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ABSTRACT. Given an abstract Wiener space (X ,γ,H), we consider an open set O ⊆ X
which satisfies certain smoothness and mean-curvature conditions. We prove that the
rescaled resolvent operator associated to the Ornstein-Uhlenbeck operator with homoge-
neous Dirichlet boundary conditions on O is gradient contractive in Lp(X ,γ) for every
p ∈ (1,∞). This is the Gaussian counterpart of an analogous result for the rescaled re-
solvent operator associated to the Laplace operator ∆ in Lp with respect to the Lebesgue
measure, p ∈ [1,∞), with homogeneous Dirichlet boundary conditions on a bounded con-
vex open set O ⊆ Rn.

1. INTRODUCTION

In this paper we consider an abstract Wiener space (X ,γ,H), where X is a separable
Banach space with a centered nondegenerate Gaussian measure γ and H its Cameron-
Martin space H, and an open subset O ⊆ X which satisfies suitable conditions. The aim of
this paper is to prove that the rescaled resolvent (JO

σ = (Id−σLO)
−1)σ>0 of the Ornstein-

Uhlenbeck operator LO on O with homogeneous Dirichlet boundary conditions satisfiesˆ
O
∥∇HJO

σ f∥p
Hdγ ≤

ˆ
O
∥∇H f∥p

Hdγ, f ∈W 1,q
0 (O,γ), σ > 0, (1.1)

where q = p if p > 1 and q > 1 if p = 1. In particular, this implies that (JO
σ )σ>0 is Lp

gradient contractive for every p ∈ (1,∞).
This result extends to the Gaussian setting the analogous one proved in [4, Appendix

1], where O ⊆ Rd is an open convex set with smooth boundary ∂O. In the quoted paper,
the authors show that the rescaled resolvent associated to the Laplace operator on O with
homogeneous Dirichlet boundary conditions is Lp gradient contractive for every p∈ [1,∞),
i.e., ˆ

O
∥∇Jσ f (x)∥p

Rd dx ≤
ˆ

O
∥∇ f (x)∥p

Rd dx, f ∈W 1,p
0 (O), (1.2)

where Jσ := (Id−σ∆)−1, σ > 0, is the rescaled resolvent of ∆. We remark that for p = ∞

inequality (1.2) has been proved in [8].
Let us compare formulae (1.1) and (1.2). In the latter, the operator ∇ denotes the weak

derivative in Lp(O), while, in the former, the gradient ∇H is the gradient along the direc-
tions of H. This is a typical issue of the infinite dimension: indeed, dealing with Gaussian
measures in infinite dimension, an integration-by-parts formula, which is a crucial tool to
prove the closability of the gradient operator, is verified if and only if one considers the
gradient along H, which is usually denoted by ∇H .

Another difference is the operator considered, whose rescaled resolvent appears in the
above inequalities: it is the Ornstein-Uhlenbeck operator in (1.1), and the Laplace operator
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in (1.2). This follows from the fact that the Ornstein-Uhlenbeck operator plays the role of
the Laplace operator when the Lebesgue measure is replaced by the Gaussian one. In finite
dimension, this can be easily seen by taking into account an integration-by-parts formula:
indeed, for smooth enough functions f and g, we haveˆ

Rd
⟨∇ f ,∇g⟩Rd dx =−

ˆ
Rd

∆ f gdx,

and ˆ
Rd
⟨∇ f ,∇g⟩Rd dγ

d =

ˆ
Rd
⟨∇ f ,∇g⟩Rd e−|x|2/2dx =−

ˆ
Rd

L f gdγ
d ,

where γd denotes the standard Gaussian measure on Rd and L f (x) = ∆ f (x)−⟨x,∇ f (x)⟩Rd .
We further notice that, in the Gaussian context, gradient resolvent contractivity holds

for every p ∈ (1,∞) (when p = 1 we get the inequality not for functions f ∈ W 1,1
0 (O,γ)

but for functions in smaller spaces), while (1.2) is satisfied for every p ∈ [1,∞]. The case
p=∞ is quite delicate in infinite dimension. Indeed, W 1,∞(X ,γ) represents the intersection
of W 1,p(X ,γ) with p ∈ [1,∞) and not the functions which have bounded H-gradient, and
so we do not expect to extend (1.1) for p = ∞. On the contrary, for p = 1 the main obstacle
is that, to the best of our knowledge, a satisfactory theory of traces for Sobolev functions in
infinite dimension is not available. Traces of Sobolev functions at the boundaries of very
smooth sets were considered for instance in [3, 9], while in [10, 11] the Sobolev spaces
of functions which "vanish" at the boundary are introduced to study maximal L2 regularity
for Dirichlet problems in infinite dimension. We also mention [19, 20], where the author
deals with Sobolev spaces on domains.

The first attempt to provide a systematic study of traces of Sobolev functions on domains
of abstract Wiener spaces appears in [9], where the authors give sufficient conditions on
the domain O to define a bounded operator Tr : W 1,p(O,γ)→ Lq(∂O,ρ) for p ∈ (1,∞) and
q∈ [1, p), where ρ is the Hausdorff-Gauss surface measure of Feyel and de La Pradelle (see
[16]). Under additional assumptions on O, it is proved that also q = p can be achieved.
Nothing can be said for the case p = 1, and this shows that the gap between finite and
infinite dimension is considerably big. We also stress that the case p = 1 is not achieved
either in [3] (which is strongly inspired by [9]), whose characterization of Sobolev spaces
W 1,p

0 (O,γ) of functions with null trace on ∂O is widely used in this paper. We refer to [15]
for a theory of traces on domains in abstract Wiener spaces in Lp-spaces with respect to a
weighted Gaussian measure, and to [2, 7] for an integration-by-parts formula on domains
in Wiener spaces, which should be the starting point for a development in the study of
traces by means of different techniques. Finally, for the case p = 1, a possible alternative
approach is to consider BV functions defined on open domains, which are investigated in
[2, 6, 21]. However, it is still not clear how to extend to infinite dimension the theory of
traces for BV functions in finite dimension.

To conclude, we spend few words on the assumptions on O (see Hypotheses 2.11 and
4.2). In (1.2) the domain O is assumed to be convex and with smooth boundary. Smooth-
ness of the boundary and geometric properties for domains in infinite dimension are not
easy to be defined, hence we translate the hypotheses on the cylindrical approximations
(On)n∈N of O, which can be considered as finite dimensional domains (see Hypothesis
2.11 and [11]). As far as the regularity condition is concerned, we simply require for ∂On
the same smoothness of the domain O in [4]. Further, the convexity of O implies that
the mean curvature at every point x ∈ ∂O is non-negative, and this fact is crucial to prove
(1.2). Since ∂O is smooth, it follows that the mean curvature at x ∈ ∂O is the divergence
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of the outer normal to O at x. In the Gaussian setting, the classical divergence operator
div is replaced by the Gaussian divergence divγ , which on smooth vector fields F acts as
divγ F(x) = divF(x)− ⟨x,F(x)⟩. Hence, it seems to be reasonable to ask that for every
x ∈ ∂On the Gaussian divergence of the normal to On at x is non-negative. This is indeed
the right choice, and for every x ∈ ∂On, this value is defined as the Gaussian mean curva-
ture at x ∈ ∂On. So, under the assumptions that ∂On is smooth and that the Gaussian mean
curvature is non-negative at x for every x ∈ ∂On, definitely with respect to n, we are able
to prove (1.1).

The paper is organized as follows. In Section 2 we provide the classical basic results
on abstract Wiener spaces. Further, we state the assumptions on the domain O, define
the Sobolev spaces W 1,p(O,γ), W 1,p

0 (O,γ) and the Ornstein-Uhlenbeck operator LO with
homogeneous Dirichlet boundary conditions on ∂O by means of the theory of Dirichlet
forms (see for instance [12, 17]), and recall the main results of [3] which will be used in
the paper. In Section 3 we show (1.1) when X = Rd for some d ∈ N. In Section 4 we
extend the results of Section 3 when X is a separable Banach space. To this aim, we split
this section into two parts. In the former we prove (1.1) when O is a cylindrical domain
with respect to a fixed orthonormal basis {hn : n ∈ N} of H (see Hypothesis 4.1) and its
finite dimensional projection O is a domain with smooth boundary and with non-negative
Gaussian mean curvature at every point of its boundary. In the latter we show that (1.1)
also holds true for non-cylindrical domains O under suitable assumptions on the cylindrical
approximations (On)n∈N of O. Finally, in Section 5 we provide some examples of domains
O in abstract Wiener spaces which satisfy our conditions.

1.1. Notation. Given a separable Banach space X and its topological dual X∗, we denote
by ∥ · ∥X its norm and by ⟨·, ·⟩X×X∗ its duality.

