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Abstract

In this short note, we provide a quantitative global Poincaré inequal-
ity for one forms on a closed Riemannian four manifold, in terms of an
upper bound on the diameter, a positive lower bound on the volume,
and a two-sided bound on Ricci curvature. This seems to be the first
non-trivial result giving such an inequality without any higher curvature
assumptions. The proof is based on a Hodge theoretic result on orbifolds,
a comparison for fundamental groups, and a spectral convergence with
respect to Gromov-Hausdorff convergence, via a degeneration result to
orbifolds by Anderson.

1 Introduction

Let M be a closed Riemannian n-manifold, let ∆H,k be the Hodge Laplacian
acting on k-forms on M and denote by

0 ≤ λH,k0 ≤ λH,k1 ≤ λH,k2 ≤ · · · → ∞

the i-th eigenvalues λH,ki = λH,ki (M) of ∆H,k counted with their multiplicities.
Let νH,k be the first positive eigenvalue, namely

νH,k = min{λH,ki |λH,ki > 0}.

It is natural to ask whether there exists a quantitative positive lower bound on
νH,k in terms of a certain restriction on curvature and sizes of M , for example
its diameter diam = diam(M) and its volume vol = vol(M).

In the case when k = 0, namely, considering the (minus) Laplacian −∆ =
−tr(Hess) acting on functions, it is well-known that

νH,0 = λH,01 ≥ C(n,D,K) > 0 (1)
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where D is an upper bound on diam(M) and K is a lower bound on Ricci
curvature Ric.

In the case when k ≥ 1, Gallot-Meyer [GM73] proved a similar estimate
under the assumption of a positive lower bound of the curvature operator.

Next let us focus on the case k = 1. Recalling the Bochner formula for one
forms:

1

2
∆|ω|2 = |∇ω|2 − 〈∆H,1ω, ω〉+ 〈Ric, ω ⊗ ω〉, (2)

it is natural to restrict Ricci curvature in order to get a quantitative lower
estimate on νH,1. However, in authors’ knowledge, there is no such a result,
except for a trivial case, Ric ≥ K > 0, which yields νH,1 ≥ K just by integrating
(2) over M for an eigen-one-form ω.

The main purpose of this note is to provide a positive result along this
direction in dimension 4, more precisely, we will show that

νH,1 ≥ C(D, v) > 0

under the assumptions: n = 4, diam ≤ D <∞, vol ≥ v > 0 and |Ric| ≤ 1. See
Theorem 2.

In the next section, we will explain how to prove the claim above. Let
us emphasize that our techniques are completely different from previous ones,
based on calculus starting from a Bochner-Weitzenböck formula.

2 Main Result and Proof

Let us start by recalling the definition and some basic properties of orbifolds,
we refer the reader to [S56, KL14, C21] for a more comprehensive introduction.

A local model is a pair (Û , G), where Û ⊂ Rn is a connected open subset
and G is a finite group acting smoothly and effectively on U , on the right
(effectiveness means that the homomorphism G→ Diff(Ûα) is injective).

A smooth map between local models (Û1, G1) and (Û2, G2) is the datum of

a smooth map f̂ : Û1 → Û2 and a homomorphism φ : G1 → G2 such that f̂ is
φ-equivariant, i.e. f̂(xg1) = f̂(x)φ(g1). Let us explicitly point out that φ is not
assumed injective or surjective. An embedding is a smooth map between local
models so that f̂ is an embedding; in this case, the effectiveness implies that φ
is injective.

Definition 1 (Orbifold). An atlas for an n-dimensional orbifold O is the datum
of:

• A Hausdorff paracompact space |O|;

• An open covering {Uα} for |O|;

• For each Uα there exists a local model (Ûα, Gα) and a homeomorphism
ϕα : Uα → Ûα/Gα with the following property: if x ∈ U1 ∩ U2, then
there is a local model (Û3, G3) with x ∈ U3, together with local embeddings
(Û3, G3)→ (Û1, G1) and (Û3, G3)→ (Û2, G2).
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Two atlases are equivalent if they are both included in a third atlas.
An orbifold O is an equivalence class of atlases.

