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Abstract. We prove the sharp quantitative isoperimetric inequality in the case of the barycen-

tric asymmetry, for bounded sets. This generalizes the 2-D case recently proved in [2].

1. Introduction

Quantitative isoperimetric inequalities have been attracting a huge interest in the last two

decades. The basic question to be investigated is very simple. Namely, it is known that the set

which minimizes the perimeter among those with fixed volume is the ball. But is true that a set

which minimizes the perimeter up to a small error must be very close to a ball? Of course, one

wants to give an affirmative answer, also providing a quantitative bound which correlates the

perimeter gap of a set with its distance, in a suitable sense, to a ball. To make all this explicit,

we begin by defining in the usual way the isoperimetric deficit of a set E ⊆ RN , given by

δ(E) =
P (E)− P (B(m))

P (B(m))
.

Here, by B(m) we denote the ball centered at the origin and with mass m = |E|. We have to

define now the asymmetry of the set E, which is a measure of how much E differs from being

a ball. Notice that, while in the definition of the isoperimetric deficit we can use any ball of

volume m, since they all have the same perimeter, in the definition of asymmetry one has to

select a suitable ball, because of course we can guess that a set with a small deficit is very similar

to some particular ball of volume m, but not necessarily to the one centered in the origin! There

are several possible interesting definitions of asymmetry.

The one which has been more investigated is the so-called Fraenkel asymmetry, defined by

λ(E) = inf

{∣∣E∆(x+B(m))
∣∣

|E|
, x ∈ RN

}
, (1.1)

where we denote by “∆” the symmetric difference, that is, A∆B = (A \ B) ∪ (B \ A), and

where the above infimum can actually be easily shown to be a minimum. With this notion of

asymmetry, the sharp quantitative isoperimetric inequality reads as

λ(E) ≤ CF (N)
√
δ(E) , (1.2)

where CF (N) is a geometric constant only depending on the dimension N , and the power 1/2 is

optimal. The above inequality has been proved with several different techniques starting from

2006 and it is now very well known, see for instance [7, 4, 3].
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However, this notion of asymmetry is not the only one which is meaningful, and there are at

least two other ones which have been deeply investigated. A very natural one is the Hausdorff

asymmetry, given by

λH(E) = inf

{
dH
(
E, (x+B(m)

)
|E|

, x ∈ RN
}
,

where dH is the Hausdorff distance. With this choice of asymmetry, the sharp inequality is

λH(E) ≤ CH(N)δ(E)p(N) , (1.3)

which is valid for all convex sets in RN and where not only the constant CH(N) but also the

power p(N) depend on N . This inequality was proved in 1989 by Fuglede, who also found the

exact formula for the sharp exponent p(N), see [5]. It is important to notice that, while the

inequality (1.2) is valid for all subsets of RN , the inequality (1.3) requires the set to be convex

(or nearly spherical). This is not strange, since the inequality is easily seen to be false in general.

It suffices to take a set E given by a unit ball plus a very tiny ball at very large distance; of

course, the isoperimetric deficit of E can be made arbitrarily small as soon as the second ball is

chosen small enough, while the Hausdorff asymmetry of E is very close to the distance between

the two balls, which can be made arbitrarily large. Speaking in general, it is more or less obvious

that the Hausdorff distance is meaningful only when dealing with convex sets, or more generally

sets which are known to have a special geometrical structure.

A last notion of asymmetry, which is the one we are interested in for this article, is the

so-called barycentric asymmetry, given by

λ0(E) =

∣∣E∆(bar(E) +B(m))
∣∣

|E|
, (1.4)

where bar(E) is the barycenter of E (which of course cannot be defined for any set, see Defi-

nition 1.3). Before commenting on this asymmetry, we immediately point out that the corre-

sponding sharp inequality, proved by Fuglede in 1993 (see [6]) reads as

λ0(E) ≤ CB(N)
√
δ(E) , (1.5)

and is again valid for all convex sets in RN . Observe that in this case, as in (1.2) and unlike (1.3),

the sharp exponent is again 2.

Let us now discuss the barycentric asymmetry. First of all, we notice that it measures

the distance between the set E and a ball exactly as the Fraenkel asymmetry, that is, as the

(rescaled) volume of the symmetric difference. The big difference is that, while with the Fraenkel

asymmetry the ball is chosen so to minimise this volume, with the barycentric asymmetry the

ball is simply the one centered in the barycenter. This is a strong and somehow “arbitrary”

choice, but it is reasonable to guess that in most cases, if a set E is very close to some ball, the

center of this ball cannot be too far from the barycenter of E. Working with this asymmetry

is then very handful, because the problem of “choosing the correct ball” is eliminated, and for

instance this asymmetry is the easiest to use for a numerical approximation, since it is of course

computationally much easier to calculate a barycenter and then a single volume of a symmetric
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difference, instead of calculating several such volumes in order to perform a minimization process.