Let A be an open set in Rd . For every k ∈ N∪ {∞} we denote by Ck(A) the set of
functions on A which are k-times differentiable on A with continuous derivatives up to
order k. Ck

b(R
d) is the set of k times differentiable functions which are continuous and

bounded together with their derivatives up to order k. C∞
c (Rd) is the subspace of C∞

b (Rd)
of functions with compact support.

Let α ∈ (0,1). We denote by Cα(A) the set of α-Hölder continuous functions on A.
We denote by Cα

loc(A) the set of functions f which are α-Hölder continuous on every
bounded open set U ⊆ A. We denote by C2,α(A) the set of functions f ∈ C2(A) such that
Dm f ∈Cα(A) for every multi-index m with length |m|= 2. We denote by C2,α

loc (A) the set of
functions f ∈C2(A) such that Dm f ∈Cα

loc(A) for every multi-index m with length |m|= 2.
If A is replaced by A in the definition of the above spaces, we mean that the functions

have a continuous extension up to A.
For every O ⊆Rd with non-empty interior and every k ∈N∪{∞}, we denote by Ck

0(O)

the subset of Ck(Rd) of functions which vanish out of an open set A ⊆ O with positive
distance from Oc, and we denote by Ck

0(O) the subset of Ck(Rd) consisting of functions
which vanish on Oc. We denote by Ck

c(O) the subset of Ck(O) of functions which have
compact support in O.

If a function f is defined on A ⊆ X , then f denotes the trivial extension of f to the whole
space X , i.e., f = f on A and f = 0 on Ac.

A subset of Rd is said to be C2,α -regular if its boundary is locally a graph of a function
in C2,α(Rd−1).

Let H be a separable Hilbert space. We denote by ⟨·, ·,⟩H its inner product and by L (H)
the space of linear bounded operator A : H → H endowed with the norm-operator topology.
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We say that a nonnegative operator A ∈ L (H) is nuclear (or trace-class) in H if there
exists an orthonormal basis {en : n ∈ N} of H such that

Tr(A) := ∑
n∈N

⟨Aen,en⟩H < ∞.

We stress that Tr(A) does not depend on choice the basis {en : n ∈ N}. We denote by
L +

1 (H) the space of trace-class operators on H.
We say that the operator A ∈ L (H) is a Hilbert-Schmidt operator if there exists an

orthonormal basis {en : n ∈ N} of H such that

∥A∥2
L2(H) :=

∞

∑
n=1

∥Aen∥2
H < ∞.

The above series does not depend on the choice of the basis, and we denote by L2(H) the
subspace of L (H) consisting of Hilbert-Schmidt operators. The space (L2(H),∥·∥L2(H))

is a separable Hilbert space. If A ∈ L2(H) then AA∗ ∈ L +
1 (H).

Let Y be a separable Banach space; we denote by Lp(X ,γ,Y ) as the space of (the equiv-
alence classes of) Bochner integrable functions F : X → Y such that

∥F∥Lp(X ,γ,Y ) =

(ˆ
X
∥F∥p

Y dγ

)1/p

< ∞, (1.3)

see e.g. [13]. This space, endowed with the norm (1.3), is a Banach space.
With B(X) we denote the Borel σ -algebra of X , and BX (x,r), x ∈ X , r > 0, denotes the

open ball of X with center x and radius r.

2. PRELIMINARY RESULTS

2.1. Fundamentals about abstract Wiener spaces. Let us recall some definitions and
properties of Gaussian measures on separable Banach spaces. For a detailed treatment we
refer to the monograph [5].

Let X be a separable Banach space and let γ be a centered nondegenerate Gaussian
measure on X . Since γ is a Gaussian measure, the elements of X∗ can be seen as elements
of L2(X ,γ). We consider the embedding j : X∗ ↪→ L2(X ,γ) and the reproducing kernel X∗

γ

is defined as the closure of j(X∗) in L2(X ,γ). (X∗
γ ,∥ ·∥L2(X ,γ)) is a separable Hilbert space,

and we define Rγ : X∗
γ → (X∗)∗ as

Rγ( f )(g) =
ˆ

X
f g dγ, f ∈ X∗

γ , ∈ X∗.

Rγ has range in X and it is injective. We define the Cameron-Martin space H as Rγ(X∗
γ )⊆

X , and it inherits a structure of separable Hilbert space from X∗
γ through Rγ : for every h∈H

we denote by ĥ ∈ X∗
γ the unique element such that Rγ ĥ = h and ⟨h,k⟩H := ⟨ĥ, k̂⟩L2(X ,γ) for

every h,k ∈ H. The space H is continuously and densely embedded into X , and we denote
by cH the smaller positive constant c which satisfies

∥h∥X ≤ c∥h∥H , h ∈ H. (2.1)

We introduce the operator Q : X∗ →H, defined as Q(x∗)=Rγ( j(x∗))∈X for every x∗ ∈X∗,
and we fix an orthonormal basis {hn : n ∈ N} of H consisting of elements of Q(X∗), i.e.,
hn = Q(x∗n), with x∗n ∈ X∗, for every n ∈ N. Let us fix n ∈ N and set

Fn := Span{h1, . . . ,hn}, πn(x) =
n

∑
i=1

⟨x,x∗i ⟩X×X∗hi, x ∈ X .
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Hence, πn is the projection of X on the finite dimensional subspace Fn of H. For every n∈N
we denote by γn the image measure of γ by means of πn, i.e., γn := γ ◦π−1

n . The measure
γn is a nondegenerate centered Gaussian measure on Fn. If we set X⊥

n := Ker(πn), then it
follows that X = Fn⊕X⊥

n , and for every n ∈N we introduce the isomorphism Πn : Fn →Rn

defined as

Πnx := (x1, . . . ,xn), x =
n

∑
i=1

xihi.

For every k ∈ N∪{∞} we introduce the set FCk
b(X) of bounded cylindrical functions

which are k-times Fréchet differentiable, i.e., the functions f : X → R such that there exist
n ∈ N, l∗1 , . . . , l

∗
n ∈ X∗ and ϕ ∈Ck

b(R
n) such that f (x) = ϕ(⟨x, l∗1⟩X×X∗ , . . . ,⟨x, l∗n⟩X×X∗) for

every x ∈ X . We stress that for every k ∈ N∪{∞}, FCk
b(X) is dense in Lp(X ,γ) for every

p ∈ [1,∞).

2.2. H-derivative and Sobolev spaces. For every h ∈ H and f ∈ FC∞
b (X) we define the

H-derivative ∂h f : X → R of f along h as

∂h f (x) = lim
ε→0

f (x+ εh)− f (x)
ε

, x ∈ X ,

and its formal adjoint ∂ ∗
h f = ∂h f − f ĥ.

For f ∈FC∞
b (X), there exists a unique ∇H f : X → H, called H-gradient of f , such that

∂h f (x) = ⟨∇H f (x),h⟩H , x ∈ X , h ∈ H.

If f is a Lipschitz function on X , then ∂h f can be defined γ-a.e. and the essentially bounded
function ∇H f can be defined γ-a.e. and identified with an element of L∞(X ,γ,H) (see e.g.
[5, Theorem 5.11.2]).

We say that f : X → R is H-differentiable at x ∈ X if there exists F(x) ∈ H such that

f (x+h) = f (x)+ ⟨F(x),h⟩H +o(∥h∥H), ∥h∥H → 0.

We set ∇H f (x) := F(x) for every x ∈ X such that f is H-differentiable at x.
For f : X →H, we say that f is H-differentiable at x∈X if there exists a Hilbert-Schmidt

operator DH f (x) on H such that

f (x+h) = f (x)+DH f (x)h+o(∥h∥H), ∥h∥H → 0.

DH f (x) is said H-derivative of f at x, and for every h ∈ H we have

DH f (x)(h) = lim
ε→0

f (x+ εh)− f (x)
ε

,

Let f : X → R be such that ∇H f is defined on the whole X . We say that f is twice
H-differentiable at x ∈ X if f is H-differentiable and ∇H f (x) has H-derivative, which we
denote by D2

H f (x).
The set of smooth cylindrical vector-valued functions FC∞

b (X ,H), defined as the linear
span of the functions φh where φ ∈ FC∞

b (X) and h ∈ H. Let f ∈ FC∞
b (X ,H), x ∈ X and

h ∈ H, then DH f (x) and ∂h f (x) are well-defined and ∂h f (x) = DH f (x)(h).
The integration-by-parts formulaˆ

X
∂h f dγ =

ˆ
X

f ĥdγ, f ∈ FC∞
b (X), h ∈ H,

is the key tool to prove that for every p∈ [1,∞), the operators ∇H : FC∞
b (X)→ Lp(X ,γ,H)

and (∇H ,D2
H) : FC∞

b (X) → Lp(X ,γ,H)×Lp(X ,γ,L2(H)) are closable in Lp(X ,γ), and



GRADIENT CONTRACTIVITY IN WIENER SPACES 6

the operator DH : FC∞
b (X)→ Lp(X ,γ,L2(H)) is closable in Lp(X ,γ,H). We still denote

by ∇H , DH and D2
H , respectively, the closure of these operators in Lp.