An orbifold O (with a given atlas) is oriented if each Ûα is oriented, moreover
the action of Gα as well as the embeddings Û3 → Û1 and Û3 → Û2 preserve the
orientation. The orbifold O is compact (resp. connected) if |O| is so.

For a given point x ∈ |O| and local model (Û , G) around x, consider x̂ ∈ Û
which projects to x. The local group Gx is the stabilizer group {g ∈ G : x̂g = x̂}.
It is always possible to find a local model so that G = Gx.

The regular part |O|reg ⊂ |O| is the subset of points x ∈ |O| such that
Gx = {1G}. |O|reg is a smooth manifold, moreover it is open and dense in |O|.

A smooth map (resp. Ck,α-map) f : O1 → O2 between orbifolds is given by
a continuous map |f | : |O1| → |O2| such that for each x ∈ O1 there are local
models (Û1, G1) and (Û2, G2) around x and f(x), and a smooth (resp. Ck,α-

map) f̂ between the local models so that the diagram with the projections onto
U1 and U2 commutes.

Remark 1. One can define the tangent bundle TO as a suitable orbifold, which
coincides with the usual tangent bundle when restricted to the regular part (we
refer to [KL14] for the precise definitions). Similarly for the cotangent bundle
T ∗O, and their tensor products. A section for such bundles is said to be smooth
(resp. of class Ck,α) if it is so as a map between orbifolds. In particular, we
will use such a terminology in the proof of the main theorem, when saying that
a Riemannian metric g on O is of class C1,α.

On an orbifold O, one can define differential forms and study de Rham
cohomology [S56] (see also [C21] for an introduction). We denote by Hk

dR(O)
the kth-de Rham cohomology group of O.

The following lemma is well-known to experts, we include it with a proof for
the reader’s convenience.

Lemma 1. Let O be an n-dimensional orientable orbifold. Then the first Betti
number b1(|O|), defined as the rank over Z of the fundamental group π1(|O|),
coincides with the rank over R of the first de Rham cohomology group H1

dR(O).

Proof. By Poincaré duality for the de Rham cohomology of orbifolds [S56, The-
orem 3], it holds that H1

dR(O) = Hn−1
dR (O).

The de Rham Theorem for orbifolds [S56, Theorem 1], gives that Hn−1
dR (O) =

Hn−1(|O|,R), where the latter is the (n−1)-th real singular cohomology group.
By Poicaré duality with coefficients in R [S56], it holds that the (n − 1)-

th real singular cohomology group and the 1st real singular homology group
coincide: Hn−1(|O|,R) = H1(|O|,R).

Finally, It is a general fact that RkR(H1(X,R)) = RkZ(π1(X)) for any topo-
logical space X, where the latter is the rank over Z of the (classical) fundamental
group.

We are now in a position to prove the main result of the note.
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Theorem 2. Let M be a closed Riemannian manifold of dimension at most 4.
If |Ric| ≤ 1, diam ≤ D <∞ and vol ≥ v > 0, then

νH,1 ≥ C(D, v) > 0.

Thus, in other words, the global Poincaré inequality:

inf
η

∫
M

|ω − η|2 dvol ≤ C(D, v)−1
∫
M

(
|δω|2 + |dω|2

)
dvol (3)

holds for any smooth 1-form ω on M , where the infimum in the left-hand-side
of (3) runs over all harmonic one forms η on M .

Proof. Note that it is enough to consider the case when the dimension is 4
because other cases can be reduced to the 4D case after taking the product of
a lower dimensional flat torus.

