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Abstract. We provide an explicit algorithm to solve the idempotent analogue
of the discrete Monge-Kantorovich optimal mass transportation problem with
the usual real number �eld replaced by the tropical (max-plus) semiring, in
which addition is de�ned as the maximum and product is de�ned as usual
addition, with −∞ and 0 playing the roles of additive and multiplicative iden-
tities. Such a problem may be naturally called tropical or �max-plus� optimal
transportation problem. We show that the solutions to the latter, called the
optimal tropical plans, may not correspond to perfect matchings even if the
data (max-plus probabilities) have all weights equal to zero, in contrast with
the classical optimal transportation analogue, where perfect matching optimal
plans always exist. Nevertheless, in some randomized situation the existence of
perfect matching optimal tropical plans may occur rather frequently. At last,
we prove that the uniqueness of solutions of the optimal tropical transportation
problem is quite rare.

1. Introduction

In this paper we consider a discrete optimization problem that looks quite similar
to the classical Monge-Kantorovich optimal mass transportation problem and in
fact, as we argue later, is nothing else but the idempotent version of the latter.

Problem statement. Suppose we have m signal sources and n receivers regularly
exchanging information between them. Each source i ∈ {1, . . . ,m}may transmit an
amount hi,j of information to j ∈ {1, . . . , n}. The maximum amount of information
the source i may send at one time is given by a number ki, that is,

(1) max
j∈{1,...,n}

hi,j = ki.

Analogously, the maximum amount of information receiver j may get at one time
is given by a number lj , that is,

(2) max
i∈{1,...,m}

hi,j = lj .

Of course, (1) and (2) may only be simultaneously valid if

(3) max
i∈{1,...,n}

ki = max
j∈{1,...,n}

lj .

The cost Ci,j of transmitting between the source i and the receiver j depends a�nely
on the amount of transmitted information and takes into account the known �xed
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cost gi,j of using the communication channel between them, that is,

Ci,j = gi,j + γhi,j

for some given coe�cient γ > 0. The goal is to �nd the values hi,j , i = 1, . . . , n,
j = 1, . . . ,m (the respective matrix being further called the tropical transportation
plan, the explanation of the terminology being given in the sequel) minimizing the
maximum of Ci,j over all i and j, that is, �nding the

inf{max
i,j

(gi,j + γhi,j) : hi,j satisfying (1) and (2)}.

Denoting ci,j := gi,j/γ, this amounts to solving

(4) inf{max
i,j

(ci,j + hi,j) : hi,j satisfying (1) and (2)}.

Idempotent (max-plus or tropical) interpretation. Let us now completely
change the point of view and look at the above problem as a version of the classical
optimal mass transportation problem in the context of idempotent analysis, more
precisely, analysis over the tropical (max-plus) semiring R̄− := R∪{−∞} endowed
with the operations

a⊕ b := max {a, b}, a⊗ b := a+ b

which substitute the usual addition and multiplication of real numbers respectively.
The value −∞ is an identity with respect to ⊕ and 0 is an identity with respect to
⊗. Both operations are commutative, associative and a⊗(b⊕c) = a⊗b+a⊗c. Thus
the roles of 0 and 1 on the usual real line are played here by −∞ and 0 respectively.
For the general overview of the idempotent analysis we refer the reader to the
classical book [3].

The classical discrete Monge-Kantorovich optimal mass transportation problem
(see, e.g. [4] for the comprehensive introduction into the subject) is that of �nding
the optimal plan of transportation (usually called just transport plan), that is, the
matrix {πi,j}m,n

i,j=1 with each πi,j ∈ [0, 1] and satisfying

n∑
j=1

πi,j = ki,(5)

m∑
i=1

πi,j = lj(6)

with given numbers ki, lj , i = 1, . . . ,m, j = 1, . . . , n and solving the minimization
problem

(7) inf{
m,n∑
i,j=1

ci,jπi,j : πi,j satisfying (5) and (6)}.

This is usually interpreted as �nding the way of optimally transporting the discrete
measure

µ :=

m∑
i=1

kiδxi

to another discrete measure

ν :=

n∑
j=1

ljδyi
,
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for some xi ∈ X, yj ∈ Y , i = 1, . . . ,m, j = 1, . . . , n, with X and Y some sets and δz
standing for the Dirac point mass at z. The value πi,j then stands for the amount
of mass transported from xi to yj , or, in other words, one may see the whole matrix
{πi,j}m,n

i,j=1 as representing the discrete measure
∑m,n

i,j=1 πi,jδ(xi,yj) over X × Y , and∑m,n
i,j=1 ci,jπi,j is just the total transportation cost.
In the idempotent max-plus setting the role of the Dirac measure δx over a set

X concentrated at x ∈ X is played by the characteristic function (for which we
retain the same notation as for the Dirac measure) δx : X → R̄− de�ned by

δx(y) =

{
0, y = x,

−∞, y ̸= x.

The measures µ and ν become then the functions µ : X → R̄− and ν : X → R̄−
respectively de�ned by

(8) µ = max
i=1,...,m

(ki + δxi
), ν = max

j=1,...,n
(lj + δyj

),

i.e. µ is the function taking the value ki at each xi and −∞ elsewhere, and ν is the
function taking the value lj at each yi and −∞ elsewhere. We will be referring to
the ki's as the weights of µ and to the lj 's as the weights of ν. The tropical version
of the total mass of a discrete measure becomes then the sum of its weights, that is

|µ| := max
i=1,...,m

ki, |ν| := max
j=1,...,n

lj .

We will assume, in complete analogy with the classical mass transportation theory,
that |µ| = |µ| (which is exactly the condition (3)), and for purely aesthetical reasons,
which imply no loss of generality, that both total masses are zero, i. e. |µ| = |ν| = 0,
so that µ and ν can be considered tropical versions of discrete probability measures.
Such functions will be further called discrete max-plus probabilities, the set of such
functions over a given set Z being denoted M(Z), so that µ ∈ M(X) and ν ∈
M(Y ). Finally, πi,j ∈ [0, 1] is substituted by hi,j ∈ [−∞, 0] and the Monge-
Kantorovich problem (7) becomes (4).

