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Abstract

We establish an e-regularity result for almost-minimizers of a class of variational problems
involving both bulk and interface energies. The bulk energy is of Dirichlet type. The surface
energy exhibits anisotropic behaviour and is defined by means of an ellipsoidal density that is
Hoélder continuous with respect to the position variable.
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1 Introduction and statements

The existence and regularity of solutions to variational problems, encompassing both bulk and
interface energies, have been extensively studied across various disciplines and remain a focal point
of much mathematical research. These problems serve to describe a broad spectrum of phenomena
in applied sciences, including nonlinear elasticity, materials science and image segmentation in
computer vision (see for instance [2, Bl 13, 27, 28, 29, 31, 33, 36]). A model integral functional
initially introduced to study minimal energy configurations of two conducting materials by R. V.
Kohn & G. Strang and F. Murat & L. Tartar, [34, 42], and later recovered by L. Ambrosio & G.
Buttazzo, and F. H. Lin, [3, [38], is the following:

L o(2)|Vul? dz + P(E: Q) (1)

where o := alg + Blg\p, 0 <a <, with Ec Qc R" and u € H'(Q). Here, 1g stands for the
characteristic function of E and P(E;()) denotes the perimeter of the set E in Q. In [3 [38], the
authors proved the existence and regularity for minimal configurations (E, u) of . In a broader
context, F. H. Lin & R. V. Kohn addressed more generalized Dirichlet energies as outlined in [39],

f (F(z,u,Vu) + 1gG(x,u, Vu)) dx + J U (z,vp(z)) d?—[”_l(:ﬁ), (2)
Q QRO+ E
with the constraints

u=wup on 09 and |E| =d.

Here, vg is the measure-theoretic outward unit normal to the reduced boundary ¢*FE of E. The
regularity for the minimizing pair (F,u) is quite intricate to establish, especially concerning the
free boundary ¢F due to the interaction between the bulk term and the perimeter term. In order
to illustrate the regularity results of the free boundary, we introduce the following notations. We
define the set of regular points of 0F as follows:

Reg(E) := {z € dF : 0F is a O hypersurface in B(z) < , for some ¢ > 0 and v € (0,1)},



and accordingly we define the set of singular points of 0F as
Y(E) := (0E n Q)\Reg(E).

The most notable advancements in regularity results regarding the free boundary 0 F of minimizers
of the functional have been accomplished by G. De Philippis & A. Figalli in [16] and N. Fusco
& V. Julin in [29]. They proved that for minimal configurations of the functional it turns out
that

dimy(X(E)) <n—1-mn, (3)

for some 1 > 0 depending only on «, 3. In the more general case of integral functionals of the
type , the theory of regularity is much less developed. The first regularity result established
in the broader context of integral energies of the type was accomplished by F. H. Lin and
R. V. Kohn in 1999, indeed in [39] they proved, for minimal configurations (E,u) of (2)), that
H" Y(B(E)) = 0. The assumptions made by Lin and Kohn to achieve such regularity results
require C* differentiability for F, G and ¥ as they appear in , where k£ > 2 and F, G grow
quadratically with respect to the gradient variable. On the other hand, nothing is proved concerning
the Hausdorff dimension of ¥ (E) like in (3)).

We also point out that the problem can be set in a non-quadratic framework as well. This
instance is less studied and only few regularity results are available (see [5], 10, [IT], 12, 22, 27, [35]).

In some recent papers, such as [24] 25], the Hausdorff dimension estimate of ¥(FE) has been
attained, significantly relaxing the differentiability assumption required on F' and G. Indeed, in [25],
only Hélder continuous dependence of F' and G with respect to x and u is necessary. However, it is
worth noting that the aforementioned result is demonstrated under the assumption that ¥(v) = |v|,
representing the conventional perimeter.

In this paper we will deal with the anisotropic case. Anisotropic surface energies manifest
in various physical phenomena, such as crystal formation (refer to [7, §]), liquid droplets (see
[13, 20 B0, 37, 41l 45]), and capillary surfaces (see [I8, [19]). F. J. Almgren was a pioneer in
investigating the regularity of surfaces that minimize anisotropic variational problems in his seminal
paper [I]. Early studies in this field were primarily conducted within the framework of varifolds
and currents. While these results can be applied to surfaces of any codimension, they necessitate
relatively stringent regularity assumptions on the integrands of the anisotropic energies, as outlined
in [9, 44]. More recently, the regularity assumptions on the integrands ¥ of the anisotropic energies
have been relaxed, as highlighted in [21) 26], where it is assumed that ¥(x,-) is of class C! and
U(-, &) is Holder continuous.

In this context, it is worth mentioning a very recent paper, [43], which establishes the regularity
result for quasi-minimizers of anisotropic surface energies within the class of sets of finite perimeter,
under the assumption of Holder continuous dependence of ¥ on x. This outcome is derived within
the scope of ellipsoidal variational energies, as detailed in . Notably, surface energies of this
specific form were initially introduced in a paper [46] by J. Taylor. In more detail, in the case that
the elliptic integrand is given by ¥(z,v) = (A(z)v, )2, where A(z) = (as; (JU))?].Z1 is an elliptic
and bounded matrix, the surface energy takes the form 7

®4(E;G) := JG a*E<A(x)yE, vid? dH " (z). (4)

We assume that A is uniformly elliptic, that is there exist two constants 0 < A < A < 4w such
that
MeP? < (A(2)6, &) < AP, Vo e, VEeR™

We require that A is Holder continuous with exponent p € (0, 1], that is

|A(x) — A(y)|
[A]Cu(Q) = il;}y) W < +0.
z,yed

To avoid excessive technicalities, we assume that the bulk energy follows a Dirichlet-type distribu-
tion, although the outcome could be generalized to functionals of type . Given a bounded open



set {2 < R™, we consider the following functional:
FalE,u:Q) :f o Vul? dz + B A(E; Q), (5)
Q

where op = alg + flgpg, 0 < a < f and E < Q. The achieved e-regularity result is presented
within the scope of local almost-minimizers. This makes it applicable in a variety of concrete
applications, as we will demonstrate, for example, in the case of constrained problems. The following
definition naturally arises in several problems from material sciences (see for example [3| 23, 38,
39, [40], compare also with [43] Definition 2.2]).

Definition 1.1 ((k, u)-minimizers). Let U € Q. The energy pair (E,u) is a (k, u)-minimizer in
U of the functional F4, defined in , if for every By(xg) c U

Fu(E, u; By(w0)) < Fa(F,v; By(x0)) + K|E & F|"5 +a,

whenever (F,v) is an admissible test pair, namely, F is a set of finite perimeter with F A E &€
B.(x0) and v —u € H}(B,(x)).

The main theorem proved in this paper is the following.
Theorem 1.2. Let (E,u) be a (k, p)-minimizer of Fa. Then

a) there erists a relatively open set T' = OF such that T is a CY7 -hypersurface, for all0 < o < g,
b) there exists n > 0 depending on n,«, 3 such that
HI((E\D) A Q) = 0.

We outline the strategy adopted to prove this result. In the regularity theory for A-minimizers
of the perimeter, the regular part I' of the boundary of F is detected by the points that have a
uniformly small excess in some ball (see Definition . A decay relation for the excess plays a
crucial role, as it triggers an iteration argument that shows that the unitary normal vector varies
continuously along I', thus ensuring its smoothness.

For our problem, it is not possible to prove a decay relation for the excess without considering
the interaction between the surface and the bulk energy. Indeed, as outlined in Section [7} if the
excess of a point z¢ in dF in some ball B, (xg) is small, we are only able to prove an improvement
relation for the excess, which involves the rescaled Dirichlet integral of u in B,(xo) as well.

In this context, I' is defined as the collection of the points of the boundary of F that are centers
of balls B, (z¢) where the excess e(E, zo,r) and the rescaled Dirichlet integral D, (zo,r) (see (9))
of u are sufficiently small. In order to prove the smoothness of I', a decay relation for the sum of
these quantities is required.

A decay relation for the rescaled Dirichlet integral of u around points of small excess is proved
separately in Proposition [4.7]

A much finer argument is needed to establish an improvement relation for the excess (see
Theorem . One of the key concepts enabling us to adapt the standard excess-decay arguments,
commonly used in the context of perimeter minimizers, to the anisotropic setting is a specific
change of variable T,. This affine transformation, already used in [I4} [32] [43], maps Wulff shapes
of @4, which are ellipsoids, into balls B, (xg) (see Section [2 ' We first prove a version of the excess
improvement theorem for transformed couples (E, @) = (Two(E),u o Tyt), which are (R)\ NE
minimizers of Fu, 4, (see (7). The proof of the latter is carried out by contradiction and is based
on a blow-up argument. In this step, we can benefit of using the classical perimeter instead of
the anisotropic one around zg, being Az, (zo) = I (see Proposition [6.1)). The main ideas can be
summarized as follows:

1. Density lower and upper bounds on the perimeter (see Theorem {4 - 2| and Theorem |4.4) guar-
antee that around points z¢ of dE with small excess, the boundary of E almost com(ndes
with the graph of a Lipschitz function f (see Theorem |4 . Therefore, it is possible to apply
the area formula directly along dE up to a small error. The portion of the boundary that
does not match is controlled by the excess at that scale.



2. The function f is quasi-harmonic. We need a quantitative estimate of its quasi-harmonicity
by a power of the excess with an exponent greater than % In this step, the minimality of the
optimal couple (E, @) and the first variation formulae play a crucial role.

3. The direction of improvement of the excess is detected by the unitary normal vector to the
graph of f. By means of a reverse Poincaré inequality (see Theorem , the excess at a
smaller scale at xq is controlled by the flatness of OF around z(, which is in turn estimated
by the excess via the good properties of f.

