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Abstract

We establish an ε-regularity result for almost-minimizers of a class of variational problems
involving both bulk and interface energies. The bulk energy is of Dirichlet type. The surface
energy exhibits anisotropic behaviour and is defined by means of an ellipsoidal density that is
Hölder continuous with respect to the position variable.
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1 Introduction and statements

The existence and regularity of solutions to variational problems, encompassing both bulk and
interface energies, have been extensively studied across various disciplines and remain a focal point
of much mathematical research. These problems serve to describe a broad spectrum of phenomena
in applied sciences, including nonlinear elasticity, materials science and image segmentation in
computer vision (see for instance [2, 5, 13, 27, 28, 29, 31, 33, 36]). A model integral functional
initially introduced to study minimal energy configurations of two conducting materials by R. V.
Kohn & G. Strang and F. Murat & L. Tartar, [34, 42], and later recovered by L. Ambrosio & G.
Buttazzo, and F. H. Lin, [3, 38], is the following:»

Ω
σEpxq|∇u|2 dx� P pE; Ωq, (1)

where σE :� α1E � β1ΩzE , 0   α   β, with E � Ω � Rn and u P H1pΩq. Here, 1E stands for the
characteristic function of E and P pE; Ωq denotes the perimeter of the set E in Ω. In [3, 38], the
authors proved the existence and regularity for minimal configurations pE, uq of (1). In a broader
context, F. H. Lin & R. V. Kohn addressed more generalized Dirichlet energies as outlined in [39],»

Ω
pF px, u,∇uq � 1EGpx, u,∇uqq dx�

»
ΩXB�E

Ψpx, νEpxqq dHn�1pxq, (2)

with the constraints

u � u0 on BΩ and |E| � d.

Here, νE is the measure-theoretic outward unit normal to the reduced boundary B�E of E. The
regularity for the minimizing pair pE, uq is quite intricate to establish, especially concerning the
free boundary BE due to the interaction between the bulk term and the perimeter term. In order
to illustrate the regularity results of the free boundary, we introduce the following notations. We
define the set of regular points of BE as follows:

RegpEq :�  
x P BE : BE is a C1,γ hypersurface in Bεpxq � Ω, for some ε ¡ 0 and γ P p0, 1q( ,
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and accordingly we define the set of singular points of BE as

ΣpEq :� pBE X ΩqzRegpEq.
The most notable advancements in regularity results regarding the free boundary BE of minimizers
of the functional (1) have been accomplished by G. De Philippis & A. Figalli in [16] and N. Fusco
& V. Julin in [29]. They proved that for minimal configurations of the functional (1) it turns out
that

dimHpΣpEqq ¤ n� 1� η, (3)

for some η ¡ 0 depending only on α, β. In the more general case of integral functionals of the
type (2), the theory of regularity is much less developed. The first regularity result established
in the broader context of integral energies of the type (2) was accomplished by F. H. Lin and
R. V. Kohn in 1999, indeed in [39] they proved, for minimal configurations pE, uq of (2), that
Hn�1pΣpEqq � 0. The assumptions made by Lin and Kohn to achieve such regularity results
require Ck differentiability for F , G and Ψ as they appear in (2), where k ¥ 2 and F , G grow
quadratically with respect to the gradient variable. On the other hand, nothing is proved concerning
the Hausdorff dimension of ΣpEq like in (3).

We also point out that the problem can be set in a non-quadratic framework as well. This
instance is less studied and only few regularity results are available (see [5, 10, 11, 12, 22, 27, 35]).

In some recent papers, such as [24, 25], the Hausdorff dimension estimate of ΣpEq has been
attained, significantly relaxing the differentiability assumption required on F and G. Indeed, in [25],
only Hölder continuous dependence of F and G with respect to x and u is necessary. However, it is
worth noting that the aforementioned result is demonstrated under the assumption that Ψpνq � |ν|,
representing the conventional perimeter.

In this paper we will deal with the anisotropic case. Anisotropic surface energies manifest
in various physical phenomena, such as crystal formation (refer to [7, 8]), liquid droplets (see
[13, 20, 30, 37, 41, 45]), and capillary surfaces (see [18, 19]). F. J. Almgren was a pioneer in
investigating the regularity of surfaces that minimize anisotropic variational problems in his seminal
paper [1]. Early studies in this field were primarily conducted within the framework of varifolds
and currents. While these results can be applied to surfaces of any codimension, they necessitate
relatively stringent regularity assumptions on the integrands of the anisotropic energies, as outlined
in [9, 44]. More recently, the regularity assumptions on the integrands Ψ of the anisotropic energies
have been relaxed, as highlighted in [21, 26], where it is assumed that Ψpx, �q is of class C1 and
Ψp�, ξq is Hölder continuous.

In this context, it is worth mentioning a very recent paper, [43], which establishes the regularity
result for quasi-minimizers of anisotropic surface energies within the class of sets of finite perimeter,
under the assumption of Hölder continuous dependence of Ψ on x. This outcome is derived within
the scope of ellipsoidal variational energies, as detailed in (4). Notably, surface energies of this
specific form were initially introduced in a paper [46] by J. Taylor. In more detail, in the case that
the elliptic integrand is given by Ψpx, νq � xApxqν, νy1{2, where Apxq � �

aijpxq
�n
i,j�1

is an elliptic
and bounded matrix, the surface energy takes the form

ΦApE;Gq :�
»
GXB�E

xApxqνE , νEy1{2 dHn�1pxq. (4)

We assume that A is uniformly elliptic, that is there exist two constants 0   λ ¤ Λ   �8 such
that

λ|ξ|2 ¤ xApxqξ, ξy ¤ Λ|ξ|2, @x P Ω, @ξ P Rn.

We require that A is Hölder continuous with exponent µ P p0, 1s, that is

rAsCµpΩq � sup
x�y
x,yPΩ

|Apxq �Apyq|
|x� y|µ   �8.

To avoid excessive technicalities, we assume that the bulk energy follows a Dirichlet-type distribu-
tion, although the outcome could be generalized to functionals of type (2). Given a bounded open
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set Ω � Rn, we consider the following functional:

FApE, u; Ωq �
»
Ω
σE |∇u|2 dx�ΦApE; Ωq, (5)

where σE � α1E � β1ΩzE , 0   α   β and E � Ω. The achieved ε-regularity result is presented
within the scope of local almost-minimizers. This makes it applicable in a variety of concrete
applications, as we will demonstrate, for example, in the case of constrained problems. The following
definition naturally arises in several problems from material sciences (see for example [3, 23, 38,
39, 40], compare also with [43, Definition 2.2]).

Definition 1.1 (pκ, µq-minimizers). Let U � Ω. The energy pair pE, uq is a pκ, µq-minimizer in
U of the functional FA, defined in (5), if for every Brpx0q � U

FApE, u;Brpx0qq ¤ FApF, v;Brpx0qq � κ|E △ F |n�1
n

�µ
n ,

whenever pF, vq is an admissible test pair, namely, F is a set of finite perimeter with F △ E �
Brpx0q and v � u P H1

0 pBrpx0qq.
The main theorem proved in this paper is the following.

Theorem 1.2. Let pE, uq be a pκ, µq-minimizer of FA. Then

a) there exists a relatively open set Γ � BE such that Γ is a C1,σ-hypersurface, for all 0   σ   µ
2 ,

b) there exists η ¡ 0 depending on n, α, β such that

Hn�1�ηppBEzΓq X Ωq � 0.

We outline the strategy adopted to prove this result. In the regularity theory for Λ-minimizers
of the perimeter, the regular part Γ of the boundary of E is detected by the points that have a
uniformly small excess in some ball (see Definition 2.3). A decay relation for the excess plays a
crucial role, as it triggers an iteration argument that shows that the unitary normal vector varies
continuously along Γ, thus ensuring its smoothness.

For our problem, it is not possible to prove a decay relation for the excess without considering
the interaction between the surface and the bulk energy. Indeed, as outlined in Section 7, if the
excess of a point x0 in BE in some ball Brpx0q is small, we are only able to prove an improvement
relation for the excess, which involves the rescaled Dirichlet integral of u in Brpx0q as well.

In this context, Γ is defined as the collection of the points of the boundary of E that are centers
of balls Brpx0q where the excess epE, x0, rq and the rescaled Dirichlet integral Dupx0, rq (see (9))
of u are sufficiently small. In order to prove the smoothness of Γ, a decay relation for the sum of
these quantities is required.

A decay relation for the rescaled Dirichlet integral of u around points of small excess is proved
separately in Proposition 4.7.

A much finer argument is needed to establish an improvement relation for the excess (see
Theorem 7.3). One of the key concepts enabling us to adapt the standard excess-decay arguments,
commonly used in the context of perimeter minimizers, to the anisotropic setting is a specific
change of variable Tx0 . This affine transformation, already used in [14, 32, 43], maps Wulff shapes
of ΦA, which are ellipsoids, into balls Brpx0q (see Section 2). We first prove a version of the excess
improvement theorem for transformed couples pẼ, ũq � �

Tx0pEq, u � T�1
x0

�
, which are

�
κλ�

n
2 , µ

�
-

minimizers of Fx0,Ax0
(see (7)). The proof of the latter is carried out by contradiction and is based

on a blow-up argument. In this step, we can benefit of using the classical perimeter instead of
the anisotropic one around x0, being Ax0px0q � I (see Proposition 6.1). The main ideas can be
summarized as follows:

1. Density lower and upper bounds on the perimeter (see Theorem 4.2 and Theorem 4.4) guar-
antee that around points x0 of BẼ with small excess, the boundary of Ẽ almost coincides
with the graph of a Lipschitz function f (see Theorem 4.9). Therefore, it is possible to apply
the area formula directly along BẼ up to a small error. The portion of the boundary that
does not match is controlled by the excess at that scale.
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2. The function f is quasi-harmonic. We need a quantitative estimate of its quasi-harmonicity
by a power of the excess with an exponent greater than 1

2 . In this step, the minimality of the

optimal couple pẼ, ũq and the first variation formulae play a crucial role.

3. The direction of improvement of the excess is detected by the unitary normal vector to the
graph of f . By means of a reverse Poincaré inequality (see Theorem 6.3), the excess at a
smaller scale at x0 is controlled by the flatness of BẼ around x0, which is in turn estimated
by the excess via the good properties of f .

The paper is divided in sections, which reflect the proof strategy. Section 2 collects notation and
preliminary definitions. In Section 3, some invariance properties of the excess and minimality under
the transformation Tx0 and rescaling are proved. In Section 4, we establish density lower and upper
bounds for the perimeter of E and their consequences, which are the decay of the rescaled Dirichlet
energy and the Lipschitz approximation theorem. Section 5 is devoted to prove a compactness
result for sequences of pκ, αq-minimizers, which serves as a crucial tool for estimating the size of
the singular set of E, as stated in Theorem 1.2. Section 6 includes the reverse Poincaré inequality,
which is the counterpart of the well-known Caccioppoli’s inequality for weak solutions of elliptic
equations. Section 7 contains the proof of Theorem 1.2. The main ingredients to achieve such a
result are a first variation formula for the bulk energy of the functional Fx0,Ax0

and two versions
of the excess improvement theorem. Finally, Section 8 deals with the application of the regularity
result to a volume constrained problem via a penalization argument.

2 Notation and preliminaries

In the rest of the paper we will write xξ, ηy for the inner product of vectors ξ, η P Rn, and con-

sequently |ξ| :� xξ, ξy 1
2 will be the corresponding Euclidean norm. As usual ωn stands for the

Lebesgue measure of the unit ball in Rn. We denote by Sn�1 the unit sphere of Rn.
We will write x � px1, xnq for all x P Rn, where x1 P Rn�1 collects the first n� 1 components of

x and xn P R is its n-th component. Accordingly, we denote by ∇1 � pBx1 , . . . , Bxn�1q the gradient
with respect to the first n� 1 components.

