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Abstract. We introduce infinite dimensional Hilbertian H-type groups equipped with weak,
graded, left invariant Riemannian metrics. For these Lie groups, we show that the vanishing
of the geodesic distance and the local unboundedness of the sectional curvature coexist. The
result validates a deep phenomenon conjectured in an influential 2005 paper by Michor and
Mumford, namely, the vanishing of the geodesic distance is linked to the local unboundedness
of the sectional curvature. We prove that degenerate geodesic distances appear for a large class
of weak, left invariant Riemannian metrics. Their vanishing is rather surprisingly related to the
infinite dimensional sub-Riemannian structure of Hilbertian H-type groups. The same class of
weak Riemannian metrics yields the nonexistence of the Levi-Civita covariant derivative.
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1. Introduction

The study of infinite dimensional manifolds is a vast and fascinating area of Mathematics
which, for instance, embraces Differential Geometry, Lie group theory, and PDEs. A recent
introduction to these topics can be found in the monograph [30] and the lecture notes [8, 23].
Some foundational works are [12, 19], and more specific information on infinite dimensional
Lie groups can be found for instance in [29, 17] and in the surveys [27, 28, 11].

We begin by highlightening Riemannian Hilbert manifolds, that constitute a class of infinite
dimensional manifolds modeled on a Hilbert space. Their Riemannian metrics induce the
manifold topology on tangent spaces, hence they are called strong Riemannian metrics and
their geodesic distance is a distance function, that separates points. While the local geometry
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of Riemannian Hilbert manifolds shares some analogies with the finite dimensional case, for
instance the Levi-Civita connection always exists, certain global properties fail to hold. For
more information, we refer the reader to the interesting survey [7] and the references therein.

Only for infinite dimensional manifolds, the so-called weak Riemannian metrics may induce
on tangent spaces weaker topologies than the manifold topology, [1, 8, 23, 30]. If the manifold
is not modeled on a Hilbert space, then the Riemannian metric must be weak. We focus our
attention on Lie groups modeled on a Hilbert space, where both weak and strong Riemannian
metrics can be defined. Therefore, we use the terminology “strictly weak Riemannian metric”
to emphasize the cases where the weak Riemannian metric is not strong.

For strictly weak Riemannian metrics, a striking phenomenon can occur, resulting in the
vanishing of the geodesic distance between distinct points. We say that such geodesic distance
is degenerate. First examples of such surprising fact were discovered in different classes of
Fréchet manifolds [10], [25], [26]. Simple examples of degenerate geodesic distances are also
available in Hilbert manifolds, [21, 22], see also [5, 6] for more information.

In the 2005 paper [25], P. Michor and D. Mumford conjectured a relationship between the
vanishing of the geodesic distance and the local unboundedness of the sectional curvature.
They proposed a fascinating interpretation behind this phenomenon: some parts of the infinite
dimensional manifold “wrap up on theirselves” allowing to find curves connecting two distinct
points and having shorter and shorter length, up to reaching vanishing infimum, see [25] and [5,
Section 1.2]. In Mathematical terms, we may rephrase this phenomenon as follows: whenever
a weak Riemannian metric admits a degenerate geodesic distance, then the sectional curvature
must be unbounded on some special sequences of planes that stay in a neighborhood of some
point. For infinite dimensional Lie groups, the homogeneity by translations allows this point
to be the unit element.

We point out that when a specific choice of strictly weak Riemannian metric on the infinite
dimensional Heisenberg group is considered, then the following phenomenon appears: the
blow-up of the sectional curvature occurs along some planes that are related to the shrinking
curves which connect the distinct points, where the geodesic distance vanishes, [22]. If we
take into account the above comments and the subsequent Theorem 1.1, then we may interpret
the Michor–Mumford conjecture in infinite dimensional Lie groups as follows. Considering
an infinite dimensional Lie group, equipped with a weak, left invariant Riemannian metric and
a degenerate geodesic distance, then we expect that the sectional curvature at the unit element
is positively unbounded.

In the present paper, we introduce Hilbertian H-type groups, whose geometry validates the
previous version of the conjecture, with respect to a large class of strictly weak, left invariant
Riemannian metrics. Hilbertian H-type groups include the infinite dimensional Heisenberg
group of [22] and in the finite dimensional case they exactly coincide with the well known
H-type groups, that were discovered by A. Kaplan, [14, 15, 16], see also [13]. We notice that
Kaplan’s definition perfectly works also through the infinite dimensional interpretation. On the
other hand, the effective existence of infinite dimensional H-type groups needs to be verified.
In Section 2, we provide an infinite dimensional construction, from which one may notice that
there are infinitely many infinite dimensional Hilbertian H-type Lie groups, see Remark 2.3.

We focus our attention on the “natural” weak Riemannian metrics on Hilbertian H-type
groups, that are left invariant and make the subspaces V andW orthogonal. Borrowing the ter-
minology from the finite dimensional case, we say that such metrics are graded. For instance,
the Cameron-Martin subgroup of [9] is a two step, infinite dimensional Lie group equipped
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with a strong and graded Riemannian metric. Thus, the next statement validates our interpre-
tation of the Michor–Mumford conjecture in Hilbertian H-type groups.

Theorem 1.1. Let σ be a weak, graded Riemannian metric on a Hilbertian H-type group. If
the metric σ yields a degenerate geodesic distance, then the sectional curvature at the unit
element exists on a sequence of planes and it is positively unbounded.

The starting point of the proof is that the degenerate geodesic distance forces the graded
Riemannian metric to be strictly weak. Then we prove that for strictly weak, graded Riemann-
ian metrics the blow-up of the sectional curvature always occurs. Extending Theorem 1.1 to
more general classes of infinite dimensional Lie groups seems an interesting open question.

It is also important to understand whether, and in which cases, the geodesic distance in a
Hilbertian H-type gruoup is actually degenerate. Here a rather striking fact appears, since
infinite dimensional sub-Riemannian (sub-Finsler) Geometry enters the proof of Theorem 1.1.
More generally, for any strictly weak, left invariant sub-Finsler metric on a Hilbertian H-type
group, the sub-Finsler distance is degenerate, see Theorem 4.1. The idea behind the proof of
this theorem is to use a sequence of vectors, where the weak and the strong topology differ.
Then we use the map J associated with the structure of H-type group, which allows for the
same “shrinking-space effect” that was first observed in [22]. As a consequence, we have the
following result, corresponding to Theorem 4.4.