Results. In this paper we provide an explicit algorithm to solve the tropical trans-
portation problem (4) and �nd an explicit formula for the tropical cost. As a
consequence, we obtain some curious results on the solutions, i. e. optimal tropical
plans. In particular, the optimal tropical plans naturally corresponding to perfect
matchings may not exist even if the max-plus probabilities µ and ν have all the
weights equal to zero (we henceforth call this case fundamental). This is in striking
contrast with the classical optimal mass transportation, where an optimal trans-
port plan corresponding to a perfect matching (i. e. a permutation matrix) between
discrete measures which are sums of Dirac masses with equal weights always exists.
Nevertheless, by introducing randomness of the cost, it turns out that the existence
of perfect matching optimal tropical plan occurs rather frequently as the number
of weights of both µ and ν becomes large. We also prove that the uniqueness of
optimal tropical plan is quite rare. As for the optimal tropical cost, we prove that
for Bernoulli cost matrices, it is asymptotically equal to the lowest value of the
matrix (in the fundamental case).
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2. Notation and preliminaries

In complete analogy with the classical optimal transportation theory, the matrix
{hi,j}m,n

i,j=1 with each hi,j ∈ [−∞, 0] satisfying (1) and (2) will be called discrete

max-plus (or tropical) plan (or just a plan for brevity) for max-plus probabilities
µ ∈ M(X), ν ∈ M(Y ). Equivalently it can be seen as a max-plus probability
h ∈ M(X × Y ) given by the formula

(9) h = max
i=1,...,m,i=1,...,n

(hi,j + δ(xi,yj)).

We denote by Π(µ, ν) the set of all such plans (it is of course nonempty since
µ⊗ ν ∈ Π(µ, ν), where (µ⊗ ν)i,j := ki + lj).

For the given cost matrix {ci,j}m,n
i,j=1 we de�ne

dc(µ, ν) := inf

{
max

i=1,...,m,i=1,...,n
(ci,j + hi,j) : h ∈ Π(µ, ν)

}
.

If we interpret h as an element of h ∈ M(X × Y ), i.e. as in (9), then we may
write h(xi, yj) and c(xi, yj) instead of hi,j and ci,j respectively. Again for purely
aesthetical reasons, to be able to easier interpret the numbers ci,j as a cost, it is
convenient to assume ci,j ≥ 0 which always can be done without loss of generality.
The minimizer π ∈ Π(µ, ν) in the above problem will be called the minimizing (or
optimal) tropical plan, the set of such minimizing plans being denoted by Πc(µ, ν).
The number dc(µ, ν) will be called the tropical cost or tropical distance between
µ and ν (the latter terminology is of course an abuse of the language since dc is
not necessarily a distance, nevertheless, it reminds of the optimal transportation
distance between two measures).

In the sequel we assume the sequences of weights kj and lj to be ordered ordered
in decreasing order with k1 = ll = |µ| = |ν| = 0, i.e.

(10) kn ≤ kn−1 ≤ · · · ≤ k1 = 0, ln ≤ ln−1 ≤ · · · ≤ l1 = 0.

We denote by Λ(µ) and Λ(ν) the sets of weights of µ and ν respectively.
For any h ∈ Π(µ, ν), by the support of h, denoted supp(h), we will mean the

subset of X ×Y of points (x, y) where h(x, y) > −∞, or, equivalently, with a slight
abuse of the language, the set of pairs (i, j) ∈ {1, . . . ,m} × {1, . . . , n} such that
hi,j > −∞.

For a set X we denote by #X is cardinality. We also write sometimes a ∨ b for
the maximum of the numbers a and b.

3. Reduced transportation plans and existence of minimizers

We start with the following de�nition.

De�nition 3.1. Given �xed discrete µ and ν, we will call a discrete plan h ∈
Π(µ, ν) reduced if for each i, j such that hi,j := h(xi, yj) > −∞, the element hi,j

is a strict maximum in its row or in its column, and denote by ΠR(µ, ν) the set of
reduced plans for discrete µ and ν.

Without loss of generality for the tropical transportation problem, all the weights
of µ and ν can be taken to be �nite (i.e. di�erent from > −∞). In fact, if, say,
ki = −∞ for some i ∈ {1, . . . ,m}, then the i-th row of h, for any h ∈ Π(µ, ν) must
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consist only of −∞. In this case, in the expression that de�nes dc(µ, ν), each of the
elements over which the minimum is taken is

max
(i,j)

(hi,j + ci,j)

= max{. . . , hi,1 + ci,1, hi,2 + ci,2, . . . , hi,n + ci,n, . . .}
= max{. . . ,−∞,−∞, . . .−∞, . . .},

but the maximum is non-negative, so the the numbers −∞ can be changed to
su�ciently small negative numbers (negative but with large absolute value) without
a�ecting the maximumm and then the weight kj = −∞ can be changed to maxi hi,j

where hi,j are the new numbers just mentioned.
The following assertion holds true.

Lemma 3.2. For all discrete µ ∈ M(X), ν ∈ M(Y ) one has

dc(µ, ν) = inf{max
(i,j)

(hi,j + ci,j) : h ∈ ΠR(µ, ν)}.

Moreover, for every minimizing plan h there is a reduced minimizing plan h̃ with
supp h̃ ⊂ supph and h̃ = h over the support of h̃.

Proof. If hi,j is not a strict maximum neither in its column nor in its row for some
i, j ∈ {1, . . . , n}. Then changing hi,j to −∞ (or to any number less than hi,j) does
not a�ect max(i,j)(hi,j + ci,j). Changing all such entries of the matrix {hi,j} will
transform the plan to a reduced one, and thus

dc(µ, ν) = inf{max
(i,j)

(hi,j + ci,j) : h ∈ Π(µ, ν)}

= inf{max
(i,j)

(hi,j + ci,j) : h ∈ ΠR(µ, ν)}

as claimed. □

As a consequence, the following existence result holds.