Definition 2.1. We denote by W 1,p(X ,γ) the domain of ∇H in Lp(X ,γ), by W 1,p(X ,γ,H)
the domain of DH in Lp(X ,γ,H) and by W 2,p(X ,γ) the domain of (∇H ,D2

H) in Lp(X ,γ).
These spaces are Banach spaces if endowed with the norms

∥ f∥W 1,p(X ,γ) :=
(
∥ f∥p

Lp(X ,γ)
+∥∇H f∥p

Lp(X ,γ,H)

)1/p
, f ∈W 1,p(X ,γ),

∥ f∥W 2,p(X ,γ) :=
(
∥ f∥p

Lp(X ,γ)
+∥∇H f∥p

Lp(X ,γ,H)
+∥D2

H f∥p
Lp(X ,γ,H2(H))

)1/p
, f ∈W 2,p(X ,γ),

∥ f∥W 1,p(X ,γ,H) :=
(
∥ f∥p

Lp(X ,γ,H)
+∥DH f∥p

Lp(X ,γ,H2(H))

)1/p
, f ∈W 1,p(X ,γ,H),

respectively. Finally, if p = 2 the above spaces are Hilbert spaces.

Since ∇H is closed and densely defined L2(X ,γ), its adjoint operator divγ := ∇∗
H is

closed, densely defined and satisfiesˆ
X
⟨ f ,∇Hg⟩H dγ =−

ˆ
X

divγ f g dγ, (2.2)

for every g ∈ W 1,2(X ,γ) and every f in the domain D(divγ) ⊆ L2(X ,γ,H) of divγ . From
[5, Theorem 5.8.2] it follows that W 1,2(X ,γ,H)⊆ D(divγ) and

divγ F =
∞

∑
n=1

(
∂hnFn −Fnĥn

)
, F ∈W 1,2(X ,γ,H),

where the series converges in L2(X ,γ) and Fn := ⟨F,hn⟩H . Further, the above formula
is independent of the choice of the basis of H and ∥divγ F∥L2(X ,γ) ≤ ∥F∥W 1,2(X ,γ,H). In
particular, if F ∈ FC∞

b (X ,H) we get

divγ F =
m

∑
i=1

∂kiFi −
m

∑
i=1

k̂iFi, (2.3)

where F satisfies F = ∑
m
i=1 Fiki, with Fi ∈ FC∞

b (X) for every i = 1, . . . ,m and {k1, . . . ,km}
are orthonormal in H.

2.3. The Sobolev spaces W 1,p(O,γ) and W 1,p
0 (O,γ). Let O ⊆ X be an open set. We

denote by Lip(O) the set of Lipschitz functions on O, and by Lipc(O) the subset of Lip(O)
whose elements vanish out of an open set A with positive distance from Oc. For every
m ∈N we denote by Lipc,m(O,H) the set of H-valued Lipschitz functions on O of the form

f =
m

∑
i=1

fihi, fi ∈ Lipc(O), hi ∈ H, i = 1, . . . ,m.

The set

FLipc(O,H) :=
⋃

m∈N
Lipc,m(O;H),

is dense in Lp(O,γ,H). Finally, for every m ∈ N and f ∈ Lipc,m(O,H), the function divγ f
is defined γ-almost everywhere as

divγ f =
m

∑
i=1

(
∂hi f i − f iĥi

)
and divγ f ∈ Lp(X ,γ) for every p ∈ (1,∞).
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The proof of the following lemma can be found in [1, Lemma 2.1].

Lemma 2.2. For every p ∈ [1,∞), the operator ∇H : Lip(O)→ Lp(O,γ,H) is closable in
Lp(O,γ). We still denote by ∇H its closure.

Definition 2.3. (Sobolev Spaces) Let p ∈ [1,∞). W 1,p(O,γ) is the domain of ∇H in
Lp(O,γ). The space W 1,p(O,γ) is a Banach space if endowed with the norm

∥ f∥W 1,p(O,γ) :=
(
∥ f∥p

Lp(O,γ)
+∥∇H f∥p

Lp(O,γ,H)

)1/p
, f ∈W 1,p(O,γ),

and W 1,2(O,γ) is a Hilbert space with inner product

⟨ f ,g⟩W 1,2(O,γ) = ⟨ f ,g⟩L2(O,γ)+ ⟨∇H f ,∇Hg⟩L2(O,γ,H) , f ,g ∈W 1,2(O,γ).

Definition 2.4. We denote by H 1(X) the set of all continuous functions f (not necessarily
bounded) which are H-differentiable on X and such that ∇H f is bounded and continuous
with values in H.

H 1
b,0(O) is the subset of H 1(X) of bounded functions f which vanishes out of an open

set A with positive distance from Oc.

Remark 2.5. H 1
b,0(O) is not empty. Taking advantage from the results in [23] In [3, Lemma

2.2] it has been proved that the subset of H 1(X) whose elements vanish out of an open
set A with positive distance from Oc is not empty. We simply remark that the function FB,ε
provided in the quoted lemma is also bounded, and so it belongs to H 1

b,0(X).

The bounded elements of H 1(X), and so in particular the elements of H 1
b,0(X), can be

approximated in a useful way, as the next result shows.

Lemma 2.6. If f ∈ H 1(X) is bounded, then f ◦πn → f in W 1,p(X ,γ) as n → ∞ for every
p ∈ [1,∞).

Proof. We set fn = f ◦πn for every n∈N. From [5, Corollary 3.5.8] it follows that πnx → x
as n → ∞ in X for γ-a.e. x ∈ X . The continuity of f implies that fn → f γ-a.e. in X , and so
fn converges to f in Lp(X ,γ) by the dominated convergence theorem. Moreover,

∇H fn(x) = πn(∇H f (πn(x))), x ∈ X , n ∈ N,
and by the definition of πn it follows that ∥πn(h)∥H ≤ ∥h∥H and πn(h)→ h in H as n → ∞

for every h ∈ H. Hence,

∥∇H fn(x)−∇H f (x)∥H ≤∥∇H fn(x)−πn(∇H f (x))∥H +∥πn ◦∇H f (x)−∇H f (x)∥H

≤∥∇H f (πn(x))−∇H f (x)∥H +∥πn(∇H f (x))−∇H f (x)∥H .

The two addends in the very last right hand-side of the above chain of inequalities vanish as
n → ∞, the former for γ-a.e. x ∈ X since ∇H f is continuous, and the latter for every x ∈ X
due to the convergence of πn in H. Recalling that ∇H f is bounded, from the dominated
convergence theorem, we get the thesis. □

Definition 2.7. For every p ∈ [1,∞), we denote by W 1,p
0 (O,γ) the closure of Lipc(O) in

W 1,p(O,γ).

The proof of the following lemma can be obtained repeating verbatim that of [3, Lemma
2.3], hence we omit it.

Lemma 2.8. The closure of H 1
b,0(O) in W 1,p(O,γ) coincides with W 1,p

0 (O,γ) for every
p ∈ [1,∞).
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2.4. The Ornstein-Uhlenbeck semigroup and operator. For every f ∈Cb(X) and every
t > 0 we set

Tt f (x) :=
ˆ

X
f (e−tx+

√
1− e−2ty)dγ(y), x ∈ X ,

and T0 f = f . Thanks to the equalityˆ
X

Tt f dγ =

ˆ
X

f dγ, f ∈Cb(X), t ≥ 0,

for every t ≥ 0 and every p ∈ [1,∞) the operator Tt extends to a contraction operator on
Lp(X ,γ) still denoted by Tt . It turns out that (Tt)t≥0 is a strongly continuous semigroup of
contractions on Lp(X ,γ) and we denote by Lp its infinitesimal generator. If p = 2 we write
L instead of L2. Further, γ is the unique invariant measure for (Tt)t≥0, FC∞

b (X) is a core
for the domain D(Lp) of Lp, D(Lp) =W 2,p(X ,γ) for every p ∈ (1,∞) andˆ

X
L f gdγ =−

ˆ
X
⟨∇H f ,∇Hg⟩Hdγ,

for every f ∈ D(L) and g ∈ W 1,2(X ,γ) (see [5, Chapter 5]). In particular, if f ∈ FC2
b(X)

then f ∈ D(Lp) for every p ∈ (1,∞) and

L f =
n

∑
i=1

∂
2
kiki

f −
n

∑
i=1

k̂i∂ki f ,

where f (x) = ϕ(k̂1(x), . . . , k̂n(x)) for every x ∈ X , with ϕ ∈C2(Rn) and k1, . . . ,kn ∈ Q(X∗)
are orthonormal vectors in H.

