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Abstract

We show that the heat flow provides good approximation properties for the area functional
on proper RCD(K,∞) spaces, implying that in this setting the area formula for functions of
bounded variation holds and that the area functional coincides with its relaxation. We then
obtain partial regularity and uniqueness results for functions whose hypographs are perimeter
minimizing. Finally, we consider sequences of RCD(K,N) spaces and we show that, thanks to
the previously obtained properties, Sobolev minimizers of the area functional in a limit space
can be approximated with minimizers along the converging sequence of spaces. Using this last
result, we obtain applications on Ricci-limit spaces.

Contents

1 Preliminaries 3
1.1 Properties of RCD spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Minimal sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Heat flow approximation of the area and applications in RCD(K,∞) spaces 8

3 Approximation of minimal graphs in RCD(K,N) 16

A Appendix 19

Introduction

In recent years there has been a growing interest in the study of metric (measure) spaces with
a notion of lower bound on the Ricci curvature. Initially, this was motivated by the interest in
Ricci limits, i.e. spaces arising as Gromov-Hausdorff limits of manifolds with a uniform lower Ricci
curvature bound. Later on, intrinsic formulations of such curvature bound were found, leading to
the theory of RCD spaces.

An RCD(K,N) space is a metric measure space where K ∈ R plays the role of a lower bound on
the Ricci curvature and N ∈ [1,+∞] plays the role of an upper bound on the dimension. This class
includes measured Gromov-Hausdorff limits of smooth manifolds of fixed dimension with uniform
Ricci curvature lower bounds and finite dimensional Alexandrov spaces with sectional curvature
bounded from below. Moreover, the RCD(K,N) class is closed with respect to measured Gromov-
Hausdorff convergence. For this reason, in the RCD setting, the study of objects that retain their
properties along converging sequences of spaces is particularly relevant. This is one of the motivations
that led to an extensive study of sets of finite perimeter and perimeter minimizing sets in the non-
smooth context of RCD(K,N) spaces.
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In the paper, we study some approximation properties of the area functional on RCD spaces and
Ricci limits, extending a series of results that were previously obtained for sets of finite perimeter in
this context. We then derive some new applications. The first central result concerns the possibility
of approximating functions via the heat flow on proper RCD(K,∞) spaces in a way that involves the
area. This is the content of Theorem 1. Given a metric measure space (X, d,m), an open set Ω ⊂ X
and u ∈ BV(Ω), we denote by |Du| its total variation measure, by |∇u| the density of the absolutely
continuous part of |Du| w.r.t. m and by |Dsu| the singular part of |Du|. For every measurable set
E ⊂ Ω, we then define the area of u in E as

A(u,E) :=

ˆ
E

√
1 + |∇u|2 dm+ |Dsu|(E).

We also define Hyp(u) := {(x, t) ⊂ Ω× R : t ≤ u(x)} and we denote by L0(Ω) the set of measurable
functions on Ω. Given two sets A,B ⊂ X, we denote by P(A,B) the perimeter of A in B. Finally,
we denote the heat flow on an RCD(K,∞) space by Pt(·).

Theorem 1. Let (X, d,m) be a proper RCD(K,∞) space and let u ∈ L∞(X) ∩ BV(X). Then, for
every bounded open set E ⊂ X such that |Dsu|(∂E) = 0, it holds

lim
t→0

A(Pt(u), E) = A(u,E).

As a first application of Theorem 1 we obtain that the area formula holds on proper RCD(K,∞)
spaces, i.e. the area of a function of bounded variation coincides with the perimeter of its hypograph.
This is the content of Theorem 2. Before stating the theorem, we recall that related results were
proved for PI spaces in [11], where it was conjectured that the area formula for functions of bounded
variation should hold in that setting. In particular, [11, Theorem 5.1] implies that the area formula
holds for Sobolev functions on PI spaces where weak and relaxed gradients coincide (and finite
dimensional RCD(K,N) spaces fit in this framework). Such formula was then proved for BV functions
on finite dimensional RCD(K,N) spaces in [12], while in the next theorem we extend the result to
the infinite dimensional framework of proper RCD(K,∞) spaces.

Theorem 2. Let (X, d,m) be a proper RCD(K,∞) space, let Ω ⊂ X be open and bounded and let
u ∈ L1(Ω). Then P(Hyp(u),Ω × R) < +∞ if and only if u ∈ BV(Ω). In this case, for every Borel
set E ⊂ Ω, it holds

P(Hyp(u), E × R) = A(u,E).

Moreover, if u ∈ L0(B2r(x)) and P(Hyp(u), B2r(x)×R) < +∞, then u ∈ BV(Br(x)) and the previous
equation holds for every Borel set E ⊂ Br(x).

As anticipated, the previous result complements the one proved for doubling spaces supporting
a Poincaré inequality in [11], where it was shown that if (X, d,m) is such a space and u ∈ BV(Ω),
then

P(Hyp(u),Ω× R) ≥ A(u,Ω).

Note that, although RCD(K,∞) spaces are not necessarily doubling, the proof of the inequality
given in [11] works with very slight changes also in our setting. On the other hand, the proof that
we give of the reverse inequality is a consequence of Theorem 1 and truly relies on the curvature
assumption.

A second consequence of Theorem 1 is that on proper RCD(K,∞) spaces the relaxed area func-
tional coincides with the area functional itself. This is the content of Theorem 3.

Let Ω ⊂ X be an open bounded set and let u ∈ BV(Ω). For every open set E ⊂ Ω we denote
by Lip(E) the set of Lipschitz functions on E and given f ∈ Lip(E) we denote by lip(f) its local
Lipschitz constant. The relaxed area functional is defined by

Ã(u,E) := inf
{
lim inf
n→+∞

ˆ
E

√
1 + lip(fn)2 dm

∣∣∣(fn)n ⊂ L1(E) ∩ Lip(E), ∥fn − u∥L1(E) → 0
}
.
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Theorem 3. Let (X, d,m) be a proper RCD(K,∞) space, let Ω ⊂ X be open and bounded and let
u ∈ BV(Ω). Then, for every open set E ⊂ Ω, it holds

Ã(u,E) = A(u,E).

The previous theorem extends the analogous result proved in [11] for Sobolev functions. Note
that in general metric measure spaces (even if they are doubling and support a Poincaré inequality)
the relaxed area functional does not coincide with the area functional itself, as shown in [31]. The-
orem 3, in particular, allows to apply the mild regularity results for minimizers of the relaxed area
functional in metric measure spaces established in [30] to the area functional itself in the RCD(K,N)
setting. Next, we obtain a uniqueness result for perimeter minimizers (which follows through the
identification between area and perimeter). In what follows, when we refer to an RCD(K,N) space,
we implicitly mean that N < +∞.

Theorem 4. Let (X, d,m) be a proper RCD(K,∞) space, let Ω ⊊ X be an open set and let u ∈
L∞(Ω)∩W1,1(Ω) be a function whose hypograph is perimeter minimizing. If v ∈ L∞(Ω) has hypograph
which is perimeter minimizing and {u ̸= v} ⊂⊂ Ω, then u = v.

Corollary. Let (X, d,m) be an RCD(K,N) space, let Ω ⊊ X be an open set and let u ∈ W1,1(Ω) be
a function whose hypograph is perimeter minimizing. If v ∈ L1(Ω) has hypograph which is perimeter
minimizing and {u ̸= v} ⊂⊂ Ω, then u = v.

We then consider sequences of RCD(K,N) spaces and, relying on Theorems 1 and 4, we show
that Sobolev minimizers of the area functional in a limit space can be approximated with minimizers
along the converging sequence of spaces. This is the content of Theorem 5 below. Theorem 5 is
useful when working with Ricci limit spaces, because it allows to pass information from minimizers
of the area on smooth manifolds (for which there is a rich theory) to minimizers on the limit space.
We work with functions that minimize the area (see Definition 2.6), but we could have worked
with functions whose hypographs are perimeter minimizing since the two notions are equivalent (see
Proposition 2.9).

When considering pointed measured Gromov-Hausdorff convergence (pmGH) of spaces, we adopt
the extrinsic viewpoint, meaning that we implicitly assume all spaces to be embedded in a common
metric space (Z, dZ) where the convergence is realized. In particular, balls in this setting are to be
intended w.r.t. the distance in Z (where all spaces are embedded), while we will specify from time
to time which measure is to be considered. We refer to the beginning of Section 3 for more details
on the notation used.

Theorem 5. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to
(X, d,m, x). Let r > 0 be such that Br(x) ⊊ X and let u ∈ W1,1(Br(x),m) be an area minimizer. For
every s ∈ (0, r), modulo passing to a subsequence, there exist area minimizers ui ∈ BV(Bs(x),mi)
such that ui1Bs(x) converge in L1 to u1Bs(x) and A(ui, Bs(x),mi) → A(u,Bs(x),m).

Finally, in the Appendix, we collect some applications of the previously obtained theorems in
the setting of Ricci limit spaces.

Acknowledgements. I would like to thank Andrea Mondino for his guidance and Daniele Semola
for useful comments on a previous version of the paper.

1 Preliminaries

We will work on metric measure spaces (X, d,m), where (X, d) is a separable complete metric space
and m is a non-negative Borel measure on X which is finite on bounded sets. Given an open set
Ω ⊂ X we denote by Lip(Ω), Lipc(Ω) and Lipb(Ω) respectively the set of Lipschitz functions, Lipschitz
functions with compact support and bounded Lipschitz functions on Ω. Similarly, we denote by C(Ω)
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the set of continuous functions on Ω and by L0(Ω) the one of measurable functions. If u ∈ L0(Ω) we
also define Hyp(u) := {(x, t) ⊂ Ω× R : t ≤ u(x)}. If f ∈ Lip(Ω) and x ∈ Ω we define

lip(f)(x) := lim sup
y→x

|f(x)− f(y)|
d(x, y)

and L(f) := sup
x,y∈Ω

|f(x)− f(y)|
d(x, y)

.

We say that Ω′ is well contained in Ω, and we denote it by Ω′ ⊂⊂ Ω, if Ω′ is bounded and d(Ω′, cΩ) >
0. When we consider the spaces L1loc(Ω) and Liploc(Ω) we implicitly mean that we are localizing w.r.t.
well contained subsets of Ω; note that these are not necessarily precompact in Ω (although they will
be precompact if X is a finite dimensional RCD(K,N) space or a proper RCD(K,∞) space). We now
introduce Sobolev spaces in the setting of metric measure spaces, the main references being [14], [7],
[8] and [26].

Definition 1.1. Let (X, d,m) be a metric measure space and let Ω ⊂ X be an open set. A function
f ∈ L2(Ω) is said to be in the Sobolev space W1,2(Ω) if there exists a sequence {fi}i∈N ⊂ Lip(Ω)
converging to f in L2(Ω) such that

lim sup
i→+∞

ˆ
Ω

lip(fi)
2 dm < +∞.

For every f ∈ W1,2(Ω) one can define a function |∇f | ∈ L2(Ω) such that for every open set A ⊂ Ω
we haveˆ

A

|∇f |2 dm = inf
{
lim inf
n→+∞

ˆ
A

lip(fn)
2 dm

∣∣∣(fn)n ⊂ L2(A) ∩ Lip(A), ∥fn − f∥L2(A) → 0
}
.