Theorem 1.2 (Characterization of points with vanishing distance). Let F be a strictly weak,
left invariant Finsler metric on a Hilbertian H-type group M = V ⊕W and let us fix x, y ∈ V,
z1, z2 ∈W. Then we have

dF(x + z1, y + z2) = 0 if and only if x = y,

where dF is the Finsler distance associated with F.

The subclass of strictly weak, graded Riemannian metrics on a Hilbertian H-type group
gives rise to another singular phenomenon, i.e. the lack of the Levi-Civita covariant derivative.

Theorem 1.3. If σ is a strictly weak, graded Riemannian metric on a Hilbertian H-type group,
then it does not admit the Levi-Civita covariant derivative.

The proof of the previous theorem is given in Section 5. An example of nonexistence of
the Levi-Civita connection was provided in [3]. We also notice that in [23, Example 2.26]
the model of [21] is extended to a family of weak Riemannian metrics which do not possess
Christoffel symbols, hence their associated Levi-Civita covariant derivative cannot exist.

Despite Theorem 1.3, we observe that through the classical Arnold’s formula [2] it is still
possible to compute the sectional curvature of some planes in a Hilbertian H-type group. How-
ever, we cannot claim that the formula works for all planes. In fact, there are also planes for
which the Arnold’s formula does not apply, as it is shown for instance in [21, Remark 4.1].

The next theorem proves that in a Hilbertian H-type group equipped with a strictly weak,
graded Riemannian metric, we can always find sequences of planes in T0Mwhere the sectional
curvature is well defined, and also unbounded.

Theorem 1.4 (Unboundedness of the sectional curvature). Let M be a Hilbertian H-type
group. If σ is a strictly weak, graded Riemannian metric onM, then there exist two sequences
of planes {Pn}n∈N, {Qn}n∈N ⊂ T0M whose sectional curvatures Kσ(Pn) and Kσ(Qn) are well
defined through the Arnold’s formula and we have

lim
n→∞

Kσ(Pn) = −∞ and lim
n→∞

Kσ(Qn) = +∞.
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This theorem is a version of Theorem 6.6, where we provide an explicit form for the planes:

Pn = span
{
wn, Jzwn

}
and Qn = span

{
z, JAzwn

}
.

We believe that there is a connection between these planes and the sequence of curves that
progressively decrease their length, while connecting the fixed distinct points. In fact, we
point out that the projection on V of these horizontal curves has the form

γn
1(t) = tc

√
n wn +

t2c
2

1
√

n
Jz(wn)

for c ∈ R, see the proof of Theorem 6.6. In this sense, we surmise that the planes Pn and Qn

should be somehow related to the parts of the space where the curves γn "move", when their
length reduces up to converging to zero. However, the precise relationship between the planes
of the blow-up and the shrinking curves remains unclear to us.

We observe that Theorem 1.4 immediately gives Theorem 1.1, since the vanishing of the
geodesic distance implies that the graded Riemannian metric is strictly weak. We hopefully
expect that our remarks in Hilbertian H-type groups provide more insights to understand the
Michor–Mumford phenomenon in other classes of infinite dimensional manifolds.

2. Infinite dimensional H-type groups

The approach of [20] can be used to construct specific classes of infinite dimensional Banach
nilpotent Lie groups, starting from an infinite dimensional nilpotent Lie algebra. Indeed, the
group operation is immediately provided by the Baker–Campbell–Hausdorff formula, which
we abbreviate as “BCH formula”. We will see that this simple viewpoint allows us to get the
notion of a possibly infinite dimensional H-type group.

We fix some notions that we will use throughout the paper. Let M be a Hilbert space,
consider a continuous Lie product [·, ·] : M × M → M and two orthogonal and nontrivial
closed subspaces V and W such that M = V ⊕W, with dim(W) < +∞. We denote the scalar
product on M by 〈·, ·〉 and the associated norm by | · |. The space of all linear continuous
endomorphisms of a Banach space X is denoted by End(X).

We say that M is a Hilbertian H-type group, or simply an H-type group, if the following
conditions hold.

(I) [M,M] ⊂W and [M,W] = {0},
(II) the unique linear and continuous operator J : W → End(V) defined by the formula

(1) 〈Jzx, y〉 = 〈z, [x, y]〉

for z ∈W, x, y ∈ V, satisfies the additional condition

(2) J2
z = −|z|2 IdV,

where IdV : V → V is the identity mapping.
Notice that the existence of the linear and continuous operator J is a consequence of both the
Riesz representation theorem applied on V and the continuity of the bilinear mapping [·, ·].
Thus, (1) immediately follows.

The group operation is automatically obtained by the BCH formula:

(3) x · y = x + y +
1
2

[x, y].

From the defining formula (1), we immediately notice that the adjoint operator J∗z satisfies

(4) J∗z = −Jz.
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As a consequence, using also (2), we may write

|Jzx|2 = −〈x, J2
z x〉 = |z|2|x|2,

that gives

(5) |Jzx| = |z||x|.

Therefore, using also the defining formula (1), we have

(6) |z|2|x|2 = |Jzx|2 = 〈z, [x, Jzx]〉.

For every w ∈W, we also notice that (5) implies

|〈w, [x, y]〉| = |〈Jwx, y〉| ≤ |w| |x| |y|,

therefore in any H-type group we have

(7) |[x, y]| ≤ |x| |y|.

For x, z , 0, it follows that

(8)
∣∣∣∣ [x, Jzx]
|x|2|z|

∣∣∣∣ ≤ 1

and in addition (6) gives

(9)
〈

z
|z|
,

[x, Jzx]
|x|2|z|

〉
= 1.

Combining (7) and (9), we have proved that

(10) [x, Jzx] = |x|2z.

Notice that [M,W] = {0} implies thatW is contained in the center ofM, where we regardM as
a Lie algebra. However, it is easy to notice that condition (10) shows thatW exactly coincides
with the center of M.

Remark 2.1. Notice that in the case dim(V) < +∞, the Hilbertian H-type group coincides with
the well known (finite dimensional) H-type group, [14], hence motivating our terminology.

Next, we construct examples of (infinite dimensional) Hilbertian H-type groups. We fix an
H-type group n = υ ⊕ ζ, where υ and ζ are finite dimensional orthogonal subpaces of the
Hilbert space n. We denote by 〈·, ·〉n the scalar product of n and by | · |n its associated norm.