Theorem 3.3. The discrete max-plus transportation problem admits a solution,
namely, inf is actually a min.

Proof. It is enough to refer to Lemma 3.2 and observe that the set of reduced plans
ΠR(µ, ν) has �nitely many elements. □

4. Algorithm to solve the discrete max-plus transportation problem

4.1. Partition of the support of a plan. Given discrete µ and ν, for each
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, let

pi = max{j : lj ≥ ki}, qj = max{i : ki ≥ lj},
Si = {(i, 1), . . . , (i, pi)}, Tj = {(1, j), . . . , (qj , j)}.

The following assertion is valid.

Lemma 4.1. Let µ ∈ M(X), ν ∈ M(Y ) be discrete max-plus probabilities as in
(8); let h ∈ ΠR(µ, ν).

(1) For each i ∈ {1, . . . ,m}, at least one of the numbers hi,1, . . . , hi,pi must be
ki, and the numbers hi,pi+1, . . . , hi,n are all strictly less than ki. Likewise,
for each j ∈ {1, . . . , n}, at least one of the numbers h1,j , . . . , hqi,j must be
lj, and the numbers hqi+1,j , . . . , qn,j are all strictly less than lj.
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(2) If the weights ki and lj are all distinct, with the exception of k1 = l1 = 0,
then Si ∩ Tj = ∅ whenever (i, j) ̸= (1, 1).

(3) ki = lj for some i, j ∈ {1, . . . ,m}×{1, . . . , n} if and only if (i, j) ∈ Si∩Tj.

Proof. (1) Fix i ∈ {1, . . . ,m}. As for the second part of the assertion: the maximum
among hi,1, . . . , hi,n must be ki. If hi,pi+m̄ = ki for some m̄ ≥ 0, then the maximum
among h1,pi+m̄, . . . , hn,pi+m̄ is at least ki. But this contradicts the de�nition of
pi, since the maximum among h1,pi+m, . . . , hn,pi+m̄ must be λpi+m̄. Thus the
maximum occurs among hi,1, . . . , hi,pi , which proves the �rst part of the assertion.
The claim about the numbers h1,j , . . . , hn,j is proved analogously.

(2) Suppose (i, j) ̸= (1, 1) and (q, p) ∈ Si ∩ Tj . Then, by de�nition of pi and qj ,
(q, p) = (i, j). Moreover, in this case, the De�nition of pi and qj will contain only
strict inequalities. Therefore, l1 > ki, . . . , lj > ki and k1 > lj , . . . , ki > lj , which is
a contradiction.

(3) Suppose ki = lj for some i, j ∈ {1, . . . ,m} × {1, . . . , n}. Since lj ≥ ki, we
must have (i, j) ∈ Si. Likewise, since ki ≥ lj , then (i, j) ∈ Tj . Necessity is proven.
Now suppose (i, j) ∈ Si ∩ Tj . Since (i, j) ∈ Si, j ≤ pi so lj ≥ ki, and (i, j) ∈ Tj

gives i ∈ Ti, so ki ≥ lj . This completes the proof. □

It follows from Lemma 4.1 that if none of the ki is equal to any of the lj , with

the exception of k0 = l0 = 0, then |ΠR(µ, ν)| = Πn−1
i=0 piqi.

Given discrete max-plus probabilities µ, ν and a real number λ, let

(11) Rλ :=

( ⋃
{i : ki=λ}

Si

)
∪
( ⋃

{j : lj=λ}

Tj

)
,

which is a subset of {1, . . . ,m} × {1, . . . , n}. We call Rλ a region or λ-region to
emphasize the dependence on λ. A region can look like a backwards L whose ends
rest on the top and left edges of the grid, or a rectangle with its left side lying on
the left edge of the grid, or a rectangle with its top side on the top edge of the grid,
or a rectangle with both his left and top sides lying on the left and top sides of the
grid, respectively.
Example 4.2. For m = n = 6 and the max-plus probabilities

µ = max{0 + δx1
, 0 + δx2

,−2 + δx3
,−3 + δx4

,−4 + δx5
,−4 + δx6

}

=


0, x ∈ {x1.x2},

−2, x = x3,
−3, x = x4,
−4, x ∈ {x5.x6}

and

ν = max{0 + δy1
, 0 + δy2

, 0 + δy3
,−1 + δy4

,−2 + δy5
,−2 + δy6

}

=

 0, x ∈ {y1.y2.y3},
−1, x = y4,
−2. x ∈ {y5.y6}

with xj , j = 1, . . . ,m as well as yi, i = 1, . . . , n all distinct, the regions (each in a
di�erent color) and a plan are shown in Figure 1. △

We extend the notions of plan and reduced plan as follows. Fix µ, ν. Given a
non-empty subregion Rλ of the n×n grid, a �lling of it with −∞ and real numbers
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0 0 0 -1 -2 -2

0 -∞ -∞ 0 -1 -∞ -2

0 0 0 -∞ -∞ -2 -∞
-2 -∞ -∞ -2 -∞ -∞ -∞
-3 -∞ -∞ -∞ -∞ -3 -∞
-4 -∞ -∞ -∞ -4 -∞ -∞
-4 -4 -∞ -∞ -∞ -∞ -∞

Figure 1. Regions for the pair (µ, ν) of Example 4.2.

such that the maximum of each row and column of Rλ is λ is called a plan of Rλ.
Let Π(Rλ) be the set of plans of Rλ. Like above, a plan h = (hi,j)(i,j)∈Rλ

∈ Π(Rλ)
is called reduced whenever hi,j is a strict maximum of its row or a strict maximum
of its column, as long as hi,j > −∞. Thus, a reduced plan of a λ-region has no
numbers other than −∞ and λ. Denote by ΠR(Rλ) the set of reduced plans of Rλ.

Given discrete µ, ν, a cost function c, we allow ourselves some abuse of notation
by denoting

dc(Rλ) := min
h∈Π(Rλ)

max
(i,j)∈Rλ

(hi,j + c(xi, yj)).

The following assertion holds true.

