xi,j) ⊂ Ω, and |xi,j−xk,j | ≥ 2ρj for i ̸= k. We first show that the sequence

(2αjµj)j ⊂ M(Ω;R2) is uniformly bounded. For all j ∈ N, we have

C ≥ 2α2
j

∫
Ω
CIαj

ρj βj(x) : I
αj
ρj βj(x) dx

≥ 2α2
j

Mj∑
i=1

∫
Bρj

CIαj
ρj βj(x+ xi,j) : I

αj
ρj βj(x+ xi,j) dx. (5.1)

Since the functions βj ∈ L1(B2ρj (xi,j);R2×2) and Curlβj = ξi,jδxi,j in D′(B2ρj (xi,j)), we derive

2α2
j

Mj∑
i=1

∫
Bρj

CIαj
ρj βj(x+ xi,j) : I

αj
ρj βj(x+ xi,j) dx ≥ 4α2

j

Mj∑
i=1

Ψ(ξi,j , αj , ρj)

= 4α2
j

Mj∑
i=1

|ξi,j |2Ψ
(
ξi,j
|ξi,j |

, αj , ρj

)
, (5.2)

where Ψ is the function defined in (3.10) and we used Remark 4.10. Let us set

c := inf
ξ∈S1

ψ(ξ),

where ψ is the function defined in (3.11). We have c > 0 by (3.12). By Proposition 4.2, see (4.5),
we can find j0 ∈ N such that

2αjΨ

(
ξi,j
|ξi,j |

, αj , ρj

)
≥ c

2
for all j ≥ j0. (5.3)

Moreover, since ξi,j ∈ S \ {0}, there is c > 0 such that

|ξi,j | ≥ c for all i ∈ {1, . . . ,Mj} and j ∈ N. (5.4)

By combining (5.1)–(5.4) we can find C > 0 such that

2αj |µj |(Ω) = 2αj

Mj∑
i=1

|ξi,j | ≤
1

c
2αj

Mj∑
i=1

|ξi,j |2 ≤ C for all j ∈ N. (5.5)

Hence, there is µ ∈ M(Ω;R2) such that, up to a not relabeled subsequence,

2αjµj
∗−⇀ µ in M(Ω;R2) as j → ∞.

We now show that there is a sequence of skew-symmetric matrices (Sj)j ⊂ R2×2
skew such that the

sequence (2αj(I
αj
ρj βj − Sj))j is uniformly bounded in L2(Ω;R2×2). By Lemma A.6 and Proposi-

tion 4.8, there exists a constant C > 0 (independent of j) and a sequence (Sj)j ⊂ R2×2
skew satisfying

∥Iαj
ρj βj − Sj∥L2(Ω) ≤ C(∥Iαj

ρj β
sym
j ∥L2(Ω) + ∥Curl Iαj

ρj βj∥L1(Ω)) for all j ∈ N.

Here, we used (Iαj
ρj βj)

sym = Iαj
ρj β

sym
j , which follows directly from Definition 2.6. By (C1)–(C3) we

have

∥2αjI
αj
ρj β

sym
j ∥2L2(Ω) ≤

4α2
j

ν1

∫
Ω
CIαj

ρj βj(x) : I
αj
ρj βj(x) dx ≤ C,

and by (5.5) along with Lemma A.6 and (A.1) it holds that

∥2αj Curl I
αj
ρj βj∥L1(Ω) = 2αj

Mj∑
i=1

|ξi,j |
∫
Bρj (xj)

Q
1−αj
ρj (x− xi,j) dx
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≤ 2αj

γαj

Mj∑
i=1

|ξi,j |
∫
Bρj

1

|x|2−αj
dx =

2πρ
αj

j

αjγαj

2αj

Mj∑
i=1

|ξi,j | ≤ C,

where in the last step we also used Remark 2.2. Hence, we can find a constant C > 0 such that

∥2αj(I
αj
ρj βj − Sj)∥L2(Ω) ≤ C for all j ∈ N.

Therefore, there is β ∈ L2(Ω;R2×2) such that, up to a not relabeled subsequence,

2αj(I
αj
ρj βj − Sj)⇀ β in L2(Ω;R2×2) as j → ∞.

It remains to prove that µ ∈ H−1(Ω;R2) and Curlβ = µ in D′(Ω;R2). To this aim, we fix
Φ ∈ C∞

c (Ω;R2), and we observe that

⟨Curlβ,Φ⟩D′(Ω) = lim
j→∞

2αj⟨Curl(I
αj
ρj βj − Sj),Φ⟩D′(Ω) = lim

j→∞
2αj⟨Curl I

αj
ρj βj ,Φ⟩D′(Ω).

By Lemma A.6 we have

2αj⟨Curl I
αj
ρj βj ,Φ⟩D′(Ω) = 2αj

Mj∑
i=1

ξi,j ·
∫
R2

Φ(x)Q
1−αj
ρj (x− xi,j) dx

= 2αj

Mj∑
i=1

ξi,j · I
αj
ρj Φ(xi,j) =

∫
R2

Iαj
ρj Φ(x) · d(2αjµj).

Since ρj → 0 as j → ∞, we derive that Iαj
ρj Φ ∈ C∞

c (Ω;R2) for j sufficiently large, see (2.7).

Moreover, Iαj
ρj Φ → Φ in C(Ω;R2) as j → ∞, see Corollary A.5. Therefore,

⟨Curlβ,Φ⟩D′(Ω) = lim
j→∞

∫
Ω
Iαj
ρj Φ(x) · d(2αjµj) =

∫
Ω
Φ(x) · dµ,

which gives Curlβ = µ in D′(Ω;R2). Finally, by (2.2) notice that

⟨µ,Φ⟩D′(Ω) = ⟨Curlβ,Φ⟩D′(Ω) = −
∫
Ω
β(x)J : ∇Φ(x) dx for all Φ ∈ C∞

c (Ω;R2).

In particular, since β ∈ L2(Ω;R2×2) we find that µ ∈ H−1(Ω;R2). This concludes the proof. □

Remark 5.1. In the proof of the compactness argument, it is important to consider the Riesz
potential with finite horizon, for this allows us to localize the dislocation energy. More precisely,
in (5.2) we used that βj is admissible for the asymptotic energy Ψ(ξi,j , αj , ρj), since Curlβj =
ξi,jδxi,j in B2ρj (xi,j). On the contrary, when we are dealing with the classical Riesz potential, a

field β should satisfy Curlβ = ξi,jδxi,j (in the distributional sense) on the entire R2, see (4.16).

