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Abstract

In this paper we study an inverse problem in convex geometry, inspired by a problem
in materials science. Firstly, we consider the question of whether a Laguerre tessellation
(a partition by convex polytopes) can be recovered from only the volumes and centroids
of its cells. We show that this problem has a unique solution and give a constructive way
of computing it using optimal transport theory and convex optimisation. Secondly, we
consider the problem of fitting a Laguerre tessellation to synthetic volume and centroid
data. Given some target volumes and centroids, we seek a Laguerre tessellation such that
the difference between the volumes and centroids of its cells and the target volumes and
centroids is minimised. For an appropriate objective function and suitable data, we prove
that local minimisers of this problem can be constructed using convex optimisation. We
also illustrate our results numerically. There is great interest in the computational mate-
rials science community in fitting Laguerre tessellations to electron backscatter diffraction
(EBSD) and x-ray diffraction images of polycrystalline materials. As an application of
our results we fit a 2D Laguerre tessellation to an EBSD image of steel.

1 Introduction

In this paper we study an inverse problem in computational geometry using tools from optimal
transport theory. Laguerre tessellations, also known as power diagrams, are a generalisation
of Voronoi tessellations [10, 14, 42]. A Laguerre tessellation is a partition of a set into convex
polytopes; see equation (2.1) for the definition. Our goals are the following:

• Goal 1 (inverse problem): Given only the volumes and centroids (barycenters) of the
cells in a Laguerre tessellation, can you recover the tessellation?

• Goal 2 (fitting problem): Given a list of target volumes and centroids, can you find a
Laguerre tessellation such that the volumes and centroids of the Laguerre cells give the
‘best fit’ of the target volumes and centroids?

These goals are stated precisely in Section 3.
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Motivation. There are numerous applications of Laguerre tessellations including cell biol-
ogy [13, 22], domain decomposition [52], fluid mechanics [25], foam modelling [18, 34], image
interpolation [32], mesh generation [33], optics [40], optimal location problems [17], sampling
[37] and the proof of the Nandakumar and Ramana Rao conjecture [12].

Our main motivation comes from materials science, where Laguerre tessellations are often
used to represent the microstructure of polycrystalline materials, such as metals [24, 30, 51, 35,
49, 21, 15, 29, 16]. They are used for both synthetic microstructure generation and for imaging.
For these applications it is important to have efficient algorithms for generating Laguerre
tessellations with prescribed geometrical and statistical properties, such as the volumes of
the cells, their shape and their spatial distribution. In this paper we focus on controlling
the volumes and the centroids of the cells, the latter of which gives some control over the
locations of the cells.

Previous work. The phrase inverting Laguerre tessellations comes from the paper [23],
where the authors studied the problem of recovering the generators of a 2D normal Laguerre
tessellation from the tessellation itself (from the edges and vertices). The generators are not
uniquely determined by the tessellation, but they can be recovered uniquely once you have
fixed the generator (seed and weight) of one interior cell and one coordinate of the seed of
an adjacent cell; see [23, Theorem 3.1]. This non-uniqueness is also discussed in Lemma
2.1 below. In [23] the authors solved the same problem numerically using the cross-entropy
method.

The inverse problem that we study in Goal 1 is a little different; we seek to recover the
tessellation given the volumes and centroids of the cells. In the process we recover one set of
generators from the infinite family of possible generators.

Another inverse problem is to determine whether a partition by convex polytopes is a
Laguerre tessellation. This is addressed in [8] and [31, Theorem 3.2].

Several variations of Goal 2 have been studied in the materials science literature, motivated
by the application of fitting Laguerre diagrams and anisotropic Laguerre diagrams to images
of metals, such as electron backscatter diffraction (EBSD) images or x-ray diffraction (XRD)
images [4, 49, 48, 45, 44, 43, 6]. In Section 5.3 we fit a Laguerre tessellation to a 2D EBSD
image of steel. An EBSD image can be thought of as an assignment map, which associates
each pixel in the image to a ‘cell’ (grain) in the metal.

The main difference between our work and these previous works is the choice of objective
function. In our work the objective function measures the mismatch between the actual
centroids of the Laguerre cells and the target centroids, which are the centroids of the cells in
the EBSD image. The areas of the cells are fitted ‘exactly’, up to any desired tolerance. In the
previous works listed above, the objective function measures the number of misassigned pixels
in the image (the pixels assigned to the wrong Laguerre cells). Moreover, we use different
sets of data for the fitting. The works above use the full EBSD/XRD image (assignment
map), whereas in our work we only use the areas and centroids of the cells in the image, and
we discard the rest of the data. The common feature of our work is the use of optimisation
algorithms.

An entirely different approach is given in [50], where they propose an optimisation-free
method for fitting an (anisotropic) Laguerre tessellation to an EBSD image. Their heuristic
gives good results for little computational effort. In this paper we give a partial explanation
for this, as a by-product of our solution of Goal 2.
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Contributions. Here is a summary of our main contributions:

• Goal 1: We prove that a Laguerre tessellation is uniquely determined by the volumes
and centroids of its cells (Theorem 4.5) and that it can be recovered by solving an
unconstrained convex optimisation problem (Theorem 4.6). In the language of machine
learning, one would say that a Laguerre tessellation can be learnt from the volumes and
centroids of its cells. We generalise these results to anisotropic Laguerre tessellations
(Section 6).

• Goal 2: We prove that, under suitable assumptions on the target volumes and centroids,
fitting a Laguerre tessellation to volume and centroid data is also essentially a convex
optimisation problem, in the sense that local minimisers of the least-squares fitting
error can be found by solving a constrained convex optimisation problem (Theorem
4.11). The assumptions on the target volumes and centroids, however, are implicit and
potentially quite restrictive, as illustrated numerically in Section 5.2

• Justification of a popular heuristic in the literature: A popular heuristic for approx-
imately solving Goal 2 is to take the seeds of the Laguerre diagram to be the target
centroids [50]. In Remark 4.13 we give a partial justification for why this heuristic works
so well.

• Application in computational materials science: As an application of Goal 2, we fit a
Laguerre tessellation to an EBSD image of a single-phase steel, provided to us by Tata
Steel Europe (Section 5.3).

Methods. Our main theoretical tool is optimal transport theory [47], in particular semi-
discrete optimal transport [38, Section 4], which has strong links to computational geometry.
In Section 2.2 we recall how a Laguerre tessellation with cells of prescribed volumes can be
computed efficiently by solving a semi-discrete optimal transport problem; see Theorem 2.2.
The simulations in Section 5 rely on a modern numerical method for optimal transport, the
damped Newton method [28], and a fast Python implementation using the library pysdot [3].

Outline of the paper. Section 2 includes the necessary background material on Laguerre
tessellations and semi-discrete optimal transport theory. The goals of the paper are stated in
Section 3. Section 4 contains our main theoretical results. Section 4.1 introduces the concave
function H, which is important throughout the rest of the paper. Goal 1 is addressed in
Section 4.2 and Goal 2 is addressed in Sections 4.3 and 4.4. Section 5 contains our numerical
results. In particular, we solve Goal 1 numerically in Section 5.1 and Goal 2 numerically in
Section 5.2. In Section 5.3 we give an application of Goal 2 in computational materials science
(fitting a Laguerre tessellation to an EBSD image). Finally, in Section 6 we show how our
results for Goal 1 can be generalised to anisotropic Laguerre diagrams.

2 Background material

2.1 Laguerre tessellations

Let d ∈ N, d ≥ 2. Throughout this paper we take Ω ⊂ Rd to be a non-empty, convex, bounded
set that is equal to the closure of its interior. In the numerical experiments in Section 5 we
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take d = 2 and Ω to be a rectangular domain. A Laguerre tessellation of Ω is a collection of
sets that partitions Ω into convex regions (convex polytopes if Ω is a polytope). The partition
is parameterised by a set of seeds and a corresponding set of weights. Define the set of distinct
seeds by

Dn = {X = (x1, ..., xn) ∈ (Rd)n : xi ̸= xj ∀ i, j ∈ {1, . . . , n}, i ̸= j}.
Given X ∈ Dn and a set of weights w = (w1, . . . , wn), wi ∈ R, the ith Laguerre cell generated
by (X,w) is defined by

Lagi(X,w) = {x ∈ Ω : |x− xi|2 − wi ≤ |x− xj |2 − wj ∀ j ∈ {1, . . . , n}}, (2.1)

where | · | denotes the standard Euclidean norm. The Laguerre tessellation generated by
(X,w) is the collection of cells {Lagi(X,w)}ni=1. To see that the Laguerre cells are convex,
note that they can be written as an intersection of convex sets:

Lagi(X,w) = Ω ∩
⋂
j ̸=i

Hij(X,w), (2.2)

where Hij is the half-space

Hij(X,w) = {x ∈ Rd : |x− xi|2 − wi ≤ |x− xj |2 − wj}.

Furthermore, all the cells are convex polygons (if d = 2) or convex polyhedra (if d = 3),
except possibly for the cells that intersect the boundary of Ω.

Definition (2.1) can be extended to the case where the seeds are non-distinct, however the
corresponding cells do not necessarily form a tessellation. If two seeds coincide their cells are
either equal or one is the empty-set, depending on the values of the corresponding weights.

The parameterisation of the tessellation is non-unique; observe that if we add a constant
to all the weights (wi 7→ wi + c for all i), then the inequalities in (2.1) are still satisfied and
the cells remain unchanged. Moreover, the following lemma asserts that we can uniformly
translate and dilate the seeds without changing the Laguerre tessellation, provided that the
weights are adjusted appropriately.

Lemma 2.1 (See [39], Proposition 6). Let X1 = (x11, . . . , x
1
n) ∈ Dn and w1 = (w1

1, . . . , w
1
n) ∈

Rn be the generators of a Laguerre tessellation. Given a dilation factor λ > 0 and translation
t ∈ Rd, define X2 = (x21, . . . , x

2
n) by x2i = λx1i + t. Let

w2
i = λw1

i + 2λt · x1i + λ(λ− 1)|x1i |2, i ∈ {1, . . . , n}. (2.3)

Then Lagi(X1,w1) = Lagi(X2,w2) for all i ∈ {1, . . . , n}.

Given a (Lebesgue-measurable) set A ⊆ Rd, we define vol(A) to be its d-dimensional
volume (area if d = 2, volume if d = 3) and σ(A) to be its centroid:

vol(A) =

∫
A
1 dx, σ(A) =

1

vol(A)

∫
A
x dx.

