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ABSTRACT. Given an abstract Wiener space (X,y,H), we consider an open set O C X
which satisfies certain smoothness and mean-curvature conditions. We prove that the
rescaled resolvent operator associated to the Ornstein-Uhlenbeck operator with homoge-
neous Dirichlet boundary conditions on O is gradient contractive in L”(X,7) for every
p € (1,00). This is the Gaussian counterpart of an analogous result for the rescaled re-
solvent operator associated to the Laplace operator A in L” with respect to the Lebesgue
measure, p € [1,e0), with homogeneous Dirichlet boundary conditions on a bounded con-
vex open set O C R”.

1. INTRODUCTION

In this paper we consider an abstract Wiener space (X,y,H), where X is a separable
Banach space with a centered nondegenerate Gaussian measure Y and H its Cameron-
Martin space H, and an open subset O C X which satisfies suitable conditions. The aim of
this paper is to prove that the rescaled resolvent (J9 = (Id — 6Lo)~!) 40 of the Ornstein-
Uhlenbeck operator Lo on O with homogeneous Dirichlet boundary conditions satisfies

/0 VIO flLdy < /0 IVaflldy, fewl(0,y), o >0, (1)

where ¢ = p if p > 1 and ¢ > 1 if p = 1. In particular, this implies that (J9)s~0 is L”
gradient contractive for every p € (1,00).

This result extends to the Gaussian setting the analogous one proved in [4, Appendix
1], where O C R? is an open convex set with smooth boundary d0. In the quoted paper,
the authors show that the rescaled resolvent associated to the Laplace operator on O with
homogeneous Dirichlet boundary conditions is L? gradient contractive for every p € [1, ),
ie.,

/ 19 £ ()12 < / IV7)2adx, € WE(0), (1.2)

where J; := (Id— 6A)~!, 6 > 0, is the rescaled resolvent of A. We remark that for p = oo
inequality (1.2) has been proved in [8].

Let us compare formulae (1.1) and (1.2). In the latter, the operator V denotes the weak
derivative in LP(0), while, in the former, the gradient Vy is the gradient along the direc-
tions of H. This is a typical issue of the infinite dimension: indeed, dealing with Gaussian
measures in infinite dimension, an integration-by-parts formula, which is a crucial tool to
prove the closability of the gradient operator, is verified if and only if one considers the
gradient along H, which is usually denoted by V.

Another difference is the operator considered, whose rescaled resolvent appears in the
above inequalities: it is the Ornstein-Uhlenbeck operator in (1.1), and the Laplace operator
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in (1.2). This follows from the fact that the Ornstein-Uhlenbeck operator plays the role of
the Laplace operator when the Lebesgue measure is replaced by the Gaussian one. In finite
dimension, this can be easily seen by taking into account an integration-by-parts formula:
indeed, for smooth enough functions f and g, we have

/ <Vfa Vg>Rddx = 7/ Afgdxa
R4 R4

and
/ (V£,Vg)pady' = / (V£.V8)pae M2z = — / Lfsdy',
R4 R4 Rd

where ¥ denotes the standard Gaussian measure on RY and Lf (x) = Af(x) — (x, Vf(x))pa-

We further notice that, in the Gaussian context, gradient resolvent contractivity holds
for every p € (1,) (when p =1 we get the inequality not for functions f € WO1 ’1(0, Y)
but for functions in smaller spaces), while (1.2) is satisfied for every p € [1,00]. The case
p = oois quite delicate in infinite dimension. Indeed, W' (X, y) represents the intersection
of WIP(X,y) with p € [1,%) and not the functions which have bounded H-gradient, and
so we do not expect to extend (1.1) for p = oo. On the contrary, for p = 1 the main obstacle
is that, to the best of our knowledge, a satisfactory theory of traces for Sobolev functions in
infinite dimension is not available. Traces of Sobolev functions at the boundaries of very
smooth sets were considered for instance in [3, 9], while in [10, 11] the Sobolev spaces
of functions which "vanish" at the boundary are introduced to study maximal L? regularity
for Dirichlet problems in infinite dimension. We also mention [19, 20], where the author
deals with Sobolev spaces on domains.

The first attempt to provide a systematic study of traces of Sobolev functions on domains
of abstract Wiener spaces appears in [9], where the authors give sufficient conditions on
the domain O to define a bounded operator Tr: W'?(0,7) — L4(d0, p) for p € (1,0) and
q €[1,p), where p is the Hausdorff-Gauss surface measure of Feyel and de La Pradelle (see
[16]). Under additional assumptions on O, it is proved that also ¢ = p can be achieved.
Nothing can be said for the case p = 1, and this shows that the gap between finite and
infinite dimension is considerably big. We also stress that the case p = 1 is not achieved
either in [3] (which is strongly inspired by [9]), whose characterization of Sobolev spaces
WO1 (0, ) of functions with null trace on O is widely used in this paper. We refer to [15]
for a theory of traces on domains in abstract Wiener spaces in L”-spaces with respect to a
weighted Gaussian measure, and to [2, 7] for an integration-by-parts formula on domains
in Wiener spaces, which should be the starting point for a development in the study of
traces by means of different techniques. Finally, for the case p = 1, a possible alternative
approach is to consider BV functions defined on open domains, which are investigated in
[2, 6, 21]. However, it is still not clear how to extend to infinite dimension the theory of
traces for BV functions in finite dimension.

To conclude, we spend few words on the assumptions on O (see Hypotheses 2.11 and
4.2). In (1.2) the domain O is assumed to be convex and with smooth boundary. Smooth-
ness of the boundary and geometric properties for domains in infinite dimension are not
easy to be defined, hence we translate the hypotheses on the cylindrical approximations
(Op)nen of O, which can be considered as finite dimensional domains (see Hypothesis
2.11 and [11]). As far as the regularity condition is concerned, we simply require for 90,
the same smoothness of the domain O in [4]. Further, the convexity of O implies that
the mean curvature at every point x € dO is non-negative, and this fact is crucial to prove
(1.2). Since JO is smooth, it follows that the mean curvature at x € dO is the divergence
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of the outer normal to O at x. In the Gaussian setting, the classical divergence operator
div is replaced by the Gaussian divergence divy, which on smooth vector fields F' acts as
divyF (x) = divF (x) — (x, F(x)). Hence, it seems to be reasonable to ask that for every
x € d0, the Gaussian divergence of the normal to O, at x is non-negative. This is indeed
the right choice, and for every x € d0,, this value is defined as the Gaussian mean curva-
ture at x € d0,,. So, under the assumptions that d0,, is smooth and that the Gaussian mean
curvature is non-negative at x for every x € d0,, definitely with respect to n, we are able
to prove (1.1).

The paper is organized as follows. In Section 2 we provide the classical basic results
on abstract Wiener spaces. Further, we state the assumptions on the domain O, define
the Sobolev spaces W'(0,7), WO1 (0,v) and the Ornstein-Uhlenbeck operator Lo with
homogeneous Dirichlet boundary conditions on dO by means of the theory of Dirichlet
forms (see for instance [12, 17]), and recall the main results of [3] which will be used in
the paper. In Section 3 we show (1.1) when X = R? for some d € N. In Section 4 we
extend the results of Section 3 when X is a separable Banach space. To this aim, we split
this section into two parts. In the former we prove (1.1) when O is a cylindrical domain
with respect to a fixed orthonormal basis {%, : n € N} of H (see Hypothesis 4.1) and its
finite dimensional projection & is a domain with smooth boundary and with non-negative
Gaussian mean curvature at every point of its boundary. In the latter we show that (1.1)
also holds true for non-cylindrical domains O under suitable assumptions on the cylindrical
approximations (Op),cn of O. Finally, in Section 5 we provide some examples of domains
O in abstract Wiener spaces which satisfy our conditions.

1.1. Notation. Given a separable Banach space X and its topological dual X*, we denote
by || - ||x its norm and by (-, )xxx~ its duality.

Let A be an open set in RY. For every k € NU {e} we denote by C¥(A) the set of
functions on A which are k-times differentiable on A with continuous derivatives up to
order k. C’lj (R9) is the set of k times differentiable functions which are continuous and
bounded together with their derivatives up to order k. CZ°(R?) is the subspace of C;(R?)
of functions with compact support.

Let o € (0,1). We denote by C*(A) the set of a-Holder continuous functions on A.
We denote by C%.(A) the set of functions f which are a-Holder continuous on every
bounded open set U C A. We denote by C>%(A) the set of functions f € C>(A) such that
D" f € C*(A) for every multi-index m with length [m| = 2. We denote by Clzo’g (A) the set of
functions f € C?(A) such that D" f € C%_(A) for every multi-index m with length |m| = 2.

If A is replaced by A in the definition of the above spaces, we mean that the functions
have a continuous extension up to A.

For every O C RY with non-empty interior and every k € NU {eo}, we denote by C5(O)
the subset of CK(R?) of functions which vanish out of an open set A C O with positive
distance from O, and we denote by C(O) the subset of C¥(RY) consisting of functions
which vanish on O°. We denote by C¥(0) the subset of C¥(0) of functions which have
compact support in O.