Proposition 4.3. Suppose µ ∈ M(X), ν ∈ M(Y ) are discrete and a cost function
c : X × Y → [0,∞) is given. Then

dc(µ, ν) = max
λ∈Λ(µ)∪Λ(ν)

dc(Rλ).

Proof. By de�nition,

dc(µ, ν) = min
h∈Π(µ,ν)

max
(i,j)

(hi,j + c(xi, yj)).

Let us look at

M = max
λ

min
h∈Π(Rλ)

max
(i,j)∈Rλ

(hi,j + c(xi, yj)),

which is the right hand side of the inequality we wish to prove. For each one of the
distinct λ's, we pick hλ ∈ Rλ for which max(i,j)∈Rλ

(hi,j + c(xi, yj)) takes the least
possible value, i.e. we pick an optimal plan for the region Rλ for each λ. Further,
let λ̄ be the value of λ at which M is attained. Let h̄ = ∪λh

λ; then h̄ ∈ Π(µ, ν)
(i.e. it is a plan between µ and ν). We claim h̄ is optimal for dc(µ, ν). Suppose it
is not, and hence there is another h0 ∈ Π(µ, ν) such that

max
(i,j)

(h0
i,j + c(xi, yj)) ≤ max

(i,j)
(hi,j + c(xi, yj)) ∀h ∈ Π(µ, ν).

In particular, if h = h̄, then, by the assumption just made, the inequality must be
strict, and

max
(i,j)∈Rλ̄

(h0
i,j + c(xi, yj)) ≤ max

(i,j)
(h0

i,j + c(xi, yj)) < max
(i,j)

(h̄i,j + c(xi, yj)).
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But the maximum value of the function λ 7→ max(i,j)∈Rλ
(h̄i,j + c(xi, yj)) is M and

is attained at λ = λ̄. Thus, it follows that

max
(i,j)∈Rλ̄

(h0
i,j + c(xi, yj)) < max

(i,j)∈Rλ̄

(h̄i,j + c(xi, yj)) = max
(i,j)∈Rλ̄

(hλ̄
i,j + c(xi, yj)),

which contradicts the de�nition of hλ̄. Therefore, h̄ is optimal for dc(µ, ν), so
dc(µ, ν) = M . □

4.2. Finding the optimal cost on a region. By Proposition 4.3, to solve the
original problem, it is enough to �nd the optimal plan for each λ-region Rλ, hence
also �nding the respective optimal costs dc(Rλ); the optimal plan for the original
problem will then coincide over each Rλ with the optimal plan for this region.

To �nd the optimal plan for the given region Rλ, suppose the cost function c
be given (we assume all the points xi and yi to be �xed beforehand), and number
the values of c over Rλ in an increasing order. Namely, suppose that s ∈ Z+ is the
number of distinct values that c takes on the region Rλ and denote these values, in
increasing order, by

(12) c1 < · · · < cs.

For each m ∈ {1, 2, . . . , s} we de�ne the function hm
c : Rλ → {−∞, λ} by the

formula

hm
c (i, j) :=

{
λ, if c(xi, yj) ≤ cm,

−∞, otherwise.

That is, hm
c is a �lling of the region Rλ with −∞ and λ (i.e. a mapping from Rλ

into {λ,−∞}) such that the λ's appear in the cells that host one of the smallest m
values of c on the region, while −∞ appears in the other cells. In particular, for
m = s, hs

c �lls all the cells in the region Rλ with λ, and hence is a plan for Rλ, that
is, hs

c ∈ Π(Rλ). This motivates the following de�nition.

De�nition 4.4. Given λ, a λ-region Rλ, and a cost function c, let m be the smallest
integer for which the �lling hm

c of the region Rλ constitutes a plan, i. e.

mc(λ) = min{m : hm
c ∈ Π(Rλ)}.

It is convenient to assign to each (i, j) ∈ Rλ the number (from 1 to s) that the
value c(xi, yj) occupies in the list (12). Such an assignment is given by a function
f : Rλ → {1, 2, . . . , s} satisfying:
(13)
f(i1, j1) < f(i2, j2) if and only if c(xi1 , yj1) < c(xi2 , yj2) for (i1, j1), (i2, j2) ∈ Rλ.

We illustrate the above de�nitions with the following example.
Example 4.5. Suppose the region is {1, 2, 3}2 and the cost function (restricted to
this region) is, in matrix form,

[c(xi, yj)]
2
i,j=1 =

2 4 8
8 2 0
2 0 5

 .
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Then f(2, 3) = f(3, 2) = 1, f(1, 1) = f(2, 2) = f(3, 1) = 2, f(1, 2) = 3, f(1, 3) =
f(2, 1) = 4, and

h1
c =

−∞ −∞ −∞
−∞ −∞ λ
−∞ λ −∞

 , h2
c =

 λ −∞ −∞
−∞ λ λ
λ λ −∞

 ,

h3
c =

 λ −∞ −∞
−∞ λ λ
λ λ λ

 , h4
c =

λ λ λ
λ λ λ
λ λ λ

 .

Here mc(λ) = 2, h
mc(λ)
c = h2

c . △

Lemma 4.6. Let Rλ be a λ-region, c be a cost function. Let h ∈ Π(Rλ) be a

minimizer for dc(Rλ). Then the support of h is included in the support of h
mc(λ)
c

and, with the notation of (12),

dc(Rλ) = λ+ cmc(λ).

Moreover, h
mc(λ)
c is itself a minimizing plan.

Proof. Let {(xi1 , yj1), . . . , (xip , yjp)} be the support of h. Then

dc(Rλ) = max
1≤k≤p

{c(xik , yjk) + λ}.

With the notation of (12), let cm be the largest of the c(xik , yjk); then dc(Rλ) =
λ+cm. But then the �lling hm

c , by de�nition, must have a λ in every cell (i, j) such
that c(xi, yj) ∈ {c1, . . . , cm}. Thus, the support of h is included in the support of
hm
c , and hm

c is a plan, so mc(λ) ≤ m and

dc(Rλ) = λ+ cmc(λ) ≤ λ+ cm = dc(Rλ).