This, however, is not compatible with the fact that Curlβj =
∑Mj

i=1 ξi,jδxi,j in R2.

We now prove the Γ-liminf inequality.

Proof of Theorem 3.4(ii). Without loss of generality, we may assume that

∃ lim
j→∞

Fαj (µj , βj) <∞, C := sup
j

Fαj (µj , βj) <∞. (5.6)

In particular, this yields µj =
∑Mj

i=1 ξi,jδxi,j ∈ Xαj and βj ∈ Aαj (µj). By arguing as in the proof of
Theorem 3.4(i), see (5.4)–(5.5), there is C > 0 such that

αjMj ≤ Cαj

Mj∑
i=1

|ξi,j | ≤ Cαj

Mj∑
i=1

|ξi,j |2 ≤ C for all j ∈ N, (5.7)
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and Curlβ = µ in D′(Ω;R2), as well as µ ∈ H−1(Ω;R2). We define

Ωj :=

Mj⋃
i=1

Bρj (xi,j) ⊂ Ω for all j ∈ N.

By (3.14), (3.16), and (5.7) we derive that

|Ωj | = πMjρ
2
j ≤ C

ρ2j
αj

→ 0 as j → ∞.

Therefore, we have

2αj(I
αj
ρj βj − Sj)χΩ\Ωj

⇀ β in L2(Ω;R2×2) as j → ∞,

which yields

lim inf
j→∞

2α2
j

∫
Ω\Ωj

CIαj
ρj βj(x) : I

αj
ρj βj(x) dx ≥ 1

2

∫
Ω
Cβ(x) : β(x) dx. (5.8)

Moreover, by (3.10), (3.13), (5.6)–(5.7) as well as (4.6) and Remark 4.10 we get

2α2
j

∫
Ωj

CIαj
ρj βj(x) : I

αj
ρj βj(x) dx = 2α2

j

Mj∑
i=1

∫
Bρj (xi,j)

CIαj
ρj βj(x) : I

αj
ρj βj(x) dx ≥ 4α2

j

Mj∑
i=1

Ψ(ξi,j , αj , ρj)

≥ 2αj

Mj∑
i=1

ψ(ξi,j)− 2αj

Mj∑
i=1

|ξi,j |2 sup
ξ∈S1

|2αjΨ(ξ, αj , ρj)− ψ(ξ)|

≥ 2αj

Mj∑
i=1

φ(ξi,j)− C sup
ξ∈S1

|2αjΨ(ξ, αj , ρj)− ψ(ξ)|

=

∫
Ω
φ(x) d(2αjµj)− C sup

ξ∈S1
|2αjΨ(ξ, αj , ρj)− ψ(ξ)|.

Since φ is positively 1-homogeneous and convex, see (3.13) and Remark 3.3(i), by Reshetnyak’s
lower semicontinuity theorem and Proposition 4.2 we derive

lim inf
j→∞

2α2
j

∫
Ωj

CIαj
ρj βj(x) : I

αj
ρj βj(x) dx ≥ lim inf

j→∞

∫
Ω
φ

(
d(2αjµj)

d|2αjµj |

)
d|2αjµj | ≥

∫
Ω
φ

(
dµ

d|µ|

)
d|µ|.

This combined with (5.8) concludes the proof of (3.20). □

Remark 5.2. Due to relation (3.16), the prefactor 2αj in (3.18)–(3.19) can be replaced by both

1/Nj or
√

2αj/
√
Nj without any change. In the same way, the prefactor (2αj)

2 in (3.6) can be
replaced by 2αj/Nj . By inspection of the previous proofs, we see that the arguments immediately
imply Theorem 3.5(i),(ii), except for the property Curlβ = 0 in D′(Ω;R2).

To prove the Γ-limsup inequality, we need to approximate diffusive measures µ by suitable sums
of Dirac deltas. This is done in the following lemma, whose proof can be found in [17, Lemma 14].

Lemma 5.3. Let Ω be an open, bounded, simply connected set with Lipschitz boundary. Let (Nj)j ⊂
N be such that Nj → ∞ as j → ∞. Let ξ :=

∑M
i=1 λkξk ∈ R2 be such that λk ≥ 0 and ξk ∈ S. Let

us define

Λ :=
M∑
k=1

λk, rj :=
1

2
√
ΛNj

for all j. (5.9)
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There exists a sequence of measures (µj)j ⊂ M(R2;R2) such that

µj =

M∑
k=1

ξkµk,j for all j, µk,j :=

Mk,j∑
i=1

δxi,k,j
for all k, j, (5.10)

with

Brj (xi,k,j) ⊂ Ω for all i, k, j, |xi,k,j − xi′,k′,j | ≥ 2rj if (i′, k′) ̸= (i, k), for all j,

and satisfying

1

Nj
|µk,j |

∗−⇀ λkχΩ dx in M(R2) as j → ∞ for all k = 1, . . . ,M, (5.11)

1

Nj
µj

∗−⇀ ξχΩ dx in M(R2;R2) as j → ∞. (5.12)

Remark 5.4. (i) For the sequel, it is convenient to use the following notation. Denoting the centers
(xi,k,j)i,k by (xi,j)i with associated (ξi,j)i ⊂ {ξ1, . . . , ξM} (see (5.10)), we can write

µj =
M∑
k=1

ξk

Mk,j∑
i=1

δxi,k,j

 =

Mj∑
i=1

ξi,jδxi,j , where Mj :=
M∑
k=1

Mk,j .

(ii) The statement of [17, Lemma 14] only says that

1

Nj
|µk,j |

∗−⇀ λk dx in M(Ω) as j → ∞ for all k,
1

Nj
µj

∗−⇀ ξ dx in M(Ω;R2) as j → ∞.

However, a careful inspection of the construction in its proof together with |∂Ω| = 0 yield that
actually (5.11)–(5.12) hold.

(iii) Note that
ρj
rj

→ 0 as j → ∞ by (3.14). Therefore, µj ∈ Xαj for j sufficiently large.