The latter is only defined for A such that vol(A) is non-zero. Given (X,w) ∈ Dn × Rn, we
denote the volume and centroid of the Laguerre cell Lagi(X,w) by

mi(X,w) = vol(Lagi(X,w)), ξi(X,w) = σ(Lagi(X,w)). (2.4)
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Since the Laguerre cells are disjoint (up to sets of measure zero), we have

vol(Ω) =

∫
Ω
1 dx =

n∑
i=1

∫
Lagi(X,w)

1 dx =
n∑

i=1

mi(X,w), (2.5)

vol(Ω) · σ(Ω) =
∫
Ω
x dx =

n∑
i=1

∫
Lagi(X,w)

x dx =
n∑

i=1

mi(X,w)ξi(X,w). (2.6)

There is a one-to-one correspondence between Laguerre tessellations and solutions of semi-
discrete optimal transport problems, which is useful for generating Laguerre tessellations with
cells of prescribed volumes, as described in the next section.

2.2 Link to semi-discrete optimal transport

Define R+ = (0,∞) and

Vn =

{
v = (v1, . . . , vn) ∈ Rn

+ :

n∑
i=1

vi = vol(Ω)

}
.

Given X = (x1, . . . , xn) ∈ (Rd)n and v ∈ Vn , we define the measure ν(X,v) ∈ M+(Rd) by

ν(X,v) =
n∑

i=1

viδxi ,

where δxi denotes the Dirac measure supported at {xi}. This is well defined even if the seeds
xi are not distinct.

Let Ld
Ω be the d-dimensional Lebesgue measure restricted to Ω. Any map T : Ω →

{x1, . . . , xn} satisfying vol(T−1({xi})) = vi for all i is called an admissible transport map. We
denote the set of admissible transport maps by A(X,v):

A(X,v) = {T : Ω → {x1, . . . , xn} : vol(T−1({xi})) = vi ∀ i ∈ {1, . . . , n}}. (2.7)

For any T ∈ A(X,v) we define the transport cost M(T ) by

M(T ) :=

∫
Ω
|x− T (x)|2 dx =

n∑
i=1

∫
T−1({xi})

|x− xi|2 dx.

The optimal cost of transporting Ld
Ω to ν(X,v) is

T (X,v) = inf
T∈A(X,v)

M(T ). (2.8)

Any minimiser T ∗ in (2.8) is called an optimal transport map, and

W2(Ld
Ω, ν(X,v)) := T (X,v)1/2 (2.9)

is the Wasserstein distance between the measures Ld
Ω and ν(X,w). See for example [47]

It is well-known, see for instance [38], that there exists an optimal transport map T ∗, it is
unique (almost everywhere), it is the gradient of a convex function, and it has the following
form: There exists w = (w1, . . . , wn) ∈ Rn such that

T ∗(x) = xi if x ∈ int Lagi(X,w), (2.10)
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where int denotes the interior. This defines T ∗ uniquely almost everywhere because the
boundaries of the cells form a set of measure zero. In particular, (T ∗)−1({xi}) is the Laguerre
cell Lagi(X,w) (up to a set of measure zero) with vol(Lagi(X,w)) = vi for all i.

The following theorem gives us a method to find the weights w and consequently the
optimal map (2.10). It goes back at least as far as [9] and is well-known in the optimal
transport community.

Theorem 2.2 (See [38], Theorem 40 & Proposition 37). Given X ∈ Dn and v ∈ Vn, define
the dual function K : Rn → R by

K(w) =

∫
Ω
min
i
(|x− xi|2 − wi) dx+

n∑
i=1

wivi =

n∑
i=1

∫
Lagi(X,w)

(|x− xi|2 − wi) dx+

n∑
i=1

wivi.

Then K ∈ C1(Rn), it is concave, and its gradient is given by

∂K
∂wi

(w) = vi −mi(X,w) ∀ i ∈ {1, . . . , n}.

Moreover
min

T∈A(X,v)
M(T ) = max

w∈Rn
K(w).

In particular, the maximum of K is achieved. Let w∗ ∈ Rn be a maximiser of K. Then
Tw∗ : Ω → {x1, . . . , xn} defined almost everywhere by

Tw∗(x) := xi if x ∈ int Lagi(X,w∗)

is the optimal transport map for (2.8). Furthermore,

vol(Lagi(X,w∗)) = vi ∀ i ∈ {1, . . . , n}.

In summary, w∗ maximises K if and only if the Laguerre cells Lagi(X,w∗) have the desired
volumes vi. The optimal weight vector, w∗, is not unique since we can add a constant vector
to w∗ and the cells are unchanged. However, if we fix a value for one of the weights we have
uniqueness. Usually we chose wn = 0 since this is easy to implement computationally. From
now on, we let w∗(X;v) denote the unique optimal weight vector with w∗

n(X;v) = 0. By
definition (see (2.4)),

mi(X,w∗(X;v)) = vi ∀ i ∈ {1, . . . , n}.
We define Li(X;v) to be the ith Laguerre cell in the tessellation with seeds X and cell volumes
v, and ci(X;v) to be its centroid:

Li(X;v) = Lagi(X,w∗(X;v)), (2.11)

ci(X;v) = ξi(X;w∗(X;v)). (2.12)

In this notation, by Theorem 2.2,

W 2
2 (Ld

Ω, ν(X,v)) =

n∑
i=1

∫
Li(X;v)

|x− xi|2 dx. (2.13)

The state-of-the-art method for maximising K is the damped-Newton method, which can
be found in [28] and [38, Algorithm 4]. This is implemented for example in the software
libraries geogram [1], MATLAB-SDOT [2] and pysdot [3]. We use pysdot for the simulations
in Section 5.
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3 Statement of the problems

Our first goal is to invert a Laguerre tessellation in the following sense. We wish to recover
a Laguerre tessellation only from the knowledge of the volumes and centroids of its cells. To
be precise, we consider the following inverse problem:

Goal 1 (Inverting a Laguerre tessellation). Let X ∈ Dn and w ∈ Rn. For i ∈ {1, . . . , n},
define vi = mi(X,w) and bi = ξi(X,w) to be the volume and centroid of the Laguerre cell
Lagi(X,w). The goal is to recover the Laguerre cells Lagi(X,w) given only v = (v1, . . . , vn)
and B = (b1, . . . , bn).

We prove that this problem has a unique solution in Theorem 4.5, in the sense that the
Laguerre cells Lagi(X,w) are unique. The generators (X,w) are not unique because (by
Lemma 2.1) the seeds can be uniformly translated and dilated and a constant can be added
to the weights without changing the Laguerre cells. We also give a constructive method for
recovering Lagi(X,w) from (v,B) by solving an unconstrained convex optimisation problem;
see Theorem 4.6. This is illustrated numerically in Section 5.1. We consider the generalisation
of inverting anisotropic Laguerre tessellations in Section 6.

Our second goal is, given some target volumes and centroids (not coming from a Laguerre
tessellation), find a Laguerre tessellation that best fits this data. To state the problem pre-
cisely we need some more notation. Let Dn denote the set of target volumes and centroids
(or barycentres):

Dn =

{
(v,B) = ((v1, . . . , vn), (b1, . . . , bn)) ∈ Vn × Ωn :

n∑
i=1

vi = vol(Ω),
n∑

i=1

vibi = vol(Ω)σ(Ω)

}
.

The constraints on (v,B) stem from (2.5) and (2.6). They are necessary for there to exist
a Laguerre tessellation with cells with volumes vi and centroids bi. We refer to the elements
(v,B) ∈ Dn as compatible data for the domain Ω.

Given a domain Ω and a compatible set of target volumes and centroids (v,B) ∈ Dn, the
goal is to find a Laguerre tessellation with cells of volume vi and minimal centroid error. To
be precise, we consider the following data-fitting problem:

Goal 2 (Fitting a Laguerre tessellation). Let (v,B) ∈ Dn. The goal is to solve the nonlinear
least squares problem

inf
X∈Dn

f(X; (v,B)) (NLS)

where f : Dn → R is defined by

f(X; (v,B)) =
n∑

i=1

v2i |ci(X;v)− bi|2. (3.1)

Note that the objective function can be expressed in terms of first moments of the Laguerre
cells:

f(X; (v,B)) =

n∑
i=1

∣∣∣∣∣
∫
Li(X;v)

x dx− vibi

∣∣∣∣∣
2

.
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We choose to fit the zeroth moments (the volumes) exactly and to approximately fit the first
moments. In other words, we choose the weights w so that the Laguerre cells have the desired
volumes, and we choose the seeds X to minimise the centroid error. Alternatively, instead of
fitting the volumes exactly, one could minimise a weighted sum of the volume and centroid
error over (X,w). One advantage of our approach is that, for some data (v,B), (NLS) turns
out to be essentially equivalent to a convex optimisation problem, as we will see in Section 4.4.
One disadvantage of our approach is that the set Dn is not compact and so the optimisation
problem (NLS) may not have a solution; the infimum may not be attained. For some data
(v,B), infimising sequences (Xk) in Dn converge to a point in Rnd \ Dn with non-distinct
seeds. We illustrate this point numerically in Section 5.2. We give a practical example of
fitting a Laguerre tessellation to data coming from an EBSD image of steel in Section 5.3.

We also give necessary (but not sufficient) conditions on the data (v,B) for there to exist
X ∈ Dn such that f(X; (v,B)) = 0, that is, for there to exist a Laguerre diagram with cells
of volumes v and centroids B; see Section 4.3.

4 Main results

4.1 The helper function H

The following function will be very important in our analysis. Given (v,B) ∈ Dn, define
H : Rnd → R by

H(X) = H(X; (v,B)) = F (X;v)− 1

2

n∑
i=1

vi|xi|2 +
n∑

i=1

vixi · bi −
1

2

∫
Ω
|x|2 dx, (4.1)

where F : Rnd → R is defined by

F (X) = F (X;v) =
1

2
W 2

2 (Ld
Ω, ν(X,v)), (4.2)

and W2 was defined in (2.9). First we recall a fact about F .

Theorem 4.1 (Derivative of W 2
2 ; cf. [37], Proposition 1). The function F : Rnd → R is

semi-concave in the sense that the function X 7→ F (X)− 1
2

∑n
i=1 vi|xi|2 is concave. Moreover,

F is continuously differentiable on the set of distinct seeds, F ∈ C1(Dn), and

∂F

∂xi
(X) = vi(xi − ci(X;v)) ∀ i ∈ {1, . . . , n}.