If a function f is defined on A C X, then f denotes the trivial extension of f to the whole
space X, i.e., f = fonAand f =0 on A°.

A subset of R? is said to be C>*-regular if its boundary is locally a graph of a function
in CZ,OC (Rdfl )

Let H be a separable Hilbert space. We denote by (-, -, )y its inner product and by . (H)
the space of linear bounded operator A : H — H endowed with the norm-operator topology.
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We say that a nonnegative operator A € £ (H) is nuclear (or trace-class) in H if there

exists an orthonormal basis {e, : n € N} of H such that
Tr(A) == Y (Aen, en)n < oo
neN

We stress that Tr(A) does not depend on choice the basis {e, : n € N}. We denote by
2" (H) the space of trace-class operators on H.

We say that the operator A € £ (H) is a Hilbert-Schmidt operator if there exists an
orthonormal basis {e, : n € N} of H such that

1412 = X lAealy < .

n=1
The above series does not depend on the choice of the basis, and we denote by %> (H) the
subspace of Z’(H) consisting of Hilbert-Schmidt operators. The space (£ (H), || || . (#))
is a separable Hilbert space. If A € % (H) then AA* € ;" (H).
Let Y be a separable Banach space; we denote by L?(X,7,Y) as the space of (the equiv-
alence classes of) Bochner integrable functions F : X — Y such that

1/p
1l g = ( / a8 dy) <o (1.3)

see e.g. [13]. This space, endowed with the norm (1.3), is a Banach space.
With 9B (X) we denote the Borel o-algebra of X, and By (x,r), x € X, r > 0, denotes the
open ball of X with center x and radius r.

2. PRELIMINARY RESULTS

2.1. Fundamentals about abstract Wiener spaces. Let us recall some definitions and
properties of Gaussian measures on separable Banach spaces. For a detailed treatment we
refer to the monograph [5].

Let X be a separable Banach space and let ¥y be a centered nondegenerate Gaussian
measure on X. Since 7Y is a Gaussian measure, the elements of X* can be seen as elements
of L2(X,y). We consider the embedding j : X* < L*(X,7) and the reproducing kernel Xy
is defined as the closure of j(X*) in L?(X, 7). (X7l ll2(xy)) is @ separable Hilbert space,
and we define Ry : Xy — (X*)" as

Ry(f)(g)=/xfg &y, fex: ex'.

Ry has range in X and it is injective. We define the Cameron-Martin space H as Ry(X;,‘) -
X, and it inherits a structure of separable Hilbert space from Xy through Ry: forevery h € H
we denote by & € X the unique element such that Ryh = h and (h,k)y = (h,k) ;> (x.y) for
every h,k € H. The space H is continuously and densely embedded into X, and we denote
by cy the smaller positive constant ¢ which satisfies

lallx <cllhllz,  heH. 2.1)
We introduce the operator Q : X* — H, defined as Q(x*) = Ry(j(x*)) € X for every x* € X*,
and we fix an orthonormal basis {4, : n € N} of H consisting of elements of Q(X*), i.e.,
hy, = Q(x}), with x: € X*, for every n € N. Let us fix n € N and set

F,:=Span{hy,...,h,}, m(x)=) (x,x)xxx-hi, x€X.

-

i=1
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Hence, m, is the projection of X on the finite dimensional subspace F;, of H. For every n € N
we denote by ¥, the image measure of y by means of 7,, i.e., 1, := yox, . The measure
¥ is a nondegenerate centered Gaussian measure on F,,. If we set X;- := Ker(,), then it
follows that X = F,, @X,f, and for every n € N we introduce the isomorphism I, : F;, — R”
defined as

Ipx = (x1,...,%), x=2xih[.

For every k € NU{e} we introduce the set .#C%(X) of bounded cylindrical functions
which are k-times Fréchet differentiable, i.e., the functions f : X — R such that there exist
neN,I},....I; € X* and ¢ € CE(R") such that £(x) = @((x,[})xxx+,---, (X, [})xxx+) for
every x € X. We stress that for every k € NU {eo}, ZCF(X) is dense in L” (X, y) for every
p € [1,00).

2.2. H-derivative and Sobolev spaces. For every i € H and f € .#C;’(X) we define the
H-derivative dj,f : X — R of f along h as
h) —
nflx) = lim LEFEN =)
=0 €
and its formal adjoint d; f = . f — fh.
For f € #Cy’(X), there exists a unique Vy f : X — H, called H-gradient of f, such that

ahf(x):<va(x)7h>H7 XEX,/’IEH.

If f is a Lipschitz function on X, then dy, f can be defined y-a.e. and the essentially bounded
function Vj f can be defined y-a.e. and identified with an element of L™(X,y,H) (see e.g.
[5, Theorem 5.11.2]).

We say that f : X — R is H-differentiable at x € X if there exists F (x) € H such that

fO+h) = fx)+(Fx), i) +o([[hllu), |hlla — 0.

We set Vi f(x) := F(x) for every x € X such that f is H-differentiable at x.
For f: X — H, we say that f is H-differentiable at x € X if there exists a Hilbert-Schmidt
operator Dy f(x) on H such that

fx+h) = f(x) +Duf(x)h+o(|[hllz), [Allz — 0.
Dy f(x) is said H-derivative of f at x, and for every h € H we have

Dy () () = lim L HEN = S().

e—0 4

Let f: X — R be such that Vg f is defined on the whole X. We say that f is twice
H-differentiable at x € X if f is H-differentiable and Vy f(x) has H-derivative, which we
denote by D, f(x).

The set of smooth cylindrical vector-valued functions .% C;’ (X, H), defined as the linear
span of the functions ¢ where ¢ € F#C;’(X) and h€ H. Let f € FC;(X,H), x € X and
h € H, then Dy f(x) and dj,f(x) are well-defined and d;,f(x) = Dy f(x)(h).

The integration-by-parts formula

/ Anfdy = / fhdy, feFCI(X), heH,
X X

is the key tool to prove that for every p € [1,00), the operators Vy : FC;(X) — LP(X,v,H)
and (Vy,D%) : FCr(X) — LP(X,v,H) x LP(X,y,.%5(H)) are closable in LF(X,y), and
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the operator Dy : 5‘C°°( )= LP(X,7,2(H)) is closable in L” (X, v, H). We still denote
by Vg, Dy and DH, respectively, the closure of these operators in L?.

Definition 2.1. We denote by W!”(X,y) the domain of Vy in L?(X,y), by W' (X, v, H)
the domain of Dy in LP(X,y,H) and by W>P(X,y) the domain of (Vy,D%) in L”(X, 7).
These spaces are Banach spaces if endowed with the norms

1/p
1 winee = (10 + IV ) s €W,
1/p
”f”WZP Xy (Hf”Lp (X,y) + ||VHf||Lp (X,7,H) + ”D f“Lp (X,y,26(H ))) , f€ Wzm(XaY)v
1/p
||f||W1-P(X,y,H) = (Hf”iﬁ(x,,y,ﬁ) + ||DHf||€P(X7'y_f}/fé(H))) , f€ Wllp(X»'y’HL
respectively. Finally, if p = 2 the above spaces are Hilbert spaces.

Since Vp is closed and densely defined LZ(X ,7), its adjoint operator divy := Vj; is
closed, densely defined and satisfies

/ <fa VHg>H d'}/: _/diVyfg d}/v (22)
X X

for every g € W!2(X,7) and every f in the domain D(divy) C L*(X,y,H) of div,. From
[5, Theorem 5.8.2] it follows that W!2(X,y,H) C D(div,) and

div,F = Y (8,1nFn anZn) . FeW“(X,7,H),
n=1

where the series converges in L?(X,y) and F, := (F,h,)y. Further, the above formula
is independent of the choice of the basis of H and [|divyF||;2(x ;) < [[Fllwi2(x ymy- In
particular, if F € #C;(X,H) we get

m m

divyF = Y 9 F — Y kiF, (2.3)

i=1 i=1
where F satisfies F = Y/ | Fik;, with F; € #Cy’(X) forevery i=1,...,mand {ky,...,ky}
are orthonormal in H.

2.3. The Sobolev spaces W!”(0,y) and Wol’p(O7 7). Let O C X be an open set. We
denote by Lip(0O) the set of Lipschitz functions on O, and by Lip,(O) the subset of Lip(O)
whose elements vanish out of an open set A with positive distance from O°. For every
m € N we denote by Lip, ,,,(O, H) the set of H-valued Lipschitz functions on O of the form

m
f=Y fihi,  fi€lip(0),hieH, i=1,...m
i=1

The set
ZLip,(0,H) := | J Lip,,,(0:H),

meN

is dense in L7 (0, y,H). Finally, for every m € N and f € Lip,., (0, H), the function div,f
is defined y-almost everywhere as

div, T = il (307~ 7l

and div,f € LP(X,7) for every p € (1,).
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The proof of the following lemma can be found in [1, Lemma 2.1].

Lemma 2.2. For every p € [1,), the operator Vi : Lip(O) — LP(0,7y,H) is closable in
LP(0,7). We still denote by Vy its closure.