Now we define the Ornstein-Uhlenbeck operator on O, starting from the bilinear form

a( f ,g) :=
ˆ

O
⟨∇H f ,∇Hg⟩Hdγ, f ,g ∈W 1,2

0 (O,γ).

From the theory of Dirichlet forms (see [12]), there exists a unique closed operator LO with
dense domain D(LO)⊆W 1,2

0 (O,γ) in L2(O,γ) such that

−
ˆ

O
⟨∇H f ,∇Hg⟩H dγ =

ˆ
O

LO f ·g dγ, f ∈ D(LO), g ∈W 1,2
0 (O,γ). (2.4)

Definition 2.9. LO is called Ornstein-Uhlenbeck operator with homogeneous Dirichlet
boundary conditions on ∂O. We set

JO
σ := (Id−σLO)

−1 = σ
−1(σ−1Id−LO)

−1, σ > 0.

Jσ is a bounded operator on L2(X ,γ) with range equals to D(LO) and the family (JO
σ )σ>0

is called rescaled resolvent of LO. For every σ > 0 we denote by GO
σ the resolvent of LO,

i.e., GO
σ = (σ I −LO)

−1 = σ−1JO
σ−1 for every σ > 0.

If O = X we simply write L instead of LX .

Remark 2.10. From the theory of symmetric Markov semigroups (see [12, Section 1.4]),
the semigroup (T O

2 (t))t≥0 associated to LO in L2(O,γ) extends from L∞(O,γ) to a positive
contraction strongly continuous semigroup (T O

p (t))t≥0 on Lp(O,γ) for every p ∈ [1,∞).
These semigroups are consistent in the sense that, if 1 ≤ p ≤ q < ∞, if f ∈ Lq(O,γ) then
T O

p (t) f = T O
q (t) f for every t ≥ 0. For every p∈ [1,∞) we denote the infinitesimal generator

of (T O
p (t))t≥0 by LO,p, and if p= 2 we simply write LO instead of LO,2. For every σ > 0 we

denote by GO,p
σ and by JO,p

σ the resolvent and the rescaled resolvent of LO,p, respectively,
and we recall that both GO,p

σ and JO,p
σ are continuous linear operators on Lp(O,γ).
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2.5. The case when O is the sublevel set of a function G. Hereafter we assume the
following (see [3, Hypothesis 3.1] and [9, Hypothesis 3.1]).

Hypothesis 2.11. Let G : X → R and δ > 0 be such that:
i) G ∈ H 1(X);

ii) ∇HG is everywhere H-differentiable (in particular, G is twice H-differentiable),
with derivative D2

HG and ∥D2
HG∥L2(H) uniformly bounded;

iii) G−1(0) ̸= /0;
iv) ∥∇HG∥−1

H ∈ L∞(X);
v) LG is bounded on G−1(−δ ,δ ).

Under the above assumptions, we set that O := G−1((−∞,0)) and, for every n ∈ N, Gn :=
G◦πn and On := (Gn)

−1((−∞,0)). In particular, x ∈ On if and only if πn(x) ∈ O.

Without loss of generality we may assume that O ̸=X . Indeed, if O=X , then W 1,p
0 (O,γ)=

W 1,p(X ,γ) since γ(∂O) = 0 from [3, Remark 3.2].

Remark 2.12. If G fulfills Hypothesis 2.11, then it satisfies [3, Hypothesis 3.1].

Lemma 2.13. Let f ∈ H 1
b,0(O). Then, the function fn := f ◦πn belongs to H 1

b,0(On) for
every n ∈ N.

Proof. It is enough to prove that fn vanishes on Ac
n, where An is an open set with positive

distance from Oc
n. To prove this fact, let A ⊆ O be an open set with positive distance d from

Oc such that f vanishes on Ac, and let us fix n ∈ N. We define An := {x ∈ X : πn(x) ∈ A}.
We claim that An is open, has positive distance from Oc

n and that fn vanishes on Ac
n. The

last assertion is easy to prove. Indeed, for every x ∈ Ac
n it follows that πnx ∈ Ac, and so

fn(x) = f (πnx) = 0. It remains to show that An is open and has positive distance from Oc
n.

Let x ∈ An and let z ∈ Oc
n. Then, πn(x) ∈ A, πn(z) ∈ Oc and

d ≤ ∥πn(x)−πn(z)∥X ≤
n

∑
i=1

|⟨x− z,x∗i ⟩X×X∗∥hi∥X ≤ c∥x− z∥X

n

∑
i=1

∥x∗i ∥X∗ , (2.5)

where c has been introduced in Subsection 2.1. This implies that An has positive distance
from Oc

n. Finally, arguing as in (2.5), for every x,y ∈ X we get

∥πn(y)−πn(x)∥X ≤ c∥x− y∥X

n

∑
i=1

∥x∗i ∥X∗ .

Let x ∈ An. Hence, πn(x) ∈ A and if δ > 0 fulfills BX (πn(X),δ )⊆ A, then from the above
computations we get

BX

x,

(
c

n

∑
i=1

∥x∗i ∥X∗

)−1

δ

⊆ A.

We conclude that An is open, which gives fn ∈ H 1
b,0(On). □

From Remark 2.12 and [3, Theorem 4.1] we state the following result.

Theorem 2.14. The following are equivalent:

i) f ∈W 1,p
0 (O,γ);

ii) the trivial extension f of f out of O belongs to W 1,p(X ,γ).

Remark 2.15. For every f ∈ W 1,p
0 (O,γ), we have ∇H f = ∇H f . The fact is obvious if

f ∈ Lipc(O) (or f ∈ H 1
b,0(O)), the general case follows by approximation.
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Remark 2.16. Let p ∈ (1,∞) and r with 1 < r ≤ p, we have that the function on W 1,p
0 (O,γ)

given by y 7→ ∥∇Hy∥Lp(O,γ,H) is lower semi-continuous with respect to the topology of
Lr(O,γ). To prove this fact, we recall that if q is the conjugate exponent of p then
Lq(O,γ,H) is the dual of Lp(O,γ,H), see for instance [13, Chapter 4, Theorem 1]. There-
fore, for every f ∈W 1,p

0 (O,γ), from Theorem 2.14 and Remark 2.15 we get

∥∇H f∥Lp(O,γ,H) = sup
G∈Lq(O,γ,H), ∥G∥Lq(O,γ,H)≤1

ˆ
O
⟨∇H f ,G⟩Hdγ

= sup
G∈FLipc(O,H), ∥G∥Lq(O,γ,H)≤1

ˆ
O
⟨∇H f ,G⟩Hdγ

= sup
G∈FLipc(O,H), ∥G∥Lq(O,γ,H)≤1

ˆ
X
⟨∇H f ,G⟩Hdγ

= sup
G∈FLipc(O,H), ∥G∥Lq(O,γ,H)≤1

ˆ
X

f divγ Gdγ

= sup
G∈FLipc(O,H), ∥G∥Lq(O,γ,H)≤1

ˆ
O

f divγ Gdγ.

Since for every G ∈ FLipc(O,H) the map

f 7→
ˆ

O
f divγ Gdγ

is continuous with respect to the topology of Lr(O,γ), the lower semicontinuity of y 7→
∥∇Hy∥Lp(O,γ,H) with respect to the topology of Lr(O,γ) follows from the lower semiconti-
nuity of the supremum.

We conclude this section by showing that, if f ∈ H 1
b,0(O) and we set fn = f ◦ πn for

every n ∈ N, then (JOn
σ fn)n∈N converges to JO

σ f in W 1,2(X ,γ) as n goes to infinity.

Proposition 2.17. Let f ∈ H 1
b,0(O) and let us set fn = f ◦ πn for every n ∈ N. Then,

(JOn
σ ( fn))n∈N converges to JO

σ ( f ) in W 1,2(X ,γ) as n goes to infinity.

Proof. The fact that fn ∈ H 1
b,0(On) for every n ∈ N follows from Lemma 2.13. Further,

from Remark 2.15 and Theorem 2.14 it follows that JO
σ ( f ) ∈ W 1,2(X ,γ) and ∇HJO

σ ( f ) =
∇HJO

σ ( f ) for every σ > 0.