Also from a theoretical point of view, this asymmetry has been used intensively and it had a

crucial role in the literature. Indeed, not only the asymmetry is simple to use as mentioned above

because of the fact that the center of the ball should not be sought but is fixed by definition.

But also, the Fuglede argument to prove (1.5) can be easily repeated and generalised, since it

basically consists in a clever way to reduce the proof to a boring but now standard calculation.

For instance, in the celebrated paper [3] in which the estimate (1.2) for the Fraenkel asymmetry

is shown, the authors are able to reduce themselves to a particular situation of “nearly spherical

sets”, and for these sets they argue as in Fuglede’s proof of (1.5), since for them the obvious

approximation of the Frankel asymmetry from above with the barycentric asymmetry is not too

bad and is strong enough to get the sharp estimate (1.2).

A key observation is now to be done. As with the Hausdorff asymmetry, also with the

barycentric one the inequality (1.5) is surely not valid for all sets. The very same counterexam-

ple can be used. Indeed, putting together a unit ball with a second ball with radius r � 1 and

distance d � 1 is again a set with a very small isoperimetric deficit. However, if ωNdr
N > 3,

then the distance between the barycenter bar(E) and the center of the unit ball is bigger than 3,

and then the barycentric ball bar(E)+B(m) has no intersection with E, so that the barycentric

asymmetry is λ0(E) = 2, against the validity of (1.5). However, while for the Hausdorff asym-

metry to be meaningful it is pretty clear that convexity (or something close to it) is needed, the

situation is less clear for the barycentric case. Indeed, the counterexample enlightens the fact

that taking the barycenter in the definition of the asymmetry is not a meaningful choice for a

fully general set. And on the other hand, Fuglede’s proof shows that, instead, this is a smart

choice for a convex set. However, from a geometrical point of view, one can imagine that the

choice can be smart even for a case much more general than simply the convex sets. In other

words, it is reasonable to hope that there is room for improvement.

This crucial observation has been the starting point of the very recent paper [2]. There, the

authors notice that the “obvious counterexample”, which is the one we already described above

with the two balls, is not only not convex, but also not connected. This can be easily removed if

the dimension is N ≥ 3, because connecting the two balls with an incredibly thin cylinder with

length d and diameter much smaller than the radius r of the small ball makes the set connected

and has a negligible effect on the perimeter of E and on its barycenter, so again λ0(E) ≈ 2

while δ(E) ≈ 0. But in dimension N = 2 this is no more true, since a “thin cylinder” with

length d and incredibly small radius is actually a rectangle and it gives however a contribution

at least 2d � 1 to the perimeter, so in this case δ(E) � 1. Therefore, it makes sense to ask

oneself whether the barycentric inequality (1.5) is valid for connected sets in R2, and the answer

is actually positive.

Theorem 1.1 (Bianchini–Croce–Henrot, 2023 ([2])). There exists a constant C2 such that, for

every connected set E ⊆ R2, one has

λ0(E) ≤ CBCH
√
δ(E) .
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This inspiring result was our starting point. Indeed, while as observed above the connect-

edness can be useful only in dimension N = 2, we started wondering whether there is some

other geometrical property, weaker than the convexity, which can make the barycentric asym-

metry meaningful, or in other words, under which the inequality (1.5) is still valid. We ended

up noticing that such a simple geometrical property for any dimension N exists, and it is the

boundedness, which is of course extremely weaker than the convexity. More precisely, our main

result is the following.

Theorem A (Quantitative barycentric isoperimetric inequality for bounded sets). For every

N ≥ 2 and every D > 0 there exists a constant C(N,D) such that, for any set E ⊆ RN with

diameter less than D|E|1/N , the inequality

λ0(E) ≤ C(N,D)
√
δ(E) (1.6)

holds true.

A couple of quick remarks have to be done. First of all, the fact that the diameter of E must

be bounded by D|E|1/N , and not simply by D, is obvious; indeed, since we do not fix the volume

of E, the diameter must be considered with respect to the “expected diameter” of the set, which

is of order |E|1/N . By trivial rescaling, the theorem is equivalent to say that the inequality (1.6)

is true for all sets E of unit volume and diameter less than D. Second, the fact that the constant

in (1.6) depends on both N and D and not only on N is again obvious. In fact, the information

that E is bounded is of no use without an estimate on the diameter, and of course the constant

C(N,D) must explode as D → +∞. A quick observation about the dependance of C(N,D) on

D is contained in Remark 2.5. Finally, it is interesting to compare Theorem A with the two

preceding results mentioned above. We do this in the brief final Section 3, where we observe

that both these results readily follow from our one, and we comment on this.