(iv) For later purposes, we note that there exists a constant C > 0 (independent of i and j) with

|ξi,j | ≤ C for all i, j,
Mj

Nj
≤ C for all j. (5.13)

The latter follows from the boundedness of µj (see (5.12)) along with the fact that |ξi,j | ≥ c > 0
for all i, j, see (5.4).

We can finally prove the Γ-limsup inequality.

Proof of Theorem 3.4(iii). The proof is divided into three steps. We first assume that µ has the
form µ = ξχA dx for some A ⊂ Ω (Step 1). Then, we consider piecewise constant µ with respect
to a partition of Ω (Step 2), and finally pass to the general case (Step 3). Step 1 will be further
subdivided into several steps.

Step 1. Let µ := ξχA dx, where ξ ∈ R2 and A ⊂ Ω is an open, bounded, simply connected
set with Lipschitz boundary. Let β ∈ L2(Ω;R2×2) be such that Curlβ = µ in D′(Ω;R2). Recall-

ing (3.13), we write ξ =
∑M

k=1 λkξk, where ξk ∈ S, λk ≥ 0, such that

φ(ξ) =
M∑
k=1

λkψ(ξk). (5.14)

Step 1.1: Regularization of β. First, we regularize β and extend it outside Ω in such a way that
the condition on the curl is preserved. To this aim we fix R > 0 such that Ω ⊂⊂ BR, and we
consider the function w̃ ∈ H1

0 (BR;R2) which solves{
∆w̃ = µ in BR,

w̃ = 0 on ∂BR.
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Since µ = ξχA ∈ L∞(BR;R2), we derive that w̃ ∈ W 2,p(BR;R2) for all p ∈ [1,∞) by elliptic

regularity. In particular, w̃ ∈ C1(BR;R2) by Sobolev embedding theorems. We define β̃ := ∇w̃JT ∈
C(BR;R2×2), and by (2.2) we have

Curl(β − β̃) = µ−∆w̃ = µ− µ = 0 in D′(Ω;R2).

Hence, there exists a function v ∈ H1(Ω;R2) such that

β − β̃ = ∇v in Ω.

Let (Φj)j ⊂ C∞
c (R2;R2) be such that

∇Φj → ∇v in L2(Ω;R2×2) as j → ∞. (5.15)

We consider the linear operator P
1−αj
ρj : S(R2;R2) → S(R2;R2) given by Proposition 2.5, and we

define the regularized function

βregj := β̃ +∇(P
1−αj
ρj Φj) in BR for all j ∈ N. (5.16)

By construction βregj ∈ C(BR;R2×2) and Curlβregj = µ in D′(BR;R2).

Step 1.2: Construction of (µj , βj). We now construct a sequence (µj , βj)j ⊂ M(R2;R2) ×
L1(BR;R2×2) which satisfies (µj , βj) ∈ Xαj ×Aαj (µj) for all j ∈ N. Let (µj)j ⊂ M(R2;R2) be the

sequence of measures given by Lemma 5.3 with Nj =
1

2αj
for j ∈ N (cf. (3.16)). Using the notation

of Remark 5.4(i), we have

µj =
M∑
k=1

ξkµk,j =

Mj∑
i=1

ξi,jδxi,j for all j, (5.17)

with

Brj (xi,j) ⊂ A for all i, j, |xi,j − xi′,j | ≥ 2rj if i ̸= i′, for all j, (5.18)

and, as j → ∞,

2αj |µk,j |
∗−⇀ λkχA dx in M(R2) for all k, 2αjµj

∗−⇀ µ = ξχA dx in M(R2;R2) . (5.19)

Next, we will modify βregj to obtain a function whose curl is µj . To this end, let ϕ ∈ C∞
c (B1) be

such that 0 ≤ ϕ ≤ 1 in R2 and ϕ = 1 in B 1
2
. Recalling the function ηξ for ξ ∈ R2 given in (4.1) and

using the fact that ρj < rj for j large enough (see Remark 5.4(iii)), we define

ζi,j(x) := ηξi,j (x− xi,j)ϕ

(
x− xi,j
rj − ρj

)
for all x ∈ R2 \ {xi,j}, i ∈ {1, . . . ,Mj}, and j ∈ N, (5.20)

and

ζj(x) :=

Mj∑
i=1

ζi,j(x) for all x ∈ R2 \ {x1,j , . . . , xMj ,j} and j ∈ N. (5.21)

We have that ζj ∈ Lp
loc(R

2;R2×2) for all p ∈ [1, 2), see (4.2)–(4.3), and (supp ζj)ρj ⊂ A by (5.18).
Moreover,

Curl ζj = µj +νj :=

Mj∑
i=1

ξi,jδxi,j +

Mj∑
i=1

ηξi,j ( · −xi,j)J∇ϕ
(

· − xi,j
rj − ρj

)
1

rj − ρj
in D′(R2;R2). (5.22)

It turns out that the curl of the function
βreg
j

2αj
+ ζj is µj , up to an asymptotically vanishing term.

As a final step of the construction, we remove this remainder term: let wrem
j ∈ H1

0 (BR;R2) be the
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solution to {
∆wrem

j = − µ
2αj

− νj in BR,

wrem
j = 0 on ∂BR,

(5.23)

and define the function βremj := ∇wrem
j JT ∈ L2(BR;R2×2). We set

βj :=
βregj

2αj
+ ζj + βremj in BR. (5.24)

Recalling that Curlβregj = µ in D′(BR;R2), by construction (use (2.2)) we get

Curlβj =
µ

2αj
+ µj + νj −

µ

2αj
− νj = µj in D′(BR;R2), (5.25)

which yields βj ∈ Aαj (µj) for all j ∈ N.
Step 1.3: Convergence of recovery sequence. We now show that (µj , βj)j satisfies (3.18)–(3.19).