Definition 2.3. (Sobolev Spaces) Let p € [1,00). W!P(0,y) is the domain of Vg in
LP(0,7). The space W!7(0,7) is a Banach space if endowed with the norm

1/p
1 hwisiom = (1050 p + IV nogm) -+ FEW(O.),
and W'2(0, y) is a Hilbert space with inner product
(f:8wizioy = (-8 120+ (VS Va8 20ym), [8 €EW(0,7).

Definition 2.4. We denote by 7! (X) the set of all continuous functions f (not necessarily
bounded) which are H-differentiable on X and such that Vg f is bounded and continuous
with values in H.

H,1,(0) is the subset of 7! (X) of bounded functions f which vanishes out of an open
set A with positive distance from O°.

Remark 2.5. )(0) is not empty. Taking advantage from the results in [23] In [3, Lemma

2.2] it has been proved that the subset of .7#’! (X) whose elements vanish out of an open
set A with positive distance from O° is not empty. We simply remark that the function Fp ¢
provided in the quoted lemma is also bounded, and so it belongs to %10 (X).

The bounded elements of 7! (X), and so in particular the elements of %! (X), can be
approximated in a useful way, as the next result shows.
Lemma 2.6. If f € " (X) is bounded, then fom, — f in W'P(X,y) as n — o for every
p €l )
Proof. We set f, = fom, for every n € N. From [5, Corollary 3.5.8] it follows that 7, x — x
asn — oo in X for y-a.e. x € X. The continuity of f implies that f;, — f y-a.e. in X, and so
fn converges to f in L”(X,y) by the dominated convergence theorem. Moreover,
Vi fu(x) =7, (Vu f(m,(x))), x€X,neN,
and by the definition of 7, it follows that ||, (h)||x < |||z and 7, (k) — hin H as n — o
for every h € H. Hence,
Ve fu(X) = Vi f )| <IVafalx) = T(Vaf (0)la + 180 Vaf(x) = Vaf(x)||u
<IVef(7(x) = Ve f &)l o+ [172(Vaf (x) = Vaf )| a-
The two addends in the very last right hand-side of the above chain of inequalities vanish as
n — oo, the former for y-a.e. x € X since Vg f is continuous, and the latter for every x € X

due to the convergence of 7, in H. Recalling that Vg f is bounded, from the dominated
convergence theorem, we get the thesis. (I

Definition 2.7. For every p € [1,00), we denote by WO1 7(0,7) the closure of Lip,(0) in
whr(0,y).

The proof of the following lemma can be obtained repeating verbatim that of [3, Lemma
2.3], hence we omit it.

Lemma 2.8. The closure of %’Z}O(O) in WP (0,y) coincides with WOl P(0,7) for every
pE[l,e).
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2.4. The Ornstein-Uhlenbeck semigroup and operator. For every f € C,(X) and every
t > 0 we set

Tf(x) = / fle VI Zydyl), xeX,

and Ty f = f. Thanks to the equality

/Tzde:/fd% fECH(X), 120,
X X

for every t > 0 and every p € [1,0) the operator T; extends to a contraction operator on
LP(X,7) still denoted by T;. It turns out that (7;);>¢ is a strongly continuous semigroup of
contractions on L” (X, y) and we denote by L, its infinitesimal generator. If p =2 we write
L instead of L. Further, y is the unique invariant measure for (7;);>0, #Cy; (X) is a core
for the domain D(L,) of L,, D(L,) = W*P(X, ) for every p € (1,) and

/Lfng:_/<VHf»VHg>Hd%
X X

for every f € D(L) and g € W'2(X, ) (see [5, Chapter 5]). In particular, if f € ZC3(X)
then f € D(L,) for every p € (1,0) and

Lf = Z akzik,-fi Z]%iak,'f7
i=1 i=1

where f(x) = @(k (x),. .., k. (x)) for every x € X, with ¢ € C>(R") and k1, ..., k, € Q(X*)
are orthonormal vectors in H.
Now we define the Ornstein-Uhlenbeck operator on O, starting from the bilinear form

a(f,g) = /0 (Vuf,Vugludy,  f,g€W,>(0,7).

From the theory of Dirichlet forms (see [12]), there exists a unique closed operator Lo with
dense domain D(Lp) C WO1 2(0,7) in L2(0, ) such that

- /0 (Vuf,Vug)y dy= /0 Lof-gdy,  feD(Lo), g€Wy*(0,y). (24

Definition 2.9. Lo is called Ornstein-Uhlenbeck operator with homogeneous Dirichlet
boundary conditions on dO0. We set

J9:=(Id—oLp) ‘=0 d-Lp)"!, o>0.

Jo is a bounded operator on L*(X,y) with range equals to D(Lo) and the family (J9)s~0
is called rescaled resolvent of Lo. For every 6 > 0 we denote by G9 the resolvent of Lo,
ie,GI=(0l—Lo)"' =0c71J2 , forevery ¢ > 0.

If O = X we simply write L instead of Ly.

Remark 2.10. From the theory of symmetric Markov semigroups (see [12, Section 1.4]),
the semigroup (72 (t));>0 associated to Lo in L*(0, y) extends from L*(0, ) to a positive
contraction strongly continuous semigroup (7, (t)),;>0 on LP(0,y) for every p € [1,e0).
These semigroups are consistent in the sense that, if 1 < p < g < oo, if f € L1(0, ) then
T, po(t) f= qu(t) f forevery ¢t > 0. For every p € [1,%0) we denote the infinitesimal generator
of (Tpo(t)),zo by Lo,p, and if p =2 we simply write Lo instead of Lo . For every ¢ > 0 we
denote by Gg’p and by Jg 7 the resolvent and the rescaled resolvent of Lo, p» respectively,
and we recall that both GQ*” and Jg P are continuous linear operators on L” (0, 7).
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2.5. The case when O is the sublevel set of a function G. Hereafter we assume the
following (see [3, Hypothesis 3.1] and [9, Hypothesis 3.1]).

Hypothesis 2.11. Let G: X — R and 6 > 0 be such that:
i) Ge ' (X);
ii) VyG is everywhere H-differentiable (in particular, G is twice H-differentiable),
with derivative DG and || D}, G|| g, (s uniformly bounded;

iii) G~1(0) # 0;

iv) [|VuGll5" € L(X);

v) LG is bounded on G~'(—§,3).
Under the above assumptions, we set that O := G~ ((—o,0)) and, for every n € N, G,, :=
Gom, and O, := (G,) ! ((—,0)). In particular, x € O,, if and only if 7,(x) € O.

Without loss of generality we may assume that O # X. Indeed, if O = X, then WOl r(0,y)=
WP (X, y) since y(d0) = 0 from [3, Remark 3.2].

Remark 2.12. If G fulfills Hypothesis 2.11, then it satisfies [3, Hypothesis 3.1].

Lemma 2.13. Let f € L%‘;}O(O). Then, the function f, := f o @, belongs to %’Z}O(On) for
everyn € N.

Proof. 1t is enough to prove that f,, vanishes on Aj;, where A, is an open set with positive
distance from O%,. To prove this fact, let A C O be an open set with positive distance d from
O° such that f vanishes on A°, and let us fix n € N. We define A, := {x € X : m,(x) € A}.
We claim that A, is open, has positive distance from O}, and that f,, vanishes on A;,. The
last assertion is easy to prove. Indeed, for every x € A, it follows that 7m,x € A€, and so
fa(x) = f(m,x) = 0. It remains to show that A, is open and has positive distance from OF.
Let x € A, and let z € O5,. Then, m,(x) € A, m,(z) € O° and

n n
d < ||mu(x) = 7 (2)llx <Y 10—z )xoxe Ihillx <elle—zlx ) Ixfllxe, @5)
i=1 i=1

where ¢ has been introduced in Subsection 2.1. This implies that A, has positive distance
from O¢. Finally, arguing as in (2.5), for every x,y € X we get

n
1700 (v) = 7o () llxc < €l = yllx Y I1x] [+

i=1
Let x € A,. Hence, m,(x) € A and if 0 > O fulfills Bx(m,(X),d) C A, then from the above
computations we get

—1
n

By | x, (CZ”X?lx*) 0| CA.
i=1

We conclude that A, is open, which gives f,, € %@?0(0,,). O
From Remark 2.12 and [3, Theorem 4.1] we state the following result.

Theorem 2.14. The following are equivalent:
b rewyron:,
ii) the trivial extension f of f out of O belongs to W-P(Xy).

Remark 2.15. For every f € WO1 ?(0,y), we have Vi f = Vyf. The fact is obvious if
f€Lip.(0) (or f € %’20(0)), the general case follows by approximation.
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Remark 2.16. Let p € (1,e0) and r with 1 < r < p, we have that the function on Wol’p(O, Y)
given by y — |[[Vayll1r(0,y,n) is lower semi-continuous with respect to the topology of
L"(0,y). To prove this fact, we recall that if ¢ is the conjugate exponent of p then
L1(0,v,H) is the dual of L”(O,y,H), see for instance [13, Chapter 4, Theorem 1]. There-

fore, for every f € WO1 ?(0,7), from Theorem 2.14 and Remark 2.15 we get

IVufllero.ym = sup / (Vuf,G)udy
GeL(0,v.H), |GllLa0,ym) <170

= sup /()(VHﬁ G)udy

GEﬁLipC(O,H), HGHL‘I(OJ/,H)S]

- sup /X (ViF.G)ndy

Ge‘gLipc(OvH)'r HGHLLI(O,’}’AH) <1

= sup /?divyéd}/
GeZLip.(0.H), |GllLa(0,y,m) <1/ X

= sup / fdiv,Gdy.
0

GeFLip.(0.H), ||Gl|9(0.y.m) <!