The plan of the paper is very simple. In Section 1.1 we collect the notation that we are going

to use, and the few definitions and known results that will be needed later. Then, in Section 2

we present the proof of the main result. And finally, in Section 3, we make a quick comparison

between our result and the other ones on the same question.

We now conclude this introduction with a quick “techcnical” remark.

Remark 1.2. One can observe that, in the paper [2], the authors where considering the

Minkowski perimeter and the topological definition of connectedness, while one might prefer to

use the standard definition of perimeter, and consequently using the measure theoretic definition

of connectedness (see Definition 1.5). However, this makes no practical difference at all; indeed,

one can simply prove the sharp inequality just for smooth sets, for which the two definitions

clearly coincide, and then argue by density.

1.1. Preliminary definitions and results. Through the paper, for any set E ⊆ RN of locally

finite perimeter, we will denote by ∂∗E the reduced boundary of E, and by P (E) = H N−1(∂∗E)

its perimeter (for these basic definitions one can see for instance [1]). The usual definition of

barycenter of a set E is the following.
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Definition 1.3. Let E ⊆ RN be a measurable set with strictly positive volume. We will call

barycenter of E the point

bar(E) = —

∫
E
x dx

whenever the integral is well defined. Notice that, for instance, the barycenter is always defined

if E is (essentially) bounded, so in particular if E is convex and with finite measure.

It is useful to recall also the standard measure theoretic definitions of diameter and of

connectedness.

Definition 1.4 (Diameter of sets). The diameter of a set E ⊆ RN is defined as

diam(E) = inf

{
d > 0 : H 2N

({
(x, y) ∈ E × E, |y − x| > d

})
= 0

}
.

Equivalently, diam(E) is the supremum of the distances among pairs of Lebesgue points of E.

Definition 1.5 (Connected sets). A finite perimeter set E ⊆ RN is said connected if for every

F ⊆ E with 0 < |F | < |E| one has

P (E) < P (F ) + P (E \ F ) .

A very well-known, immediate consequence of the above definitions is the following one.

Lemma 1.6. Let E ⊆ R2 be a planar, connected set. Then, P (E) ≥ 2diam(E).

For our construction, we will need also the notion of k-symmetric sets and a property of

N -symmetric ones.

Definition 1.7 (k-symmetric sets). A set E ⊆ RN is said to be symmetric with respect to a

hyperplane Π if E = RΠ(E), where RΠ : RN → RN is the reflection across to the hyperplane Π.

A set E ⊆ RN is said to be k-symmetric for some integer 0 ≤ k ≤ N if there exist k orthogonal

hyperplanes with respect to each of which E is symmetric.

When dealing with the Fraenkel asymmetry and symmetric sets, a simple but very useful

observation is the following, for a proof see for instance [7].

Lemma 1.8. Let E ⊆ RN be an N -symmetric set with strictly positive volume, and assume just

to fix the ideas that E is symmetric with respect to each coordinate hyperplane Πi = {xi = 0},
1 ≤ i ≤ N . Then, the Fraenkel asymmetry of E defined in (1.1) and the barycentric asymmetry

of E defined in (1.4) satisfy the property

λ(E) ≤ λ0(E) ≤ 2Nλ(E) .

We can quickly discuss the meaning of this lemma. The first inequality is obvious for

any set E, since λ(E) is the infimum of the volumes of the rescaled differences between E and

translations of the ball B(m) with |B(m)| = |E|, while λ0 corresponds to a particular translation.

The interesting part is then the second inequality; notice that, as the above example with the

union of two balls shows, the second inequality is false for a generic set E. The point of this

lemma is then that considering the barycentric ball bar(E) +B(m) is an optimal choice (up to

a multiplicative constant) in the special case of N -symmetric sets.



6 C. GAMBICCHIA AND A. PRATELLI

2. Proof of the main result

This section is devoted to prove Theorem A. This will be obtained as an immediate conse-

quence of the following technical property.

Proposition 2.1. If for some 1 ≤ k ≤ N there exist constants Ck(N,D) ≥ 2NCF (N) such that

the inequality

λ0(E) ≤ Ck(N,D)
√
δ(E) (2.1)

holds true for every k-symmetric set E with diameter less than D|E|1/N , then the same is true

also for any (k − 1)-symmetric set E with diameter less than D|E|1/N and with constant

Ck−1(N,D) = C3Ck(N, 3D)D , (2.2)

where C3 = C3(N) is defined in (2.19). In particular, also Ck−1(N,D) ≥ 2NCF (N).

We can immediately see that our main result readily follows from the above proposition.

Proof of Theorem A. If E is a N -symmetric set with diameter less than D|E|1/N , then putting

together the standard quantitative isoperimetric inequality (1.2) and Lemma 1.8 we get

λ0(E) ≤ 2Nλ(E) ≤ 2NCF (N)
√
δ(E) ,

thus the inequality (2.1) is true for N -symmetric sets with constant

CN (N,D) = 2NCF (N) .

