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Abstract

We study the effect of long-range interactions in non-convex one-dimensional lattice systems in the

simplified yet meaningful assumption that the relevant long-range interactions are between M -neighbours

for some M ≥ 2 and are convex. If short-range interactions are non-convex we then have a competition

between short-range oscillations and long-range ordering. In the case of a double-well nearest-neighbour

potential, thanks to a recent result by Braides, Causin, Solci and Truskinovsky, we are able to show that

such a competition generates M -periodic minimizers whose arrangements are driven by an interfacial

energy. Given M , the shape of such minimizers is universal, and independent of the details of the

energies, but the number and shapes of such minimizers increases as M diverges.
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1 Introduction

In this paper we study the behaviour of boundary-value minimum problems related to one-dimensional long-

range lattice energies, which in the greatest generality can be stated as the asymptotic behaviour as n→ +∞
of solutions un = {uni }i of the minimization of functionals of the form

En(u) =

n∑
k=1

n∑
i=k

ψk(ui − ui−k) (1)

on n+ 1-tuples u = {ui}i of parameters with ui ∈ R, subjected to boundary conditions u0 = 0 and un = n`.

In this generality, the problem is very complex and leads to a variety of different issues with competing

short and long-range oscillations and concentration effect, except for the trivial case when all ψk are convex,

for which the minimizer is essentially unique and coincides with the linear function ui = i`, except for

boundary effects, which are asymptotically negligible upon some technical assumptions on ψk. Nevertheless,
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an averaged description of minimizers is possible in the spirit of Γ-convergence. To this end, we regard the

energies En as defined on functions u : [0, 1] → R, with domain the piecewise-affine functions defined by

u(x) = 1
nubx/nc for some (n + 1)-tuple {ui}i, in such a way that the derivative of u on ((i − 1)/n, i/n) is

ui−ui−1. The Γ-convergence of such energies can then be studied with respect to the L1-convergence. Upon

some growth hypotheses on ψk that ensure that limits of sequences un with energy of order n belong to some

W 1,p(0, 1), the Γ-limit of 1
nEn can be written as

F (u) =

∫ 1

0

ψhom(u′)dt, (2)

for a convex function ψhom resulting from a non-linear homogenization process (see [6], and [3] for the

higher-dimensional case).

The Γ-convergence above only ensures that the (interpolations of the) minimizers of boundary-value

problems for En converge to the corresponding minimizer, or to one of the minimizers, of the analog continuum

boundary-value problem related to F , but brings no further information on their behaviour, which may depend

on `. Note that if ψhom is strictly convex at ` then the unique minimizer is the linear function u(x) = `x,

while at non-strictly convex points discrete solutions may converge to a particular choice among minimizers.

A particular class of energies for which an analysis of ψhom leading to a description of the convergence

of discrete minimizers has been possible is the one studied in [5], where the non-convexity is confined to

nearest-neighbour interactions governed by ψ = ψ1, and the long-range potentials are quadratic; that is,

ψk(z) = akz
2, with ak non-negative, and the energies can be written as

En(u) =

n∑
i=1

ψ(ui − ui−1) +

n∑
k=2

n∑
i=k

ak(ui − ui−k)2 (3)

In that case, the properties of minimizers can be linked to properties of the sequence ak. In particular, in [5]

the case of double-well ψ is studied, for which a prototype is

ψ(z) = min{(z − 1)2, (z + 1)2}, (4)

in which case it is possible to describe the patterns of the minimizers by tracing whether the value zi =

ui − ui−1 lies in one “well” (i.e., zi ≤ 0) or the other one (i.e., zi ≥ 0). As such patterns of minimizers are

concerned, we recall the following interesting characterization of minimizers of problems (3) in the case when

ak = 0 for all k ≥ 2 except for one value k = M : either

(a) minimizers ui are such that zi = ui−ui−1 tend (for n large) to be M -periodic with average z, and take

only two values, one, for m indices in the period, in one well and the second one, for M −m indices in

the period, in the second well, or

(b) zi defined as above tend (for n large) to be a mixture of two periodic functions as in (1) with some z′

and z′′ in the place of z and for two consecutive values m and m+ 1 between 0 and M .
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This characterization extends a formula known before when only a2 6= 0 (see [6]), in which case we have the

only three possibilities that either the parameters zi tend to take a constant value in the first or in the second

well, or that we have a 2-periodic pattern mixing values in both wells.

The appearance of microstructure is a recurring feature of non-convex variational systems. Such mi-

crostructures may be driven by a scale-free relaxation phenomenon described by convexification or quasi-

convexification of the original energy densities (see e.g. the books by Buttazzo [9] or Dacorogna [10]), or

present more regular patterns at a specific scale due to competing long-range and short-range effects (as in

the seminal paper by S. Müller [13]; see also [1]). Minimizers of En are similar to the latter, with oscillations

both driven by short- and long-range microscopic interactions, and by mesoscopic non-convexity.

Simple examples of variational problems exhibiting microscopic oscillations are lattice systems defined

on “spin functions”; i.e., functions taking only a finite number of values, the traditional choice being −1

and 1. If the energies are “frustrated”; that is, the system presents interaction potentials that cannot be

all separately minimized at the same time by a single function, then minimization may produce periodically

modulated phases (see [2, Chapter 7]). Often, the determination of the period and shape of such minimizers

is a non-trivial matter as in the case of infinite-range antiferromagnetic systems studied by Giuliani et al. [12],

and has interesting continuum counterparts (see e.g. [11]).

In the case of double-well problems, the location of the parameter in one or the other well relaxes the

strict constraint that the parameter takes two values; that is, the constraint z ∈ {−1, 1} is replaced by

a potential ψ(z) where ψ is a strictly positive continuous function minimized in {−1, 1}. To distinguish

between them, we will call the first type of parameters “hard spins” and the second ones “soft spins”. For

the prototypical double-well potential ψ in (4) it is clear that the two “wells” coincide with z negative and

z positive. If also long-range interactions are taken into account, minimization for soft spins may produce

patters analogous to those for frustrated hard spins. Furthermore, the “soft” approach allows to include more

easily boundary-value problems as above.