The previous result is crucial in proving the following.

Theorem 4.2 (Properties of H). Let (v,B) ∈ Dn and H : Rnd → R be the function defined
in equation (4.1).

(i) If X ∈ Dn, then

H(X) =

n∑
i=1

vi(bi − ci(X;v)) · xi. (4.3)

In particular, if X ∈ Dn generates a Laguerre tessellation with cells of volume vi and
centroids bi, then H(X) = 0.
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(ii) Let x1 ∈ Rd and X = (x1, . . . , x1) ∈ Rnd. Then H(X) = 0.

(iii) H is concave.

(iv) H is continuously differentiable on the set of distinct seeds, H ∈ C1(Dn), and for all
X ∈ Dn the gradient of H is given by

∂H

∂xi
(X) = vi(bi − ci(X;v)) ∀ i ∈ {1, . . . , n}.

In particular, ∇H(X) = 0 if and only if X generates a Laguerre tessellation with cells
of volume vi and centroids bi. Moreover, the objective function f defined in (3.1) is
related to H by

f(X) = |∇H(X)|2. (4.4)

(v) Let X ∈ Rnd, λ ≥ 0, t ∈ Rd, T = (t, . . . , t) ∈ Rnd. Then

H(λX+T) = λH(X).

In particular, H is 1-positively homogeneous and, for all X ∈ Dn,

∇H(λX+T) = ∇H(X). (4.5)

Moreover, for all λ ∈ R and X ∈ Rnd,

H(λX) ≤ λH(X)

with equality if λ ≥ 0.

(vi) H is superlinear, that is, for all X,Y ∈ Rnd,

H(X+Y) ≥ H(X) +H(Y).

(vii) If there exists X∗ ∈ Dn such that ci(X
∗;v) = bi for all i ∈ {1, . . . , n}, then

max
X∈Rnd

H(X) = H(X∗) = 0.

If not, then either
sup

X∈Rnd

H(X) = +∞

or
max
X∈Rnd

H(X) = 0 = H((x1, . . . , x1))

for any x1 ∈ Rd.

(viii) Let K ⊂ Rnd be compact. If there does not exist a Laguerre tessellation with cells of
volume vi and centroids bi, then either the maximum of H over K is achieved on ∂K
or it is achieved on the set of non-distinct seeds K \ Dn.
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Proof.

(i) The first claim can be proved via a simple algebraic manipulation as follows. By defi-
nition of H and equation (2.13),

H(X) =
1

2

n∑
i=1

∫
Li(X;v)

|x− xi|2 dx− 1

2

n∑
i=1

vi|xi|2 +
n∑

i=1

vixi · bi −
1

2

∫
Ω
|x|2 dx

=

n∑
i=1

vi(bi − ci(X;v)) · xi.

(ii) Observe that if X = (x1, . . . , x1) for x1 ∈ Rd, then

H(X) =
1

2

∫
Ω
|x− x1|2 dx− 1

2

n∑
i=1

vi|x1|2 +
n∑

i=1

vix1 · bi −
1

2

∫
Ω
|x|2 dx

= x1 ·
(
−vol(Ω)σ(Ω) +

n∑
i=1

vibi

)
= 0,

where the last two equalities follow from the assumption that (v,B) ∈ Dn. Alternatively,
one can deduce that H(X) = 0 by letting λ → 0+ in part (v).

(iii) The proof follows the same argument found in [36, Propostion 21]. It suffices to show
that the map

X 7→ 2F (X;v)−
n∑

i=1

vi|xi|2 = min
T∈A(X,v)

∫
Ω
|x− T (x)|2 dx−

n∑
i=1

vi|xi|2

is concave since the remaining terms of H are affine in X. Let P(Ω,v) denote the set
of partitions of Ω with cells of volume v:

P(Ω,v) =

{
(Pi)

n
i=1 : Pi ∈ B(Ω), vol(Pi) = vi,

n⋃
i=1

Pi = Ω, vol(Pi ∩ Pj) = 0 if i ̸= j

}
,

where B(Ω) is the Borel sigma-algebra of Ω. Then equivalently,

2F (X;v)−
n∑

i=1

vi|xi|2 = inf
(Pi)ni=1∈P(Ω,v)

n∑
i=1

∫
Pi

|x− xi|2 dx−
n∑

i=1

vi|xi|2 (4.6)

since any (Pi)
n
i=1 ∈ P(Ω,v) induces an admissible map given by T (x) = xi if x ∈ Pi and

conversely any admissible map gives rise to a partition. Simplifying (4.6) we find that

2F (X,v)−
n∑

i=1

vi|xi|2 = inf
(P )ni=1∈P(X,v)

n∑
i=1

∫
Pi

(|x|2 − 2x · xi) dx,

which is the pointwise infimum of a family of affine functions of X, and hence is concave.
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(iv) Theorem 4.1 implies that H is continuously differentiable in Dn and immediately gives
the expression for its gradient.

(v) Let X, λ, t and T be defined as in the statement of the theorem. Then, for all i ∈
{1, . . . , n}, Li(X;v) = Li(λX + T;v) by Lemma 2.1 and the uniqueness of optimal
transport maps. Consequently, if X ∈ Dn and λ > 0, then

H(λX+T)
(4.3)
=

n∑
i=1

vi(bi − ci(λX+T;v)) · (λxi + t) =
n∑

i=1

vi(bi − ci(X;v)) · (λxi + t).

Recall that (v,B) ∈ Dn implies that
∑n

i=1 vibi = vol(Ω)σ(Ω) =
∑n

i=1 vici(X;v). There-
fore t ·∑n

i=1 vi(bi − ci(X;v)) = 0 and so

H(λX+T) =

n∑
i=1

vi(bi − ci(X;v)) · λxi = λ

n∑
i=1

vi(bi − ci(X;v)) · xi
(4.3)
= λH(X),

which establishes the result for X ∈ Dn. The general result for X ∈ Rnd and λ = 0
can be established from the continuity of H. The expression ∇H(X) = ∇H(λX +T)
follows immediately from the chain rule. Finally, to prove that H(λX) ≤ λH(X) for all
λ ∈ R, it suffices to show that H(−X) ≤ −H(X) since then, for all λ < 0,

H(λX) = H((−λ)(−X)) = −λH(−X) ≤ λH(X).

Since H(0) = 0 (by (ii)) and H is concave we have,

0 = H(0) = H

(
1

2
X+

1

2
(−X)

)
≥ 1

2
H(X) +

1

2
H(−X) ⇐⇒ H(−X) ≤ −H(X),

as required.

(vi) Let X,Y ∈ Rnd. Then by positive homogeneity and concavity,

1

2
H(X+Y) = H

(
1

2
X+

1

2
Y

)
≥ 1

2
(H(X) +H(Y)).

Multiplying both sides by 2 gives the desired result.

(vii) If there exists X∗ ∈ Dn such that ci(X
∗;v) = bi, then ∇H(X∗) = 0 by (iv). Since H is

concave, it follows that X∗ is a global maximiser of H. Furthermore, H(X∗) = 0 by (i).
If there does not exist such an X∗ ∈ Dn, then there are two cases. Either there exists
X ∈ Rnd such that H(X) > 0, in which case limλ→∞H(λX) = +∞. Or, if H(X) ≤ 0
for all X ∈ Rnd, then the maximum value of H is zero, which is achieved when all of
the seeds are in the same place by (ii).

(viii) If there does not existX∗ ∈ Dn such that ci(X
∗;v) = bi, then∇H is non-zero everywhere

in Dn. Therefore the maximum value ofH on the compact setK is achieved either on the
boundary of K or otherwise at a point in the interior of K where H is not differentiable,
namely at a point in K \ Dn.

11



Remark 4.3 (Consequences of Theorem 4.2 for Goal 2). Minimising the least squares error
f is equivalent to minimising |∇H| by equation (4.4). Assume that infDn f exists. Then,
due to the invariance of ∇H under uniform translations and dilations of the seeds (equation
(4.5)), we can restrict the minimisation problem (NLS) to a compact subset of Dn:

min
X∈Dn

f(X) = min
X∈K∩Dn

f(X) = min
X∈K∩Dn

|∇H(X)|2

for any compact set K ⊂ Rnd containing a neighbourhood of 0, or more generally a neigh-
bourhood of a point of the form (t, . . . , t) ∈ Rnd, t ∈ Rd. For a suitable choice of compact
convex set K, it turns out that maximising H on K (which is a convex optimisation problem)
is equivalent to locally minimising f = |∇H|2 on K ∩ Dn; see Section 4.4.

4.2 Goal 1: Uniqueness and construction of the solution

Definition 4.4 (Compatible diagrams). Given (v,B) ∈ Dn, we say a Laguerre diagram
{Li(X,v)}ni=1 is compatible with the data (v,B) if ci(X;v) = bi for all i ∈ {1, . . . , n}. In other
words, the diagram is compatible with the data (v,B) if the Laguerre cells have volumes vi
and centroids bi.

The next result ensures us that if there exists a compatible diagram, then it is unique.
Therefore Goal 1 has a unique solution (in the sense that the Laguerre cells are unique; the
generators (X,w) are not unique by Lemma 2.1).

Theorem 4.5 (Uniqueness of compatible diagrams). Let (v,B) ∈ Dn. Suppose X,Y ∈ Dn

are such that {Li(X;v)}ni=1 and {Li(Y;v)}ni=1 are compatible with the data (v,B), i.e,

ci(X;v) = ci(Y;v) = bi ∀ i ∈ {1, . . . , n}.

Then
Li(X;v) = Li(Y;v) ∀ i ∈ {1, . . . , n}.

In other words, a Laguerre tessellation is uniquely determined by the volumes and centroids
of its cells.

Proof. Let T ∗ : Ω → X denote the optimal transport map between Ld
Ω and ν(X,v), i.e.,

T (x) = xi if x ∈ intLi(X;v). Define a map S : Ω → X by

S(x) = xi if x ∈ intLi(Y;v).