The endomorphism Jn : ζ → End(υ) defines the H-type structure on n. We denote by N+

the set of positive integers and consider the space of square-summable sequences

(11) Pυ =

(xk)k : xk ∈ υ, k ∈ N+,

∞∑
k=1

|xk|
2
n < +∞

 .
We set M = Pυ × ζ and identifying Pυ and ζ with Pυ × {0} and {0} × ζ, respectively, we can

also write
M = Pυ ⊕ ζ.

For (x, z), (x′, z′) ∈M, we define the scalar product

(12) 〈(x, z), (x′, z′)〉 = 〈((xk)k, z), ((x′k)k, z′)〉 = 〈z, z′〉n +

∞∑
k=1

〈xk, x′k〉n



6 VALENTINO MAGNANI AND DANIELE TIBERIO

that makesM a Hilbert space, where Pυ and ζ are orthogonal closed subspaces. We denote by
| · | the associated norm on M. For x = (xk)k ∈ Pυ and z ∈ ζ, we define

(13) Jz(x) = (Jnz xk)k.

Thus, observing that

(14)
∞∑

k=1

|Jnz xk|
2
n = |z|2n

∞∑
k=1

|xk|
2
n < +∞,

the mapping Jz : Pυ → Pυ is well defined and

(15) J2
z = −|z|2n IdPυ ,

since (Jnz )2 = −|z|2n Idυ. The Lie product of ξ+η, ξ′+η′ ∈ n = υ⊕ζ is given by a skew-symmetric
continuous bilinear mapping

β : υ × υ→ ζ

such that
[ξ + η, ξ′ + η′] = β(ξ, ξ′).

By the property (7) for H-type groups, we get

(16) |β(ξ, ξ′)| = |[ξ, ξ′]| ≤ |ξ|n |ξ′|n

for all ξ, ξ′ ∈ υ, therefore the Lie product

(17) [(x, z), (x′, z′)] =

0, +∞∑
k=1

β(xk, x′k)

 ,
is well defined for all (x, z), (x′, z′) ∈M. Cauchy–Schwarz inequality yields

(18) |[(x, z), (x′, z′)]| ≤
+∞∑
k=1

|β(xk, x′k)| ≤
∞∑

k=1

|xk|n |x′k|n ≤ |x| |x
′|,

hence the Lie product [·, ·] is continuous on M. Finally, from definition (13) of Jz : Pυ → Pυ,
we obtain

〈Jzx, y〉 =

∞∑
k=1

〈Jnz xk, yk〉n =

∞∑
k=1

〈z, [xk, yk]〉n =

∞∑
k=1

〈z, β(xk, yk)〉n = 〈z, [x, y]〉

for all x, y ∈ Pυ and z ∈ ζ. We have proved the following result.

Theorem 2.2. The linear space M = Pυ ⊕ ζ equipped with scalar product (12), Lie product
(17) and linear operator (13) is an infinite dimensional H-type group.

Remark 2.3. By [14, Corollary 1], there exist infinitely many finite dimensional H-type
groups, where there are no isomorphic couples. Indeed, these groups can be chosen to have
centers of different dimensions. As a result, Theorem 2.2 also shows that there are infinitely
many infinite dimensional H-type groups.

Remark 2.4. We point out that, when the finite dimensional H-type group n coincides with
the 3-dimensional Heisenberg group, in the construction of M, then Theorem 2.2 yields the
infinite dimensional Heisenberg group studied in [22].
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3. Weak metrics on Hilbertian H-type groups

In the sequel,M = V⊕W always denotes a Hilbertian H-type group, equipped with a scalar
product 〈·, ·〉 and its Hilbertian norm | · |. This section presents various notions of weak metrics
on M. They include weak Finsler metrics and weak Riemannian metrics. Indeed, both of
these metrics may induce a topology which is strictly weaker than the manifold topology. We
will also follow the convention of identifying the tangent space TqM with the group itself M,
q ∈M, due to the linear structure of M.

For every p ∈M, the left multiplication by p is denoted by Lp : M→M, with

Lp(q) = p · q = p + q +
1
2

[p, q]

for all q ∈M. We define the skew-symmetric bilinear function β : V × V →W such that

[x, y] = β(x, y)

for every x, y ∈ V. By definition of M, we have two canonical projections π1 : M → V and
π2 : M→W such that every p ∈M can be written in a unique way as

p = π1(p) + π2(p)

where π1(p) and π2(p) are also orthogonal. We obviously have the isometric isomorphism

M→ V ×W, p→ (π1(p), π2(p))

with respect to the Hilbert structure ofM. We use the simplified notation pi = πi(p) for p ∈M,
so that we can write p = p1 + p2 with p1 ∈ V and p2 ∈W. Then the group operation (3) gives
a simple formula for the differential of Lp at a point q ∈M along v = v1 + v2 ∈M:

(19) (dLp)q(v) =
d
dt

Lp(q + tv)
∣∣∣∣
t=0

= v +
1
2

[p, v] = v1 + v2 +
β(p1, v1)

2
.

Indeed, the linear structure of M allows us to identify TqM with M.

3.0.1. Weak Finsler metrics and Finsler distances. We fix a norm F0 : M → [0,+∞) with
respect to the linear structure of M, which also yields a Finsler metric on TM. We always
assume that F0 is continuous, namely F0(v) ≤ c1|v| for some c1 > 0 and for all v ∈ M, where
| · | is the fixed scalar product onM. It is also natural to assume that the decomposition V ⊕W
is compatible with the Finsler norm, namely π1 : M → V and π2 : M → W are continuous
with respect to F0. In other words, there exists C > 0 such that

F0(π1(x)) ≤ CF0(x) and F0(π2(x)) ≤ CF0(x).

Thus, for each p ∈M, we set
Fp(v) = F0((dL−p)p(v))

for every v ∈ TpM. We say that the map F on TM arising from the norms Fp is a weak, left
invariant Finsler metric on TM. We say that F is a strong, left invariant Finsler metric if
the topology induced by F0 on M coincides with the already given Hilbert topology of M. In
different terms, there exist c̃1 > 0 such that F0(v) ≥ c̃1|v| for all v ∈M. If a weak, left invariant
Finsler metric F onM is not strong, then we say that F is a strictly weak, left invariant Finsler
metric on M.