On the other hand, since h
mc(λ)
c is a plan, we must have

dc(Rλ) ≤ λ+ cmc(λ).

Combining the last two inequalities, we obtain that dc(Rλ) = λ+cmc(λ), as desired,

andm = mc(λ), so the support of h is included in the support of h
mc(λ)
c . This means

h
mc(λ)
c is itself a minimizing plan, and the last assertion follows. □

We collect the preceding conclusions in the following:

Theorem 4.7. Let µ ∈ M(X), ν ∈ M(Y ) be discrete, i. e. µ = maxni=1(ki + δxi),
ν = maxnj=1(kj+δyj

). and c : X×Y → [0,∞) be a given cost function. Then to get

a minimizing plan h one considers for every λ ∈ Λ(µ)∪Λ(ν) (i. e. for each distinct
weight of either µ and ν) the respective region Rλ and a minimizing plan hλ for

each Rλ (e.g. hλ := h
mc(λ)
c ), setting then h := hλ over each Rλ. Furthermore,

dc(µ, ν) = max
λ∈Λ(µ)∪Λ(ν)

(λ+ c(xiλ , yjλ)),

where each (iλ, jλ) ∈ f−1(mc(λ)), f standing for the numbering function satisfy-
ing (13). In particular, if all the weights ki and lj are distinct, except k1 = l1 = 0,
then

dc(µ, ν) = max
0≤i≤n−1

min
j≤pi

(ki + c(xi, yj)) ∨ max
0≤j≤n−1

min
i≤qj

(lj + c(xi, yj)).

Proof. It is a direct consequence of combining Lemma 4.6 with Proposition 4.3. □
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4.3. Remarks on uniqueness of plans on a region. As we see fom Exam-

ple 4.5½ the �lling h
mc(λ)
c (i.e. the �rst �lling, in going from m = 1 to m = s, that

results in a plan) is not necessarily a reduced plan. Another, simpler, example of
such a situation is

[c(xi, yj)]
2
i,j=1 =

(
1 3
3 3

)
;

supposing {(1, 1), (1, 2), (2, 1), (2, 2)} is a region Rλ, then heremc(λ) = 2 and hmc(λ)

is the 2× 2 matrix with λ in every entry.
We can state the following about reduced minimized plans and uniqueness of

minimizing plans of a region.

Proposition 4.8. Let λ ≤ 0, Rλ be a λ-region, c : X × Y → [0,∞) be a cost

function. If h
mc(λ)
c is a reduced plan, then it is the unique reduced minimizing plan

for dc(Rλ). Vice versa, if a minimizing plan for dc(Rλ) contains only −∞ and λ
and is unique among minimizing plans with this property, then it is reduced and

must coincide with h
mc(λ)
c .

Proof. To prove the �rst assertion;, suppose that h
mc(λ)
c is a reduced plan for

dc(Rλ). It is minimizing by Lemma 4.6. If there is another reduced minimiz-
ing plan h for dc(Rλ), then by Lemma 4.6 its support is a subset of the support

of h
mc(λ)
c . Hence if h ̸= h

mc(λ)
c , then for some (xi, yj) one has h(xi, yj) = −∞ and

h
mc(λ)
c (xi, yj) = λ. But since h

mc(λ)
c is reduced, then the matrix {hmc(λ)

c (xk, yl)}k,l
has either in the i-th column or in the j-th row all the entries except the entry (i, j)
strictly less than λ, hence −∞. Therefore the matrix {h(xk, yl)}k,l has either all
the i-th column or all the j-th row made of entries −∞, contradicting the fact that
h is a plan for Rλ, hence proving the assertion.

To prove the second assertion, let h be the unique minimizing plan for dc(Rλ)
among minimizing plans containing only −∞ and λ. It has to be reduced by

Lemma 3.2. On the other hand, also h
mc(λ)
c contains only −∞ and λ and is a

minimizing plan for dc(Rλ). by Lemma 4.6. Thus h = h
mc(λ)
c as claimed. □

We remark that the latter Proposition 4.8 asserts that having a unique plan

(among all plans containing only −∞ and λ) is equivalent to h
mc(λ)
c being reduced,

but this is not equivalent to the existence of a unique reduced minimizing plan as
the following example shows.
Example 4.9. Suppose λ = 0.

(1) If the cost function is

[c(xi, yj)]
2
i,j=1 =

(
1 2
4 3

)
,

then h
mc(λ)
c is not reduced; there are two minimizing plans (containing only

0 and −∞), with one of them the only reduced minimizing plan:

hmc(λ)
c =

(
0 0

−∞ 0

)
, h1 =

(
0 −∞

−∞ 0

)
.

(2) If the cost function is

[c(xi, yj)]
2
i,j=1 =

1 4 2
6 7 8
5 9 3

 ,
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then h
mc(λ)
c is not reduced, and there are at least two reduced minimizing

plans:

h
mc(λ)
c =

0 0 0

0 −∞ −∞
0 −∞ 0

 , h1 =

−∞ 0 0

0 −∞ −∞
0 −∞ −∞

 , h2 =

−∞ 0 −∞
0 −∞ −∞

−∞ −∞ 0

 .

△

4.4. A remark on perfect matchings. Of particular interest, as in the classical
mass transportation problem, are minimizing plans supported on subsets of the
type {(x1, yσ(1)), . . . , (xn, yσ(n))}, where σ : {1. . . . , n} → {1. . . . , n}. We will call
them perfect matching plans. The plan h1 in Example 4.9(1) and the plan h3 and
In Example 4.9(2) are perfect matchings, while the other plans in these examples
are not. The example below shows that for some data one might have no perfect
matching minimizing plans.
Example 4.10. Consider the cost matrix

[c(xi, yj)]
2
i,j=0 =

5 1 5
5 2 5
3 5 4

 .