The quantity in the previous expression will be called Cheeger energy and will be denoted by Ch(f)
while |∇f | will be called relaxed gradient. We define ∥f∥W1,2(Ω) := ∥f∥L2(Ω)+Ch(f). One can check
that with this norm the space W1,2(Ω) is Banach.

Remark 1.2. Given a metric measure space (X, d,m), an open set Ω ⊂ X and a function f ∈
W1,2(Ω), there exists a sequence fn ∈ Lip(Ω) such that lipa(fn) → |∇f | in L2(Ω), where

lipa(f)(x) := lim
r→0

sup
y,z∈Br(x)

|f(y)− f(z)|
d(y, z)

.

This fact follows since in the definition of Sobolev spaces one could replace local Lipschitz constants
lip with asymptotic Lipschitz constants lipa and still obtain the same space (see [3] and [7, Remark
5.12]).

We now introduce functions of bounded variation following [36] (see also [4]).

Definition 1.3. Let (X, d,m) be a metric measure space and let Ω ⊂ X be an open set. A function
f ∈ L1(Ω) is said to be of bounded variation if there exists a sequence of {fi}i∈N ⊂ Lip(Ω) converging
to f in L1(Ω) such that

lim sup
i→+∞

ˆ
Ω

lip(fi) dm < +∞.

The space of such functions is denoted by BV(Ω).

For every f ∈ BV(Ω) and any open set A ⊂ Ω we define

|Df |(A) = inf
{
lim inf
n→+∞

ˆ
A

lip(fn) dm
∣∣∣(fn)n ⊂ L1(A) ∩ Lip(A), ∥fn − f∥L1(A) → 0

}
.

One can check that the quantity in the previous expression is the restriction to the open subsets
of Ω of a finite measure. We denote by |∇f | the density of |Df | with respect to m and by |Dsf |
the singular part of |Du|. We define ∥f∥BV(Ω) := ∥f∥L1(Ω) + |Df |(Ω). One can check that with this
norm the space BV(Ω) is Banach. The function f belongs to W1,1(Ω) if f ∈ BV(Ω) and |Df | << m.

4



Definition 1.4. Let (X, d,m) be a metric measure space and let Ω ⊂ X be open. We define the
perimeter of E ⊂ Ω in Ω by

P(E,Ω) := inf
{
lim inf
n→+∞

ˆ
Ω

lip(fn) dm
∣∣∣(fn)n ⊂ L1loc(Ω) ∩ Lip(Ω), ∥fn − 1E∥L1

loc(Ω) → 0
}
.

We recall that P(E, ·) is the restriction to open sets of a Borel measure and that if E ⊂ Ω has
finite measure, then it has finite perimeter if and only if 1E ∈ BV(Ω) and in this case |D1E | = P(E, ·).

Definition 1.5. We say that a metric measure space (X, d,m) is infinitesimally Hilbertian if the
space W1,2(X) is a Hilbert space.

We will consider pointed Gromov-Hausdorff (pGH) and pointed measured Gromov-Hausdorff
(pmGH) convergence of metric measure spaces, and we refer to [28] for the relevant background. We
recall that in the case of a sequence of uniformly locally doubling metric measure spaces (Xi, di,mi, xi)
(as in the case of RCD(K,N) spaces), pointed measured Gromov-Hausdorff convergence to (X, d,m, x)
can be equivalently characterized asking for the existence of a proper metric space (Z, dz) such that
all the metric spaces (Xi, di) are isometrically embedded into (Z, dz), xi → x and mi → m weakly in
duality with continuous boundedly supported functions in Z. In this case we say that the convergence
is realized in the space Z (see [28]).

1.1 Properties of RCD spaces

We now recall some properties of RCD(K,∞) spaces; these were introduced in [8] (see also [6,
26]) coupling the Curvature Dimension condition CD(K,∞), previously pioneered in [39, 40] and
independently in [35], with the infinitesimal Hilbertianity assumption. Whenever we consider an
RCD(K,∞) space (X, d,m), we assume that the support of m is the whole X. The next proposition
is an isoperimetric inequality that follows from the corresponding Poincaré inequality, which is
proved in [38].

Proposition 1.6. Let (X, d,m) be an RCD(K,∞) space and let E ⊂ B2r(x) be a set of finite
perimeter. Then we have the following isoperimetric inequality:

min{m(E ∩Br(x)),m(Br(x) \ E)} ≤ 4re|K|r2P(E,B2r(x)).

Given f : X×R → R and (x, t) ∈ X×R we denote by f t and fx respectively the restriction of f
to X×{t} and to {x}×R. The next proposition concerns a tensorization property of infinitesimally
Hilbertian spaces and can be found in [11] and [8]. We denote by d× and m× respectively the product
distance and the product measure in the space X× R.

Proposition 1.7. Let (X, d,m) be an RCD(K,∞) space and let f ∈ Lip(X× R). Then we have

|∇f |2(x, t) = |∇fx|2(t) + |∇f t|2(x) for m×-a.e. (x, t) ∈ X× R.

We now recall some properties of the heat flow in the RCD setting, referring to [6, 8] for the
proofs of these results. Given an RCD(K,∞) space (X, d,m), the heat flow Pt : L

2(X) → L2(X) is the
L2(X)-gradient flow of the Cheeger energy Ch. Let P2(X) denote the space of probability measures
with finite second moment. A key result in the RCD(K,∞) theory is that the dual heat semigroup
P̄t : P2(X) → P2(X) defined by

ˆ
X

dP̄tµ :=

ˆ
X

Ptf dµ ∀µ ∈ P2(X), ∀f ∈ Lipb(X),

isK-contractive with respect to the Wasserstein distanceW2 and for t > 0 maps probability measures
into absolutely continuous probability measures. This allows to define a stochastically complete heat
kernel pt : X × X → [0,+∞), so that the definition of Pt(f) can be then extended to L∞ functions
by setting

Pt(f)(x) :=

ˆ
X

f(y)pt(x, y) dm(y).
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The heat flow has good approximation properties, in particular if f ∈ W1,2(X), then Pt(f) → f in
W1,2(X); while if f ∈ L∞(X), then Ptf ∈ Lip(X) for every t > 0.

In [27] it was proved that, for a proper RCD(K,∞) space (X, d,m), if f ∈ BV(X) then

|DPt(f)| ≤ e−KtP̄t(|Df |). (1)

Combining the previous contraction estimate with a lower semicontinuity argument we obtain that,
if X is proper and Ω ⊂ X is open with |Df |(∂Ω) = 0, then

lim
t→0

|DPt(f)|(Ω) = |Df |(Ω).

We next recall two basic lemmas on measures in metric measure spaces. Note in particular that
these hold without the assumption that the space is proper. Given an Rm-valued measure µ on X
we denote by |µ| its variation. The first part of the next lemma follows from [5, Proposition 1.23],
while the second part follows repeating the argument of [5, Proposition 1.47] using the density of
continuous functions in L1(X) when (X, d,m) is RCD(K,∞).

Lemma 1.8. Let (X, d,m) be an RCD(K,∞) space and let f ∈ L1(X)m. Consider the Rm-valued
measure µ := fm, then for every Borel set B ⊂ X

|µ|(B) =

ˆ
B

|f | dm,

and for every open set A ⊂ X

|µ|(A) = sup
{ai}m

i=1⊂C(A)∑
a2
i≤1

m∑
i=1

ˆ
A

aifi dm.

The next lemma follows by standard measure theoretic arguments.

Lemma 1.9. Let (X, d,m) be an RCD(K,∞) space and let µ, ν be positive Radon measures on X.
If µ(A) ≥ ν(A) for every open set A ⊂ X, then µ(E) ≥ ν(E) for every Borel set.

We now recall some properties of RCD(K,N) spaces. The finite dimensional RCD(K,N) con-
dition is obtained coupling the finite dimensional Curvature Dimension condition CD(K,N) with
the infinitesimal Hilbertianity assumption and was formalised in [26]. For a thorough introduc-
tion to the topic we refer to the survey [1] and the references therein. Let us also mention that
in the literature one can find also the (a-priori weaker) RCD∗(K,N). It was proved in [25, 10],
that RCD∗(K,N) is equivalent to the dimensional Bochner inequality. Moreover, [13] (see also [34])
proved that RCD∗(K,N) and RCD(K,N) coincide. We now recall some results on RCD(K,N) spaces
that we will need later in the paper.

The RCD(K,N) condition implies that the measure is locally doubling (see [39]) and, as men-
tioned before, the validity of a Poincaré inequality. In particular, if f is a locally Lipschitz function
on an RCD(K,N) space, its relaxed gradient coincides with its local Lipschitz constant lip(f) (see
[32, Theorem 12.5.1] after [14]).

The next theorem is taken from [19, Theorem 1.2]. Given a metric space (X, d), we denote by
Hn the n-dimensional Hausdorff measure relative to d.

Theorem 1.10. Let (Xi, di,H
n
i , xi) be a sequence of RCD(K,n) spaces such that (Xi, di, xi) converges

in pGH sense to a metric space (X, d, x). Then precisely one of the following holds:

1.
lim sup
i→+∞

Hn
i (B1(xi)) > 0.

In this case the lim sup is a limit and the pGH convergence can be improved to pmGH conver-
gence to (X, d,Hn, x).
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2.
lim

i→+∞
Hn

i (B1(xi)) = 0.

In this case the Hausdorff dimension of X is bounded above by n− 1.

We now recall the definition of L1-convergence of functions along a sequence of spaces converging
in pmGH sense. As anticipated, we use the so-called extrinsic viewpoint and, when considering
spaces Xi → X in pmGH sense, we work in the space (Z, dZ) which realizes the convergence. In
particular, whenever we consider a ball Br(x) in this context, unless otherwise specified, we mean the
ball of radius r centered in x in the space Z. Similarly, every function ui : Xi → R will be considered,
unless otherwise specified, as a function on Z (extending it to zero outside of the embedding of Xi

in Z). To avoid confusion we will specify from time to time which measure is to be considered when
working with objects defined on Z.

Definition 1.11. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense
to (Y, d,m, y). We say that the functions fi ∈ L1(Xi,mi) converge to f ∈ L1(X,m) in L1-sense if

σ ◦ fimi ⇀ σ ◦ fm and

ˆ
Xi

|fi| dmi →
ˆ
X

|f | dm,

where σ(z) := sign
√
|z| and weak convergence is intended w.r.t. boundedly supported functions

in (Z, dz), which is the space realizing the convergence. We say that fi ∈ L1loc(Xi,mi) converge in
L1loc-sense to f ∈ L1loc(X,m) if fi1Br(xi) → f1Br(x) in L1-sense for every r > 0.

In the previous definition, σ is needed to recover the usual L1 convergence when we restrict
to a fixed measured space (X,m). Indeed, since L1(X) in not uniformly convex in general, weak
convergence together with convergence of the norms does not imply strong convergence. On the other
hand, if fi → f in L1 sense on a fixed space (X,m) according to Definition 1.11, then σ ◦ fi → σ ◦ f
in L2(X), and one can check that this implies

´
X
|fi − f | dm → 0.