Example 3.1. Let us consider the infinite dimensional Heisenberg group H = `2 × `2 × R
equipped with the product of the associated Hilbert structure and the group operation as defined



8 VALENTINO MAGNANI AND DANIELE TIBERIO

in [22]. We have H = V ⊕W, where V = `2 × `2 × {0} and W = {0} × {0} × R. We fix p > 2
and for an element (h, k, t) ∈M, we define the norm

F0(h, k, t) = ‖h‖p + ‖k‖p + |t|,

where ‖x‖p = (
∑∞

k=1 |x j|
p)1/p ≤ ‖x‖2 < +∞ for every x ∈ `2. Clearly F0 gives an example of

strictly weak, left invariant Finsler metric. Indeed, it is also obvious that the projections π1 and
π2 on V and W are F0-continuous, respectively.

The length of a continuous, piecewise smooth curve γ : [0, 1]→M is defined by the integral

(20) `F(γ) =

∫ 1

0
Fγ(t)(γ̇(t))dt =

∫ 1

0
F0

(
(dL−γ(t))γ(t)γ̇(t)

)
dt.

Then we can immediately define the associated Finsler distance

(21) dF(p, q) = inf{`F(γ) : γ is continuous, piecewise smooth, γ(0) = p and γ(1) = q}

for every p, q ∈ M, hence dF : M ×M → [0,+∞). Clearly dF is left invariant, symmetric and
satisfies the triangle inequality.

Remark 3.2. Let us consider a weak, left invariant Finsler metric F on M, and let dF be the
associated geodesic distance. We will prove that for p, q ∈ M with π1(p) = x , y = π1(q),
we have C dF(p, q) ≥ F0(x − y) > 0. Indeed, for every continuous, piecewise smooth curve
γ : [0, 1]→M joining p to q, we get

`F(γ) =

∫ 1

0
F0

(
(dL−γ(t))γ(t)(γ̇(t))

)
dt ≥

1
C

∫ 1

0
F0(γ̇1(t)) dt

in view of (25) and taking into account the F-continuity of the projections. Thus, if we con-
sider the projected curve γ1 : [0, 1]→ V, we can piecewise integrate γ̇1 on the intervals where
it is continuous. Then we apply [12, Theorem 2.1.1 (ii)] and [12, Theorem 2.2.2] and the
triangle inequality on a partition t0 = 0 < t1 < · · · < tk = 1. It follows that

`F(γ) ≥
1
C

∫ 1

0
F0(γ̇1(t)) dt ≥

1
C

k−1∑
j=0

F0

(∫ t j+1

t j

γ̇1(t)
)

=
1
C

k−1∑
j=0

F0

(
γ1(t j+1) − γ1(t j)

)
≥

F0(x − y)
C

> 0.

3.0.2. Weak sub-Finsler metrics. Identifying V ⊕W with T0(V ⊕W), the subspace V can be
seen as a closed subspace of T0M, that we denote by H0M and we may introduce the left
invariant horizontal subbundle, denoted by HM, with fibers

HpM = (dLp)0(H0M) ⊂ TpM

for every p ∈ M. For each p ∈ M, on the horizontal fiber HpM of HM we can fix a norm,
which turns out to be continuous and left invariant. Precisely, a weak, left invariant sub-Finsler
metric S on HM is defined by a norm

(22) S 0 : V → [0,+∞)

satisfying for some c0 > 0 and for all x ∈ V the inequality

(23) S 0(x) ≤ c0|x|.



THE MICHOR–MUMFORD CONJECTURE IN HILBERTIAN H-TYPE GROUPS 9

The previous condition immediately yields the continuity of S 0 with respect to the fixed Hilbert
topology on M. Notice that the closed subspace V inherits a Hilbert structure from M. With
the previous identifications, for every p ∈M and v ∈ HpM, we introduce the norm

(24) S p(v) = S 0

(
(dL−p)p(v)

)
on the fiber HpM. If the topology defined by the norm S 0 on V coincides with the Hilbert one
of V, we say that S 0 defines a strong, left invariant sub-Finsler metric. This is equivalent to
the existence of a constant c̃ > 0 such that c̃|x| ≤ S 0(x) for all x ∈ V. If this is not the case, we
say that S 0 defines a strictly weak, left invariant sub-Finsler metric.

Example 3.3. Let us consider the infinite dimensional Heisenberg group H = `2 × `2 × R
equipped with the product of the associated Hilbert structure and the group operation as defined
in [22]. We have H = V ⊕W, where V = `2 × `2 × {0} and W = {0} × {0} × R. We fix p > 2
and for an element (h, k, 0) ∈ V, we define the norm

S 0(h, k) = ‖h‖p + ‖k‖p,

where ‖x‖p = (
∑∞

k=1 |x j|
p)1/p ≤ ‖x‖2 < +∞ for every x ∈ `2. Clearly S 0 gives an example of

strictly weak, left invariant sub-Finsler metric.

3.0.3. Horizontal curves and sub-Finsler distances. We notice that the expression of the dif-
ferential of translations (19) proves that v ∈ HpM if and only if

(25) (dL−p)p(v) = v −
1
2

[p, v] = v1 + v2 −
β(p1, v1)

2
∈ H0M

and the previous condition corresponds to the equality

(26) v2 =
β(p1, v1)

2
.

Thus, we have a precise formula to define the horizontal curves associated with H�. They are
continuous and piecewise smooth curves γ : [0, 1] → M of the form γ = γ1 + γ2 ∈ M, such
that for almost every t ∈ [0, 1] we have

γ̇2(t) =
β(γ1(t), γ̇1(t))

2
.

The previous differential constraint means that γ̇(t) ∈ Hγ(t)M. The length of a horizontal curve
γ : [0, 1]→M is defined by `S (γ) =

∫ 1

0
S γ(t)(γ̇(t))dt, therefore

`S (γ) =

∫ 1

0
S 0

(
(dL−γ(t))γ(t)γ̇(t)

)
dt =

∫ 1

0
S 0(γ̇1(t)) dt.

It is not difficult to observe that all couple of points in M can be connected by horizontal
curves. As a result, the sub-Finsler distance

ρS (p, q) = inf{`S (γ) : γ is a horizontal curve with γ(0) = p, γ(1) = q}

is finite for every p, q ∈ M, hence ρF : M ×M → [0,+∞). The fact that ρF is left invariant,
symmetric and satisfies the triangle inequality is straightforward.