The paper is divided in sections, which reflect the proof strategy. Section [2] collects notation and
preliminary definitions. In Section [3] some invariance properties of the excess and minimality under
the transformation 7T}, and rescaling are proved. In Section 4] we establish density lower and upper
bounds for the perimeter of E and their consequences, which are the decay of the rescaled Dirichlet
energy and the Lipschitz approximation theorem. Section [5]is devoted to prove a compactness
result for sequences of (k,a)-minimizers, which serves as a crucial tool for estimating the size of
the singular set of F, as stated in Theorem [I.2] Section [6] includes the reverse Poincaré inequality,
which is the counterpart of the well-known Caccioppoli’s inequality for weak solutions of elliptic
equations. Section [7] contains the proof of Theorem The main ingredients to achieve such a
result are a first variation formula for the bulk energy of the functional Fy, 4, and two versions
of the excess improvement theorem. Finally, Section [§] deals with the application of the regularity
result to a volume constrained problem via a penalization argument.

2 Notation and preliminaries

In the rest of the paper we will write (£, n) for the inner product of vectors {,n € R", and con-

sequently |£] = (& ,§>% will be the corresponding Euclidean norm. As usual w, stands for the
Lebesgue measure of the unit ball in R”. We denote by $”~! the unit sphere of R™.

We will write z = (2/, x,,) for all x € R", where 2’ € R"~! collects the first n — 1 components of
z and x, € R is its n-th component. Accordingly, we denote by V' = (0y,,...,0s,_,) the gradient
with respect to the first n — 1 components.

The n-dimensional ball in R™ with center g and radius r» > 0 is denoted as

By(zg) ={x e R": |z —zo| <r}.

If 29 = 0, we simply write B, in place of B,(xg). The (n — 1)-dimensional ball in R” ! with center
z(, and radius r > 0 is denoted by

D, (z}) = {z' e R"™ : |2’ — 2| < R}.
If u is integrable in Br(xg), we set

1
= - J udr = J: ud.
WnT™" JB,(x0) Br (o)

If E < R™ and t € [0, 1], the set of points of E of density ¢ is defined as

uiﬂoﬂ"

EY = {zeR": |En B(x)| = |B.(z)| + o(r") as 7 — 07}

Given a Lebesgue measurable set £ c R", we say that FE is of locally finite perimeter if there exists
a R™-valued Radon measure pp (called the Gauss-Green measure of E) such that

J Vode= | ¢dug, VYoeCLR™.
E R

Moreover, we denote the perimeter of F relative to G < R™ by P(FE;G) = |ug|/(G).
The support of ugr can be characterized by

sptpup = {z € R" : 0 < |E n Bp(x)] < wyr™, Vr > 0},

4



(see [40, Proposition 12.19]). It holds that sptur < 0E. If E is of locally finite perimeter, then the
reduced boundary 0*E of E is the set of those x € R™ such that

A

50 12| (B, ()

exists and belongs to S”~!. In the following, the topological boundary ¢E must be understood by
considering the representative E() of E, for which it holds that 0*E = 0E.

The properties of the matrix A in the definition of the anisotropic perimeter guarantee that
® 4 (FE; F) is comparable to the classical perimeter, as observed in [43].

vp(z) =

Remark 2.1 (Comparability to perimeter). ® 4(F;-) is comparable to P(E;-), since for Borel sets
F c R™, by the uniform ellipticity of A, it follows that

AN2P(E;F) < ®4(E; F) < A'?P(E; F). (6)
If A equals the identity matriz I, we have the isotropic case ® 4(F;-) = P(E};-).

It will be useful in the sequel to build comparison sets by replacing regions within an open set.
The anisotropic perimeter can be split as in the isotropic case.

Proposition 2.2 (Comparison by replacement). If E and F' are sets of locally finite perimeter in
R™ and G is an open set of finite perimeter in R™ such that

H" 1 0*G N 0*E) = H" 1 (0*G n 0*F) = 0
then the set defined by
Fy=(FnG)u (E\G)
1s a set of locally finite perimeter in R™. Moreover if G € U and U is an open subset of R™, then
B4(Fo;U) = ®A(F; G) + @4(E;U\G) + ®4(G; D a FU)

Proof. The proof can be easly obtained from [40, Theorem 16.16]. Its details can be found in [43]
Proposition 4.3]. O

In the following, for R > 0 and v € $"~!, we will denote the cylinder centered in zy with radius
R oriented in the direction v by

Cr(zo,v) :=x0 +{y e R" : Ky,v)| <R, ly — {y,v)r| < R},
and the cylinder of radius R oriented in the direction e, with height 2 by
Kg(zo) := Dg(zp) x (—1,1).

In the following, for simplicity of notation we will write Cr = Cr(0,e,) and Kr = Kg(0).
In addition we introduce some usual quantities involved in regularity theory.

Definition 2.3 (Excess). Let E be a set of locally finite perimeter, x € 0E, r > 0 and v € " 1.
We define:

e the cylindrical excess of E at the point x, at the scale r and with respect to the direction
v, as

L |

-l Cr(z,v)nd*E 2 rn—l Cr(z,v)no*E

e“(E,z,rv) = [1—(vg,v)]dH" L

e the spherical excess of E at the point x, at the scale r and with respect to the direction v,
as

1 _ 2
e(E,x,rv) = : J Md%”ﬂ.
A 0* ENB,(x) 2

o the spherical excess of E at the point x and at the scale r, as

e(E,x,r):= Végirll e(E,x,rv).

We omit the dependence on the set when it is clear from the context.



3 Scaling and change of variables

Given a symmetric positive matrix A, the D matrix of his eigenvalues and the matrix V of
ortonormal eigenvectors, we have A = VDV ™!, Accordingly we define A2 = VD2V -1 Be-
ing A~1/2A4Y2 = ], the anisotropic perimeter of F coincides with the standard perimeter of the
image of E under the affine change of variable y = A~Y2z up to the scaling factor det (A_l/ 2).
Localizing this argument freezing the matrix A="/2(x) in a point 2o € 0F, we define the affine
change of variables

To () = A™Y2(20) (z — 0) + o, Tl (y) = AYV?(x0)(y — xo) + xo, Va,y € R,

Zo

and the matrix-valued function

Agy(y) = A3 (o) A(Ty, (y) A 2 (20), VyeR”,

o

which satisfies Ag,(zo) = I. It can be easily verified that the set T, '(B, (o)), is the Wulff shape
of ® 4(;,). Moreover the following inclusions hold:

B,y (w0) < T, 1 (B (x0)) © B, (o),

for any r > 0 and zp € R". Under the affine change of variable T, the minimality with respect to
the functional F4 will be rephrased through the following functional

Fou (B, Q) = L o[ VuA=} (w0) | dz + @ p(E: ), (7)

(see Proposition [3.1]).

In the sequel, we collect two invariance properties of (x, u)-minimizers under the transformation
T, and rescaling.

Proposition 3.1 (Invariance of almost-minimizers under T,). Let (E,u) be a (k, p)-minimizer of
Fa inQ and g € Q. Then (Tpy(E),uoT,!) is a (KA™ 2, p)-minimizer of Fug,Aq, 0 the balls By(2)

such that B(A/)\)% r(z) < Ty (2).

Proof. We use the notation Ey := Ty (E) and ug := uwo T, '. Let B.(z) € Ty,(€2) be such that

B(A/A)% (2) € Ty, () and (Fp,vo) be an admissible test pair, i.e. Fp is a set of finite perimeter
T
with Fy & Ey € B,(z) and vy — ug € Hj(B,(2)). First we notice that, setting F = T, }(Fp), as in

[43, Proposition 4.1], we have
EAFET, B (2) c BA%T(T_l(z)) cQ,

Z0
where the last condition is satisfied because r < A~2dist (Tgol(z), 89). Moreover, for v = vg o Ty,
we have v —u € Hy (T,,' (Br(2))) whose extension to zero in BA% (T,,,*(2)), denoted again by v—u,
T
belongs to H (BA%T (T7.*(2))). It follows, by the hypothesis of (r, y1)-minimality of the pair (E,u),
that

n=ltu

Fa (Eu BA%T(Tx—(}l(Z)D < Fa (F,’U;BA%T(TI_Ol( ))) +K|E A F|"
This simplifies to
Fa (B, uw; T,/ (Br(2)))) < Fa (F.v; T (Br(2)))

PR o) Y o

We now calculate, using [43], formula (4.9)] and the change of variables y = T, (),

.7:‘9507 (Eo,uO,B( )) :f ()O'EO|VU()A (:L’o)| dy+<I>A (EQ;BT(Z))

= det(A ™2 (x0)) ( wa . op|Vul® dz + @4 (B; T, (Br (2 >>))

= det(A™2 (20))Fa (B, u; Ty (Br(2)))

) o

< det(A75 (w0)) (Fa (Foi T (Bo(2) + 6| & FI"5)),

y Lo

6



where with a slight abuse of notation we have denoted og, = alg, + /BJ].T:CO(Q)\ £,- The result follows
by observing that det(Afé(xo)) <\ 2 and

det(A ™2 (20))Fa (F.0; Ty, (Br(2))) = Fuo,a,, (Fo, v0; Br(2)).

s Lo
]

Proposition 3.2 (Scaling of (k,px)-minimizers). For g € Q and r > 0, let (E u) be a (K, p)-
minimizer of }-zo,AxO in Q (or a (k, p)-minimizer of Fa). Then (Wgy,(E),r~ Suo ! ) is a

zo,r
(kr#, p)-minimizer of F, oTl, in Weor(), (or respectively a (krt,p)-minimizer of Fa in
Uo0.r(2)), where

Wy (7) 1= = _Txo, Vo e R™.