The next proposition is taken from [2, Proposition 3.3].

Proposition 1.12. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense
to (Y, d,m, y). Let fi ⊂ BV(Xi,mi) with supp(fi) ⊂ Br(x) ⊂ Z, where (Z, dZ) is the space realizing
the convergence, be functions with

sup
i∈N

(
∥fi∥BV(Xi,mi) + ∥fi∥L∞(Xi,mi)

)
< +∞.

Then there exists a (non relabeled) subsequence and f ∈ BV(X,m) with suppf ⊂ B̄r(x) such that
fi → f in L1.

The next proposition is taken from [2, Proposition 3.6].

Proposition 1.13. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH
sense to (X, d,m, x). If u ∈ BV(X,m), and ui ∈ BV(Xi,mi) is a sequence such that ui → u in L1 and
supi ∥ui∥L∞(Xi,mi) < +∞, then for every open set A ⊂ Z, where (Z, dZ) is the metric space realising
the convergence, we have

|Du|(A) ≤ lim inf
i

|Dui|(A).

1.2 Minimal sets

We now turn our attention to minimal sets. We only recall the properties that will be used later in
the paper.

Definition 1.14. Let (X, d,m) be a metric measure space and let Ω ⊂ X be an open set. Let E ⊂ Ω
be a set of locally finite perimeter. We say that E is perimeter minimizing in Ω if for every x ∈ Ω,
r > 0 and F ⊂ Ω such that F∆E ⊂⊂ Br(x) ∩ Ω we have that P (E,Br(x) ∩ Ω) ≤ P (F,Br(x) ∩ Ω).
If we say that E is perimeter minimizing we implicitly mean that Ω = X.
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The next theorem comes from [33, Theorem 4.2 and Lemma 5.1].

Theorem 1.15. Let (X, d,m) be an RCD(K,N) space and let Ω ⊂ X be an open set. There exist
C, γ > 0 depending only on K and N such that the following hold. If E ⊂ X is a set minimizing the
perimeter in Ω ⊂ X, then, up to modifying E on an m-negligible set, for any x ∈ ∂E and r > 0 such
that B2r(x) ⊂ Ω we have

m(E ∩Br(x))

m(Br(x))
> γ,

m(Br(x) \ E)

m(Br(x))
> γ

and
m(Br(x))

Cr
≤ P (E,Br(x)) ≤

Cm(Br(x))

r
.

The next proposition is taken from [37, Theorem 2.43].

Proposition 1.16. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense
to (Y, d,m, y). Let Ei ⊂ Xi be a sequence of Borel sets converging in L1loc-sense to E ⊂ Y. Assume
that each Ei is perimeter minimizing in Bri(xi) and that ri ↑ +∞. Then E is perimeter minimizing
and in the metric space realizing the convergence we have that ∂Ei → ∂F in Kuratowski sense.

We recall that given a space (X, d,m) we denote by d× and m× respectively the product distance
and the product measure on X×R. Moreover, given a function u ∈ Liploc(X) we will use the following
notation for balls on the graph of u (these are actually intersections of balls in the product with the
graph of u):

Bm
r (x, t) := B×

r (x, t) ∩ graph(u) ⊂ X× R.

Similarly, given a point x ∈ X, we will denote by x̄ its projection on the graph of u, i.e. x̄ := (x, u(x)).
Whenever we evaluate a function f : X → R on the graph of u we implicitly mean that we are referring
to f ◦ π, where π : graph(u) → X is the standard projection.

The next result follows from [17, Theorem 5.8].

Theorem 1.17. There exists a constant C > 0 depending only on N such that if (X, d,m) is
an RCD(0, N) space and u ∈ Liploc(B3R(p)) is a positive function whose hypograph minimizes the
perimeter in B3R(p)× R, setting p̄ := (p, u(p)), we have

sup
Bm

R/2
(p̄)

u ≤ C inf
Bm

R/2
(p̄)
u.

2 Heat flow approximation of the area and applications in
RCD(K,∞) spaces

In this section, we prove Theorems 1 to 4. We denote by d× and m× respectively the product
distance and the product measure on X × R. The next two propositions contain the inequality in
the area formula that was proved in [11] for PI spaces. Similar proofs work in our setting and we
repeat them (with the few due modifications) for the sake of completeness as they will be needed to
prove Theorems 1 and 2.

Definition 2.1. Let (X, d,m) be an RCD(K,∞) space, let Ω ⊂ X be an open set and let u ∈ BV(Ω).
For every measurable E ⊂ Ω we define the area of u on E as

A(u,E) :=

ˆ
E

√
1 + |∇u|2 dm+ |Dsu|(E).

Proposition 2.2. Let (X, d,m) be an RCD(K,∞) space and let Ω ⊂ X be an open set. If u ∈ BV(Ω),
then for every Borel set E ⊂ Ω, we have

P(Hyp(u), E × R) ≥ A(u,E).
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Proof. We will consider the measure µ := P (Hyp(u), · × R) on the Borel subsets of Ω and we will
show separately that

µ ≥
√
1 + |∇u|2m and µ ≥ |Dsu|. (2)

Since m ⊥ |Dsu| this will then imply that µ ≥
√

1 + |∇u|2m+ |Dsu|.
Thanks to Lemma 1.9, to obtain (2), it is sufficient to show that for every open set E ⊂ Ω we

have

µ(E) ≥
ˆ
E

√
1 + |∇u|2 dm and µ(E) ≥ |Dsu|(E).

We now repeat an argument from [11] to obtain that, for every open set E ⊂ X and a, b ∈ C(E)
such that a2 + b2 ≤ 1, it holds

µ(E) ≥
ˆ
E

a dm+

ˆ
E

b d|Du|. (3)

We report the argument for the sake of completeness. Fix N ∈ N and let gn ∈ Lip(E × (−N,N))
be convergent to 1Hyp(u) in L1(E × (−N,N)). Modulo passing to a subsequence, we may assume
that gtn → 1tHyp(u) in L1(E) for λ1-a.e. t ∈ (−N,N) and that gxn → 1xHyp(u) in L1((−N,N)) for m-a.e.

x ∈ E. For every a, b ∈ C(E) with a2 + b2 ≤ 1, applying Proposition 1.7, we get

lim inf
n→+∞

ˆ
E×(−N,N)

|∇gn| dm× ≥ lim inf
n→+∞

ˆ
E×(−N,N)

a(x)|∇gxn|(t) + b(x)|∇gtn|(x) dm×(x, t)

≥
ˆ
E

lim inf
n→+∞

ˆ
(−N,N)

a(x)|∇gxn|(t) dtdm(x) +

ˆ
(−N,N)

lim inf
n→+∞

ˆ
X

b(x)|∇gtn|(x) dm(x)dt

≥
ˆ
E

a1{u∈(−N,N)} dm+

ˆ
(−N,N)

ˆ
E

b d|D1{u>t}|dt.

Since gn is arbitrary, we get

P(Hyp(u), E × (−N,N)) ≥
ˆ
E

a1{u∈(−N,N)} dm+

ˆ
(−N,N)

ˆ
E

b d|D1{u>t}|dt,

so that letting N ↑ +∞ and using the coarea formula we deduce (3).
Equation (3) then implies that

µ(E) ≥
ˆ
E

a+ b|∇u| dm.

Taking the supremum over all couples a, b of the aforementioned type and using Lemma 1.8, we get

µ(E) ≥
ˆ
E

√
1 + |∇u|2 dm.

Similarly, taking a ≡ 0 and b ≡ 1 in (3), we obtain

µ(E) ≥ |Du|(E) ≥ |Dsu|(E),

concluding the proof.

Proposition 2.3. Let (X, d,m) be an RCD(K,∞) space and let Ω ⊂ X be an open set. If u ∈ Lip(Ω),
then, for every Borel set E ⊂ Ω, it holds

P(Hyp(u), E × R) = A(u,E).

Proof. Thanks to the previous proposition, we only need to show that

P(Hyp(u), E × R) ≤
ˆ
E

√
1 + |∇u|2 dm.
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Thanks to Lemma 1.9, we only need to verify the previous inequality under the assumption that E is
open. Let χϵ ∈ C∞(R) be monotonically convergent to 1(0,+∞), with values in [0, 1] and

´
R χ

′
ϵ dt ≤ 1.

Then the functions
gϵ(x, t) := χϵ(u(x)− t)

are Lipschitz in Ω× R for every ϵ > 0 and converge in L1loc(Ω× R) to the characteristic function of
Hyp(u). Moreover Proposition 1.7 gives

|∇gϵ|(x, t) = χ′
ϵ(u(x)− t)

√
1 + |∇u|2(x) for m×-a.e. (x, t) ∈ X× R.

Integrating both sides and using Fubini’s Theorem, we get

ˆ
E×R

|∇gϵ| dm× ≤
ˆ
E

√
1 + |∇u|2 dm,

which implies

P(Hyp(u), E × R) ≤
ˆ
E

√
1 + |∇u|2 dm.

We now prove Theorem 1 from the Introduction. Here we add the properness assumption on the
space (X, d,m) as we will need to use (1).

Theorem 1. Let (X, d,m) be a proper RCD(K,∞) space and let u ∈ L∞(X) ∩ BV(X). Then, for
every bounded open set E ⊂ X such that |Dsu|(∂E) = 0, it holds

lim
t→0

A(Pt(u), E) = A(u,E).

Proof. For every t > 0, we set ut := Pt(u) and we note that this function is Lipschitz. We first show
that ˆ

E

√
1 + |∇u|2 dm+ |Dsu|(E) ≤ lim inf

t→0

ˆ
E

√
1 + |∇ut|2 dm.

Using Propositions 2.2 and 2.3 and the lower semicontinuity of perimeters we get

ˆ
E

√
1 + |∇u|2 dm+ |Dsu|(E) ≤ P(Hyp(u), E × R)

≤ lim inf
t→0

P(Hyp(ut), E × R) = lim inf
t→0

ˆ
E

√
1 + |∇ut|2 dm,

as desired.
We now show thatˆ

E

√
1 + |∇u|2 dm+ |Dsu|(E) ≥ lim sup

t→0

ˆ
E

√
1 + |∇ut|2 dm.

Note that ˆ
E

√
1 + |∇ut|2 dm = sup

(a,b)∈C(E)×C(E)

a2+b2≤1

ˆ
E

a+ |∇ut|b dm.

For every such pair (a, b), we have

ˆ
E

a+ |∇ut|b dm ≤
ˆ
E

a dm+

ˆ
E

be−Kt dP̄t(|Du|)

≤
ˆ
E

a dm+

ˆ
E

be−Kt Pt(|∇u|) dm+ e−KtP̄t(|Dsu|)(E).
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Hence, passing to the supremum with respect to the pairs (a, b), we get

ˆ
E

√
1 + |∇ut|2 dm ≤

ˆ
E

√
1 + e−2KtPt(|∇u|)2 dm+ e−KtP̄t(|Dsu|)(E).