We fix σ > 0 and n ∈ N, and we consider the trivial extension JOn
σ ( fn) of JOn

σ ( fn) ∈
W 1,2

0 (On,γ). From Remark 2.15 and Theorem 2.14 we infer that JOn
σ ( fn) ∈W 1,2(X ,γ) and

∇HJOn
σ ( fn) = ∇HJOn

σ ( fn) ∈W 1,2(X ,γ). Further, since

JOn
σ ( fn)−σLOnJOn

σ ( fn) = fn (2.6)

on On, multiplying both the sides of this equation by JOn
σ ( fn) and integrating on On with

respect to γ we get

∥JOn
σ ( fn)∥2

L2(On,γ)
+σ∥∇HJOn

σ ( fn)∥2
L2(On,γ,H) =

ˆ
On

JOn
σ ( fn) fndγ

≤∥JOn
σ ( fn)∥L2(On,γ)

∥ fn∥L2(On,γ)
,
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which gives

∥JOn
σ ( fn)∥2

L2(X ,γ)+σ∥∇HJOn
σ ( fn)∥2

L2(X ,γ,H) ≤∥JOn
σ ( fn)∥L2(X ,γ)∥ fn∥L2(X ,γ),

from which it follows that ∥JOn
σ ( fn)∥L2(X ,γ) ≤ ∥ fn∥L2(X ,γ). This implies that

∥JOn
σ ( fn)∥2

L2(X ,γ)+σ∥∇HJOn
σ ( fn)∥2

L2(X ,γ,H) ≤∥ fn∥2
L2(X ,γ) (2.7)

and, since ( fn) converges in L2(X ,γ) (see Lemma 2.6), we infer that (JOn
σ ( fn))n∈N is a

bounded sequence in W 1,2(X ,γ). Therefore, up to a subsequence, (JOn
σ ( fn))n∈N weakly

converges to some u in W 1,2(X ,γ) and

∥u∥2
W 1,2(X ,γ) ≤ liminf

n→∞
∥JOn

σ ( fn)∥2
W 1,2(X ,γ).

We claim that there exists v ∈W 1,2(X ,γ) with v = 0 γ-a.e. in Oc and u = v γ-a.e. in X .
If the claim is true, then from Theorem 2.14 it follows that u|O = v|O ∈W 1,2

0 (O,γ).
Let g ∈ Lipc(O

c
), and let us consider the sequence (gn)n∈N defined as gn = g◦πn for every

n ∈ N. Arguing as in Lemma 2.13, it is possible to prove that gn ∈ Lipc((O
c
)n) for every

n ∈ N, where (Oc
)n := {x ∈ X : πn(x) ∈ Oc}. In particular, if B ⊆ Oc is an open set which

has positive distance from O and g = 0 on Bc, then Bn = {x ∈ X : πn(x) ∈ B} is an open set
with positive distance from (Oc

)n and gn = 0 on Bc
n. Hence, we get

ˆ
X

ugdγ = lim
n→∞

ˆ
X

JOn
σ ( fn)gndγ = 0,

since the supports of JOn
σ ( fn) (which is the set On) and of gn (which is the set Bn) have

positive distance. Indeed, if d := dist(B,O), then for every x ∈ Bn we get ∥πn(x)− z∥X ≥ d
for every z∈O. In particular, for every y∈On we get πn(y)∈O, and so ∥πn(x)−πn(y)∥X ≥
d for every x ∈ Bn and every y ∈ On. Arguing as in (2.5) we infer that there exists a positive
constant d̃ such that d̃ ≤ ∥x− y∥X for every x ∈ Bn and every y ∈ On, which implies that
On and Bn have positive distance.

The arbitrariness of g and the density of Lipc(O
c
) in L2(Oc

,γ) give u = 0 γ-a.e. in
Oc. Finally, since under our assumptions we have γ(∂O) = 0 (see [3, Remark 3.2]), we
conclude that the function v, defined as v = u on X \ ∂O and v = 0 on ∂O, fulfills v = 0
γ-a.e. in Oc and v = u γ-a.e. in X . The claim is so proved.

Let us show that u|O = JO
σ ( f ). For every g ∈ H 1

b,0(O),we set gn := g ◦ πn for every
n ∈ N. From Lemma 2.13 we infer that gn ∈ H 1

b,0(On) for every n ∈ N and multiplying
both the sides of (2.6) by gn we get

σ

ˆ
On

⟨∇HJOn
σ ( fn),∇Hgn⟩Hdγ =

ˆ
On

JOn
σ ( fn)gndγ −

ˆ
On

fngndγ. (2.8)

From Lemma 2.6 we know that (gn)n∈N converges to g in W 1,2(X ,γ) as n tends to ∞.

Hence, the weak convergence of (JOn
σ ( fn))n∈N, the strong convergence of (gn)n∈N and
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Remark 2.15 give

σ

ˆ
O
⟨∇Hu,∇Hg⟩Hdγ =σ

ˆ
X
⟨∇Hu,∇Hg⟩Hdγ = σ

ˆ
X
⟨∇Hu,∇Hg⟩Hdγ

=σ lim
n→∞

ˆ
X
⟨∇HJOn

σ ( fn),∇Hgn⟩Hdγ

=σ lim
n→∞

ˆ
On

⟨∇HJOn
σ ( fn),∇Hgn⟩Hdγ

= lim
n→∞

(ˆ
X

JOn
σ ( fn)gndγ −

ˆ
X

fngndγ

)
=

ˆ
X

ugdγ −
ˆ

X
f gdγ

=

ˆ
O

ugdγ −
ˆ

O
f gdγ. (2.9)

From (2.9) we get

σ

ˆ
O
⟨∇Hu,∇Hg⟩Hdγ =

ˆ
O

ugdγ −
ˆ

O
f gdγ, (2.10)

and the arbitrariness of g ∈ H 1
b,0(O) implies that u|O = JO

σ ( f ), i.e., u = JO
σ ( f ) γ-a.e.

It remains to prove that (JOn
σ ( fn))n∈N converges to u in W 1,2(X ,γ). To this aim, we

show that (JOn
σ ( fn))n∈N converges to u in W 1,2(X ,γ) with respect to the equivalent norm

∥ f∥2
σ = ∥ f∥2

L2(X ,γ)+σ∥∇H f∥2
L2(X ,γ,H), f ∈ FC1

b(X).

Multiplying both the sides of (2.6) by JOn
σ ( fn), integrating on X and letting n go to infinity,

since ( fn)n∈N converges to f in L2(X ,γ) as n tends to infinity, we get

lim
n→∞

∥JOn
σ ( fn)∥2

σ = lim
n→∞

(
∥JOn

σ ( fn)∥2
L2(On,γ)

+σ∥∇HJOn
σ ( fn)∥2

L2(On,γ,H)

)
=

ˆ
O

f udγ. (2.11)

Let us consider a sequence (um)m∈N ⊆ H 1
b,0(O) which converges to u|O in W 1,2

0 (O,γ)

and, for every n ∈ N, let us set um,n = um ◦πn. Hence, um,n ∈ H 1
b,0(On) for every n ∈ N.

Multiplying both the sides of (2.6) by um,n, integrating on X with respect to γ and applying
the definition of LOn , we infer thatˆ

X
JOn

σ ( fn)um,ndγ +σ

ˆ
X
⟨∇HJOn

σ ( fn),∇Hum,n⟩Hdγ =

ˆ
X

f num,ndγ (2.12)

for every m,n ∈ N. From Lemma 2.6 we know that the sequence (um,n)n∈N converges to
um in W 1,2(X ,γ) as n goes to infinity. Therefore, letting n go to infinity in (2.12) we infer
that ˆ

X
uumdγ +σ

ˆ
X
⟨∇Hu,∇Hum⟩Hdγ =

ˆ
X

f umdγ, m ∈ N.

Recalling that um = 0 on Oc, we infer thatˆ
O

uumdγ +σ

ˆ
O
⟨∇Hu,∇Hum⟩Hdγ =

ˆ
O

f umdγ (2.13)
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for every m ∈N. Letting m go to infinity in (2.13) and recalling that (um)m∈N converges to
u|O in W 1,2

0 (O,γ) as m goes to infinity, it follows that

∥u∥2
σ = ∥u∥2

L2(O,γ)+σ∥∇Hu∥2
L2(O,γ,H) =

ˆ
O

f udγ. (2.14)

From (2.11) and (2.14) we infer that

∥u∥2
σ = lim

n→∞
∥JOn

σ ( fn)∥2
σ ,

which combined with the weak convergence of (JOn
σ ( fn))n∈N to u in W 1,2(X ,γ) gives the

strong convergence of (JOn
σ ( fn))n∈N to u in W 1,2(X ,γ).