Proof. Let Bg(z) € Wy, »(2). Applying the change of variables y = U, (), we deduce that
‘Fmo,Acho\I!;Olm (‘Ijxoﬂ”(E) uo \Ilmolr; B (Z))

1
- | P IV VA R Ay 4 . (V) B(2)

1
— (J og|VuA~ (a:o)| dr + ® 4, (E; Brs(xo + m)))
r Brs(zo+rz)

1

7anl

Fao, As (E u; Brs(xo +12)).

Let (F,v) be such that F is a set of finite perimeter, F' A Wy (E) € By(2) and v € (uo V! ) +
H{(Bs(z)). It holds that W 1 (F) A E € Bys(wo +1rz) € Qand vo Uy, —u € HY (Bps(zo + 12)).

To,T

Using the (k, p)-minimality of (E,u) we get

1
me,AIOO‘I,;OlJ (Vo (E),u0 \I/xolT; By(2)) = mfx& o (B u; Brg(wo +72))

1 _ n—1+
Sy [Fao,dug (Voo r (F), v 0 Wo i Brg(wo +72)) + K| Va0 (E) & Wgy o (F)| 7 4]

LEE

= fro7Azoo‘1/;()1m(F7v; Bs(z)) + HT“|E A F|

which means that (¥, (E), 7~ Tuo W,L) is a (kr#, p)-minimizer of ‘Fcco,AxOO\I';Ol,r in Wy, (). O

The following proposition will be useful in the proof of Theorem where we need to compare
the excess of the transformed couple and of the original couple.

Proposition 3.3 (Comparability of the excess under change of variable T, and radius). There
exists a positive constant ¢1 = c1(n, \, A) such that if E is a set of locally finite perimeter and
xg € OF, then, for any r > 0,

cl_le(TwO(E)’xo’A_%r) < e(E7$0>r) < Cle(T:po(E)ﬂUO?)\_%T).

Proof. For r > 0 and v € 8”1, we define the ellipsoidal excess at the point zg, at the scale r and
with respect to the direction v the following quantity:

1 lve —v|?

w(E,xg,7,v) := min J dH™ L.
vegn—1 = 1 T&)l(Br(mo))ﬂa*E 2
Leveraging the inclusions
T} (B3, (20)) = By(zo) = T (B, -y (20)),
we infer that ) )
¢ lew (E,:co,AfﬁT, l/) < e(F,zg,r,v) < cey (E,:CQ, Az, 1/), (8)



for some positive constant ¢ = ¢(n, A\, A). In [43] Proposition 5.1], it is shown that

1 1
cle Ty (E), xg, s, m <ew(E,xg,s,v) <cel Ty (F), xo,s, m ,
| A2 (zo)v| | A2 (zo)v

for any s > 0. Using the previous inequalities from below for s = A~3r and from above for
s = A" 2r, and inserting them in , we get

A

1 A%(ﬂio)l/ (xo)v
1 A% (z0)v| )

cle (Txo (E),xo, A" 27,

NI=[ -

) < e(E,x(),T‘7 ’/) < Ce(Tmo(E),(]}(),)\%r’
| A2 (zo)v|

Minimizing over v € "', we obtain the thesis. O

4 Energy density estimates

The main goal of this section is to prove density lower and upper bounds for the perimeter of a
(K, p)-minimizer. As consequences, the decay of the associate rescaled Dirichlet energy, defined for
u € H'(B,(z0)) as

1
Dy(wo,7) := =1 JB o) Vul* dz, 9)
r{Z0

and the Lipshitz approximation theorem will follow. In view of this aim, we mention a result stating
a decay estimate for elastic minima around points where either the density of E is close to 0 or 1,
or the set F is asymptotically close to a hyperplane. We address the reader to [29, Proposition 2.4]
for the proof.

Lemma 4.1. Let (E,u) be a (k, u)-minimizer of the functional Fa. There exists o € (0,1) such
that the following statement is true: for all T € (0,70) there exists g = eo(T) > 0 such that if
B, (x0) € Q and one of the following conditions holds:

(1) £ n B (z0)| < 0| Br(z0)l,
(ii) |Br(wo)\E| < 0| Br(x0)|,

(iii) There exists a halfspace H such that W < €o,

then
Du(w(b TT) < CQTDU(-Z'O, T)v

for some positive constant co = ¢y (n, o, B)

The second result we want to mention, which will be used later, provides an upper bound for
the whole energy F4 on balls. The proof is rather standard and we address the reader to [25,
Theorem 3| for the details. Here we just give a sketch of the proof, underlining the only points
where the presence of the anisotropy entails different computations.

Theorem 4.2 (Energy upper bound). Let (E,u) be a (k, p)-minimizer of F4 in Q2. Then for every
open set U € ) there exists a positive constant cg = c3 (n, a, B, A, Kk, 1, U, HVUHLQ(Q)) such that for
every By(xzo) < U it holds

Fa(E,u; By (20)) < e3r™ L

Proof. Let By(xo) < U € Q. Testing the minimality of (E,u) with (E\B;(x),u), we deduce that

pt+n—1

FalB,u; Q) < Fa(B\Bu(w0), 15 Q) + 6|E 5 (E\By(x0))] . (10)

The only difference in our proof, compared to the isotropic case, is the use of the following formula
concerning anisotropic perimeter and set operations. The latter follows from Proposition [2.2|applied
with F' = &J, G = B,(xg), that is

P A(E\By(x0); U) = ®A(E; U\B(10)) + ®a(B(20); E).



Making F4 explicit and getting rid of the common terms in we obtain the following energy
estimate on B,(xg) n E:

p+n—1

JB » R )|Vul? dz + ® 4(E; By (x0)) < ®4(Br(20): E) + K|E & (E\B,(z0))|""*

A2 Y OB, (20)) + e(n, k)r™ !

<
<c(n, A, k)r™ L.

Starting from this estimate the proof follows verbatim the argument used in [25, Theorem 3],
because henceforth only variations of the function u are used and the perimeter is not involved
anymore. Indeed, using a blow up argument, it can be proved that there exist M = M(n,a,3) > 0
and 7 € (0, 5), depending on A/X, such that for every & € (0,1) there exists hg € N such that, for
any B, (zg) c U, we have

J |Vul> < hor™™' or J |Vul? de < MT”_‘SJ |Vul|® de,
Br(iUO) BTT(CCO) Br(iUO)

from which the thesis follows. O

In the following lemma we show that the energy Fa decays “fast” in the balls where the
perimeter of F is “small”. Lemma is utilized in its proof, specifically in instances (i) and (ii).

Lemma 4.3. Let (E,u) be a (k, u)-minimizer in Q0 of the functional F4. For every T € (0,1) there
exists €1 = £1(1) > 0 such that, if B,(xq) < Q and P(E; B.(x0)) < e1r™ !, then

-FA(E,U;BTT(JJ())) < ey (7’”.7::,4(E’7 u; Br(l’o)) 4 (TT,)/Hrnfl)?

for some positive constant ¢4 = c4 (n, a, B, A A K, 1, ||Vu\|L2(Q) ) > 0 independent of T and r.

Proof. Let 7 € (0,1) and B,(zp) < Q. Without loss of generality, we may assume that 7 < %

We rescale (E,u) in B; by setting E, = @ and u,(y) = r_%u(a:o +ry), for y € By. Applying
Proposition we have that (E,,u,) is a (kr*, u)-minimizer of F; in By, where A=Ao oW, 1.
Observing that r”_IFA(ET, ur; Br) = Fa(F,u; By (x0)), we have to prove that there exists 1 =
e1(7) such that, if P(E; B;) < €1, then

Fi(E,u; By) < 04(7' F;(E,u; By) + THtn 1r“)

For simplicity of notation we will still denote E, by E, u, by u and A by A. We note that, since
P(FE; B;1) < €1, by the relative isoperimetric inequality, either |By n E| or |B1\E| is small and thus
Lemma [4.1| can be applied. We assume that |Bi\F| < |B1 n E|, the other case being similar. By
the coarea formula and the relative isoperimetric inequality we get

27
| oBAB) dp < 1B0\E| < el P(B: B

T

Therefore, we may choose p € (7,27), independent of n, such that it holds H" 1(0*E n 0B,) = 0

and )
. c(n) )

H"(0B,\E) < —=P(FE;B1)" 1 < ———P(F; By). (11)

T T

Now we test the minimality of (E,u) with (Fy,u), where Fy := E U B,. We remark that, being
H" 1 (0*En0dB,) = 0, we can apply Propositionwith U = F = By and G = B,, thus obtaining

®4(Fp; B1) = ®a(E U By; B1) = ®4(E; BI\B,) + ®a(By: BI\EW). (12)
The (kr*, u)-minimality of (E,u) supplies

,u+n 1

J op|Vul|? dz + ®4(F; By) < f o |Vul® de + ® 4(Fo; By) + k| E A Fy
Bl Bl

9



Using to get rid of the common perimeter terms and recalling that E = E®) | we deduce

f op|Vul? de + ®4(E; B,) < f o1 [Vl i + B a(By: BI\E) + | E & Fy)“5=.
B1 Bl

Taking into account the comparability to the perimeter @ and perimeter estimate , recalling
that p € (7,27) and getting rid of the common Dirichlet terms, we deduce:

J op|Vul2de + N2P(E;B,) < B | |Vul?dw + AYV2H Y (@B\E) + c(n, k)rtritn
B"' BQT

<p |Vul|? dz +
BQT

A2 1
c(n)T ef ' P(E; By) + c(n, g)rhrrtn=l

Finally, we choose €1 such that

n

1
c(n)AY2er T <" and  e(n)ef Tt < eo(27)| Byl
where ¢ is from Lemma thus getting
J |Vul® de < Q”CQT”J |Vu|? da.
By By

From this estimates the result easily follows applying again the comparability to the perimeter. [

Taking advantage of the established results, we are able to deduce a density lower bound estimate
for the perimeter of a (k, p)-minimizer of Fy.

