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Abstract. We consider an energy functional on measures in R2

arising in superconductivity as a limit case of the well-known Ginzburg
Landau functionals. We study its gradient flow with respect to the
Wasserstein metric of probability measures, whose corresponding
time evolutive problem can be seen as a mean field model for the
evolution of vortex densities. Improving the analysis made in [AS],
we obtain a new existence and uniqueness result for the evolution
problem.

1. Introduction

Let Ω be a bounded open connected region in R2 with smooth bound-
ary, and denote with P (Ω) the space of probability measures over Ω.
We are concerned with the following evolution problem:

(1)
d

dt
µ(t)− div(χΩ∇hµ(t)µ(t)) = 0 in D′((0, +∞)× R2)

with the initial datum µ(0) = µ0 ∈ P (Ω) ∩ H−1(Ω). We look for a
solution µ(t) which is a measure in P (Ω) ∩ H−1(Ω). For every t the
velocity field −χΩ∇hµ and µ are coupled by

(2)

{ −∆hµ + hµ = µ in Ω
hµ = 1 on ∂Ω.

Clearly, H−1(Ω) is the natural ambient space for the problem, so we are
working with measures on Ω in order to treat masses in Ω which vary
during the evolution. Masses on Ω are also normalized to 1 without
loss of generality.
Let M+(Ω) be the space of nonnegative measures on Ω, and consider,
for µ ∈M+(Ω), the functionals

(3) Φλ(µ) =
λ

2
µ(Ω) +

1

2

∫

Ω

|∇hµ|2 + |hµ − 1|2, λ ≥ 0.

For measures µ on Ω we will write µ = µ̂ + µ̃, where µ̂ = χΩµ and
µ̃ = χ∂Ωµ. Functionals (3), defined in M+(Ω), will be understood to
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be defined as Φλ(µ̂) for µ ∈ P (Ω). So, they depend only on the internal
part of the measures.
It is shown in [AS] that equation (1), with the coupling described by
(2), can be viewed as a gradient flow of functionals (3) with respect to
the structure induced on P (Ω) by the 2-Wasserstein distance W2(·, ·)
(see Section 2 below). So in [AS] the problem is studied exploiting the
techniques of gradient flows in metric spaces developed in [AGS], and
a global existence result is proved making use of the following, classical
time discretization: given µk

τ , µk+1
τ is chosen among the minimizers of

(4) min
ν∈P (Ω)

Φλ(ν) +
1

2τ
W 2

2 (µk
τ , ν).

Here µ0
τ = µ0 and τ stands for the step of the scheme (see [JKO, AGS]).

In particular, once the sequence of minimizers of the discrete scheme is
found, then a family of measures µ(t) is built as the limit of some subse-
quence of interpolations (it is a generalized minimizing movement, see
[AGS, Chapter 2]). The general theory of gradient flows ensures that
this limit satisfies a continuity equation with a suitable velocity field.
Finally, this velocity field is shown to be the same as in problem (1),
by means of suitable Euler-Lagrange equations associated to problem
(4).
In [AS], thanks the introduction of some “entropies” which are shown
to decrease along the flow, a regularity result is also obtained, that is,
if the initial datum µ0 is such that µ̂0 ∈ Lp(Ω), p ≥ 4/3, then there
exist a global solution µ(t) such that ‖µ̂(t)‖p is uniformly controlled by
the Lp norm of µ̂0.
Finally, in the case p = +∞, a short time uniqueness theorem is estab-
lished in [AS, Theorem 3.6]. The argument therein cannot deal with
the presence of mass on ∂Ω, so that it holds until some mass reaches
the boundary during evolution, preventing the result to be global in
time.

Main theorem. In this paper we study further properties of minimiz-
ers of (4), in order to obtain global uniqueness for measures with L∞

interior part and complete a well-posedness picture. Our main result,
which will be proven in the last section (see Theorem 4.2), reads as
follows:

let Ω be convex, µ̂0 ∈ L∞(Ω) and T > 0. Problem (1)-(2) possesses
a unique solution satisfying ‖µ̂(t)‖∞ ∈ L∞(0, T ) and, for t ∈ (0, T ],

(5) 〈∇hµ(t)(x), y − x〉 ≥ 0 for all (x, y) ∈ supp(µ̃(t))× Ω.
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We stress that we allow µ(t) to have a nonzero boundary part.
Concerning the new condition (5), we will show later in Section 3 that
it is a byproduct of our Wasserstein variational approach. In Theorem
3.1 we will indeed prove the analogous property for discrete minimizers
of (4), in the case λ = 0.
Notice that, since the domain is supposed to be convex, (5) can be
interpreted as follows: the gradient of hµ(t) on the boundary (whenever
some mass is there present) points towards the interior of the domain.
This is in fact reminiscent of the nondecreasing boundary mass con-
dition appearing in [AS, Definition 3.1], which is meaningful since a
gradient flow of Φλ, at least for λ > 0, is expected to enjoy such a
behavior (see the energy comparison argument in [AS, Section 3]).