Moreover, by definition of P̄t, we have that P̄t(|Dsu|) converges weakly to |Dsu| preserving the mass
for every t, and since |Dsu|(∂E) = 0 this implies that P̄t(|Dsu|)(E) → |Dsu|(E). In particular,
passing to the limit as t→ 0 in the previous inequality, we get

lim sup
t→0

ˆ
E

√
1 + |∇ut|2 dm ≤

ˆ
E

√
1 + |∇u|2 dm+ |Dsu|(E).

The next two results are needed to prove Theorem 2 from the Introduction.

Theorem 2.4. Let (X, d,m) be a proper RCD(K,∞) space. Let Ω ⊂ X be an open bounded set and
let u ∈ BV(Ω). For every Borel set E ⊂ Ω it holds

P(Hyp(u), E × R) = A(u,E).

Proof. The inequality

P(Hyp(u), E × R) ≥
ˆ
E

√
1 + |∇u|2 dm+ |Dsu|(E)

is true by Proposition 2.2 so we only show the reverse one.
Suppose first that u ∈ L∞(Ω)∩BV(Ω). It is clear that it is sufficient to consider the case when E

is well contained in Ω and such that |Du|(∂E) = 0 and then argue by approximation. So we assume
that E has these properties and, modulo multiplying u by a cut off function which is equal to 1 in a
neighborhood of Ē, we can also suppose that u ∈ L∞(Ω)∩BV(Ω) with supp(u) ⊂⊂ Ω. In particular,
when we extend u to be 0 outside of Ω, we obtain a function in u ∈ L∞(X)∩BV(X). When we refer
to u in the next lines we implicitly mean its extension to X. By lower semicontinuity of perimeters
and the previous proposition we then get

P(Hyp(u), E × R) ≤ lim inf
t→0

P(Hyp(Pt(u)), E × R)

= lim inf
t→0

ˆ
E

√
1 + |∇Pt(u)|2 dm =

ˆ
E

√
1 + |∇u|2 dm+ |Dsu|(E),

concluding the proof when u ∈ L∞(Ω) ∩ BV(Ω).
If u ∈ BV(Ω) is not bounded, we consider for every k > 0 the function uk := −k ∨ u ∧ k and we

exploit the lower semicontinuity of perimeters to obtain that for every open set E ⊂ Ω we have

P(Hyp(u), E × R) ≤ lim inf
k→+∞

P(Hyp(uk), E × R)

= lim inf
k→+∞

ˆ
E

√
1 + |∇uk|2 dm+ |Dsuk|(E).

Moreover, since |Duk| ≤ |Du| as measures, the last term is controlled by

ˆ
E

√
1 + |∇u|2 dm+ |Dsu|(E),

concluding the proof.

Proposition 2.5. Let (X, d,m) be a proper RCD(K,∞) space. If u : B2r(x) → R is a measurable
function whose hypograph has finite perimeter, then u ∈ BV(Br(x)). Similarly if Ω is bounded and
u ∈ L1(Ω) has hypograph of finite perimeter, then u ∈ BV(Ω).
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Proof. Assume first that Ω is bounded and that u ∈ L1(Ω) is a function whose hypograph has finite
perimeter. Fix N ∈ N and let gn ∈ Lip(Ω× (−N,N)) be convergent to 1Hyp(u) in L1(Ω× (−N,N)).
Modulo passing to a subsequence, we may assume that gtn → 1tHyp(u) in L1(Ω) for λ1-a.e. t ∈ (−N,N).
Then

lim inf
n→+∞

ˆ
Ω×(−N,N)

|∇gn| dm× ≥ lim inf
n→+∞

ˆ
Ω×(−N,N)

|∇gtn| dm× ≥
ˆ N

−N

P({u > t},Ω)dt.

Since gn is arbitrary, letting N ↑ +∞, we deduce

ˆ
R
P({u > t},Ω)dt < +∞. (4)

Since u ∈ L1(Ω), this is sufficient to conclude that u ∈ BV(Ω).
If u : B2r(x) → R is measurable we need to prove that u ∈ L1(Br(x)), and then we get that

u ∈ BV(Br(x)) by the previous part of the proof. To this aim we write

ˆ
Br(x)

|u| dm =

ˆ ∞

0

m({|u| ≥ t} ∩Br(x)) dt

≤ Tm(Br(x)) +

ˆ ∞

T

m({|u| ≥ t ∩Br(x)}) dt.

If T ∈ N is large enough, for every t ≥ T the isoperimetric inequality gives

m({|u| ≥ t ∩Br(x)}) ≤ c(K, r)P({|u| ≥ t}, B2r(x)).

In particular, combining this with (4), we get

ˆ
Br(x)

|u| dm ≤ Tm(Br(x)) + c(K, r)

ˆ ∞

T

P({|u| ≥ t}, B2r(x)) dt < +∞,

concluding the proof.

Combining Theorem 2.4 and the previous proposition we immediately get Theorem 2, which we
recall below.

Theorem 2. Let (X, d,m) be a proper RCD(K,∞) space, let Ω ⊂ X be open and bounded and let
u ∈ L1(Ω). Then P(Hyp(u),Ω × R) < +∞ if and only if u ∈ BV(Ω). In this case, for every Borel
set E ⊂ Ω, it holds

P(Hyp(u), E × R) = A(u,E).

Moreover, if u ∈ L0(B2r(x)) and P(Hyp(u), B2r(x)×R) < +∞, then u ∈ BV(Br(x)) and the previous
equation holds for every Borel set E ⊂ Br(x).

We now turn our attention to Theorem 3, which will be an easy consequence of the approximation
property of Theorem 1. As anticipated in the Introduction, given u ∈ BV(Ω) and an open set E ⊂ Ω,
we define the relaxed area functional as

Ã(u,E) := inf
{
lim inf
n→+∞

ˆ
E

√
1 + lip(fn)2 dm

∣∣∣(fn)n ⊂ L1(E) ∩ Lip(E), ∥fn − u∥L1(E) → 0
}
.

In [11] it was proved that for every f ∈ W1,1(Ω), we have

Ã(f,E) =

ˆ
E

√
1 + |∇f |2 dm,

and in Theorem 3 we extend this to functions in BV(Ω).
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Theorem 3. Let (X, d,m) be a proper RCD(K,∞) space, let Ω ⊂ X be open and bounded and let
u ∈ BV(Ω). Then, for every open set E ⊂ Ω, it holds

Ã(u,E) = A(u,E).

Proof. We first show that for every open set E ⊂ Ω we have

Ã(u,E) ≥
ˆ
E

√
1 + |∇u|2 dm+ |Dsu|(E).

To this aim fix an open set E and let {un}n∈N ⊂ Lip(E) be such that
ˆ
E

√
1 + |∇un|2 dm → Ã(u,E)

and un → u in L1(E). By the lower semicontinuity of perimeters, we get

A(u,E) =

ˆ
E

√
1 + |∇u|2 dm+ |Dsu|(E) ≤ lim inf

n→+∞

ˆ
E

√
1 + |∇un|2 dm = Ã(u,E).

We now show that
Ã(u,E) ≤ A(u,E)

for every open set E ⊂ Ω. To this aim it is sufficient to consider open sets E ⊂⊂ Ω such that
|Dsu|(∂E) = 0 and then argue by approximation. Let uk := −k∨u∧k and note that for every ϵ > 0
we have that if k is sufficiently large Ã(u)(E) ≤ Ã(uk)(E) + ϵ. Using the lower semicontinuity of Ã,
the fact that Ã is the area functional on Lipschitz functions and Theorem 1, we then obtain that

Ã(uk, E) ≤ lim inf
t→0

Ã(Pt(u
k), E) = lim inf

t→0

ˆ
E

√
1 + |∇Pt(uk)|2 dm

=

ˆ
E

√
1 + |∇uk|2 dm+ |Dsuk|(E).

In particular we get that, if k is large enough, we have

Ã(u,E) ≤
ˆ
E

√
1 + |∇uk|2 dm+ |Dsuk|(E) + ϵ,

so that Ã(u,E) ≤
´
E

√
1 + |∇u|2 dm+|Dsu|(E)+ϵ. Since ϵ > 0 is arbitrarily small, we conclude.

We conclude the section with some basic properties of minimizers of the area functional in
RCD(K,∞) spaces that are needed to prove Theorem 4 from the Introduction.

Definition 2.6. Let (X, d,m) be an RCD(K,∞) space, let Ω ⊂ X be an open set and let u ∈
BVloc(Ω). We say that that u is an area minimizer in Ω′ ⊂ Ω if for every f ∈ BV(Ω′) such that
{f ̸= u} ⊂⊂ Ω′ we have

A(u,Ω′) ≤ A(f,Ω′).

If we say that u ∈ BVloc(Ω) is an area minimizer, we mean that the previous condition is satisfied
for every Ω′ ⊂ Ω.

The following proposition follows from [30, Theorem 4.2] keeping in mind that in our setting the
area functional coincides with the relaxed area functional thanks to Theorem 3. Since the setting
of [30] is the one of PI spaces (and the proof of [30, Theorem 4.2] relies crucially on the doubling
assumption), the next result holds in the finite dimensional setting of RCD(K,N) spaces.

Proposition 2.7. Let (X, d,m) be an RCD(K,N) space, let Ω ⊂ X be an open set and let u ∈
BVloc(Ω) be an area minimizer, then u ∈ L∞loc(Ω).

A similar result holds for functions whose hypograph is perimeter minimizing adapting an argu-
ment that can be found in [29]. We report such argument with the due adaptations.
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Proposition 2.8. Let (X, d,m) be an RCD(K,N) space, let Ω ⊂ X be open and let u ∈ L1(Ω) be a
function whose hypograph minimizes the perimeter. Then u ∈ L∞loc(Ω).

Proof. Let x ∈ Ω and suppose for simplicity that B3(x) ⊂⊂ Ω. We will show that u is uniformly
bounded in its Lebesgue points in B1(x), which will then imply the claim. To this aim let y ∈ B1(x)
be a Lebesgue point for u and assume without loss of generality that u(y) > 0. Denoting by Hyp(u)
the closed representative of the hypograph, we have that (y, u(y)) ∈ ∂Hyp(u), so that the density
estimates from Theorem 1.15 imply that

m×(B
×
1 (y, u(y)) ∩ Hyp(u)) ≥ c(K,N).

In particular if T ∈ N and u(y) > 2T we have

m×(Hyp(u) ∩B1(y)× [0, 2T ]) ≥
T∑

i=1

m×(Hyp(u) ∩B×
1 (y, 2i))

≥ Tm×(B
×
1 (y, u(y)) ∩ Hyp(u)) ≥ Tc(K,N).

This implies that ˆ
B2(x)

u ∨ 0 dm ≥
ˆ
B1(y)

u ∨ 0 dm ≥ Tc(K,N).

Putting everything together, if y ∈ B1(x) is a Lebesgue point of u and u(y) > 2T , then T ≤
C(x, u,K,N) < +∞. This shows that for every such y we have u(y) ≤ 2C(x, u,K,N) + 1, proving
the claim and the statement.

The proof of the next proposition follows by adapting arguments from [17, Section 3.2] and we
report it for the sake of completeness.