In this paper we carry on a fine analysis of the energies En in (3) by examining not only minimizers, but

also parameters ui whose energy in (3) differs from the minimum by a finite quantity bounded as n tends to

+∞. This is done by using a development by Γ-convergence [4, Section 1.10] and [7], and is performed for

double-well ψ and ak 6= 0 only for k = M , so that the descriptions (a) and (b) above provide the value of

minima. The meaningful definition of convergence for functions u depends on whether we are in case (a) or (b)

above. For simplicity of illustration consider that the boundary datum ` is such that case (a) holds for some

m. Then, given a sequence uni with bounded energy, the sequence is compact in the following sense: there

are a finite number of indices inj , which we may suppose to converge after scaling; that is, inj /n → xj , such

that in the intervals in the complement of such indices, each function coincides with a M -periodic minimizer

ui as in (a), up to an arbitrary small error. Hence, up to subsequences, each such sequence determines a

continuum limit u whose derivative u′ takes values in the finite set Mm of M -periodic minimizers as in (1).

A similar argument holds in case (b), for which we can conclude that the continuum limit u has derivative

with values in Mm ∪Mm+1. Once such a piecewise-constant limit is defined, we will prove that the Γ-limit
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has the form

F (u) =
∑

t∈S(u′)

Φ(u′(t−),u′(t+)), (5)

where S(u′) denotes the discontinuity set of u′ in (0, 1). This shows that minimization may give rise to

microscopic patterns Mm, microscopic incompatibility may give rise to interfaces between elements of Mm

(anti-phase boundaries) or/and interfaces between elements of Mm and Mm+1 (macroscopic interfaces). In

order to avoid boundary effects, the analysis will be carried out under some periodicity assumptions.

It is interesting to note that, even though the values of the slopes of microscopic minimizers in Mm

depends on the average slope, or boundary datum, `, the set Mm has a ‘universal’ form, and its elements are

in correspondence with M -tuples with m values equal to 1 and (M −m) values equal to 0. A final remark is

that the presence of M -th-neighbour interaction is often compared to that of a singular perturbation with a

term containing the M -th derivative for continuum double-well problems. However, while in the continuum

case the resulting phase-transition energy is essentially independent of M (see [8, 14]), in the discrete case

our result shows an increasing complexity of minimizers as M increases.

2 Statement of the result

We will fix M ∈ N with M ≥ 2 and functions ψ1, ψM : R→ [0,+∞) satisfying the coerciveness condition

lim
|z|→∞

ψ1(z)

|z|
= +∞. (6)

We want to study the overall behaviour of functionals with competing nearest-neighbour and M-th-neighbour

interactions driven by the potential ψ1 and ψM , respectively, of the form∑
i

ψ1 (ui+1 − ui) +
∑
i

ψM

(ui+M − ui
M

)
, (7)

defined on discrete functions indexed on Z. In our assumptions the potential ψ1 will be a double-well energy

density which favours oscillations through non-convexity, while ψM is a convex potential favouring long-range

ordering.

2.1 Analysis at the bulk scaling

We preliminary analyze a scaled version, whose analysis will suggest a renormalization argument. We use a

standard scaling procedure that allows to use an analytic approach by Γ-convergence, introducing a reference

interval [0, 1] and the small parameter εn = 1
n with n ∈ N. The energies above, when we take into account

the interaction involved on n+ 1 sites, now parameterized by εni with i ∈ {0, . . . , n}, take the form

n−1∑
i=0

ψ1

(ui+1 − ui
εn

)
+

n−1∑
i=0

ψM

(ui+M − ui
Mεn

)
. (8)
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In this notation ui = u(εni). Note that in the last sum we also take into account the values of ui for

i ∈ {n, . . . , n+M − 1}. In the sequel, in order not to have boundary effects, we will define ui for all values

of i using some periodic conditions.

After this parameterization, we can identify such discrete functions with the piecewise-affine interpolation

on [0, 1] of the sites (iεn, ui). We define the space of such functions

An(0, 1) = {u : [0, 1]→ R continuous, and affine on (iεn, (i+ 1)εn), i ∈ {0, . . . , n− 1}},

and the scaled functionals

En,M (u) =

n−1∑
i=0

εnψ1

(ui+1 − ui
εn

)
+

n−1∑
i=0

εnψM

(ui+M − ui
Mεn

)
. (9)

Since
n−1∑
i=0

εnψ1

(ui+1 − ui
εn

)
=

∫ 1

0

ψ1(u′) dt,

condition (6) ensures that functionals En,M are equicoercive in W 1,1(0, 1); namely, that if un is bounded in

L1(0, 1) and En,M (un) ≤ C < +∞, then, up to subsequences, un converge weakly in W 1,1(0, 1) and strongly

in L1(0, 1). The Γ-limit of En,M with respect to this convergence is described in the following result, where

we also consider periodic conditions. To that end we fix ` ∈ R and define

W 1,1
#,`(0, 1) =

{
u ∈W 1,1

loc (R) : u(t)− `t is L-periodic
}
,

whose discrete counterpart is

A#
n,`(0, 1) = {u ∈W 1,1

#,`(0, 1) : u|[0,1] ∈ An(0, 1)}.

Theorem 2.1. The functionals En,M Γ-converge, with respect to the L1-topology, to the functional defined

on W 1,1(0, 1) by ∫ 1

0

ψ∗∗0 (u′(t)) dt, (10)

where ψ0 is given by:

ψ0(z) = ψM (z) +
1

M
min

{
M∑
k=1

ψ1(zk) :

M∑
k=1

zk = Mz, z1, . . . zM ∈ R

}
. (11)

Furthermore, the convergence is compatible with the addition of periodic condition; that is, with fixed

` ∈ R, the functionals defined by

E`n,M (u) =

{
En.M (u) u ∈ A#

n,`(0, 1)

+∞ otherwise
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Γ-converge to

E`M (u) =


∫ 1

0

ψ∗∗0 (u′(t)) dt u ∈W 1,1
#,`(0, 1)

+∞ otherwise in L1(0, 1).

The proof of this result can be found in [5] (see also [6] for the case M = 2).