Plan of the paper. In Section 2 we briefly discuss the physical rele-
vance of the functionals. We then recall some definitions and already
known properties, also in connection with the Wasserstein structure,
that we introduce. Moreover, we formally show that equation (1) rep-
resents the gradient flow of Φ0. In Section 3 we perform our variational
argument, which allows us to obtain the discrete version of (5). In Sec-
tion 4 we prove the existence of solutions satisfying (5) and the main
uniqueness result.

2. The functionals

The well known Ginzburg-Landau energy functional is

(6) J(u,A) =
1

2

∫

Ω

|∇Au|2 + |h− hex|2 +
1

2ε2
(1− |u|2)2,

where Ω ⊂ R2 is the section of the superconductor, hex represents the
intensity of an external magnetic field, constant and orthogonal to the
section, A is the potential vector of the magnetic field h induced in the
material (h = ∇ × A and ∇A = ∇ − iA), and ε is a parameter de-
pending on the material. The function u takes complex values and its
modulus (|u| ≤ 1) accounts for the density of superconducting electron
pairs, so that a value close to 1 indicates a significant presence of the
superconducting phenomenon.
Different behaviors are observed for different values of the applied mag-
netic field intensity hex with respect to the parameter ε. Let, as in
[SS1],

(7) λ = lim
ε→0

| log ε|
hex(ε)

.
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When λ is finite and positive or zero (in the latter case with a not too
large magnetic field, that is hex ¿ ε−2), we are in the so called ‘mixed
phase’, characterized by the classical vortex structure.
It is shown in [SS1] (see also [SS2]) that our functional (3), with λ as in
(7), is the Γ-limit as ε → 0 of the Ginzburg Landau functional defined
by (6), and the measure µ represents the density of vortices, whereas
hµ is the induced magnetic field. So, this is the physical interest of this
kind of energy functionals.

Inequalities about the functional. Now we introduce some basic
results that will often be useful in the sequel.

Lemma 2.1. For all µ, ν ∈M+(Ω) there hold

(8) Φλ(µ)− λ

2
µ(Ω) ≥ Φλ(ν)− λ

2
ν(Ω) +

∫

Ω

(hν − 1) d(µ− ν)

and

(9) Φλ(µ)−Φλ(ν) =

(
λ

2
− 1

)
(µ(Ω)− ν(Ω))+

1

2

∫

Ω

(hµ +hν)d(µ− ν)

Proof. See Proposition 2.2 and (28) in Proposition 3.1 of [AS]. ¤

Moreover, we have

Lemma 2.2. For all µ, ν ∈ P (Ω) there hold

(10) Φλ(ν)− Φλ(µ) ≥ λ

2
(ν̂(Ω)− µ̂(Ω)) +

∫

Ω

hµd(ν − µ)

and

(11) Φλ(µ)−Φλ(ν) =

(
λ

2
− 1

)
(µ̂(Ω)−ν̂(Ω))+

1

2

∫

Ω

(hµ+hν)d(µ̂−ν̂).

Proof. These are straightforward consequences of Lemma 2.1, taking
into account that, since the solution of problem (2) does not depend
on the boundary part of µ, we have hµ̂ = hµ and that hµ|∂Ω = 1. ¤

The Wasserstein structure. We now recall some definitions about
the Wasserstein structure, which has proved to be an important tool for
studying different evolution problems (see for instance [O1, AGS, VI]).
For µ, ν ∈ P (Ω) let Γ(µ, ν) denote the set of transport plans between
them, i.e. measures γ ∈ P (Ω×Ω) whose first and second marginals are
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respectively µ and ν. We let P (Ω) be endowed with the Wasserstein
distance, defined by

(12) W2(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫

Ω×Ω

|x− y|2 dγ(x, y)

)1/2

.

Here the infimum can be shown to be a minimum, and we let Γ0(µ, ν) be
the class of optimal plans, where this minimum is attained. A transport
plan is a generalization of a transport map from µ to ν, that is, a map
t such that t#µ = ν (i.e. µ(t−1(A)) = ν(A), for A Borel). Indeed, to
any transport map t we can associate the transport plan γ = (I, t)#µ.

Formal gradient flow. Here we relate the functionals (3) to a time
evolutive problem (the Chapman-Rubinstein-Schatzman mean-field model
for superconductors. See [CRS]). We can show that such a problem is
the formal gradient flow of Φ0 with respect to the Wasserstein struc-
ture, that is, ∇hµ is the gradient of Φ0 at µ along transport maps. The
Wasserstein (sub)gradient ∇W Φ(µ) is a vector ξ ∈ L2(µ;R2) defined
by the subdifferential relation

Φ(s#µ)− Φ(µ) ≥
∫

ξ · (s− I) dµ + o(‖s− I‖2
L2(µ)).

Now consider the functional (3), and by the representation (see [AS,
Proposition 2.1])
(13)

Φλ(µ) =
1

2
(λµ(Ω)+|Ω|)+ sup

h−1∈H1
0 (Ω)

{∫

Ω

(h− 1) dµ− 1

2

∫

Ω

|∇h|2 + |h|2
}

,

being the supremum attained for h = hµ, we are led to

Φλ(s#µ)− Φλ(µ) ≥ λ

2
(s#µ(Ω)− µ(Ω)) +

∫

Ω

(hµ − 1)d(s#µ− µ)

=
λ

2
(s#µ(Ω)− µ(Ω)) +

∫

Ω

(hµ(s(x))− hµ(x)) dµ.