Proposition 2.9. Given a proper RCD(K,∞) space (X, d,m), an open set Ω ⊂ X and a function
u ∈ L∞(Ω) ∩ BV(Ω), then u is a minimizer of the area functional in Ω if and only if its hypograph
is a perimeter minimizer in Ω× R.

Proof. If the hypograph of u is perimeter minimizing, then for every f ∈ BV(Ω) ∩ L∞(Ω) such that
{f ̸= u} ⊂⊂ Ω we have Hyp(u)∆Hyp(f) ⊂⊂ Ω× R, so that applying Theorem 2 we obtain

A(u,Ω) ≤ A(f,Ω).

Similarly, if f ∈ BV(Ω) is such that {f ̸= u} ⊂⊂ Ω, then considering f c := −c ∨ f ∧ c with
c := ∥u∥L∞ + 1 we get by the previous case that

A(u,Ω) ≤ A(f c,Ω) ≤ A(f,Ω).

We now prove the reverse implication, i.e. that if u ∈ L∞(Ω) ∩ BV(Ω) is a minimizer of the area
functional in Ω, then its hypograph is a perimeter minimizer in Ω× R.

To this aim, consider a set E ⊂ Ω × R such that Hyp(u)∆E ⊂⊂ Ω × R. Modulo translat-
ing vertically, we may suppose that there exists c > 1 such that u takes values in (1, c − 1) and
Hyp(u)∆E ⊂⊂ Ω× (1, c− 1). We then define w(E) : Ω → R by

w(E)(x) :=

ˆ c

0

1E(x, s) ds

and we claim that
w(E) ∈ BV(Ω) and A(w(E),Ω) ≤ P(E,Ω× R). (5)

If the claim holds, noting that by construction w(E) is a competitor for u, we get

P(Hyp(u),Ω× R) = A(u,Ω) ≤ A(w(E),Ω) ≤ P(E,Ω× R).

14



To prove the claim, we consider a sequence fn ∈ Lip(Ω × (0, c)) converging in L1(Ω × (0, c)) to 1E
and such that

lim
n→+∞

|Dfn|(Ω× (0, c)) = P(E,Ω× R).

Modulo truncating, we can assume that fn ≡ 1 on Ω× {0} and fn ≡ 0 on Ω× {c}. We then define
w(fn) : Ω → R as

w(fn)(x) :=

ˆ c

0

fn(x, s) ds.

These functions are Lipschitz since

|w(fn)(x)− w(fn)(y)|
d(x, y)

≤
ˆ c

0

|fn(x, s)− fn(y, s)|
d(x, y)

ds ≤ cL(fn).

We now use the notation defined before Proposition 1.7. By reverse Fatou Lemma and the fact that
each fn is Lipschitz, for m-a.e. x ∈ X it holds

|∇w(fn)|(x) = lip(w(fn))(x) ≤
ˆ c

0

|∇fsn|(x) ds. (6)

Moreover, using the tensorization property of Proposition 1.7, it holds

|Dfn|(Ω× (0, c)) =

ˆ
Ω×(0,c)

|∇fn|(x, s) dm ds =
ˆ
Ω×(0,c)

√
|∇fsn|2(x) + |∇fxn |2(s) dm ds

≥ sup
(a,b)∈C(Ω)×C(Ω)

a2+b2≤1
a,b≥0

ˆ
Ω×(0,c)

a(x)|∇fsn|(x) + b(x)|∇fxn |(s) dm ds.

Combining with (6) and the fact that fn = 1 on Ω× {0} and fn = 0 on Ω× {c}, we deduce

|Dfn|(Ω× (0, c)) ≥ sup
(a,b)∈C(Ω)×C(Ω)

a2+b2≤1
a,b≥0

ˆ
Ω

a(x)|∇w(fn)|(x) + b(x) dm = A(w(fn),Ω).

Moreover, w(fn) → w(E) in L1(Ω) as n→ +∞ sinceˆ
Ω

|w(fn)− w(E)| dm ≤
ˆ
Ω×(0,c)

|fn(x, s)− 1E(x, s)| dm ds.

These facts imply that w(E) ∈ BV(Ω) as claimed. Concerning the area of w(E), we get

A(w(E),Ω) ≤ lim inf A(w(fn),Ω) ≤ lim inf |Dfn|(Ω× (0, c)) = P(E,Ω× R),

proving the claim (5).

If the space in question is finite dimensional, the previous result holds without the assumption
that u is bounded. This is the content of Proposition 2.10.

Proposition 2.10. Let (X, d,m) be an RCD(K,N) space, let Ω ⊂ X be open and let u ∈ BV(Ω), then
u is a minimizer of the area functional in Ω if and only if its hypograph is a perimeter minimizer in
Ω× R.

Proof. If u minimizes the area, then, by Proposition 2.7, u is locally bounded in Ω and we can
conclude by Proposition 2.9.

Conversely, if the hypograph of u minimizes the perimeter, then u is locally bounded by Propo-
sition 2.8. Consider a competitor f ∈ BV(Ω) for u and a subset Ω′ ⊂⊂ Ω such that {f ̸= u} ⊂⊂ Ω′.
We define f c := −c ∨ f ∧ c for c := ∥u∥L∞(Ω′) + 1, so that

A(u,Ω′) = P(Hyp(u),Ω′ × R) ≤ P(Hyp(f c),Ω′ × R) = A(f c,Ω′) ≤ A(f,Ω′),

which implies A(u,Ω) ≤ A(f,Ω).
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We now prove Theorem 4 and its corollary.

Theorem 4. Let (X, d,m) be a proper RCD(K,∞) space, let Ω ⊊ X be an open set and let u ∈
L∞(Ω)∩W1,1(Ω) be a function whose hypograph is perimeter minimizing. If v ∈ L∞(Ω) has hypograph
which is perimeter minimizing and {u ̸= v} ⊂⊂ Ω, then u = v.

Proof. By Theorem 2, v ∈ BV(Ω) and by Proposition 2.9, both u and v are area minimizers in Ω.
For every t ∈ (0, 1) we consider the convex combination tu+ (1− t)v. We have

A(tu+ (1− t)v,Ω) ≤ tA(u,Ω) + (1− t)A(v,Ω) = A(u,Ω).

Since tu+ (1− t)v is a competitor for u, the previous inequality implies

A(tu+ (1− t)v,Ω) = A(u,Ω). (7)

The function a 7→
√
1 + a2 is strictly convex on the positive real line. Hence, (7) implies that, for

every t ∈ (0, 1), it holds

|∇(tu+ (1− t)v)| = |∇u| m-almost everywhere in Ω.

Taking the squares in the previous identity and evaluating at t = 0 and t = 1/2, we deduce{
∇u · ∇v = |∇u|2

|∇v|2 = |∇u|2,

which in turn implies
|∇(u− v)| = 0 m-almost everywhere in Ω.

Hence, the function ψ := v−u satisfies |Dψ| = |Dsψ| and has support well contained in Ω. Moreover,
the function t 7→ A(u+ tψ,Ω) is constant in (0, 1). Hence

0 =
d

dt
A(u+ tψ,Ω) =

d

dt
|Ds(u+ tψ)|(Ω) = d

dt
|Ds(tψ)|(Ω) = |Dsψ|(Ω) = |Dψ|(Ω).

In particular, ψ is constant. Since the support of ψ is well contained in Ω and Ω ⊊ X, it holds
ψ ≡ 0.

Corollary. Let (X, d,m) be an RCD(K,N) space, let Ω ⊊ X be an open set and let u ∈ W1,1(Ω) be
a function whose hypograph is perimeter minimizing. If v ∈ L1(Ω) has hypograph which is perimeter
minimizing and {u ̸= v} ⊂⊂ Ω, then u = v.

Proof. By Lemma 2.8 both u and v are locally bounded. The statement follows by Theorem 4.

3 Approximation of minimal graphs in RCD(K,N)

The goal of this section is to prove Theorem 3.3, which implies Theorem 5.
We consider spaces (Xi, di,mi, xi) converging to a space (X, d,m, x) in pmGH sense and functions

ui ∈ BV(Xi) converging in L1 to u ∈ BV(X). As anticipated, we use the so-called extrinsic viewpoint
and we work in the space (Z, dZ) which realizes the convergence. In particular, whenever we consider
a ball Br(x) in this context, unless otherwise specified, we mean the ball of radius r centered in x
in the space Z (observe that the intersection of this ball with the embedding of X in Z would give
the corresponding ball in X). Similarly, unless otherwise stated, each function ui will be considered
as a function on Z (extending it to zero outside of the embedding of Xi in Z), so that it will make
sense to consider products of the form ui1Br(x) : Z → R. To avoid ambiguity, we will denote by PXi

t

the heat flow on the space Xi.
Similarly, given f : Z → R, we will write A(f,Br(x),m) meaning the area of f on Br(x) ⊂ Z

w.r.t. to the pushforward of the measure m in Z and we will write f ∈ BV(Br(x),m) (and the
same notation will be used for Lebesgue and Sobolev spaces) to specify that the measure considered
is again the pushforward of the measure m in Z. We remark that f ∈ BV(Z,m) if and only if
(restricting f to X, where m is concentrated) f ∈ BV(X), and in this case their total variation
measures coincide (see [20]).
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Theorem 3.1. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to
(X, d,m, x).

1. If u ∈ BV(X,m), and ui ∈ BV(Xi,mi) is a sequence such that ui → u in L1, then for every
open set A ⊂ Z we have

A(u,A,m) ≤ lim inf
i

A(ui, A,mi).

2. If u ∈ BV(Br(x),m), then for every s ∈ (0, r) such that |Dsu|(∂Bs(x)) = 0 there exists a
sequence of Lipschitz functions ui ∈ L1(Bs(x),mi) such that ui1Bs(x) converges in L1-sense to
u1Bs(x) ∈ L1(X,m) and A(ui, Bs(x),mi) → A(u,Bs(x),m).

Proof. The first assertion follows by combining the localized lower semicontinuity of total variations
given in Proposition 1.13 and the identification between area and perimeter given in Theorem 2.

We now prove the second assertion following the proof in [9, Theorem 8.1].
Fix s ∈ (0, r) and observe that, modulo multiplying with a cut off function, we can assume that

u has support well contained in Br(x). Also, modulo truncating (and using a diagonal argument),
we can also assume that u ∈ L∞(Br(x),m) (as the areas of the truncated functions converge to the
area of the initial function). In what follows, when we refer to u, we implicitly mean its extension
to zero on the whole Z.

Since |Dsu|(∂Bs(x)) = 0, Theorem 1 guarantees that

A(PX
t (u), Bs(x),m) → A(u,Bs(x),m) as t→ 0.

Hence, if we manage to approximate in area the functions PX
t (u), we can then conclude with a

diagonal argument. Each function PX
t (u) belongs to W1,2(Z,m), so that by Remark 1.2 we can

consider a sequence fk ∈ Lipc(Z) converging in L2(Z,m) to PX
t (u) and such that lipa(fk) → |∇PX

t (u)|
in L2(Z,m). We then fix k, and as i varies we get

A(fk, Bs(x),mi) ≤
ˆ
Bs(x)

√
1 + lip2afk dmi

≤
ˆ
Z

1B̄s(x)

√
1 + lip2afk dmi.