Since Ld
Ω(S

−1({xi})) = Ld
Ω(Li(Y;v)) = vi, S is admissible for the transport problem between

12



Ld
Ω and ν(X,v). Moreover,

M(S) =

∫
Ω
|x− S(x)|2 dx

=

∫
Ω
|x|2 dx+

n∑
i=1

∫
Li(Y;v)

(|xi|2 − 2x · xi) dx

=

∫
Ω
|x|2 dx+

n∑
i=1

(vi|xi|2 − 2vici(Y;v) · xi)

=

∫
Ω
|x|2 dx+

n∑
i=1

(vi|xi|2 − 2vici(X;v) · xi)

=

∫
Ω
|x|2 dx+

n∑
i=1

∫
Li(X;v)

(|xi|2 − 2x · xi) dx

=

∫
Ω
|x− T (x)|2 dx

= M(T ∗).

Therefore S has the same transport cost as the optimal map T ∗. Consequently, since the opti-
mal transport map is unique (almost everywhere), Li(X;v) = Li(Y;v) for all i ∈ {1, . . . , n},
as required.

An immediate consequence of Theorems 4.2 and 4.5 is the following:

Theorem 4.6 (Goal 1 is a convex optimisation problem). Let X ∈ Dn and w ∈ Rn. For
i ∈ {1, . . . , n}, define vi = mi(X,w) and bi = ξi(X,w) to be the volume and centroid of
the Laguerre cell Lagi(X,w). Let v = (v1, . . . , vn) and B = (b1, . . . , bn). Then the concave
function H( · ; (v,B)) achieves its maximum over Rnd in Dn. Let Y ∈ Dn be any maximiser.
Then

Li(Y;v) = Li(X;v) ∀ i ∈ {1, . . . , n}.
In other words, we can recover a Laguerre tessellation from the volumes and centroids of its
cells by solving a convex optimisation problem (maximising the concave function H in Rnd).

Proof. Note that Lagi(X,w) = Li(X;v) and ξi(X,w) = ci(X;v). The function H( · ; (v,B))
achieves its maximum over Rnd at X ∈ Dn because H is concave and ∇H(X; (v,B)) = 0
by Theorem 4.2 (iv). If Y ∈ Dn is any maximiser, then ∇H(Y; (v,B)) = 0 and hence
ci(Y;v) = bi = ci(X;v). We conclude from Theorem 4.5 that Li(Y;v) = Li(X;v) for all
i ∈ {1, . . . , n}, as required.

4.3 Goal 2: Existence of compatible diagrams

Now we turn our attention to Goal 2. We start with a special case; we seek necessary
conditions on the data (v,B) for the existence of a compatible diagram, namely, for the
minimum value of the fitting error (3.1) to be zero. In this case the compatible diagram can
be found by maximising the concave function H, as described in the previous section. In
Section 4.4 we will study the general case of Goal 2, where the minimum of the fitting error
(3.1) is greater than zero.

13



Generically, for ‘typical’ data (v,B) ∈ Dn there does not exist a compatible diagram with
cells with volumes vi and centroids bi, as the following example demonstrates.

Example 4.7 (Non-existence of a compatible diagram). Take d = 1, Ω = [0, 1], n = 2, v =
(0.5, 0.5), X = (x1, x2) ∈ R2 with x1 < x2. Then L1(X;v) = [0, 0.5] and L2(X;v) = [0.5, 1].
(Note that this is true whatever the positions of x1 and x2, as long as x1 < x2.) If the target
centroids are B = (0.25, 0.75), then the diagram {Li(X;v)}2i=1 is compatible with (v,B) but,
for any other choice of B, there does not exist a compatible diagram.

Lemma 4.8 (Necessary condition for existence: minimum distance between centroids). Let
(v,B) ∈ Dn and suppose that there exists a Laguerre tessellation {Li(X;v)}ni=1 of Ω that is
compatible with the data (v,B). Then, for all i ∈ {1, . . . , n},

dist(ci(X;v), ∂Ω) = dist(bi, ∂Ω) ≥ ri, (4.7)

where

ri =
vi

4αd−1

(
diam(Ω)

2

)1−d

and αd−1 is the volume of the unit ball in Rd−1. Moreover, for all i, j ∈ {1, . . . , n}, i ̸= j,

|ci(X;v)− cj(X;v)| = |bi − bj | ≥ ri + rj . (4.8)

Proof. The idea for the proof comes from [37, Appendix A]. To prove (4.7) and (4.8), it
suffices to show that

dist(bi, ∂Li(X;v)) ≥ ri

for all i ∈ {1, ..., n}. Let ed be the d-th standard basis vector of Rd. Without loss of generality
(by rotating and translating Ω if necessary), we can assume that

Li(X;v) ⊆ {x ∈ Rd : x · ed ≥ 0}

and
dist(bi, ∂Li(X;v)) = bi · ed.

Let Π(Ω) denote the projection of Ω onto the set {x ∈ Rd : x · ed = 0}. There exists s > 0
such that

vi
2

= Ld(Li(X;v) ∩ {x ∈ Rd : x · ed ≤ s})

≤ sHd−1(Π(Ω))

≤ sαd−1

(
diam(Ω)

2

)d−1

by the isodiametric inequality [26, Theorem 8.8] and the fact that diam(Π(Ω)) ≤ diam(Ω).
By definition of ri, we have s

2 ≥ ri. Define

A = Li(X;v) ∩ {x ∈ Rd : x · ed ≥ s}.

Note that Ld(A) = vi/2. Then

bi · ed =
1

vi

∫
Li

x · ed dx ≥ 1

vi

∫
A
x · ed dx ≥ 1

vi

∫
A
s dx =

s

2
≥ ri,

as desired.
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If the domain Ω is a cuboid, then one can improve the bound (4.7) as follows.

Lemma 4.9 (Necessary condition for existence: distance of centroids from boundary). Let
Ω = [0, l1] × · · · × [0, ld] and let bji denote the jth coordinate of the ith target centroid. Let
(v,B) ∈ Dn and suppose that there exists a Laguerre tessellation {Li(X;v)}ni=1 of Ω that is
compatible with the data (v,B). Then

vilj
2vol(Ω)

≤ bji ≤ lj −
vilj

2vol(Ω)
.

In particular,

dist(ci(X;v), ∂Ω) = dist(bi, ∂Ω) ≥ min
j

vilj
2vol(Ω)

.

Proof. The inequalities are obtained by computing H(λeji ) for suitable λ ∈ R \ {0}, where
eji ∈ Rnd denotes the (d(i − 1) + j)-th standard basis vector of Rnd, for i ∈ {1, ..., n} and

j ∈ {1, . . . , d}. If there exists a compatible diagram, then H(λeji ) ≤ 0 by Theorem 4.2(vii).

With this choice of seeds, X = λeji , there are only two distinct seeds (all the seeds are located

at the origin except for the i-th seed, which has coordinates xji = 1 and xki = 0 for k ̸= j)
and hence H(X) is easy to evaluate.

Assume without loss of generality that i = 1 and j = 1. In order to evaluate H(λe11),
we need to compute W 2

2 (Ld
Ω, ν(X,v)), where ν(X,v)) = v1δx1 + (vol(Ω) − v1)δ0 and x1 =

(λ, 0, . . . , 0) ∈ Rd. The optimal transport map T ∗ partitions Ω into two cells, one of volume
v1 and the other of volume vol(Ω)− v1. The boundary between the two cells consists of the
points x ∈ Ω satisfying the equation

|x− x1|2 − w ≤ |x− 0|2 ⇐⇒ x · (1, 0, . . . , 0) = λ2 − w

2λ

for some w ∈ R. Therefore the boundary is contained in the plane with normal vector
(1, 0, . . . , 0) and distance δ := (λ2−w)/(2λ) from the origin. The value of δ is determined by
the volume constraints and the sign of λ. If λ > 0, then the Laguerre cell corresponding to
the seed x1 is L1 := [δ, l1]× [0, l2]× · · · × [0, ld], which has volume v1. Therefore

(l1 − δ)l2 · · · ld = v1 ⇐⇒ δ = l1 −
v1

l2 · · · ld
.

Note that L1 has centroid

c1 :=

(
δ +

l1 − δ

2
,
l2
2
, . . . ,

ld
2

)
=

(
l1 −

v1
2l2 · · · ld

,
l2
2
, . . . ,

ld
2

)
.

Let L0 = [0, δ]× [0, l2]× · · · × [0, ld] be the Laguerre cell corresponding to the seed 0. Then

H(λeji ) =
1

2

∫
L1

|x− x1|2 dx+
1

2

∫
L0

|x− 0|2 dx− 1

2
v1|x1|2 + v1x1 · b1 −

1

2

∫
Ω
|x|2 dx

= v1x1 · (b1 − c1)

= v1λ

(
b11 −

(
l1 −

v1
2l2 · · · ld

))
.
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Since λ > 0,

H(λe11) ≤ 0 ⇐⇒ b11 ≤ l1 −
v1

2l2 · · · ld
= l1 −

v1l1
2vol(Ω)

,

as required. The other inequality, b11 ≥ v1l1/(2vol(Ω)), can be derived analogously by taking
λ < 0.

Lemma 4.10 (Necessary condition for existence: cyclical monotonicity). Let (v,B) ∈ Dn

and suppose that there exists a Laguerre tessellation {Li(X;v)}ni=1 of Ω that is compatible
with the data (v,B). Then the set {(bi, xi)}ni=1 is cyclically monotone, which means that for
every index set I ⊆ {1, . . . , n} and every permutation σ of I,∑

i∈I
bi · xi ≥

∑
i∈I

bi · xσ(i).

In particular, by taking I = {i, j}, it follows that

(bi − bj) · (xi − xj) ≥ 0

for all i, j ∈ {1, . . . , n}, i ̸= j.

Proof. Let T ∗ : Ω → X denote the optimal transport map between Ld
Ω and ν(X,v). A

standard result in optimal transport theory states that T ∗ = ∇u for some convex function
u : Ω → R [47, Section 1.3.1]. Since bi = ci(X;v) ∈ Li(X;v), then T ∗(bi) = xi. Therefore the
set {(bi, xi)}ni=1 = {(bi, T ∗(bi))}ni=1 = {(bi,∇u(bi))}ni=1 is contained in the graph of the subd-
ifferential of u. It follows that {(bi, xi)}ni=1 is cyclically monotone by Rockafellar’s Theorem
[46, p. 238, Theorem 24.8].

As far as we are aware, it is an open problem to find sufficient conditions for the existence
of compatible diagrams, that is, to find conditions on (v,B) ∈ Dn that guarantee that there
exists a Laguerre diagram that is compatible with (v,B).