Finally, we have shown that every subsequence of (JOn
σ ( fn))n∈N admits a subsequence

which converges to JO
σ ( f ) in W 1,2(X ,γ) as n goes to infinity, which is enough to conclude

that the whole sequence (JOn
σ ( fn))n∈N converges to u in W 1,2(X ,γ). □

3. RESOLVENT CONTRACTIVITY IN FINITE DIMENSION

In this section we consider the finite dimensional case X = Rd endowed with the stan-
dard Gaussian measure γ = γd , with density θd(x) = (2π)−d/2e−|x|2/2 for every x ∈Rd . In
this case, H = X and the H-inner product is the Euclidean inner product.

Let O ⊆ Rd be an open set which is C2,α -regular. The aim of this section is to prove
(1.1) in this finite dimensional setting.

Remark 3.1. For every u ∈ C2
0(O) we get LOu(x) = Lu(x) := ∆u(x)− ⟨x,∇u(x)⟩Rd for

every x ∈ O. Since I −σL is an elliptic operator with regular coefficients for every σ > 0,
it follows that for every bounded C2,α -regular domain Ω and every f ∈Cα(Ω), there exists
a unique solution g ∈C2,α(Ω) of g−σLg = f on Ω with g|∂Ω = 0 (see e.g. [18, Theorem
6.14]).

From Remark 3.1 we infer that if y ∈ C∞
c (O) then u = Jσ (y) belongs to C2

0(O) (in the
sense of the representatives) and it satisfies (I−σL)u = y. Further, from elliptic regularity
(see e.g. [14, Section 6.3.1, Theorem 3]) we infer that for any bounded open subset U ⊆ O
the function u belongs to C∞(U). In particular, u ∈C∞(O).

Let y∈C∞
c (O) and let u∈C∞(O)∩C2

0(O) satisfy u−σLu= u−σLOu= y. We introduce
the functions ϕ and ϕε as follows:

ϕ(x) = ∥∇u(x)∥Rd , ϕε(x) =
√

ε2 +∥∇u(x)∥2
Rd . (3.1)

Let us notice that ϕε ∈C∞(O) for every ε > 0. We prove the following result, which is the
equivalent of [4, Lemma 8.2].

Lemma 3.2. For every x ∈ O, we have

(ϕ(x))2

ϕε(x)
−σLϕε(x)< ∥∇y(x)∥Rd . (3.2)

Proof. For every j ∈ {1, . . . ,d} we have

ϕε D jϕε =
d

∑
i=1

DiuD2
i ju,
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which gives

∥∇ϕε∥2
Rd =

d

∑
j=1

(
d

∑
i=1

DiuD2
i ju

)2

ϕ2
ε

≤

d

∑
j=1

(
d

∑
i=1

(Diu)2
d

∑
i=1

(D2
i ju)

2

)
ϕ2

ε

=

d

∑
i=1

(Diu)
2

ϕ2
ε

d

∑
i, j=1

(
D2

i ju
)2

=
ϕ2

ϕ2
ε

d

∑
i, j=1

(
D2

i ju
)2 <

d

∑
i, j=1

(
D2

i ju
)2. (3.3)

Since on smooth functions f the operator L reads as L f (x) = ∆ f (x)− ⟨x,∇ f (x)⟩Rd for
every x ∈ O, for every i = 1, . . . ,d we get

Di(L f )(x) =Di(∆ f )(x)−Di(⟨x,∇ f (x)⟩Rd ) = ∆(Di) f (x)−⟨x,∇(Di f )(x)⟩Rd −Di f (x)

=L(Di) f (x)−Di f (x), x ∈ O,

whence

Di(L f )(x)Di f (x) =L(Di f )(x)Di f (x)− (Di f (x))2 ≤ L(Di f )(x)Di f (x) (3.4)

for every x ∈ O and i = 1, . . . ,d. Indeed, from the definition of ϕε and L we get

ϕε(x)σLϕε(x) =ϕε(x)σ
d

∑
i=1

(Diiϕε(x)− xiDiϕε(x))

=σ

(
−∥∇ϕε(x)∥2

Rd +
d

∑
i, j=1

|D2
i ju(x)|2 +

d

∑
i, j=1

(D3
ii ju(x)− xiD2

i ju(x))D ju(x)

)

=σ

(
−∥∇ϕε(x)∥2

Rd +
d

∑
i, j=1

|D2
i ju(x)|2 +

d

∑
i, j=1

L(D ju)(x)D ju(x)

)
for every x ∈ O. We recall that ∥∇ϕε∥2

Rd ≤ ∑
d
i, j=1(D

2
i ju)

2 (see (3.3)), hence

ϕε(x)σLϕε(x)≥σ

d

∑
j=1

L(D ju)(x)D ju(x)

for every x ∈ O, and from (3.4) we infer that

ϕε(x)σLϕε(x)≥σ

d

∑
j=1

D j(Lu)(x)D ju(x) =
d

∑
j=1

D j(σLu)(x)D ju(x)

=
d

∑
j=1

(D ju(x)−D jy(x))D ju(x) = ∥∇u(x)∥2
Rd −⟨∇u(x)∇y(x)⟩Rd

≥ϕ(x)2 −ϕ(x)∥∇y(x)∥Rd , (3.5)

where we have used the fact that σLu = u− y. The thesis follows by dividing the first and
the last side in (3.5) by ϕε and rearranging the terms. □

3.1. Gaussian curvature. We use the spaces W 1,p(O,γ) and W 1,p
0 (O,γ) introduced in

Section 2. We stress that, since we are in finite dimension, C∞
c (O) is dense in W 1,p

0 (O,γ).
We define LO and, for every σ > 0, Jσ

O , accordingly to Definition 2.4.
Let x ∈ ∂O and let ν be the outer normal to ∂O at x. By the C2,α -regularity of O, there

exist a neighbourhood U of x, an open set V ⊆ Rd−1 and a smooth function ψ : V → R
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such that, up to rotation which gives ν =−ξd , U ∩∂O = {(ξ ′,ψ(ξ ′)) : ξ ′ ∈V}, i.e., ∂O is
locally a graph of a function ψ with the vertical axis oriented inside O, and we define the
(inner) mean curvature of ∂O at x ∈ ∂O as ∆ψ(ξ ′

0), where ξ ′
0 ∈V satisfies x = (ξ ′

0,ψ(ξ ′
0))

since ∇ψ(ξ ′
0) = 0. Equivalently, if O is the sublevel of a C2-function g with ∇g ̸= 0 on

∂O, we have that the mean curvature at x ∈ ∂O is

H∂O(x) =
∆g(x)

∥∇g(x)∥Rd
− ⟨D2g(x)∇g(x),∇g(x)⟩Rd

∥∇g(x)∥3
Rd

, (3.6)

where D2g is the Hessian matrix of g. We point out that the geometric mean curvature is
(3.6) multiplied by (d −1)−1.

Definition 3.3. If O ⊆ Rd is C2,α -regular, the (inner) Gaussian curvature at x ∈ ∂O is
Hγ

∂O(x) =H∂O(x)−⟨x,ν(x)⟩Rd , where H∂O is the mean curvature and ν is the outer normal
to ∂O.

Hypothesis 3.1. We assume that the open set O is C2,α -regular for some α > 0 and that it
has non negative (inner) Gaussian curvature.

As we said, given a point x ∈ ∂O there exists a neighbourhood U of x such that U ∩∂O
can be seen as the graph of a smooth function ψ : V ⊆ Rd−1 → R. In Rd , we consider the
rotation R−1 (change of coordinates) x 7→ ξ (i.e., Rξ = x) centered at x such that R−1(U ∩
∂O) is actually the graph of ψ . In the new system of coordinates, the outer normal to ∂O
at x is oriented as −ξd , where in this new system of coordinates ξd is the d-th element of
the basis. In particular, (ξ ′,ψ(ξ ′)) = U ∩ ∂O for every ξ ′ ∈ V , ξ = (ξ

′
,ψ(ξ

′
)) = x with

ξ
′ ∈V and ∇ξ ′ψ(ξ

′
) = 0.

We notice that the operator L introduced in Remark 3.1 is invariant under the new system
of coordinates ξ , i.e., Lw(ξ ) = Lu(x) where u,w ∈ C∞(Rd) and w(ξ ) = w(R−1x) = u(x)
for every ξ ∈ Rd and x = Rξ . Indeed, since x = Rξ and R is an orthogonal matrix, for
u(x) = u(Rξ ) := w(ξ ) = w(R−1x) it follows that

Dxiu(x) = ⟨∇ξ w(ξ ),(R−1)i⟩Rd , D2
xixi

u(x) = ⟨D2
ξ

w(ξ )(R−1)i,(R−1)i⟩Rd ,

where Dξ w is the Hessian matrix of w with respect to the variable ξ and (R−1)i, i= 1, . . . ,d,
denotes the i-th row of the matrix R−1. Hence,

Lu(x) =∆xu(x)−⟨x,∇xu(x)⟩Rd =
d

∑
i, j,k=1

D2
ξ jξk

w(ξ )(R−1) ji(R−1)ki −
d

∑
i, j=1

xiDξ j w(ξ )(R
−1) ji,

and recalling that ∑
d
i=1(R

−1) ji(R−1)ki = δ jk and that ∑
d
i=1(R

−1) jixi = ξ j, it follows that

Lu(x) = ∆ξ w(ξ )−⟨ξ ,∇ξ w(ξ )⟩Rd = Lw(ξ ).