The n-dimensional ball in Rn with center x0 and radius r ¡ 0 is denoted as

Brpx0q � tx P Rn : |x� x0|   ru.
If x0 � 0, we simply write Br in place of Brpx0q. The pn� 1q-dimensional ball in Rn�1 with center
x10 and radius r ¡ 0 is denoted by

Drpx10q � tx1 P Rn�1 : |x1 � x10|   Ru.
If u is integrable in BRpx0q, we set

ux0,r �
1

ωnrn

»
Brpx0q

u dx � �
»
Brpx0q

u dx.

If E � Rn and t P r0, 1s, the set of points of E of density t is defined as

Eptq �  
x P Rn : |E XBrpxq| � t|Brpxq| � oprnq as r Ñ 0�

(
.

Given a Lebesgue measurable set E � Rn, we say that E is of locally finite perimeter if there exists
a Rn-valued Radon measure µE (called the Gauss-Green measure of E) such that»

E
∇ϕ dx �

»
Rn

ϕdµE , @ϕ P C1
c pRnq.

Moreover, we denote the perimeter of E relative to G � Rn by P pE;Gq � |µE |pGq.
The support of µE can be characterized by

sptµE �  
x P Rn : 0   |E XBrpxq|   ωnr

n, @r ¡ 0
(
,

4



(see [40, Proposition 12.19]). It holds that sptµE � BE. If E is of locally finite perimeter, then the
reduced boundary B�E of E is the set of those x P Rn such that

νEpxq :� lim
rÑ0�

µEpBrpxqq
|µE |pBrpxqq

exists and belongs to Sn�1. In the following, the topological boundary BE must be understood by
considering the representative Ep1q of E, for which it holds that B�E � BE.

The properties of the matrix A in the definition of the anisotropic perimeter (4) guarantee that
ΦApE;F q is comparable to the classical perimeter, as observed in [43].

Remark 2.1 (Comparability to perimeter). ΦApE; �q is comparable to P pE; �q, since for Borel sets
F � Rn, by the uniform ellipticity of A, it follows that

λ1{2P pE;F q ¤ ΦApE;F q ¤ Λ1{2P pE;F q. (6)

If A equals the identity matrix I, we have the isotropic case ΦApE; �q � P pE; �q.
It will be useful in the sequel to build comparison sets by replacing regions within an open set.

The anisotropic perimeter can be split as in the isotropic case.

Proposition 2.2 (Comparison by replacement). If E and F are sets of locally finite perimeter in
Rn and G is an open set of finite perimeter in Rn such that

Hn�1pB�GX B�Eq � Hn�1pB�GX B�F q � 0,

then the set defined by
F0 � pF XGq Y pEzGq

is a set of locally finite perimeter in Rn. Moreover if G � U and U is an open subset of Rn, then

ΦApF0;Uq � ΦApF ;Gq �ΦApE;UzGq �ΦApG;Ep1q △ F p1qq
Proof. The proof can be easly obtained from [40, Theorem 16.16]. Its details can be found in [43,
Proposition 4.3].

In the following, for R ¡ 0 and ν P Sn�1, we will denote the cylinder centered in x0 with radius
R oriented in the direction ν by

CRpx0, νq :� x0 � ty P Rn : |xy, νy|   R, |y � xy, νyν|   Ru,
and the cylinder of radius R oriented in the direction en with height 2 by

KRpx0q :� DRpx10q � p�1, 1q.
In the following, for simplicity of notation we will write CR � CRp0, enq and KR � KRp0q.

In addition we introduce some usual quantities involved in regularity theory.

Definition 2.3 (Excess). Let E be a set of locally finite perimeter, x P BE, r ¡ 0 and ν P Sn�1.
We define:

� the cylindrical excess of E at the point x, at the scale r and with respect to the direction
ν, as

eCpE, x, r, νq :� 1

rn�1

»
Crpx,νqXB�E

|νE � ν|2
2

dHn�1 � 1

rn�1

»
Crpx,νqXB�E

r1� xνE , νys dHn�1.

� the spherical excess of E at the point x, at the scale r and with respect to the direction ν,
as

epE, x, r, νq :� 1

rn�1

»
B�EXBrpxq

|νE � ν|2
2

dHn�1.

� the spherical excess of E at the point x and at the scale r, as

epE, x, rq :� min
νPSn�1

epE, x, r, νq.

We omit the dependence on the set when it is clear from the context.

5



3 Scaling and change of variables

Given a symmetric positive matrix A, the D matrix of his eigenvalues and the matrix V of
ortonormal eigenvectors, we have A � V DV �1. Accordingly we define A1{2 � V D1{2V �1. Be-
ing A�1{2A1{2 � I, the anisotropic perimeter of E coincides with the standard perimeter of the
image of E under the affine change of variable y � A�1{2x up to the scaling factor det

�
A�1{2

�
.

Localizing this argument freezing the matrix A�1{2pxq in a point x0 P BE, we define the affine
change of variables

Tx0pxq � A�1{2px0qpx� x0q � x0, T�1
x0
pyq � A1{2px0qpy � x0q � x0, @x, y P Rn,

and the matrix-valued function

Ax0pyq :� A�
1
2 px0qApT�1

x0
pyqqA� 1

2 px0q, @y P Rn,

which satisfies Ax0px0q � I. It can be easily verified that the set T�1
x0
pBrpx0qq, is the Wulff shape

of ΦApx0q. Moreover the following inclusions hold:

B
λ

1
2 r
px0q � T�1

x0
pBrpx0qq � B

Λ
1
2 r
px0q,

for any r ¡ 0 and x0 P Rn. Under the affine change of variable Tx0 , the minimality with respect to
the functional FA will be rephrased through the following functional

Fx0,DpE, u; Ωq �
»
Ω
σE |∇uA�

1
2 px0q|2 dx�ΦDpE; Ωq, (7)

(see Proposition 3.1).
In the sequel, we collect two invariance properties of pκ, µq-minimizers under the transformation

Tx0 and rescaling.

Proposition 3.1 (Invariance of almost-minimizers under Tx0). Let pE, uq be a pκ, µq-minimizer of
FA in Ω and x0 P Ω. Then pTx0pEq, u�T�1

x0
q is a pκλ�n

2 , µq-minimizer of Fx0,Ax0
in the balls Brpzq

such that B
pΛ{λq

1
2 r
pzq � Tx0pΩq.

Proof. We use the notation E0 :� Tx0pEq and u0 :� u � T�1
x0

. Let Brpzq � Tx0pΩq be such that
B
pΛ{λq

1
2 r
pzq � Tx0pΩq and pF0, v0q be an admissible test pair, i.e. F0 is a set of finite perimeter

with F0 △ E0 � Brpzq and v0 � u0 P H1
0 pBrpzqq. First we notice that, setting F � T�1

x0
pF0q, as in

[43, Proposition 4.1], we have

E △ F � T�1
x0
pBrpzqq � B

Λ
1
2 r

�
T�1
x0
pzq� � Ω,

where the last condition is satisfied because r   Λ�
1
2dist

�
T�1
x0
pzq, BΩ�. Moreover, for v � v0 � Tx0 ,

we have v�u P H1
0

�
T�1
x0
pBrpzqq

�
whose extension to zero in B

Λ
1
2 r

�
T�1
x0
pzq�, denoted again by v�u,

belongs to H1
0

�
B

Λ
1
2 r

�
T�1
x0
pzq��. It follows, by the hypothesis of pκ, µq-minimality of the pair pE, uq,

that
FA

�
E, u;B

Λ
1
2 r

�
T�1
x0
pzq�	 ¤ FA

�
F, v;B

Λ
1
2 r

�
T�1
x0
pzq�	� κ|E △ F |n�1�µ

n .

This simplifies to

FA

�
E, u;T�1

x0
pBrpzqqq

� ¤ FA

�
F, v;T�1

x0
pBrpzqq

�� κ|E △ F |n�1�µ
n .

We now calculate, using [43, formula (4.9)] and the change of variables y � Tx0pxq,

Fx0,Ax0
pE0, u0;Brpzqq �

»
Brpzq

σE0 |∇u0A�
1
2 px0q|2 dy �ΦAx0

pE0;Brpzqq

� detpA� 1
2 px0qq

�»
T�1
x0

pBrpzqq
σE |∇u|2 dx�ΦA

�
E;T�1

x0
pBrpzqq

��
� detpA� 1

2 px0qqFA

�
E, u;T�1

x0
pBrpzqqq

�
¤ detpA� 1

2 px0qq
�
FA

�
F, v;T�1

x0
pBrpzqq

�� κ|E △ F |n�1�µ
n

	
,
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where with a slight abuse of notation we have denoted σE0 � α1E0�β1Tx0 pΩqzE0
. The result follows

by observing that detpA� 1
2 px0qq ¤ λ�

n
2 and

detpA� 1
2 px0qqFA

�
F, v;T�1

x0
pBrpzqq

� � Fx0,Ax0
pF0, v0;Brpzqq.

Proposition 3.2 (Scaling of pκ, µq-minimizers). For x0 P Ω and r ¡ 0, let pE, uq be a pκ, µq-
minimizer of Fx0,Ax0

in Ω (or a pκ, µq-minimizer of FA). Then
�
Ψx0,rpEq, r�

1
2u � Ψ�1

x0,r

�
is a

pκrµ, µq-minimizer of Fx0,Ax0�Ψ
�1
x0,r

in Ψx0,rpΩq, (or respectively a pκrµ, µq-minimizer of FA in

Ψx0,rpΩq), where
Ψx0,rpxq :�

x� x0
r

, @x P Rn.

Proof. Let Bspzq � Ψx0,rpΩq. Applying the change of variables y � Ψx0,rpxq, we deduce that

Fx0,Ax0�Ψ
�1
x0,r

�
Ψx0,rpEq, u �Ψ�1

x0,r;Bspzq
�

�
»
Bspzq

σΨx0,rpEq
|∇pu �Ψ�1

x0,rqA�
1
2 px0q|2 dy �ΦAx0�Ψ

�1
x0,r

pΨx0,rpEq;Bspzqq

� 1

rn�1

�»
Brspx0�rzq

σE |∇uA�
1
2 px0q|2 dx�ΦAx0

pE;Brspx0 � rzqq



� 1

rn�1
Fx0,Ax0

pE, u;Brspx0 � rzqq.

Let pF, vq be such that F is a set of finite perimeter, F △ Ψx0,rpEq � Bspzq and v P pu � Ψ�1
x0,rq �

H1
0 pBspzqq. It holds that Ψ�1

x0,rpF q △ E � Brspx0 � rzq � Ω and v �Ψx0,r � u P H1
0 pBrspx0 � rzqq.

Using the pκ, µq-minimality of pE, uq we get

Fx0,Ax0�Ψ
�1
x0,r

�
Ψx0,rpEq, u �Ψ�1

x0,r;Bspzq
� � 1

rn�1
Fx0,Ax0

pE, u;Brspx0 � rzqq

¤ 1

rn�1

�
Fx0,Ax0

�
Ψ�1

x0,rpF q, v �Ψx0,r;Brspx0 � rzq�� κ|Ψx0,rpEq △ Ψx0,rpF q|
n�1�µ

n

�
� Fx0,Ax0�Ψ

�1
x0,r

pF, v;Bspzqq � κrµ|E △ F |n�1�µ
n ,

which means that
�
Ψx0,rpEq, r�

1
2u �Ψ�1

x0,r

�
is a pκrµ, µq-minimizer of Fx0,Ax0�Ψ

�1
x0,r

in Ψx0,rpΩq.

The following proposition will be useful in the proof of Theorem 7.3, where we need to compare
the excess of the transformed couple and of the original couple.