Theorem 4.4 (Density lower bound). Let (E,u) be a (K, pu)-minimizer of Fa in Q and U € Q be
an open set. Then there exists a constant cs = cs(n, o, B, \, A, K, i, U, HVUHLQ(Q)) > 0, such that,
for every xo € OE and B,(xo) < U, it holds

P(EB; By (o) > e (13)
Moreover, H" Y ((0E\G*E) n Q) = 0.

Proof. The proof matches that of [25, Theorem 4] exactly, given the comparability to the perimeter.
We start by assuming that zog € 0* E. Without loss of generality we may also assume that xg = 0.
Arguing by contradiction on , by using Theorem and Lemma we can easily prove by
induction (see [25, Theorem 4] for the details) that
F(E,u; By n,) < 51(T)T”h(arhr)”71,
where 7 and o are sufficiently small and ¢; is from Lemma Starting from this, we deduce that
P(E;B P(E;B
lim P(E; By) - p) = lim P(E; Borty) s orhr) < lim 2e (7)™ =0,
p—0+ P h—to (orhr)»=1 = hoyeo

which implies that xg ¢ 0*F, that is a contradiction. We recall that we chose the representative
of OF such that 0E = 0*E. Thus, if xy € 0F, there exists (zp)pen < 0*F such that x — xg as
h — 400,

P(E; By(z)) = Cr™ !
and B, (xp) c U, for h large enough. Passing to the limit as h — +o0, we get the result. O

Definition 4.5 (Ahlfors regularity). A Borel measure p on R™ is said to be d-Ahlfors regular if
there exist two positive constants ca and ro such that

chrd < uw(Br(z)) < car?,
for all x € sptp and 0 < r < ro. According to the notation used in [6], we denote
Alca,r) := {E c R": F is a set of locally finite perimeter satisfying
OF = sptug and its perimeter measure |pg| is

(n — 1)-Ahlfors reqular with constants ro and CA}.
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Remark 4.6. [t is evident that Theorems and ensure the belonging of the (k, u)-minimizers
of Fa to the class A(ca,ro), for some constant ca identified in such theorems. Naturally, for

xg € Q and r > 0, the (li)fgr“,,u) -manimizers of F o A oW obtained through the affine trans-
sz xq,T

formation T, and the scaling \Ilz_olm (see Proposition and Proposition belong to the class
Alea(d)®, o).

1
rA2

The next result of this section establishes that around the points of the boundary of the set
where the excess is “small”, the Dirichlet integral decays “fast”. In its proof, Lemma plays a
crucial role in istance (iii).

Proposition 4.7 (Decay of the rescaled Dirichlet integral). For every T € (0,1) there exists 9 =
e9(7) > 0 such that if (E,u) is a (k, pu)-minimizer of F4 in B,(xo), with xo € 0F, and e(zp,r) < €2,
then

Du(xg, 1) < c6TDy(x0,7),

for some positive constant cg = cg (n, a, 3, HVuHLz(Q) )

Proof. Applying a usual scaling argument, by Proposition [3.2] we assume by contradiction that for
some 7 € (0, 1) there exist two positive sequences (5, )neny and (rp)peny and a sequence ((Ep, up))neN
of (krj, pr)-minimizers of F, ;-1 in By with equibounded energies such that 0 € 0E},,

T0>Th

e(Ep,0,1) =¢, >0 and D,,(0,7) > C1D,, (0,1), (14)

for some positive constant C to be chosen. Thanks to the energy upper bound (Theorem and
the compactness of (Ej)nen, we may assume that £, — E in L'(B;) and 0 € dE. Since, by lower
semicontinuity, the excess of E at 0 is null, £ is a half-space in Bj, say H. In particular, for A
large, it holds

|(Eh A H) N Bl| < €0(T)|Bl|,

where g is from Lemma which gives a contradiction with the inequality , provided we
choose C' > ¢y, where ¢9 is also from Lemma . O

The last results also come as consequences of the density lower and upper bounds proved
above. The height bound lemma is a standard step in the proof of regularity because it is one of
the main ingredients to prove the Lipschitz approximation theorem. We remark that this is stated
for (kr#, p)-minimizers of Fa, ow, ., which are still Ahlfors regular (see Remark . The proof
of this result can be found in [6l Theorem A.2].

Lemma 4.8 (Height bound). Forxzg € Q andr > 0, let (E,u) be a (kr#, p)-minimizer of F 4 -1

() xq,T
in By. There exist two positive constants €3 and c7, depending onn, o, B, A\, A, k, u, ||VUHL2(31), such
that if 0 € OF and

e(0,1,e,) < €3,

then
1
sup  |yn — (zo)n| < c7e(0,1, ey,) 201,
YyEOENBy 9

Proceeding as in [40], we state the following Lipschitz approximation lemma, which is a con-
sequence of the height bound lemma. Its proof follows exactly as in [0, Theorem A.3]. It is a
foundamental step in the long journey to the regularity because it provides a connection between
the regularity theories for parametric and non-parametric variational problems. Indeed we are able
to prove for (kr*, p)-minimizers that the smallness of the excess guaranties that 0E can be locally
almost entirely covered by the graph of a Lipschitz function.

Theorem 4.9 (Lipschitz approximation). For xo € Q and r > 0, let (E,u) be a (krt, p)-minimizer
of F4 .g-1 in Bi. There exist two positive constants €4 and cg, depending on
z0 9 ¥ zq,r

n,a, B, \, A, ||VuHL2(Bl), such that if 0 € OF and

e(0,1,e,) < ey,
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then there exists a Lipschitz function f : R"™1 — R such that

sup | f(2')] < cge(0,1,e,) %0, | V'f||, <1,

x/eRn—1

and
H" Y (OE ATy N Byjs) < cse(0,1,ey),

where L'y is the graph of f. Moreover,
f V' f12dx’ < cse(0,1,e,).
D,
2
5 Compactness for sequences of minimizers

In this section we prove a standard compactness result for sequences of (k, u)-minimizers. Given
to positive constants M7 and Ms, we set

By v, = {A € C'(R";R"@R") : A is symmetric, [A]cv < My, || A, < Ma}.
We define
A={Aec CT(R:R"QR") : \¢I* < (A(@)¢, &) < AP, Vo, £ € R™} A Bay g, (15)

Lemma 5.1 (Compactness). Let (Ep,up) be a sequence of (kp, p)-minimizers of Fa, in 0 such
that supy, Fa, (Ep,up; Q) < +0, Ay — Ax uniformly on compact sets, where the matric Ay, Ay,
are in the class A defined in , kp — k € RT. There exist a (not relabelled) subsequence and a
(K, p)-minimizer (E,w) of Fa, in 2 such that, for every open set U € Q, it holds

Ey— E in LYU), wup —uin HY(U), ®a,(EnU) — ®a, (E;U).
In addition,

if xp, € 0B, nU and xp, —» x € U, then x € 0FE n U, (16)
if x € OE n U, there exists xp, € 0E, n U such that xp, — x. (17)

Finally, if we assume also that Vup, — 0 weakly in LZQOC(Q; R™) and kp, — 0, as h — +oo, then E is

a local minimizer of ® 4., that s
D4, (E; Br(20)) < ®a,. (F; B (70)), (18)
for every set F' of locally finite perimeter such that F A E € By(x¢) < Q.

Proof. Using the boundedness condition on supy, Fa, (Ep, up;§2), we may assume that wuj, weakly
converges to u in HY(U) and strongly in L?(U), and 1, converges to 1g in L'(U), as h — +oo.
By a lower semicontinuity argument, we start proving the (k, x)-minimality of (F,u). Let us fix
B,(xg) € U and assume for simplicity of notation that o = 0. Let (F,v) be a test pair such that
F is a set of locally finite perimeter, F' A E € B, and supp(u — v) € B,. Possibly passing to a
subsequence and using Fubini’s theorem, we may choose 0 < rg < p < r such that F' A ¥ € B,,
E\B,, = F\By,, supp(u — v) € B,, and in addition,

H" Y(0B, n 0*E) = H" (0B, n 0*Ey) = 0,
and
lim #"~(2B, (FO a EWY)) = 0. (19)

Now we choose a cut-off function 1 € C3(B,) such that ¢ =1 in B, and define

vy, = Yu + (1 — )uy, Fy, := (F n B,) u (Ey\B))

12



to test the minimality of (E},up). Thanks to the (kp,x)-minimality of (Ep,up) and using also
Proposition we deduce that

+n—1
f o, |Vup|*dr + ® 4, (Ep; B,) < J or, |Vup|2de + ® a4, (Fy; By) + ku|Fp A By
B Br
< J o, (1 — )| Vuy,|*dr + J oF, | Vo|Ade + J Viplu — up 2da
B, r BT‘
—_ +n—1
+ @4, (F; B,) + ®4, (Ep; BA\B,) + ®a4,(B,; F A Ey) + kp|Fiy & Ey| ™. (20)

Using the uniform convergence A; — A, the strong convergence u;, — u in L?, condition (T9)),
and getting rid of common terms, from the latter estimate we can write:

f UEh¢|VUh|2d$ + @Am (Eh; Bp)

T

pt+n—1

< f apth|Vv|2dw+<I>Ax‘(F;Bp)+mh|Fh AEh| n 4+ ¢&p,
B,

for some e, — 0. By the lower semicontinuity of the anisotropic perimeter (see [43, Proposition
3.1]), the equi-integrability of (Vup,), . and the lower semicontinuity of Dirichlet integral, we infer
that

p+n—1

J op|Vul|*dz + @4, (E; B,) < J opY|Vol*de + @4, (F; B,) + k|F A E| =

T T

Letting ¢ | xp, we get

L+

f op|Vul2de + ® 4, (E; B,) < J op|Volde + ®4, (F; B,) + k|F & E|"% . (21)
BP

By

Similarly, choosing £ = F' and v = v in , and arguing as before we get

lim sup (J o, | Vup|[*dz + @qu(Eh;Bp)) < J op|Vullde + ®4, (E; B,).

h—+o0 B, p

Letting ¢ | xp, we conclude

hErJIrloo D4, (Ey; By) = ®a,.(E;B,), hlirfw 5 op, |Vup|*dr = J p op|Vul*dz.