Further, if ϕ and ϕε are the functions introduced in (3.1), it follows that

ϕ(x)2 =
d

∑
i=1

m

∑
j,k=1

Dξ j w(ξ )(R
−1) jiDξk

w(ξ )(R−1)ki

=
d

∑
j,k=1

Dξ j w(ξ )Dξk
w(ξ )δ jk = ∥∇ξ w(ξ )∥2

Rd ,

where w(ξ ) = u(x). Therefore, if we set ϕ̃(ξ ) := ∥∇w(ξ )∥Rd , then ϕ̃(ξ ) = ϕ(x) and

ϕ̃ε(ξ ) :=
√

ε +∥∇ξ w(ξ )∥2
Rd = ϕε(x),
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with x = Rξ . Finally, let us notice that at x ∈ ∂O we have

R−1
ν∂O(x) = ν∂R−1(O)(ξ ) =(0, . . . ,0,−1) = (∇ψ(ξ

′
),−1)

in the system ξ , and so Hγ

∂R−1(O)
(ξ ) = ∆ξ ′ψ(ξ

′
)−⟨ξ ,(∇ψ(ξ

′
),−1)⟩Rd = ∆ξ ′ψ(ξ

′
)+ξ d .

Lemma 3.4. Let y ∈ C∞
c (O), let σ > 0, let u = Jσ (y), let x ∈ ∂O and let ξ be the corre-

sponding point to x under the rotation coordinates x = Rξ with R as above. Then,

Dξd
ϕ̃ε(ξ ) = (ϕ̃ε(ξ ))

−1(Dξd
v(ξ ))2

(
∆ξ ′ψ(ξ

′
)+ξ d

)
,

where ξ ,v,ψ and ϕ̃ are as above.

Proof. We replicate the argument of [4, Lemma 8.2]. Let v(ξ ) = u(R−1ξ ) for every ξ ∈
Rd . Since 0 = u(x) = v(ξ ′,ψ(ξ ′)) for every ξ ′ ∈ V ⊆ Rd−1 with x = R(ξ ′,ψ(ξ ′)), it
follows that

Dξiv(ξ )+Dξd
v(ξ )Dξ ′

i
ψ(ξ ′) = 0 (3.7)

for every i ∈ {1, . . . ,d − 1} and ξ = (ξ ′,ψ(ξ ′)) with ξ ′ ∈ V . Differentiating (3.7) with
respect to i ∈ {1, . . . ,d −1} it follows that

D2
ξiξi

v(ξ )+2D2
ξiξd

v(ξ )Dξ ′
i
ψ(ξ ′)+D2

ξdξd
v(ξ )(Dξ ′

i
ψ(ξ ′))2 +Dξd

v(ξ )D2
ξ ′

i ξ ′
i
ψ(ξ ′) = 0

for every ξ = (ξ ′,ψ(ξ ′)) ∈ (V,ψ(V )). If we choose ξ = ξ then we get Dξ ′
i
ψ(ξ

′
) = 0. As

a byproduct, Dξiv(ξ ) = 0 and

D2
ξiξi

v(ξ )+Dξd
v(ξ )D2

ξ ′
i ξ ′

i
ψ(ξ

′
) = 0

for every i ∈ {1, . . . ,d − 1}. By recalling that L can be applied to u also up the boundary
since u ∈C2

0(O) and recalling that Dξiv(ξ
′
) = 0 for every i = 1, . . . ,d −1}, we get

Lv(ξ ) = ∆ξ v(ξ )−ξ dDξd
v(ξ ) = D2

ξdξd
v(ξ )−Dξd

v(ξ )∆ξ ′ψ(ξ
′
)−ξ dDξd

v(ξ ).

We notice that Lv(ξ ) = 0 since σLv(ξ ) = σLu(x) = u(x)− y(x) = 0, and so

D2
ξdξd

v(ξ ) = Dξd
v(ξ )(∆ξ ′ψ(ξ

′
)+ξ d).

Finally, since

ϕ̃ε(ξ )Dξd
ϕ̃ε(ξ ) =

d

∑
i=1

Dξiv(ξ )D
2
ξiξd

v(ξ ) = Dξd
v(ξ )D2

ξdξd
v(ξ )

and u (and consequently v) is smooth up to the boundary ∂O, we conclude that

Dξd
ϕ̃ε(ξ ) =(ϕ̃ε(ξ ))

−1Dξd
v(ξ )D2

ξdξd
v(ξ )

=(ϕ̃ε(ξ ))
−1(Dξd

v(ξ ))2(∆ξ ′ψ(ξ
′
)+ξ d).

□

Now we state the main result of this section.

Proposition 3.5. Under Hypothesis 3.1, for every p ∈ [1,∞) we haveˆ
O
∥∇Jσ y∥p

Rd dγ ≤
ˆ

O
∥∇y∥p

Rd dγ, (3.8)

for every y ∈ W 1,q
0 (O,γ), where q = p if p > 1 and q > 1 if p = 1. In particular, LO,p is

dissipative in W 1,p
0 (O,γ) for every p ∈ (1,∞).
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Proof. The proof is analogous to that of [4, Proposition 8.2], hence we skip the details.
We assume that g(t) = t p belongs to C2([0,∞)) (if p < 2 then we take a smooth convex
approximation), and we consider y ∈ C∞

c (O) and σ > 0. For every ε > 0 we set ψ(x) =
g(ϕ(x)) and ψε(x) := g(ϕε(x)) for every x ∈ O, where ϕ and ϕε , with u = Jσ (y), have
been defined in (3.1). From (3.2) and the properties of g we get

ψ2

ψε

−σLψε ≤ g′(ϕε)

(
∥∇y∥Rd −

ϕ2

ϕε

)
+

ψ2

ψε

(3.9)

in O. Further, for every x ∈ ∂O, if ξ is the corresponding point under the rotation R−1

introduced above, Lemma 3.4 gives

∂ϕε

∂ν∂O
(x) =−Dξd

ϕ̃ε(ξ ) =−(ϕ̃ε(ξ ))
−1(Dξd

v(ξ ))2(∆ξ ′ψ(ξ
′
)+ξ d) =−H ′

∂R−1(O)(ξ )≤ 0

for every x ∈ ∂O. This implies that

∂ψε

∂ν∂O
(x) =−Dξd

(g(ϕ̃ε))(ξ ) =−g′(ϕ̃ε(ξ ))Dξd
ϕ̃(ξ )≤ 0

for every x ∈ ∂O. By applying the divergence theorem and taking into account the explicit
formula of L we get ˆ

O
Lψε dγ =

ˆ
∂O

∂ψε

∂ν∂O
θd dHd−1 ≤ 0, (3.10)

where θd is the density of the standard Gaussian measure in Rd and Hd−1 is the (d − 1)-
Hausdorff measure. From (3.9) and (3.10) it follows thatˆ

O

ψ2

ψε

dγ ≤
ˆ

O

(
g′(ϕε)

(
∥∇y∥Rd −

ϕ2

ϕε

)
+

ψ2

ψε

)
dγ.

Letting ε tend to 0 we getˆ
O

g(∥∇u∥Rd )dγ ≤
ˆ

O

(
g′(ϕ)(∥∇y∥Rd −ϕ)+g(ϕ)

)
dγ.

The convexity of g implies that g′(u)(v−u)+ g(u) ≤ g(v) for every u,v ∈ [0,∞), which
gives (3.8) for every y ∈ C∞

c (O). From the density of this set in W 1,p
0 (O,γ) and Remark

2.16 we get the thesis. □

Remark 3.6. The fact that the thesis does not holds for p = q = 1 follows from the fact
that, for r = 1, the arguments in Remark 2.16 do not work.

4. GRADIENT RESOLVENT CONTRACTIVITY

In this section we consider a separable Banach space X with nondegenerate centered
Gaussian measure γ and Cameron-Martin space H. We fix an orthonormal basis Φ := {hn :
n ∈ N} of H of elements of QX∗, that Fm := span{h1, . . . ,hm} for every m ∈ N, that πFm is
the projection on Fm and that X⊥

m := Ker(πm). We can identify Fm with Rm by means of
the operator Πm : Fm → Rm, defined by

Πm(y) = (y1, . . . ,ym), y ∈ Fm, yi := ⟨y,hi⟩H , i = 1, . . . ,m.