Remark 3.4. Let us consider a weak, left invariant sub-Finsler metric S onM, and a weak, left
invariant Finsler metric F onM such that F0|V = S 0. We define ρS and dF to be the associated
sub-Finsler distance and Finsler distance, respectively. Taking into account (20), (25) and (26)
we observe that `F(γ) = `S (γ) for every horizontal curve. Then we immediately get

ρS (p, q) ≥ dF(p, q)
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for every p, q ∈ M. Taking into account Remark 3.2 we also have ρS (p, q) ≥ dF(p, q) > 0
whenever π1(p) , π1(q). Notice that for any fixed weak sub-Finsler metric S 0 on M, we can
always find a weak Finsler metric F0 such that F0|V = S 0. It suffices to choose any Hilbert
norm | · | on W, defining

F0(x + z) = S 0(x) + |z|

for every x ∈ V and z ∈W.

3.0.4. Weak Riemannian metrics and Riemannian distances. Following Section 2, we con-
sider a Hilbertian H-type group M = V ⊕W equipped with a Hilbert product 〈·, ·〉 and the
mapping Jz, z ∈W. We fix a continuous scalar product σ0 on M, namely

(27) ‖v‖σ0 ≤ c0|v|

for some c0 > 0 and every v ∈ M, where ‖ · ‖σ0 is the norm arising from σ0. We also require
that the canonical projections π1 : M→ V and π2 : M→W are σ0-continuous, that is

‖π1(v)‖σ0 ≤ C‖v‖σ0 and ‖π2(v)‖σ0 ≤ C‖v‖σ0

for all v ∈M and some C > 0. Thus, σ0 gives a scalar product

(28) σp(v,w) = σ0
(
(dLp−1)pv, (dLp−1)pw

)
= σ0

(
(dL−p)pv, (dL−p)pw

)
for each p ∈ M and v,w ∈ TpM. The corresponding Riemannian metric σ on TM is called
weak, left invariant Riemannian metric. Notice that the Riemannian norm ‖ · ‖σ0 on M is also
Finsler metric, see Section 3.0.1.

Let us consider the topology defined by σ0 on M. When it coincides with the topology
determined by the Hilbert structure of M, we say that σ is a strong, left invariant Riemannian
metric. We say that σ is a strictly weak, left invariant Riemannian metric if it is not strong.
Finally, a (strictly) weak, left invariant Riemannian metric σ on M such that V and W are
σ0-orthogonal is called (strictly) weak, graded Riemannian metric.

For a fixed weak, left invariant Riemannian metric σ on M, we consider the linear and
continuous operator A : M → M such that for all v,w ∈ M we have σ0(v,w) = 〈v, Aw〉,
where 〈·, ·〉 denotes the Hilbert product on M. The operator A exists by the classical Riesz
representation theorem and it is automatically self-adjoint and positive.

We denote by AV its restriction to V and by AW its restriction to W. When σ0 is graded,
it is easy to notice that AV(V) ⊂ V and AW(W) ⊂ W. Then we can consider the linear and
continuous operators AV : V → V and AW : W →W.

The following proposition is also standard.

Proposition 3.5. If σ is a weak, left invariant Riemannian metric on M, then the subspace
A(M) is dense in M. Furthermore, σ is strong if and only if A is surjective.

For any continuous and piecewise smooth curve γ : [0, 1]→ M its Riemannian length with
respect to the weak Riemannian metric σ is defined as

`σ(γ) =

∫ 1

0
‖γ̇(t)‖σ dt.

The geodesic distance associated with σ is the function dσ : M ×M→ [0,+∞) defined as

dσ(p, q) = inf{`σ(γ) : γ is a continuous and piecewise smooth curve with γ(0) = p, γ(1) = q}.

Clearly dσ is left invariant, symmetric and it satisfies the triangle inequality.
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4. Degenerate geodesic distances

The next theorem proves the existence of degenerate sub-Finsler distaces in any Hilbertian
H-type group equipped with a strictly weak, left invariant sub-Finsler metric.

Theorem 4.1 (Vanishinig of sub-Finsler distances). LetM = V⊕W be an infinite dimensional
H-type group equipped with the canonical projections π1 : M → V and π2 : M → W. Let ρS

be the sub-Finsler distance arising from any strictly weak, left invariant sub-Finsler metric S
on M. Then for every p, q ∈M with π1(p) = π1(q), we have ρS (p, q) = 0.

Proof. It suffices to prove that for all c ∈ R and all z ∈W with |z| = 1, we have

(29) ρS

(
0,

c2

3
z
)

= 0.

Since the norm S 0 of (22) does not define the Hilbert topology of V, there exists a sequence
{wn}n in V such that |wn| = 1 and S 0(wn) ≤ 1

n for all n ∈ N+. We choose z ∈W with |z| = 1, and
for each n ∈ N, define

γn
1(t) = tc

√
nwn +

t2c
2

1
√

n
Jz(wn).

Consider now the curve γn = (γn
1, γ

n
2), where

γn
2(t) =

1
2

∫ t

0
β(γn

1(s), γ̇n
1(s)) ds ∈W.

By construction, the curve γn is horizontal, therefore `S (γn) =
∫ 1

0
S 0(γ̇n

1(t)) dt. Let us consider
the following estimates

`S (γn) =

∫ 1

0
S 0(γ̇n

1(t)) dt =

∫ 1

0
S 0

(
c
√

nwn +
ct
√

n
Jz(wn)

)
dt

≤c
√

n S 0(wn) +
c
√

n
S 0(Jz(wn)) ≤

c
√

n
+

cc0
√

n
|Jz(wn)| =

c
√

n
+

cc0
√

n
· |z|.

(30)

It follows that
lim
n→∞

`S (γn) = 0.

For each n, the endpoint of γn is

γn(1) = c
√

nwn +
c
2

1
√

n
Jz(wn) +

c2

12
z.