Since for every G € ZLip,.(0,H) the map
f— / fdiv,Gdy
0

is continuous with respect to the topology of L"(0, ), the lower semicontinuity of y —
IVayllLr(0,y,1#) With respect to the topology of L"(0, y) follows from the lower semiconti-
nuity of the supremum.

We conclude this section by showing that, if f € %‘Z%O(O) and we set f, = fom, for
every n € N, then (J9" f,)nen converges to JO f in W'2(X,y) as n goes to infinity.

Proposition 2.17. Let f € %@}0(0) and let us set f,, = fom, for every n € N. Then,

(JZ" (f))nen converges to JQ(f) in W'2(X,y) as n goes to infinity.

Proof. The fact that f, € f%’jjfo(O,,) for every n € N follows from Lemma 2.13. Further,
from Remark 2.15 and Theorem 2.14 it follows that JS(f) € W'2(X,y) and VgJS(f) =

VuJ9(f) for every ¢ > 0.

We fix 6 > 0 and n € N, and we consider the trivial extension Jg” (fa) of Jg" (fn) €
WOI’Z(OH7 7). From Remark 2.15 and Theorem 2.14 we infer that J9"(f,) € W'2(X,y) and
Vuds"(fn) = Vuls" (f,) € WH2(X, ). Further, since

J9 () — 6Lo, IO () = fr (2.6)

on O,, multiplying both the sides of this equation by Jg” (f») and integrating on O, with
respect to Y we get

199" )20, 5+ 01V () 20, i) = /0 IO (f) fudy

<" (f) 20, 10l 20,7
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which gives

G ) By + IV IS ) B gy <IIE i) L2 | T2 -

from which it follows that ||J$" (F)llz2x.y) < Il fall2(x - This implies that
”JO'n (fn) HIZ‘Z(XJ/) + GHVHJGH (fn) ”?‘2()(7%1-1) < ”]Tn”iZ(xm 2.7

and, since (f,) converges in L2(X,7) (see Lemma 2.6), we infer that (J"(f;,))nen is a

bounded sequence in W'2(X,y). Therefore, up to a subsequence, (J&"(f;))nen weakly
converges to some u in W'?(X,y) and

2 s Oy 2
ulliyrz ey < Hminf (" () lyr2x -

We claim that there exists v € W!2(X,y) with v =0 y-a.e. in O° and u = v y-a.e. in X.
If the claim is true, then from Theorem 2.14 it follows that ujp = v|p € W01’2(0, 7).
Let g € Lip, (0°), and let us consider the sequence (g, )nen defined as g, = g o m, for every
n € N. Arguing as in Lemma 2.13, it is possible to prove that g, € Lip,((0),) for every
n e N, where (0°), := {x € X : m,(x) € O°}. In particular, if B C O° is an open set which
has positive distance from O and g = 0 on B¢, then B, = {x € X : m,(x) € B} is an open set
with positive distance from (56),, and g, = 0 on B;,. Hence, we get

[ usay=tim [ 3 Gjg.dy=o.
X e Jx

since the supports of Jg” (fn) (which is the set 0,) and of g, (which is the set B,) have
positive distance. Indeed, if d := dist(B, O), then for every x € B, we get || 7,(x) —z||x > d
for every z € O. In particular, for every y € O, we get ,(y) € O, and so || 7, (x) — 7, (y) || x >
d for every x € B, and every y € O,. Arguing as in (2.5) we infer that there exists a positive
constant d such that d < ||x — y||x for every x € B, and every y € O,, which implies that
0, and B,, have positive distance.

The arbitrariness of g and the density of Lip.(0°) in L*>(0°,y) give u = 0 y-ae. in
0. Finally, since under our assumptions we have y(d0) = 0 (see [3, Remark 3.2]), we
conclude that the function v, defined as v =u on X \ dO and v = 0 on JO, fulfills v =0
v-a.e. in O and v = u y-a.e. in X. The claim is so proved.

Let us show that ujp = JO(f). For every g € %}0(0),We set g, := g o m, for every
n € N. From Lemma 2.13 we infer that g, € %’230(0,1) for every n € N and multiplying
both the sides of (2.6) by g, we get

c /0 (Vad"(fa),Vugn)ndy = /0 IO (fu)gndy — /0 fagndy. (2.8)

From Lemma 2.6 we know that (g,),cn converges to g in W2(X,y) as n tends to oco.

Hence, the weak convergence of (J&"(f;))nen. the strong convergence of (g,)nery and
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Remark 2.15 give

G/<VHM,VH8>Hd7:G/<VHM7VHg>de:6/<VHM7VHE>de
0 X X

=o lim [ (V3" (f2),Vegn)ndy

n—eo |y

=o lim [ (VaJS"(fa),Vrgn)udy

n—ee [

. ( [ gt | fngndy)
n—oo X X
:/ugd%/?gd}'
X X

~ [ usdr~ [ rear 2.9)
0 0
From (2.9) we get

o / (Vitt, Virghudy — / ugdy— / fedy, 2.10)
0] (0] 0]

and the arbitrariness of g € %’ﬁo(O) implies that u)p = JO(f), ie, u=JI(f) y-ae.

It remains to prove that (J"(f,))sen converges to u in W'2(X,y). To this aim, we

show that (J9" (f,))ner converges to u in W'2(X, y) with respect to the equivalent norm
W2 = 1 s+ IV Sy s S € FCHX).

Multiplying both the sides of (2.6) by Jg” (fn), integrating on X and letting n go to infinity,
since (fy)neny converges to f in L?(X,y) as n tends to infinity, we get

8 (Flls = lim (198" ()2 0,0 + 1V (£ 0, 10

= / fudy. @2.11)
o

lim
n—oo

Let us consider a sequence (u;)men C %30(0) which converges to u|o in WO1 2(0,7)

and, for every n € N, let us set u,, , = up o m,. Hence, u,,, € ji‘ﬁo(On) for every n € N.
Multiplying both the sides of (2.6) by u,, », integrating on X with respect to y and applying
the definition of Lo,, we infer that

/ I (f)tmpdy+ / (Ved 9" (f), Virttmn) ady = / Fottmndy (2.12)
X X X

for every m,n € N. From Lemma 2.6 we know that the sequence (u,),cn converges to
Ty in W2(X,y) as n goes to infinity. Therefore, letting 7 go to infinity in (2.12) we infer
that

/“ﬁmd}/+6/<VHu;VHﬁm>de:/ﬁmd% m e N.
X X X

Recalling that u,, = 0 on O°, we infer that

/uumd7+6/(VHu,VHum>Hd}/:/fumdj/ (2.13)
] ] ]
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for every m € N. Letting m go to infinity in (2.13) and recalling that (u,,),,cn converges to
U, in Wol’z(O7 ) as m goes to infinity, it follows that

Jul}, = g+ 011Vl 0 ) = |y .14
From (2.11) and (2.14) we infer that

2 . 2
llullg = lim [J5" ()5

which combined with the weak convergence of (JS" (f;))nen to u in W2 (X, y) gives the

strong convergence of (J" (f,))nen to uin WH2(X, 7).

Finally, we have shown that every subsequence of (J"(f;))nen admits a subsequence

which converges to JG(f) in W2(X,y) as n goes to infinity, which is enough to conclude
that the whole sequence (J&" (f;,))nen converges to u in WH2(X 7). O

3. RESOLVENT CONTRACTIVITY IN FINITE DIMENSION

In this section we consider the finite dimensional case X = R? endowed with the stan-
dard Gaussian measure y = ¥, with density 6,;(x) = (27r)~%/2¢~**/2 for every x € R. In
this case, H = X and the H-inner product is the Euclidean inner product.

Let O C RY be an open set which is C>%*-regular. The aim of this section is to prove
(1.1) in this finite dimensional setting.

Remark 3.1. For every u € C3(0) we get Lou(x) = Lu(x) := Au(x) — (x,Vu(x))ga for
every x € O. Since I — oL is an elliptic operator with regular coefficients for every ¢ > 0,
it follows that for every bounded C>*-regular domain Q and every f € C%(Q), there exists
a unique solution g € C>*(Q) of g — 6Lg = f on Q with gloa = 0 (see e.g. [18, Theorem
6.14]).

From Remark 3.1 we infer that if y € C(0) then u = J5(y) belongs to C3(O) (in the
sense of the representatives) and it satisfies (I — oL)u = y. Further, from elliptic regularity
(see e.g. [14, Section 6.3.1, Theorem 3]) we infer that for any bounded open subset U C O
the function u belongs to C*(U). In particular, u € C*(0).