Proposition 3.3 (Comparability of the excess under change of variable Tx0 and radius). There
exists a positive constant c1 � c1pn, λ,Λq such that if E is a set of locally finite perimeter and
x0 P BE, then, for any r ¡ 0,

c�1
1 e

�
Tx0pEq, x0,Λ�

1
2 r
� ¤ epE, x0, rq ¤ c1e

�
Tx0pEq, x0, λ�

1
2 r
�
.

Proof. For r ¡ 0 and ν P Sn�1, we define the ellipsoidal excess at the point x0, at the scale r and
with respect to the direction ν the following quantity:

eW pE, x0, r, νq :� min
νPSn�1

1

rn�1

»
T�1
x0

pBrpx0qqXB�E

|νE � ν|2
2

dHn�1.

Leveraging the inclusions

T�1
x0

�
B

Λ�
1
2 r
px0q

� � Brpx0q � T�1
x0

�
B

λ�
1
2 r
px0q

�
,

we infer that
c�1eW

�
E, x0,Λ

� 1
2 r, ν

� ¤ epE, x0, r, νq ¤ c eW
�
E, x0, λ

� 1
2 r, ν

�
, (8)
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for some positive constant c � cpn, λ,Λq. In [43, Proposition 5.1], it is shown that

c�1e

�
Tx0pEq, x0, s,

A
1
2 px0qν

|A 1
2 px0qν|

�
¤ eW pE, x0, s, νq ¤ c e

�
Tx0pEq, x0, s,

A
1
2 px0qν

|A 1
2 px0qν|

�
,

for any s ¡ 0. Using the previous inequalities from below for s � Λ�
1
2 r and from above for

s � λ�
1
2 r, and inserting them in (8), we get

c�1e

�
Tx0pEq, x0,Λ�

1
2 r,

A
1
2 px0qν

|A 1
2 px0qν|

�
¤ epE, x0, r, νq ¤ c e

�
Tx0pEq, x0, λ�

1
2 r,

A
1
2 px0qν

|A 1
2 px0qν|

�
.

Minimizing over ν P Sn�1, we obtain the thesis.

4 Energy density estimates

The main goal of this section is to prove density lower and upper bounds for the perimeter of a
pκ, µq-minimizer. As consequences, the decay of the associate rescaled Dirichlet energy, defined for
u P H1pBrpx0qq as

Dupx0, rq :� 1

rn�1

»
Brpx0q

|∇u|2 dx, (9)

and the Lipshitz approximation theorem will follow. In view of this aim, we mention a result stating
a decay estimate for elastic minima around points where either the density of E is close to 0 or 1,
or the set E is asymptotically close to a hyperplane. We address the reader to [29, Proposition 2.4]
for the proof.

Lemma 4.1. Let pE, uq be a pκ, µq-minimizer of the functional FA. There exists τ0 P p0, 1q such
that the following statement is true: for all τ P p0, τ0q there exists ε0 � ε0pτq ¡ 0 such that if
Brpx0q � Ω and one of the following conditions holds:

(i) |E XBrpx0q|   ε0|Brpx0q|,
(ii) |Brpx0qzE|   ε0|Brpx0q|,
(iii) There exists a halfspace H such that |pE△HqXBrpx0q|

|Brpx0q|
  ε0,

then
Dupx0, τrq ¤ c2τDupx0, rq,

for some positive constant c2 � c2
�
n, α, β

�
.

The second result we want to mention, which will be used later, provides an upper bound for
the whole energy FA on balls. The proof is rather standard and we address the reader to [25,
Theorem 3] for the details. Here we just give a sketch of the proof, underlining the only points
where the presence of the anisotropy entails different computations.

Theorem 4.2 (Energy upper bound). Let pE, uq be a pκ, µq-minimizer of FA in Ω. Then for every
open set U � Ω there exists a positive constant c3 � c3

�
n, α, β,Λ, κ, µ, U, ∥∇u∥L2pΩq

�
such that for

every Brpx0q � U it holds
FApE, u;Brpx0qq ¤ c3r

n�1.

Proof. Let Brpx0q � U � Ω. Testing the minimality of pE, uq with pEzBrpx0q, uq, we deduce that

FApE, u; Ωq ¤ FApEzBrpx0q, u; Ωq � κ|E △ pEzBrpx0qq|
µ�n�1

n . (10)

The only difference in our proof, compared to the isotropic case, is the use of the following formula
concerning anisotropic perimeter and set operations. The latter follows from Proposition 2.2 applied
with F � H, G � Brpx0q, that is

ΦApEzBrpx0q;Uq � ΦApE;UzBrpx0qq �ΦApBrpx0q;Eq.
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Making FA explicit and getting rid of the common terms in (10) we obtain the following energy
estimate on Brpx0q X E:»

Brpx0qXE
pβ � αq|∇u|2 dx�ΦApE;Brpx0qq ¤ ΦApBrpx0q;Eq � κ|E △ pEzBrpx0qq|

µ�n�1
n

¤ Λ1{2Hn�1pBBrpx0qq � cpn, κqrn�1

¤ cpn,Λ, κqrn�1.

Starting from this estimate the proof follows verbatim the argument used in [25, Theorem 3],
because henceforth only variations of the function u are used and the perimeter is not involved
anymore. Indeed, using a blow up argument, it can be proved that there exist M �Mpn, α, βq ¡ 0
and τ P �

0, 12
�
, depending on Λ{λ, such that for every δ P p0, 1q there exists h0 P N such that, for

any Brpx0q � U , we have»
Brpx0q

|∇u|2 ¤ h0r
n�1 or

»
Bτrpx0q

|∇u|2 dx ¤Mτn�δ

»
Brpx0q

|∇u|2 dx,

from which the thesis follows.

In the following lemma we show that the energy FA decays “fast” in the balls where the
perimeter of E is “small”. Lemma 4.1 is utilized in its proof, specifically in instances (i) and (ii).

Lemma 4.3. Let pE, uq be a pκ, µq-minimizer in Ω of the functional FA. For every τ P p0, 1q there
exists ε1 � ε1pτq ¡ 0 such that, if Brpx0q � Ω and P pE;Brpx0qq   ε1r

n�1, then

FApE, u;Bτrpx0qq ¤ c4
�
τnFApE, u;Brpx0qq � pτrqµ�n�1

�
,

for some positive constant c4 � c4
�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

� ¡ 0 independent of τ and r.

Proof. Let τ P p0, 1q and Brpx0q � Ω. Without loss of generality, we may assume that τ   1
2 .

We rescale pE, uq in B1 by setting Er � E�x0
r and urpyq � r�

1
2upx0 � ryq, for y P B1. Applying

Proposition 3.2, we have that pEr, urq is a pκrµ, µq-minimizer of FÃ in B1, where Ã � A � Ψ�1
x0,r.

Observing that rn�1FÃpEr, ur;Bτ q � FApE, u;Bτrpx0qq, we have to prove that there exists ε1 �
ε1pτq such that, if P pE;B1q   ε1, then

FÃpE, u;Bτ q ¤ c4
�
τnFÃpE, u;B1q � τµ�n�1rµ

�
.

For simplicity of notation we will still denote Er by E, ur by u and Ã by A. We note that, since
P pE;B1q   ε1, by the relative isoperimetric inequality, either |B1XE| or |B1zE| is small and thus
Lemma 4.1 can be applied. We assume that |B1zE| ¤ |B1 X E|, the other case being similar. By
the coarea formula and the relative isoperimetric inequality we get» 2τ

τ
Hn�1pBBρzEq dρ ¤ |B1zE| ¤ cpnqP pE;B1q

n
n�1 .

Therefore, we may choose ρ P pτ, 2τq, independent of n, such that it holds Hn�1pB�E X BBρq � 0
and

Hn�1pBBρzEq ¤ cpnq
τ
P pE;B1q

n
n�1 ¤ cpnqε

1
n�1

1

τ
P pE;B1q. (11)

Now we test the minimality of pE, uq with pF0, uq, where F0 :� E Y Bρ. We remark that, being
Hn�1pB�EXBBρq � 0, we can apply Proposition 2.2 with U � F � B1 and G � Bρ, thus obtaining

ΦApF0;B1q � ΦApE YBρ;B1q � ΦApE;B1zBρq �ΦApBρ;B1zEp1qq. (12)

The pκrµ, µq-minimality of pE, uq supplies»
B1

σE |∇u|2 dx�ΦApE;B1q ¤
»
B1

σF0 |∇u|2 dx�ΦApF0;B1q � κrµ|E △ F0|
µ�n�1

n .
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Using (12) to get rid of the common perimeter terms and recalling that E � Ep1q, we deduce»
B1

σE |∇u|2 dx�ΦApE;Bρq ¤
»
B1

σF0 |∇u|2 dx�ΦApBρ;B1zEq � κrµ|E △ F0|
µ�n�1

n .

Taking into account the comparability to the perimeter (6) and perimeter estimate (11), recalling
that ρ P pτ, 2τq and getting rid of the common Dirichlet terms, we deduce:»

Bτ

σE |∇u|2 dx� λ1{2P pE;Bτ q ¤ β

»
B2τ

|∇u|2 dx� Λ1{2Hn�1pBBρzEq � cpn, κqrµτµ�n�1

¤ β

»
B2τ

|∇u|2 dx� cpnqΛ1{2

τ
ε

1
n�1

1 P pE;B1q � cpn, κqrµτµ�n�1.

Finally, we choose ε1 such that

cpnqΛ1{2ε
1

n�1

1 ¤ τn�1 and cpnqε
n

n�1

1 ¤ ε0p2τq|B1|,
where ε0 is from Lemma 4.1, thus getting»

B2τ

|∇u|2 dx ¤ 2nc2τ
n

»
B1

|∇u|2 dx.

From this estimates the result easily follows applying again the comparability to the perimeter.

Taking advantage of the established results, we are able to deduce a density lower bound estimate
for the perimeter of a pκ, µq-minimizer of FA.

Theorem 4.4 (Density lower bound). Let pE, uq be a pκ, µq-minimizer of FA in Ω and U � Ω be
an open set. Then there exists a constant c5 � c5

�
n, α, β, λ,Λ, κ, µ, U, ∥∇u∥L2pΩq

� ¡ 0, such that,
for every x0 P BE and Brpx0q � U , it holds

P pE;Brpx0qq ¥ c5r
n�1. (13)

Moreover, Hn�1ppBEzB�Eq X Ωq � 0.

Proof. The proof matches that of [25, Theorem 4] exactly, given the comparability to the perimeter.
We start by assuming that x0 P B�E. Without loss of generality we may also assume that x0 � 0.
Arguing by contradiction on (13), by using Theorem 4.2 and Lemma 4.3, we can easily prove by
induction (see [25, Theorem 4] for the details) that

FpE, u;Bστhrq ¤ ε1pτqτµhpστhrqn�1,

where τ and σ are sufficiently small and ε1 is from Lemma 4.3. Starting from this, we deduce that

lim
ρÑ0�

P pE;Bρq
ρn�1

� lim
hÑ�8

P pE;Bστhrq
pστhrqn�1

¤ lim
hÑ�8

2ε1pτqτµh � 0,

which implies that x0 R B�E, that is a contradiction. We recall that we chose the representative
of BE such that BE � B�E. Thus, if x0 P BE, there exists pxhqhPN � B�E such that xh Ñ x0 as
hÑ �8,

P pE;Brpxhqq ¥ Crn�1

and Brpxhq � U , for h large enough. Passing to the limit as hÑ �8, we get the result.