If k2 = k1 = k0 = l2 = l1 = l0 = 0, then

h =

−∞ 0 −∞
−∞ 0 −∞
0 −∞ 0


is the unique minimizing plan (among plans containing only 0 and −∞), but is not
a perfect matching. △

We stress that the nonexistence of the optimal tropical plans even when the
max-plus probabilities µ and ν have all the weights equal to zero (we will call
this case fundamental) is in a striking contrast with the classical optimal mass
transportation. The latter always admits an optimal transport plan corresponding
to a perfect matching (i. e. a permutation matrix) between discrete measures which
are sums of Dirac masses with equal weights, by virtue of the Birkho�-von Neumann
theorem which states that the set of extreme points of the Birkho� polytope of

bistochastic matrices in Rn2

is exactly the set of permutation matrices (and hence
a linear functional on this polytope always attains its minimum on a permutation
matrix).

The following assertion holds true.

Proposition 4.11. Let µ = maxnj=1(kj + δxj ), ν = maxnj=1(lj + δyj ), with the

elements arranged as in (10) as usual. If there is j ∈ {1, . . . , n} such that kj ̸= lj,
then there is no plan that would correspond to a perfect matching.

Proof. If h ∈ Π(µ, ν) is not reduced, then it does not correspond to a perfect
matching, so assume that h ∈ ΠR(µ, ν). Recall the de�nition 11 and consider the
disjoint regions Rλk

, k = 1, . . . , r determined by the plan h, where λk, k = 1, . . . , r
are all the distinct weights of the max-plus probabilities µ and ν. Suppose that the
set {i : ki = λk} has mk,1 elements, and the set {j : lj = λk} has mk,2 elements;
at least one of these two numbers must be positive. Observe that the plan h must
have at least max{mk,1,mk,2} �nite (i.e. di�erent from −∞) entries on the region
Rλk

. Thus, the plan h has at least

m = max{m1,1,m1,2}+ · · ·+max{mr,1,mr,2}
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�nite entries in total. Keep in mind that

r∑
k=1

mk,1 =

r∑
k=1

mk,2 = n.

The plan will correspond to a perfect matching only if there are n �nite entries in
total. The only way to have m = n is if mk,1 = mk,2 for every k = 1, . . . , r. Given
that the weights are arranged as in (10) as usual, the conclusion follows. □

5. Uniqueness of solution and perfect matchings for random costs

In this section, we will try to elucidate some questions regarding the optimal
cost, perfect matchings and uniqueness when we introduce some randomness in the
cost function. We will limit ourselves to the fundamental case (i.e. when all the
weights of the discrete max-plus measures are zero) and with m = n, i. e.:

µn
0
= max{0 + δx1

, . . . 0 + δxm
},

νn
0
= max{0 + δy1 , . . . , 0 + δyn}.

with xj , j = 1, . . . , n as well as yi, i = 1, . . . ,m all distinct. In what follows the
sequences of max-plus probabilities µn

0
and νn

0
as above are �xed, while the cost

function is random, i. e. is represented by a Bernoulli random matrix, i. e. each
entry in the n× n cost matrix is independent from the others and takes the value
c1 with probability p and c2 with probability q = 1− p, where c1 < c2.

5.1. Random tropical cost. The following statement holds true.

Theorem 5.1. Let c1 < c2, and suppose that for each n, µn
0
and νn

0
are discrete

max-plus probabilities with all their weights equal to zero, and cn is a Bernoulli cost
matrix: P(cn(xi, yj) = c1) = p, P(cn(xi, yj) = c2) = q = 1− p for i, j ∈ {1, . . . , n},
where x1, . . . , xn and y1, . . . , yn are the points of the support of µn

0
and νn

0
. If q < 1,

then

P(dcn(µn
0
, νn

0
) = c1) → 1 as n → ∞

Proof. Even though a very short argument can be provided, we will derive a formula
for the probability under question. Referring to Lemma 4.6 (and recall de�nition
4.4) the tropical distance dcn between µn

0
= maxni=1(0 + δxi) and νn

0
= maxnj=1(0 +

δyj
) will be c1 or c2 depending on whether mcn(0) is 1 or 2 respectively. It is 1 if

and only if in the matrix for cn there is at least one c1 in every row and in every
column. Denote by Fi the event that there is at least one c1 in the i-th row of the
matrix, and by Cj the event that there is at least one c1 in the j-th column of the
matrix.In the calculation that follows we retain for the sake of clarity the notation
m for the number of rows and n for the number of columns in the cost matrix,
although one has m = n. Therefore for the indices i and j one has i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}. Thus

P(dcn(µn
0
, νn

0
) = c1) = P((∩m

i=1Fi) ∩ (∩j=1Cj)) = 1− P((∪m
i=1F

c
i ) ∪ (∪j=1C

c
j )),
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where the upper index c denotes the complement of the event. We have

P((∪m
i=1F

c
i ) ∪ (∪n

j=1C
c
j )) =

=

m+n∑
s=1

(−1)s+1
∑

a+b=s
(a,b) ̸=(0,0)

(
m

a

)(
n

b

)
P(F c

1 ∩ · · · ∩ F c
a ∩ Cc

1 ∩ · · · ∩ Cc
b )

=

m+n∑
s=1

(−1)s+1
∑

a+b=s

(
m

a

)(
n

b

)
qmn−(m−a)(m−b)

= − qmn
∑

0≤a≤m
0≤b≤n

(a,b)̸=(0,0)

(−1)a+b

(
m

a

)(
n

b

)
q−(m−a)(m−b).

Assuming that p < 1 (otherwise P(dc(µ0, ν0) = c1) = 1 for any n so that there is
nothing to prove). Then

P((∪m
i=1F

c
i ) ∪ (∪n

j=1C
c
j ))

= − qmn

( ∑
0≤a≤m
0≤b≤n

(−1)a+b

(
m

a

)(
n

b

)
q−(m−a)(m−b) − q−mn

)

= − qmn(−1)n
m∑

a=0

(
m

a

)
(−1)a

n∑
b=0

(−1)n−b

(
n

b

)
(q−(m−a))n−b + 1

= − qmn(−1)m+n
b∑

a=0

(
m

a

)
(−1)m−a(1− q−(m−a))n + 1.