Lety € CZ(0) and letu € C*(0)NCE(O) satisfy u— 6Lu = u— 6Lou=1y. We introduce
the functions ¢ and @, as follows:

Q) = |Vu(x)lge, @e(x) =1/ + [ Vu(x)|l.- 3.1

Let us notice that ¢, € C*(0O) for every € > 0. We prove the following result, which is the
equivalent of [4, Lemma 8.2].

Lemma 3.2. For every x € O, we have
(9(x))?

P (x)
Proof. Forevery j€{l,...,d} we have

— OLe(x) < [[Vy(x)|ga- (3.2)

d
9eD;jge = Y DuDjju,
i=1



GRADIENT CONTRACTIVITY IN WIENER SPACES 14

which gives

d d z d d
Z (ZDiuDl-zju) . 1(} I(Di“)ZZ{(Dizj“)z>
< - =

i=1 \i=1 =1 \i
||V‘P8|‘Rd =2 o2 <! P
d
2
;(Diu) d , 2 ¢ d ) d ,
:TZ (Diju) e (D7u) <AZ (Dfu)?.  (33)
€ i,j=1 € i,j=1 i,j=1

Since on smooth functions f the operator L reads as Lf(x) = Af(x) — (x,Vf(x))ga for
every x € O, forevery i =1,...,d we get

Di(Lf)(x) =Di(Af)(x) = Di((x,V f(x))pa) = A(D:) f(x) — {x, V(Dif)(x)) ga — Dif (x)
=L(D;)f(x) =Dif(x), x€O,
whence
Di(Lf)(x)Dif (x) =L(D;f)(x)D;if (x) — (Dif (x))> < L(Dif )(x)Dif (x)  (3.4)

foreveryx € Oandi=1,...,d. Indeed, from the definition of ¢ and L we get

(5 ( )GL(PS G lt(Ps —xiD; Q¢ (X))

4

=0 (—IIV%(X)I]%ﬁZ |D7ju(x \2+Z iiju (%) = x:D}; ())Dju(X)>

i,j=1 i,j=1

d
:1

d
=0 (—IIV%(x)IfRdJr Y [Dfu())* + Z L(Dju)(X)Dju(X)>

ij=1 ij=1
for every x € O. We recall that HV(Pg”Rd <y = 1( u)? (see (3.3)), hence

d
Pe(x)OLPe (x) >0 _Zlf(Dju) (x)D ju(x)
=

for every x € O, and from (3.4) we infer that

Dj(oLu)(x)Dju(x)

R

d
@e(x)OL@e (x Z, Dju(x) =

1

J

(Dju(x) =Dy (x))Dju(x) = || Vu(x) [ — (Vat(x) VY (x)) pa

~.
i M&

>0(x)* = 9 ()| Vy(x)]Ipa, (3.5)
where we have used the fact that 6Lu = u — y. The thesis follows by dividing the first and
the last side in (3.5) by ¢, and rearranging the terms. (]

3.1. Gaussian curvature. We use the spaces W!”(0,7) and WOI"” (0,7) introduced in
Section 2. We stress that, since we are in finite dimension, C;°(0) is dense in WOl 7(0,7y).
We define Ly and, for every ¢ > 0, Jg, accordingly to Definition 2.4.

Let x € dO and let v be the outer normal to O at x. By the C>*-regularity of O, there
exist a neighbourhood U of x, an open set V C R?~! and a smooth function y : V — R
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such that, up to rotation which gives v =—&,, UNd0 = {(&',w(&")): &' €V}, ie., d0is
locally a graph of a function y with the vertical axis oriented inside O, and we define the
(inner) mean curvature of O at x € dO as Ay(&]), where &) € V satisfies x = (&), w(&]))
since Vy/(&j) = 0. Equivalently, if O is the sublevel of a C?-function g with Vg # 0 on
d0, we have that the mean curvature at x € dO is
Ag(x D?g(x)Vg(x),Vg(x
Haol) = = glx)  (D°g(x)Vs(x) 3g( Jre. (3.6)
V&) lga IVe()lza

where D?g is the Hessian matrix of g. We point out that the geometric mean curvature is
(3.6) multiplied by (d —1)~'.

Definition 3.3. If O C R? is C>%-regular, the (inner) Gaussian curvature at x € 9O is
Hgo (x) =Hyo(x) — (x,v(x))ga, where Hy is the mean curvature and v is the outer normal
to d0.

Hypothesis 3.1. We assume that the open set O is C>*-regular for some o > 0 and that it
has non negative (inner) Gaussian curvature.

As we said, given a point X € dO there exists a neighbourhood U of X such that U N 9O
can be seen as the graph of a smooth function y: V C R4~! — R. In R?, we consider the
rotation R~! (change of coordinates) x — & (i.e., RE = x) centered at X such that R~ (U N
d0) is actually the graph of . In the new system of coordinates, the outer normal to O
at x is oriented as —&,;, where in this new system of coordinates &, is the d-th element of
the basis. In particular, (£, y(&')) = UNAO for every &' € V, & = (E’, W(E’)) =X with
& ecvand Vay(E)=0.

We notice that the operator L introduced in Remark 3.1 is invariant under the new system
of coordinates &, i.e., Lw(&) = Lu(x) where u,w € C*(R?) and w(&) = w(R™'x) = u(x)
for every & € RY and x = RE. Indeed, since x = RE and R is an orthogonal matrix, for
u(x) = u(RE) :=w(&) = w(R 'x) it follows that

Dyu(x) = (Vew(&), (R )idma,  Diyu(x) = (DEw(E)(R™ )i, (R™ i)z,

where D¢ w is the Hessian matrix of w with respect to the variable Eand (R 1), i=1,....d,
denotes the i-th row of the matrix R~!. Hence,
d
Lu(x) :Axl,t( ) <x qu Z Dé ék )j[(Ril)ki — Z x,'Dé:jW(ngil)j[,
i,j,k=1 i,j=1

and recalling that Y& (R™1) ;(R™"); = ;¢ and that T, (R™1) jix; = &;, it follows that

Lu(x) = Agw(&) — (£, Vew(E))pa = Lw(§).
Further, if ¢ and ¢, are the functions introduced in (3.1), it follows that
d

p(x)* = Dew(&)(R™) jiDe,w(&) (R )i

1

i=1j
d
]; E)Dew(&)8jk = IVew(§) |7

Nk

where w(&) = u(x). Therefore, if we set 9(&) := ||[Vw(&)||ga. then (&) = @(x) and
Pe(8) =1/ e+ IVew(E) 7 = e (),
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with x = RE. Finally, let us notice that at X € dO we have
— -/
R™'W50(X) = Vag-1(0)(&) =(0,...,0,—1) = (Vy(&),—-1)
. - — — —1 = =
inthe system £, and s0 £, o () = A W(E) = (€. (VW(E ).~} = g w(E) + .

Lemma 3.4. Let y € C2(0), let 6 > 0, let u = Jo(y), let X € dO and let & be the corre-
sponding point to X under the rotation coordinates x = RE with R as above. Then,

De, 7e(E) = (§:(8) ™ (De, (@) (80 w(E) +E,)
where E, v, W and @ are as above.

Proof. We replicate the argument of [4, Lemma 8.2]. Let v(&) = u(R™'&) for every & €
R9. Since 0 = u(x) = v(E',w(&")) for every &' € V C R4! with x = R(E', w(&")), it
follows that

D v(&) +De,v(&)Dery(E') =0 3.7)
forevery i € {1,...,d —1} and & = (&', y(&’)) with £’ € V. Differentiating (3.7) with
respect to i € {1,...,d — 1} it follows that

D} v(§) +2Df ¢ v(§)Dgrw(&') +Df e V() (Dgrw(&))* + De, v(E)DEey w(E) =0

for every & = (&', w(E)) € (V,w(V)). If we choose & = & then we get Déi/l[/(gl) =0. As
a byproduct, Dgiv(g) =0 and

— — —
D%,-,g,-v(é) +D§dV(‘§)D%;5;‘I’(§ )=0

forevery i € {1,...,d — 1}. By recalling that L can be applied to u also up the boundary

since u € C3(0) and recalhng that De, v(E ) Oforeveryi=1,...,d — 1}, we get

Lv(€) = Aev(§) ~ D, v(E) = nggd V(&) ~Dev(@)Agw(E) ~EuDe v(E).
We notice that Lv(&) = 0 since 6Lv(E) = 6Lu(%) = u(x) — y(X) = 0, and so
D} ¢ v(&) = D, v(E) (deyw(E) +E,).

Finally, since

Ge(E)De, 5B i ()0} ¢ v(E) = De v (E)DR g, v(E)
and u (and consequently v) is smooth up to the boundary 0O, we conclude that
D, §:(8) =(c(8)) ' De,v(E)DY ¢ v(E)

=(§e(8) " (De,v(E)) (e w(E) +E,).