To this aim, in view of (5.19), we just need to prove that

2αjI
αj
ρj βj ⇀ β in L2(Ω;R2×2) as j → ∞. (5.26)

Notice that supp(Iαj
ρj ζi,j) ⊂ Brj (xi,j) by (2.7) and (5.20). By Remark 2.2, Proposition A.2,

and (4.2)–(4.3) we have

|Iαj
ρj ζi,j(x)| ≤

K|ξi,j |
γαj

∫
R2

1

|y − xi,j |
1

|x− y|2−αj
dy =

2πK|ξi,j |
γ1+αj

1

|x− xi,j |1−αj
. (5.27)

Thus, by (5.13) in Remark 5.4 and (3.16) we can find a constant C > 0 (independent of j) such
that, for all j ∈ N,∫

Ω
|2αjI

αj
ρj ζj(x)|2 dx = 4α2

j

Mj∑
i=1

∫
Brj (xi,j)

|Iαj
ρj ζi,j(x)|2 dx ≤ Cr

2αj

j αjMj ≤ CαjNj ≤ C. (5.28)

Moreover, we have∫
Ω
|2αjI

αj
ρj ζj(x)| dx = 2αj

Mj∑
i=1

∫
Brj (xi,j)

|Iαj
ρj ζi,j(x)|dx ≤ CαjMjr

1+αj

j ≤ Crj for all j ∈ N.

Hence, we derive that

2αjI
αj
ρj ζj ⇀ 0 in L2(Ω;R2×2) as j → ∞. (5.29)

As β̃ ∈ C(BR;R2×2), by (5.15)–(5.16), Proposition 2.5, and Corollary A.5 we infer that

Iαj
ρj β

reg
j = Iαj

ρj β̃ +∇Φj → β̃ +∇v = β in L2(Ω;R2×2) as j → ∞. (5.30)

Recalling the definition of νj in (5.22), we claim that

2αjνj + µ
∗−⇀ 0 in L∞(BR;R2) as j → ∞. (5.31)

First, since ζi,j have disjoint supports, there exists a constant C > 0 (independent of j) such that

∥2αjνj∥L∞(BR) ≤ C
2αj

(rj − ρj)2
for all j ∈ N, (5.32)

where we used (4.2)–(4.3). Moreover, by Remark 5.4(iii), (3.16), and (5.9) we have

lim
j→∞

2αj

(rj − ρj)2
= 4Λ.
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Hence, (2αjνj + µ)j ⊂ L∞(BR;R2) is uniformly bounded. Therefore, to prove (5.31), it is enough
to observe that for all Φ ∈ C∞

c (BR;R2) we have

⟨2αjνj + µ,Φ⟩D′(BR) → 0 as j → ∞.

Since 2αjµj
∗−⇀ µ in M(R2;R2), we just need to prove that 2αj⟨νj + µj ,Φ⟩D′(BR) → 0 as j → ∞

for all Φ ∈ C∞
c (BR;R2). We recall νj + µj = Curl ζj and, as j → ∞, using (2.2) and (4.2)–(4.3),

we estimate

2αj

∣∣⟨Curl ζj ,Φ⟩D′(BR)

∣∣ = 2αj

∣∣∣∣∫
BR

ζj(x)J : ∇Φ(x) dx

∣∣∣∣
≤ Cαj

Mj∑
i=1

∫
Brj−ρj

∣∣ηξi,j (y)∣∣ dy ≤ CαjMj(rj − ρj) ≤ C(rj − ρj) → 0,

where we also used (3.16) and (5.13). This gives (5.31). Therefore, by the compact embedding of
L2(BR;R2) into H−1(BR;R2) we conclude that 2αjνj + µ → 0 in H−1(BR;R2) as j → ∞. For
wrem
j introduced in (5.23), this implies that

2αjw
rem
j → 0 in H1

0 (BR;R2) as j → ∞.

Recall the definition βremj = ∇wrem
j JT . By Remark 2.2, (A.1), and Young’s convolution inequality,

as j → ∞, we have

∥2αjI
αj
ρj β

rem
j ∥L2(Ω) ≤ ∥Q1−αj

ρj ∥L1(R2)∥2αjβ
rem
j ∥L2(BR) ≤

2πρ
αj

j

αjγαj

∥2αj∇wrem
j ∥L2(BR) → 0. (5.33)

This together with (5.24), (5.29), and (5.30) gives (5.26).
Step 1.4: Convergence of energies. It remains to prove (3.21). As in the proof of the Γ-liminf

inequality, we define

Ωj :=

Mj⋃
i=1

Bρj (xi,j) ⊂ Ω for all j ∈ N,

and by (3.14), (3.16), and (5.13) we derive that

|Ωj | = πMjρ
2
j ≤ CNjρ

2
j → 0 as j → ∞. (5.34)

We split the energy as

Fαj (µj , βj) = 2α2
j

∫
Ω\Ωj

CIαj
ρj βj(x) : I

αj
ρj βj(x) dx+ 2α2

j

∫
Ωj

CIαj
ρj βj(x) : I

αj
ρj βj(x) dx,

and we study the two terms separately.
By (5.30), (5.33), and (5.34) we derive that

Iαj
ρj β

reg
j χΩj → 0 and 2αjI

αj
ρj β

rem
j χΩj → 0 in L2(Ω;R2×2) as j → ∞,

which by (5.24) gives

lim sup
j→∞

2α2
j

∫
Ωj

CIαj
ρj βj(x) : I

αj
ρj βj(x) dx = lim sup

j→∞
2α2

j

∫
Ωj

CIαj
ρj ζj(x) : I

αj
ρj ζj(x) dx. (5.35)

Since ζi,j = ηξi,j ( · − xi,j) in B(rj−ρj)/2(xi,j) and ρj/rj → 0, see Remark 5.4(iii), we infer that, for
j sufficiently large,

Iαj
ρj ζi,j = Iαj

ρj ηξi,j ( · − xi,j) in Bρj (xi,j).

Together with Lemma 4.4, (3.16), (4.7), (5.13), (5.14), and (5.17)–(5.19), we conclude that

lim sup
j→∞

2α2
j

∫
Ωj

CIαj
ρj ζj(x) : I

αj
ρj ζj(x) dx
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= lim sup
j→∞

2α2
j

Mj∑
i=1

∫
Bρj

CIαj
ρj ηξi,j (y) : I

αj
ρj ηξi,j (y) dy

≤ lim sup
j→∞

4α2
j

Mj∑
i=1

Ψ(ξi,j , αj , ρj) + 4Cα2
j

Mj∑
i=1

|ξi,j |2
 (5.36)

= lim
j→∞

M∑
k=1

2αj |µk,j |(Ω)2αjΨ(ξk, αj , ρj) =
M∑
k=1

λk|A|ψ(ξk) = |A|φ(ξ) =
∫
Ω
φ

(
dµ

d|µ|

)
d|µ|.