Since
∫

Ω

(hµ(s(x))− hµ(x)) dµ ∼
∫

Ω

∇hµ(x) · (s(x)− x) dµ

as ‖s − I‖L2(µ) → 0, if λ = 0, the formal Wasserstein gradient of Φλ

at µ (if µ = µ̂) is χΩ∇hµ. The argument works also with λ > 0 if we
consider transports which do not increase the mass on ∂Ω.
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3. Variation

Consider the discrete problem

(14) min
ν∈P (Ω)

Φλ(ν) +
1

2τ
W 2

2 (µ, ν).

Recalling Proposition 5.4 of [AS], we have

Lemma 3.1. Let p ∈ (1,∞], µ ∈ P (Ω) with µ̂ ∈ Lp(Ω). Then there is
a minimizer µτ of problem (14) such that µ̂τ ∈ Lp(Ω). Moreover, the
Lp norm of µ̂τ is uniformly bounded in τ . In particular, if p = ∞ we
have ‖µ̂τ‖∞ ≤ max{1, ‖µ̂‖∞}.
Now we state the result about minimizers of (14) in the case λ = 0.
Mind that, by Lemma 3.1, if µ̂ ∈ Lp(Ω) in (14), a minimizer can be
found with Lp interior as well.

Theorem 3.1. Let ν = µτ be a minimizer of (14), with λ = 0, such
that ν̂ ∈ L4(Ω). Let Ω be convex. Then

(15) 〈∇hν(x), y − x〉 ≥ 0 ∀(x, y) ∈ supp(ν̃)× Ω.

We need a measure theoretic lemma before proceeding with the proof.
We recall also that, given two measures µ and ν in M+(R2) with
same mass, if µ is absolutely continuous with respect to the Lebesgue
measure L2, then there exists a unique optimal transport plan between
µ and ν (for which the infimum in (12) is achieved), and such plan is
induced by a transport map (see [AGS, Section 6]).

Lemma 3.2. Let µ, ν ∈ P (Ω), σ ¿ L2xΩ, with σ(Ω) = ν(∂Ω), and let
T be the optimal transport map between σ and ν̃.
Then there exist γ ∈ Γ0(ν, µ), γT ∈ Γ(σ, µ1), where µ1 is the second
marginal of χ∂Ω×Ωγ, such that

W 2
2 (νS, µ)−W 2

2 (ν, µ) ≤
∫

Ω×Ω

[|y − S(x)|2 − |y − T (x)|2] dγT (x, y)

for all S : Ω 7→ Ω, where νS = ν̂ + S#σ.

Proof. Let us introduce a sequence of auxiliary measures ν̃n, with equicom-
pact supports contained in R2\Ω, such that ν̃n(R2\Ω) = σ(Ω), ν̃n ¿ L2

and ν̃n ⇀ ν̃ as n →∞. Let Tn be the optimal transport maps between
σ and ν̃n. Moreover, let γn be optimal transport plans between νn and
µ, where νn = ν̂ + ν̃n. As an optimal transport map between abso-
lutely continuous measures, Tn is essentially invertible for every n (i.e.
its restriction to the complement of a σ-negligible set in Ω is injective,
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see [AGS, Remark 6.2.11]). So we can define

γn = (S ◦ T−1
n , I)#χ(R2\Ω)×Ωγn + χΩ×Ωγn,

γTn = (T−1
n , I)#χ(R2\Ω)×Ωγn.

Clearly, γn ∈ Γ(νS, µ) and γTn ∈ Γ(σ, µn) for every n, where we intro-
duced µn as the second marginal of χ(R2\Ω)×Ωγn. So with the change of

variables z = T−1
n (x), for every n we have

W 2
2 (νS, µ) ≤

∫

Ω×Ω

|y − x|2dγn =

=

∫

(R2\Ω)×Ω

|y − x|2d((S ◦ T−1
n , I)#γn) +

∫

Ω×Ω

|y − x|2dγn =

=

∫

Ω×Ω

|y − S(z)|2dγTn(z, y) +

∫

Ω×Ω

|y − x|2dγn,

and

W 2
2 (νn, µ) =

∫

(R2\Ω)×Ω

|y − x|2dγn +

∫

Ω×Ω

|y − x|2dγn =

=

∫

Ω×Ω

|y − Tn(z)|2dγTn(z, y) +

∫

Ω×Ω

|y − x|2dγn.(16)

We get, for every n,
(17)

W 2
2 (νS, µ)−W 2

2 (νn, µ) ≤
∫

Ω×Ω

[|y − S(x)|2 − |y − Tn(x)|2] dγTn(x, y).

Now we have to pass to the limit as n → ∞. As ν̃n ⇀ ν̃, for the
stability property of optimal transport maps, we have that Tn → T
strongly in Lp

σ(Ω), 1 ≤ p < ∞, where T is the optimal transport map
between σ and ν̃. Moreover, γn has a weak limit point in P (R2 × Ω)
which is an optimal plan γ ∈ Γ0(ν, µ) (see [AG, Lemma 3.3]). We will
not relabel the sequence for simplicity.
We can also show that

(18) χΩ×Ωγn ⇀ χΩ×Ωγ.