2.2 Microscopic analysis

The main point of the analysis at the bulk scaling is the definition of ψ0 which will allow to renormalize

energies (7) by subtracting the affine term r` given by the tangent to ψ∗∗0 at ` and rewriting the sum as

n−1∑
i=0

(
ψM

(ui+M − ui
M

)
+

1

M

M−1∑
k=0

ψ1(ui+k+1 − ui+k)− r`
(ui+M − ui

M

))
. (12)

This will be formalized as the computation of a higher-order Γ-limit starting from En,M . We will consider

periodic boundary conditions. We also make the simplifying assumption that n is a multiple of M , the general

case requiring a more complex notation being stated explicitly in Section 3.2, taking into account possible

mismatch at the boundary due to incommensurability. In this case, after noting that minE`M = ψ∗∗0 (`), and

letting m = m` denote the tangent to ψ∗∗0 at `, we can consider the energies

E1
n,M (u) = E1,`

n,M (u) :=
E`n,M (u)−minE`M

εn
=
E`n,M (u)− ψ∗∗0 (`)

εn

=

n−1∑
i=0

(
ψM

(
ui+M − ui
Mεn

)
+

1

M

M−1∑
k=0

ψ1

(
ui+k+1 − ui+k

εn

)
− ψ∗∗0 (`)

)

=

n−1∑
i=0

(
ψM

(
ui+M − ui
Mεn

)
+

1

M

M−1∑
k=0

ψ1

(
ui+k+1 − ui+k

εn

)
− ψ∗∗0 (`)−m

(ui+M − ui
Mεn

− `

εn

))

=

n−1∑
i=0

(
ψM

(
ui+M − ui
Mεn

)
+

1

M

M−1∑
k=0

ψ1

(
ui+k+1 − ui+k

εn

)
− r`

(ui+M − ui
Mεn

))
, (13)

where we have used that
∑n−1
i=0 (ui+M − ui) = M` thanks to the n-periodicity of ui − `εni.

Until now we have made no assumptions on ψ1 and ψM . We study a particular case in which ψM is a

strictly convex function and ψ1 is a double-well potential of the form

ψ1(z) = min{W1(z),W2(z)},

where W1 and W2 are two smooth convex functions. Note that this is not a very restrictive hypothesis since

in the determination of the Γ-limit only the values of W1 and W2 close to the bottom of the wells will be

taken into account, so that more general ψ1 of double-well type can be included in this analysis. We also
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make the assumption that W1 and W2 satisfy

Wi(z) ≥ cz2 −
1

c
,

for some c > 0. This structure provides a useful representation of ψ0. Indeed, we can distinguish two sets

A1 = {x ∈ R |ψ1(x) = W1(x)} and A2 = {x ∈ R |ψ1(x) = W2(x)}. Then, we can rewrite the minimum

problem in ψ0 as follows:

min

{
M∑
k=1

ψ1(zk) :

M∑
k=1

zk = Mz

}

= min
0≤j≤M

min

{
j∑

k=1

W1(zk) +

M∑
k=j+1

W2(zk) :

M∑
k=1

zk = Mz, z1, . . . , zj ∈ A1, zj+1, . . . , zM ∈ A2

}

= min
0≤j≤M

min
{
jW1(z1) + (M − j)W2(z2) : jz1 + (M − j)z2 = Mz, z1 ∈ A1, z2 ∈ A2

}
, (14)

where the last equality follows from Jensen inequality.

Figure 1: representation of ψ0.

We can define ψj(z) = ψM (z) + 1
M fj(z), where fj(z) is the value of the inner minimum problem in (14).

In this way ψ0 can be represented as follows:

ψ0(z) = min
0≤j≤M

ψj(z).

See Fig. 1 for a typical form of ψ0.

A non-trivial result in [5] (see Theorem 4.1 therein) shows that ψ∗∗0 will alternate non-degenerate intervals

Kj = (zlj , z
r
j ) in which ψ∗∗0 (z) = ψ0(z) = ψj(z) and intervals Jj = [zrj−1, z

l
j ], for j ≥ 1, in which ψ∗∗0 (z) = rj(z)

is a straight line. In this notation zl0 = −∞ and zrM = +∞.
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Referring to (13), this description gives that if ` ∈ Kj then

r`(z) = ψ0(`) + ψ′0(`)(z − `) = ψj(`) + ψ
′
j(`)(z − `),

while if ` ∈ Jj then r` is the affine function whose graph passes through (zrj−1, ψj−1(zrj−1)) and (zlj , ψj(z
l
j)).

Note that if we consider

E in(u) = ψM

(
ui+M − ui
Mεn

)
+

1

M

M−1∑
k=0

ψ1

(
ui+k+1 − ui+k

εn

)
− r`

(
ui+M − ui
Mεn

)
, (15)

then these values are still positive since E in(u) ≥ ψ∗∗0
(
ui+M−ui
Mεn

)
− r`

(
ui+M−ui
Mεn

)
≥ 0.

Before stating the convergence result we need some definitions.

Definition 2.2. We define Mα ⊂ RM as the set of minimizers for the problem

min

{
M∑
i=1

ψ1(zi) :

M∑
i=1

zi = Mα

}
. (P)

We will then set

Mα =

Mα if α ∈ int({z ∈ domψ0 |ψ0(z) = ψ∗∗0 (z)})⋃
z∈Jj∩{ψ0(z)=ψ∗∗0 (z)}Mz if α ∈ Jj .

Remark 2.3. Mα, and consequently also Mα, is closed under permutation, that is, if z = (z1, . . . , zM ) ∈Mα,

then for any permutation σ also (zσ(1), . . . , zσ(M)) belongs to Mα.

Remark 2.4. Using the notation for Kj and Jj , Definition 2.2 can be simplified as

Mα =

Mα if α ∈
⋃M
j=0Kj

Mzrj−1 ∪Mzlj if α ∈ Jj , j ∈ {1, . . . ,M}.

Since ψ1(z) = min{W1(z),W2(z)} then we can study the cardinality of the sets Mα because, for a fixed

j ∈ {0, . . .M}, the minimum problem

min
{
jW1(z1) + (M − j)W2(z2) : jz1 + (M − j)z2 = Mα, z1 ∈ A1, z2 ∈ A2

}
(Pj)

admits a unique solution by strict convexity. Each minimizer (z1, z2) of (Pj) corresponds to
(
M
j

)
minimizers

for (P); that is, the number of possible M -tuple such that j entries are z1 and M − j are z2. This shows that

indeed for each α ∈ [zlj , z
r
j ] the set Mα can be identified with a set Mj depending only on j, and with this

notation Mα = Mj−1 ∪Mj if α ∈ Jj .

In order to study the limit behaviour of E1
n,M , we need a notion of convergence of discrete un to a vectorial

function on the continuum.
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Definition 2.5. Given u ∈ A#
n,`(0, L), we consider the subintervals

Ij = [(j − 1)εn, jεn] for j ∈ Z

and for i ∈ Z we define the set Ai =
⋃M
k=1 IiM+k, which is the union of M such consecutive intervals. For

k ∈ {1, . . . ,M}, we define uk the k-th M-interpolation of u as the piecewise-affine function obtained extending

the slope zMi+k, where

zj :=
uj − uj−1

εn
,

to the whole Ai; that is, uk is defined byuk,0 = u0,

u′k(t) = zMi+k if t ∈ Ai

Definition 2.6. We say that a sequence of discrete functions (un)n converges to u = (u1, . . . , uM ) in a

functional topology (for instance L1(0, 1) or L∞(0, 1)) if for each k the k-th interpolation unk converges to uk

in that topology.