Taking a limit as i goes to infinity and taking into account that the last integrand is upper semi-
continuous and that m(∂Bs(x)) = 0, we then obtain

lim sup
i→+∞

A(fk, Bs(x),mi) ≤
ˆ
Z

1B̄s(x)

√
1 + lip2afk dm =

ˆ
Bs(x)

√
1 + lip2afk dm.

Reindexing the sequence {fk}k∈N (so that each function is repeated a sufficient number of times) we
then get

lim sup
k→+∞

A(fk, Bs(x),mk) ≤
ˆ
Bs(x)

√
1 + |∇Pt(u)|2 dm = A(Pt(u), Bs(x),m),

which is the desired approximation.

The same proof of the previous theorem can be repeated in the global setting to obtain the
Γ-convergence of the area functional. In particular, replacing Proposition 1.13 with the results of
[9], we deduce the aforementioned convergence in the case N = ∞.

Theorem 3.2. Let (Xi, di,mi, xi) be a sequence of proper RCD(K,∞) spaces converging in pmGH
sense to (X, d,m, x).

1. If u ∈ BV(X,m), and ui ∈ BV(Xi,mi) is a sequence such that ui → u in L1-sense, then

A(u,X,m) ≤ lim inf
i

A(ui,Xi,mi).
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2. If u ∈ BV(X,m), then there exists a sequence of functions ui ∈ BV(Xi,mi) converging in area
to u.

We are now in position to prove the main result of the section.

Theorem 3.3. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to
(X, d,m, x). Let r > 0 be such that Br(x) ⊊ X and let u ∈ BV(Br(x),m) be an area minimizer. For
every s ∈ (0, r), there exists 0 < δ < r − s such that the following happens.

There exist area minimizers ũi ∈ BV(Bs(x),mi) and ũ ∈ BV(Bs+δ(x),m) such that ũi1Bs(x)

converges in L1 to ũ1Bs(x) and {ũ ̸= u} ⊂⊂ Bs+δ(x).
Moreover, if |Dsũ|(∂Bs(x)) = 0, it holds A(ũi, Bs(x),mi) → A(ũ, Bs(x),m).

Proof. Let 0 < ϵ < (r − s)/2 be such that |Dsu|(∂Bs+2ϵ(x)) = 0. We set δ := 2ϵ. Consider the
sequence ui ∈ BV(Bs+2ϵ(x),mi) ∩ L∞(Bs+2ϵ(x),mi) converging in area to u given by Theorem 3.1.
Modulo truncating, we can also assume that ∥ui∥L∞(Bs+2ϵ(x),mi) ≤ ∥u∥L∞(Bs+2ϵ(x),m).

Then, we consider for every i ∈ N the function ũi ∈ BV(Bs+2ϵ(x),mi) such that ui = ũi on
Bs+2ϵ(x) \Bs+ϵ(x) and

A(ũi, Bs+2ϵ(x),mi) ≤ A(f,Bs+2ϵ(x),mi)

for every f ∈ BV(Bs+2ϵ(x),mi) such that {f ̸= ũi} ⊂ Bs+ϵ(x). Existence of the functions ũi
follows by the direct method of calculus of variations. We also note that the condition ui = ũi on
Bs+2ϵ(x) \Bs+ϵ(x) is nonempty by the assumption that Br(x) ̸= X. Observe moreover that each ũi
satisfies ∥ũi∥L∞(Bs+2ϵ(x),mi) ≤ ∥ui∥L∞(Bs+2ϵ(x),mi) since, if this is not the case, we can truncate and
obtain better competitors.

Consider then the function ũ ∈ BV(Bs+2ϵ(x),m) which is the L1-limit in Bs+2ϵ(x) of a (non
relabeled) subsequence of the functions ũi (this exists thanks to Proposition 1.12 and a cutoff
argument). We now claim that ũ is an area minimizer in Bs+2ϵ(x) w.r.t. m.

To this aim, it is sufficient to show that

A(ũ, Bs+2ϵ(x),m) = A(u,Bs+2ϵ(x),m). (8)

Observe that by construction {u ̸= ũ} ⊂⊂ Bs+2ϵ(x) and for every i we have A(ũi, Bs+2ϵ(x)) ≤
A(ui, Bs+2ϵ(x)). Hence, since u is an area minimizer, we have that

A(ũ, Bs+2ϵ(x),m) ≥ A(u,Bs+2ϵ(x),m) = lim
i→+∞

A(ui, Bs+2ϵ(x),mi)

≥ lim sup
i→+∞

A(ũi, Bs+2ϵ(x),mi) ≥ A(ũ, Bs+2ϵ(x),m), (9)

so that
A(ũ, Bs+2ϵ(x),m) = A(u,Bs+2ϵ(x),m).

This concludes the proof of the statement.
Suppose now that |Dsũ|(∂Bs(x)) = 0. By (9) we know that

A(ũi, Bs+2ϵ(x),mi) → A(ũ, Bs+2ϵ(x),m).

Convergence in area then follows by a standard lower semicontinuity argument combining the fact
that A(ũ, ∂Bs(x),m) = 0 and point 1 of Theorem 3.1.

In the next section, when using the previous theorem, we will occasionally say that the functions
ui converge in L1-sense to u in Bs(x), meaning that ui1Bs(x) → u1Bs(x) in L1-sense. Theorem 3.3
immediately implies Theorem 5 from the Introduction.

Theorem 5. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to
(X, d,m, x). Let r > 0 be such that Br(x) ⊊ X and let u ∈ W1,1(Br(x),m) be an area minimizer. For
every s ∈ (0, r), modulo passing to a subsequence, there exist area minimizers ui ∈ BV(Bs(x),mi)
such that ui1Bs(x) converge in L1 to u1Bs(x) and A(ui, Bs(x),mi) → A(u,Bs(x),m).

Proof. By Theorem 3.3, there exist area minimizers ui ∈ BV(Bs(x),mi) and ũ ∈ BV(Br(x),m) such
that ui1Bs(x) converges in L1 to ũ1Bs(x) and {ũ ̸= u} ⊂⊂ Br(x). By the corollary of Theorem 4,
it holds ũ = u. By the last part of Theorem 3.3, since m(∂Bs(x)) = 0 for every s > 0, it holds
A(ui, Bs(x),mi) → A(u,Bs(x),m).

18



A Appendix

We collect here some applications of the previously obtained theorems in the setting of Ricci limit
spaces. Here, we work under the additional assumption that Riemannian manifolds with a lower
bound on the Ricci curvature satisfy a mean value property for minimal graphs, i.e. assumption
(MVP) below. We recall some notation. Given a manifold (M, g), a solution of the minimal surface
equation u ∈ C∞(M), and a point p ∈ M × R, we denote by B×

r (p) ⊂ M × R a ball of radius r
centered in p w.r.t. the product distance in M× R, and we set

Bm
r (p) := B×

r (p) ∩ graph(u) ⊂ M× R.

Given a Riemannin manifold (M, g), we denote by Hn the n-dimensional Hausdorff measure induced
by the Riemannian distance.

Assumption MVP. Let (Mn, g) be a manifold with RicM ≥ K and Hn(B1(x)) ≥ v > 0. There
exists c(K,n, v) > 1 satisfying the following. Let u ∈ C∞(Bc(x)) be a solution of the minimal
surface equation. If f1, f2 ∈ C∞(Bm

c (x, u(x))) are non-negative functions which are respectively
sub-harmonic and super-harmonic, then

sup
Bm

1/2
(x,u(x))

f1 ≤ c

 
Bm

1 (x,u(x))

f1 dH
n and

 
Bm

1 (x,u(x))

f2 dH
n ≤ c inf

Bm
1/2

(x,u(x))
f2.

We spend a few words on the assumption (MVP). The mean value property (MVP) would follow
if one is able to prove Sobolev and Poincaré-Neumann inequalities for functions defined on minimal
graphs on Riemannian manifolds with Ricci curvature bounded from below. This is the strategy used
in [23] to show that (MVP) holds. Unfortunately, some parts of the proofs of the aforementioned
inequalities in [23] are unclear. For this reason, we add the mean value property as an assumption.
Nevertheless, it is reasonable to think that these functional inequalities on manifolds should hold.

The main results of this part of the paper are Theorems A.1 and A.2 below. Theorem A.1 shows
that if (MVP) holds, Sobolev minimizers of the area functional on non-collapsed Ricci limit spaces
are locally Lipschitz. This is remarkable as minimizers of the area on generic metric measure spaces
are much less regular, as shown in [30] (see also Example A.9 for the existence of a Sobolev minimizer
of the area on a ’bad’ metric space which is not Lipschitz).

Theorem A.1. Assume that (MVP) holds. Let v > 0, n ∈ N and K ∈ R be fixed. Let (Mn
k , gk, xk)

be a sequence of pointed Riemannian manifolds with RicMn
k
≥ K and Hn

k (B1(xk)) ≥ v > 0 converging

in pointed Gromov-Hausdorff sense to (X, d, x). If Ω ⊂ X is open and u ∈ W1,1(Ω,Hn) is an area
minimizer, then u ∈ Liploc(Ω).

Theorem A.1 is proved combining the a-priori gradient estimates for minimizers of the area on
manifolds obtained in [23] (which are a consequence of (MVP)) and Theorem 5. These gradient
estimates are also shown to hold for Ricci limit spaces (see Theorem A.8 and the stronger version
given by Theorem A.11 in the presence of maximal volume growth).

Finally, Theorem A.2 is part of a series of recent results proving Bernstein-type theorems on
manifolds with a lower Ricci curvature bound (see [24, 22, 15, 16, 21, 23]) and on metric measure
spaces with with an analogous synthetic bound (see [18, 17]). The proof, once again, relies on the
one of the analogous result on Riemannian manifolds proved in [23] and Theorem 5.

Theorem A.2. Assume that (MVP) holds. Let n ∈ N be fixed and let (Mn
k , gk, xk) be a sequence of

pointed Riemannian manifolds with RicMn
k
≥ 0 converging in pointed Gromov-Hausdorff sense to a

space (X, d, x) such that

lim
r→+∞

Hn(Br(x))

rn
≥ v > 0.

If u ∈ W1,1
loc(X,H

n) is an area minimizer such that

lim
y→+∞

max{−u(y), 0}
d(x, y)

= 0,

then u is constant.
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Before proving Theorems A.1 and A.2, we recall some notation. Given a metric measure space
(X, d,m), a function u ∈ Liploc(X), and (x, t) ∈ X × R, we will use the following notation for balls
on the graph of u (where the ’m’ stands for minimal, as u will be a solution of the minimal surface
equation):

Bm
r (x, t) := B×

r (x, t) ∩ graph(u) ⊂ X× R.

Similarly, given a point x ∈ X, we will denote by x̄ its projection on the graph of u, i.e. x̄ := (x, u(x)).
Given a metric space (X, d), we denote by Hn the n-dimensional Hausdorff measure induced by d.