Applying then N times Proposition 2.1, we get the validity of (2.1) for 0-symmetric sets with

constant

C0(N,D) = 2NCF (N)CN3 3
N(N−1)

2 DN . (2.3)

Since any set is 0-symmetric, we have proved (1.6) for a generic set E ⊆ RN with diameter less

than D|E|1/N and with constant C(N,D) = C0(N,D). The proof is then concluded. �

The proof of Proposition 2.1 will take this whole section. We start by considering a (k− 1)-

symmetric set E, with diameter less than D|E|1/N . We assume that

|E| = 1 , bar(E) = O , RΠi(E) = E ∀N − k + 1 < i ≤ N . (2.4)

Notice that, since our result is scaling invariant, we are allowed to fix the volume of E, and we

have fixed |E| = 1 just for the ease of notation. Again for convenience, and up to a translation

and a rotation, we can assume without loss of generality that the barycenter is in the origin and

that E is symmetric with respect to the last k−1 coordinate hyperplanes. Our plan is to modify

E so to become symmetric also with respect to the hyperplane Π1 = {x1 = 0}, so becoming

k-symmetric. To do so, we begin by calling

E+ = E ∩ {x1 > 0} , E− = E ∩ {x1 < 0} (2.5)

the two parts in which E is divided by the hyperplane {x1 = 0}, and

ε =

∣∣∣∣12 − |E+|
∣∣∣∣ . (2.6)
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The number ε determines how different are the volumes of the two parts E+ and E−, in particular

ε = 0 only if the hyperplane Π1 divides E in two parts of equal volume. The diameter constraint

allows to give a simple estimate of ε in terms of δ(E) as follows.

Lemma 2.2. There exists a constant C1, only depending on N and defined in (2.9), such that

ε ≤ C1D
√
δ(E) .

Proof. Let us call BF a “Fraenkel ball”, that is, a ball realizing the infimum in (1.2). The fact

that such a ball exists is very simple; indeed, taking a ball centered in a Lebesgue point of

E ensures that λ(E) is strictly smaller than 2 (which corresponds to a ball having negligible

intersection with E). We can than take a sequence of points xj with the property that the ratio

|E∆(xj +B)|/|E| converges to λ(E). This sequence must be bounded since otherwise the ratio

would converge to 2, while λ(E) < 2, and then any limit point of the sequence {xj} corresponds

to a Fraenkel ball. Let us now call

εF =

∣∣∣∣∣∣BF ∩ {x1 > 0}
∣∣− 1

2

∣∣∣∣ (2.7)

the difference between the volume of BF and 1/2. Then, εF = 0 if and only if the center of

BF lies in the hyperplane {x1 = 0}. More in general, if we call d the distance between this

hyperplane and the center of BF , since the radius of BF is 1/ω
1/N
N , we have

εF ≤
ωN−1

ω
N−1
N

N

d . (2.8)

Let us then call for brevity G+ = BF \ E and G− = E \ BF , which are two sets with volume

|BF∆E|/2 each, and notice that

ω
N−1
N

N

ωN−1
εF ≤ d =

∣∣∣∣ ∫
BF

x1 dx

∣∣∣∣ =

∣∣∣∣ ∫
E
x1 dx+

∫
G+

x1 dx−
∫
G−

x1 dx

∣∣∣∣ =

∣∣∣∣ ∫
G+

x1 dx−
∫
G−

x1 dx

∣∣∣∣
≤ D

(
|G+|+ |G−|

)
= D|BF∆E| = Dλ(E) ,

where we have used (2.8) and the facts that bar(E) = O, the diameter of E is at most D, and

BF is a Fraenkel ball for E. We have thus found that

εF ≤
DωN−1

ω
N−1
N

N

λ(E) .

Moreover, notice that by (2.6) and (2.7)

λ(E) = |E∆BF | ≥
∣∣∣∣∣E ∩ {x1 > 0}

∣∣− ∣∣BF ∩ {x1 > 0}
∣∣∣∣∣ ≥ |ε− εF | .

The last two inequalities, together with (1.2) and with the fact that D ≥ 2ω
−1/N
N , imply that

ε ≤ εF + |ε− εF | ≤
DωN−1

ω
N−1
N

N

λ(E) + λ(E) = λ(E)

(
DωN−1

ω
N−1
N

N

+ 1

)

≤ CF (N)

(
DωN−1

ω
N−1
N

N

+ 1

)√
δ(E) ≤ CF (N)D

(
ωN−1

ω
N−1
N

N

+
ω

1/N
N

2

)√
δ(E) .
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This concludes the thesis with

C1 = CF (N)

(
ωN−1

ω
N−1
N

N

+
ω

1/N
N

2

)
. (2.9)

�

Remark 2.3. An obvious consequence of the above lemma is that, if 8ε ≥ λ0(E), then (1.6)

is true with 8C1D in place of C(N,D). In other words, in proving Theorem A we can assume

for free that ε ≤ λ0(E)/8 ≤ 1/4. By (2.6), this means that the volumes of E+ and E− are

between 1/4 and 3/4, that is, the hyperplane Π1 is not necessarily dividing E in two parts of

equal volume, but they are also not too much different.