Theorem 2.7 (Equi-coerciveness of the energies). If a sequence (un)n∈N satisfies supnE
1
n,M (un) < +∞,

then, up to addition of a constant and extraction of a subsequence, the sequence converges uniformly to

some M -tuple of piecewise-affine functions u = (u1, . . . , uM ) with u′(t) ∈M` for almost every t. Moreover,

there exists a finite set S ⊂ (0, 1) such that un converges in W 1,∞
loc ((0, 1) \ S) to u and the jump set S(u′) is

contained in S.

This compactness theorem justifies the use of the convergence in Definition 2.6 for the Γ-limit of E1
n,M .

In order to describe it we define the following transition energy.

Definition 2.8. Let ` ∈ R and z = (z1, z2, . . . zM ), z′ = (z′1, z
′
2, . . . z

′
M ) ∈M`. The transition energy between

z and z′ is defined by

Φ(`)(z, z′) := inf
N∈N

min
u

{∑
i∈Z

(
ψM

(ui+M − ui
M

)
+

1

M

M−1∑
k=0

ψ1(ui+k+1 − ui+k)− r`
(ui+M − ui

M

))
:

u : Z→ R, ui = uz(i) for i ≤ −N, ui = uz′(i) for i ≥ N
}
, (16)

where r` is the tangent line to ψ∗∗0 at ` computed at the point x and, for any z ∈ RM , uz is the piecewise-affine

function R −→ R defined as follows:u′z(t) = zk for t ∈ (k − 1, k) +MZ

uz(0) = 0
(17)

With this definition we can state the Γ-convergence result as follows

Theorem 2.9 (first-order Γ-limit with periodic boundary conditions). Assume that ψM is a C1 strictly
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convex function, ψ1 is of class C1 in a neighbourhood of M` and ψ∗∗0 is differentiable in `. We define the

domain

D#
` = {u : R→ RM |u (locally) piecewise affine,

M∑
k=1

uk(t)−M`t 1-periodic,

u′ 1-periodic and u′(t) ∈M` for all t ∈ R \ S(u′)}.

Then E1
n,M Γ-converges, with respect to the L∞ topology, to

E1
M (u) =

∑
t∈S(u′)∩(0,1]

Φ(`)(u′(t−),u′(t+)), (18)

with domain D#
` .

3 Proof of the results

In this section, for a greater generality, we consider L > 0 and functions parameterized on [0, L] instead of

[0, 1]. In this case εn = L
n , and we extend all the notation introduced in the case L = 1. With fixed ` ∈ R,

the energies we consider are directly written in the form

E1
n,M (u) :=

n−1∑
i=0

(
ψM

(
ui+M − ui
Mεn

)
+

1

M

M−1∑
k=0

ψ1

(
ui+k+1 − ui+k

εn

)
− r`

(ui+M − ui
Mεn

))
, (19)

defined on A#
n (0, L). Note that E1

n,M (u) =
∑n−1
i=0 E in(u), with E in be given by (15).

3.1 Compactness

We can state the compactness result as in Theorem 2.7 independently of the boundary condition as follows.

Proposition 3.1. Let E in be given by (15). If

sup
n

n−1∑
i=0

E in(un) =: C < +∞,

then un satisfies the claim of Theorem 2.7 with the interval [0, L] in the place of the interval [0, 1].

Proof. Let η > 0, then we define the set

In(η) := {i ∈ {0, 1, . . . n− 1} : E in(un) > η},
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and, as a consequence of the bound on the sum, we get that

sup
n

#In(η) ≤ C(η) ∼ C/η < +∞.

Therefore, if i /∈ In(η), by adding and subtracting ψ0

(
uni+M−u

n
i

Mεn

)
to E in(un), we obtain the two inequalities

0 ≤ ψM
(
uni+M − uni

Mεn

)
+

1

M

(
M−1∑
k=0

ψ1

(
uni+k+1 − uni+k

εn

))
− ψ0

(
uni+M − uni

Mεn

)
≤ η

0 ≤ ψ0

(
uni+M − uni

Mεn

)
− r`

(
uni+M − uni

Mεn

)
≤ η.

Note that, if z and (z1, . . . , zM ) satisfy

a) ψM (z) + 1
M

(∑M−1
k=0 ψ1 (zk)

)
− ψ0 (z) ≤ η, for

∑M−1
k=0 zk = Mz

b) ψ0 (z)− r (z) ≤ η

then (z1, . . . , zM ) is close to a minimizing M -tuple for the min in the definition of ψ0, while ψ0(z) is close to

r(z), the tangent line of ψ∗∗0 in `. This means that if ψ0(`) = ψ∗∗0 (`) then z is close to `, while if ` is in some

Jj then z is close to either zrj−1 or zlJ . Hence, for η small enough we can find ε > 0 so that if (a) and (b) are

satisfied then

dist ((z1, . . . , zM ),M`) ≤ ε <
1

2
min{|z′ − z′′| : z′, z′′ ∈M`}.

This entails that for each i /∈ In(η) there exists a unique zni = (zni,1, . . . , z
n
i,M ) ∈M` such that∣∣∣∣(uni+1 − uni

εn
, . . . ,

uni+M − uni+M−1
εn

)
− zni

∣∣∣∣ ≤ ε, =⇒
∣∣∣∣uni+k − uni+k−1εn

− zni,k
∣∣∣∣ ≤ ε, (20)

for all k ∈ {1, . . . ,M}. Since In(η) is a finite set, we can identify Nn pairs of indices 0 = j0 ≤ i1 < j1 < i2 <

j2 < · · · < iNn < jNn ≤ iNn+1 = n such that the slopes of the M -interpolations of un are close to an element

of [znik ] in the sense of (20) for all indices between ik and jk, and they are not otherwise.

Since C ≥ E1
n,M (un) ≥ η(Nn − 1), we must have that Nn is bounded with respect to n. Then, we can

assume, up to extracting subsequences, that Nn is constantly equal to N . Similarly, since M` is a finite set,

we can assume znik = zk. With fixed k ∈ {2, . . . , N}, for each n we chose an index ĩk ∈ {jk−1 + 1, . . . , ik − 1}
and define the sequence {x̃nk} such that x̃nk = ĩkεn, then, up to subsequences, we can assume xnk → xk.