In fact, let η(x) be a smooth cutoff function approximating χΩ, with
η(x) ≡ 0 on R2\Ω and

∫

Ω

|η(x)− 1|dν̂ < ε.
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Let f ∈ C0(R2 × Ω), with M = ‖f‖∞ finite. Then

∫

R2×Ω

f(x, y)χΩ×Ω(x, y)d(γn − γ)(x, y) =

=

∫

R2×Ω

f(x, y) [χΩ(x)− η(x) + η(x)] d(γn − γ)(x, y) ≤

≤
∫

R2×Ω

f(x, y)η(x)d(γn − γ)(x, y)+

+ M

∫

R2×Ω

|χΩ(x)− η(x)|d(γn + γ)(x, y) =

=

∫

R2×Ω

f(x, y)η(x)d(γn − γ)(x, y) + 2M

∫

Ω

|1− η(x)|dν̂ ≤

≤
∫

R2×Ω

f(x, y)η(x)d(γn − γ)(x, y) + 2Mε.

Now the first integral tends to zero, since fη is continuous, and by
arbitrariness of ε we get the convergence. Here we used the fact that the
measures χΩ×Ωγn and χΩ×Ωγ have ν̂ as first marginal. In the same way
one can prove that χ(R2\Ω)×Ωγn ⇀ χ(R2\Ω)×Ωγ. This implies µn ⇀ µ1,

since µn := π2
#(χ(R2\Ω)×Ωγn). Besides, µn is also the second marginal of

γTn , which by tightness has a limit point γT (again we avoid relabeling
the sequence). The first marginal of γTn is σ for every n, and as a
consequence γT ∈ Γ(σ, µ1).
Now consider the first integral in the second member of (17). We have
the weak convergence of γTn to γT , and we can pass to the limit even
though the integrand is not continuous. Indeed, reasoning exactly as
in the proof of (18), we can approximate it with continuous functions
(in the Lusin sense) and use the fact that both the first marginal of γTn

and of γT are equal to the absolutely continuous measure σ.
Finally, consider the last term in (17). We have

∫

Ω×Ω

|y − Tn|2dγTn =

∫

Ω×Ω

[|y − T |2 + |y − Tn|2 − |y − T |2] dγTn ≤

≤
∫

Ω×Ω

|y − T |2dγTn+

+ K

∫

Ω×Ω

|Tn(x)− T (x)|dγTn ≤

≤
∫

Ω×Ω

|y − T |2dγTn + K

∫

Ω

|Tn(x)− T (x)|dσ,
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with K being a suitable positive constant depending on Ω. Now the
second term goes to zero for the strong convergence of Tn, and the first
one can be treated as before and shown to converge to

∫

Ω×Ω

|y − T (x)|2dγT (x, y).

We have all what is needed to pass to the limit in (16) and (17) and
obtain

(19)

W 2
2 (νS, µ)−W 2

2 (ν, µ) ≤
∫

Ω×Ω

[|y − S(x)|2 − |y − T (x)|2] dγT (x, y)

as desired. ¤

We also state a slight generalization of the previous lemma.

Lemma 3.3. Let µ, ν, σ and T be as in Lemma 3.2. Let S : Ω 7→ Ω,
θ ∈ [0, 1] and

νS = ν̂ + S#(θσ) + (1− θ)ν̃.

Then there exist γ ∈ Γ0(ν, µ), γT ∈ Γ(σ, µ1), µ1 being the second mar-
ginal of χ∂Ω×Ωγ, such that

W 2
2 (νS, µ)−W 2

2 (ν, µ) ≤ θ

∫

Ω×Ω

[|y − S(x)|2 − |y − T (x)|2] dγT (x, y).

Proof. The case θ = 0 is trivial. Otherwise, define ν̃n, νn, Tn, γn and γTn

as in the proof of Lemma 3.2. Moreover, let νn
S = ν̂+S#(θσ)+(1−θ)ν̃n

and introduce transport plans γn ∈ Γ(νn
S , µ) as follows:

γn = θ(S ◦ T−1
n , I)#χ(R2\Ω)×Ωγn + χΩ×Ωγn + (1− θ)χ(R2\Ω)×Ωγn.

Then, with the change of variables z = T−1
n (x), we have

W 2
2 (νn

S , µ) ≤
∫

Ω×Ω

|y − x|2dγn =

= θ

∫

Ω×Ω

|y − S(z)|2dγTn(z, y) +

∫

Ω×Ω

|y − x|2dγn+

+ (1− θ)

∫

(R2\Ω)×Ω

|y − x|2dγn.
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We can rewrite (16) as

W 2
2 (νn, µ) = θ

∫

(R2\Ω)×Ω

|y − x|2dγn +

∫

Ω×Ω

|y − x|2dγn+

+ (1− θ)

∫

(R2\Ω)×Ω

|y − x|2dγn =

= θ

∫

Ω×Ω

|y − Tn(z)|2dγTn(z, y) +

∫

Ω×Ω

|y − x|2dγn+

+ (1− θ)

∫

(R2\Ω)×Ω

|y − x|2dγn.

This way, it is clear that

W 2
2 (νn

S , µ)−W 2
2 (νn, µ) ≤ θ

∫

Ω×Ω

[|y − S(x)|2 − |y − Tn(x)|2] dγTn(x, y).

