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1 introduction

In this note we give a new, elementary proof of the following result, see §2 for the relevant notation.

Theorem 1.1. Let T be a metric 1-current in Rd and denote by T̃ the classical current induced by T. Then, T̃ is a flat chain.

The fact that Ambrosio-Kirchheim metric 1-currents correspond to Federer-Fleming flat chains was proved by
Schioppa in [9] and later by D. Bate, the first named author and G. Alberti in [1]. The analogue result for metric
d-currents was proved in [5]. All these proofs use, directly or indirectly, the notion of Alberti representations of a
measure µ and, correspondingly, the construction of width functions, that is, Lipschitz functions of small supremum
norm with high derivative µ-a.e. along certain directions. Our proof, instead, is immediate and it does not rely on
any such notion or construction.

2 notation and preliminary results

2.1 Classical currents in Rd

A k-dimensional current T in Rd is a continuous linear functional on the space of smooth and compactly supported
differential k-forms on Rd, endowed with the topology of test functions. The boundary of T, ∂T, is the (k − 1)-current
defined via ⟨∂T, ω⟩ := ⟨T, dω⟩ for every smooth and compactly supported (k − 1)-form ω. The mass of T, denoted
by M(T), is the supremum of ⟨T, ω⟩ over all k-forms ω such that ∥ω∥ ≤ 1, where ∥ω∥ denotes the comass norm. A
current T is called normal if both T and ∂T have finite mass.
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By the Radon–Nikodým theorem, a k-dimensional current T with finite mass can be written in an essentially
unique way in the form T = τTµT where µT is a finite positive measure and τT is a k-vector field with unit mass
norm µT-a.e. In particular, the action of T on a smooth and compactly supported k-form ω is given by

⟨T, ω⟩ =
ˆ

Rd
⟨ω(x), τT(x)⟩dµT(x) .

On the space of smooth and compactly supported differential k-forms, we consider the flat norm, see [6, §4.1.12],

F(ϕ) := max{∥ω∥, ∥dω∥}.

This induces a corresponding flat seminorm on currents defined by

F(T) = sup{T(ω) : ω ∈ X, F(ω) ≤ 1}.

We recall that, by [6, §4.1.12], we have

F(T) = min{M(R) + M(S) : T = R + ∂S}.

More information on currents can be found in [6].

2.2 Metric currents

Let (X, d) be a complete metric space. We denote D k(X) := Lipb(X, R)× Lip(X, R)k, where Lip(X, R) is the
space of Lipschitz functions on X and Lipb(X, R) is the subspace of bounded Lipschitz functions .

Definition 2.1 (Metric currents). A multilinear functional T : D k(X) → R is said to be a k-dimensional metric current
if

(i) continuity: for every f ∈ Lipb(X, R), (πn
1 )n∈N, . . . , (πn

k )n∈N ⊂ Lip(X, R) converging pointwise to π1, . . . , πk
with Lip(πn

i ) ≤ C for every n
T( f , πn

1 , . . . , πn
k ) → T( f , π1, . . . , πk);

(ii) locality: if there exists i ∈ {1, . . . , k} such that πi ≡ c on a neighbourhood of supp f then T( f , π1, . . . , πk) = 0;

(iii) finite mass: there exists a finite Radon measure µ such that

|T( f , π1, . . . , πk)| ≤ Lip(π1) · · ·Lip(πk)

ˆ
X
| f |dµ. (1)

The minimal measure with such property is denoted by µT .

More information on metric currents can be found in [3] and [7].

Let’s shift our attention to the case X = Rd, equipped with the Euclidean distance. It’s worth recalling that
for every k-dimensional metric current T on Rd with compact support, there exists a corresponding "classical" k-
dimensional current T̃, see [3, Theorem 11.1]. Denoting Λ(k, d) the set of multi-indices α = (1 ≤ α1 < · · · < αk ≤ d)
of length k in Rd, the condition defining T̃ is that for every smooth and compactly supported k-form

ω = ∑
α∈Λ(k,d)

ωαdxα1 ∧ · · · ∧ dxαk

it holds
⟨T̃, ω⟩ = ∑

α∈Λ(k,d)
T(ωα, xα1 , . . . , xαk ). (2)

Conversely, for every flat chain T with finite mass and compact support, there exists a corresponding metric
current T̂. These mappings are inverses of each other when restricted to normal currents, see [7, Theorem 5.5].
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3 properties of purely non-flat currents

In [1], it has been noticed that normal currents are closely related to flat chains with finite mass, proving that, in
codimension at least 1, every flat chain with finite mass is the restriction of a normal current to a Borel set. For this
reason many geometric properties valid for normal currents can be inferred also for flat chains with finite mass.