With a usual argument we can deduce uy, — u in WH2(U) and ® 4, (Ep; U) — @4, (E;U), for every
open set U € (). The topological information stated in and follows as in [40), Theorem
21.14], indeed they are a consequence of the lower and upper density estimates given above. Finally,
if Vuj, — 0 weakly in L? (Q;R") and kj, — 0, we can choose v = u in , deriving . O

loc

6 Reverse Poincaré inequality

In this section we derive a reverse Poincaré inequality which lets us estimate the excess around a
point of the boundary of the transformed set with its flatness. The first step in the proof is to
establish a weak form of this inequality.

In the following proposition, it is proved that if the anisotropy matrix valued in a point zq is
the identity, then around xzg the anisotropic perimeter is comparable to the perimeter.

Proposition 6.1. Let xg € Q and r > 0. There exists a positive constant cg =

cy (n,a,ﬁ,)\,A, Ky [y ||VUHL2(Q)) such that if (E,u) is a (krt, p)-minimizer of Frod, ow=l, tn Bi,
s AxgO® g, r

with 0 € 0FE n By, then

f 05| VuA b (20)2 dz + P(E: B,)

P
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< [ orlTuATH @O b+ P B) + o+ Lalen )t

p

for every (F,v) such that F A E € B, © By and v € u + H}(B,).
Proof. Let (F,v) be such that F A E € B, and v € u + H}(B,). We can assume that

JB opVuA=S (20) 2 dz + P(E: B,) > J o p|VuA™3 (20)? dz + P(F: B,).

p By

We remark that A, o ‘I/;()l,r is Holder continuous and

A2
[Aﬂ?o © \Ija:o T]Cu < T[A]C“Tu'

Since (Ag, © ¥,',)(0) = I, by the Holder continuity of Ay, o W, ! we infer

xg,T

1 1 1
lve| = <(Ax0 © \leo ,,)(0) VE’VE>2 < <(A$0 © \Ij:vo T)(m) VE’VE>2 + ﬁ[
Az

< <(Axo © \1ij r)( ) VE, VE> + 2)\2 [A]C”(Tp)”’

for any x € B,. Integrating over B, with respect to the measure H" 1 0*E and adding to both
sides the term SBP 0E|VuA_%(x0)|2, we obtain

AJBO © \Ila:o r]cup

J og|VuA~ (;po)|2daj+P(E B,) < J og|VuA~ (330)| dr +® , rgo s (E;B,)
P BP wor
A%
+ ﬁ[A]CM(TP)“P(E,Bp)

Arguing in a similar way, we get

f or|VOATE (o) 2dr + @y oy (F;Bp)éf op|VvA~2 (20)|2 dz + P(F; B,)
P " By
I3

+ 5aAlos (r0)“P(F: By).

Applying the definition of (kr#, u)-minimality of (F,u) and using the previous two inequalities, we
write

JUEWUA b (20)2 de + P(E; B,)
By
"

[ Alow(rp)* P(E; B,)

J, oA R e @y s () + 5

ne14n A%
< f or|VvA™ ($0)| dr + @, O\P;&,T(F;B )+ krt|E A F| S 2—;2[14](;# (rp)“P(E; B,)

P

<J op|VvA~ (x0)|2dac+P(F B,) + c(n)wrtpt
P

AS

e

<f o r VoA~ 3 (20)|2 dx + P(F; By) + c(n)rrt g 1+
By

A2

o

[Alcu (rp)*[P(E; By) + P(F; By)]

[Alcw(ro) |2P(E;B,) + [ sl Vul de]
Bp
s f op| VA2 (o) 2 dx + P(F; B,) + c(n, A, A, c3) (Fa + [A]m)r“p”’”“,
BP
where c3 is the constant appearing in Theorem which leads to the thesis. O
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At this point, we are able to establish a weak form of the reverse Poincaré inequality. The
strategy for its proof is the same outlined in [40, Lemma 24.9] (see also [43, Lemma 7.3] or [25]
Lemma 10]).

Lemma 6.2 (Weak reverse Poincaré inequality). Let g € Q and r > 0. If (E,u) is a (kr*, p)-

minimizer of F, 20,Agg W5 in Cy4 such that
zQ,T

|| < § Ve e Cyn OE,

{xeCZ\E DTy, ;}‘

and if z€e R* ! and s > 0 are such that

{xeszE:xn>}‘=0,

Ki(2) cCy,  H"YOE n dK,(2)) =0, (22)

then, for every |c| < %

P(B; K (2) — H" (D

M\v

(Z)) < CIO{ [ (P(E, KS(Z)) — 'anl(Ds(Z)))

Y 3
x f Wd?"lnl] +J Vul® dz + (k + [A]C“)ru}’
K,(:)no*E S Ko(2)

for some positive constant c1g = c1g (n, a, B\ A K, ||VUHL2(Q) )
Proof. We may assume that z = 0. The set function
m(G) = P(E;Cy np YG)) —H" HG), for G c Do,

defines a Radon measure on R®~!, supported in Dy. Since E is a set of locally finite perimeter,
by [40, Theorem 13.8] there exist a sequence (Ep)pen of open subsets of R with smooth boundary
and a vanishing sequence (e )pey € RT such that

Ey, Lo E, H"'Lo0E, »H"'LOE, 0E,cC 1., (OF),

as h — +w, where I, (0F) is a tubular neighborhood of ¢F with half-lenght €;,. By the coarea
formula we get

H* 1 (0K,s 0 (B 4 By)) -0, forae pe <§ i) ‘

Moreover, provided h is large enough, by 0E), < I, (0F), we get:

1
|J}n| < Z’ V.Z‘ECQﬂaEh,

1 1
{J:ECQ:xn<—4}CCQmEhc{meC2:xn<4}.

Therefore, given \ € ( , 4) and |c| < 4, we are in posmon to apply [40, Lemma 24.8] to every Ej,
to deduce that there exists I, (3, 4), with |Ip,] = and, for any p € Iy, there exists an open
subset F} of R™ of locally finite perimeter such that

24’

Fh M &Kps = Eh M aKps, (23)

K% M th = D% X {C},
:Un—62 _
P(Fy; K,s) — H" (D )<c(n){)\(P(Eh, 5) — H"1(Dy)) +1L< o gd%" 1}(.24)
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Clearly ﬂ U |Ix| = — > 0 and thus there exist a divergent subsequence (hg)ren and p € (%, %)

heNk>h
such that

pE | IIhk and  lim H" (0K, n (EW a Ep,)) = 0.
k—+0
keN

We will write Fj, in place of F},, . We consider the comparison set G, = (Fj, n Ks) u (E\K,5). By
applying [40, formula (16.33)] we infer that

P(Gk;KS) = P(Fk’;Kps) + P(E;Ks\Kps) + o,
where, thanks to [@3), ox = H" 10K ,s n (ED A F)) = H'" 7 (0K,s 0 (ED A Ep,)) — 0, as
k — +o0. We apply Proposition deducing the following relation:
f o p|VuA 3 (wo)|2 dx + P(E; B,)
spt(u—v)

<[ alVeA o) e + PGB + el A A [Vl ) e + (Al )
spt(u—v)

for every (G,v) such that G A E € B; « Cy4 and v € u + H}(B;).
Now we test the previous relation of minimality with (G, u), as E A G, € Ky € By € Cy, and
get rid of the common terms obtaining

P(E; Kps) < P(F; Kps) + ok + 6(77,7 a, B, \, A, K, ||VUHL2(Q) ) [J |Vu|2 dx + (Kru + [A]C”T“)] .
ps

(25)
Thus, since m is nondecreasing and p € (%, %), by and we deduce that
P(E; K;) - Hn_l(Dg) = m(Dg) <m(Dys) = P(E; Kps) — Hn_l(Dps)

< PBT ) = WD) +onte] [ VP o+ (e [l

ps

n—1 1 |:L‘71_C|2 n—1
< e(n){ X (P(Ep; Ks) —H"™H(D ))+X T dH
sM hy

+ CH Ve (s + [A]Cu)r“],

where ¢ = ¢(n,a, B, \, A, K, 1, ||VuHL2(Q)). Letting k — +o0, implies that P(Ej); Ks) —
P(FE;K;) and therefore

P(E;K:) —H" (Ds) < C{)‘ (P(E;K,) = H"1(Dy)) + % JK OE

|CCn B c|2 danl

52

+ JKTS \Vul>dz + (k + [A]cu)r“}, (26)

for any \ € (0, i) IfA> %, then

P(E;Ks) —H" 1(Ds) = m(Ds) < m(Dys)
<AAP(E;K,) — H'H(Dps) < c(n)X (P(E;K,) — H'H(Dy)),

N|®

and thus holds true for A > 0, provided we choose ¢(n) > 4. Minimizing over A, we get the
thesis. O

Finally, we are able to prove the main result of this section.
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Theorem 6.3 (Reverse Poincaré inequality). Let xg € Q and v > 0. There exist two positive
constants c11 = c11 (n,a,ﬁ,)\,A, K, 1L, HVUHLZ(Q)) and €5 = e5(n) such that if (E,u) is a (krt, pu)-

minimizer of . 4 g-1 in C4-(0,v), with 0 € 0E, 7 > 0 and
yAxgO¥ag,r

ec(0,47, V) < es,

then

1
eC((), T, l/) < e <n+1 f | <I/, JZ> — c|2d7-[nfl (27)
T 0ENC2-(0,v)

1
+ = f |Vul? dx + (/<a + [A]cu)(Tr)“>,
T CQT(07V)

for every c € R.