Here we can pass to the limit in n exactly as done for (17), so we refer
to the proof of Lemma 3.2 for concluding. The only element to add is
the lower semicontinuity of W2 for treating the first term, so that

W2(νS, µ) ≤ lim inf
n→∞

W2(ν
n
S , µ)

as νn
S ⇀ νS. ¤

Remark 3.1. With minor modifications one can also obtain the same
result for the case

νS = ν̂ + S#(θσ) + (1− θ)χAν̃ + χ∂Ω\Aν̃,

where A is an arc contained in ∂Ω. In this case we have γ ∈ Γ0(ν, µ),
σ ¿ L2xΩ, σ(Ω) = ν̃(A), (I, T )#σ ∈ Γ0(σ, χAν̃). µ1 will be a suitable
measure such that µ1 ≤ π2

#(χ∂Ω×Ωγ).

We are now ready for the proof of Theorem 3.1.

Proof of Theorem 3.1. Let σ ¿ L2xΩ have a bounded density, and let
σ(Ω) = ν̃(Ω). Let moreover T be the optimal transport map between
σ and ν̃, and

Tε = (1− ε)I + εT, ε ∈ [0, 1].

We introduce the following perturbed measure

νε := ν̂ + Tε#(α2σ) + (1− α2)ν̃,

where α = (1− ε)2.
Now we apply Lemma 3.3, with Tε in the role of S: there exist a
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transport plan γ ∈ Γ0(ν, µ) and a transport plan γT ∈ Γ(σ, µ1), where
µ1 is the second marginal of χ∂Ω×Ωγ, such that
(20)

W 2
2 (νε, µ)−W 2

2 (ν, µ) ≤ α2

∫

Ω×Ω

[|y − Tε(x)|2 − |y − T (x)|2] dγT (x, y).

Next, we apply (11) to νε and ν, and we find

Φ0(νε)− Φ0(ν) = −(ν̂ε(Ω)− ν̂(Ω)) +
1

2

∫

Ω

(hνε + hν)d(ν̂ε − ν̂),

so that

(21) Φ0(νε)− Φ0(ν) = −α2ν̃(∂Ω) +
1

2
α2

∫

Ω

(hνε + hν)d(Tε#σ).

Since ν is a minimizer, there holds

Φ0(νε)− Φ0(ν) +
1

2τ

(
W 2

2 (νε, µ)−W 2
2 (ν, µ)

) ≥ 0,

for all µ ∈ P (Ω). Substituting (20) e (21) in this inequality, we obtain:

α2

2τ

∫

Ω×Ω

[|y − Tε(x)|2 − |y − T (x)|2] dγT

− α2ν̃(∂Ω) +
1

2
α2

∫

Ω

(hνε + hν)d(Tε#σ) ≥ 0.(22)

Since Tε = T + (1 − ε)(I − T ), we obtain the following expansion (of
the first order centered in ε = 1)

|y − Tε(x)|2 = |y − T (x)|2 + 2(ε− 1)〈y − T (x), x− T (x)〉+ o(ε− 1).

Of course the remainder is uniformly bounded with respect to x ∈ Ω.
For treating the second integral in (22), notice that, as ν̂ ∈ L4(Ω),
hν ∈ W 2,4(Ω), and by Sobolev embedding hν ∈ C1(Ω) (since Ω has
smooth boundary). So we can perform the expansion

hν ◦ Tε =hν ◦ T + (ε− 1)〈∇hν ◦ T, T − I〉+
+ (ε− 1)〈(∇hν ◦ Tθ −∇hν ◦ T ), T − I〉,(23)

for a suitable θ ∈ (ε, 1). If K = supx∈Ω |T (x) − x|, the last term
is bounded by K(ε − 1) ω(|Tθ(x) − T (x)|), ω(δ) being the modulus of
continuity of ∇hν , which, as δ → 0, goes to zero uniformly with respect
to x ∈ Ω, since ∇hν ∈ C0(Ω). So there holds

hν ◦ Tε = hν ◦ T + (ε− 1)〈∇hν ◦ T, T − I〉+ o(ε− 1),(24)
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and the remainder is uniform in x.
Finally, since

(25) hνε ◦ Tε = hν ◦ Tε + (hνε − hν) ◦ Tε,

we have to estimate hνε − hν . This quantity is solution of the problem
{ −∆u + u = α2Tε#(σ) in Ω

u = 0 on ∂Ω.

Hence we can write

(26) sup
x∈Ω

|hνε(x)− hν(x)| = α2 sup
x∈Ω

|ϕε|,

where ϕε satisfies
{ −∆ϕε + ϕε = Tε#(σ) in Ω

ϕε = 0 on ∂Ω.

But αTε#(σ) converges to 0 in L4(Ω), since for ε ∈ (0, 1) there holds
| det(JTε)| ≥ (1− ε)2 and we have

∫

Ω

|αTε#(σ)|4 = α4

∫

Ω

(
σ

| det(JTε)|
)4

| det(JTε)| ≤

≤ α4

(1− ε)6

∫

Ω

|σ|4 = (1− ε)2

∫

Ω

|σ|4.