We collect now an extremely simple observation, which will be used later.

Lemma 2.4. Let G, H and H̃ be three sets so that |H̃| = |G| and |H∆H̃| =
∣∣|H| − |G|∣∣. Then

2|G∆H| ≥ |G∆H̃| ≥ 2|G|
D′

∣∣bar(G)− bar(H̃)
∣∣ ,

where we call D′ the diameter of G ∪ H̃.

Proof. We notice that, since |H̃| = |G|, then |H∆H̃| =
∣∣|H| − |G|∣∣ is equivalent to say that

|H∆H̃| =
∣∣|H| − |H̃|∣∣, which in turn is equivalent to say that either H ⊆ H̃ or H̃ ⊆ H. The

first inequality of the claim readily follows since

|G∆H̃| ≤ |G∆H|+ |H∆H̃| = |G∆H|+
∣∣|H| − |G|∣∣ ≤ 2|G∆H| .

Concerning the second inequality, it is sufficient to recall that |G| = |H̃| and that the distance

between any point of G and any point of H̃ is at most D′, getting the thesis since∣∣bar(G)− bar(H̃)
∣∣ =

1

|G|

∣∣∣∣ ∫
G
x dx−

∫
H̃
x dx

∣∣∣∣ =
1

|G|

∣∣∣∣ ∫
G\H̃

x dx−
∫
H̃\G

x dx

∣∣∣∣ ≤ D′

|G|
∣∣G \ H̃∣∣

=
D′

2|G|
∣∣G∆H̃

∣∣ .
�

Let us now present the proof of Proposition 2.1

Proof of Proposition 2.1. Let us take any (k − 1)-symmetric set E satisfying (2.4). We restrict

ourselves to consider the case ε ≤ λ0(E)/8 ≤ 1/4. Indeed, if this is not the case, as noticed in

Remark 2.3 we already have the validity of (1.6) for E with constant 8C1D, and then also (2.1) is

valid for the (k−1)-symmetric set E with constant Ck−1(N,D) as soon as Ck−1(N,D) ≥ 8C1D.

Let us call again E±, as in (2.5), the two parts of E with {x1 ≷ 0}. Let also

P =

∫
E+

x dx = |E+|bar(E+) .

The point P is of course in the halfspace {x1 > 0}. Moreover, we call

η =
∣∣P − P1 e1

∣∣ =
1

2

∣∣P +RΠ1(P )
∣∣ = |P̂ |
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the distance between the origin and the point P̂ , which is the projection of P onto the hyperplane

Π1. Let us now define the two sets

E′ = E+ ∪RΠ1(E+) , E′′ = E− ∪RΠ1(E−) . (2.10)

Notice that E′ and E′′ are two sets which are both symmetric with respect to Π1, and by (2.4)

they keep the symmetries with respect to RΠi for N − k + 1 < i ≤ N , so they are actually

k-symmetric. Moreover, calling P ′ = bar(E′), we have

|P ′| =
∣∣bar(E′)

∣∣ =

∣∣∣∣—∫
E′
x dx

∣∣∣∣ =

∣∣P +RΠ1(P )
∣∣

|E′|
=

P̂

|E+|
=

η

|E+|
=: η′ ,

and thanks to the assumption that ε ≤ 1/4 we have

4

3
η < η′ < 4η .

To help reading the proof, Figure 1 shows a possible set E in the left side, and the corresponding

set E′ in the right. Notice that, as in the figure, the barycenter P ′ of E′ (which by construction

O

F F̂

PP̂

E

η

O

F F̂

P ′

P̂

E′

ηη′

Figure 1. A possible set E in the proof of Proposition 2.1 and the corresponding

set E′ with the quantities η and η′.

belongs to Π1) has distance η′ from the origin which is larger than η but controlled by it. In the

very same way we define the barycenter P ′′ of E′′ and the constant η′′ ∈ (4
3 η, 4η).