O
Now we state the main result of this section.
Proposition 3.5. Under Hypothesis 3.1, for every p € [1,o0) we have
[ 1¥0esluar= [ 195 )

for everyy € Wol’q(O, Y), where g =p if p> 1 and g > 1 if p = 1. In particular, Lo is
dissipative in WO1 P(0,y) for every p € (1,0).
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Proof. The proof is analogous to that of [4, Proposition 8.2], hence we skip the details.
We assume that g() = t” belongs to C?([0,0)) (if p < 2 then we take a smooth convex
approximation), and we consider y € C;°(0) and 6 > 0. For every € > 0 we set y(x) =
g(@(x)) and ye(x) := g(@e(x)) for every x € O, where ¢ and @¢, with u = Js(y), have
been defined in (3.1). From (3.2) and the properties of g we get
2 2 2

Y 7 / 9 y

— —oLy, < Vy|lpa = =— | +— (3.9)

b~ ole <¢(o0) (199l ) + ¥
in O. Further, for every X € d0, if & is the corresponding point under the rotation R~
introduced above, Lemma 3.4 gives

Qe
8\/30

(®) = Dy, e(8) = —(3:(2)) " (D v(E)P (Agrw(E) +E0) = —Hip110)(E) <0

for every X € dO. This implies that

P (%) = g, (5(70)) (B) = ¢ (7())Dg,7(E) <0

for every X € dO. By applying the divergence theorem and taking into account the explicit
formula of L we get

_ J
/ng dy— aied dH! <0, (3.10)
0 90 Vo0

where 6, is the density of the standard Gaussian measure in RY and H¢~! is the (d — 1)-
Hausdorff measure. From (3.9) and (3.10) it follows that

2 2 2

|4 / ¢ |4
—dy < \% —— | +—]dy.
o Ve 7_/0(8 (‘Ps)(” Ylga (Ps) We) Y

Letting € tend to 0 we get

/ ¢(IVullga)dy < / (@) (IV¥]lma — ) +(9)) d.
0] 0]

The convexity of g implies that g'(u) (v —u) + g(u) < g(v) for every u,v € [0,00), which
gives (3.8) for every y € C°(0). From the density of this set in WO1 ?(0,7y) and Remark
2.16 we get the thesis. O

Remark 3.6. The fact that the thesis does not holds for p = ¢ = 1 follows from the fact
that, for r = 1, the arguments in Remark 2.16 do not work.

4. GRADIENT RESOLVENT CONTRACTIVITY

In this section we consider a separable Banach space X with nondegenerate centered
Gaussian measure 'y and Cameron-Martin space H. We fix an orthonormal basis ® := {#,, :
n € N} of H of elements of OX*, that F,,, := span{hy,...,h,} for every m € N, that 7, is
the projection on F,, and that X, := Ker(7,,). We can identify F,, with R by means of
the operator I1,, : F,, — R", defined by

Hm(y):(yl7"'aym)7 yEFﬂﬁ Yi = <y7hi>H7 = 17"'7m'

We split the proof of the main result into two parts: in the former we consider the case
when O is a cylindrical set with respect to the basis {4, : n € N}, in the latter we consider
a generic open set O C X which satisfies suitable conditions.



GRADIENT CONTRACTIVITY IN WIENER SPACES 18

4.1. Cylindrical case. In this subsection we assume the following additional hypothesis.

Hypothesis 4.1. O C X is a C>%-regular cylindrical set with respect to the basis {/, :
n € N} C OX*. This means that there exist 7 € N and a C*>%-regular open set Oy C R™
such that O = ([T 0 )~ (O) = () "1 (O) © X+, and O = g~ ((—e0,0)) for some
function g € C>%(R™).

Definition 4.1. If we set G(x) := g((ITz o m7)x) for every x € X, then it follows that O =
G !((—,0)), and the spaces W'?(0,7) and W, ”(0,7) introduced in Section 2.3 are
well-defined. Finally, we notice that for every n > i we have 0, = Oy x R"™™,

Definition 4.2. For every k € N we denote by .ZC¥ 4 (X) the set of cylindrical C} functions
with respect to the orthonormal basis @, i.e., a function yeEF C’le@(X ) if there exists n € N
and v € Cf(R") such that y(x) = v((I1, o m,)(x)) for every x € X.

We denote by ZCy ,(0) the subset of .ZCf 4(X) of functions which vanish out of an
open set A with positiVe distance from O¢, i.e.’, a function y on X belongs to .# C’}j_o(O)
ifye §C§7¢(X) and there exists an open set A, with d(A,0¢) > 0, such that y =0on
A°. In particular, from the definition of O it follows that every y € .% C],j_O(O) has the form
y =v(Il,om,) for some n > m and v € C5(R"). ’

Lemma 4.3. If O is cylindrical with respect to the basis ®, then WO] £(0,y) is the closure
of FC} ,(0) with respect to the norm of W (0, ).

Proof. At first we show thatif y € ZCf ,(0) and v € CX(R") satisfies y(x) = v((I1, o 7, )x)
for every x € X, then v has support in an open set <7, C 0, with positive distance from 0.
Let A C O be an open set with positive distance from O¢ such that y vanishes out of A.
We are going to prove that the above assertion is true with <7, := {(IT, o m,)x : x € A}.
At first we show that 7, is an open set. Let x € A, x,, := (Il, o7, )x € o, and let € > 0
be such that B(x,€) = {y € X : |ly —x|lx < €} CA. For every y, € R" such that ||y, —
Xnllrr < c;1' € (where cy is the smallest constant in the continuous embedding H C X, see
Subsection 2.1 and formula (2.1)), we set y = (IT, 0 7,) "'y, + (x — (T, 0 7,) ~'x,) € X and
we get

ly =llx = (M 0 7)™ 3 = x0)llx < enrl|TT " (on —250) 117 = crllyn —xa|lrn < €.

Hence, y € A and so y, = (IT, o m,)y € <7,. This means that the ball centered at x,, with
radius c,}l € in R" is contained in .<7,.

It remains to show that v vanishes on 7 C R”. To this aim, we fix & = (§;,...,&,) € &¢
and set w:= Y1, Eih; € F,. 1f there exists z € an such that x = w+z € A, then £ =
(1, o m,)x € 7, which gives a contradiction. This implies that {w} ® X;* C A, and so
v(§) =0.

Now we are able to prove the statement. Let f € c%’j]fo(O), and for every n > m let us

set fn := E[f|F,], where

ful) = /X () + (1d — 1) (5))dy(y), x€X.

Let A C O be an open set with positive distance from O¢ such that supp(f) C A. We set
A= {Tm(x)+y:x €A, y € Xt} = {x € X : T(x) = T (z) for some z € A} C X. We claim

that A C A C O is open and has positive distance from O°.
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The inclusion A C A is trivial. To show that A C 0, we notice that if m7(x) +y € O° for
some x € A and y € Xz, then from the definition of O we get 77(x) +z € O for every
7 € X+ In particular, the choice of z = x — 7z (x) implies that x € O°, which contradicts
the fact that x € A.
Now we prove that Ais open. let us fix X = my(x) +y € A, wherexeAandy e XL Since
A is open, there exists € > 0 such that B(x,e) = {z € X : ||z—x||x < €} C A. For every
y € B(%,€), from the decomposition X = F ® X+ we get

&> [x=Jllx = [|mm(x =) llx = |17m(x) = mn(y)x-
If we consider y = 7w (y) + (x — mz(x)), it follows that mz(y) = mm(Y) and ||x — y||x =
|77 (x) — 7 (¥) ||x < €, which means that y € A.

It remains to show that A has positive distance from O°. For this purpose, for every x € A
and every z € O° we get

X —zllx = [I7m(x) — 7m(2) lx = [lx = (7m(2) +x — 7w (x)) |1,
where x € A satisfies Tz (x) = m7(X). Since z € O°, the definition of O gives my(z) +x —
Tim(x) € O°, and 50 ||x — (Mm(z) +x — T (x))||x > dist(A, O°). The arbitrariness of ¥ € A
and z € O° imply that dist(A, 0°) > dist(A, 0°). The claim is proved.

Let us consider x € A. From the claim, it follows that ;(x) +y € A® for every y € X
Indeed, if there exists y € X= such that 7 (x) +y € A, we infer that 7 (x) = 7 (7o (x) +),
which means that x € A. Hence, for every x € A€ and y € X it follows that

7 (x) + (Id — 7,) (y) = (%) + (7 (x) — 7 (x)) + (Id — 7,) (y) € A,
which implies that f, =0 on A°. In particular, supp(f;,) C A and f;,(x) = fy(%ux) = v, (I, 0
7,)x) for every x € X, where v, = f, o (I, om,)"! € Cll,o(ﬁn) from the first part of the
proof. Finally, (f;,).en converges to f in W''P(X,y) as n — oo from [5, Corollary 3.5.2],
which implies that (fu|o)nen tends to f in WLP(0,y) as n — oo, O

The next proposition shows that the result in Proposition 3.5 can be easily generalized
in infinite dimension when O is a cylindrical domain.

Proposition 4.4. Let O satisfy Hypothesis 4.1, and assume that Hg;ﬁ(é) > 0 for every
& €00 If p € [1,), then for every ¢ > 0 we get

/0 IVaI00) |y < /0 IVaylbdy, yewl (0,7,

whereq=pifp>landg>1ifp=1.

Proof. For every n >7iand every & € 90, we have & = (€,,&1,...,& ), with &, € IOy
and (51,...,.‘,‘1_%) e R, Further, the outer normal vn(&) to O, aL& € d 0, satisfies
V(&) = (vie(€y),0,...0), where vg(&,) is the outer normal to O at &, € d O Hence,
we get

HY, (&) =H], (£)>0, E€dO,.