Proof. The proof of this result follows the same strategy employed in [25, Theorem 6]. We emphasize
only small differences between the two proofs. Up to a rotation and employing a usual scaling
argument, by Proposition with a small abuse of notation, we may assume that (F,u) is a
(k(7r)*, p)-minimizer of me’AIOO\I];&M in C4, with 0 € @F. Leveraging the compactness of the
perimeter and Theorem it is possible to show that

1
|z | < T Vzr e Con OF,

1
{xe Co\F : z, < _8}‘ =

Thus, for any z € R"~! and s > 0 such that

1
{xECQmE:xn>8}‘=O.

K (2) c Cy, H" 1 (0E n dK(2)) = 0,

we apply Lemma deducing that, for every |c| < i,

p(E;KS(z»_Hn1<Ds<z>)<c{[[p<E;KQS<Z>>_m1<D23<z)>] nt | e 2

—i—J |Vul? dz + krrt + [A]cw (TT)'LL} , (28)

S

for some positive constant ¢ = c(n, a, By AN K, ||Vu||L2(Q) ) Hence, proceeding as in [25, Theo-
rem 6], by a covering argument, it is possible to show that (28] implies . ]

7 Proof of the main theorem

The strategy adopted to establish the main result involves two key steps: first proving a first

variation formula for the bulk energy of F

20, Ang o5, then establishing an excess improvement

theorem for transformed couples, which in turn implies an analogous theorem for the original ones.

Proposition 7.1 (First variation formula for the bulk term). z9 € Q, u € H'(B;1) and X €
CH(B1;R™). We define ®i(x) = v +tX (), for any x € R™ and t > 0. Accordingly, we define

Et = q)t(E), Ut ZZUO(I);I.
There exist two constants c12 = c12(8, A\, VX) > 0 and tg > 0 such that it holds that

f o1, [ Vs A% (o) dar — J o VuA—3 (20) 2 da < cralt + o(t))f Vul? dz,
B1 B1 B1

for any 0 <t < tg.
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Proof. Taking into account that
VO 1 (®y(2)) =T —tVX(2) +0o(t), IJOi(z)=1+tdivX(z) + o(t),

for any x € R™ and ¢t > 0, by the change of variable y = ®;(z) we obtain

J oEt|VutAé(xg)|2dy—f O'E|VUA7%(I0)|2d$
Bl Bl

:J o |[Vu — tVuV X + Vuo(t)| A7 (20)|*(1 + tdivX + oft)) dz — J op|VuA™2 (z0) |2 dw
Bl Bl
_ J o5 [[VuA™ (20)? + [Vud™ (20) 2(tdivX + oft)] de + H(t, Vi, VX)
B1
- J op|VuA"2 (z0) 2 do
B1
= f O'E'|VUA_%(:E0)|2(tdiVX +o(t))dz + H(t,Vu,VX), (29)
By

where

H(t, Vu, VX) J 0| [—VUV X + Vuo(t)] A~ (20)| (1 + tdivX + o(t)) da
B

+ f 2(Vud~ (a0), (~1VuVX + Vuo(t) A4 (20) ) (1 + tdivX +o()) do.
B1

We estimate

JB op|VuA™2 (20) 2(tdivX + o(t)) dz < (B, \, VX)(t + ot)) JB |Vu|? da (30)
1 1
and
H(t, Vi, VX) < (8, \, VX) fB (t + 0o(0)2|Vul2(1 + tdivX + o(t)) da
.
+¢(B,\, VX) JB (t +o(1))|Vu|*(1 + tdivX + o(t)) dx
1
< (BN VX)(t+ o(t)) JB \Vu)? dz. (31)
1
Inserting and in we get the desired inequality. O

Here we present the proof of the excess improvement theorem for transformed couples.

Theorem 7.2 (Excess improvement for the transformed couple). For any w € (0,1), ¢ € (0,1),
M >0, T¢e (O,l%) there exists a constant € = (6, M,7) > 0 such that if (E,q) is a
minimizer of Frg,Agy N Bi(xo), with zg € OF, such that

e(E,z0,7) <& Da(wo,7) + 71" < Me(E, xo, 67),
then there exists a constant ci3 = ci3 (n, a, By A A K, 1, ||VuHL2(Q)) > (0 such that
e(E, x0, 77) < c13(F2e(E, xo, 7) + Da(x0, 477) + (F7)").

Proof. Let us assume by contradiction that there exist a vanishing sequence (7,)peny € RT and a
sequence ((Ep, Up))nen of (R, p)-minimizers of Fy, 4 in By, (x0), with 29 € 0E}, such that

e(En, w0,7n) =t en = 0, Dy, (z0,7h) + ff(Lliw)u < Me(Ey, z0,67%),
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and
e(Eh, xQ, ’f'fh) > 6(’7‘26(@}1, xo, fh) + Dﬂh (1‘0, 47:7:}1) + (7:77}1)“),

for some constant C' > 0 to be chosen. Employing the usual scaling argument and applying
Proposition , with a small abuse of notation we may assume that ((En, @p))hen is a sequence of
-1 in B, with 0 € 0E}, such that

(kP , p)-minimizers of F,
z0,Th

xO,Aloo\Il

e(Ey,0,1) =cp, — 0, Dy, (0,1) + 7" < Me(E},0,5), (32)
and } B )
e(E),0,7) > C(7%e(Ey,0,1) + Dy, (0,47) + (F74)H).
Up to rotating each E), we may also assume that, for all h € N,
. 1
e(Ep,0,1) = J i vg, —en? dH™ 1.
0Epn By

Step 1. Thanks to the Lipschitz approximation theorem, for h sufficiently large, there exists a
1-Lipschitz function f;,: R" ! — R such that

1 .
supl\fh\ < 0852("71), H"il((aEh ATy )N Bi) < cgep, J \V'fh|2dx' < cgep,. (33)
Rn— D

2

1
2

We define
,  where aj = fndz',

\VEh D%

and we assume, up to a subsequence, that {gs}nen converges weakly in H 1(D %) and strongly in

L*(D 1 ) to a function g. We prove that g is harmonic in D 1 It is enough to show that

L[ VY

lim —— x =0,
h—+00 /Ep D, A1+ |V fr)?

for all ¢ € C&(D%). We fix § > 0 so that supp ¢ x [—26,20] < B% and choose a cut-off function
¥: R — [0,1] with suppvy < (—26,25), ¢ = 1 in (—6,6). Let us define

Pp(x) =+ 7" X (x), where X (2) = ¢(z)ih(xy)en,

for x € R™. We apply Proposition to deduce that

P(EMB%) — P(®4(Ey); B

N|=

)<JB %h(Eh)W(aho@;l)Aé(xo)Fdx—JB UEh|VthA’%(a:0)|2d:r
1

1

2 2

(34)
+c(n,a, B, \ A, K, p, IVl 2 ) (Rfﬁ + [A]Cltﬁf) 271,%
Using the first variation formula for the perimeter and Proposition for h sufficiently large, we
get:
P(Ey; By) — P(@u(Ey); By) = (7" + O (7)) LEMBI (Vg en ) (V0V} ) an™™", (35)
3

and

_ 1y g1 _1
fBl O,y (B! V (T © o1 A2 (20) P da — JB op, |ViupA™2 (z0)|? dx

1

2 2
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< c(FH + o(FM) f Viip|? dz, (36)

B
3

for some ¢ = ¢(8, \, Vo, Vip) > 0. Inserting and in (34), dividing by /5 (7" + O(fiw“))
and taking into account, we get

1 B l / n—1
N . <th, en> <v &, uEh> dH
2
c
< ~wp ~w rt 4 o7 f
ﬁ(rh; i O(rh”)) ((Th O(Th )) 2,

e(Eh,O,&) < ¢y /ep,

V| dz + f,’f) (Da, (0,1) + #1790

C
< —
< T:h

a
Ven
for some ¢ = c(n, a, BN A Ry, [Alow, G, M, V¢, Vw) > 0. Replacing ¢ with —¢, we infer that

—0. (37)

1
lim ——
h—+00 /Ep

Decomposing dEj, N B1 = ([T, v (é’Eh\th)]\(th\ﬁE'h)) N B%, we deduce

1
2

Vi en V,¢, A d%n—l

5 ! ! n—1 _ L _f ~ / ! n—1
Wi, enXV'0, VEh>dH = \/a[ - %<VEh,en><V b, VEh>dH

gy eV 00 Y+ |

(th\(?Eh)mB%

1
VERh JOE,nB;
2

N ~ ! ! n—1

Since by the second inequality in we have

gy enX(V 0,y

1
2

1 J‘ ,
— < cg+/Ep sup V9|,
‘ VER J(OEy\Ty, )nB Rn—1

Wyr (V' G,V YA

1
2

1 J ,
— < cg4/Ep sup Vg,
‘ VER J(T'y, \OEL)NB Rn—1

then, by and the area formula, we infer

- lim ;1 <VE ,en><V'¢,l/;§ >d7‘ln_1: lim 1 <V'fh,V’¢> dl‘,.
h—+m (/€] By g h—+w /) D, V1+ |V fr]?

This proves that g is harmonic in D1 .

0

2
Step 2. The proof of this step now follows exactly as in [29] using the height bound lemma
and the reverse Poincaré inequality. We give here the proof for the sake of completeness. Setting

(fn)az  (=(V'fr)az, 1)

VIV fr)az 2 " A1+ (V' fr)az]?