We define now B′η and B′′η the balls centered in P ′ and P ′′ and with volumes |E′| and |E′′|,
thus 1± 2ε. Moreover, we denote by B̃′ and B̃′′ the two balls centered in P ′ and P ′′ with unit

volume, and by B the ball centered in the origin with unit volume. We can then easily calculate,
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keeping in mind the definitions and the symmetries of the sets,

λ0(E′) =
∣∣E′∆B′η∣∣ = 2

∣∣∣(E′∆B′η) ∩ {x1 > 0}
∣∣∣

≥ 2
∣∣∣(E′∆B) ∩ {x1 > 0}

∣∣∣− 2
∣∣∣(B∆B′η

)
∩ {x1 > 0}

∣∣∣
= 2
∣∣∣(E∆B

)
∩ {x1 > 0}

∣∣∣− ∣∣B∆B′η
∣∣ ≥ 2

∣∣∣(E∆B
)
∩ {x1 > 0}

∣∣∣− ∣∣B∆B̃′
∣∣− ∣∣B̃′∆B′η∣∣

≥ 2
∣∣∣(E∆B

)
∩ {x1 > 0}

∣∣∣− 4ωN−1

ω
N−1
N

N

η − 2ε .

Concerning the last inequality, one only has to notice that |B̃′∆B′η| = 2ε by construction, since

they are two balls with the same center, while B∆B̃′ is contained in a cylinder of radius ω
−1/N
N

and height η′ < 4η. Adding this inequality to the symmetric one obtained with E′′ in place of

E′, and observing that∣∣∣(E∆B
)
∩ {x1 > 0}

∣∣∣+
∣∣∣(E∆B

)
∩ {x1 < 0}

∣∣∣ =
∣∣E∆B

∣∣ = λ0(E) ,

we obtain then

λ0(E) ≤ λ0(E′) + λ0(E′′)

2
+

4ωN−1

ω
N−1
N

N

η + 2ε ,

which, since we are assuming ε ≤ λ0(E)/8, implies

λ0(E) ≤ λ0(E′) + λ0(E′′) +
8ωN−1

ω
N−1
N

N

η . (2.11)

Now, let us call BF a Fraenkel ball for E, and call F its center; moreover, call F̂ and P̂ the

projections of F and P onto Π1. By construction,

P ′ =
P̂

|E|+
, P ′′ = − P̂

|E|−
. (2.12)

We assume now that, as shown in Figure 1,

P̂ · F̂ ≤ 0 , (2.13)

and we will work on the half-space {x1 > 0}. By (2.12), if (2.13) is not true then the very same

construction can be done in the half-space {x1 < 0}. Let us now call B̂ the ball centered in F

and such that ∣∣B̂ ∩ {x1 > 0}
∣∣ =

∣∣E ∩ {x1 > 0}
∣∣ . (2.14)

We can now apply Lemma 2.4 to the three sets

G = E ∩ {x1 > 0} , H = BF ∩ {x1 > 0} , H̃ = B̂ ∩ {x1 > 0} .

Notice that this is admissible because the assumption |H̃| = |G| is true by (2.14), and the

assumption |H∆H̃| =
∣∣|H| − |G|∣∣ is true because one of the two sets H and H̃ is contained

into the other one, since they are the intersection of an half-space with two balls with the
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same center. Putting then together the claim of Lemma 2.4 and the quantitative isoperimetric

inequality (1.2), keeping in mind that BF is a Fraenkel ball, we get

CF (N)
√
δ(E) ≥ λ(E) = |E∆BF | ≥

∣∣∣(E∆BF
)
∩ {x1 > 0}

∣∣∣ = |G∆H| ≥ |G|
D′
∣∣bar(G)− bar(H̃)

∣∣ ,
whereD′ is the diameter ofG∪H̃. Keep in mind that the diameter of E is less thanD|E|1/N = D,

thus any point of G has distance at most D from the origin. On the other hand, the distance

of F from the origin is at most D+ ω
− 1

N
N ≤ 2D, because otherwise the Fraenkel ball (which has

radius ω
− 1

N
N ) has empty intersection with E, and this is impossible. Finally, the radius of B̂ is

less than 4D, because otherwise H̃ contains a whole ball of radius D, so its volume is more than

ωND
N ≥ 1, and this is impossible because this volume equals the volume of E+, that is between

1/4 and 3/4. Summarizing, the diameter D′ of G∪ H̃ is less than 7D. One can observe that we

have been very rough in doing this estimate, but a more careful estimate would be in any case

of the form D′ ≤ cD with c ≥ 1, so the dependence on D would be with the same exponent and

only the multiplicative constant would be smaller than 7. The above estimate gives then

CF (N)
√
δ(E) ≥ 7

|G|
D

∣∣bar(G)− bar(H̃)
∣∣ . (2.15)

Let us now consider the distance between the barycenters of G and of H̃. Since G = E+, by

definition we have

bar(G) = —

∫
E+

x dx =
1

|E+|

∫
E+

x dx =
P

|E+|
.