This implies the W 2,4(Ω) convergence and the C1(Ω) convergence of
αϕε as ε → 1. So there exists a constant C which bounds αϕε uniformly
in x and ε, and from (26) we get

(27) sup
x∈Ω

|hνε(x)− hν(x)| ≤ Cα = C(1− ε)2.

Making use of (24) and (27), from (25) we find

hνε ◦ Tε = hν ◦ T + (ε− 1)〈∇hν ◦ T, T − I〉+ o(ε− 1),(28)

where the remainder is again uniformly bounded in x.
Now, dividing by α2, we expand to the first order in (22) with respect
to ε → 1, and with τ fixed, to find

1− ε

τ

∫

Ω×Ω

〈y − T (x), T (x)− x〉dγT − ν̃(∂Ω) +

∫

Ω

hν(T (x))dσ+

+ (1− ε)

∫

Ω

〈∇hν(T (x)), x− T (x)〉dσ + o(1− ε) ≥ 0.
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As a consequence, since σ(Ω) = ν̃(∂Ω) and hν = 1 on ∂Ω, upon dividing
by (1− ε) we get

1

τ

∫

Ω×Ω

〈y − T (x), T (x)− x〉dγT +

∫

Ω

〈∇hν(T (x)), x− T (x)〉dσ ≥ 0.

As T (x) ∈ supp(ν̃), in the first integral the scalar product is nonpositive
for geometric reasons (we are working with a convex domain). It follows
that

(29)

∫

Ω

〈∇hν(T (x)), x− T (x)〉dσ ≥ 0.

Let A ⊂ ∂Ω be an arc such that ν̃(A) > 0. We point out that, redefining
νε as ν̂ + α2Tε#σ + (1 − α2)χAν̃ + χ∂Ω\Aν̃, with Tε = (1 − ε)I + εT
and T now being the optimal transport map between an absolutely
continuous σ and χAν̃, this proof works in the same way. Indeed, in
view of Remark 3.1, inequality (20) still holds for some γT ∈ Γ(σ, µ1),
where µ1 ≤ π2

#(χ∂Ω×Ωγ). So we obtain (29) with T (x) taking values in
supp(ν̃) ∩ A. Now, suppose by contradiction that

〈∇hν(z̄), ȳ − z̄〉 < 0

for some (z̄, ȳ) ∈ supp(ν̃) × Ω. Then, recalling that ∇hν ∈ C0(Ω),
there exist an arc I ⊂ ∂Ω containing z̄ and a neighborhood Q of ȳ such
that the same inequality holds whenever (z, y) ∈ I×Q. Because of the
arbitrariness of A and σ, we can choose σ supported in Ω∩Q and A ⊂ I.
Since T transports σ to χAν̃, this implies 〈∇hν(T (x)), x − T (x)〉 < 0
for all x ∈ supp(σ), against (29). ¤

4. Uniqueness of the gradient flow

We now consider the problem of uniqueness of solutions for (1)-(2) in
the case of measures with L∞ internal part. Taking into account the
result of Theorem 3.1, we focus on the following class of solutions.

Definition 4.1 (Regular gradient flow). Let T > 0. A solution of
problem (1)-(2) is a regular gradient flow if

i) ‖µ̂(t)‖∞ ∈ L∞(0, T ),
ii) 〈∇hµ(t)(x), y − x〉 ≥ 0 for all (x, y) ∈ supp(µ̃(t)) × Ω and t ∈

(0, T ].

Remark 4.1. Condition ii) is related, as already noticed in the intro-
duction, to the one appearing in [AS, Definition 3.1], that is, t 7→ µ̃(t)
is nondecreasing as a measure valued map. In fact, if the negative gra-
dient at the boundary (that is the limit of velocities in Ω) is directed
towards the exterior of the domain, we expect that no mass can move
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from ∂Ω to Ω during the evolution. Such a behavior was argued in
[AS] in the case λ > 0 by means of direct energy arguments, which do
not extend for λ = 0. Actually, condition ii), obtained in Theorem 3.1
only for λ = 0, will allow us to obtain a stronger uniqueness result.

Theorem 4.1 (Construction of a regular gradient flow). Let Ω
be convex. Let µ0 ∈ P (Ω), with µ̂0 ∈ L∞(Ω). Then there exists a
solution to problem (1)-(2) which is a regular gradient flow.

Proof. Let µ0
τ := µ0. We find µk+1

τ solving (4) with λ = 0 recursively.
We then define

(30) µ̄τ (t) := µk+1
τ if t ∈ (kτ, (k + 1)τ ],

and for τ ↓ 0 we can find limit points, that is, we can find sequences
τn ↓ 0 such that in the sense of measures

(31) lim
n→∞

µ̄τn(t) = µ(t) ∀t ≥ 0.

So, there exists a solution constructed in this way (see [AS, Section
6] for more details). Thanks to Lemma 3.1, the interior parts of all
the discrete minimizers will belong to L∞. Letting T > 0, and passing
to the limit in τ , we will have µ̂(t) ∈ L∞((0, T ); L∞(Ω)). Moreover,
after Theorem 3.1, the discrete minimizers can also be chosen to satisfy
(15), which, passing again to the limit in τ , becomes condition ii) of
Definition 4.1. In fact, as a consequence of (31), hµ̄τn(t) → hµ(t) in

C1(Ω) for every t ∈ [0, T ]. In conclusion, there exists a regular gradient
flow as in such definition. ¤

The next inequality prepares the proof of the uniqueness theorem.