We want to estimate from above the flatness of 0E), towards the hyperplane {yeR™ : {y,vpy = by}
in By; with the excess. More precisely, we show that

| o =P at < el (38)
17

lim sup T-‘rl
Eh ﬂB4;—

h—+0 ERT
On one hand, by the mean value property of harmonic functions (see [40, Lemma 25.1]), Jensen’s
inequality, semicontinuity and the third inequality in we deduce that
(v, ) — bp|? dH™ 1

lim sup BT

h—+o0o ERT LEhﬂthﬁB47"—
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K= (V' fn)az, @) + ful(@’) = (fu)az]

—hmsupf V14 |V (2|2 da’

h—+00 5h7n+ 0EhmehmB4;— 1+ |(v,fh)47"2 ’ ’

. 1
< limsup —— f | fu(@') = (fn)az = (V' fu)az, )| da’

h—+o00 ERT Dys

1
= =it | 196) = @ = (T g)sr D
47

= s [ 1067) —000) (V0000 )

< ()7 sup |g(z) = g(0) = (V'g(0),2")|?
CC’ED4.7-
< c(n)? J Vg2 da’ < o(n)72 limin f Vg2 da’ < c(n, c) 72, (39)
D, h—+w D,
2
where we used that Dyz D17 since 7 < 7z. On the other hand, from the height bound lemma

(see Lemma and ( ., we 1mmed1ately get that

f [vp, ) — bp|> dH™ L = 0. (40)
h—+o eh (aEh\th)ﬂBg;

Hence, combining and , we conclude that is satisfied. In order to apply the reverse
Poincaré inequality, we show that the sequence {ex(E}, 47, vp)}hen is infinitesimal; indeed, by the
definition of excess, Jensen’s inequality and the third inequality in we have

2(47)" ! lim sup ey (Ep, 0,47, 1) = lim supJ lvg — vp|? dH™
h—+c0 h—+00 5E~'}LGB4.,— "

< limsup [2f lvp — en\Q dH™ ! + 2le, — uh\Q”H"_l(aEh ) B4;)]
h—+0 6EhﬂB47— h
: [(V' fn)az, /1 + (V' fn)az]? = 1)?
< limsup |4ey + 2H" 1 (0E), n By
v ) TV fae

< limsup [4ep, + 41" OE, 0 Baz)|(V' )47
h—+owo

< lim sup [48h + 4 \V'fh|2 dx'] < lim [4ep, + 4egep] = 0.
h—+w0 —+0o0

Therefore, applying the reverse Poincaré inequality, (38) and observing that Coz < By, we have
for h large that

e(Eh, 07 T) < e(Eh, 07 T, Vh)
1
< C11 ('WH f |<Vh, .'E> — bh|2 d?‘ln_l + Dﬂ'h (O, 4:7-) + (/Z'/ + [A]CH)(27~_'I:}L)H)
(2 ) 6EthQT(O 7:)
<C (n a?ﬁv)‘ A Ky [y ||vu||L2 Q))( (Eh70 1) + Duh(o 47—) (Tfh)“)v

which is a contradiction if we choose C > C.

We use the previous theorem in the proof of the next result.

\ ¥

Theorem 7.3 (Excess improvement). For anyw € (0,1), o € (0 ) M>0,7€ (0, 1/\2 ) there

1
6/\2
)-minimizer of Fa in By(xo),

7; (S

exists a constant eg = e¢(0, M, T) > 0 such that if (E,u) is a (k,
with xg € 0F, such that

e(E,.Z‘(),T') < €6, Du(l'(),?“) +T(1_W)M < MG(E,.’L‘(),O'T),
then there exists a constant ci4 = ci4 (n, a, By A A K, 1, HVUHLQ(Q)) > 0 such that

e(E,xg,mr) < 6147”(e(E,:1:o,7“) + Dy(zo, ) + T“).

21



1 1

Proof. Let o € (0, i—?), M >0, 7€ (O, 12%), and let (E,u) be a (k,u)-minimizer of Fy4 in
2 2

B, (xq), with xg € dE, such that

e(Ea xOvr) < €6, Du(x(]ar) + T(l_W)u < Me(Ea 1’0,0'7“)-

Setting i
(E,a) = (T:po(E),uoT;)l), R:=A"2Rr, 7:=0r

where 0 € (0, min {A_%, 1}), by Proposition we have that (E, @) is a (R, pu)-minimizer of Fy 4
in Br(xg). By Proposition it holds that

z0

e(E~7 ZQ, f) < 61e(-Ea xo, T)v
for some positive constant C; = C1(n, \, A). Furthermore, estimating

o1 o det(A73 (p)) f Lo
Du($0,7") - (07")"71 JB,—.(xo) |vu| dy - (97“)”71 Tx_ol(BT(:Eo)) |VUA (.’Eo)| dy

/\ZAJ ) ATZA
S Dot [Vul"dy = ———Du(zo,7)
()"~ JB, (20) on—t

and applying again Proposition we get

Di(xo,T) + Fll—wn < c(n, A\, A) (Du(:no,r) + r(l_“’)“) < c(n,\,A)Me(E, zg,or)
< ¢(n, )\,A)Me(E,xg, 0)\_%7“) < 62Me(E,xo,57’),

_ _ _1
for some positive constant Cy = Ca(n, A, A), where & := )‘920 < 1, since 0 < ON3. Choosing

g6 > 0 such that Cieg < & and setting M :=CyM, we apply Theorem to obtain

e(E,z0,77) < C(72e(E, z0,7) + Da(wo, 47F) + (77)"),

for some positive constant C' = C(n, a, B,\, A\, K, u, HVUHLQ(Q) ), where 7 := é < %6, since
T < %' Leveraging Proposition we get
e(E,xo,Tr) = e(E,mo,%)\%f) < c(n,)\,A)e(E,xo,%f)
< O(7%e(E, xg, 7) + Da(wo, 477) + (F7)"). (41)
On one hand, by Proposition [3.3] we observe that
e(E, 0, 7) < c(n, A\, A)e(E, z0, A7) < c(n, A, N)e(E, zo,7), (42)

being Az < r. One the other hand, choosing ¢ < €2, by Proposition it follows

Da(x0, 47F) < c(n, A, A)Dy, (w0, 47A77) < en, A, A)FDy (20, 7), (43)
1
since 47 A3 7 < r, being 7 < 4)/‘\%. Inserting and in , we obtain
2

< C(%Qe(E,:L‘o,r) + 7Dy (o, 1) + 7:“7"“)
< C%“(e(E, x0,7) + Dyulz0,7) + r“)
< CT“(e(E, x0,7) + Dyulz0,7) + r“),

which is the thesis. O

Leveraging the results proved in the previous sections, we are able to prove Theorem [1.2

22



Proof of Theorem[1.3. Let U € €2 be an open set. We prove that for every w € (0,1) and 7 € (0,1)
there exist two positive constants € = g(7,U) and C such that if 29 € 0F, B.(z9) < U and
e(zo,7) + D(zg,7) + r1 =) <, then

e(xo, 1) + D(xg, 1) + (7‘7’)(17“})’“ < Or(-wn (e(xo, r) + D(xo,7) + r(lf‘“)“). (44)
We fix 7 € (0,1). Setting
B A2 Az
Ti=—>, 0:=—,
16A2 Az

we may assume without loss of generality that

. j_c —
T<m1n{7’,2} =T.

Furthermore we fix o := 27 < &. We distinguish two cases.
Case 1: Dy(xo,r) + ri=r < 77 1le(xg, or). Choosing & < e¢(0, 7, 7) it follows from Theorem
[7.3] that
e(xg,7r) < ey (e(a:o,r) + Du(xo,7) + r“).
Furthermore, choosing € < e2(7), applying Proposition we get .
Case 2: e(xp,or) < T(’Du(aco, r) + r(lfw)“). By the property of the excess at different scales,

we infer
e(xg, 7r) < 2" te(xzg, or) < 2"*17(7)“(:1:0,7") + 7“(1*“’)“),
obtaining .
Thus, choosing € = min{ea(7), g6(27, 7, 7)}, we conclude that the inequality is verified.
We fix o € (0, %) and choose 7 € (0, 1) such that éTélfw)” < 789 and we define

I'nU :={z € dENU : e(z,r)+D(x,r)+r"H < 2(1,U), for some r > 0 such that B,(z) U}.

We note that I' n U is relatively open in 0E. We show that I' n U is a C'?-hypersurface. Indeed,
inequality implies via standard iteration argument that if g € I' n U there exist rp > 0 and a
neighborhood V' of zy such that for every x € 0F n V it holds:

e(%Tcl){To) + D(J?,Tclfro) + (Tg’fro)(l_w)u < ngk, for k € Ny.

In particular, e(z, 75r9) < 73°% and, arguing as in [29], we obtain that for every x € dE n V and

0 <s<t<rgit holds
[(ve)s(2) — (vE)i(2)] < t?,

for some constant ¢ = ¢(n, 79, 70), where
(ve)(z) = J[ ve dH" L.
0EnBy(x)

The previous estimate first implies that I' n U is C'. By a standard argument we then deduce
again from the same estimate that I' n U is a C1?-hypersurface. Since w is arbitrary, we gain that
I is a C17-hypersurface, for any o € (0,%). We define I' := u;(I' " U;), where (U;); is an increasing
sequence of open sets such that U; € 2 and QQ = u;U;. We are left to prove that there exists n > 0
such that

HI(QENT) = 0.
Setting ¥ = {x € OE\I' : lim D(z,r) = O}, by [29, Lemma 2.1] we have that Vu € LA (Q) for

r—0 loc
some 1 = n(n,«, 3) > 1 and we have that

dimy ({x € Q : limsupD(x,r) > 0}) <n—1-mn.

r—0

The conclusion follows in a standard way as in [29] (see also [I5] and [17]) showing that ¥ = ¥ if
n < 7 and dimy(X) < n —8 if n > 8. In both cases, Lemma will be employed. O
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8 An application to a costrained problem

In this section we show an application of Theorem to the following costrained problem:

s {Fa(B,v;Q) : |E| =d}, (Fe)
U€u0+H&(Q)

where up € H'(Q), 0 < d < |Q] are given and A(Q) is the class of all subsets of Q with finite
perimeter. We assume that € is connected.