Therefore, the projection of bar(G) onto Π1 coincides with P̂ /|E+|, since P̂ is the projection

of P onto Π1. Concerning H̃, instead, keep in mind that B̂ is a ball centered in F , and

H̃ = B̂ ∩ {x1 > 0}. As a consequence, the projection of bar(H̃) onto Π1 is the same as the

projection of F onto Π1, which is the point F̂ . Since the distance between bar(G) and bar(H̃)

is larger than the distance between their projections on Π1, and keeping in mind (2.13), we get

∣∣bar(G)− bar(H̃)
∣∣ ≥ ∣∣∣∣ P̂

|E+|
− F̂

∣∣∣∣ ≥ ∣∣∣∣ P̂

|E+|

∣∣∣∣ =
|P̂ |
|E+|

=
η

|E+|
.

Finally, inserting this estimate into (2.15), and keepind in mind again that G = E+, we get

CF (N)
√
δ(E) ≥ 7

η

D
.

Let now Ẽ be the set which maximizes λ0 among E′ and E′′, so Ẽ = E′ if λ0(E′) ≥ λ0(E′′), and

otherwise Ẽ = E′′. Notice that by construction Ẽ is a k-symmetric set, and since |Ẽ| ≥ 1/2,

then its diameter is less than 2D ≤ 3D|Ẽ|1/N . Therefore, putting this last estimate into (2.11)

and applying (2.1) on Ẽ, we get

λ0(E) ≤ λ0(E′) + λ0(E′′) +
8ωN−1

ω
N−1
N

N

η ≤ 2λ0(Ẽ) +
8ωN−1

7ω
N−1
N

N

DCF (N)
√
δ(E)

≤ 2Ck(N, 3D)

√
δ(Ẽ) +

8ωN−1

7ω
N−1
N

N

DCF (N)
√
δ(E) .

(2.16)
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To conclude, we need now to estimate δ(Ẽ) in terms of δ(E). Since B′η and B′′η are two balls

with the same volumes as E′ and E′′, and since these volumes are both larger than 1/2, we have

δ(E′) + δ(E′′) =
P (E′)− P (B′η)

P (B′η)
+
P (E′′)− P (B′′η )

P (B′′η )
=
P (E′)− P (B′η)

Nω
1/N
N |E′|

N−1
N

+
P (E′′)− P (B′′η )

Nω
1/N
N |E′′|

N−1
N

≤ 2−
N−1
N

P (E′) + P (E′′)− (P (B′η) + P (B′′η ))

Nω
1/N
N

.

Using again that 1− 2ε ≥ 1/2, we get

P (B′η) + P (B′′η ) = Nω
1/N
N

(
|B′|

N−1
N + |B′′|

N−1
N

)
= Nω

1/N
N

((
1 + 2ε

)N−1
N +

(
1− 2ε

)N−1
N

)
≥ Nω1/N

N

(
2− 23+ 1

N
N − 1

N2
ε2

)
= 2P (B)− 23+ 1

NNω
1/N
N

N − 1

N2
ε2 .

Therefore, since P (E′) + P (E′′) ≤ 2P (E), we can continue the above estimate as

δ(E′) + δ(E′′) ≤ 2−
N−1
N

2P (E)− 2P (B) + 23+ 1
NNω

1/N
N

N−1
N2 ε2

Nω
1/N
N

= 2−
N−1
N

(
2δ(E) + 23+ 1

N
N − 1

N2
ε2

)
= 21/Nδ(E) + 22+ 2

N
N − 1

N2
ε2

≤
(

21/N + 22+ 2
N
N − 1

N2
C2

1D
2
)
δ(E) ≤ C2

2D
2δ(E)

where we have also used Lemma 2.2, the fact that D ≥ 2ω
1/N
N by the isodiametric inequality,

and where we have set

C2 =

√
2

1
N
−2ω

− 2
N

N + 22+ 2
N
N − 1

N2
C2

1 . (2.17)

Notice that C2 is a purely geometric constant only depending on N , since so is C1.

We are now about to conclude. Indeed, since Ẽ is one between E′ and E′′, the last estimate

implies

δ(Ẽ) ≤ C2
2D

2δ(E) ,

which inserted in (2.16) gives

λ0(E) ≤
(

2Ck(N, 3D)C2 +
8ωN−1

7ω
N−1
N

N

CF (N)

)
D
√
δ(E) .

Keep in mind that this estimate holds under the assumption that ε ≤ λ0(E)/8 ≤ 1/4, while

otherwise we have λ0(E) ≤ 8C1D
√
δ(E). Therefore, we have shown that (2.1) is valid for any

(k − 1)-symmetric set E, as soon as we define

Ck−1(N,D) ≥ 8C1D ∨
(

2Ck(N, 3D)C2 +
8ωN−1

7ω
N−1
N

N

CF (N)

)
D . (2.18)

We can then finally set

C3 = max

{
8C1

2NCF (N)
, 2C2 +

23−NωN−1

7ω
N−1
N

N

,
1

2ω
1/N
N

}
. (2.19)
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Also C3 is a purely geometric constant only depending on N , since so are C1, C2 and CF (N).