Here, we also used that
∑Mj

i=1Ψ(ξi,j , αj , ρj) =
∑M

k=1 |µk,j |(Ω)Ψ(ξk, αj , ρj) by Remark 5.4(i). Next,
by (3.14), (3.16), (5.13), and (5.27), as j → ∞ we have∫

Ω\Ωj

|2αjI
αj
ρj ζj(x)|2 dx = 4α2

j

Mj∑
i=1

∫
Brj (xi,j)\Bρj (xi,j)

|Iαj
ρj ζi,j(x)|2 dx

≤ 8π3K2

γ21+αj

2αj

Mj∑
i=1

|ξi,j |2(r
2αj

j − ρ
2αj

j ) → 0,

where in the last step we used ρ
αj

j → 1 as j → ∞. Hence, together with (5.24), (5.30), (5.33),

and (5.34) we derive that

2αjI
αj
ρj βjχΩ\Ωj

→ β in L2(Ω;R2×2) as j → ∞,

which gives

lim
j→∞

2α2
j

∫
Ω\Ωj

CIαj
ρj βj(x) : I

αj
ρj βj(x) dx =

1

2

∫
Ω
Cβ(x) : β(x) dx. (5.37)

Combining (5.35)–(5.37) yields (3.21), and concludes the proof in the case µ = ξχA dx and β ∈
L2(Ω;R2×2).

Step 2. Let β ∈ L2(Ω;R2×2) be such that

Curlβ = µ :=

L∑
l=1

µl, where µl := ξlχAl dx for all l ∈ {1, . . . , L},

where (ξl)l ∈ R2, (Al)l are open, bounded, simply connected sets with Lipschitz boundary, and
{Al}Ll=1 is a partition of Ω. By arguing as in Step 1, see in particular (5.16) and (5.30), we can find

(βregj )j ⊂ C(BR;R2×2) such that

Curlβregj = µ in D′(BR;R2), Iαj
ρj β

reg
j → β in L2(Ω;R2×2) as j → ∞.

Moreover, for all l ∈ {1, . . . , L} there exist (µlj)j ⊂ M(R2;R2), (νlj)j ⊂ L∞(R2;R2), (ζ lj)j ⊂
L1
loc(R2;R2×2), and ((βremj )l)j ⊂ L2(BR;R2×2) such that

(supp ζ lj)ρj ⊂ Al, for all j ∈ N (5.38)

and, see (5.22)–(5.23),

Curl ζ lj = µlj + νlj in D′(R2;R2), Curl(βremj )l = −ξ
lχAl dx

2αj
− νlj in D′(BR;R2) for all j ∈ N

as well as (see (5.19), (5.29), and (5.33))

2αjµ
l
j

∗−⇀ ξlχl
A dx in M(R2;R2), 2αjI

αj
ρj

(
ζ lj + (βremj )l

)
⇀ 0 in L2(Ω;R2×2) as j → ∞.
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We define

µj :=

L∑
l=1

µlj and βj :=
βregj

2αj
+

L∑
l=1

(ζ lj + (βremj )l) for all j ∈ N.

Then, we have that (µj , βj) ∈ Xαj ×Aαj (µj) for all j ∈ N and

2αjµj
∗−⇀ µ in M(Ω;R2) as j → ∞, 2αjI

αj
ρj βj ⇀ β in L2(Ω;R2×2) as j → ∞.

Moreover, as in Step 1, in view of (5.38), for all l ∈ {1, . . . , L} we derive

lim sup
j→∞

2α2
j

∫
Al

CIαj
ρj βj(x) : I

αj
ρj βj(x) dx ≤ 1

2

∫
Al

Cβ(x) : β(x) dx+

∫
Al

φ

(
dµ

d|µ|

)
d|µ|.

Therefore, since |Ω \
⋃L

l=1A
l| = 0, we conclude

lim sup
j→∞

2αj

∫
Ω
CIαj

ρj βj(x) : I
αj
ρj βj(x) dx ≤ 1

2

∫
Ω
Cβ(x) : β(x) dx+

∫
Ω
φ

(
dµ

d|µ|

)
d|µ|.

Step 3. Let µ ∈ M(Ω;R2) ∩ H−1(Ω;R2) and β ∈ L2(Ω;R2×2) be such that Curlβ = µ in
D′(Ω;R2). As shown in [17, Proof of Theorem 12, Step 3 of Γ-limsup], we can find a sequence
(µn, βn)n ⊂ (M(Ω;R2) ∩H−1(Ω;R2))× L2(Ω;R2×2) such that

µn
∗−⇀ µ in M(Ω;R2) as n→ ∞, βn → β in L2(Ω;R2×2) as n→ ∞, (5.39)

|µn|(Ω) → |µ|(Ω) as n→ ∞, Curlβn = µn in D′(Ω;R2) for all n ∈ N, (5.40)

where µn is as in Step 2 for all n ∈ N. In view of (3.15) and (5.39)–(5.40), by Reshetnyak’s
continuity theorem it follows that

lim
n→∞

F(µn, βn) = F(µ, β).

By Step 2, for all n ∈ N there exists a sequence (µnj , β
n
j )j with (µnj , β

n
j ) ∈ Xαj × Aαj (µ

n
j ) for all

j ∈ N such that, as j → ∞,

2αjµ
n
j

∗−⇀ µn in M(Ω;R2), 2αjI
αj
ρj β

n
j ⇀ βn in L2(Ω;R2×2), lim sup

j→∞
Fαj (µ

n
j , β

n
j ) ≤ F(µn, βn).

Thus, to obtain (3.21) it is enough to use a standard diagonal argument. □

6. The subcritical and supercritical regimes

This section is devoted to the proofs of the Γ-limit of Fα in the subcritical and supercritical
regime. Since the proofs are similar to those of the critical regime, we only highlight the essential
differences.

6.1. The subcritical regime. In the subcritical regime (Nα ≪ 1
α as α→ 0), we fix three sequences

(αj)j , (ρj)j , and (Nj)j satisfying (3.14) and (3.23). We recall the functionals defined in (3.7)
and (3.22).