This note originates from the observation of some interesting properties enjoyed by those currents which do not
contain any portion of a flat chain with finite mass, for which we give the following definition.

Definition 3.1 (Purely non-flat current). We say that a current T with finite mass is purely non-flat if for every
decomposition T = T1 + T2 with M(T) = M(T1) + M(T2) where T1 is a flat chain, than T1 = 0.

Remark 3.1. Let us observe that a k-current of finite mass T = τTµT is purely non-flat if and only if a certain
pointwise relation between the measure and the k-vector field holds, that is, if and only if τT(x) ̸∈ Vk(µT , x) for
µ-almost every x, see [2, Definition 4.1, Theorem 1.2].

We define the closed flat norm of a current T as

F0(T) := sup{⟨T, ω⟩ : ∥ω∥ ≤ 1, dω = 0}.

In general this is not equivalent to the flat norm, indeed this quantity equals zero whenever ∂T = 0. However, we
will show that the two quantities are equal for purely non-flat currents with finite mass.

Proposition 3.1. Assume that T is a purely non-flat current and M(T) < ∞. Then F(T) = M(T).

Proof. Since M(T) is finite then F(T) < ∞. To prove that F(T) = M(T), write T = R + ∂S with M(R) + M(S) =
F(T), see [6, §4.1.12]. Since S is normal, the fact that T is purely non-flat implies that ∂S = −R A for some Borel
set A. The minimality of M(R) + M(S) then implies S = 0, hence R = T, so that F(T) = M(R) = M(T).

Proposition 3.2. Assume that T is a purely non-flat current and M(T) < ∞. Then F(T) = F0(T).

Proof. The fact that F0 ≤ F is true for every current. Towards a proof by contradiction that F0(T) = F(T) for a
purely non-flat current T with finite mass, assume that

f0 := F0(T) < F(T) =: f .

This implies that T, seen as a linear functional on the space Y of smooth and compactly supported forms ω with
dω = 0, endowed with the flat norm (which in Y coincides with the comass norm), has operator norm equal to f0.

By Hahn-Banach theorem, T can be extended to a linear functional W on the space X of smooth and compactly
supported forms, endowed with the flat norm, which coincides with T on Y. This implies that ∂T = ∂W and
moreover F(W) = f0. We can write W = R + ∂S, with M(R) + M(S) = f0. In particular ∂R − ∂T = 0, that is
T − R = ∂N for some normal current N. We write R = Rp + R f with Rp purely non-flat and R f a flat chain
with M(Rp) + M(R f ) = M(R). This can be done by maximizing the mass of the restriction of R to a Borel set
A such that R 1A is a flat chain. We deduce that T − Rp = ∂N + R f . Being the right hand-side a flat chain
while and the left hand side purely non-flat, the only possibility is that T − R f = 0, which is impossible because
M(T) = f1 > f0 ≥ M(R).

4 equivalence between metric 1-currents and flat chains in the euclidean space

We note that Proposition 3.1 and Proposition 3.2 yield an elementary proof of the fact that 1-dimensional metric
currents in the Euclidean space correspond to Federer-Fleming flat chain. We begin with the following Lemma.

Lemma 4.1. For every smooth 1-form ω such that dω = 0 and ∥ω∥ ≤ 1 there exists π ∈ C∞(Rd) such that

dπ = ω and Lip(π) ≤ 1.

Proof. This is an immediate consequence of the fact that the exterior derivative coincides with the differential for
smooth functions.
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Proposition 4.2. Let η be a positive and finite Radon measure on Rd and let µ be a Radon measure singular with respect to
the Lebesgue measure L d. Then, there exists a set of full measure of vectors v ∈ Rd such that η and (τv)♯µ are mutually
singular, where τv denotes the map τv(x) := v + x.

Proof. Without loss of generality we can assume that µ is supported in B(0, 1). Let A ⊂ Rd be a Borel set such that
L d(A) = 0 and η(Ac) = 0 and observe that by Tonelli’s theorem we have

ˆ
B(0,1)

(τv)♯µ(A)dL d(v) =
ˆ

B(0,1)

ˆ
1A(z + v)dµ(z)dL d(v)

=

ˆ ˆ
B(0,1)

1A(z + v)dL d(v)dµ(z) =
ˆ

L d(A − z)dµ(z) = 0.
(3)

The above computation implies that (τv)♯µ(A) = 0 for L d-almost every v ∈ B(0, 1), so that for those v’s the
measures η and (τv)♯µ are mutually singular.