A quick check, recalling that by assumption Ck ≥ 2NCF (N), ensures that the inequality (2.18)

is valid setting Ck−1(N,D) = C3Ck(N, 3D)D, according to (2.2). Thus, we have proved the

validity of (2.1) for any (k − 1)-symmetric set defining Ck−1(N,D) according to (2.2).

To conclude, we only have to check the validity of the inequality Ck−1(N,D) ≥ 2NCF (N).

But, since we know by assumption that Ck(N, 3D) ≥ 2NCF (N), this is surely true if C3D ≥ 1,

which in turn is true since D ≥ 2ω
1/N
N by the isodiametric inequality and by (2.19). �

Remark 2.5. As discussed in the Introduction, the constant of Theorem A must depend on the

diameter D, and actually explodes when D → ∞. Our construction provides an estimate with

C(N,D) . DN , see (2.3). An interesting question might be to find the sharp power of C(N,D)

with respect to D. This power cannot be lower than N−1
N . In fact, if the set E is made by a

ball of volume 1− ε centered in the origin, plus a second ball of volume ε at distance 3/ε, then

λ0(E) = 2, and δ(E) ≈ ε
N−1
N ≈ D−

N−1
N , where D ≈ 3/ε is the diameter of E. Therefore, the

sharp value of C(N,D) must surely be at least of order D
N−1
N .

3. Comparison with the other results

In this final section, we briefly comment on the relation between our Theorem A and the

two preceding results mentioned in the Introduction, namely, Theorem 1.1 by Bianchini, Croce

and Henrot, and the Quantitative Inequality (1.5) by Fuglede. Keep in mind that in the first

paper the inequality (1.6), with a purely geometric constant CBCH in place of C(N,D), was

proved for every connected set E ⊆ R2, while the inequality by Fuglede was proved with a purely

dimensional constant CB(N) in place of C(N,D) and for all convex sets in RN .

It is easy to see (and we are going to do it in a moment) that our result implies both the

above-mentioned results. However, it is important to remind that the proof by Fuglede was

particularly hard, since he could not use, as we did, the sharp quantitative inequality (1.2),

which is a very strong result; on the other hand, the proof of Theorem 1.1, which also uses (1.2),

is particularly short and clear.

Concerning Theorem 1.1, take a connected set E of unit volume in R2 (keep in mind that

all the inequalities are scaling-invariant, so fixing the volume is harmless). Then, there are two

possibilities: either the diameter of E is larger than 2
√
π, or not. In the first case, the perimeter

of E is at least 4
√
π, hence the isoperimetric deficit satisfies

δ(E) =
P (E)− P (B(1))

P (B(1))
=
P (E)− 2

√
π

2
√
π

≥ 1 ,

and since the barycentric asymmetry always satisfies λ0(E) ≤ 2, we have

λ0(E) ≤ 2 ≤ 2
√
δ(E) .

In the second case, by Theorem A we have that

λ0(E) ≤ C(2, 2
√
π)
√
δ(E) .

Therefore, we recover Theorem 1.1 with the purely geometric constant max{2, C(2, 2
√
π)}.
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Concerning Fuglede’s Theorem, the situation is very similar. Indeed, take this time a convex

set E of unit volume in R2. Suppose first that the diameter of E is larger than ND, for a

constant D to be precised in a moment, and in particular that the points (0, 0, 0, . . . 0) and

(ND, 0, 0, . . . 0) belong to ∂E. Therefore, by convexity we have that for every 0 ≤ t ≤ ND the

section Et = {y ∈ RN−1, (t, y) ∈ E} satisfies H N−1(Et) ≤ 1/D. But then,

P (E) ≥
∫ ND

t=0
(N − 1)ω

1
N−1

N−1

(
H N−1(Et)

)N−2
N−1 ≥ D

1
N−1

∫ ND

0
(N − 1)ω

1
N−1

N−1H
N−1(Et)

= D
1

N−1 (N − 1)ω
1

N−1

N−1 .

Since the perimeter of the unit ball is Nω
1/N
N , the above estimate gives δ(E) ≥ 1 as soon as

D
1

N−1 (N − 1)ω
1

N−1

N−1 ≥ 2Nω
1/N
N ,

which is true with the choice

D :=

(
2N

N − 1

)N−1

ω
N−1
N

N ω−1
N−1 .

Exactly as before, since λ0(E) ≤ 2, we surely have λ0(E) ≤ 2
√
δ(E). And exactly as before,

applying our Theorem A with D = ND if the diameter of E is not larger than ND, we recover

Fuglede’s inequality with the purely dimensional constant max
{

2, C(N,ND)
}

.
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