Lemma 4.1. Let µ, ν ∈ P (Ω), with µ̂, ν̂ ∈ L∞(Ω) and W 2
2 (µ, ν) ≤ e−3.

Then there holds

Φλ(ν)− Φλ(µ) ≥ λ

2
(ν̂(Ω)− µ̂(Ω))

+

∫

(Ω×Ω)\(∂Ω×∂Ω)

〈∇hµ(x), y − x〉dγ(x, y)− ω(W 2
2 (µ, ν)),(32)

where ω(t) = K̃t| log t|, K̃ being a suitable nonnegative constant de-
pending only on Ω, ‖ν̂‖∞ and ‖µ̂‖∞.

Proof. We shall estimate the last term of inequality (10). For all γ ∈
Γ0(µ, ν) we have

∫

Ω

hµd(ν − µ) =

∫

(Ω×Ω)\(∂Ω×∂Ω)

(hµ(y)− hµ(x))dγ(x, y)
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and a Taylor expansion (with remainder in integral form) yields

∫

Ω

hµd(ν − µ) =

∫

(Ω×Ω)\(∂Ω×∂Ω)

〈∇hµ(x), y − x〉dγ(x, y)+(33)

+
1

2

∫ 1

0

∫

(Ω×Ω)\(∂Ω×∂Ω)

〈∇2hµ((1− θ)x + θy)(y − x), y − x〉dγ(x, y)dθ.

In order to treat the remainder, we split it in two terms:

1

2

∫ 1

0

∫

(Ω×Ω)\(∂Ω×∂Ω)

|〈∇2hµ((1− θ)x + θy)(y − x), y − x〉|dγ(x, y)dθ ≤

≤ 1

2

∫ 1

0

∫

Ω×Ω

|〈∇2hµ((1− θ)x + θy)(y − x), y − x〉|dγ(x, y)dθ+

+
1

2

∫ 1

0

∫

Ω×Ω

|〈∇2hµ((1− θ)x + θy)(y − x), y − x〉|dγ(x, y)dθ.

First term:
the measure χΩ×Ωγ is a transport plan between µ̂ and σ1 for a suitable
σ1 ≤ ν, then it is induced by a transport map T . Let

Tθ = (1− θ)I + θT, µθ = Tθ#µ̂.

It follows that

∫ 1

0

∫

Ω×Ω

|〈∇2hµ((1− θ)x + θy)(y − x), y − x〉|dγ(x, y)dθ =

=

∫ 1

0

1

θ2

∫

Ω

|〈∇2hµ(Tθ(x))(Tθ(x)− x), Tθ(x)− x〉|dµ̂(x)dθ =

=

∫ 1

0

1

θ2

∫

Ω

|〈∇2hµ(x)(x− T−1
θ (x)), x− T−1

θ (x)〉|dµθ(x)dθ ≤

≤
∫ 1

0

1

θ2

∫

Ω

|∇2hµ(x)||x− T−1
θ (x)|2dµθ(x)dθ ≤

≤
∫ 1

0

1

θ2

(∫

Ω

|∇2hµ(x)|pdµθ(x)

)1/p (∫

Ω

|x− T−1
θ (x)|2p′dµθ(x)

)1/p′

dθ,

(34)

where p > 1 and p′ are conjugate exponents. Let % and %θ be the
densities of µ̂ and µθ respectively. The change of variables formula
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gives
∫

Ω

|∇2hµ|pdµθ =

∫

Ω

|∇2hµ|p%θ dL2 ≤

≤
(∫

Ω

|∇2hµ|2pdL2

)1/2 (∫

Ω

|%θ|2dL2

)1/2

≤

≤
(∫

Ω

|∇2hµ|2pdL2

)1/2
(∫

Ω

(
%

| det(JTθ)|
)2

| det(JTθ)|dL2

)1/2

≤

≤ M

(∫

Ω

|∇2hµ|2pdL2

)1/2 (∫

Ω

dL2

| det(JTθ)|
)1/2

.

But for θ ∈ (0, 1), there holds | det(J((1 − θ)I + θT ))| ≥ (1 − θ)2,
yielding

∫

Ω

|∇2hµ|pdµθ ≤ M

(∫

Ω

|∇2hµ|2pdL2

)1/2 (∫

Ω

dL2

(1− θ)2

)1/2

≤

≤ M‖∇2hµ‖p
L2p(Ω)|Ω|1/2(1− θ)−1.

On the other hand
∫

Ω

|I − T−1
θ |2p′dµθ =

∫

Ω

|I − T−1
θ |2|I − T−1

θ |2p′−2dµθ ≤

≤ (diamΩ)2(p′−1)

∫

Ω

|I − T−1
θ |2dµθ =

= (diamΩ)2(p′−1)θ2

∫

Ω

|T − I|2dµ̂ =

= θ2(diamΩ)2(p′−1)W 2
2 (µ, ν).