Recalling that m = n, we get

(14) P(dcn(µn
0
, νn

0
) = c1) = qn

2
n∑

j=0

(−1)j
(
n

j

)
(1− q−j)n.

Thus,
P(dnc (µn

0
, νn

0
) = c1) → 1 as n → ∞,

if q < 1, proving the claim. □

It is convenient to introduce a special notation for the expression in the right
hand side of (14), namely, we set

s(n; p) :=

{
(1− p)n

2 ∑n
j=0(−1)j

(
n
j

)
(1− (1− p)−j)n. if p ∈ [0, 1),

1, if p = 1.

Remark 5.2. The relationship (14) reads

lim
n

s(n; p) = 1, 0 < p ≤ 1.

It is also easy to show that

lim
p→0

s(n; p) = 0, lim
p→1

s(n; p) = 1, n ∈ N,

so that p 7→ s(n; p) is continuous over [0, 1]. The asymptotics of s, hence that of a
probability that the random tropical cost be equal to the minimum value of the cost
function, may be interesting also for the more general cases when p is not constant



14 PEDRO BARRIOS, SERGIO MAYORGA, AND EUGENE STEPANOV

but depends on n. For instance, one has limn→∞ s(n, 1/nγ) = 0 for all γ ≥ 1 and
limn→∞ s

(
n, 1/n1/2

)
= 1. ⋄

Remark 5.3. A quite similar situation occurs not only when the cost is given not
necessarily by a Bernoulli random matrix, but, say, by a binomial one. Namely,
suppose now that s ∈ N is �xed, and each entry in the cost matrix cn can take one
of the values c1 < · · · < cs (as in (12)), with c1 appearing with probability p1. Let
q := 1− p1. Then the lower bound for P(dcn(µn

0
, νn

0
) = c1) can be obtained in the

same way as in the proof of the Theorem 5.1. Therefore

lim
n→∞

P(dc(µn
0
, νn

0
) = c1) = 1.

Thus, even if the available choices for the entries of the cost matrix for cn is a
large but �xed number, the tropical distance between µn

0
and νn

0
is equal to the

the smallest value c1 of the cost with large probability for large n (with probability
of this event tending to one as n → ∞). Moreover, if pj is the probability of cj
appearing in any given entry of the cost matrix, then it follows from the calculation
that

(15) P (dcn(µ
n
0
, νn

0
) = cj) = s

(
n,

j∑
p=1

pk

)
− s

(
n,

j−1∑
p=1

pk

)
,

which tends to zero as n → ∞, the above equality (15) giving the rate of conver-
gence. ⋄

5.2. Presence of perfect matching optimal plans. We consider the following
de�nition.

De�nition 5.4. Let µ and ν be discrete max-plus probabilities and let h be a plan
for a square region Rλ. We will say that h contains a perfect matching, if there is
a perfect matching plan h̃ for the same region with support contained in the support
of h.

In other words, h is a perfect matching plan for a region Rλ if it can be �simpli-
�ed� by substituting some of its entries equal to λ by −∞ to get a perfect matching
plan for a Rλ.

We will again discuss the case of a random cost provided by a Bernoulli cost
matrix, and restrict ourselves to the fundamental case. To simplify the discussion,
let c1 = 0 and c2 = 1. If there is a zero in every row and every column of the
matrix, then, as we know, the tropical cost is 0, but if we look at the corresponding
plan (represented by the matrix h), it may be impossible to �simplify� it (change
some of the entries equal to 0 to −∞) so as to produce a perfect matching plan
(see Example 4.10), that is, it does not contain a perfect matching. In the opposite
direction, if the corresponding optimal plan contains a perfect matching, then the
tropical cost is 0. Summing up, there are the following possibilities.

• The tropical cost is 1. This occurs exactly when some row or column of
the cost matrix fails to have a 0. Then there is always a perfect matching
plan. In fact, the absence of a 0 in some row or column of the cost matrix

means that h
mc(0)
c is the matrix with 1 in all the entries, which contains

any perfect matching plan. For instance, if the cost matrix is

[c(xi, yj)]
2
i,j=1 =

(
0 1
1 1

)
,
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then a possible perfect matching minimizing plan is

[hi,j ]
2
i,j=1 =

(
0 −∞

−∞ 0

)
.

• The tropical cost is 0, but the optimal plan does not contain a perfect
matching.

• The tropical cost is 0, and the optimal plan contains a perfect matching.

For the following theorem we give here a random graph argument based on the
strong and remarkable result of Bollob�as and Thomason (see [2, theorem 7.11])
that will also be used in the proof of Theorem 5.7 below.

Theorem 5.5. Let c1 < c2, and suppose that for each n, µn
0
and νn

0
are discrete

max-plus probabilities with all their weights equal to zero, and cn is a Bernoulli
cost matrix: P(cn(xi, yj) = c1) = pn, P(cn(xi, yj) = c2) = qn = 1 − pn for i, j ∈
{1, . . . , n}, where x1, . . . , xn and y1, . . . , yn are the points of the support of µn

0
and

νn
0
. If pn ≥ (log n)/n for all but �nitely many n, then

lim
n→∞

P(∃h ∈ Πcn(µn
0
, νn

0
) : h contains a perfect matching) = 1.