Definition 4.5 (Ahlfors regularity). A Borel measure µ on Rn is said to be d-Ahlfors regular if
there exist two positive constants cA and r0 such that

c�1
A rd ¤ µpBrpxqq ¤ cAr

d,

for all x P sptµ and 0   r   r0. According to the notation used in [6], we denote

ApcA, r0q :�
!
E � Rn : E is a set of locally finite perimeter satisfying

BE � sptµE and its perimeter measure |µE | is
pn� 1q-Ahlfors regular with constants r0 and cA

)
.
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Remark 4.6. It is evident that Theorems 4.2 and 4.4 ensure the belonging of the pκ, µq-minimizers
of FA to the class ApcA, r0q, for some constant cA identified in such theorems. Naturally, for
x0 P Ω and r ¡ 0, the

�
κλ�

n
2 rµ, µ

�
-minimizers of Fx0,Ax0�Ψ

�1
x0,r

obtained through the affine trans-

formation Tx0 and the scaling Ψ�1
x0,r (see Proposition 3.1 and Proposition 3.2) belong to the class

A
�
cA

�
Λ
λ

�n
2 , r0

rΛ
1
2

	
.

The next result of this section establishes that around the points of the boundary of the set
where the excess is “small”, the Dirichlet integral decays “fast”. In its proof, Lemma 4.1 plays a
crucial role in istance (iii).

Proposition 4.7 (Decay of the rescaled Dirichlet integral). For every τ P p0, 1q there exists ε2 �
ε2pτq ¡ 0 such that if pE, uq is a pκ, µq-minimizer of FA in Brpx0q, with x0 P BE, and epx0, rq ¤ ε2,
then

Dupx0, τrq ¤ c6τDupx0, rq,
for some positive constant c6 � c6

�
n, α, β, ∥∇u∥L2pΩq

�
.

Proof. Applying a usual scaling argument, by Proposition 3.2, we assume by contradiction that for
some τ P p0, 1q there exist two positive sequences pεhqhPN and prhqhPN and a sequence ppEh, uhqqhPN
of pκrµh , µq-minimizers of FA�Ψ�1

x0,rh
in B1 with equibounded energies such that 0 P BEh,

epEh, 0, 1q � εh Ñ 0 and Duh
p0, τq ¡ CτDuh

p0, 1q, (14)

for some positive constant C to be chosen. Thanks to the energy upper bound (Theorem 4.2) and
the compactness of pEhqhPN, we may assume that Eh Ñ E in L1pB1q and 0 P BE. Since, by lower
semicontinuity, the excess of E at 0 is null, E is a half-space in B1, say H. In particular, for h
large, it holds

|pEh △ Hq XB1|   ε0pτq|B1|,
where ε0 is from Lemma 4.1, which gives a contradiction with the inequality (14), provided we
choose C ¡ c2, where c2 is also from Lemma 4.1.

The last results also come as consequences of the density lower and upper bounds proved
above. The height bound lemma is a standard step in the proof of regularity because it is one of
the main ingredients to prove the Lipschitz approximation theorem. We remark that this is stated
for pκrµ, µq-minimizers of FAx0�Ψx0,r

, which are still Ahlfors regular (see Remark 4.6). The proof
of this result can be found in [6, Theorem A.2].

Lemma 4.8 (Height bound). For x0 P Ω and r ¡ 0, let pE, uq be a pκrµ, µq-minimizer of FAx0�Ψ
�1
x0,r

in B1. There exist two positive constants ε3 and c7, depending on n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pB1q
, such

that if 0 P BE and
ep0, 1, enq   ε3,

then
sup

yPBEXB1{2

|yn � px0qn| ¤ c7ep0, 1, enq
1

2pn�1q .

Proceeding as in [40], we state the following Lipschitz approximation lemma, which is a con-
sequence of the height bound lemma. Its proof follows exactly as in [6, Theorem A.3]. It is a
foundamental step in the long journey to the regularity because it provides a connection between
the regularity theories for parametric and non-parametric variational problems. Indeed we are able
to prove for pκrµ, µq-minimizers that the smallness of the excess guaranties that BE can be locally
almost entirely covered by the graph of a Lipschitz function.

Theorem 4.9 (Lipschitz approximation). For x0 P Ω and r ¡ 0, let pE, uq be a pκrµ, µq-minimizer
of FAx0�Ψ

�1
x0,r

in B1. There exist two positive constants ε4 and c8, depending on

n, α, β, λ,Λ, ∥∇u∥L2pB1q
, such that if 0 P BE and

ep0, 1, enq   ε4,
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then there exists a Lipschitz function f : Rn�1 Ñ R such that

sup
x1PRn�1

|fpx1q| ¤ c8ep0, 1, enq
1

2pn�1q ,
∥∥∇1f

∥∥
L8

¤ 1,

and
Hn�1ppBE △ Γf q XB1{2q ¤ c8ep0, 1, enq,

where Γf is the graph of f . Moreover,»
D 1

2

|∇1f |2 dx1 ¤ c8ep0, 1, enq.

5 Compactness for sequences of minimizers

In this section we prove a standard compactness result for sequences of pκ, µq-minimizers. Given
to positive constants M1 and M2, we set

BM1,M2 :�  
A P CγpRn;Rn b Rnq : A is symmetric, rAsCγ  M1, ∥A∥8  M2

(
.

We define

A �  
A P CγpRn;Rn b Rnq : λ|ξ|2 ¤ xApxqξ, ξy ¤ Λ|ξ|2, @x, ξ P Rn

(XBM1,M2 . (15)

Lemma 5.1 (Compactness). Let pEh, uhq be a sequence of pκh, µq-minimizers of FAh
in Ω such

that suphFAh
pEh, uh; Ωq   �8, Ah Ñ A8 uniformly on compact sets, where the matrix A8, Ah

are in the class A defined in (15), κh Ñ κ P R�. There exist a (not relabelled) subsequence and a
pκ, µq-minimizer pE, uq of FA8 in Ω such that, for every open set U � Ω, it holds

Eh Ñ E in L1pUq, uh Ñ u in H1pUq, ΦAh
pEh;Uq Ñ ΦA8pE;Uq.

In addition,

if xh P BEh X U and xh Ñ x P U, then x P BE X U, (16)

if x P BE X U, there exists xh P BEh X U such that xh Ñ x. (17)

Finally, if we assume also that ∇uh á 0 weakly in L2
locpΩ;Rnq and κh Ñ 0, as hÑ �8, then E is

a local minimizer of ΦA8, that is

ΦA8pE;Brpx0qq ¤ ΦA8pF ;Brpx0qq, (18)

for every set F of locally finite perimeter such that F △ E � Brpx0q � Ω.

Proof. Using the boundedness condition on suphFAh
pEh, uh; Ωq, we may assume that uh weakly

converges to u in H1pUq and strongly in L2pUq, and 1Eh
converges to 1E in L1pUq, as h Ñ �8.

By a lower semicontinuity argument, we start proving the pκ, µq-minimality of pE, uq. Let us fix
Brpx0q � U and assume for simplicity of notation that x0 � 0. Let pF, vq be a test pair such that
F is a set of locally finite perimeter, F △ E � Br and supppu � vq � Br. Possibly passing to a
subsequence and using Fubini’s theorem, we may choose 0   r0   ρ   r such that F △ E � Bρ,
EzBr0 � F zBr0 , supppu� vq � Bρ, and in addition,

Hn�1pBBρ X B�Eq � Hn�1pBBρ X B�Ehq � 0,

and
lim
hÑ0

Hn�1pBBρ X pF p1q △ E
p1q
h qq � 0. (19)

Now we choose a cut-off function ψ P C1
0 pBrq such that ψ � 1 in Bρ and define

vh � ψv � p1� ψquh, Fh :� pF XBρq Y pEhzBρq
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to test the minimality of pEh, uhq. Thanks to the pκh, µq-minimality of pEh, uhq and using also
Proposition 2.2, we deduce that»

Br

σEh
|∇uh|2dx�ΦAh

pEh;Brq ¤
»
Br

σFh
|∇vh|2dx�ΦAh

pFh;Brq � κh|Fh △ Eh|
µ�n�1

n

¤
»
Br

σEh
p1� ψq|∇uh|2dx�

»
Br

σFh
ψ|∇v|2dx�

»
Br

∇ψ|u� uh|2dx

�ΦAh
pF ;Bρq �ΦAh

pEh;BrzBρq �ΦAh
pBρ;F △ Ehq � κh|Fh △ Eh|

µ�n�1
n . (20)

Using the uniform convergence Ah Ñ A8, the strong convergence uh Ñ u in L2, condition (19),
and getting rid of common terms, from the latter estimate we can write:»

Br

σEh
ψ|∇uh|2dx�ΦA8pEh;Bρq

¤
»
Br

σFh
ψ|∇v|2dx�ΦA8pF ;Bρq � κh|Fh △ Eh|

µ�n�1
n � εh,

for some εh Ñ 0. By the lower semicontinuity of the anisotropic perimeter (see [43, Proposition
3.1]), the equi-integrability of p∇uhqhPN and the lower semicontinuity of Dirichlet integral, we infer
that »

Br

σEψ|∇u|2dx�ΦA8pE;Bρq ¤
»
Br

σFψ|∇v|2dx�ΦA8pF ;Bρq � κ|F △ E|µ�n�1
n .

Letting ψ Ó χBρ we get»
Bρ

σE |∇u|2dx�ΦA8pE;Bρq ¤
»
Bρ

σF |∇v|2dx�ΦA8pF ;Bρq � κ|F △ E|µ�n�1
n . (21)

Similarly, choosing E � F and u � v in (20), and arguing as before we get

lim sup
hÑ�8

�»
Bρ

σEh
ψ|∇uh|2dx�ΦA8pEh;Bρq



¤

»
Bρ

σEψ|∇u|2dx�ΦAh
pE;Bρq.

Letting ψ Ó χBρ we conclude

lim
hÑ�8

ΦAh
pEh;Bρq � ΦA8pE;Bρq, lim

hÑ�8

»
Bρ

σEh
|∇uh|2dx �

»
Bρ

σE |∇u|2dx.

With a usual argument we can deduce uh Ñ u inW 1,2pUq and ΦAh
pEh;Uq Ñ ΦA8pE;Uq, for every

open set U � Ω. The topological information stated in (16) and (17) follows as in [40, Theorem
21.14], indeed they are a consequence of the lower and upper density estimates given above. Finally,
if ∇uh á 0 weakly in L2

locpΩ;Rnq and κh Ñ 0, we can choose v � u in (21), deriving (18).

6 Reverse Poincaré inequality

In this section we derive a reverse Poincaré inequality which lets us estimate the excess around a
point of the boundary of the transformed set with its flatness. The first step in the proof is to
establish a weak form of this inequality.

In the following proposition, it is proved that if the anisotropy matrix valued in a point x0 is
the identity, then around x0 the anisotropic perimeter is comparable to the perimeter.

Proposition 6.1. Let x0 P Ω and r ¡ 0. There exists a positive constant c9 �
c9
�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

�
such that if pE, uq is a pκrµ, µq-minimizer of Fx0,Ax0�Ψ

�1
x0,r

in B1,

with 0 P BE XB1, then»
Bρ

σE |∇uA�
1
2 px0q|2 dx� P pE;Bρq
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¤
»
Bρ

σF |∇vA�
1
2 px0q|2 dx� P pF ;Bρq � c9

�
κ� rAsCγ

�
rµρn�1�µ,

for every pF, vq such that F △ E � Bρ � B1 and v P u�H1
0 pBρq.

Proof. Let pF, vq be such that F △ E � Bρ and v P u�H1
0 pBρq. We can assume that»

Bρ

σE |∇uA�
1
2 px0q|2 dx� P pE;Bρq ¥

»
Bρ

σF |∇vA�
1
2 px0q|2 dx� P pF ;Bρq.

We remark that Ax0 �Ψ�1
x0,r is Hölder continuous and

�
Ax0 �Ψ�1

x0,r

�
Cµ ¤

Λ
µ
2

λ
rAsCµrµ.