Now, we define the curve αn
1 : [0, 1]→ V as

αn
1(t) = c

√
n(1 − t)wn +

c
2

(1 − t2)
√

n
Jz(wn)

and consider the lifting αn = αn
1 + αn

2, where

αn
2(t) = γn

2(1) +
1
2

∫ t

0
β(αn

1(s), α̇n
1(s)) ds ∈W

By construction, αn is also horizontal and αn(0) = γn(1), therefore the curve αn ? γn obtained
by joining γn and αn is also horizontal. For each n ∈ N, the curve αn ? γn connects the origin
0 ∈M to the point c2z

6 ∈W. We finally observe that

`S (αn) =

∫ 1

0
S 0(α̇n

1(t)) dt =

∫ 1

0
S 0

(
c
√

nwn +
ct
√

n
Jz(wn)

)
dt = `S (γn)→ 0.
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Therefore, `S (αn ? γn) = `S (γn) + `S (αn)→ 0. We have proved that (29) holds for every c ∈ R
and z ∈ W. To conclude the proof, we consider z1, z2 ∈ W, z1 , z2 and x ∈ V. We notice that
the left invariance of the sub-Finsler distance function yields

ρS (x + z1, x + z2) = ρS (xz1, xz2) = ρS (z1, z2) = ρS (0, z2 − z1).

Clearly, we can find c , 0 and z ∈W \ {0} such that z2 − z1 = c2z/6, hence

ρS (x + z1, x + z2) = ρS (0, c2z/6) = 0,

concluding the proof. �

Corollary 4.2. Let us fix a strictly weak, left invariant sub-Finsler metric S on a Hilbertian
H-type group M = V ⊕W. Then for x, y ∈ V and z1, z2 ∈W, we have

ρS (x + z1, y + z2) = 0 if and only if x = y,

where ρS is the sub-Finsler distance associated with S .

The main implication of this corollary follows by Theorem 4.1. The full characterization of
the two conditions is obtained by showing that points with different projections onVmust have
positive Finsler distances. This is a consequence of combining Remark 3.2 and Remark 3.4.

Lemma 4.3. If F be a strictly weak, left invariant Finsler metric F on a Hilbertian H-type
group M = V ⊕ W. Then there exists a sequence {hn}n∈N ⊂ V such that F0(hn) → 0 and
|hn| = 1 for all n ∈ N.

Proof. The topology defined by F0 on M is not the Hilbert one, therefore there exists a se-
quence un in M such that |un| = 1 for all n and F0(un)→ 0. We can write

un = vn + wn = π1(un) + π2(un),

where vn ∈ V and wn ∈ W. By the continuity of the projections, CF0(un) ≥ F0(wn) therefore
F0(wn) → 0. Since W is finite dimensional, we also have |wn| → 0, therefore |vn| → 1. Again
the continuity of the projections yields F0(vn) → 0. To conclude the proof, we consider a
subsequence vn of nonzero vectors, and we observe that the renormalized sequence hn = vn

|vn |

satisfies our claim. �

Theorem 4.4. Let F be a strictly weak, left invariant Finsler metric on a Hilbertian H-type
group M = V ⊕W. Then for every x, y ∈ V and z1, z2 ∈ W, we have dF((x, z1), (y, z2)) = 0 if
and only if x = y.

Proof. The restriction of F0 to V defines a weak sub-Finsler metric S 0 : V → [0,+∞). By
Lemma 4.3, the corresponding left invariant sub-Finsler metric S is strictly weak. In view of
Remark 3.4, we have ρS ≥ dF , so we can apply Theorem 4.1, obtaining that dF(p, q) = 0,
whenever π1(p) = π1(q). By Remark 3.2, the proof is complete. �

Corollary 4.5. Let σ be a strictly weak, left invariant Riemannian metric on a Hilbertian H-
type groupM = V ⊕W. Then for every x, y ∈ V and z1, z2 ∈W, we have dσ((x, z1), (y, z2)) = 0
if and only if x = y.

The previous corollary follows by observing that a sitrictly weak, left invariant Riemannian
metric also yields a strictly weak, left invariant Finsler metric.
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5. Non-existence of the Levi-Civita covariant derivative

In this section, we fix a Hilbertian H-type group M with its Lie product [·, ·]. We consider
the Lie algebra LieM of left invariant vector fields on M. The associated Lie product is the
skew-symmetric bilinear mapping [·, ·] : LieM × LieM → LieM its Lie product. In our
setting, the linear structure of M allows us also consider the "identification" I : M → LieM,
where I(v) = Xv is the unique left invariant vector field of Lie(M) such that Xv(0) = v. In fact,
there is the already mentioned identification between T0M and M. Throughout the section,
the continuous linear and self-adjoint operator A : M → M is defined by the weak metric
σ0(v,w) = 〈v, Aw〉 for v,w ∈M.

The first result of this section is to prove that the Lie algebra Lie(M) is actually isomorphic
to the starting Lie algebra M, and the isomorphism is given by the map I.

Proposition 5.1. Let M be an H-type group. Then the map I is a Lie algebra isomorphism,
that is, for every x, y ∈M we have I[x,y] = [Ix,Iy].

The proof of the previous proposition can be obtained by standard arguments, taking into
account that the group operation inM is given by the BCH formula and the Lie product onM.
Actually, it holds in general Banach nilpotent Lie groups, [20, Proposition 2.1].

Theorem 5.2. Let σ be a weak, graded Riemannian metric on a Hilbertian H-type group
M = V⊕W. If σ admits the Levi-Civita covariant derivative ∇, then for every x = x1 + x2 ∈M

with x1 ∈ V and x2 ∈W we have

(31) JAx2 x1 ∈ Im A and ∇IxIx(0) = −A−1 (
JAx2 x1

)
.

Proof. Suppose that ∇ is the Levi-Civita covariant derivative. Since ∇ is torsion-free, we have
[Ix,Iy] = ∇IxIy − ∇IyIx for x, y ∈ M. By the left invariance of Ix and Iy, the function
M 3 p → σp(Ix(p),Iy(p)) is constantly equal to σ0(x, y), by the identification of M with
T0M. The key property of the Levi-Civita covariant derivative yields

(32) 0 = Zσ(Ix,Iy) = σ(∇ZIx,Iy) + σ(Ix,∇ZIy)

for every Z vector field on M. Notice that the previous equations for x = y yield

σ(Ix,∇ZIx) = 0.

As a consequence, using again (32), we get

σ([Ix,Iy],Ix) = σ(∇IxIy,Ix) − σ(∇IyIx,Ix) = σ(∇IxIy,Ix)
= −σ(Iy,∇IxIx) = −σ0(y,∇IxIx(0)).

By Proposition 5.1, it follows that

σ([Ix,Iy],Ix) = σ(I[x,y],Ix) = σ0(I[x,y](0),Ix(0)) = σ0([x, y], x).