However, |ik − jk−1| must be bounded independently of n and k, since

C ≥ E1
n,M (un) ≥

N+1∑
k=1

η |ik − jk−1| .

Then we have |x̃nk − iεn| ≤ C
η εn for any i ∈ {jk−1+1, . . . , ik−1}. Therefore, the whole {jk−1+1, . . . , ik−1}εn

is converging to xk.
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Finally, we define the sets S =
⋃N
k=1{xk} and, for a fixed small δ, Sδ =

⋃N
k=1(xk − δ, xk + δ). By (20),

we have that for n large enough the s-th M -interpolation satisfies

sup
t∈(0,1)\Sδ

|(uns )′(t)− Zs(t)| ≤ ε, (21)

where Z(t) = (Z1(t), . . . , ZM (t)) is a piecewise-constant function such that Z(t) = zk for t ∈ (xk−1, xk).

Note that from the equicoerciveness of En,M and hence also of E1
n,M , we obtain that un,s are a precompact

sequence in H1(0, L), so that we can suppose that they converge uniformly. But from (21), the subsequence

is such that (uns )′ is converging to Zs. In conclusion, by applying a diagonal argument, we have proved that,

up to subsequences, un converges in W 1,∞
loc ((0, L) \ S) (in the sense of Definition 2.6) to a function u such

that u′(t) = Z(t) ∈M` and the jump set S(u′) ⊆ S.

Note that in this proof we have not used the periodicity condition. If it is taken into account that we

have to note that S(u′) can also contain the point 0.

3.2 Computation of the Gamma-limit

We now compute the Γ-limit subjected to periodic boundary conditions, without the simplifying assumption

that n be a multiple of M used for presentation purposes in the previous section. We will show that the limit

exists and can be characterized if more in general n = q modulo M . The energy will have the same form as in

the case q = 0, but the characterization of the domain of the Γ-limit will depend on q, since M -interpolations

do not necessarily inherit the periodicity condition of u. Note in particular that the limit as n → +∞ does

not exist.

For n ∈ N we let q ∈ {0, . . . ,M − 1} denote its class modulus M (n ≡ q mod M), then given u a

piecewise-affine function in W 1,1
#,`(0, L), for any index Mi+ q with q ∈ {0, 1, . . . ,M − 1}, its M -interpolations

uk will satisfy:

uk,Mi+q − uk,Mi+q−1

εn
=
uMi+k − uMi+k−1

εn
=
un+Mi+k − un+Mi+k−1

εn
.

Since n = Mr + q, we write

uk,Mi+k − uk,Mi+k−1

εn
=
uM(i+r)+q+k − uM(i+r)+q+k−1

εn
,

which is linked to the q + k interpolation (mod M) shifted of
⌊
n+k
M

⌋
. Thus, we have

u′k(t) = u′k+q(t+Mrεn) if q + k ≤M

u′k(t) = u′k+q−M (t+M(r + 1)εn) if q + k > M
(22)

Proposition 3.2. Consider n(r) = Mr+q for a fixed q ∈ {0, . . . ,M−1}. Consider a sequence (un(r))r∈N such

that supnE
1
n,M (un) ≤ C < +∞. Then there exists a finite set S ⊂ (0, L] for which un (up to subsequences)
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converges in W 1,∞
loc (R \ (S + Z)) to a u = (u1, . . . , uM ) as in Theorem 2.7 such that for any k = 1, . . . ,M we

have

u′k(t) = u′q+k(t+ L) if q + k ≤M, u′k(t) = u′k+q−M (t+ L) if q + k > M

for almost every t ∈ S(u′).

Proof. The convergence is given by Proposition 3.1. What remains to prove is the periodicity property.

Suppose at first q + k ≤ M . Fix t /∈ S(u′) and suppose t + L /∈ S(u′), then there exists a δ > 0 such that

Iδ(t) = [t − δ, t + δ] ⊂ R \ S(u′) and Iδ(t + L) ⊂ R \ S(u′). For every k fixed, (unk )′ converges uniformly on

Iδ(t) and (unk+q)
′ on Iδ(t+ L). Since Mrεn = L

(
1− q

n

)
, we can rewrite (22) as

(unk )′(t) = (unk+q)
′
(
t+ L− Lq

n

)
Taking the limit in n, the left-hand side is converging to u′k(t), while for the right-hand side we can notice

that, since u′ is piecewise constant, u′k+q(t+ L) = u′k+q

(
t+ L− Lq

n

)
for every n large enough, so that

∣∣∣∣(unk+q)′(t+ L− Lq

n

)
− u′k+q(t+ L)

∣∣∣∣ =

∣∣∣∣(unk+q)′(t+ L− Lq

n

)
− u′k+q

(
t+ L− Lq

n

)∣∣∣∣
≤ sup

s∈Iδ(t+L)

∣∣(unk+q)′(s)− u′k+q(s)∣∣ −−−−−→
n→+∞

0.

The case q + k > M follows similarly.

Remark 3.3. Note that at the limit we have the boundary conditions u′k(0+) = u′q+k(L+), where q + k is

intended modulus M . This holds also if 0 ∈ S(u′).

Proposition 3.4. Given (un)n∈N such that supnE
1
n,M (un) =: C < +∞. Let 0 = x0 < x1 < · · · < xN = L

and let α1, . . . , αN ∈ R be such that Mαj ⊆M`/L and un converges to u satisfying

u′(t) = zαj ∈Mαj , for t ∈ (xj−1, xj).

Then, `
L =

∑N
j=1 αj(xj − xj−1).

Proof. Suppose L = 1. By the boundary conditions we have

` = (unn − unMbn/Mc) +

bn/Mc∑
i=0

unM(i+1) − u
n
Mi = (unn − unMbn/Mc) +

bn/Mc∑
i=0

Mεn
unM(i+1) − u

n
Mi

Mεn
.