4.4 Goal 2: Rewriting (NLS) as a convex optimisation problem

In this section we consider the general case of Goal 2. Our main theorem is the following.

Theorem 4.11 (Local minimisers of (NLS) can be found by convex optimisation). Let
(v,B) ∈ Dn be such that there does not exists a Laguerre diagram compatible with (v,B).
Fix t ∈ Rd, T = (t, . . . , t) ∈ Rnd and R > 0. Define B ⊂ Rnd to be the compact set
B = {X ∈ Rnd : |X−T| ≤ R}. Let X∗ ∈ B be a global maximiser of the concave function H
on B. Assume that X∗ ∈ Dn, H is 3-times continuously differentiable in a neighbourhood of
X∗, and dim(ker(D2H(X∗))) = 1+d. Then X∗ is a local minimiser of f on Dn. In particular,
we can find local minimisers of the least squares error f by solving the convex optimisation
problem maxB H.

Remark 4.12 (Assumptions of Theorem 4.11). The assumptions of Theorem 4.11 are implicit
assumptions on the data (v,B). We discuss each one in turn.

We only consider the case where there does not exists a Laguerre diagram compatible
with (v,B) because the other case has already been covered in Theorem 4.6.

The assumption that X∗ ∈ Dn, namely that the seeds are distinct, is restrictive and
does not hold for all data (v,B) ∈ Dn; see Section 5.2.2 for a numerical illustration. This
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is explained in part in Remark 4.13; the first term of H (the optimal transport term) is
maximised when all the seeds are in the same place. If the data (v,B) is such that the first
term of H is the dominant term, then we expect some of the seeds in X∗ to coincide.

It can be shown using results from [20, 28] that H is 2-times continuously differentiable
in Dn. Expressions for the derivatives of the volumes and centroids of Laguerre cells with
respect to the generators of the Laguerre tessellation can be read off from, e.g., [11, 17, 20, 28].
The assumption that H is 3-times continuously differentiable in a neighbourhood of X∗ is
‘generically’ true but may fail to hold if the diagram {Li(X

∗;v)}ni=1 is ‘degenerate’ in the
sense that there exists adjacent cells that intersect in a set of Hd−1-measure zero (e.g., for
d = 2, if four cells meet at a point, such as in a checkerboard configuration). In this case the
combinatorics of some of the Laguerre cells (the number of faces, edges, vertices, etc.) may
change in a neighbourhood of X∗, and H may fail to be 3-times continuously differentiable.

We believe that the assumption dim(ker(D2H(X∗))) = 1 + d is also ‘generically’ true,
even if it is not always true. Due to the translation- and dilation-invariance of ∇H, we
have dim(ker(D2H(X))) ≥ 1 + d for all X ∈ Dn. To see this, differentiate the expres-
sion ∇H(λX) = ∇H(X) with respect to λ and set λ = 1 to obtain D2H(X)X = 0.
Therefore X ∈ ker(D2H(X)). Similarly, let ei ∈ Rd denote the i-th standard basis vec-
tor. Then differentiating ∇H(X + s(ei, . . . , ei)) = ∇H(X) with respect to s and setting
s = 0 gives (ei, . . . , ei) ∈ ker(D2H(X)) for all i ∈ {1, . . . , d}. Numerical evidence suggests
that typically dim(ker(D2H(X))) = 1 + d, but it is possible to construct examples where
dim(ker(D2H(X))) > 1+d. For example, if a Laguerre cell Li on the boundary of Ω only has
one neighbour Lj (e.g., if Li is a triangular Laguerre cell in the corner of a square domain),
then the seed xi and the weight wi can be adjusted appropriately (xi 7→ xi+s(xi−xj), s > 0),
while keeping the other seeds and weights fixed, without changing the Laguerre diagram, and
hence without changing ∇H. This corresponds to another vector in the nullspace of D2H.

Proof of Theorem 4.11. LetX∗ = (x∗1, . . . , x
∗
n) ∈ B∩Dn be the global maximiser ofH given in

the statement of Theorem 4.11. Note that X∗ satisfies |X∗−T| = R because of the following.
If |X∗ − T| < R, then ∇H(X∗) = 0 by the optimality of X∗ in B. But this contradicts the
assumption that there does not exists a Laguerre diagram compatible with (v,B).

The proof is split into three parts. Firstly, we write down the KKT conditions (first-
order optimality conditions) for the optimisation problem maxB H, which are satisfied by
X∗. Secondly, we use these conditions to show that ∇f(X∗) = 0. Finally, we show that X∗

is a local minimiser of f by checking the second-order, sufficient optimality conditions.
Let cball : Rnd → R be the constraint function given by cball(X) = R2 − |X −T|2. Then

B = {X ∈ Rnd : cball(X) ≥ 0}. By assumption, X∗ is a minimiser of −H on B. The
constraint cball ≥ 0 is active at X∗, which means that cball(X

∗) = 0. Observe that

∇cball(X
∗) = −2(X∗ −T) ̸= 0

because X∗ ∈ Dn. Therefore X∗ satisfies the linear independence constraint qualification
(LICQ) (see [41, Definition 12.4]) and so, by the Karush-Kuhn-Tucker Theorem [41, Theorem
12.1], there exists a Lagrange multiplier λ∗ ≥ 0 such that

−∇H(X∗) = λ∗∇cball(X
∗) = −2λ∗(X∗ −T). (4.9)

Next we show that X∗ is a critical point of f . By equation (4.9),

∇f(X∗) = 2D2H(X∗)∇H(X∗) = 4λ∗D2H(X∗)(X∗ −T) = 0
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since X∗ and T belong to ker(D2H(X∗)); see Remark 4.12.
Finally, we show that X∗ is a local minimiser of f . To compute D2f we will use the

Einstein summation convention (sum over repeated indices), with subscript Roman indices
corresponding to seeds and superscript Greek indices corresponding to components in Rd. For
example, xαi denotes component α ∈ {1, . . . , d} of seed i ∈ {1, . . . , n}. For all i, j ∈ {1, . . . , n}
and α, β ∈ {1, . . . , d},

∂f

∂xαi
= 2

∂2H

∂xαi ∂x
γ
k

∂H

∂xγk
,

∂2f

∂xαi ∂x
β
j

= 2
∂3H

∂xβj ∂x
α
i ∂x

γ
k

∂H

∂xγk
+ 2

∂2H

∂xαi ∂x
γ
k

∂2H

∂xβj ∂x
γ
k

, (4.10)

where k is summed over {1, . . . , n} and γ is summed over {1, . . . , d}. Recall that for all
X ∈ Dn, D

2H(X)X = 0, i.e.,
∂2H

∂xαi ∂x
γ
k

xγk = 0.

Differentiating with respect to xβj gives

∂3H

∂xβj ∂x
α
i ∂x

γ
k

xγk +
∂2H

∂xαi ∂x
β
j

= 0. (4.11)

Evaluating (4.10) at X∗ and using (4.9) gives

∂2f

∂xαi ∂x
β
j

(X∗) = 4λ∗ ∂3H

∂xβj ∂x
α
i ∂x

γ
k

(X∗) ((X∗)γk − (T)γk) + 2
∂2H

∂xαi ∂x
γ
k

(X∗)
∂2H

∂xβj ∂x
γ
k

(X∗)

= −4λ∗ ∂2H

∂xαi ∂x
β
j

(X∗) + 2
∂2H

∂xαi ∂x
γ
k

(X∗)
∂2H

∂xβj ∂x
γ
k

(X∗),

where in the second line we used (4.11) and the fact that T ∈ ker(D2H(X∗)). Therefore

D2f(X∗) = −4λ∗D2H(X∗) + 2
(
D2H(X∗)

)2
. (4.12)

Recall that λ∗ ≥ 0 and D2H(X∗) is negative semi-definite (since H is concave). Therefore
D2f(X∗) is positive semi-definite. Moreover, if Y ∈ Rnd satisfies Y · D2f(X∗)Y = 0, then
Y ∈ ker(D2H(X∗)), namely Y = aX∗ + (b, . . . , b) for some a ∈ R, b ∈ Rd; see Remark 4.12.
But

f(X∗ +Y) = f((1 + a)X∗ + (b, . . . , b)) = f(X∗)

by Theorem 4.2 (v). Therefore Z ·D2f(X∗)Z > 0 for all directions Z ∈ Rnd except for those
directions along which f is constant.

Let Z ∈ Rnd and write Z = Y +Y⊥, where Y ∈ ker(D2H(X∗)) and Y⊥ belongs to the
orthogonal subspace of Rnd. We will show that f(X∗+Z) ≥ f(X∗) if |Z| is sufficiently small.
We can assume that Y⊥ ̸= 0, otherwise f(X∗ + Z) = f(X∗). By Taylor’s Theorem there
exists t ∈ (0, 1) such that

f(X∗ + Z) = f(X∗) +
1

2
Z ·D2f(X∗ + tZ)Z.
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Note that
Z ·D2f(X∗)Z = Y⊥ ·D2f(X∗)Y⊥ > 0

since Y⊥ ̸= 0. Since D2f is continuous, it follows that Z · D2f(X)Z > 0 for all X in a
sufficiently small neighbourhood of X∗. Therefore f(X∗ + Z) > f(X∗) if |Z| is sufficiently
small. It follows that X∗ is a local minimiser of f , as required.

Remark 4.13 (Application of Theorem 4.11: Justification of the heuristic from [50]). A
popular heuristic for fitting Laguerre diagrams to volume and centroid data (approximately
solving min f) is to take the seeds to be the target centroids, X = B; see for example [50].
We give a partial justification for this heuristic. We can decompose H as

H(X) = F (X) +G(X), where G(X) = −1

2

n∑
i=1

vi|xi|2 +
n∑

i=1

vixi · bi −
1

2

∫
Ω
|x|2 dx

and F was defined in (4.2). Consider maximisingH over B = {X ∈ Rnd : |X−T| ≤ R}, where
T = (σ(Ω), . . . , σ(Ω)) and σ(Ω) is the centroid of Ω. This is equivalent to locally minimising
the fitting error f by Theorem 4.11. The maximiser of H depends on the competition between
the terms F and G. It can be shown that the first term, F , is maximised when all the seeds
coincide and are as far from the centroid of Ω as possible, namely whenX = (x1, . . . , x1) ∈ ∂B.
This is because maximising F is equivalent to finding the worst approximation of the Lebesgue
measure by a discrete measure in the Wasserstein metric. On the other hand, the second
term, G, is globally maximised over Rnd by X = B, namely when the seeds are the target
centroids. This is the heuristic from [50]. If the second term dominates, then we would expect
the maximiser of H (and the minimiser of f) to be close to B. This partially justifies the
heuristic used by [50] and other authors. On the other hand, if the first term dominates, then
the maximiser of H may not belong to Dn. This partially explains the numerical observations
given in Section 5.2.2.