Therefore, we have proved that

(33) σ0(y,∇IxIx(0)) = −σ0([x, y], x),

which immediately leads us to the following equalities

(34) 〈y, A∇IxIx(0)〉 = −〈[x, y], Ax〉 = −〈[x1, y1], Ax2〉 = −〈y1, JAx2 x1〉.

In particular, formula (34) holds true for all y ∈ W, hence A∇IxIx(0) ∈ V. Now, taking y ∈ V
in formula (34) we get

A∇IxIx(0) = −JAx2 x1,

which proves our claim. �
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Theorem 5.3. Let σ be a weak, graded Riemannian metric on an H-type group M. If σ is
strictly weak, then it does not admit the Levi-Civita covariant derivative.

Proof. If σ is strictly weak, then its associated operator A is not surjective, by Proposition 3.5.
Since W is finite dimensional and AW is injective, then AW is also surjective. As a conse-
quence, AV cannot be surjective, hence we have can choose v ∈ V such that v < AV(V). We
consider x2 ∈W, x2 , 0 and we define x = JAx2v + x2, x1 = JAx2v. By (2) we have

JAx2 x1 = JAx2(JAx2v) = −|Ax2|
2v < Im A.

Hence, by Theorem 5.2 we get a contradiction, therefore the Levi-Civita covariant derivative
does not exists for σ. �

Since strong Riemannian metrics always admit the Levi-Civita covariant derivative, the next
corollary is straightforward.

Corollary 5.4. Let σ be a weak, graded Riemannian metric on an H-type group M. Then, σ
admits the Levi-Civita covariant derivative if and only if it is a strong Riemannian metric.

6. Blow-up of the sectional curvature

We consider a Hilbertian H-type groupM = V⊕W, endowed with a weak, graded Riemann-
ian metric σ. If σ is strong, then the sectional curvature can be computed using the Riemann
tensor and the Levi-Civita covariant derivative, [18]. This approach in general does not ap-
ply when σ is strictly weak, as a consequence of Theorem 5.3. We will also show how the
Arnold’s formula allows us to compute the sectional curvature for a special family of planes.
Finally, we find a sequence of planes where the sectional curvatures blow-up.

6.1. The B-adjoint vector. We consider the adjoint representation ad : M→ End(M), where
the endomorphism adx(y) = [x, y] is defined by the Lie product of M. For a fixed couple of
vectors x, y ∈M, we consider (in case it exists) the unique vector Bσ0(y, x) ∈M which satisfies
the formula

(35)
〈
z, Bσ0(y, x)

〉
σ0

= 〈[x, z], y〉σ0

for every z ∈M. We say that Bσ0(y, x) is the B-adjoint vector of (y, x) with respect to σ0. When
this vector exists, it automatically satisfies

Bσ0(ty, sx) = ts Bσ0(y, x)

for every t, s ∈ R. And also Bσ0(ty, sx) exists for some t, s , 0 if and only if Bσ0(y, x) exists.
If σ0 is a strong metric, then the classical Riesz representation theorem yields the existence of
Bσ(y, x) for all x, y ∈M. Precisely, in this case,

Bσ0(y, x) = ad>x (y),

where ad>x : M → M is the adjoint operator of adx with respect to σ0. For a strictly weak
Riemannian metric, the existence of Bσ(y, x) ∈M for fixed x, y ∈M does not necessarily hold.
A simple example can be found for instance in [22].
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6.2. Arnold’s formula. To compute the sectional curvature of planes in a Hilbertian H-type
group M, we use the Arnold’s formula [2, Theorem 5], see also [24], [4] and [3].

Let us consider two σ0-orthonormal vectors x, y ∈M, such that the B-adjoint vectors

Bσ0(y, x), Bσ0(x, y), Bσ0(x, x), Bσ0(y, y) ∈M

all exist. We introduce the notation Πx,y to denote the vector subspace spanned by x and y. The
sectional curvature of Πx,y can be obtained by

(36) Kσ(Πx,y) = 〈δ, δ〉σ0 + 2 〈α, β〉σ0
− 3 〈α, α〉σ0 − 4

〈
Bx, By

〉
σ0
.

In the previous formula we have defined

δ =
1
2

(
Bσ0(x, y) + Bσ0(y, x)

)
, β =

1
2

(
Bσ0(x, y) − Bσ0(y, x)

)
, α =

1
2

[x, y](37)

Bx =
1
2

Bσ0(x, x) and By =
1
2

Bσ0(y, y).(38)

It is a simple computation to verify that the sectional curvature of a plane defined through this
formula does not depend on the choice of the σ0-orthonormal basis for that plane.

First of all, we provide a condition for which the vector Bσ(y, x) exists with x, y ∈ M fixed,
see the following proposition.

Proposition 6.1 (Existence of the B-adjoint vector). Let σ0 be a weak, graded Riemannian
metric on a Hilbertian H-type group M = V ⊕W and let x = x1 + x2, y = y1 + y2 ∈ M, with
x1, y1 ∈ V and x2, y2 ∈W. It follows that

(39) there exists Bσ0(y, x) ∈M if and only if JAy2 x1 ∈ AV(V).

If one of the previous conditions holds, then

(40) Bσ0(y, x) = A−1(JAy2 x1).

Proof. Assume that JAy2 x1 ∈ AV(V). Thus, for all z ∈M we have〈
z, A−1(JAy2 x1)

〉
σ0

= 〈z, JAy2 x1〉 = 〈[x, z], Ay2〉 = 〈[x, z], y〉σ0
,

hence there exists Bσ0(y, x) = A−1(JAy2 x1). If Bσ0(y, x) ∈M exists, then for all z ∈M we have

〈z, A(Bσ0(y, x))〉 =
〈
z, Bσ0(y, x)

〉
σ0

= 〈[x, z], y〉σ0
= 〈[x1, z], Ay2〉 = 〈JAy2 x1, z〉.

Therefore, A(Bσ0(y, x)) = JAy2 x1, concluding the proof. �

From (39) and (40) we get directly (1). From (39), (40) and (2) we get directly (2).

Remark 6.2. As a consequence of Proposition 6.1, precisely of (39), (40), for all

(y, x) ∈ (V ×M) ∪ (M ×W)

we have JAy2 x1 = 0, hence the B-adjoint vector Bσ0(y, x) exists and it vanishes.