Now, fixed δ > 0, we define Ijδ = (xj − δ, xj + δ) ∩ [0, 1], for j = 0, . . . , N , and we call Sδ = ∪Nj=0I
j
δ . From

Proposition 3.1 the interpolation derivative (unk )′(t) converges to z
αj
k on [xj−1 + δ, xj − δ]. Then for an index

13



i such that [Miεn,M(i+ 1)εn] ⊂ [xj−1 + δ, xj − δ], we have

unM(i+1) − u
n
Mi

Mεn
=

1

M

M(i+1)−1∑
m=Mi

unm+1 − unM
εn

=
1

M

M∑
k=1

unk,Mi+1 − unk,Mi

εn
−−−−−→
n→+∞

1

M

M∑
k=1

z
αj
k = αj

Let k+j,n be the smallest index k such that Mkεn ≥ xj + δ and similarly let k−j,n be the largest index k such

that Mkεn ≤ xj − δ, so that limn εnMk−j,n = xj − δ and limn εnMk+j,n = xj + δ. We also define k−0,n = 0 and

k+N,n = b nM c. Then,∣∣∣∣∣∣∣
k−j,n−1∑
i=k+j−1,n

Mεn
unM(i+1) − u

n
Mi

Mεn
− αj(xj − xj−1 − 2δ)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
k−j,n−1∑
i=k+j−1,n

Mεn

(
unM(i+1) − u

n
Mi

Mεn
− αj

)∣∣∣∣∣∣∣
+
∣∣αj(xj − δ − εnMk−j,n)

∣∣+
∣∣αj(xj−1 + δ − εnMk+j−1,n)

∣∣ ,
which tends to 0 as n tends to infinity. On the other hand, since supnE

1
n,M (un) = C, there exists a constant

C1 independent from n such that for every index i we have

E in(un) ≤ C =⇒ ψ1

(
uni+1 − uni

εn

)
− r`

(
uni+1 − uni

εn

)
≤ C1,

where we used the definition of E in in (15). Thus, from the superlinear growth of ψ1, we must have that there

exists an R > 0 such that
∣∣∣uni+1−u

n
i

εn

∣∣∣ ≤ R. Then, we can conclude

∣∣∣∣∣∣∣`−
N∑
j=1

k−j,n−1∑
i=k+j−1,n

Mεn
unM(i+1) − u

n
Mi

Mεn

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣unn − unMk+N,n
+

N∑
j=0

k+j,n−1∑
i=k−j,n

Mεn
unM(i+1) − u

n
Mi

Mεn

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n−1∑

i=Mk+N,n

εn
uni+1 − uni

εn
+

N∑
j=0

Mk+j,n−1∑
i=Mk−j,n

εn
uni+1 − uni

εn

∣∣∣∣∣∣∣
≤ Rεn

(
M

N∑
j=0

(k+j,n − k
−
j,n) + n−Mk+N,n

)
.

Sending n to +∞ we have ∣∣∣∣∣∣`−
N∑
j=1

αj(xj − xj−1 − 2δ)

∣∣∣∣∣∣ ≤ 2RNδ

Finally, by the arbitrariness of δ > 0 we must have ` =
∑N
j=1 αj(xj − xj−1).

Remark 3.5. Let Φ = Φ(`) be as in Definition 2.8. We note that the minimum is well defined because of

Weierstrass’ Theorem. Moreover, the infimum in N ∈ N in (16) can be replaced with the limit as N → +∞
because of the decreasing monotonicity. The terms inside the sums are 0 for i ≥ N or i ≤ −N −M when
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z, z′ ∈M`. The function Φ: M`×M` → [0,∞] is a subadditive function. In particular the functional defined

by the right-hand side of (18) is lower-semicontinuous.

Remark 3.6. Given ξ ∈ R, we can consider

Φ(z, z′, ξ) := inf
N∈N

min
u

{∑
i∈Z

(
ψM

(
ui+M − ui

M

)
+

1

M

M−1∑
k=0

ψ1(ui+k+1 − ui+k)− r`
(ui+M − ui

M

))
:

u : Z→ R, u = uz + ξ1 for i ≤ −N, u = uz′ + ξ2 for i ≥ N, ξ = ξ2 − ξ1
}

(23)

= inf
N∈N

min
u

{∑
i∈Z

(
ψM

(
ui+M − ui

M

)
+

1

M

M−1∑
k=0

ψ1(ui+k+1 − ui+k)− r`
(ui+M − ui

M

))
u : Z→ R, u = uz for i ≤ −N, u = uz′ + ξ for i ≥ N

}
. (24)

The two formulas are equal because the sums which are involved are invariant under vertical translations of

u.

Now note that Φ(z, z′, ξ) = Φ(z, z′) for every ξ ∈ R, under the assumption that ψM , ψ1 are C1 functions

in a neighbourhood of M`. Indeed, if (uN )N is a minimizing sequence in the definition of Φ(z, z′, ξ), then we

can consider the following new sequence

ũ2N =


uz′ for i ≥ 2N

uz′ + 2ξ − i ξ
N

for N ≤ i ≤ 2N

uN for i ≤ N.

Observe that varying N ∈ N, all ũ2N ’s are competitors in the definition of Φ(z, z′). Let z ∈Mα and z′ ∈Mα′

wih α, α′ ∈ R such that Mα ⊆ M` and Mα′ ⊆ M`. We compute the difference between the involved sums

for ũ2N and the ones for uN by

2N∑
i=N

(
ψM

(
α′ − ξ

N

)
+

1

M

M−1∑
k=0

ψ1

(
z′k −

ξ

N

)
− r`

(
α′ − ξ

N

))
+ o
( 1

N

)
. (25)

Now observe that the C1 function f(η) = ψM (α′ − η) +
1

M

∑M−1
k=0 ψ1 (z′k − η) − r`(α′ − η) is always non-

negative and it is equal to 0 if η = 0, so that η = 0 is a minimum point for f . Hence by Fermat’s Theorem

f ′(0) = 0 and so

lim
N→+∞

2N∑
i=N

(
ψM

(
α′ − ξ

N

)
+

1

M

M−1∑
k=0

ψ1

(
z′k −

ξ

N

)
− r`

(
α′ − ξ

N

))
= 0.

In particular, we proved that Φ(z, z′) ≤ Φ(z, z′, ξ). Arguing in the same way one can show the reverse

inequality.
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Remark 3.7. A last useful remark is that Φ(z, z′) is stable under cyclic permutations of the entries of z and

z′. More precisely, if we define for q = 1, . . . ,M − 1 the cyclic permutation σq : M` →M` given by

σq : z = (z1, . . . , zM ) 7−→ σq(z) := (zM+1−q, . . . , zM , z1, . . . , zM−q), (26)

then Φ(σq(z), σq(z
′)) = Φ(z, z′). Indeed, if u is a competitor for the minimum problem in Φ(z, z′), then the

translation (Tqu)i = ui−q preserves the value of the objective function in the definition of Φ and it satisfies

Tqu = uσq(z) for i ≤ −N − q, Tqu = uσq(z′) for i ≥ N − q.

Thus, Tqu is a competitor for the minimum problem in Φ(σq(z), σq(z
′)). Clearly we can argue in the same

way with the inverse translation, proving the claim.