Proof of Theorem 3.5. Compactness and Γ-liminf inequality. The proofs are similar to the
ones of Theorem 3.4(i),(ii), see Remark 5.2. We only need to check that the convergences in (3.24)–
(3.25) imply Curlβ = 0 in D′(Ω;R2). To this end, we fix Φ ∈ C∞

c (Ω;R2). Then, by (3.25),

⟨Curlβ,Φ⟩D′(Ω) = lim
j→∞

√
2αj√
Nj

⟨Curl(Iαj
ρj βj − Sj),Φ⟩D′(Ω) = lim

j→∞

√
2αj√
Nj

⟨Curl Iαj
ρj βj ,Φ⟩D′(Ω),

and by Lemma A.6, see particularly (A.7), we have√
2αj√
Nj

⟨Curl Iαj
ρj βj ,Φ⟩D′(Ω) =

√
2αjNj

∫
R2

Iαj
ρj Φ(x) · d

1

Nj
µj .
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For j sufficiently large, we derive that Iαj
ρj Φ ∈ C∞

c (Ω;R2) and Iαj
ρj Φ → Φ in C(Ω;R2) as j → ∞,

see Corollary A.5. Therefore, by (3.23) and (3.24)

⟨Curlβ,Φ⟩D′(Ω) = lim
j→∞

√
2αjNj

∫
Ω
Iαj
ρj Φ(x) · d

1

Nj
µj = lim

j→∞

√
2αjNj

∫
Ω
Φ(x) · dµ = 0,

which gives Curlβ = 0 in D′(Ω;R2).
Γ-limsup inequality. As in the proof of Theorem 3.4(iii), we proceed in three steps. We briefly

explain only the first one, as the other two are analogous to the critical regime with the only
difference that in Step 3 we approximate only the measure µ, given that β is independent of µ.

Let β ∈ L2(Ω;R2×2) with Curlβ = 0 in D′(Ω;R2), and let µ := ξχA dx, where ξ ∈ R2 and A ⊂ Ω

is an open, bounded, simply connected set with Lipschitz boundary. We write ξ =
∑M

k=1 λkξk,

where ξk ∈ S and λk ≥ 0, such that φ(ξ) =
∑M

k=1 λkψ(ξk), see (3.13).
Since Curlβ = 0 in D′(Ω;R2), there exists v ∈ H1(Ω;R2) such that

β = ∇v in Ω.

Let (Φj)j ⊂ C∞
c (R2;R2) be such that ∇Φj → ∇v in L2(Ω;R2) as j → ∞, and consider the linear

operator P
1−αj
ρj : S(R2;R2) → S(R2;R2) given by Proposition 2.5. We define

βregj := ∇(P
1−αj
ρj Φj) in R2 for all j ∈ N,

and by construction βregj ∈ S(R2;R2×2) with Curlβregj = 0 in D′(R2;R2).

Let (µj)j ⊂ M(R2;R2) be the sequence of measures given by Lemma 5.3 associated to (Nj)j .
We consider the functions ζi,j , ζj , and νj defined in (5.20), (5.21), and (5.22), respectively. Let
R > 0 be such that Ω ⊂⊂ BR. We consider the solution wrem

j ∈ H1
0 (BR;R2) to{

∆wrem
j = −νj in BR,

wrem
j = 0 on ∂BR,

and we set βremj := ∇wrem
j JT ∈ L2(BR;R2×2). We define

βj :=

√
Nj√
2αj

βregj + ζj + βremj in BR.

Arguing as in (5.25), we find by construction that βj ∈ Aαj (µj) for all j ∈ N. Moreover, by
proceeding along the lines of (5.29), (5.30), and (5.33), the sequence (µj , βj)j satisfies (3.24)–(3.25).
Only the derivation of (5.33) is slightly different and relies on the estimate (see (5.32))√

2αj√
Nj

∥νj∥L∞(BR) ≤ C

√
2αjNj

Nj(rj − ρj)2
→ 0 as j → ∞,

where we used (3.23), (5.9), and Remark 5.4(iii). Then, we proceed as in Step 1 of the proof of
Theorem 3.4(iii) to obtain (3.26). □

6.2. The supercritical regime. In the supercritical regime (Nα ≫ 1
α as α → 0), we fix three

sequences (αj)j , (ρj)j , and (Nj)j satisfying (3.14) and (3.28). We recall the functionals defined
in (3.8) and (3.27).

Proof of Theorem 3.6. Compactness and Γ-liminf inequality. By (C1)–(C3) we have

1

N2
j

∥Iαj
ρj β

sym
j ∥2L2(Ω) ≤

1

ν1N2
j

∫
Ω
CIαj

ρj βj(x) : I
αj
ρj βj(x) dx ≤ C.

Hence, there is β ∈ L2(Ω;R2×2
sym) such that, up to a not relabeled subsequence,

1

Nj
Iαj
ρj β

sym
j ⇀ β in L2(Ω;R2×2

sym) as j → ∞.
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For the Γ-liminf inequality, it is enough to observe that the convergence in (3.29) implies

lim inf
j→∞

1

2N2
j

∫
Ω
CIαj

ρj βj(x) : I
αj
ρj βj(x) dx

= lim inf
j→∞

1

2N2
j

∫
Ω
CIαj

ρj β
sym
j (x) : Iαj

ρj β
sym
j (x) dx ≥ 1

2

∫
Ω
Cβ(x) : β(x) dx.

Γ-limsup inequality. The proof of the Γ-limsup inequality is divided into two steps.
Step 1. We fix β ∈ C∞

c (Ω;R2×2
sym) and we define µ := Curlβ dx ∈ M(Ω;R2). By arguing as

in [17, Theorem 18] there exists a constant C > 0 (depending on ∥Curlβ∥L∞(Ω)) and a sequence

of measures (µj)j ⊂ M(R2;R2) such that

µj =

Mj∑
i=1

ξi,jδxi,j for all j, |ξi,j | ≤ C for all j,
Mj

Nj
≤ C for all j, (6.1)

with

Brj (xi,j) ⊂ Ω for all i, j, |xi,j − xk,j | ≥ 2rj if i ̸= k, for all j, rj :=
C√
Nj

for all j,

and satisfying

1

Nj
µj

∗−⇀ µ in M(R2;R2) as j → ∞.