Since
�
Ax0 �Ψ�1

x0,r

�p0q � I, by the Hölder continuity of Ax0 �Ψ�1
x0,r we infer

|νE | �
@�
Ax0 �Ψ�1

x0,r

�p0q νE , νED 1
2 ¤ @�

Ax0 �Ψ�1
x0,r

�pxq νE , νED 1
2 � 1

2λ

�
Ax0 �Ψ�1

x0,r

�
Cµρ

µ

¤ @�
Ax0 �Ψ�1

x0,r

�pxq νE , νED 1
2 � Λ

µ
2

2λ2
rAsCµprρqµ,

for any x P Bρ. Integrating over Bρ with respect to the measure Hn�1 B�E and adding to both

sides the term
³
Bρ
σE |∇uA� 1

2 px0q|2, we obtain»
Bρ

σE |∇uA�
1
2 px0q|2 dx� P pE;Bρq ¤

»
Bρ

σE |∇uA�
1
2 px0q|2 dx�ΦAx0�Ψ

�1
x0,r

pE;Bρq

� Λ
µ
2

2λ2
rAsCµprρqµP pE;Bρq.

Arguing in a similar way, we get»
Bρ

σF |∇vA�
1
2 px0q|2 dx�ΦAx0�Ψ

�1
x0,r

pF ;Bρq ¤
»
Bρ

σF |∇vA�
1
2 px0q|2 dx� P pF ;Bρq

� Λ
µ
2

2λ2
rAsCµprρqµP pF ;Bρq.

Applying the definition of pκrµ, µq-minimality of pE, uq and using the previous two inequalities, we
write»

Bρ

σE |∇uA�
1
2 px0q|2 dx� P pE;Bρq

¤
»
Bρ

σE |∇uA�
1
2 px0q|2 dx�ΦAx0�Ψ

�1
x0,r

pE;Bρq � Λ
µ
2

2λ2
rAsCµprρqµP pE;Bρq

¤
»
Bρ

σF |∇vA�
1
2 px0q|2 dx�ΦAx0�Ψ

�1
x0,r

pF ;Bρq � κrµ|E △ F |n�1�µ
n � Λ

µ
2

2λ2
rAsCµprρqµP pE;Bρq

¤
»
Bρ

σF |∇vA�
1
2 px0q|2 dx� P pF ;Bρq � cpnqκrµρn�1�µ

� Λ
µ
2

2λ2
rAsCµprρqµrP pE;Bρq � P pF ;Bρqs

¤
»
Bρ

σF |∇vA�
1
2 px0q|2 dx� P pF ;Bρq � cpnqκrµρn�1�µ

� Λ
µ
2

2λ2
rAsCµprρqµ

�
2P pE;Bρq �

»
Bρ

σE |∇u|2 dx
�

¤
»
Bρ

σF |∇vA�
1
2 px0q|2 dx� P pF ;Bρq � cpn, λ,Λ, c3q

�
κ� rAsCγ

	
rµρn�1�µ,

where c3 is the constant appearing in Theorem 4.2, which leads to the thesis.
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At this point, we are able to establish a weak form of the reverse Poincaré inequality. The
strategy for its proof is the same outlined in [40, Lemma 24.9] (see also [43, Lemma 7.3] or [25,
Lemma 10]).

Lemma 6.2 (Weak reverse Poincaré inequality). Let x0 P Ω and r ¡ 0. If pE, uq is a pκrµ, µq-
minimizer of Fx0,Ax0�Ψ

�1
x0,r

in C4 such that

|xn|   1

8
, @x P C2 X BE,����"x P C2zE : xn   �1

8

*���� � ����"x P C2 X E : xn ¡ 1

8

*���� � 0,

and if z P Rn�1 and s ¡ 0 are such that

Kspzq � C2, Hn�1pBE X BKspzqq � 0, (22)

then, for every |c|   1
4 ,

P pE;K s
2
pzqq �Hn�1pD s

2
pzqq ¤ c10

#��
P pE;Kspzqq �Hn�1pDspzqq

�
�
»
KspzqXB�E

pxn � cq2
s2

dHn�1

� 1
2

�
»
Kspzq

|∇u|2 dx� �
κ� rAsCµ

�
rµ

+
,

for some positive constant c10 � c10
�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

�
.

Proof. We may assume that z � 0. The set function

mpGq � P pE;C2 X p�1pGqq �Hn�1pGq, for G � D2,

defines a Radon measure on Rn�1, supported in D2. Since E is a set of locally finite perimeter,
by [40, Theorem 13.8] there exist a sequence pEhqhPN of open subsets of Rn with smooth boundary
and a vanishing sequence pεhqhPN � R� such that

Eh
locÑ E, Hn�1 BEh Ñ Hn�1 BE, BEh � IεhpBEq,

as h Ñ �8, where IεhpBEq is a tubular neighborhood of BE with half-lenght εh. By the coarea
formula we get

Hn�1pBKρs X pEp1q △ Ehqq Ñ 0, for a.e. ρ P
�
2

3
,
3

4



.

Moreover, provided h is large enough, by BEh � IεhpBEq, we get:

|xn|   1

4
, @x P C2 X BEh,"

x P C2 : xn   �1

4

*
� C2 X Eh �

"
x P C2 : xn   1

4

*
.

Therefore, given λ P �
0, 14

�
and |c|   1

4 , we are in position to apply [40, Lemma 24.8] to every Eh

to deduce that there exists Ih �
�
2
3 ,

3
4

�
, with |Ih| ¥ 1

24 , and, for any ρ P Ih, there exists an open
subset Fh of Rn of locally finite perimeter such that

Fh X BKρs � Eh X BKρs, (23)

K s
2
X BFh � D s

2
� tcu,

P pFh;Kρsq �Hn�1pDρsq ¤cpnq
"
λ
�
P pEh;Ksq �Hn�1pDsq

�� 1

λ

»
KsXBEh

|xn � c|2
s2

dHn�1

*
.(24)

15



Clearly
£
hPN

¤
k¥h

|Ik| ¥ 1

24
¡ 0 and thus there exist a divergent subsequence phkqkPN and ρ P �

2
3 ,

3
4

�
such that

ρ P
£
kPN

Ihk
and lim

kÑ�8
Hn�1pBKρs X pEp1q △ Ehk

qq � 0.

We will write Fk in place of Fhk
. We consider the comparison set Gk � pFk XKρsq Y pEzKρsq. By

applying [40, formula (16.33)] we infer that

P pGk;Ksq � P pFk;Kρsq � P pE;KszKρsq � σk,

where, thanks to (23), σk � Hn�1pBKρs X pEp1q △ Fkqq � Hn�1pBKρs X pEp1q △ Ehk
qq Ñ 0, as

k Ñ �8. We apply Proposition 6.1, deducing the following relation:»
sptpu�vq

σE |∇uA�
1
2 px0q|2 dx� P pE;Bρ̃q

¤
»
sptpu�vq

σG|∇vA�
1
2 px0q|2 dx� P pG;Bρ̃q � c

�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

��
κrµ � rAsCµrµ

�
ρ̃n�1�µ,

for every pG, vq such that G △ E � Bρ̃ � C4 and v P u�H1
0 pBρ̃q.

Now we test the previous relation of minimality with pGk, uq, as E △ Gk � Ks � B4 � C4, and
get rid of the common terms obtaining

P pE;Kρsq ¤ P pFk;Kρsq � σk � c
�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

�� »
Kρs

|∇u|2 dx� �
κrµ � rAsCµrµ

��
.

(25)

Thus, since m is nondecreasing and ρ P �23 , 34�, by (25) and (24) we deduce that

P pE;K s
2
q �Hn�1pD s

2
q � mpD s

2
q ¤ mpDρsq � P pE;Kρsq �Hn�1pDρsq

¤ P pFk;Kρsq �Hn�1pDρsq � σk � c

� »
Kρs

|∇u|2 dx� �
κ� rAsCµ

�
rµ
�

¤ cpnq
"
λ
�
P pEhk

;Ksq �Hn�1pDsq
�� 1

λ

»
KsXBEhk

|xn � c|2
s2

dHn�1

*
� c

� »
Ks

|∇u|2 dx� �
κ� rAsCµ

�
rµ
�
,

where c � c
�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

�
. Letting k Ñ �8, (22) implies that P pEhpkq;Ksq Ñ

P pE;Ksq and therefore

P pE;K s
2
q �Hn�1pD s

2
q ¤ c

"
λ
�
P pE;Ksq �Hn�1pDsq

�� 1

λ

»
KsXBE

|xn � c|2
s2

dHn�1

�
»
Krs

|∇u|2 dx� �
κ� rAsCµ

�
rµ
*
, (26)

for any λ P �0, 14�. If λ ¡ 1
4 , then

P pE;K s
2
q �Hn�1pD s

2
q � mpD s

2
q ¤ mpDρsq

¤ 4λP pE;Kρsq �Hn�1pDρsq ¤ cpnqλ �P pE;Ksq �Hn�1pDsq
�
,

and thus (26) holds true for λ ¡ 0, provided we choose cpnq ¥ 4. Minimizing over λ, we get the
thesis.

Finally, we are able to prove the main result of this section.
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Theorem 6.3 (Reverse Poincaré inequality). Let x0 P Ω and r ¡ 0. There exist two positive
constants c11 � c11

�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

�
and ε5 � ε5pnq such that if pE, uq is a pκrµ, µq-

minimizer of Fx0,Ax0�Ψ
�1
x0,r

in C4τ p0, νq, with 0 P BE, τ ¡ 0 and

eCp0, 4τ, νq   ε5,

then

eCp0, τ, νq ¤ c11

�
1

τn�1

»
BEXC2τ p0,νq

| ⟨ν, x⟩� c|2dHn�1 (27)

� 1

τn�1

»
C2τ p0,νq

|∇u|2 dx� �
κ� rAsCµ

�pτrqµ
,
for every c P R.

Proof. The proof of this result follows the same strategy employed in [25, Theorem 6]. We emphasize
only small differences between the two proofs. Up to a rotation and employing a usual scaling
argument, by Proposition 3.2, with a small abuse of notation, we may assume that pE, uq is a
pκpτrqµ, µq-minimizer of Fx0,Ax0�Ψ

�1
x0,τr

in C4, with 0 P BẼ. Leveraging the compactness of the

perimeter and Theorem 4.9, it is possible to show that

|xn|   1

4
, @x P C2 X BE,����"x P C2zE : xn   �1

8

*���� � ����"x P C2 X E : xn ¡ 1

8

*���� � 0.

Thus, for any z P Rn�1 and s ¡ 0 such that

Kspzq � C2, Hn�1pBE X BKspzqq � 0,

we apply Lemma 6.2, deducing that, for every |c|   1
4 ,

P pE;Kspzqq �Hn�1pDspzqq ¤ c

#�
rP pE;K2spzqq �Hn�1pD2spzqqs inf

|c|  1
4

»
C2XBE

|xn � c|2 dHn�1

� 1
2

�
»
Ks

|∇u|2 dx� κτrµ � rAsCµpτrqµ
*
, (28)

for some positive constant c � c
�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

�
. Hence, proceeding as in [25, Theo-

rem 6], by a covering argument, it is possible to show that (28) implies (27).

7 Proof of the main theorem

The strategy adopted to establish the main result involves two key steps: first proving a first
variation formula for the bulk energy of Fx0,Ax0�Ψ

�1
x0,r

, then establishing an excess improvement

theorem for transformed couples, which in turn implies an analogous theorem for the original ones.

Proposition 7.1 (First variation formula for the bulk term). x0 P Ω, u P H1pB1q and X P
C1
c pB1;Rnq. We define Φtpxq � x� tXpxq, for any x P Rn and t ¡ 0. Accordingly, we define

Et :� ΦtpEq, ut :� u � Φ�1
t .