In this section, we will often work in the setting of Riemannian manifolds. Whenever we say that
we consider a Riemannian manifold (Mn, d), we implicitly mean that we have a Riemannian metric g
on M and that d is the Riemannian distance. Given a manifold (M, g) and a solution of the minimal
surface equation u ∈ C∞(Ω) on an open subset Ω ⊂ M, we denote by ∇m and ∆m respectively the
gradient and the Laplacian on the graph of u. In the next proposition and more in general in the
paper we will consider the laplacian ∆m of a function f defined on Ω ⊂ M. When doing so, we
implicitly mean that we are applying the laplacian to the function f ◦ π, where π : graph(u) → Ω is
the standard projection. We will often use the fact that minimizers of the area functional on smooth
manifolds are smooth.

We now turn our attention to proving Theorems A.1 and A.2. The next proposition is the so-
called Jacobi equation for minimal graphs and it follows by taking the second variation of the area
of a minimal graph.

Proposition A.3. Let (M, g) be a Riemannian manifold, let Ω ⊂ M be open and let u ∈ C∞(Ω) be
a solution of the minimal surface equation. Then, setting vu :=

√
1 + |∇u|2 and denoting by A the

second fundamental form of graph(u) in Ω× R, we have

∆mv
−1
u = −|A|2

vu
− Ric(∇u,∇u)

v
3/2
u

,

or, equivalently,

∆m log vu = |A|2 + Ric(∇u,∇u)
v2u

+ |∇m log vu|2.

The mean value property (MVP), combined with Proposition A.3, gives a-priori gradient esti-
mates for minimal graphs. This is the content of Theorem A.4 (see [23, Theorem 6.1]). Although
stated in a slightly different form, inspecting the proof of [23, Theorem 6.1] (and using (MVP)
instead of [23, Lemma 5.7]), one can check that this is the version we obtain.

Theorem A.4. Assume that (MVP) holds. Let r > 0 and let (Mn, g) be a complete non-compact
Riemannian manifold with

RicM ≥ −(n− 1)k2r−2

on Br(p) ⊂ M for some k ≥ 0. Suppose that Hn(Br(p)) ≥ vrn for some constant v > 0. There exists
c(k, n, v) > 1 such that if u ∈ C∞(Bcr(p)) is a solution of the minimal surface equation, then

sup
x∈Bm

r (p̄)

|∇u(x)| ≤ cecr
−1(u(p)−infx∈Bcr(p) u(x)).

We now prove three basic lemmas.

Lemma A.5. Let n ∈ N and K ∈ R be fixed. Let (Mn
k , dk, xk) be a sequence of pointed Riemannian

manifolds with RicMn
k
≥ K converging in pGH sense to (X, d, x). For every r > 0, if k is large

enough, then Hn
k (Br(xk)) ≥ Hn(Br(x))/2.

Proof. If Hn(Br(x)) = 0 the statement follows trivially. If instead Hn(Br(x)) > 0, then the Hausdorff
dimension of (X, d) is at least n, so that Theorem 1.10 gives that the sequence (Mn

k , dk,H
n
k , xk)

converges in pmGH sense to (Xn, d,Hn, x). The statement then follows by lower semicontinuity of
measures w.r.t. weak convergence.
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In the next lemma, we consider the behavior of the local Lipschitz constant of an area minimizing
function u ∈ BV(Ω). Here, we implicitly mean that we are considering a precise representative for
u, i.e. the function whose value in x is given by

lim sup
s→0

 
Bs(x)

u dm.

This will be implicitly used when we exploit the fact that graph(u) ⊂ ∂Hyp(u), where Hyp(u) denotes
the closed representative of the hypograph of u.

Lemma A.6. Let n ∈ N and K ∈ R be fixed. Let (Mn
i , di,H

n
i , xi) be a sequence of pointed Rie-

mannian manifolds with RicMn
i
≥ K converging in pmGH sense to (X, d,m, x). If u ∈ BV(Br(x),m)

is an area minimizer and there is a sequence of area minimizers ui ∈ BV(BR(xi),H
n
i ) with R > r

converging in L1 to u on Br(x) with
sup

BR(xi)

lip(ui) ≤ c,

then
sup
Br(x)

lip(u) ≤ c.

Proof. Suppose by contradiction that the statement is false. Therefore, there exists y ∈ Br(x) ∩ X
and a sequence yk → y contained in Br(x) ∩ X such that

|u(y)− u(yk)|
d(y, yk)

> c.

Since the boundaries of the hypographs of ui converge in Kuratowski sense in Br(x)×R (as a subset
of the space (Z, dz) realizing the pmGH convergence) to ∂Hyp(u), and since graph(u) ⊂ ∂Hyp(u),
we have that for every k there exists a sequence yki ∈ Br(x) ∩ Mi such that yki → yk in Z and
ui(y

k
i ) → u(yk). Similarly, there exists yi ∈ Br(x) ∩Mi such that yi → y in Z and ui(yi) → u(y).

This implies that for every k > 0 fixed, for i large enough, we have

|ui(yi)− ui(y
k
i )|

di(yi, yki )
> c.

In particular, if k and i are sufficiently large, we will have that the geodesic in Mi connecting yi and
yki is contained in BR(xi). Integrating along this geodesic we have

|ui(yi)− ui(y
k
i )| ≤ cdi(yi, y

k
i ),

a contradiction.

Lemma A.7. Let (M, g) be a Riemannian manifold and let u ∈ C∞(Br(x)) be a smooth function.
If 0 < t ≤ r, c > 1 and

sup
Bm

t (x̄)

lip(u) ≤ c,

then
π(B̄m

t (x̄)) ⊃ Bt/(2c)(x).

Proof. Let y ∈ Bt/(2c)(x) and let γ be a length minimizing geodesic connecting x and y. If u
restricted to this geodesic takes value in Bt/(2c)(x)× (u(x)− t/2, u(x) + t/2), then there is nothing
left to prove. So suppose by contradiction that this is not true. Without loss of generality this
implies that that there exists γ(t0) such that u(γ(t0)) = u(x) + t/2, and we can also suppose that
for every s ∈ (0, t0) we have u(γ(s)) ∈ (u(x)− t/2, u(x) + t/2). In this case we have that

|u(x)− u(γ(t0))| ≤ cd(γ(t0), x) < t/2,

a contradiction.
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The next theorem complements Theorem A.1 and, assuming (MVP), gives explicit a-priori gra-
dient estimates for minimizers of the area on Ricci limit spaces.

Theorem A.8. Assume that (MVP) holds. Let r > 0, v > 0, n ∈ N and K ∈ R+ be fixed.
Let (Mn

k , dk, xk) be a sequence of pointed Riemannian manifolds with RicMn
k
≥ −(n − 1)K2r−2 and

Hn
k (Br(xk)) ≥ vrn converging in pointed Gromov-Hausdorff sense to (X, d, x) with Br(x) ⊊ X. Let

u ∈ W1,1(Br(x),H
n) be an area minimizer. There exists c(K,n, v) > 0 such that, setting

cr := cecr
−1(u(x)−infy∈Br(x) u(y)),

it holds
sup

z∈Br/cr (x)

lip(u)(z) ≤ cr.

Proof. Fix r/2 < t < s < r and let uk ∈ BV(Bs(x),H
n
k ) be the area minimizers given by Theorem 5

such that uk1Bs(x) → u1Bs(x) in L1 sense. Each function uk is defined on Bt(xk) for k large enough
and it is smooth on this ball. Moreover, thanks to Theorem A.4, for some c(k, n, v) > 1,we have

sup
Bm

t/c
(x̄k)

|∇uk| ≤ cect
−1(uk(xk)−infy∈Bt(xk) uk(y)). (10)

Observe now that the Kuratowski convergence of the graphs of uk to the boundary of the hypograph
of u in Bs(x) implies that for every δ > 0, if k is large enough, we have

inf
z∈Bt(xk)

uk(z) ≥ inf
z∈Bs(x)

u(z)− δ

and
uk(xk) ≤ sup

y∈Bδ(x)

u(y) + δ.

Hence, for every δ > 0 and for k large enough, the inequality (10) becomes

sup
Bm

t/c
(x̄k)

|∇uk| ≤ cect
−1(supy∈Bδ(x) u(y)−infy∈Bs(x) u(y)+2δ). (11)

We now set ctδ := cect
−1(supy∈Bδ(x) u(y)−infy∈Bs(x) u(y)+2δ) and we note that, by Lemma A.7, it holds

sup
Bt/(2cct

δ
)(xk)

|∇uk| ≤ ctδ,

which, together with Lemma A.6, implies that

sup
z∈Bt/(3cct

δ
)(x)

lip(u) ≤ ctδ. (12)

This shows in particular that u is continuous in x, so that when we let δ → 0 we have that

sup
y∈Bδ(x)

u(y) → u(x).

Hence, taking the limit as δ → 0 in (12) and setting ct0 := cect
−1(u(x)−infy∈Bs(x) u(y)), we get

sup
z∈Bt/(3cct0)(x)

lip(u)(z) ≤ ct0 ≤ cr := ce2cr
−1(u(x)−infy∈Br(x) u(y)).

Now, taking the limit as t→ r and using the same notation, we get

sup
z∈Br/(3ccr)(x)

lip(u)(z) ≤ cr,

as claimed.
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Theorem A.1. Assume that (MVP) holds. Let v > 0, n ∈ N and K ∈ R be fixed. Let (Mn
k , dk, xk)

be a sequence of pointed Riemannian manifolds with RicMn
k
≥ K and Hn

k (B1(xk)) ≥ v > 0 converging

in pointed Gromov-Hausdorff sense to (X, d, x). If Ω ⊂ X is open and u ∈ W1,1(Ω,Hn) is an area
minimizer, then u ∈ Liploc(Ω).

Proof. For every y ∈ Ω and every sequence yk ∈ Mk converging to y, we can find ϵ > 0 and vy > 0
such that Hn

k (Bϵ(yk)) ≥ vy > 0 for every k large enough (this follows from the doubling property of
each of these manifolds and the uniform lower bound on the volume of the unit ball). Hence, the
previous theorem guarantees that u ∈ Lip(Bδ(y)) for δ > 0 sufficiently small. By the arbitrariness
of y ∈ Ω, we conclude.

Example A.9. On generic metric measure spaces, Sobolev minimizers of the area functional are not
locally Lipschitz. To see this, consider the metric measure space (R, de, µ), where de is the Euclidean
distance and µ := |x|λ1. We claim that the function 1R+

belongs to W1,1
loc(R, de, µ) and minimizes

the area. Indeed, consider the Lipschitz functions fn(x) := (1− nde(x,R+) ∨ 0. For every r > 0, it
holds

|D1R+
|(−r, r) ≤ lim

n→+∞

ˆ r

−r

lipfn(x) dµ = lim
n→+∞

n

ˆ 0

−1/n

|x| dx = 0.

This proves that |D1R+ | = 0, so that, in particular, 1R+ ∈ W1,1
loc(R, de, µ) and A(1R+ ,Ω) = µ(Ω) for

every Ω ⊂ R. Let now u ∈ BV(R, de, µ) be a competitor for 1R+ with {u ̸= 1R+} ⊂⊂ Ω for some
open set Ω ⊂⊂ R. Then, by definition of area, it holds

A(u,Ω) ≥ µ(Ω) = A(1R+ ,Ω),

showing that 1R+ is indeed a minimizer.