Proof. Every cn is associated with one and only one random bipartite (undirected)
graph Gn(c

n) with the sets {x1, . . . , xn} and {y1, . . . , yn} as the two disjoint sets of
vertices in the following way: cn(xi, yj) = c1 if xiyj is an edge, and cn(xi, yj) = c2

otherwise. The plan h
mcn (0)
cn contains a perfect matching plan if and only if the bi-

partite graph Gn(c
n) contains a perfect matching. In the proof of [2, theorem 7.11],

it is shown that the probability that the random bipartite graph contains a perfect

matching approaches 1 as n → ∞. Thus, the probability that h
mcn (0)
cn contains a

perfect matching also approaches 1 as n → ∞. Since h
mcn (0)
cn is always an optimal

plan, the result follows. □

Remark 5.6. An alternative proof of Theorem 5.5 can be made as follows. Re-

gardless of whether the tropical cost is c1 or c2, for the plan h
mc(0)
c (which is always

minimizing), the property of containing a perfect matching plan is characterized by
the fact that, for some permutation σ ∈ Sn, the product

Πn
j=1|c2 − c(xj , yσ(j))|

is di�erent from zero (necessarily then it is equal to (c2 − c1)
n). The latter is

guaranteed, for instance, when the matrix [c2 − c(xi, yj)]
n
i,j=1 is not singular (i.e.

has nonzero determinant). By a theorem of Basak and Rudelson [1], this probability
approaches 1, for every 0 < p < 1. ⋄

5.3. Uniqueness of minimizing plans. We show now that in the fundamental
case (when all the weights of the discrete max-plus masure are zero), when the
uniform probability is put on the space of the cost matrices, the uniqueness of a
minimizing plan containing only 0 and −∞ is an asymptotically rare event in the
sense that its probability tends to zero as the number of weights approaches in�nity.
Namely, the following result is valid.

Theorem 5.7. Fix any positive real number M > 0 and let {Xn}∞n=1 and {Yn}∞n=1

be sequences of subsets of X and Y respectively, with #Xn = #Yn = n for all n.
For each n ∈ N, let

µn
0
:= max{0 + δx1

, . . . , 0 + δxn
}, νn

0
:= max{0 + δy1

, . . . , 0 + δyn
},
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where x1, . . . , xn are the elements of Xn and y1, . . . , yn those of Yn. For each n let
Pn be the uniform probability measure over [0,M ]Xn×Yn . De�ne Cn ⊂ [0,M ]Xn×Yn

as the set of functions c such that there is a unique, among plans containing only
0 and −∞, minimizing plan for dc(µn, νn). Then

lim
n→∞

Pn(Cn) = 0.

Proof. In order to apply the theory from [2], let us introduce the notion of bipartite
graph process, speci�cally, on the set of vertices Xn ∪ Yn. Any given bijective func-
tion f : {1, . . . , n2} → {1, . . . , n}2 we de�ne determines a sequence of n2+1 graphs in
the following way: at time step t = 0 there are no edges and at step t ∈ {1, . . . , n2}
the edge (i, j) := f(t) is added. At the n2-th time step we obtain the complete bi-
partite graph. Note that the set of bijective functions f : {1, . . . , n2} → {1, . . . , n}2
is in one-to-one correspondence with the set of permutations of {1, . . . , n2}, i. e. with
the symmetric group Sn2 of order n2; in fact, each f−1 is an enumeration of the
cells of an n× n matrix. If the function f (or equivalently the respective permuta-
tion σ ∈ Sn2) is chosen randomly, with uniform probability, then we have a random
bipartite graph process, which coincides with the one described in [2] (see pp. 42
and 171 therein). Let

Ωn := {ω : Xn × Yn → [0,M ] : ω takes n2 distinct values },

and for each ω ∈ Ωn de�ne the mapping fω : {1, . . . , n2} → {1, . . . , n}2 by setting
fω(t) := (i, j), where (i, j) is the unique pair of indices such that ω(xi, yj) is the
t-th largest value among the n2 distinct values ω(x1, y1), . . . , ω(xn, yn). Thus, each
ω ∈ Ωn determines an ordering of the matrix cells fω which, in turn, gives the
above described graph process with f := fω.

Since Pn is the uniform measure on [0,M ]Xn×Yn , we have Pn(Ωn) = 1. Moreover,
since Pn is uniform, for each bijective g : {1, . . . , n2} → {1, . . . , n}2, the set {ω ∈
Ωn : fω = g} has the same Pn-measure, namely, 1/(n2)!. Hence, these sets form a
partition of the probability space

([0,M ]Xn×Yn ,B([0,M ]Xn×Yn), Pn)

into (n2)! equiprobable events, where B([0,M ]Xn×Yn) stands for the Borel σ-algebra
of [0,M ]Xn×Yn . Thus, the bipartite random graph process can be equivalently
sampled from this probability space, rather than directly from the set of bijective
g : {1, . . . , n2} → {1, . . . , n}2 (or equivalently, from Sn2) endowed with the uniform

probability. Let us denote by {Gt}n
2

t=0 a generic realization of our bipartite random
graph process on Xn ∪ Yn, and let τ be the stopping time

τ := min{t : Gt has degree 1}.

That is, τ is the �rst instance t such that every xi belongs to an edge and also every
yj belongs to an edge. Recalling now De�nition 4.4 and the algorithm of section
4.2, we have:

(16) τ(ω) = mω(0)

for Pn-a.e. ω ∈ Ωn. Denote by Dn the event that Gτ contains a perfect matching.
By [2, theorem. 7.11],

(17) lim
n→∞

Pn(Dn) = 1,
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which means, in words, that by the time the bipartite graph achieves degree 1 (this

is exactly the time when the minimizing plan h
mω(0)
ω is formed, by (16)), the graph

contains a perfect matching. Let

Hn := {ω ∈ Ωn : hmω(0)
ω is not reduced}.

By Proposition 4.8, we will be done if we show that Pn(Hn) → 1 as n → ∞. Now,
the event Dn is the disjoint union of Fn and En, where Fn is the event that Gτ

is exactly a perfect matching, and En is the event that Gτ has a perfect matching
and at least one more edge. As can easily be argued, Pn(Fn) → 0 as n → ∞ (in
fact, for Fn to hold, at the last step of forming Gτ only one possibility of forming
an edge, or equivalently only one way of placing a zero in the respective row of the
matrix, results in a perfect matching). Thus, by (17), Pn(En) → 1 as n → ∞. On
the other hand, the event En is included in Hn: indeed, a graph in En corresponds
to a plan in the support of which there is triple of indices, two of which are in the
same column and two of which are in the same row, thereby violating De�nition
3.1. Therefore, limn→∞ Pn(Hn) = 1 hence concluding the proof. □
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