There exist two constants c12 � c12pβ, λ,∇Xq ¡ 0 and t0 ¡ 0 such that it holds that»
B1

σEt |∇utA�
1
2 px0q|2 dx�

»
B1

σE |∇uA�
1
2 px0q|2 dx ¤ c12pt� optqq

»
B1

|∇u|2 dx,

for any 0   t   t0.
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Proof. Taking into account that

∇Φ�1
t pΦtpxqq � I � t∇Xpxq � optq, JΦtpxq � 1� tdivXpxq � optq,

for any x P Rn and t ¡ 0, by the change of variable y � Φtpxq we obtain»
B1

σEt |∇utA�
1
2 px0q|2 dy �

»
B1

σE |∇uA�
1
2 px0q|2 dx

�
»
B1

σE
��r∇u� t∇u∇X �∇u optqsA� 1

2 px0q
��2p1� tdivX � optqq dx�

»
B1

σE |∇uA�
1
2 px0q|2 dx

�
»
B1

σE
�|∇uA� 1

2 px0q|2 � |∇uA� 1
2 px0q|2ptdivX � optqq� dx�Hpt,∇u,∇Xq

�
»
B1

σE |∇uA�
1
2 px0q|2 dx

�
»
B1

σE |∇uA�
1
2 px0q|2ptdivX � optqq dx�Hpt,∇u,∇Xq, (29)

where

Hpt,∇u,∇Xq �
»
B1

σE
��r�t∇u∇X �∇u optqsA� 1

2 px0q
��2p1� tdivX � optqq dx

�
»
B1

2
A
∇uA�

1
2 px0q, p�t∇u∇X �∇u optqqA� 1

2 px0q
E
p1� tdivX � optqq dx.

We estimate»
B1

σE |∇uA�
1
2 px0q|2ptdivX � optqq dx ¤ cpβ, λ,∇Xqpt� optqq

»
B1

|∇u|2 dx (30)

and

Hpt,∇u,∇Xq ¤ cpβ, λ,∇Xq
»
B1

pt� optqq2|∇u|2p1� tdivX � optqq dx

� cpβ, λ,∇Xq
»
B1

pt� optqq|∇u|2p1� tdivX � optqq dx

¤ cpβ, λ,∇Xqpt� optqq
»
B1

|∇u|2 dx. (31)

Inserting (31) and (30) in (29) we get the desired inequality.

Here we present the proof of the excess improvement theorem for transformed couples.

Theorem 7.2 (Excess improvement for the transformed couple). For any ω P p0, 1q, σ̃ P p0, 1q,
M̃ ¡ 0, τ̃ P �

0, 1
16

�
there exists a constant ε̃ � ε̃pσ̃, M̃ , τ̃q ¡ 0 such that if pẼ, ũq is a pκ̃, µq-

minimizer of Fx0,Ax0
in Br̃px0q, with x0 P BẼ, such that

epẼ, x0, r̃q ¤ ε̃, Dũpx0, r̃q � r̃p1�ωqµ ¤ M̃epẼ, x0, σ̃r̃q,

then there exists a constant c13 � c13
�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

� ¡ 0 such that

epẼ, x0, τ̃ r̃q ¤ c13
�
τ̃2epẼ, x0, r̃q �Dũpx0, 4τ̃ r̃q � pτ̃ r̃qµ�.

Proof. Let us assume by contradiction that there exist a vanishing sequence pr̃hqhPN � R� and a
sequence ppẼh, ũhqqhPN of pκ̃, µq-minimizers of Fx0,A in Br̃hpx0q, with x0 P BẼh, such that

epẼh, x0, r̃hq �: εh Ñ 0, Dũh
px0, r̃hq � r̃

p1�ωqµ
h ¤ M̃epẼh, x0, σ̃r̃hq,

18



and
epẼh, x0, τ̃ r̃hq ¡ C

�
τ̃2epẼh, x0, r̃hq �Dũh

px0, 4τ̃ r̃hq � pτ̃ r̃hqµ
�
,

for some constant C ¡ 0 to be chosen. Employing the usual scaling argument and applying
Proposition 3.2, with a small abuse of notation we may assume that ppẼh, ũhqqhPN is a sequence of
pκ̃r̃µh , µq-minimizers of Fx0,Ax0�Ψ

�1
x0,r̃h

in B1, with 0 P BẼh, such that

epẼh, 0, 1q � εh Ñ 0, Dũh
p0, 1q � r̃

p1�ωqµ
h ¤ M̃epẼh, 0, σ̃q, (32)

and
epẼh, 0, τ̃q ¡ C

�
τ̃2epẼh, 0, 1q �Dũh

p0, 4τ̃q � pτ̃ r̃hqµ
�
.

Up to rotating each Ẽh we may also assume that, for all h P N,

epẼh, 0, 1q � 1

2

»
BẼhXB1

|νEh
� en|2 dHn�1.

Step 1. Thanks to the Lipschitz approximation theorem, for h sufficiently large, there exists a
1-Lipschitz function fh : Rn�1 Ñ R such that

sup
Rn�1

|fh| ¤ c8ε
1

2pn�1q

h , Hn�1ppBẼh △ Γfhq XB 1
2
q ¤ c8εh,

»
D 1

2

|∇1fh|2 dx1 ¤ c8εh. (33)

We define

ghpx1q :� fhpx1q � ah?
εh

, where ah � �
»
D 1

2

fh dx
1,

and we assume, up to a subsequence, that tghuhPN converges weakly in H1pD 1
2
q and strongly in

L2pD 1
2
q to a function g. We prove that g is harmonic in D 1

2
. It is enough to show that

lim
hÑ�8

1?
εh

»
D 1

2

x∇1fh,∇1ϕya
1� |∇1fh|2

dx1 � 0,

for all ϕ P C1
0 pD 1

2
q. We fix δ ¡ 0 so that suppϕ � r�2δ, 2δs � B 1

2
and choose a cut-off function

ψ : RÑ r0, 1s with suppψ � p�2δ, 2δq, ψ � 1 in p�δ, δq. Let us define

Φhpxq :� x� r̃ωµh Xpxq, where Xpxq � ϕpx1qψpxnqen,

for x P Rn. We apply Proposition 6.1 to deduce that

P pẼh;B 1
2
q � P pΦhpẼhq;B 1

2
q ¤

»
B 1

2

σΦhpẼhq
|∇pũh � Φ�1

h qA� 1
2 px0q|2 dx�

»
B 1

2

σẼh
|∇ũhA�

1
2 px0q|2 dx

(34)

� c
�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

��
κ̃r̃µh � rAsCµ r̃µh



1

2n�1�µ
.

Using the first variation formula for the perimeter and Proposition 7.1, for h sufficiently large, we
get:

P pẼh;B 1
2
q � P pΦhpẼhq;B 1

2
q � �

r̃ωµh �O
�
r̃2ωµh

�� »
BẼhXB 1

2

A
νẼh

, en

EA
∇1ϕ, ν1

Ẽh

E
dHn�1, (35)

and »
B 1

2

σΦhpẼhq
|∇pũh � Φ�1

h qA� 1
2 px0q|2 dx�

»
B 1

2

σẼh
|∇ũhA�

1
2 px0q|2 dx
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¤ c
�
r̃ωµh � o

�
r̃ωµh

�� »
B 1

2

|∇ũh|2 dx, (36)

for some c � cpβ, λ,∇ϕ,∇ψq ¡ 0. Inserting (36) and (35) in (34), dividing by
?
εh
�
r̃ωµh �O�r̃2ωµh

��
and taking (32) into account, we get

1?
εh

»
BẼhXB 1

2

A
νẼh

, en

EA
∇1ϕ, ν1

Ẽh

E
dHn�1

¤ c?
εh
�
r̃ωµh �O

�
r̃ωµh

����r̃ωµh � o
�
r̃ωµh

�� »
B 1

2

|∇ũh|2 dx� r̃µh



¤ c?

εh

�
Dũh

p0, 1q � r̃
p1�ωqµ
h

�
¤ c?

εh
epẼh, 0, σ̃q ¤ c

?
εh,

for some c � c
�
n, α, β, λ,Λ, κ̃, µ, rAsCµ , σ̃, M̃ ,∇ϕ,∇ψ

� ¡ 0. Replacing ϕ with �ϕ, we infer that

lim
hÑ�8

1?
εh

���� »
BẼhXB 1

2

xνẼh
, enyx∇1ϕ, ν1

Ẽh
y dHn�1

���� � 0. (37)

Decomposing BẼh XB 1
2
� �rΓfh Y pBẼhzΓfhqszpΓfhzBẼhq

�XB 1
2
, we deduce

� 1?
εh

»
BẼhXB 1

2

xνẼh
, enyx∇1ϕ, ν1

Ẽh
y dHn�1 � 1?

εh

�
�
»
Γfh

XB 1
2

xνẼh
, enyx∇1ϕ, ν1

Ẽh
y dHn�1

�
»
pBẼhzΓfh

qXB 1
2

xνẼh
, enyx∇1ϕ, ν1

Ẽh
y dHn�1 �

»
pΓfh

zBẼhqXB 1
2

xνẼh
, enyx∇1ϕ, ν1

Ẽh
y dHn�1

�
.

Since by the second inequality in (33) we have���� 1?
εh

»
pBẼhzΓfh

qXB 1
2

xνẼh
, enyx∇1ϕ, ν1

Ẽh
y dHn�1

���� ¤ c8
?
εh sup

Rn�1

|∇1ϕ|,

���� 1?
εh

»
pΓfh

zBẼhqXB 1
2

xνẼh
, enyx∇1ϕ, ν1

Ẽh
y dHn�1

���� ¤ c8
?
εh sup

Rn�1

|∇1ϕ|,

then, by (37) and the area formula, we infer

0 � lim
hÑ�8

�1?
εh

»
Γfh

XB 1
2

xνẼh
, enyx∇1ϕ, ν1

Ẽh
y dHn�1 � lim

hÑ�8

1?
εh

»
D 1

2

x∇1fh,∇1ϕya
1� |∇1fh|2

dx1.

This proves that g is harmonic in D 1
2
.

Step 2. The proof of this step now follows exactly as in [29] using the height bound lemma
and the reverse Poincaré inequality. We give here the proof for the sake of completeness. Setting

bh :� pfhq4τ̃a
1� |p∇1fhq4τ̃ |2

, νh :� p�p∇1fhq4τ̃ , 1qa
1� |p∇1fhq4τ̃ |2

.