Firstly let us discuss the case when M is orientable. We will argue by
contradiction. If it is not the case, then there exist a sequence of closed oriented
Riemannian 4-manifolds Mi with |Ric| ≤ 1, diam ≤ D < ∞ and vol ≥ v > 0
such that

νH,1(Mi)→ 0. (4)

It follows from [A89, A90, CC97] with [CN15] that after passing to a subse-
quence, there exists a compact Riemannian 4-orbifold O endowed with a Rie-
mannian metric g ∈ W 2,p for any p < ∞ (thus, in particular, g ∈ C1,α for any
α < 1), such thatMi measured Gromov-Hausdorff (mGH) converge toO and the
limit measure is the Hausdorff measure of dimension 4. Note that O is orientable
by [H17b]. From [H17a], the spectral convergence for the Hodge Laplacian act-

ing on 1-forms holds for the convergence Mi → O, namely λH,1j (Mi)→ λH,1j (O)
for any j. In particular

lim sup
i→∞

b1(Mi) ≤ bH1 (O),

where bH1 (O) denote the dimension of the space of harmonic one forms on X.
Moreover the inequality must be strict:

lim sup
i→∞

b1(Mi) < bH1 (O).

because of (4).
On the other hand, applying [SW01, Theorem 1.1] for any sufficiently large

i, there exists a surjective homomorphism from π1(Mi) to π1(|O|); here we used
that the revised fundamental group (used in [SW01]) of an orbifold coincides
with the classical fundamental group, since every orbifold is semi-locally simply
connected (as each point admits a contractible neighbourhood). In particular,
considering their ranks, we have

lim inf
i→∞

b1(Mi) ≥ b1(|O|).
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Since, by Hodge theory, linearly independent harmonic 1-forms on O generate
different classes in H1

dR(O), Lemma 1 yields

bH1 (O) ≤ b1(|O|). (5)

As a summary

lim sup
i→∞

b1(Mi) < bH1 (O) ≤ b1(|O|) ≤ lim inf
i→∞

b1(Mi),

which is a contradiction.
Finally, let us discuss the case when M is non-orientable. Take the two-

sheeted orientable Riemannian covering π : M̃ → M . Note that any harmonic
one form on M̃ comes from the pull-back of a harmonic one form on M because
of b1(M̃) = b1(M). Thus applying (3) to M̃ completes the proof.

As an immediate consequence of the proof above we obtain the following.

Corollary 3. Let Mi be a sequence of Riemannian 4-manifolds with |Ric| ≤ 1,
Gromov-Hausdorff converging to a 4-dimensional C1,α-Riemannian orbifold O.
Then for any sufficiently large i:

b1(Mi) = bH1 (O) = b1(|O|) = b1(|O|reg).

Let us make some small observation on other related spectral gap results. Let
Rn/Zn be the n-torus with the canonical flat Riemannian metric g. Then one
can easily find a smooth family of Riemannian metrics gε on Rn/Zn satisfying
that gε has no parallel vector fields and that gε converge smoothly to g as
ε → 0. This observation tells that in general, for any dimension, under any
negative lower bound and any positive upper bound on any curvature, there is
no quantitative spectral gap for the connection Laplacian ∇∗∇ acting on one
forms.

On the other hand, in the case when the Ricci curvature is non-negative, any
harmonic one form must be parallel because of (2). Combining this observation
with the trivial point-wise inequality:

|dω|+ |δω| ≤ C|∇ω|

for any smooth one form ω, we obtain the following.

Corollary 4. Let M be a closed Riemannian manifold of dimension at most
4 with 0 ≤ Ric ≤ 1, diam ≤ D < ∞ and vol ≥ v > 0. Then the first positive
eigenvalue, denoted by νC,1, of ∇∗∇ acting on one forms satisfies

νC,1 ≥ C(D, v) > 0.

Note that thanks to the spectral convergence results established in [H17a],
we can also give the corresponding results for limit spaces.

Finally let us conclude the note by proposing a (maybe well-known for ex-
perts) conjecture. Notice that, in sharp contrast with the case of functions (1),
see [CC90], it is not possible to remove the lower bound on the volume.
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Conjecture 5. Let M be a closed Riemannian n-manifold with Ric ≥ −1,
diam ≤ D <∞ and vol ≥ v > 0. Then

νH,1 ≥ C(n,D, v) > 0.

It is also natural to ask the same question for non-collapsed RCD(K,N)
spaces.
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