We consider the functions ζi,j , ζj , and νj defined in (5.20), (5.21), and (5.22), respectively. Moreover,
let R > 0 be such that Ω ⊂⊂ BR and let wrem

j ∈ H1
0 (BR;R2) be the solution to{

∆wrem
j = −Njµ− νj in BR,

wrem
j = 0 on ∂BR.

We define βremj := ∇wrem
j JT ∈ L2(BR;R2×2) and we set

βj := Njβ + ζj + βremj in BR.

Similar to (5.25), by construction βj ∈ Aαj (µj) for all j ∈ N, and we claim that

1

Nj
Iαj
ρj βj → β in L2(Ω;R2×2) as j → ∞. (6.2)

By (3.28), (5.28), and (6.1), we can find a constant C > 0 (independent of j) such that

1

N2
j

∫
Ω
|Iαj

ρj ζj(x)|2 dx ≤ C

(αjNj)2
→ 0 as j → ∞, (6.3)

i.e., 1
Nj

Iαj
ρj ζj → 0 in L2(Ω;R2×2) as j → ∞. Moreover, thanks to Corollary A.5, we derive that

Iαj
ρj β → β in L2(Ω;R2×2) as j → ∞, (6.4)

and, by arguing as in (5.33) (note that we can identify 2αj with 1/Nj in (5.23) and (5.33)) we have
1
Nj

Iαj
ρj β

rem
j → 0 in L2(Ω;R2×2) as j → ∞. By combining this with (6.3) and (6.4), we obtain (6.2).

Finally, we use (6.2) to get

lim
j→∞

1

2N2
j

∫
Ω
CIαj

ρj βj(x) : I
αj
ρj βj(x) dx =

1

2

∫
Ω
Cβ(x) : β(x) dx,

which proves (3.30) in the case β ∈ C∞
c (Ω;R2×2

sym).

Step 2. Let β ∈ L2(Ω;R2×2
sym). Then, there exists a sequence (βn)n ⊂ C∞

c (Ω;R2×2
sym) such that

βn → β in L2(Ω;R2×2
sym) as n→ ∞,
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which implies
lim
n→∞

F super(βn) = F super(β).

By Step 1, for all n ∈ N there exists a sequence (µnj , β
n
j )j with (µnj , β

n
j ) ∈ Xαj × Aαj (µ

n
j ) for all

j ∈ N such that

1

Nj
Iαj
ρj β

n
j → βn in L2(Ω;R2×2) as j → ∞, lim

j→∞
Fαj (µ

n
j , β

n
j ) = F super(βn).

Therefore, to obtain (3.30), it is enough to use a standard diagonal argument. □
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Appendix A. Riesz potentials

In the appendix, we collect some results regarding the Riesz potentials used in this paper. We
start with the classical Riesz potential Iα.

Proposition A.1. Let α ∈ (0, 2) and let f : R2 → R be a measurable function satisfying (2.3).
Then Iαf(x) is well-defined for a.e. x ∈ R2 and Iαf ∈ L1

loc(R2).

Proof. Let f : R2 → R be satisfying (2.3). The fact that Iαf(x) is well-defined for a.e. x ∈ R2 is a
consequence of [24, Theorem 1.1, Chapter 2]. Moreover, in this case, Iαf is locally integrable on
R2, as observed in [24, Section 4.2]. □

We also recall the following composition formula for the Riesz potential.

Proposition A.2 ([24, Theorem 1.6, Chapter 2]). Let α, β ∈ (0, 2) be such that α + β ∈ (0, 2).
Then, ∫

R2

1

|x− y|2−α

1

|y − z|2−β
dy =

γαγβ
γα+β

1

|x− z|2−α−β
for all x, z ∈ R2 with x ̸= z.

Let us now consider the Riesz potential with finite horizon Iα
ρ . We first show that Iα

ρ is well-
defined. Recall (2.1).

Lemma A.3. Let α ∈ (0, 1), ρ > 0, and f ∈ L1
loc(R2). Then Iα

ρ f(x) is well-defined for a.e. x ∈ R2

and Iα
ρ f ∈ L1

loc(R2). Moreover, if E ⊆ R2 is a measurable set and f ∈ Lp(Eρ) for some p ∈
[
1, 2α

)
,

then Iα
ρ f ∈ Lq(E) for all q ∈

[
p, 2p

2−αp

)
and

∥Iα
ρ f∥Lq(E) ≤ ∥Q1−α

ρ ∥
L

pq
pq+p−q (R2)

∥f∥Lp(Eρ).

In particular, if f ∈ Lp(Eρ) for all p ∈ [1, 2), then Iα
ρ f ∈ L2(E) for all α ∈ (0, 1).
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Proof. Let α ∈ (0, 1) and ρ > 0 be fixed. By (2.6) and the fact that 0 ≤ wρ ≤ 1 we can derive the
estimate

0 ≤ Q1−α
ρ (x) ≤ 1

γα

1

|x|2−α
for all x ∈ R2 \ {0}, α ∈ (0, 2), and ρ > 0. (A.1)

Hence, as supp(Q1−α
ρ ) ⊂ Bρ by (2.7), we derive

Q1−α
ρ ∈ Lr(R2) for all r ∈

[
1,

2

2− α

)
and ρ > 0,

and both statements follow from Young’s convolution inequality. □

Similarly to classical Riesz potential Iα, we can prove the following asymptotic result for Iα
ρ .

Lemma A.4. Let α ∈ (0, 1), ρ > 0, and x ∈ R2. Let f : Bρ(x) → R be continuous in x and
bounded. Then,

lim
α→0

Iα
ρ f(x) = f(x), |Iα

ρ f(x)| ≤
2πρα∥f∥L∞(Bρ(x))

αγα
. (A.2)

Proof. For all ε > 0 there exists ℓ = ℓ(ε) > 0 such that

|f(y)− f(x)| < ε for all y ∈ Bℓ(x). (A.3)

We set σ := min{ℓ, ρ2} and write

Iα
ρ f(x) = g1α,ρ(x) + g2α,ρ(x) :=

∫
Bσ(x)

f(y)Q1−α
ρ (x− y) dy +

∫
R2\Bσ(x)

f(y)Q1−α
ρ (x− y) dy.