The next lemma, which will be used to prove Theorem A.11, follows by repeating the argument
of [23, Theorem 6.2], and for this reason some details in the proof are omitted.

Lemma A.10. Assume that (MVP) holds. Let r0 > 0, v > 0, n ∈ N. Let (Mn, d, x) be a manifold
with RicMn ≥ 0 and Hn(Br0(x)) ≥ vrn0 . There exists c(n, v) > 1 such that, if u ∈ C∞(Bcr0(x)) is an
area minimizer, then given r > 0 such that

r2 = r20 − 4
(

sup
y∈Br/2(x)

|u(y)− u(x)|
)2

,

we have

sup
y∈Br/2(x)

|∇u|(y) ≤ c
(
1 + r−1 sup

y∈Br/2(x)

|u(y)− u(x)|
)n

.

Proof. Thanks to Propositions A.3 and (MVP), there exists a constant c(n, v) > 0 such that

1

Hn(Bm
r0(x̄))

ˆ
Bm

r0
(x̄)

1√
1 + |∇u|2

dHn ≤ c inf
y∈π(Bm

r0/2
(x̄))

1√
1 + |∇u|2

(y),

where Hn is the Hausdorff measure in M×R and we are using the previously defined convention for
functions defined on M evaluated on the graph of u.

Hence, possibly changing c at every step, we get

sup
y∈π(Bm

r0/2
(x̄))

√
1 + |∇u|2(y) ≤ c

Hn(Bm
r0(x̄))

Hn(π(Bm
r0(x̄)))

,

which, together with the fact that u is an area minimizer, implies that

sup
y∈π(Bm

r0/2
(x̄))

√
1 + |∇u|2(y) ≤ crn0

Hn(π(Bm
r0(x̄)))

.
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By our hypothesis on r > 0 we then get that Br/2(x) ⊂ π(Bm
r0/2

(x̄)) ⊂ π(Bm
r0(x̄)), while Bishop

Gromov’s inequality and the fact that Hn(Br0(x)) ≥ vrn0 imply that Hn(Br/2(x)) ≥ 2−nvrn. Putting
these facts together we get, changing again c > 0,

sup
y∈π(Bm

r0/2
(x̄))

√
1 + |∇u|2(y) ≤ c

rn0
rn

≤ c
(
1 + r−2 sup

y∈Br/2(x)

|u(y)− u(x)|2
)n/2

,

which then implies the statement.

The next theorem, assuming (MVP), gives improved a-priori gradient estimates for minimizers of
the area in Ricci limit spaces with maximal volume growth. The proof is adapted from [23, Theorem
6.2].

Theorem A.11. Assume that (MVP) holds. Let n ∈ N be fixed and let (Mn
k , dk, xk) be a sequence

of pointed Riemannian manifolds with RicMn
k
≥ 0 converging in pointed Gromov-Hausdorff sense to

a space (X, d, x) such that

lim
r→+∞

Hn(Br(x))

rn
≥ v > 0.

If u ∈ W1,1
loc(X,H

n) is an area minimizer, then there exists c(n, v) > 0 such that, for every r > 0, it
holds

sup
y∈Br/2(x)

lip(u)(y) ≤ c
(
1 + r−1 sup

y∈Br(x)

|u(y)− u(x)|
)n

.

Proof. Fix 0 < R1 < R2 and consider the sequence of area minimizers uk ∈ BV(BR2(x),H
n
k ) con-

verging in L1 to u on BR2(x) given by Theorem 5. Each function uk is defined on BR1(xk) for k
large enough and is smooth on this ball.

Consider then r > 0 such that

r2 = R2
1 − 4

(
sup

y∈Br/2(x)

|u(y)− u(x)|
)2

.

Since u is locally Lipschitz by Theorem A.2, the Kuratowski convergence of the hypographs of uk
to the hypograph of u implies that

sup
y∈Br/2(xk)

|uk(y)− uk(xk)| → sup
y∈Br/2(x)

|u(y)− u(x)|.

In particular, setting rk > 0 to be such that

r2k = R2
1 − 4

(
sup

y∈Brk/2(xk)

|uk(y)− u(xk)|
)2

,

we have that rk → r as k → ∞.
Moreover, combining Bishop Gromov’s inequality on X with Lemma A.5, we obtain that, for

every k large enough, we have

Hn
k (BR1

(xk)) ≥
v

2
Rn

1 ,

so that, by Lemma A.10, we obtain

sup
y∈Brk/2(x)

|∇uk|(y) ≤ c(n, v)
(
1 + rk

−1 sup
y∈Brk/2(xk)

|uk(y)− uk(xk)|
)n

.

Moreover, using Lemma A.6 and the fact that ri → r, we get

sup
y∈Br/4(x)

|∇u|(y) ≤ c
(
1 + r−1 sup

y∈Br/2(x)

|u(y)− u(x)|
)n

. (13)

Finally, the function R1 7→ r is increasing (by definition), continuous (since u is continuous), and
tends to +∞ at infinity (since u is locally bounded), so that (13) holds for every r > 0 by the
arbitrariness of R1.
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The next lemma will be used to prove Theorem A.2. The proof is adapted from the one in [24,
beginning of Theorem 3.6].

Lemma A.12. Let (X, d,m, x) be an RCD(0, N) space. If u ∈ Lip(X) is a function whose hypograph
minimizes the perimeter and such that

lim
y→+∞

max{−u(y), 0}
d(x, y)

= 0, (14)

then

lim
y→+∞

|u(y)|
d(x, y)

= 0.

Proof. Let L := L(u) ∨ 1, where L(u) is the Lipschitz constant of u. The Harnack inequality on the
graph of u (Theorem 1.17) gives that, for every r > 0, for some C > 1, it holds

sup
y∈Bm

r (x̄)

u(y)− inf
z∈Bm

r (x̄)
u(z) ≤ C(u(x)− inf

z∈Bm
r (x̄)

u(z)),

so that
sup

y∈Bm
r (x̄)

u(y) ≤ Cu(x)− (C − 1) inf
z∈Bm

r (x̄)
u(z).

Using that u is Lipschitz, we get

sup
y∈Br/(2L)(x)

u(y) ≤ Cu(x)− (C − 1) inf
z∈Br(x)

u(z).

Moreover, from (14), for every δ > 0 there exists Cδ > 0 such that u(y) ≥ −Cδ − δd(x, y) for every
y ∈ X. Hence,

sup
y∈Br/(2L)(x)

u(y) ≤ Cu(x) + (C − 1)(Cδ + δr).

This implies that

lim sup
y→+∞

|u(y)|
d(x, y)

≤ 2CLδ,

which implies the statement by the arbitrariness of δ > 0.

The proof of the next result, i.e. Theorem A.2, is adapted from the one in [24, Theorem 3.6].

Theorem A.2. Assume that (MVP) holds. Let n ∈ N be fixed and let (Mn
k , dk, xk) be a sequence

of pointed Riemannian manifolds with RicMn
k
≥ 0 converging in pointed Gromov-Hausdorff sense to

a space (X, d, x) such that

lim
r→+∞

Hn(Br(x))

rn
≥ v > 0.

If u ∈ W1,1
loc(X,H

n) is an area minimizer such that

lim
y→+∞

max{−u(y), 0}
d(x, y)

= 0,

then u is constant.

Proof. By Lemma A.5 and Theorem A.8 we know that u ∈ Lip(X). Hence the previous lemma gives
that

lim
y→+∞

|u(y)|
d(x, y)

= 0.

We claim that |∇u| = 0 in B1(x). A rescaling argument then gives |∇u| = 0 in Br(x) for every
r > 0, yielding the statement.
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To this aim, we fix ϵ > 0 and we choose R > 1 large enough so that, for every y ∈ X with
d(x, y) > R, it holds

|u(y)| ≤ ϵd(x, y).

Consider R1 > R to be fixed later and the minimizers uk ∈ C∞(B5R1(x) ∩Mk) converging in L1 to
u on B5R1(x). For every k large enough, since the hypographs of uk converge in Kuratowski sense
to the hypograph of u in B5R1

(x)× R, we have that

|uk(y)| ≤ 2ϵdk(x, y) (15)

for every y ∈ BR1
(xk) such that dk(xk, y) > 2R.

So far we estimated the growth of the functions uk exploiting the growth condition on u; now we
estimate their Lipschitz constants. For every s > 0 let cs be the quantity defined in Theorem A.8
relative to u and let cks denote the same quantity relative to each uk. Note that by our assumption
on the growth of u, we have that there exists c > 1 such that cs ≤ c for every s.

Since the hypographs of the functions uk converge in Kuratowski sense to the one of u, we have
that ck4R1

→ c4R1
, so that by the a-priori gradient estimate Theorem A.8, for k large enough,

sup
z∈B3R1/(16c)(xk)

|∇uk|(z) ≤ 2c. (16)

To shorten the notation we set R2 := 3R1/(16c). A posteriori, since (16) holds for every R1 large
enough, we see that we could have chosen R1 > 0 (large enough) so that

B2R(xk) ⊂ π(Bm
R2

(x̄k)). (17)

We now denote by Hn
k and ∇× respectively the Hausdorff measure and the gradient in Mk×R w.r.t.

the product distance, and by ∇m the gradient on the graph of uk. We claim that
ˆ
Bm

R2
(x̄k)

|∇muk|2 dHn
k ≤ 4ϵ2Hn

k (B
m
2R2

(x̄k)). (18)

To prove the claim, we consider η ∈ Lip(B×
2R2

(x̄k)) with η = 0 on ∂B×
2R2

(x̄k), η = 1 on B×
R2

(x̄k) and
∇×η ≤ 1/R2. Using the fact that uk is harmonic on its graph, we then get

ˆ
Bm

R2
(x̄k)

|∇muk|2 dHn
k ≤

ˆ
Bm

2R2
(x̄k)

|∇muk|2η dHn
k ≤ 4

ˆ
Bm

2R2
(x̄k)

u2k|∇mη|2 dHn
k .

Moreover, combining (15), (17) and the fact that |∇mη| ≤ |∇×η|, we deduce that

4

ˆ
Bm

2R2
(x̄k)

u2k|∇mη|2 dHn
k ≤ 4ϵ2Hn

k (B
m
2R2

(x̄k)),

from which our claim (18) follows.
Finally, using the mean value property for sub-harmonic function on the graph of each uk (i.e.

(MVP)) we get, thanks to (16) and (18), that

sup
B2(xk)

|∇uk|2 ≤ sup
Bm

R2/2
(xk)

|∇uk|2 ≤
 
Bm

R2
(xk)

|∇uk|2 dHn
k

≤ (1 + 4c2)

 
Bm

R2
(xk)

|∇muk|2 dHn
k ≤ 4ϵ2(1 + 4c2)

Hn
k (B

m
2R2

(x̄k))

Hn
k (B

m
R2

(x̄k))
≤ C(u, n)ϵ2.

In particular, by Lemma A.6, we get

sup
B1(x)

|∇u|2 ≤ Cϵ2.

Since ϵ > 0 was arbitrary we conclude.
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