Let us fix ¢ > 0. On L?(0,,y"), where ¥" is the standard Gaussian measure on R”,
we consider the Ornstein-Uhlenbeck operator L, with homogeneous Dirichlet boundary
conditions with respect to &, and the bounded operator 75, = (I— GLﬁn)’l. Lety e
EC;’O(O) and let v € C} ,(0,) be such that y(x) = v((II, o m,)(x)) for every x € X. We
claim that

(Fonv)Myom) =79y, 7y-ae.inO.
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Indeed, for every f € .FC}(0) with f = ¢(IT; o m;), where j € N and ¢ € C}(R/), if
m < j < nthen we get

/ (Vir Fon(T0m,), Vi f)udy = / (V Ionn, VO rndy' = / Lo,(Jonv)-9dY"
0 On o
:/;(Lﬁn(/o,nv))(nn © n-") fd'}’,

and if j > n then it follows that

/ (Vi Fomv(Tlyo 1), Vir )y = / | / (V Foa(E).VO(E +0))grdy(E)dy " (dn)
0 ri-J o,
=[] Lol semn @) oy @iy m)
- /0 (Loy(Fon) 0, - fdy.

From the definition of Ly and Lemma 4.3 we conclude that (_#s ,v)(I1,om,) € D(Lp) and

LO((jG,nV)(Hn 0Ty)) = (Lﬁn (/GJLV))(HH 0 TTy).

Moreover, for y-a.e. x € X we get

Lo(( Fonv)(Iyo 1)) (x) =6Lg, ((_Fonv))(ILy 0 Ty ) (x)
=(_Zonv) I, 0 m,)(x) — v(IL, 0 7,) (x).
Combined with the fact that y = v(IT, o m,), this gives the claim. In particular, we get

IVdollero..m) = IV LonvllLr o,y rry for every y € 96‘;,0(0)-
Since ||Vuylliro,y.1) = [IVVllLr (6, 42 r7)» from Proposition 3.5 it follows that

/0 IVaday|dy = /ﬁ IV Fomllndy’ < /ﬁ IVv|Ludy = /0 IVayllEdy,

and we get the thesis wheny € ZC} ,(0). From Remark 2.16 and Lemma 4.3 we conclude.
O

4.2. Generalization to the non-cylindrical case. For every f € .#C;’(X) of the form
f=v(Il,om,), withv e C;’(R"), we have

Lf=Y 0pu.f=Y onfhi
i=1 i=1

Let us notice that for these functions we have

Lf(x) = Lyv(§) := Av(6) — (&, VV(&))rr, 6 = (ho ) (x), x€ X,

where A is the Laplace operator in R”.

Assume that Hypothesis 2.11 are satisfied, and recall that 90 = G~!(0) and that at every
point x € dO the outer H-normal is Vi G(x)/||VyG(x)||z. For every n € N we consider
the cylindrical function G, := Gom, (see [11, Section 4]). From the definition, G, is a
H-differentiable cylindrical function and Vg G, is everywhere H-differentiable. Hence,
there exists g, € C2(R") such that G,(x) = g,((I1, o m,)(x)) for every x € X. For every
n € N we introduce the sets 0, := G, !((—,0)) and 0, := g, '((—,0)). Therefore,
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20, = G, 1(0), 0, =g,'({0}) and 0, = (IT, o 7,)~!(&,) for every n € N. For every
x € d0, with Vi G, (x) # 0 we set

HY (x) = G _ (D}Gu(x)VEGa(x), Vi Ga ()
On IV G (x)| 1 IVaGa(x)[13;

Let us assume the following conditions on O,;, 0, and Hgo .

Hypothesis 4.2. We suppose that there exists o € N such that ||7,,(VzG)||n # 0 on 90,
for every n > ng the set &, is a C>%*-regular open set in R” and Hgo,, (x) > 0 for every
x € 00,.

Remark 4.5. Assume that Hypothesis 4.2 is satisfied. At first, we notice that, for every
n > ng, the assumption ||7,,(VyG)(x)||# # 0 for every x € dO implies that, for every
x € 90, we get [VaGu(x)lla = (|70 (VaG (X)) |1 = (170 (Vi G(7(x))) || # O, since
x € d0,, if and only if 7,(x) € JO.

Hence, vy, = Vgu/||Vgn||rn for every n > ng, and for every x € d0,, we have

(D3 Gn()VHGn(x), VHGn())rr _ (D?8u(§)Vn(£), Ven(&))rer

IVuGally IV nl1Z ’
with & = (IT,, o 7, ) (x). This implies that

Hy" (‘S) Angn(é) <ngn(é)Vgn(§),Vgn(é)>R" <€vVgn(€)>lR"

90n7>"7 || Vgn(&) | Vgl IVen(&)l[r
_ Lugn()  (D’8u(§)V8n(£),Vn(£))rr
[Ven (&)l V8l
_ LGulx) (D4Gy(x)VHGy(x), Vi Gy (x)) 1
IVuGalln VGl

:Hgon (x) >0,
for every x € d0,, and & := (II, 0 7, ) (x) € A O),.

Theorem 4.6. Let O C X be an open set satisfying Hypotheses 2.11 and 4.2. Then, for
every p € [1,00) and ¢ > 0, it follows that

/0 Vs O)IE dy < /0 IVallZ, d.

foreveryye Wol’q(O, Y), where g = p if p > 1 and g > 1 if p= 1. In particular, the operator
Lo.p is dissipative in Wol’p(O, Y) for every p € (1,00).

Remark 4.7. For the case p = g = 1 see Remark 3.6.

Proof. Let p and ¢ be as in the statement.
Lety e %’210(0) and for every n € N let us set y, := yom,. From Lemma 2.13 we

deduce that y, € %’j}o(On), and from Remark 4.5 it follows that Hg o > 0on d0),, which
implies that the assumptions of Lemma 4.4 are satisfied. Let o > 0. Since y, € %’ZIO(O,,) -
Wol’q(On, ) we get

/0 IVitdanlm)ll dy < /0 Vel dr,



GRADIENT CONTRACTIVITY IN WIENER SPACES 22

for every n > ng, where Lo, is the Ornstein-Uhlenbeck operator with homogeneous Dirich-
let boundary conditions on Oy, and J5, = (Id — 6Lg,) .

Since y € Wol’q(O, y) it follows that y € W4(X,y) and Vyy(x) = Vgy(x) for y-a.e.
x € X. Analogously, y, € Wh4(X,y) and Viy,(x) = Vuy,(x) for y-a.e. x € X, for every
n € N. Since y € 7' (X) is bounded and y, = yo 7, for every n € N, from Lemma 2.6 we
infer that (¥,),en converges to ¥ in W!4(Xy) as n tends to infinity, and so

[ usltsar= [ [Sisllyar= [ 1Vuslfdy=tim [ [¥uslfay
o X X n—eJx
=tim | [¥slfiy=tim [ 1Vl

If we set u := J9(y) and u,, := J9",(y,) for every n > ng, then from Proposition 4.4 applied
to y, we deduce that

liminf/ ||VHunHZd7§1iminf/ ||VHyn||gdy=/||VHy||;;dy. (4.1)
n—oo O n—oo On 0o

From Proposition 2.17 we infer that (&,),cy converges to @ in W!2(X,y) as n goes to
infinity, and Remarks 2.15 and 2.16 (with O = X and r = 2) imply that

/||VHuH§d}/:/HVHﬁHZdygliminf/HVHﬁanId}/:liminf/ ||VHu,,||Zdy.
0 X n—ee Jx n=ee Jo,

4.2)
From (4.1) and (4.2) we conclude that

/0 IVada )5y < /0 IVayllEdy.

forevery y € JK},}O(O). For the general case y € WOl “4(0,7y), we recall that L%’jgfo( O) is dense

in WOl “/(0) by Lemma 2.8, and the thesis follows from the boundedness of J$ on L4(0, )
and Remark 2.16. U

5. EXAMPLES

In this last section we provide three examples to which our results apply. Such situations
have been already considered in [9, Section 5] and [11, Section 5].

5.1. Epigraphs. Let (X,y) be an abstract Wiener space. We fix an orthonormal basis
{hy :n € N} of H in Q(X*), i.e., h, = Q(x};) with x; € X* for every n € N. We define a
function G such that O = G~!((—0,0)) is the epigraph of a function.