In this perspective we need to distinguish the Holder exponent of the matrix A, which we denote
here with v, from the exponent u appearing in the Definition[I.1] In Theorem we show that, for
sufficiently large values of k > 0, minimizing couples of are solutions of the following penalized

problem

min  F.(E,v;Q), (P)
EeA(Q)
veuo+HE ()

where the functional F is defined by
Fu(BE,v;Q) 1= Fa(E,v;Q) + &||E| — d|.
Now we prove the penalization theorem. For simplicity of notation, we denote
a(x,v) = (A(x)v, y>% , Vz,veR"™

It will be advantageous to have some estimates about the dependence of the integrand a on x and
v.

Remark 8.1 (Continuity of a with respect to x and v). It is straightforward to check that the
following inequalities hold:

V)| < x—ylt, Vae,yeR" |v]=1. 45

la(a,v) - aly,v)| < M[]Cw g, Vey v (45)

a(z, &) —alz,n)| < —|&—n|, VereR" V&neR". 46

a(e,€) — a(z,m)| ﬁm ) & (46)

As explained before, the proof of the equivalence between the solution of the constrained problem
and the penalized problem follows. We adapt a result proved in [23] to our setting.

Theorem 8.2. There exists kg > 0 such that if (E,u) is a minimizer of the functional
Ful(Fyw) :J op |Vl dr + ®A(F;Q) + w||F| - d[", (47)
Q

for some k = kg > 0, among all configurations (F,w) such that w = ug on 09, then |E| = d and
(E,u) is a minimizer of problem (PJ). Conversely, if (E,u) is a minimizer of problem (P, then
it is a minimizer of (A7), for all k = k.

Proof. The argument is very similar to the one in [23, Theorem 1] (see also [24] and [25]). For
reader’s convenience, we give here the sketch of the proof, emphasizing main ideas and some
differences with respect to the case treated in [23].

The first part of the theorem can be proved by contradiction. We assume that there exist a
positive sequence (kp)nen such that k, — 400, as h — +oo, and a sequence of configurations
(Ep,up) minimizing F,, and such that up = ug on 0Q and |Ep| # d, for all h € N. We choose an
arbitrary fixed Ey < § with finite perimeter and such that |Ey| = d. We point out that

Fien, (En,up) < F(Eg,up) := O. (48)

Without loss of generality we can assume that |Ejp| < d, the case |Ey| > d being similar. Our aim is
to show that for h sufficiently large, there exists a configuration (Eh, @p,) such that F,, (Eh, ap) <
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Fip, (En,up), thus proving the result by contradiction.

By condition (48], it follows that the sequence (up)pen is bounded in H'(f2), the perimeters
of the sets Ej, in Q are uniformly bounded and |Ej| — d. Therefore, possibly extracting a not
relabelled subsequence, we may assume that there exists a configuration (F,u) such that up — u
weakly in H1(Q), 1z, — 1g a.e. in 2, where the set E is of finite perimeter in  and |E| = d. The

couple (E,u) will be used as a reference configuration for the definition of (Eh, ap)-

Step 1. Construction of (EN’h,ﬂh). Proceeding exactly as in [23], since €2 is connected, we can
take a point x € 0*FE n ). We observe that, given ¢ > 0 sufficiently small, we can find around z a
point z’ and r > 0 such that

wpr™
2n+2 :

|E N B,pp(z')| < er', |E ~ B(2")] >

We assume without loss of generality that ' = 0, and from now on we denote by B, the balls
centered at the origin. From the convergence of Ej to E we have that, for h sufficiently large,

Wpr"
|Ep 0 Bjo| < er™, |El N By| > # . (49)

Now we define the following bi-Lipschitz map used in [23] which maps B, into itself:

(L=on(2" = 1)) if |z < 5,
f(@) =1z +o0p 1- ) ifz<|x|<r, (50)
[ 2
x if |z| =,

for some 0 < o, < 1/2" such that, setting
By, = f(EBy), ap =upo f ',
we have |Ej| < d. It holds that

Fnh(uhth) — fﬁh(ﬂh,Eh) = [J O'Eh|vuh|2 dl’ — J O'Eh|V1~J,h|2dx]

+ [®4(Ep, By) — ®4(En, B,)] + rn[(d — |En])” — (d — |En])]
=hip+Iop+ I3p. (51)

For simplicity of notation we will denote in the following

g(y) = f'(y), VyeR™

We will use in the sequel some estimates for the map f that can be easily obtained by direct
computations (see [23] for the explicit calculations). These estimates are trivial for |z| < r/2,
whereas they can be deduced by the explicit expression of V f for r/2 < |z| < r , that is

Ofi

6xj

n .I‘Z'.I‘j

r ..
(z) = 5¢j+ah[<l—|x|n>5¢j+nr"|m|w], Vi, je{l,...,n}.

There exists a constant C' = C'(n) depending only on n such that,
HVg(y) — IH < C(n)op, VYye By, (52)
1+ Cn)op, < Jf(x) <1+ 2"noy, Vre B,. (53)
Step 2. Estimate of I ;. Performing the change of variables y = f(z), and observing that
]lEh of=1g,, we get

Iy = JB, aEh(x)[|Vuh(x)|2 - ‘Vuh(x) o Vf_l(f(m))‘2Jf(a:)] dz.
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By means of the same computation as in [23], Using and we deduce that
Ly = —C1Oay, (54)

for some positive constant C; = C(n).

Step 3. Estimate of Io . In order to estimate I; we can use a generalized area formula for
maps between rectifiable sets involving anistropies. We recall that (see [40, Proposition 17.1]), if
E is a set of locally finite perimeter in R"™, then f(F) is a set of locally finite perimeter in R™ and

* _ * v _ [VQ(y)]t(VE(y)) *
CIEZIEE: oW = gy 7T E
Using [40, formula (17.6)] we can easily deduce that
f S(fH(y) dHy ™ = ¢(@) T f(@)|(Vg o f)lvp()| dHy™ (55)
o* f(E) O*E

for any Borel function ¢ defined on 0* E. If we choose ¢(z) = a(f(z), v (f(2))) in (55)) we deduce
that

PA(f(E)) = L*Ea(f(a?L [Vy(f(@)]'ve(x)) ] f(x) dHy .
For the proof of the aforementioned formula in a more general framework the reader is addressed
to [43, Proposition A.1]. Now we are ready to estimate the following quantity:

Ly = [®4(En, B,) — ®4(E), B,)]
= (), [Vg(f @)]'ve, (2)) — a(f(x), v, ()] f(z) dHp
6*EhmBT
+| (), v, (2)) — a(a, v, (@) |1 £ () dH !
5*E‘hmBT

J [7f(@) — a(e, ve, (@) dH = T+ Jop + Jsp.
6*Eh ﬁB
Using and we deduce

|10l < Jf(x)‘[(Vg)t — I]I/Eh(:c)‘ d’HZ_1 < C(n)®—oy,.

\F % EynBy
Applying we obtain

[A]C'Y n—1 [A]C'Y
< 5] @) el i < R Omen],

Finally from we have
|J3 5| < J n2"a(z, vy, (r))on, dHZ 1 < n2"0vVAay,.
6*E;,m§

Summarizing we conclude that

Iy = —C9O0), (56)

for some positive constant Coy = Co (n, A A, [A]C’V).
Step 4. Estimate of I3 . The following estimate is contained in [25, Theorem 2] and we detail
it for reader’s convenience.

First we recall , , , thus getting

\Bn| — |En| = f (Jf(x) — 1) do + f (Jf(x) — 1) da
EnnBr\B, /2 EnnBrs
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> (20:12 — e) opr™ —[1— (1= (2" = 1)ay)" Jer”

= opr” [;:ZQ —e—(2" - 1)ns].

Therefore, if we choose 0 < € < g(n), for some € sufficiently small, we have that
kn(|Enl = [Enl) = snC(n)anr™. (57)

Moreover, if denoting 6y := d — |E}|, we choose o, in such a way that |E’h| — |Ep| < 0p/2 thus
respecting the condition |E}| < d. Taking this into account, proceding as before and using ,
we have

|EL| — | Ep| = f (Jf(x) —1) de < n2"opr".
EnnBy

Then we choose o}, such that
5 <op < 0
hxXO0p X W

We remark that in the last condition we imposed also that oj is comparable with &, which is

crucial in the following estimate. Resuming (57) we can conclude

v

I3yh = K‘h[(d_ |E‘h|)7 - (d - |Eh|)’y] Z K (d— |Eh|)1_7(|Eh| - |Eh|)
|Eh| — |Ep| co(n)opr™
— kg (d — |Ep ) 2 B sy AR
knY( |Enl) d— |Ep) Kn7y0y, Sh

= fihé?ﬁ;z?“",

for some positive constant C3 = C3(n, ).

From the previous inequality, recalling , and , we obtain
Fe, (up, Ep) — Fen, (tp, Eh) = O’Z (Iihag’l“n — @(61 + 62)) > 0,
if k, is sufficiently large. This contradicts the minimality of (E}, up,), thus concluding the proof. [J

Remark 8.3. Theorem allows us to prove the reqularity of solutions of the free boundary
problem under the constraint |E| = d. Under the assumption

-1
v E (n ,1>,
n

the parameter p := yn — n + 1 is positive and, by Theorem any minimizing couple (E,u) of
is a (K, p)-minimizer of Fy, for k = ko, where kg is the constant appearing in Theorem .
Thus, we are in position to implement the regularity theory of the previous sections to (E,u) by

applying Theorem [1.9.
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