Remark 4.14 (The set K should be a ball). In Theorem 4.11 it is important that the set
B where we maximise H is a ball. By Theorem 4.2 (v), if the infimum of f is attained, we
have minDn f = minK∩Dn f for any compact set K containing a neighbourhood of a point
of the form T = (t, . . . , t) ∈ Rnd, not just for balls. However, we cannot replace the ball
B by an arbitrary compact set K in the statement of Theorem 4.11. The fact that H is
1-positively homogeneous is also important. In general, it is not true that the maximiser of
a concave function on a compact set is a minimiser of the norm of its gradient. For example,
let g : R2 → R be the concave function g(x) = −1

2(x1 − 2)2 − 2(x2 − 1)2. Let c : R2 → R be

the constraint function c(x) = 1 −
(
x1
2

)2 − x22 and S be the ellipse S = {x ∈ R2 : c(x) ≥ 0}.
It can be shown that the global maximiser of g on S is x∗ = (

√
2, 1/

√
2) ∈ ∂S, but the

global minimiser of the convex function |∇g|2 on S is y∗ = (2y2/(4 − 3y2), y2) ∈ ∂S with

y2 =
1
3(2−

√
5 +

√
3 + 2

√
5) ≈ (1.108097, 0.832484). Note that y∗ ̸= x∗.

We include the following theorem since it may be of general interest in convex optimisation.
It gives conditions under which minimising a 1-positively homogeneous convex function on a
ball is equivalent to locally minimising the norm of its gradient. We do not include its proof
since it is very similar to the proof of Theorem 4.11.
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Theorem 4.15 (Minimising the norm of the gradient of a convex function). Let g : Rn → R
be convex. Suppose that there exists x0 ∈ Rn such that, for all λ > 0, x ∈ Rn,

g(λ(x− x0) + x0) = λg(x). (4.13)

(If x0 = 0, then g is 1-positively homogeneous.) Assume that g is continuously differentiable
on Rn \{x0}. Let R > 0 and BR = {x ∈ Rn : |x−x0| ≤ R}. Assume that the global minimum
of g on BR is achieved at a point x∗ ∈ ∂BR. Moreover, assume that g is 3-times continuously
differentiable in a neighbourhood of x∗ and ker(D2g(x∗)) = spanR{x∗ − x0}. Then x∗ is a
local minimiser of |∇g| on Rn \ {x0}.

5 Numerical experiments

In this section we provide numerical experiments to illustrate the theory from Section 4.

5.1 Recovering a Laguerre diagram from the areas and centroids of its cells

First we show how to achieve Goal 1 using Theorem 4.2. In particular, we reconstruct a 2D
Laguerre diagram given the areas and centroids of its cells by maximising H.

We take Ω = [0, 1]2, n = 20, we draw the seeds X0 ∈ Ωn at random from the uniform
distribution on Ω, and we set all the weights to be zero, w0 = (0, . . . , 0), so that (X0,w0)
generates a Voronoi tessellation of Ω. For i ∈ {1, . . . , n}, we define vi to be the area of
Lagi(X0,w0) and bi to be the centroid of Lagi(X0,w0). By Theorem 4.2 (iv), we can recover
the Voronoi diagram {Lagi(X0,w0)}ni=1 from (v,B) by numerically maximising the concave
function H.

For numerical robustness, since Laguerre diagrams are only defined if the seeds are distinct,
we found that it was necessary to maximise H subject to the constraint that the pairwise
distance between the seeds is not too small, namely, that cij(X) ≥ 0 for all i, j ∈ {1, . . . n},
i < j, where cij : Rnd → R are defined by

cij(X) = |xi − xj |2 − δ2,

where we take δ = 10−3 in all the experiments below. Without this constraint, an iterative
numerical optimisation algorithm may produce an iterate with seeds very close together. As
a very simple example, consider two seeds in one-dimension. If the initial guess has the seeds
in the wrong order, then any convergent numerical optimisation algorithm would reorder the
seeds, which may cause the seeds to get very close together as they swap positions. This could
give rise to some numerical instability since it is difficult to compute Laguerre diagrams and
solve optimal transport problems when the seeds are very close together. We have observed
the analogue of this behaviour in two dimensions.

In addition, we impose the constraint cball(X) ≥ 0, where cball : Rnd → R is defined by

cball(X) = R2 −
n∑

i=1

|xi − σ(Ω)|2, R =
√

area(Ω) · n,

and where σ(Ω) is the centroid of Ω. This constraint ensures that X lies in the ball in Rnd of
radius R and centre (σ(Ω), . . . , σ(Ω)). In particular, it reduces the domain of the optimisation
problem to a compact set. This can be done without loss of generality by Lemma 2.1.
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In summary, we recover {Lagi(X0,w0)}ni=1 from (v,B) by numerically solving the follow-
ing constrained optimisation problem:

max
{
H(X; (v,B)) : X ∈ Rnd, cball(X) ≥ 0, cij(X) ≥ 0 ∀ i, j ∈ {1, . . . , n}, i < j

}
. (5.1)

Note that the maximum value is 0 by Theorem 4.2 (vii). As described above, we added
the constraints cij ≥ 0 for numerical stability. The price to pay is that the optimisation
problem is no longer convex (the constraint set is not convex). An alternative approach, to
preserve convexity, would be to maximise H over the convex set {cball ≥ 0} using a method
for non-smooth convex optimisation (such as a proximal method) that does not need ∇H to
be well-defined everywhere (note that H can be evaluated in a robust way even if the seeds
are not distinct).

We solved the optimisation problem (5.1) in Python. To compute Laguerre diagrams and
solve the semi-discrete optimal transport problem we used the Python library pysdot [3] (to
compute w∗(X;v)). The initial guess for the optimal transport solver was generated using the
rescaling method from [39, Section 2.2], which is based on Lemma 2.1. The optimal transport
algorithm (the damped Newton method [28]) was terminated when the percentage error of
the areas of the Laguerre cells fell below 0.1%, namely, when w was such that

100 · |mi(X,w)− vi|
vi

< 0.1 ∀ i ∈ {1, . . . , n}.

We used the Python function scipy.optimize.minimize to solve the constrained optimisa-
tion problem 5.1 with a random initial guess Xinit (drawn from the uniform distribution on
Ωnd), with the optimisation method SLSQP, and with the tolerance parameter ftol equal to
10−10|H(Xinit)|.

The results are shown in Figures 1 and 2. The optimisation algorithm terminated suc-
cessfully after 229 iterations. Figure 1, left, shows the Laguerre tessellation {Li(Xinit;v)}ni=1

generated by the random initial guess Xinit, and Figure 1, right, shows the final Laguerre
tessellation after 229 iterations. The red dots are the actual centroids, which are almost in-
distinguishable from the blue dots, the target centroids B. Figure 2 shows the convergence
of H and F to 0.

5.2 Fitting a Laguerre diagram to synthetic data

In this section we consider Goal 2. We fit a Laguerre tessellation to synthetic data that is
obtained by perturbing a Voronoi diagram. We created the synthetic data as follows. First
we took the Voronoi diagram {Lagi(X0,w0)}ni=1 from Section 5.1 and computed the areas
and centroids of its cells, (v,B). Then we perturbed each centroid bi by a random vector

uεi = εri(cos θi, sin θi),

where ri is drawn from the uniform distribution on [0, 1], θi is drawn from the uniform
distribution on [0, 2π], and ε > 0 is the size of the perturbation. Finally, so that the synthetic
data is compatible (belongs to the set Dn), we define

bεi = bi + uεi +

(
σ(Ω)− 1

area(Ω)

n∑
i=1

vi(bi + uεi )

)
,

where σ(Ω) = (1/2, 1/2) is the centroid of Ω = [0, 1]2. Then (v,Bε) ∈ Dn is our synthetic
data.
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Figure 1: Recovering a Laguerre diagram {Lagi(X0,w0)}ni=1 from the areas v and centroids B
of its cells; see Section 5.1. Left: The Laguerre tessellation {Li(Xinit;v)}ni=1 with cells of areas
v (up to a 0.1% error) generated from a random collection of seeds Xinit. Right: Numerical
approximation of the unique Laguerre tessellation with cells of areas v and centroids B.
This figure shows the Laguerre tessellation corresponding to an approximate maximiser of
the constrained optimisation problem (5.1), computed by scipy.optimize.minimize using the
initial guess Xinit and 229 iterations. The red dots are the centroids of the computed Laguerre
cells. The blue dots (which are almost indistinguishable from the red dots) are the target
centroids B. The cells have areas v up to a 0.1% error. We have not plotted the true Laguerre
diagram {Lagi(X0,w0)}ni=1 since it is indistinguishable from the computed Laguerre diagram.
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Figure 2: Recovering a Laguerre diagram – convergence of the algorithm from Section 5.1.
Left: The value of the objective function H converges to its maximum value of 0. Right: The
nonlinear least squares error f also converges to 0.
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5.2.1 Small perturbations

First we considered a very small perturbation ε = 0.001. We fitted a Laguerre tessellation to
the perturbed data (v,Bε) by solving the constrained optimisation problem (5.1) as described
above in Section 5.1, with the same values of δ, R and ftol, but with the initial guessXinit = Bε

(see Remark 4.13 for a justification for using this initial guess).
The algorithm terminated successfully after 402 iterations. The results are shown in

Figures 3, 4 and 5, left. Figure 3, left, shows the Laguerre tessellation {Li(Xinit;v)}ni=1

generated by the initial guess Xinit = Bε, and Figure 3, right, shows the final Laguerre
tessellation after 402 iterations. The red dots are the actual centroids and the blue dots are
the target centroids Bε. Since the perturbation is so small, the red and blue dots are almost
indistinguishable. There are some minor visible differences between the Laguerre tessellation
fitted to the unperturbed data (Figure 1, right) and the Laguerre tessellation fitted to the
perturbed data (Figure 3, right).