Proposition 4.3. Let T be a metric 1-current such that T̃ is purely non-flat. Then

lim sup
|v|→0

F(T̃ − (τv)♯T̃) = 0.

Proof. By Proposition 3.2, in this case F(T̃) = F0(T̃). Towards a proof by contradiction of the proposition, assume
that there exists a purely non-flat metric current T for which

lim sup
|v|→0

F(T̃ − (τv)♯T̃) > c > 0.

This implies that there exists a sequence of smooth, closed 1-forms (ωn) with F(ωn) ≤ 1 for every n = 1, 2, . . . and
a sequence of vectors vn → 0 such that

⟨T̃ − (τvn)♯T̃, ωn⟩ > c(1 − n−1) for every n.

By Lemma 4.1, for every n = 1, 2, . . . we can find πn ∈ C∞(Rd) such that Lip(πn) ≤ 1 and ωn = dπn. Possibly
subtracting a constant, we can assume that πn(0) = 0, for every n, so that we can find a 1-Lipschtz function π∞
such that, up to non-relabeled subsequences,

πn → π∞ locally uniformly. (4)

We deduce that for every n

c(1 − n−1) <⟨T̃ − (τvn)♯T̃, ωn⟩ = ⟨T̃, ωn⟩ − ⟨(τvn)♯T̃, ωn⟩

=⟨T̃, ωn⟩ − ⟨T̃, (τvn)
♯
ωn⟩ = T(1, πn)− T(1, πn ◦ τvn).

Thanks to the continuity of metric currents, the equi-Lipschitzianity of the πn’s, and (4), we reach a contradiction.

The conclusion of the proof is now a simple consequence of the fact that if T is a metric current such that T̃ is
purely non-flat, then µT̃ is singular with respect to L d.

Theorem 4.4. Let T be a metric 1-current in Rd. Then T̃ is a flat chain.

Proof. Assume by contradiction that there exists a metric 1-current T such that T̃ is not a flat chain, or equivalently
that there exists a Borel set A such that T̃ 1A is a non-trivial purely non-flat current. We claim that Ts := T 1A is
a metric current such that T̃s = T̃ 1A. First, T 1A is a metric current thanks to [3, Theorem 3.5]. Let us prove the
claimed identity. For every ( f , π) ∈ D1(Rd) with f , π ∈ C1(Rd) we have

⟨T̃s, f dπ⟩ = Ts( f , π) = T 1A( f , π) = T( f 1A, π) = ⟨T̃, f 1Adπ⟩ = ⟨T̃ 1A, f dπ⟩,

where the third identity above follows from [3, Theorem 3.5]. This proves the identity T̃s = T̃ 1A and hence T̃s is
purely non-flat.
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We claim that the total variation of T̃s is singular with respect to L d. Indeed, suppose that there exists a Borel set
B such that µT̃s B ≪ L d. In particular, it follows from the Lebesgue density theorem that the current T̃s 1B is a
limit in mass of currents of the form

TN :=
N

∑
i=1

viL
d Bi,

where Bi are balls and vi are constant on each Bi. It is easy to check that such TN is a normal current, which proves
the claim.

By Proposition 4.2 we can find arbitrarily small vectors v ∈ Rd such that µT̃s and (τv)♯µT̃s are mutually singular,
so that, observing that T̃s − (τv)♯T̃s is purely non-flat, we have

F(T̃s − (τv)♯T̃s) = M(T̃s − (τv)♯T̃s) = 2M(T̃s),

where the first equality follows from Proposition 3.1. This however contradicts Proposition 4.4.

Remark 4.1. We remark that we used that T is 1-dimensional only in Lemma 4.1. Providing a suitable generalization
of this lemma does not seem feasible, see for instance [4] and [8, Theorem 2.1]. This obstructions is deeply connected
to the fact that Schauder estimates for the Laplacian fail for continuous data. However, when we apply Lemma 4.1
in Proposition 4.3, we do not really need the equality dω = π, but only the equality between the action of T̃ on ω
and the action of T on (1, π) when T̃ is purely non-flat. Therefore, in principle, the obstruction above does not
exclude the possibility to adapt our strategy to prove the flat chain conjecture in full generality.
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