By Remark 2.2, (2.7), and (A.1), as α→ 0, we have

|g2α,ρ(x)| ≤
1

γα

∫
Bρ(x)\Bσ(x)

|f(y)|
|x− y|2−α

dy

≤
2π∥f∥L∞(Bρ(x))

γα

∫ ρ

σ
rα−1 dr ≤

2π∥f∥L∞(Bρ(x))

αγα
(ρα − σα) → 0. (A.4)

Since by the definition of w it holds that

1− wρ(s) = 0 for all s ∈
[
0,
ρ

2

]
,

by using (2.6), Remark 2.2, and the fact that σ = min{ℓ, ρ2}, we derive that∣∣∣∣2πσααγα
−
∫
Bσ

Q1−α
ρ (y) dy

∣∣∣∣ = 2π(2− α)

γα

∫ σ

0
r

∫ ∞

r

1− wρ(s)

s3−α
ds dr

≤ 2π(2− α)

γα

∫ σ

0
r

∫ ∞

ρ
2

1

s3−α
ds dr =

22−απσ2

γαρ2−α
≤ πρα

γα2α
.

Moreover, we can write

f(x) =

∫
Bσ(x)

f(x)Q1−α
ρ (x− y) dy + f(x)

(
2πσα

αγα
−
∫
Bσ

Q1−α
ρ (y) dy

)
+ f(x)

(
1− 2πσα

αγα

)
.

Therefore, by Remark 2.2, (A.1), and (A.3), we have, as α→ 0,

|g1α,ρ(x)− f(x)| ≤ |f(x)|
∣∣∣∣1− 2πσα

αγα

∣∣∣∣+ |f(x)| πρ
α

γα2α
+

1

γα

∫
Bσ(x)

|f(y)− f(x)|
|x− y|2−α

dy

≤ |f(x)|
∣∣∣∣1− 2πσα

αγα

∣∣∣∣+ |f(x)| πρ
α

γα2α
+ ε

2πσα

αγα
→ ε.
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Hence, combining with (A.4) we get

lim sup
α→0

∣∣Iα
ρ f(x)− f(x)

∣∣ ≤ ε for all ε > 0,

which gives the limit in (A.2). Finally, the estimate in (A.2) can be obtained by using (A.1). □

Actually, the same result holds also true in the case of a sequence of horizons (ρα)α∈(0,1), as long
as α log ρα → 0 as α→ 0.

Corollary A.5. Let (ρα)α∈(0,1) ⊂ (0,∞) be such that

α log ρα → 0 as α→ 0.

Let R := sup{ρα : α ∈ (0, 1)}, x ∈ R2, and f : BR(x) → R be continuous in x and bounded. Then

lim
α→0

Iα
ραf(x) = f(x).

Moreover, if f ∈ Cc(Rn), then

Iα
ραf → f in C(R2) as α→ 0. (A.5)

Proof. We proceed as in Lemma A.4: given ε > 0, we choose ℓ as in (A.3), and then σα := min{ℓ, ρα2 }
for all α ∈ (0, 1). Therefore, as α→ 0, we get

|Iα
ραf(x)− f(x)| ≤

2π∥f∥L∞(BR(x))

αγα
(ραα − σαα) + |f(x)|

∣∣∣∣1− 2πσαα
αγα

∣∣∣∣+ |f(x)| πρ
α
α

γα2α
+ ε

2πσαα
αγα

→ ε,

since αγα → 2π by Remark 2.2 and ραα = eα log ρα → 1 as α→ 0.
Now, consider f ∈ Cc(R2). Given ε > 0, we can find ℓ > 0, independently of x, such that (A.3)

holds for all x ∈ R2. By arguing as before, we get

∥Iα
ραf − f∥L∞(R2) ≤

2π∥f∥L∞(R2)

αγα
(ραα − σαα) + ∥f∥L∞(R2)

∣∣∣∣1− 2πσαα
αγα

∣∣∣∣+ ∥f∥L∞(R2)
πραα
γα2α

+ ε
2πσαα
αγα

,

which implies (A.5) by the arbitrariness of ε. □

We conclude with the following lemma, which allows us to compute Curl Iα
ρ f on Ω by means of

Curl f on the enlarged domain Ωρ.

Lemma A.6. Let α ∈ (0, 1), ρ > 0, and ξ ∈ R2 be fixed. Let Ω ⊆ R2 be an open set with 0 ∈ Ωand
let f ∈ L1(Ωρ;R2×2) be such that

Curl f = ξδ0 in D′(Ωρ;R2).

Then, Iα
ρ f ∈ L1(Ω;R2×2), Curl Iα

ρ f ∈ L1(Ω;R2), and

Curl Iα
ρ f = ξQ1−α

ρ in D′(Ω;R2). (A.6)

Proof. Since f ∈ L1(Ωρ;R2×2), we get that Iα
ρ f = Q1−α

ρ ∗ f ∈ L1(Ω;R2×2) by Lemma A.3. Since

Q1−α
ρ ∈ L1(Ω), it remains to prove formula (A.6). To this end, we fix Φ ∈ C∞

c (Ω;R2). By (2.2),

Fubini’s theorem, and the symmetry of Q1−α
ρ we have

⟨Curl Iα
ρ f,Φ⟩D′(Ω) = ⟨Div(Iα

ρ fJ),Φ⟩D′(Ω) = −
∫
Ω
Iα
ρ f(x)J : ∇Φ(x) dx

= −
∫
Ω

(∫
Bρ(x)

f(y)JQ1−α
ρ (x− y) dy

)
: ∇Φ(x) dx

= −
∫
Ωρ

f(y)J :

(∫
Bρ(y)

∇Φ(x)Q1−α
ρ (y − x) dx

)
dy
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= −
∫
Ωρ

f(y)J : Iα
ρ ∇Φ(y) dy.

By Proposition 2.5 we derive that Iα
ρ Φ ∈ C∞

c (Ωρ;R2) and Iα
ρ ∇Φ = ∇Iα

ρ Φ. Hence, again by (2.2),

⟨Curl Iα
ρ f,Φ⟩D′(Ω) = −

∫
Ωρ

f(y)J : ∇Iα
ρ Φ(y) dy

= ⟨Curl f, Iα
ρ Φ⟩D′(Ωρ) = ξ · Iα

ρ Φ(0) =

∫
Ω
Φ(y) · ξQ1−α

ρ (y) dy. (A.7)

Therefore, Curl Iα
ρ f ∈ L1(Ω;R2) and formula (A.6) is satisfied. □
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