We want to estimate from above the flatness of BẼh towards the hyperplane ty P Rn : xy, νhy � bhu
in B4τ̃ with the excess. More precisely, we show that

lim sup
hÑ�8

1

εhτ̃n�1

»
BẼhXB4τ̃

|xνh, xy � bh|2 dHn�1 ¤ cpn, c8qτ̃2. (38)

On one hand, by the mean value property of harmonic functions (see [40, Lemma 25.1]), Jensen’s
inequality, semicontinuity and the third inequality in (33) we deduce that

lim sup
hÑ�8

1

εhτ̃n�1

»
BẼhXΓfh

XB4τ̃

|xνh, xy � bh|2 dHn�1
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� lim sup
hÑ�8

1

εhτ̃n�1

»
BẼhXΓfh

XB4τ̃

|x�p∇1fhq4τ̃ , x1y � fhpx1q � pfhq4τ̃ |
1� |p∇1fhq4τ̃ |2

2a
1� |∇1fhpx1q|2 dx1

¤ lim sup
hÑ�8

1

εhτ̃n�1

»
D4τ̃

|fhpx1q � pfhq4τ̃ � xp∇1fhq4τ̃ , x1y|2 dx1

� 1

τ̃n�1

»
D4τ̃

|gpx1q � pgq4τ̃ � xp∇1gq4τ̃ , x1y|2 dx1

� 1

τ̃n�1

»
D4τ̃

|gpx1q � gp0q � x∇1gp0q, x1y|2 dx1

¤ cpnqτ̃2 sup
x1PD4τ̃

|gpx1q � gp0q � x∇1gp0q, x1y|2

¤ cpnqτ̃2
»
D 1

2

|∇1g|2 dx1 ¤ cpnqτ̃2 lim inf
hÑ�8

»
D 1

2

|∇1gh|2 dx1 ¤ cpn, c8qτ̃2, (39)

where we used that D4τ̃ � D 1
4
, since τ̃   1

16 . On the other hand, from the height bound lemma

(see Lemma 4.8) and (33), we immediately get that

lim
hÑ�8

1

εh

»
pBẼhzΓfh

qXB2τ̃

|xνh, xy � bh|2 dHn�1 � 0. (40)

Hence, combining (39) and (40), we conclude that (38) is satisfied. In order to apply the reverse
Poincaré inequality, we show that the sequence tehpẼh, 4τ̃ , νhquhPN is infinitesimal; indeed, by the
definition of excess, Jensen’s inequality and the third inequality in (33) we have

2p4τ̃qn�1 lim sup
hÑ�8

ehpẼh, 0, 4τ̃ , νhq � lim sup
hÑ�8

»
BẼhXB4τ̃

|νẼh
� νh|2 dHn�1

¤ lim sup
hÑ�8

�
2

»
BẼhXB4τ̃

|νẼh
� en|2 dHn�1 � 2|en � νh|2Hn�1pBẼh XB4τ̃ q

�
¤ lim sup

hÑ�8

�
4εh � 2Hn�1pBẼh XB4τ̃ q |pp∇

1fhq4τ̃ ,
a
1� |p∇1fhq4τ̃ |2 � 1q|2

1� |p∇1fhq4τ̃ |2
�

¤ lim sup
hÑ�8

�
4εh � 4Hn�1pBEh XB4τ̃ q|p∇1fhq4τ̃ |2

�
¤ lim sup

hÑ�8

�
4εh � 4

»
D 1

2

|∇1fh|2 dx1
�
¤ lim

hÑ�8
r4εh � 4c8εhs � 0.

Therefore, applying the reverse Poincaré inequality, (38) and observing that C2τ̃ � B4τ̃ , we have
for h large that

epẼh, 0, τq ¤ epẼh, 0, τ, νhq

¤ c11

�
1

p2τ̃qn�1

»
BẼhXC2τ̃ p0,τ̃q

|xνh, xy � bh|2 dHn�1 �Dũh
p0, 4τ̃q � �

κ̃� rAsCµ

�p2τ̃ r̃hqµ

¤ C̃

�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

��
τ̃2epẼh, 0, 1q �Dũh

p0, 4τ̃q � pτ̃ r̃hqµ
�
,

which is a contradiction if we choose C ¡ C̃.

We use the previous theorem in the proof of the next result.

Theorem 7.3 (Excess improvement). For any ω P p0, 1q, σ P
�
0, λ

1
2

Λ
1
2

	
, M ¡ 0, τ P

�
0, λ

1
2

16Λ
1
2

	
there

exists a constant ε6 � ε6pσ,M, τq ¡ 0 such that if pE, uq is a pκ, µq-minimizer of FA in Brpx0q,
with x0 P BE, such that

epE, x0, rq ¤ ε6, Dupx0, rq � rp1�ωqµ ¤MepE, x0, σrq,
then there exists a constant c14 � c14

�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

� ¡ 0 such that

epE, x0, τrq ¤ c14τ
µ
�
epE, x0, rq �Dupx0, rq � rµ

�
.
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Proof. Let σ P
�
0, λ

1
2

Λ
1
2

	
, M ¡ 0, τ P

�
0, λ

1
2

16Λ
1
2

	
, and let pE, uq be a pκ, µq-minimizer of FA in

Brpx0q, with x0 P BE, such that

epE, x0, rq ¤ ε6, Dupx0, rq � rp1�ωqµ ¤MepE, x0, σrq.

Setting
pẼ, ũq :� �

Tx0pEq, u � T�1
x0

�
, κ̃ :� λ�

n
2 κ, r̃ :� θr,

where θ P �0,min
 
Λ�

1
2 , 1

(�
, by Proposition 3.1 we have that pẼ, ũq is a pκ̃, µq-minimizer of Fx0,Ax0

in Br̃px0q. By Proposition 3.3, it holds that

epẼ, x0, r̃q ¤ C1epE, x0, rq,

for some positive constant C1 � C1pn, λ,Λq. Furthermore, estimating

Dũpx0, r̃q � 1

pθrqn�1

»
Br̃px0q

|∇ũ|2 dy � detpA� 1
2 px0qq

pθrqn�1

»
T�1
x0

pBrpx0qq
|∇uA 1

2 px0q|2 dy

¤ λ�
n
2 Λ

pθrqn�1

»
Brpx0q

|∇u|2 dy � λ�
n
2 Λ

θn�1
Dupx0, rq

and applying again Proposition 3.3, we get

Dũpx0, r̃q � r̃p1�ωqµ ¤ cpn, λ,Λq�Dupx0, rq � rp1�ωqµ
� ¤ cpn, λ,ΛqMepE, x0, σrq

¤ cpn, λ,ΛqMe
�
Ẽ, x0, σλ

� 1
2 r
� ¤ C2MepẼ, x0, σ̃r̃q,

for some positive constant C2 � C2pn, λ,Λq, where σ̃ :� λ�
1
2

θ σ   1, since σ   θλ
1
2 . Choosing

ε6 ¡ 0 such that C1ε6   ε̃ and setting M̃ :� C2M , we apply Theorem 7.2 to obtain

epẼ, x0, τ̃ r̃q ¤ C
�
τ̃2epẼ, x0, r̃q �Dũpx0, 4τ̃ r̃q � pτ̃ r̃qµ�,

for some positive constant C � C
�
n, α, β, λ,Λ, κ, µ, ∥∇u∥L2pΩq

�
, where τ̃ :� τ

λ
1
2 θ

  1
16 , since

τ   λ
1
2 θ
16 . Leveraging Proposition 3.3, we get

epE, x0, τrq � e
�
E, x0, τ̃λ

1
2 r̃
� ¤ cpn, λ,ΛqepẼ, x0, τ̃ r̃q

¤ C
�
τ̃2epẼ, x0, r̃q �Dũpx0, 4τ̃ r̃q � pτ̃ r̃qµ�. (41)

On one hand, by Proposition 3.3 we observe that

epẼ, x0, r̃q ¤ cpn, λ,Λqe�E, x0,Λ 1
2 r̃
� ¤ cpn, λ,ΛqepE, x0, rq, (42)

being Λ
1
2 r̃ ¤ r. One the other hand, choosing ε6   ε2, by Proposition 4.7 it follows

Dũpx0, 4τ̃ r̃q ¤ cpn, λ,ΛqDu

�
x0, 4τ̃Λ

1
2 r̃
� ¤ cpn, λ,Λqτ̃Dupx0, rq, (43)

since 4τ̃Λ
1
2 r̃ ¤ r, being τ   λ

1
2

4Λ
1
2
. Inserting (42) and (43) in (41), we obtain

epE, x0, τrq ¤ C
�
τ̃2epE, x0, rq � τ̃Dupx0, rq � τ̃µrµ

�
¤ Cτ̃µ

�
epE, x0, rq �Dupx0, rq � rµ

�
¤ Cτµ

�
epE, x0, rq �Dupx0, rq � rµ

�
,

which is the thesis.

Leveraging the results proved in the previous sections, we are able to prove Theorem 1.2.
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Proof of Theorem 1.2. Let U � Ω be an open set. We prove that for every ω P p0, 1q and τ P p0, 1q
there exist two positive constants ε � εpτ, Uq and C such that if x0 P BE, Brpx0q � U and
epx0, rq �Dpx0, rq � rp1�ωqµ   ε, then

epx0, τrq �Dpx0, τrq � pτrqp1�ωqµ ¤ Cτ p1�ωqµ
�
epx0, rq �Dpx0, rq � rp1�ωqµ

�
. (44)

We fix τ P p0, 1q. Setting
τ :� λ

1
2

16Λ
1
2

, σ :� λ
1
2

Λ
1
2

,

we may assume without loss of generality that

τ   min

"
τ ,
σ

2

*
� τ .

Furthermore we fix σ :� 2τ   σ. We distinguish two cases.
Case 1: Dupx0, rq � rp1�ωqµ ¤ τ�1epx0, σrq. Choosing ε   ε6pσ, τ, τq it follows from Theorem

7.3 that
epx0, τrq ¤ c14τ

µ
�
epx0, rq �Dupx0, rq � rµ

�
.

Furthermore, choosing ε   ε2pτq, applying Proposition 4.7 we get (44).
Case 2: epx0, σrq ¤ τ

�
Dupx0, rq � rp1�ωqµ

�
. By the property of the excess at different scales,

we infer
epx0, τrq ¤ 2n�1epx0, σrq ¤ 2n�1τ

�
Dupx0, rq � rp1�ωqµ

�
,

obtaining (44).
Thus, choosing ε � mintε2pτq, ε6p2τ, τ, τqu, we conclude that the inequality (44) is verified.

We fix σ P �0, p1�ωqµ
2

�
and choose τ0 P p0, 1q such that Cτ

p1�ωqµ
0 ¤ τ2σ0 and we define

ΓXU :�  
x P BEXU : epx, rq�Dpx, rq�rp1�ωqµ   εpτ0, Uq, for some r ¡ 0 such that Brpx0q � U

(
.

We note that ΓX U is relatively open in BE. We show that ΓX U is a C1,σ-hypersurface. Indeed,
inequality (44) implies via standard iteration argument that if x0 P ΓXU there exist r0 ¡ 0 and a
neighborhood V of x0 such that for every x P BE X V it holds:

e
�
x, τk0 r0

��D
�
x, τk0 r0

�� �
τk0 r0

�p1�ωqµ ¤ τ2σk0 , for k P N0.

In particular, epx, τk0 r0q ¤ τ2σk0 and, arguing as in [29], we obtain that for every x P BE X V and
0   s   t   r0 it holds

|pνEqspxq � pνEqtpxq| ¤ ctσ,

for some constant c � cpn, τ0, r0q, where

pνEqtpxq � �
»
BEXBtpxq

νE dHn�1.

The previous estimate first implies that Γ X U is C1. By a standard argument we then deduce
again from the same estimate that ΓXU is a C1,σ-hypersurface. Since ω is arbitrary, we gain that
Γ is a C1,σ-hypersurface, for any σ P p0, µ2 q. We define Γ :� YipΓXUiq, where pUiqi is an increasing
sequence of open sets such that Ui � Ω and Ω � YiUi. We are left to prove that there exists η ¡ 0
such that

Hn�1�ηpBEzΓq � 0.

Setting Σ �
!
x P BEzΓ : lim

rÑ0
Dpx, rq � 0

)
, by [29, Lemma 2.1] we have that ∇u P L2p1�ηq

loc pΩq for
some η � ηpn, α, βq ¡ 1 and we have that

dimH

�!
x P Ω : lim sup

rÑ0
Dpx, rq ¡ 0

)	
¤ n� 1� η.

The conclusion follows in a standard way as in [29] (see also [15] and [17]) showing that Σ � H if
n ¤ 7 and dimHpΣq ¤ n� 8 if n ¥ 8. In both cases, Lemma 5.1 will be employed.
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8 An application to a costrained problem

In this section we show an application of Theorem 1.2 to the following costrained problem:

min
EPApΩq

vPu0�H1
0 pΩq

tFApE, v; Ωq : |E| � du , (Pc)

where u0 P H1pΩq, 0   d   |Ω| are given and ApΩq is the class of all subsets of Ω with finite
perimeter. We assume that Ω is connected.