Theorem 3.8 (first-order Γ-limit with periodic boundary conditions). Assume that ψM is a non-degenerate

strictly convex C1 function, ψ1 is of class C1 in a neighbourhood of M`/L and ψ∗∗0 is differentiable in `
L .

Constraining n ≡ q mod M , we define the domain

D#
q = {u : R→ RM |u piecewise affine, u′(t) ∈M`/L for all t ∈ R \ S(u′),

#(S(u′) ∩ (0, L]) < +∞,
M∑
k=1

uk(t)−M `

L
t L-periodic,

u′k(t) = u′[q+k]mod M
(t+ L) for k = 0, . . . ,M − 1}.

Then E1
n,M Γ-converges, with respect to L∞ topology, to

E1
q (u) =

∑
t∈S(u′)∩(0,1]

Φ(`/L)(u′(t−),u′(t+)),

with the domain dom(E1,#
q ) = D#

q .

Proof. We first consider the case in which L = 1 and n ≡ 0 mod M .

Lower bound. Let un → u in L∞(0, 1) be such that E1,`
n,M (un) ≤ C < +∞ for every n ∈ N. Then, by

Proposition 3.2, there exists a finite set S := {x1, . . . xN} ⊂ (0, 1], with 0 < x1 < . . . xN−1 < xN ≤ 1, and

there exist z1, . . . , zN ∈M` such that un (up to subsequences) converges in W 1,∞
loc (R \ (S + Z)) to a M-tuple

u ∈ D#
0 such that u′(t) = zj ∈ Mαj for t ∈ (xj−1 + k, xj + k) and for all k ∈ Z for j ∈ {1, . . . , N}, with

x0 = xN − 1. For j ∈ {1, ..., N}, let (kjn)n be a sequence of natural numbers divisible by M such that

lim
n→+∞

kjnεn − xj = 0. (27)

Moreover, let (hjn)n be a sequence in MN such that

lim
n→+∞

εnh
j
n =

xj + xj−1
2

. (28)
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Now, we can write

E1
n,M (un) =

N∑
j=1

hj+1
n −1∑
i=hjn

(
ψM

(
uni+M − uni

Mεn

)
+

1

M

M−1∑
s=0

ψ1

(
uni+s+1 − uni+s

εn

)
− r

(
uni+M − uni

Mεn

))
, (29)

where r = r`, and we have used the notation hN+1
n = h1n + n and that by periodicity we can choose the

endpoints h1n and h1n + n without changing the sum. In order to recover Φ, we define

ũni =



uzj (i)− uzj+1
(hjn − kjn) +

un
hjn

εn
for i ≤ hjn − kjn

un
i+kjn

εn
for hjn − kjn ≤ i ≤ hj+1

n − kjn

uzj+1(i)− uzj+1(hj+1
n − kjn) +

un
hj+1
n

εn
for i ≥ hj+1

n − kjn.

(30)

Since zj ∈Mαj , we note that for i ≥ hj+1
n − kjn, we have

ψM

(
ũni+M − ũni

M

)
+

1

M

M−1∑
s=0

ψ1

(
ũni+s+1 − ũni+s

)
= ψ0(αj+1) = r(αj+1) = r

(
uni+M − uni

Mεn

)

and similarly for i ≤ hjn − kjn −M . For hjn − kjn ≤ i ≤ hj+1
n − kjn −M , instead, we have

ũni+1 − ũni =
un
i+kjn+1

− un
i+kjn

εn
and

ũni+M − ũni
M

=
un
i+kjn+M

− un
i+kjn

Mεn
.

Then, defining ξnj = uzj+1
(hj+1
n − kjn)− uzj+1

(hjn − kjn)−
un
h
j+1
n
−un

h
j
n

εn
, we can rewrite

hj+1
n −1∑
i=hjn

(
ψM

(
uni+M − uni

Mεn

)
+

1

M

M−1∑
s=0

ψ1

(
uni+s+1 − uni+s

εn

)
− r

(
uni+M − uni

Mεn

))

=
∑
i∈Z

(
ψM

(
ũni+M − ũni

M

)
+

1

M

M−1∑
k=0

ψ1(ũni+k+1 − ũni+k)− r
(
ũni+M − ũni

M

))
+ ωn

≥ Φ
(
zj , zj+1, ξ

n
j

)
+ ωn = Φ (zj , zj+1) + ωn.

The error ωn comes from the difference in behaviour between ũni and un
i+kjn

when hj+1
n −kjn−M < i < hj+1

n −kjn
or hjn − kjn −M < i < hjn − kjn; more precisely, ωn is the sum, for those i, of terms of the kind

ψM

(un
i+kjn+M

− un
i+kjn

Mεn

)
− ψM

(
ũni+M − ũni

M

)
for hj+1

n − kjn −M < i < hj+1
n − kjn,

−ψM
(
ũni+M − ũni

M

)
for hjn − kjn −M < i < hjn − kjn.
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and similar terms for ψ1. To show that limn ωn = 0, from the continuity of ψM , ψ1 and r, it is sufficient to

show that
limn

∣∣∣∣∣u
n
i+kjn+1

− un
i+kjn

εn
− uzj+1(i+ 1)− uzj+1(i)

∣∣∣∣∣ = 0, for i ∈ (hj+1
n − kjn −M,hj+1

n − kjn +M)

limn

∣∣∣∣∣u
n
i+kjn+1

− un
i+kjn

εn
− uzj (i+ 1)− uzj(i)

∣∣∣∣∣ = 0, for i ∈ (hjn − kjn −M,hjn − kjn +M)

.

Let iM denote the residual class of i with respect to M . Then, by the definition of uzj+1
as in (17) we have

uzj+1
(i+ 1)− uzj+1

(i) = (zj+1)iM+1.

On the other hand, since there exists a compact around the midpoint of (xj , xj+1) which contains εn(hj+1
n −

M,hj+1
n +M) for all n, we can use the locally uniform convergence of u′n to u′ to gain

un
i+1+kjn

− un
i+1+kjn

εn
= (un)′iM+1(εn(i+ kjn)) −→ u′iM+1

(
xj+1 + xj

2

)
= (zj+1)iM+1 for n→ +∞.

The case i ∈ (hjn − kjn − M,hjn − kjn + M) is analogous. This proves the claim, and consequently that

limn ωn = 0. In particular, putting everything together we conclude

lim inf
n

E1
n,M (un) ≥

N∑
j=1

Φ (zj , zj+1) .