Hypothesis 5.1. Let ®: X — R be a continuous function such that

(1) ® € 2" (X) (hence Vy® exists everywhere);

(2) I, (P)(x) =0 for every x € X;

(3) Vyu® is everywhere H-differentiable, with HD%,CIDH us uniformly bounded;

(4) L® is uniformly bounded;

(5) the function f,, := ®o (M,om,) "' € Clzo'éx (R™) for every n € N, for some o > 0;

(6) there exist C,C;,C,,C3 > 0, with C — C; —C, — C3 > 0, such that ®(x) > C,
|DE®(x)||us < C1. (Vu®(h),h)y < C; and ||DFP(x)|| 2y < C3, for every
xeXandeveryh € H.
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Hypothesis 5.1(2) implies that ®(x) = ®(x — m; (x)) for every x € X. We set
G(x) =h(x) +®(x), xeX,
and 0 := G~ ((—e0,0)) = {x € X : I (x) < —®(x)}. We have
VyG(x) =h +Vg®(x—m(x)), xe€X,
and
D%G(x) = D4®(x—m(x)), xeX.
By Hypothesis 5.1(1) — (4) the function G satisfies Hypothesis 2.11 (see [3, Subsection
5.1]), and for every n € N we set
G(x) = hy (x) + D(7,(x) — 1 (x)), xEX.
Hence, the function g, := G,((IT,om,)~") belongs to C>*(R™) for every n € N. Let us set
Xn = Wy(x) — my (x) € H for every x € X, s0 G, (x) = hy (x) — ®(%,) and
VuG,(x) = h + 7, VaP(x,),

LGy(x) = i(D;I(D(xn)hhhi)H — h1(x) = (VEP(Fn) Tn) i,

This implies that the first part of Hypothesis 4.2 is verified with ny = 1, since m; (Vg ®(%,)) =
0. Further, on G~ (0) = {x € X : hy (x) = —®(x)}, for every n € N we get

LGy (x) (D Gu(x)VEGu(x), Vi Ga(x))

H! (x)= —
90:%) = ¥ 1G] IViGa )T
_ @) + X (DR PG his hi)tr — (VaP(Ea) Tu)rr (D P(Fn) VP (Tn), Vi P(Tn)) 1
Ve G (x) || IVEG(x)13
C—Ci—C G|Vu@E)|5 _ C—-C1—C—C;
> — > >0, x€d0.
IVaGn ()l [[VaGa ()|l IV G (%) 1

Hence, G satisfies Hypothesis 4.2 with ny = 1. In particular, if & = C > 0 everywhere,
the above conditions are verified, which means that the open half-spaces {h; < —C} with
C > 0 fulfill our assumptions.

5.2. Brownian motion and Brownian bridge.

5.2.1. Brownian motion starting from 0. We recall the definition of Brownian motion (see
[5, Section 2.3]). We consider the classical Wiener space (X,y") where X = L2[0, 1], ¥V
is the Wiener measure on L?[0, 1], and the Cameron-Martin space H is the set of absolutely
continuous functions f on [0, 1] such that f’ € L?[0,1] and f(0) = 0.

For every f1, f2 € H the inner product in H is defined as

1
b= [ A d
We consider the orthonormal basis {e, : n € N} of L?[0, 1] defined by

en(x) := \/Esin(\/xfn) = ﬁsin((n—;) nx), x€[0,1], n €N,
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where
1
Apy=—"—, neN
7 (n—3)’
The system {h, = \/Ane, : n € N} is an orthonormal basis of H and for every m € N we
denote by 7, : X — F,, the projection on F,, := span{hy,...,h,}. For every h € H we have

1 1/2
Wllegon) / h/<>|dz<(/0 |h’<t>|2dr) — s 5.1

Letge Cg’a (R), a € (0, 1), satisfying for some ¢ > 0, a1, &, B, B2 € R the inequalities
g(6)=c, oug(8)+pi <& (E) < ng(é)+ph (5.2)

for every £ € R. The above assumptions are satisfied, for instance, by the function g = p/q,
where ¢ is a positive polynomial of degree m € N and p is a polynomial of degree m + 1
such that g'(§) # 0 for all £ € R.

Remark 5.2. We have

= -2 2
1 T
—= =—. 53
This is a consequence of the well known Basel problem

o 2
T
E n_2 = —,
n= 6
by using the fact that

i (n—;)2:4i(2n—1)2

n=

—

and

oo

inzzz (2n—1)" i :i 2n—1)"
n—= : n:

n=1

N
Proposition 5.3. In the above hypotheses, given r in the range of g such that

ocgrg—(ﬁ L 187, @) lg"llc, ) )7 (5.4)

-lk\»—‘

2
we define
1
G(x) = / g(x(s))ds—r, xeX.
0
Then, G satisfies Hypotheses 2.11 and 4.2.

Proof. To prove that Hypothesis 2.11 is satisfied it is enough to argue as in [3, Proposition
5.1]).
We stress that G is H-differentiable at every x € X and, for every h € H,

1
(VHG(x), By = /0 ¢ (x(s))(s) ds. 5.5)

This implies that, for every x € X, from (5.2) and the definition of 4 it follows that

! 2
||m<vHG<x>>||z=( / g’<x<s>>h1<s>ds) Ba

=2
Hence, the first part of Hypothesis 4.2 is satisfied with ng = 1.
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Moreover, Dy G is H-differentiable at every x € X and, for every h,k € H,
DGk = [ ¢ GDHOK) s,
and so, fixed h,k € H, for every x1,x; € X we have
(D3 G(x1)(h), k)1 — (D G(x2) (h) k)| <|/ "(x1(5)) — 8" (x2(5)))(s)k(s) dis]
<[/ /0 () —x2(5) ) ()| s

<[¢"lall ]l [l 1 — 2215

where [g"] is the Holder seminorm of g”. Tt follows that G is a C>* function on every
subspace F of H with dim(F) < oo, which means that &, is a C*%-regular open set in R”
for every n € N.

It remains to show that Hgon >0on dO, for every n € N. To this aim, for every s € [0, 1]

we set
1= L o= X 2w (n3) (s (- )w))
2 2 <n;>2005((zn1)m)

where the last equality follows from (5.3). Since
1
/ (cos(2n—1)ms)ds =0, neN
0
and the series which defines f totally converges, we conclude that

/Olf(s>ds=

Let us fix m € N and x € dO,,, and let us set @, = Vg Gy, (x) = Tp(VuG (7, (x))). Tt
follows that @, € H and || @,z < |g| c)(r)- We introduce the function

Then, fi > 0o0n [0, 1], [| fill 10,1y < [1fllL10,0) = 2 > and

1
Try [D%Gon / (x)(s)) (R (s))zds:/o & (7nx)(5)) fu(s)ds.  (5.6)

From (5.5) and (5.6) it follows that

1 1
LG(x) = /0 & () () fn (5)els — /0 ¢ () (5)) () (s,
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and so
Hgom( x) =
_ LGn(x) _<D%{Gm(x)vHGm(x);VHGm(x)>H
ViG5| VG )],
o 8" () (5) fn(5)ds — fy &' () () () (8)ds [y 8" () () (Pn(s))*dls
[9nlln l9ml;
= P l " x)(s s 77((pm(s))2 s — 1 ! x)(s x)(s)ds
“louli (| &m0 ) = P s [ () ) e 1)

(5.7)

An explicit computation on ¢, gives

2
m
(Z (Vo Gn(x Hh<>> < @ulfifu(s), s€01]. (58
Further, from (5.2) we infer that

1 1
/ ¢ () (5)) () (5) s < / §((Tx) (5))ds + B, (5.9)
0 0

and so from (5.7), (5.8) and (5.9) we get
Hgom (x) =

2
< ’ _1 " - < - _((Pm(s))>d
> llgnlls ( L o € (6 () - P2 Y

1
— /0 g<<nmx><s>>dsﬁz>

1
> loml;s / & () (5)) fon()ds — 2 / ¢((T)(5))ds — o
{5€(0,1):¢"((mnx)(s)) <0} 0

1
> ||(Pm||Hl<—|g”||cb(R)/0 fm(S)dS—az(Gm(x)‘i‘r)—ﬁz)

. 1 Hg"||L°°(R)
= ”(PmHH - ) —or—Pf |,

where we have used the fact that G,,(x) = 0 for x € dO,,. Finally, from (5.4) it follows that

"
Nles g gy,
which gives .7, (x) > 0 for every x € dO,,, for every m € N. This implies that also the last
point in Hypothesis 4.2 is fulfilled. g

5.2.2. Brownian bridge on 0. We consider a pinned Wiener space, which describes a
Brownian bridge with starting point at 0 and subjected to the condition that at 1 the ar-
rival point is 0. In this setting, X = L?[0, 1], the Cameron-Martin space is H = H} (0,1)
and 7 is the pinned Wiener measure on X, see [22]. We recall that it is defined an orthonor-
mal basis {e, = v/2sin(nn-) : n € N} of X with eigenvalues A, = (7n) 2 with respect to the
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covariance operator Q of ¥, and {v/A,e, = V27~ 'n~!sin(nx-) : n € N} is an orthonormal
basis of H of eigenvectors of Q.

We introduce a function g which satisfies the same assumptions as in Example 5.2.1.
Arguing as in the proof of Proposition 5.3 we can prove the following result.

Proposition 5.4. In the above hypotheses, given r in the range of g and

Hg””c,,(R)
or < — B2+T ,

we define
1
G(x)= / g(x(s))ds—r, xeX.
0
Then, O = G~!((—o0,0)) satisfies Hypotheses 2.11 and 4.2.

The main difference in the proof is that, in this case, we get f = s — s and f,, =
2% Ay sin(nms)? (see [11, Example 5.4] for details).

Acknowledgments. The authors are grateful to Michael Rockner for the suggestion to
extend to the finite dimensional setting the result in [4, Appendix 8].
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