In this perspective we need to distinguish the Hölder exponent of the matrix A, which we denote
here with γ, from the exponent µ appearing in the Definition 1.1. In Theorem 8.2, we show that, for
sufficiently large values of κ ¡ 0, minimizing couples of (Pc) are solutions of the following penalized
problem

min
EPApΩq

vPu0�H1
0 pΩq

FκpE, v; Ωq, (P )

where the functional Fκ is defined by

FκpE, v; Ωq :� FApE, v; Ωq � κ
��|E| � d

��γ .
Now we prove the penalization theorem. For simplicity of notation, we denote

apx, νq � xApxqν, νy 1
2 , @x, ν P Rn.

It will be advantageous to have some estimates about the dependence of the integrand a on x and
ν.

Remark 8.1 (Continuity of a with respect to x and ν). It is straightforward to check that the
following inequalities hold:

|apx, νq � apy, νq| ¤ 1

2
?
λ
rAsCµ |x� y|µ, @x, y P Rn, |ν| � 1. (45)

|apx, ξq � apx, ηq| ¤ Λ?
λ
|ξ � η|, @x P Rn, @ξ, η P Rn. (46)

As explained before, the proof of the equivalence between the solution of the constrained problem
(Pc) and the penalized problem (P ) follows. We adapt a result proved in [23] to our setting.

Theorem 8.2. There exists κ0 ¡ 0 such that if pE, uq is a minimizer of the functional

FκpF,wq �
»
Ω
σF |∇w|2 dx�ΦApF ; Ωq � κ

��|F | � d
��γ , (47)

for some κ ¥ κ0 ¡ 0, among all configurations pF,wq such that w � u0 on BΩ, then |E| � d and
pE, uq is a minimizer of problem (Pc). Conversely, if pE, uq is a minimizer of problem (Pc), then
it is a minimizer of (47), for all κ ¥ κ0.

Proof. The argument is very similar to the one in [23, Theorem 1] (see also [24] and [25]). For
reader’s convenience, we give here the sketch of the proof, emphasizing main ideas and some
differences with respect to the case treated in [23].

The first part of the theorem can be proved by contradiction. We assume that there exist a
positive sequence pκhqhPN such that κh Ñ �8, as h Ñ �8, and a sequence of configurations
pEh, uhq minimizing Fκh

and such that uh � u0 on BΩ and |Eh| � d, for all h P N. We choose an
arbitrary fixed E0 � Ω with finite perimeter and such that |E0| � d. We point out that

Fκh
pEh, uhq ¤ FpE0, u0q :� Θ. (48)

Without loss of generality we can assume that |Eh|   d, the case |Eh| ¡ d being similar. Our aim is
to show that for h sufficiently large, there exists a configuration p rEh, ũhq such that Fκh

p rEh, ũhq  
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Fκh
pEh, uhq, thus proving the result by contradiction.
By condition (48), it follows that the sequence puhqhPN is bounded in H1pΩq, the perimeters

of the sets Eh in Ω are uniformly bounded and |Eh| Ñ d. Therefore, possibly extracting a not
relabelled subsequence, we may assume that there exists a configuration pE, uq such that uh Ñ u
weakly in H1pΩq, 1Eh

Ñ 1E a.e. in Ω, where the set E is of finite perimeter in Ω and |E| � d. The

couple pE, uq will be used as a reference configuration for the definition of p rEh, ũhq.

Step 1. Construction of p rEh, ũhq. Proceeding exactly as in [23], since Ω is connected, we can
take a point x P B�E X Ω. We observe that, given ε ¡ 0 sufficiently small, we can find around x a
point x1 and r ¡ 0 such that

|E XBr{2px1q|   εrn, |E XBrpx1q| ¡ ωnr
n

2n�2
.

We assume without loss of generality that x1 � 0, and from now on we denote by Br the balls
centered at the origin. From the convergence of Eh to E we have that, for h sufficiently large,

|Eh XBr{2|   εrn, |Eh XBr| ¡ ωnr
n

2n�2
. (49)

Now we define the following bi-Lipschitz map used in [23] which maps Br into itself:

fpxq :�

$'''&'''%
�
1� σh

�
2n � 1

��
x if |x|   r

2
,

x� σh

�
1� rn

|x|n


x if

r

2
¤ |x|   r,

x if |x| ¥ r ,

(50)

for some 0   σh   1{2n such that, settingrEh � fpEhq, ũh � uh � f�1 ,

we have | rEh|   d. It holds that

Fκh
puh, Ehq � Fκh

pũh, rEhq �
�»

Br

σEh
|∇uh|2 dx�

»
Br

σẼh
|∇ũh|2 dx

�
� �

ΦApEh, Brq �ΦAp rEh, Brq
�� κh

�pd� |Eh|qγ � pd� | rEh|qγ
�

� I1,h � I2,h � I3,h. (51)

For simplicity of notation we will denote in the following

gpyq � f�1pyq, @y P Rn.

We will use in the sequel some estimates for the map f that can be easily obtained by direct
computations (see [23] for the explicit calculations). These estimates are trivial for |x|   r{2,
whereas they can be deduced by the explicit expression of ∇f for r{2   |x|   r , that is

Bfi
Bxj pxq � δij � σh

��
1� rn

|x|n


δij � nrn

xixj
|x|n�2

�
, @i, j P t1, . . . , nu.

There exists a constant C � Cpnq depending only on n such that,��∇gpyq � I
�� ¤ Cpnqσh, @y P Br, (52)

1� Cpnqσh ¤ Jfpxq ¤ 1� 2nnσh, @x P Br. (53)

Step 2. Estimate of I1,h. Performing the change of variables y � fpxq, and observing that
1
rEh
� f � 1Eh

, we get

I1,h �
»
Br

σEh
pxq�|∇uhpxq|2 � ��∇uhpxq �∇f�1pfpxqq��2Jfpxq� dx.

25



By means of the same computation as in [23], Using (52) and (53) we deduce that

I1,h ¥ �C1Θσh, (54)

for some positive constant C1 � C1pnq.
Step 3. Estimate of I2,h. In order to estimate I2,h we can use a generalized area formula for

maps between rectifiable sets involving anistropies. We recall that (see [40, Proposition 17.1]), if
E is a set of locally finite perimeter in Rn, then fpEq is a set of locally finite perimeter in Rn and

B�fpEq � fpB�Eq, νfpEqpyq �
r∇gpyqstpνEpyqq
|r∇gpyqstpνEpyqq| , @y P B�fpEq.

Using [40, formula (17.6)] we can easily deduce that»
B�fpEq

ϕpf�1pyqq dHn�1
y �

»
B�E

ϕpxqJfpxq|p∇g � fqtνEpxq| dHn�1
x (55)

for any Borel function ϕ defined on B�E. If we choose ϕpxq � apfpxq, νfpEqpfpxqqq in (55) we deduce
that

ΦApfpEqq �
»
B�E

a
�
fpxq, r∇gpfpxqqstνEpxq

�
Jfpxq dHn�1

x .

For the proof of the aforementioned formula in a more general framework the reader is addressed
to [43, Proposition A.1]. Now we are ready to estimate the following quantity:

I2,h �
�
ΦApEh, Brq �ΦAp rEh, Brq

�
�

»
B�EhXBr

�
a
�
fpxq, r∇gpfpxqqstνEh

pxq�� a
�
fpxq, νEh

pxq��Jfpxq dHn�1
x

�
»
B�EhXBr

�
a
�
fpxq, νEh

pxq�� a
�
x, νEh

pxq��Jfpxq dHn�1
x

�
»
B�EhXBr

�
Jfpxq � 1

�
a
�
x, νEh

pxq� dHn�1
x � J1,h � J2,h � J3,h.

Using (52) and (46) we deduce

|J1,h| ¤ Λ?
λ

»
B�EhXBr

Jfpxq���p∇gqt � I
�
νEh

pxq�� dHn�1
x ¤ CpnqΘ Λ?

λ
σh.

Applying (45) we obtain

|J2,h| ¤ rAsCγ

2
?
λ

»
B�EhXBr

Jfpxq|fpxq � x|γ dHn�1
x ¤ rAsCγ

2
?
λ
CpnqΘσγh.

Finally from (53) we have

|J3,h| ¤
»
B�EhXBr

n2napx, νEh
pxqqσh dHn�1

x ¤ n2nΘ
?
Λσh.

Summarizing we conclude that

I2,h ¥ �C2Θσ
γ
h, (56)

for some positive constant C2 � C2

�
n, λ,Λ, rAsCγ

�
.

Step 4. Estimate of I3,h. The following estimate is contained in [25, Theorem 2] and we detail
it for reader’s convenience.

First we recall (49), (50), (53), thus getting

|Ẽh| � |Eh| �
»
EhXBrzBr{2

pJfpxq � 1q dx�
»
EhXBr{2

pJfpxq � 1q dx

26



¥
�
ωn

2n�2
� ε



σhr

n � �
1� �

1� p2n � 1qσh
�n�

εrn

¥ σhr
n

�
ωn

2n�2
� ε� p2n � 1qnε

�
.

Therefore, if we choose 0   ε   εpnq, for some ε sufficiently small, we have that

κhp|Ẽh| � |Eh|q ¥ κhCpnqσhrn. (57)

Moreover, if denoting δh :� d � |Eh|, we choose σh in such a way that |Ẽh| � |Eh| ¤ δh{2 thus
respecting the condition | rEh|   d. Taking this into account, proceding as before and using (53),
we have

|Ẽh| � |Eh| �
»
EhXBr

pJfpxq � 1q dx ¤ n2nσhr
n.

Then we choose σh such that

δh ¤ σh ¤ δh
n2n�1rn

.

We remark that in the last condition we imposed also that σh is comparable with δh, which is
crucial in the following estimate. Resuming (57) we can conclude

I3,h � κh
�pd� |Eh|qγ � pd� | rEh|qγ

� ¥ κh
γ

pd� |Eh|q1�γ
p|Ẽh| � |Eh|q

� κhγpd� |Eh|qγ |Ẽh| � |Eh|
d� |Eh| ¥ κhγδ

γ
h

c2pnqσhrn
δh

¥ κhC3σ
γ
hr

n,

for some positive constant C3 � C3pn, γq.

From the previous inequality, recalling (51), (54) and (56), we obtain

Fκh
puh, Ehq � Fκh

pũh, rEhq ¥ σγh
�
κhC3r

n �ΘpC1 � C2q
� ¡ 0,

if κh is sufficiently large. This contradicts the minimality of pEh, uhq, thus concluding the proof.

Remark 8.3. Theorem 8.2 allows us to prove the regularity of solutions of the free boundary
problem under the constraint |E| � d. Under the assumption

γ P
�
n� 1

n
, 1



,

the parameter µ :� γn � n � 1 is positive and, by Theorem 8.2, any minimizing couple pE, uq of
(Pc) is a pκ, µq-minimizer of Fκ, for κ ¥ κ0, where κ0 is the constant appearing in Theorem 8.2.
Thus, we are in position to implement the regularity theory of the previous sections to pE, uq by
applying Theorem 1.2.

Acknowledgements The authors are members of the Gruppo Nazionale per l’Analisi Matemat-
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[42] F. Murat and L. Tartar, Optimality conditions and homogenization. Proceedings of ”Nonlinear
Variational Problems”, Isola d’Elba 1983 (Res. Notes in Math. 127, pp. 1–8) London: Pitman
1985.

[43] D. A. Simmons, Regularity of almost-minimizers of Hölder-coefficient surface energies, Dis-
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