Remark 6.3. For all z ∈W and x ∈ V, we notice that

JAz
(
JAz(Ax)

)
= −|Az|2Ax ∈ AV(V),

hence (39) yields the existence of the B-adjoint vector Bσ0(z, JAz(Ax)) and (40) gives

(41) Bσ0(z, JAz(Ax)) = −|Az|2x.

We use Proposition 6.1 and the previous remarks to compute the sectional curvatures of
specific planes, according to the following lemma.
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Lemma 6.4. Let σ be a weak graded Riemannian metric on M.

(1) If x, y ∈ V are σ0-orthonormal, then the sectional curvature Kσ(Πx,y) exists and

Kσ(Πx,y) = −
3
4
‖[x, y]‖2σ0

.

(2) For all z ∈W \ {0} and x ∈ V \ {0}, the vectors JAz(Ax) and z are orthogonal and

Kσ(ΠJAz(Ax),z) =
1
4

|Az|4

‖JAz(Ax)‖2σ0
‖z‖2σ0

‖x‖2σ0
.

Proof. Due to Remark 6.2, Bσ(x, x), Bσ(y, y), Bσ(y, x), Bσ(x, y) all exist and are null. Thus, (36)
immediately gives the claim (1). The term α iof (36) obviously vanishes, and again Remark 6.2
gives the existence and the vanishing of BJAz(Ax), Bz, and Bσ0(JAz(Ax), z) in the corresponding
Arnold’s formula for the sectional curvature. From the property of the mapping JZ, Z ∈W, of
a Hilbertian H-type group, it is easy to notice that z and JAz(Ax) are σ0-orthogonal.

Thus, by (36) applied to the σ0-orthonormal basis z/‖z‖σ0 and JAy(Ax)/‖JAy(Ax)‖σ0 , we get

Kσ(ΠJAz(Ax),z) = ‖δ‖2σ0
=

1
4

∥∥∥∥∥∥Bσ0

(
z
‖z‖σ0

,
JAz(Ax)
‖JAz(Ax)‖σ0

)∥∥∥∥∥∥2

σ0

=
1

4‖z‖2σ0
‖JAz(Ax)‖2σ0

∥∥∥Bσ0(z, JAz(Ax))
∥∥∥2

σ0

=
1

4‖z‖2σ0
‖JAz(Ax)‖2σ0

∥∥∥|Az|2x
∥∥∥2

σ0
,

where the last equality also relied on (41) and immediately gives the claim (2). �

Lemma 6.5. Let σ be a strictly weak graded Riemannian metric on a Hilbertian H-type group
M = V ⊕W. Then there exists wn ∈ AV(V) such that |wn| = 1 and ‖wn‖σ0 → 0 as n→ +∞.

Proof. We consider the sequence hn given by Lemma 4.3, hence ‖hn‖σ0 → 0 and |hn| = 1. The
image AV(V) is dense inV, as a consequence of Proposition 3.5. Therefore, for each n ∈ N\{0}
we may choose vn ∈ AV(V) such that |vn − hn| ≤

1
2n , and therefore |vn| → 1. We define the unit

vectors wn = vn
|vn |

and consider

‖vn‖σ0 ≤ ‖hn‖σ0 + ‖hn − vn‖σ0 ≤ ‖hn‖σ0 + c0|vn − hn| ≤ ‖hn‖σ0 +
c0

2n
→ 0,

concluding the proof. �

Theorem 6.6. Let σ be a strictly weak, graded Riemannian metric on a Hilbertian H-type
group M = V ⊕W. Then there exists a sequence wn ∈ V such that for every z ∈ W \ {0} the
following limits hold

(42) lim
n→∞

Kσ(Πwn,Jzwn) = −∞ and lim
n→∞

Kσ(Πz,JAzwn) = +∞.

Proof. We consider the sequence wn ∈ AV(V) ⊂ V of Lemma 6.5 and define the vector

ξn = Jzwn −
wn

‖wn‖σ0

〈
Jzwn,

wn

‖wn‖σ0

〉
σ0

∈ V.
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By construction of ξn, the vectors wn/ ‖wn‖σ0 and ξn/ ‖ξn‖σ0
are σ0-orthonormal and span the

2-dimensional subspace Πwn,Jzwn . By Lemma 6.4 and (10), we have

Kσ(Πwn,Jzwn) = −
3
4

∥∥∥∥∥∥
[

wn

‖wn‖σ0

,
ξn

‖ξn‖σ0

]∥∥∥∥∥∥2

σ0

= −
3
4

‖z‖2σ0

‖wn‖
2
σ0

∥∥∥∥∥Jzwn −
wn

‖wn‖
2
σ0
〈Jzwn,wn〉σ0

∥∥∥∥∥2

σ0

.

We consider the estimates∥∥∥∥∥∥∥Jzwn −
wn

‖wn‖
2
σ0

〈Jzwn,wn〉σ0

∥∥∥∥∥∥∥
2

σ0

≤ 2

‖Jzwn‖
2
σ0

+
〈Jzwn,wn〉

2
σ0

‖wn‖
2
σ0


≤ 4 ‖Jzwn‖

2
σ0
≤ 4c2

0|Jzwn|
2

≤ 4c2
0|z|

2,

where we have applied both (27) and (5). It follows that∥∥∥∥∥∥
[

wn

‖wn‖σ0

,
ξn

‖ξn‖σ0

]∥∥∥∥∥∥2

σ0

≥
1

4c2
0|z|

2

‖z‖2σ0

‖wn‖
2
σ0

→ +∞,

proving the first limit of (42) To establish the second limit of (42), we consider the same
previous sequence wn ∈ AV(V), along with vn ∈ V such that Avn = wn. By Lemma 6.4 we have

(43) Kσ(Πz,JAz(Avn)) =
1
4

|Az|4

‖JAz(Avn)‖2σ0
‖z‖2σ0

‖vn‖
2
σ0
.

Again (27) and (5) give the inequalities
1

‖JAz(Avn)‖σ0

≥
1

c0|JAz(Avn)|
=

1
c0|Az||Avn|

=
1

c0|Az|
> 0,

where we have also use the condition |wn| = |Avn| = 1. By Cauchy-Schwarz inequality, we get

‖vn‖σ0 ≥

〈
vn,

wn

‖wn‖σ0

〉
σ0

= 〈Avn,wn〉
1

‖wn‖σ0

=
1

‖wn‖σ0

→ +∞,

that immediately yields Kσ(Πz,JAzwn)→ +∞, concluding the proof. �
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