In the case q 6= 0, the only thing that changes is that we cannot define hN+1
n = h1n + n, because in

this way it will not be divisible by M , thus, we take hN+1
n the highest index multiple of M below h1n + n.

Consequently, in the decomposition (29) there will appear q residual terms of the kind:

ψM

(
uni+M − uni

Mεn

)
+

1

M

M−1∑
s=0

ψ1

(
uni+s+1 − uni+s

εn

)
− r

(
uni+M − uni

Mεn

)
,

but since iεn is close to 1 + x1+x0

2 ; that is, far from any critical point xj , by continuity we have that they

tend to 0.

Upper bound. Let u be such that E1
0(u) < ∞ and suppose , without loss of generality, that u(0) = 0,

then by definition there exist N ∈ N, z1, . . . zN ∈ M` and we can write S(u′) ∩ (0, 1] = {x1, . . . xN}, with

0 < x1 < . . . xN−1 < xN ≤ 1, u′(t) = zj ∈Mαj for t ∈ (xj−1 +k, xj +k) and for all k ∈ Z, with x0 = xN −1.

Up to translations, which do not change the energy, we can always suppose that 1 /∈ S(u′); that is, xN < 1.

Moreover, we have that

E1
0(u) =

N∑
j=1

Φ(zj−1, zj).

We first consider the case q = 0. With fixed ε > 0, there exists Ñ = Ñ(ε) ∈ N multiple of M and N
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discrete functions vj such that

Φ(zj−1, zj) ≤
∑
i∈Z

ψM

(vji+M − vji
M

)
+

1

M

M−1∑
k=0

ψ1(vji+k+1 − v
j
i+k)− r`

(vji+M − vji
M

)
≤ Φ(zj−1, zj) + ε (31)

and

vj =

uzj−1
for i ≤ −Ñ

uzj for i ≥ Ñ

for every j ∈ {1, . . . N}. Consider now the sequence of functions (un)n defined as follows

uni =



εnv
1
i−knN+n − εnv1n−knN for 0 ≤ i ≤ kn1 − Ñ

εnv
2
i−kn1

+ εnD2 for kn1 − Ñ ≤ i ≤ kn2 − Ñ

. . .

εnv
N
i−kN−1

n
+ εnDN for knN−1 − Ñ ≤ i ≤ knN − Ñ

εnv
1
i−kNn

+ εnD1 for knN − Ñ ≤ i ≤ n,

(32)

where knj := min{k ∈ N : k ≥ xjn and k is multiple of M} and

D2 = v1
kn1−knN+n−Ñ − v

2
−Ñ − v

1
n−knN

D3 = D2 + v2
kn2−kn1−Ñ

− v3−Ñ
. . .

DN = DN−1 + vN−1
knN−1−knN−2−Ñ

− vN−Ñ

D1 = DN + vN
knN−knN−1−Ñ

− v1−Ñ .

We note that unn − un0 =
∑N
j=1 αj(k

n
j − knj−1)εn, which in general is different from `; therefore, in order

to adjust the periodicity conditions, we apply a linear correction term ũni = uni + δn
i
n , where δn = ` −∑N

j=1 αj(k
n
j − knj−1)εn. Since now the the boundary condition is satisfied, we can extend ũn to R such that

ũn(t)− `t is 1-periodic. From Proposition 3.4 and the fact that |nxj − knj | ≤M we have

δn =

N∑
j=1

αj(xj − xj−1 − knj εn + knj−1εn) = O(εn) =⇒ ∃C > 0 : (knj − knj−1)δn ≤ C ∀j, n. (33)

Since un is converging uniformly to u and δnx→ 0 uniformly in x ∈ [0, 1], we have that ũn → u in L∞([0, 1])
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in the sense of Definition 2.6. As for the convergence of the energy, if we let

Eni (u) = ψM

(
ui+M − ui
Mεn

)
+

1

M

M−1∑
k=0

ψ1

(
ui+k+1 − ui+k

εn

)
− r`

(
ui+M − ui
Mεn

)
,

then, by (31) we have

E1
0(u) + ε ≥ E1

n,M (ũn) +

N∑
j=1

(
Rjn −

knj −Ñ−M∑
i=knj−1+Ñ

Eni (ũn)

)
,

where Rjn =
∑Ñ−1
i=−Ñ−M+1

Eni (εnv
j)−Eni+knj−1

(ũn). However, this Rjn involves only a finite number of indices,

independently from n; thus, since
ũni+M−ũ

n
i

Mεn
=

vji+M−v
j
i

M + δn and
ũni+1−ũ

n
i

εn
= vji+1 − v

j
i + δn, by continuity of

ψ1, ψM and r` we have

lim
n

N∑
j=1

Rjn = 0.

Instead, for i ∈ {knj−1 − Ñ , . . . , knj − Ñ −M} we have vji−knj−1
= uzj (i− knj−1) and then

Eni (ũn) = ψM (αj + δn) +
1

M

M∑
k=1

ψ1 ((zj)k + δn)− r` (αj + δn) =: fj(δn).

Note that we lost the dependence on i, so that, by (33), we have

knj −Ñ−M∑
i=knj−1+Ñ

Eni (ũn) = (knj − knj−1 −M)fj(δn) = (knj − knj−1 −M)δn

(
fj(δn)

δn

)
≤ C fj(δn)

δn
.

By Fermat’s Theorem we can conclude that limn
fj(δn)
δn

= f ′(0) = 0; in conclusion

E1
0(u) + ε ≥ lim sup

n
E1
n,M (ũn),

and the claim is proved by the arbitrariness of ε.

When q 6= 0, the proof proceeds similarly, but we have to pay attention to the boundary mismatch in the

cycle of slopes in ũ. This can be fixed by taking into account that, by Remark 3.7, we can write the energy

as

E1
q (u) =

N∑
j=1

Φ(σq(zj−1), σq(zj)),

where σq is defined as in (26). Then, we can find some Ñ multiple of M and some vj as in (31) with the
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condition

vj =

uσq(zj−1) for i ≤ −Ñ

uσq(zj) for i ≥ Ñ .

Hence, we define knj := min{k ∈ N : k ≥ xjn and k ≡ q mod M} and we choose un as in (32). In this way,

the interpolations un are still converging uniformly to u because

uσq(zj)(i+ knj + 1)− uσq(zj)(i+ knj ) = uσq(zj)(i+ q + 1)− uσq(zj)(i+ q) = uzj (i+ 1)− uzj (i).

Since n − knN is divisible by M and
unn−u

n
n−1

εn
= σq(z1)M , we can extend un by periodicity on the whole R

defining a recovery sequence.
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