Substituting in (34), we get

∫ 1

0

∫

Ω×Ω

|〈∇2hµ((1− θ)x + θy)(y − x), y − x〉|dγ(x, y)dθ ≤

≤M1/p|Ω|1/(2p)(diamΩ)2(p′−1)/p′‖∇2hµ‖L2p(Ω)W
2/p′
2 (µ, ν)

∫ 1

0

1

θ2
(1− θ)−1/pθ2/p′dθ.

Now, for p sufficiently large (for example p ≥ 3), the integral in the
last term is finite and uniformly bounded in p. Moreover by elliptic
regularity we have ‖∇2hµ‖L2p(Ω) ≤ c p‖µ‖∞, so that
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∫ 1

0

∫

Ω×Ω

|〈∇2hµ((1−θ)x+θy)(y−x), y−x〉|dγ(x, y)dθ ≤ CpW
2/p′
2 (µ, ν).

As done by Yudovitch in the study of Euler equations in two dimensions
(see [YU1, YU2]), we minimize in p and, since W 2

2 (µ, ν) ≤ e−3, we find

min
p≥3

pW
2/p′
2 (µ, ν) = eW 2

2 (µ, ν)| log(W 2
2 (µ, ν))|.

This is the desired logarithmic bound.

Second term:
it can be treated in the same way: for example we can consider χΩ×Ωγ ∈
Γ(σ2, ν̂), where σ2 is a suitable measure with σ2 ≤ µ. Now there exists
a transport map s such that s#ν̂ = σ2. Letting sθ = (1− θ)s + θI, we
get

∫ 1

0

∫

Ω×Ω

|〈∇2hµ((1− θ)x + θy)(y − x), y − x〉|dγ(x, y)dθ ≤

≤
∫ 1

0

1

(1− θ)2

∫

Ω

|∇2hµ||s−1
θ − I| d(sθ#ν̂)dθ.

The calculation is now analogous, taking into account that | det(Jsθ)| ≥
θ2 and that

∫
Ω
|I − s|2dν̂ ≤ W 2

2 (µ, ν).
Thanks to the logarithmic bound on the remainder of (33), from (10)
we obtain (32).

¤

Eventually, we are going to state and prove our main result. The
procedure is analogous to the one of [AS, Theorem 3.2], but here we
can show that uniqueness holds also if some mass is present on the
boundary of Ω during the evolution. Even if the initial datum is not
supported in Ω, this guarantees a global uniqueness result.

Theorem 4.2 (Uniqueness of the regular gradient flow). Let Ω
be convex. Let µ1, µ2 be solutions of (1)-(2) satisfying the conditions
of Definition 4.1. Then µ1(0) = µ2(0) implies µ1(t) = µ2(t) for all
t ∈ [0, T ].

Proof. Let µ(t) be a regular gradient flow as in Definition 4.1 (it is
coupled with the velocity field −∇hµ(t)χΩ), γt ∈ Γ0(µ(t), ν) and ν ∈
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P (Ω). Applying (32) we find

Φλ(ν)− Φλ(µ(t)) ≥ λ

2
(ν̂(Ω)− µ̂(t)(Ω))

+

∫

(Ω×Ω)\(∂Ω×∂Ω)

〈∇hµ(t)(x), y − x〉dγt(x, y)− ω(W 2
2 (µ(t), ν))

whenever W 2
2 (µ(t), ν) ≤ e−3. Since µ(t) satisfies the continuity equa-

tion, for almost every t there holds (see [AGS, Theorem 8.4.7])

1

2

d

dt
W 2

2 (µ(t), ν) =

∫

Ω×Ω

〈χΩ(x)∇hµ(t)(x), y − x〉dγt(x, y).

Substituting in the previous relation we get (for W 2
2 (µ(t), ν) ≤ e−3)

1

2

d

dt
W 2

2 (µ(t), ν) ≤ Φλ(ν)− Φλ(µ(t))− λ

2
(ν̂(Ω)− µ̂(t)(Ω))

+ ω(W 2
2 (µ(t), ν)−

∫

∂Ω×Ω

〈∇hµ(t)(x), y − x〉dγt(x, y).

On supp(µ̃(t)), ∇hµ(t) points towards the interior of the convex domain,
then the last term is non positive, and so, for W 2

2 (µ(t), ν) ≤ e−3,

1

2

d

dt
W 2

2 (µ(t), ν) ≤ Φλ(ν)− Φλ(µ(t))− λ

2
(ν̂(Ω)− µ̂(t)(Ω))

+ ω(W 2
2 (µ(t), ν)).(35)

Applying (35) first to µ = µ1(t), with ν = µ2(s), and then reversing
the roles of µ1 and µ2, we can sum the corresponding inequalities as
done in [AS, Theorem 3.2] (for a rigorous argument, see [AGS, Lemma
4.3.4]) and we get

d

dt
W 2

2 (µ1(t), µ2(t)) ≤ 4ω(W 2
2 (µ1(t), µ2(t)))

for almost every t such that W 2
2 (µ1(t), µ2(t)) ≤ e−3. Now we make use

of the logarithmic bound, that yields
∫ 1

0
1/ω(s) ds = ∞. So Gronwall’s

lemma entails µ1(t) = µ2(t) for all t ∈ [0, T ]. ¤
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