As discussed in Remark 4.13, the initial guess Xinit = Bε is a good approximation of the
maximiser of (5.1), at least in the eyeball metric – compare Figure 3, left, to Figure 3, right.
On the other hand, from Figure 4 we see that the final value of least squares error f is over
three orders of magnitude smaller than f(Xinit). The objective function H increases from
about −5× 10−5 to 2.5× 10−4. Note that the maximum value of H is positive because there
does not exists a Laguerre diagram with cells of areas and centroids (v,Bε). Since H can now
take positive values, the constraint cball ≥ 0 in (5.1) is necessary to ensure that the objective
function is bounded by Theorem 4.2 (v).

Figure 5, left, shows the minimum distance between the seeds at each iteration, normalised
by δ, which is the minimum distance between the seeds allowed by the constraint cij ≥ 0.
The dashed line corresponds to the constraint being active for some i, j. We see that the
constraint becomes active around iteration 100, as the seeds rearrange themselves, but by the
end of the simulation the seeds are well separated, at least 30 units of δ apart. This suggests
that the maximum value of H on the ball {cball ≥ 0} is achieved at a point where all the
seeds are distinct.

5.2.2 Larger perturbations

We repeated the simulations from the previous section with a slightly larger perturbation,
ε = 0.05. The algorithm terminated successfully after 301 iterations and the results are shown
in Figures 6, 7 and 5, right.

Figure 6 shows the initial (left) and final (right) Laguerre tessellations, with the target
centroids Bε in blue and the centroids of the fitted diagram in red. This time there is a clear
visible difference between the target and actual centroids, although the fit is still quite good.
However, the fitted diagram (Figure 6, right) is somewhat ‘irregular’; some of the cells are
rather elongated and there is a tendency for some of the edges of the Laguerre cells to align.
This suggests that the methods proposed in this paper of maximising H/minimising f may
not be entirely suitable for generating synthetic microstructures. It does, however, appear
to work well for recovering Laguerre diagrams (Section 5.1) and fitting Laguerre diagrams to
EBSD data (Section 5.3).

The convergence of H and F are illustrated in Figure 7. Figure 5, right, shows that at
least one of the constraints cij ≥ 0 is active at the final iteration (and from iteration 100
onwards). This suggests that, without the constraint cij ≥ 0, some of the seeds would collide.
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Figure 3: Fitting a Laguerre diagram to synthetic data (v,Bε) with ε = 0.001 (small per-
turbation); see Section 5.2.1. Left: The initial guess {Li(Xinit;v)}ni=1 for the maximiser of
(5.1), where Xinit = Bε. Right: An approximate maximiser of the constrained optimisation
problem (5.1), computed by scipy.optimize.minimize using the initial guess Xinit and 402
iterations. The centroids of the Laguerre cells (red dots) are almost indistinguishable from
the target centroids (blue dots).
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Figure 4: Fitting a Laguerre diagram to synthetic data (small perturbation) - convergence of
the algorithm from Section 5.2.1. Left: Convergence of the objective function H. It converges
to a positive value because there does not exist a Laguerre diagram with cells of areas and
centroids (v,Bε). Right: Convergence of the least squares error f . The y-axis shows the ratio
of the value of f at each iteration to its initial value f(Xinit).
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Figure 5: Fitting a Laguerre diagram to synthetic data (see Section 5.2) - minimum distance
between the seeds for ε = 0.001 (left) and ε = 0.05 (right). The minimum distance between the
seeds is normalised by the minimum allowed distance δ = 10−3. The dotted line corresponds
to when at least one of the constraints cij ≥ 0 is active. Left (small perturbation): At the
end of the algorithm none of the constraints are active. The minimum distance between the
seeds is at least 30δ. Right (larger perturbation): At the end of the algorithm at least one of
the constraints is active. This suggests that if we solved (5.1) without the constraints cij ≥ 0,
then some of the seeds would collide.

In other words, it suggests that the maximum value of H in the set {cball ≥ 0} is achieved at
a point where some of the seeds coincide. Therefore the assumptions of Theorem 4.11 are not
satisfied, and there is no rigorous correspondence between maximising H and finding local
minimisers of the least squares error f . Nevertheless, Figure 7 suggests that maximising H
still works reasonably well at minimising f in practice. Moreover, we repeated this experiment
by directly minimising f (using the approach described in the following section, by solving
(5.2)) and obtained very similar results.

5.3 Fitting a Laguerre diagram to EBSD data

In this section we fit a Laguerre tessellation to an EBSD image provided by Tata Steel
Research & Development. Figure 8, top, is an EBSD image of a single-phase steel. The pixels
are coloured according to their crystallographic orientation. The orientation map is piecewise
constant, and regions of constant orientation are known as grains. There are n = 243 grains
in the image. From this image we extracted the areas v and the centroids B of the grains by
counting the pixels in each grain. The domain is Ω = [0, 252.25]2 (measured in microns).

To fit a Laguerre tessellation to the EBSD data (v,B) we initially tried solving (5.1).
However, as in Section 5.2.2, our experiments suggested that the maximum value of H on the
ball {cball ≥ 0} is achieved at a point where some of the seeds coincide. Since Theorem 4.11
does not apply in this case, we decided to directly minimise f , rather than maximise H. To
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Figure 6: Fitting a Laguerre diagram to synthetic data (v,Bε) with ε = 0.05 (larger per-
turbation); see Section 5.2.2. Left: The initial guess {Li(Xinit;v)}ni=1 for the maximiser of
(5.1), where Xinit = Bε. Right: An approximate maximiser of the constrained optimisation
problem (5.1), computed by scipy.optimize.minimize using the initial guess Xinit = Bε and
301 iterations. The centroids of the Laguerre cells are in red and the target centroids are
in blue. The centroid error is relatively small, but the Laguerre cells are not very ‘regular’.
In our simulations we found that fitting a diagram to synthetic data tends to produce some
elongated cells or cells that are aligned (have almost parallel edges), as seen here.

be precise, we solved the constrained optimisation problem

min

{
n2

area(Ω)3
f(X; (v,B)) : X ∈ Rnd, cij(X) ≥ 0 ∀ i, j ∈ {1, . . . , n}, i < j

}
. (5.2)

The normalisation factor n2/area(Ω)3 is simply included so that objective function is non-
dimensional and scales roughly constantly with respect to n (this is based on the assumption
the cells have roughly equal area). The constraints cij ≥ 0 are included as above for numerical
robustness and to stop seeds colliding. Since F is invariant under dilations and translations,
we do not need to include the constraint cball ≥ 0.

We solved (5.2) using scipy.optimize.minimize with the initial guess Xinit = B and with
the tolerance parameter ftol equal to 10−8n2f(Xinit)/area(Ω)

3 = 1.6308× 10−10.
The results are shown in Figures 8 and 9. The optimisation algorithm terminated suc-

cessfully after 714 iterations. Figure 8, bottom-right, shows the Laguerre cells together with
the centroids B of the grains from the EBSD image in blue and the centroids of the fitted
Laguerre cells in red. Figure 8, bottom-left, shows the fitted Laguerre diagram overlaid over
the EBSD image. The quality of the fit is limited by the polygonal shape of the cells; in
reality the grains may not be polygonal, as can be seen from the EBSD image in Figure 8
(top). Nevertheless, there is a clear resemblance, even though we are only minimising the
least squares centroid error f , rather than the mismatch between the two figures (such as
the number of misassigned pixels). Figure 9, left, shows the convergence of the algorithm.
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Figure 7: Fitting a Laguerre diagram to synthetic data (larger perturbation) - convergence
of the algorithm from Section 5.2.2. Left: Convergence of the objective function H. Right:
Convergence of the least squares error f . The y-axis shows the ratio of the value of f at each
iteration to its initial value f(Xinit). We see that the initial guess Xinit = Bε is very good;
the optimisation algorithm only decreases the least squares error f by a factor of about 0.5
(after initially increasing it significantly).

The ratio of the initial value of f to the final value of f is 25.2. Figure 9, right, shows the
minimum distance between the seeds, normalised by δ (the minimum distance between the
seeds allowed by the constraints cij ≥ 0). This suggest that inf{f(X; (v,B)) : X ∈ Dn} is
not attained (seeds collide along an infimising sequence), which is why we introduced the
constraints cij ≥ 0 in (5.2).

6 Generalisation to anisotropic Laguerre tessellations

In this section we generalise some of our results to anisotropic Laguerre tessellations (also
known as anisotropic power diagrams or generalised balanced power diagrams), which have
recently been used to model polycrystalline materials, e.g., [7, 4, 48, 50, 43, 6, 5, 27, 19].

Definition 6.1 (Anisotropic Laguerre tessellations). Let A = (A1, . . . , An) be a tuple of
d-dimensional, symmetric, positive-definite matrices Ai ∈ Rd×d. Let X ∈ Dn and w ∈ Rn.
The ith anisotropic Laguerre cell generated by (X,w,A) is defined by

LagAi (X,w) = {x ∈ Ω : |x− xi|2Ai
− wi ≤ |x− xj |2Aj

− wj ∀ j ∈ {1, . . . , n}}, (6.1)

where | · |Ai denotes the norm generated by Ai, which is defined by |x|Ai = (x · Aix)
1/2 for

all x ∈ Rd. The anisotropic Laguerre tessellation generated by (X,w,A) is the collection of
cells {LagAi (X,w)}ni=1.

The standard Laguerre tessellation is recovered by setting Ai = Id for all i, where Id is
the d × d identity matrix. The matrices Ai allow for some control over the aspect ratios of
the cells. If d = 2 each edge of an anisotropic Laguerre cell is an arc of a conic section.
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Figure 8: Fitting a Laguerre tessellation to an EBSD image; see Section 5.3. Top: The original
EBSD image of a single-phase steel. The grains are coloured according to the orientation of
the crystal lattice. We extracted the areas and centroids (v,B) of the grains from this EBSD
image and then fitted a Laguerre tessellation to the image by solving the optimisation problem
(5.2). Bottom-left: The fitted Laguerre diagram overlaid on the EBSD image. Bottom-right:
The centroids B from the EBSD data in blue and the centroids of the fitted Laguerre cells in
red.
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Figure 9: Fitting a Laguerre diagram to an EBSD image - convergence of the algorithm from
Section 5.3. Left: Decay of the objective function f , normalised by its initial value f(Xinit).
The algorithm terminated after 714 iterations and the objective function decreased by a factor
of about 25. Right: The minimum distance between the seeds, normalised by the minimum
allowed distance δ = 10−3. At least one of the constraints cij ≥ 0 appears to be active for
several iterations (the dotted line corresponds to an active constraint). This suggests that
the seeds would collide in the absence of the constraints.

We briefly describe how Goal 1 can be addressed in the anisotropic setting, namely how
to recover an anisotropic Laguerre tessellation given the volumes and centroids of its cells and
the anisotropy matrices A. We also state a uniqueness result.

Define the anisotropic optimal transport problem

TA(X,v) = inf
T∈A(X,v)

n∑
i=1

∫
T−1({xi})

|x− xi|2Ai
dx, (6.2)

where A(X,v) is the set of admissible transport maps, which was defined in equation (2.7).
As above, it is well-known that the optimal map T ∗ : Ω → {x1, . . . , xn} partitions the domain
Ω into anisotropic Laguerre cells, namely, there exists w = w⋆(X;v,A) ∈ Rn such that
(T ∗)−1({xi}) = LagAi (X,w) for all i. The vector w⋆(X;v,A) maximises the continuously
differentiable, concave dual function KA : Rn → R,

KA(w) =

n∑
i=1

∫
LagAi (X,w)

(|x− xi|2Ai
− wi) dx+

n∑
i=1

wivi,

which has gradient given by

∂KA

∂wi
(w) = vi − vol(LagAi (X,w)) ∀ i ∈ {1, . . . , n}.

In particular,
vol
(
LagAi (X,w⋆(X;v,A))

)
= vi ∀ i ∈ {1, . . . , n}.
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These results essentially follow from [38, Proposition 37, Theorem 40]. (A technical remark for
experts in optimal transport theory: anisotropic Laguerre cells intersect in a set of Lebesgue-
measure zero and hence the theory from [38] applies even though the anisotropic transport
cost c : Ω → {x1, . . . , xn} given by c(x, xi) = |x − xi|2Ai

does not satisfy the assumption of

being twisted in general.) We define LA
i (X;v) to be the ith anisotropic Laguerre cell in the

tessellation with seeds X, cell volumes v and anisotropy matrices A, and ci(X;v,A) to be
its centroid:

LA
i (X;v) = Lagi(X,w⋆(X;v,A)), ci(X;v,A) = σ

(
Lagi(X,w⋆(X;v,A))

)
.

The following theorem, which generalises Theorem 4.2 (iii),(iv), shows how an anisotropic
Laguerre tessellation can be reconstructed from the volumes and centroids of its cells, given
the anisotropy matrices Ai, by maximising a concave function.

Theorem 6.2 (Recovering an anisotropic Laguerre tessellation). Given (v,B) ∈ Dn and a
tuple of symmetric positive-definite matrices A = (A1, . . . , An) ∈ (Rd×d)n, define the function
HA : Rnd → R by

HA(X) = HA(X; (v,B)) =
1

2
TA(X,v)− 1

2

n∑
i=1

vi|xi|2Ai
+

n∑
i=1

vixi · (Aibi). (6.3)

If X ∈ Dn, then

HA(X) =
1

2

n∑
i=1

∫
LA
i (X;v)

|x− xi|2Ai
dx− 1

2

n∑
i=1

vi|xi|2Ai
+

n∑
i=1

vixi · (Aibi).

Then HA is concave, continuously differentiable on the set of distinct seeds, HA ∈ C1(Dn),
and for all X ∈ Dn the gradient of HA is given by

∂HA

∂xi
(X) = viAi(bi − ci(X;v,A)) ∀ i ∈ {1, . . . , n}. (6.4)

In particular, ∇HA(X) = 0 if and only if X generates an anisotropic Laguerre tessellation
with anisotropy matrices Ai and cells of volume vi and centroids bi.

Note that HA does not contain the constant term −1
2

∫
Ω |x|2 dx that is present in the

definition of H (compare equations (4.1) and (6.3)). This is because

n∑
i=1

∫
LA
i (X;v)

|x|2Ai
dx ̸=

∫
Ω
|x|2 dx

in general (unless Ai = Id for all i). Consequently the analogue of Theorem 4.2 (i) does not
hold, namely, the maximum value of HA is not zero if the data v and B are the volumes and
centroids of an anisotropic Laguerre tessellation.

Sketch proof of Theorem 6.2. We just sketch the proof for brevity and because it is similar to
the proof of Theorem 4.2. The proof that HA is concave is exactly the same as the proof of
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Theorem 4.2 (iii). We derive the gradient of HA as follows. Let X ∈ Dn and Y ∈ Rnd. Then

HA(Y) ≥ 1

2

n∑
i=1

∫
LA
i (X;v)

|x− yi|2Ai
dx− 1

2

n∑
i=1

vi|yi|2Ai
+

n∑
i=1

viyi · (Aibi)

=
1

2

n∑
i=1

∫
LA
i (X;v)

|x− xi|2Ai
dx− 1

2

n∑
i=1

vi|xi|2Ai
+

n∑
i=1

vixi · (Aibi)

+
n∑

i=1

vi(yi − xi) · (Aibi) +
n∑

i=1

∫
LA
i (X;v)

(xi − yi) · (Aix) dx

= HA(X) +
n∑

i=1

(yi − xi) · viAi(bi − ci(X;v,A)).

In particular, the superdifferential of the concave function HA at X contains the point(
viAi(bi − ci(X;v,A))

)n
i=1

. Similarly to the proof of [38, Theorem 40], it can be shown
that this is the only point in the superdifferential and that it depends continuously on X.
Therefore HA is continuously differentiable on Dn with gradient given by (6.4), as required.

Alternatively, the gradient of HA can be derived as follows. Let X ∈ Dn. By using the
Kantorovich Duality Theorem from optimal transport theory, we can write

HA(X) = max
w∈Rn

(
1

2

∫
Ω
min
i
(|x− xi|2Ai

− wi) dx+

n∑
i=1

viwi −
1

2

n∑
i=1

vi|xi|2Ai
+

n∑
i=1

vixi · (Aibi)

)
=: max

w∈Rn
GA(X,w).

Then it can be shown that

∂HA

∂xi
(X) =

∂GA

∂xi
(X,w⋆(X;v,A)), (6.5)

where w⋆(X;v,A) ∈ Rn is any maximiser of GA(X, · ). Differentiating GA gives

∂GA

∂xi
(X,w) =

1

2

∫
Ω

∂

∂xi
min
k

(|x− xk|2Ak
− wk) dx− viAixi + viAbi

=
1

2

n∑
k=1

∫
LagAk (X,w)

∂

∂xi
(|x− xk|2Ak

− wk) dx− viAixi + viAbi (6.6)

=

∫
LagAi (X,w)

Ai(xi − x) dx−
n∑

i=1

viAixi +

n∑
i=1

viAbi (6.7)

for any w ∈ Rn. Combining (6.5) and (6.7) gives the gradient of HA, as claimed.

The following result generalises Theorem 4.5.

Theorem 6.3 (Uniqueness of anisotropic compatible diagrams). Let (v,B) ∈ Dn and let
A = (A1, . . . , An) ∈ (Rd×d)n be a tuple of symmetric positive-definite matrices. Suppose
X,Y ∈ Dn are such that {LA

i (X;v)}ni=1 and {LA
i (Y;v)}ni=1 are compatible with the data

(v,B) in the sense that

ci(X;v,A) = ci(Y;v,A) = bi ∀ i ∈ {1, . . . , n}.
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Then
LA
i (X;v) = LA

i (Y;v) ∀ i ∈ {1, . . . , n}.
In other words, an anisotropic Laguerre tessellation is uniquely determined by the volumes
and centroids of its cells and its anistropy matrices.

Proof. The proof is almost identical to the proof of Theorem 4.5 and so we do not repeat it
here. It is simply a matter of replacing Euclidean norms with anisotropic norms.

7 Conclusions and future directions

In this paper we have given a complete theoretical answer to Goal 1; we proved that a Laguerre
tessellation is uniquely determined by the volumes and centroids of its cells and that it can be
recovered using convex optimisation (Theorems 4.5 and 4.6). We performed some preliminary
numerical experiments in Section 5.1 but there is room for improvement here. Since we used
a gradient-based method to maximise H, and ∇H is only defined where the seeds are distinct,
we introduced the extra constraints cij ≥ 0, which destroyed the convexity of the constraint
set. In future work it would be interesting to use non-smooth convex optimisation (such as a
proximal method) to maximise H on the ball and preserve the convexity of the problem.

Goal 2 turned out to be more challenging and, for some data (v,B), even to be ill-posed.
We start with the positive results. If the target data (v,B) satisfies the implicit assumption
that the maximiser of H on a ball is achieved at a point with distinct seeds (and under
some other generic assumptions), then we found a complete theoretical answer to Goal 2;
local minimisers of the fitting error f can be found by solving a convex optimisation problem
(Theorem 4.11). As for Goal 1, our numerical simulations could be improved to exploit this
convexity. Nevertheless, we still obtained good results for the materials science application
in Section 5.3.

The implicit assumption on the target data (v,B), however, is restrictive. In Section 5.2.2
we gave numerical evidence that there exists data (v,B) such that the maximiser of H on a
ball is achieved at a point in the set Rnd \Dn of non-distinct seeds, where ∇H is not defined.
In this case we believe that the infimum of f = |∇H|2 is not attained. The non-existence of
a minimiser of f on Dn can also be checked analytically for a very simple example with two
seeds. To obtain a well-posed optimisation problem for all data (v,B), in Sections 5.2 and
5.3 we supplemented (NLS) with the constraints cij ≥ 0. An alternative approach could be
to use a different objective function entirely. For example, we could drop the constraint that
the volumes of the cells are fitted exactly, and replace the centroid error f(X) by a function
of (X,w) measuring a weighted sum of the volume error and the centroid error.

It is an open problem to characterise the data (v,B) for which (NLS) attains its infimum.
The simulations in Section 5.2.2 suggest that this set could be quite a small neighbourhood
of the data (v,B) for which there exists a compatible diagram. It is also an open problem to
find sufficient conditions on (v,B) for there to exist a compatible diagram; in Section 4.3 we
only gave necessary conditions. We hope that this paper inspires further work on Goal 2.
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