We split the proof of the main result into two parts: in the former we consider the case
when O is a cylindrical set with respect to the basis {hn : n ∈ N}, in the latter we consider
a generic open set O ⊆ X which satisfies suitable conditions.



GRADIENT CONTRACTIVITY IN WIENER SPACES 18

4.1. Cylindrical case. In this subsection we assume the following additional hypothesis.

Hypothesis 4.1. O ⊆ X is a C2,α -regular cylindrical set with respect to the basis {hn :
n ∈ N} ⊆ QX∗. This means that there exist m ∈ N and a C2,α -regular open set Om ⊆ Rm

such that O = (Πm ◦πm)
−1 (Om) = (Πm)

−1(Om)⊕X⊥
m , and Om = g−1((−∞,0)) for some

function g ∈C2,α(Rm).

Definition 4.1. If we set G(x) := g((Πm ◦πm)x) for every x ∈ X , then it follows that O =

G−1((−∞,0)), and the spaces W 1,p(O,γ) and W 1,p
0 (O,γ) introduced in Section 2.3 are

well-defined. Finally, we notice that for every n ≥ m we have On = Om ×Rn−m.

Definition 4.2. For every k ∈N we denote by FCk
b,Φ(X) the set of cylindrical Ck

b functions
with respect to the orthonormal basis Φ, i.e., a function y ∈FCk

b,Φ(X) if there exists n ∈N
and v ∈Ck

b(R
n) such that y(x) = v((Πn ◦πn)(x)) for every x ∈ X .

We denote by FCk
b,0(O) the subset of FCk

b,Φ(X) of functions which vanish out of an
open set A with positive distance from Oc, i.e., a function y on X belongs to FCk

b,0(O)

if y ∈ FCk
b,Φ(X) and there exists an open set A, with d(A,Oc) > 0, such that y = 0 on

Ac. In particular, from the definition of O it follows that every y ∈ FCk
b,0(O) has the form

y = v(Πn ◦πn) for some n ≥ m and v ∈Ck
b(R

n).

Lemma 4.3. If O is cylindrical with respect to the basis Φ, then W 1,p
0 (O,γ) is the closure

of FC1
b,0(O) with respect to the norm of W 1,p(O,γ).

Proof. At first we show that if y ∈FCk
b,0(O) and v ∈Ck

b(R
n) satisfies y(x) = v((Πn ◦πn)x)

for every x ∈ X , then v has support in an open set An ⊆On with positive distance from Oc
n .

Let A ⊆ O be an open set with positive distance from Oc such that y vanishes out of A.
We are going to prove that the above assertion is true with An := {(Πn ◦πn)x : x ∈ A}.
At first we show that An is an open set. Let x ∈ A, xn := (Πn ◦πn)x ∈ An and let ε > 0
be such that B(x,ε) = {y ∈ X : ∥y− x∥X < ε} ⊆ A. For every yn ∈ Rn such that ∥yn −
xn∥Rn < c−1

H ε (where cH is the smallest constant in the continuous embedding H ⊆ X , see
Subsection 2.1 and formula (2.1)), we set y = (Πn ◦πn)

−1yn+(x− (Πn ◦πn)
−1xn) ∈ X and

we get

∥y− x∥X = ∥(Πn ◦πn)
−1(yn − xn)∥X ≤ cH∥Π

−1
n (yn − xn)∥H = cH∥yn − xn∥Rn < ε.

Hence, y ∈ A and so yn = (Πn ◦πn)y ∈ An. This means that the ball centered at xn with
radius c−1

H ε in Rn is contained in An.
It remains to show that v vanishes on A c

n ⊆ Rn. To this aim, we fix ξ = (ξ1, . . . ,ξn) ∈ A c
n

and set w := ∑
n
i=1 ξihi ∈ Fn. If there exists z ∈ X⊥

n such that x = w+ z ∈ A, then ξ =

(Πn ◦ πn)x ∈ An, which gives a contradiction. This implies that {w}⊕X⊥
n ⊆ Ac, and so

v(ξ ) = 0.
Now we are able to prove the statement. Let f ∈ H 1

b,0(O), and for every n ≥ m let us
set fn := E[ f |Fn], where

fn(x) :=
ˆ

X
f (πn(x)+(Id −πn)(y))dγ(y), x ∈ X .

Let A ⊆ O be an open set with positive distance from Oc such that supp( f ) ⊆ A. We set
Ã := {πm(x)+y : x ∈ A, y∈ X⊥

m }= {x ∈ X : πm(x) = πm(z) for some z∈ A}⊆ X . We claim
that A ⊆ Ã ⊆ O is open and has positive distance from Oc.
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The inclusion A ⊆ Ã is trivial. To show that Ã ⊆ O, we notice that if πm(x)+ y ∈ Oc for
some x ∈ A and y ∈ X⊥

m , then from the definition of O we get πm(x)+ z ∈ Oc for every
z ∈ X⊥

m . In particular, the choice of z = x−πm(x) implies that x ∈ Oc, which contradicts
the fact that x ∈ A.
Now we prove that Ã is open. let us fix x̃ = πm(x)+ y ∈ Ã, where x ∈ A and y ∈ X⊥

m . Since
A is open, there exists ε > 0 such that B(x,ε) = {z ∈ X : ∥z− x∥X < ε} ⊆ A. For every
ỹ ∈ B(x̃,ε), from the decomposition X = Fm ⊕X⊥

m we get

ε > ∥x̃− ỹ∥X ≥ ∥πm(x̃− ỹ)∥X = ∥πm(x)−πm(ỹ)∥X .

If we consider y = πm(ỹ) + (x− πm(x)), it follows that πm(y) = πm(ỹ) and ∥x− y∥X =
∥πm(x)−πm(ỹ)∥X < ε , which means that y ∈ A.
It remains to show that Ã has positive distance from Oc. For this purpose, for every x̃ ∈ Ã
and every z ∈ Oc we get

∥x̃− z∥X ≥ ∥πm(x)−πm(z)∥X = ∥x− (πm(z)+ x−πm(x))∥X ,

where x ∈ A satisfies πm(x) = πm(x̃). Since z ∈ Oc, the definition of O gives πm(z)+ x−
πm(x) ∈ Oc, and so ∥x− (πm(z)+ x−πm(x))∥X ≥ dist(A,Oc). The arbitrariness of x̃ ∈ Ã
and z ∈ Oc imply that dist(Ã,Oc)≥ dist(A,Oc). The claim is proved.

Let us consider x ∈ Ãc. From the claim, it follows that πm(x)+y ∈ Ac for every y ∈ X⊥
m .

Indeed, if there exists y∈ X⊥
m such that πm(x)+y∈ A, we infer that πm(x) = πm(πm(x)+y),

which means that x ∈ Ã. Hence, for every x ∈ Ãc and y ∈ X it follows that

πn(x)+(Id −πn)(y) = πm(x)+(πn(x)−πm(x))+(Id −πn)(y) ∈ Ac,

which implies that fn = 0 on Ãc. In particular, supp( fn)⊆ Ã and fn(x)= fn(πnx)= vn((Πn◦
πn)x) for every x ∈ X , where vn = fn ◦ (Πn ◦ πn)

−1 ∈ C1
b,0(On) from the first part of the

proof. Finally, ( fn)n∈N converges to f in W 1,p(X ,γ) as n → ∞ from [5, Corollary 3.5.2],
which implies that ( fn|O)n∈N tends to f in W 1,p(O,γ) as n → ∞. □

The next proposition shows that the result in Proposition 3.5 can be easily generalized
in infinite dimension when O is a cylindrical domain.

Proposition 4.4. Let O satisfy Hypothesis 4.1, and assume that Hγm

∂Om
(ξ ) ≥ 0 for every

ξ ∈ ∂Om. If p ∈ [1,∞), then for every σ > 0 we getˆ
O
∥∇HJO

σ (y)∥
p
Hdγ ≤

ˆ
O
∥∇Hy∥p

Hdγ, y ∈W 1,q
0 (O,γ),

where q = p if p > 1 and q > 1 if p = 1.

Proof. For every n≥m and every ξ ∈ ∂On we have ξ = (ξ 0,ξ1, . . . ,ξn−m), with ξ 0 ∈ ∂Om
and (ξ1, . . . ,ξn−m) ∈ Rn−m. Further, the outer normal νn(ξ ) to On at ξ ∈ ∂On satisfies
νn(ξ ) = (νm(ξ 0),0, . . .0), where νm(ξ 0) is the outer normal to Om at ξ 0 ∈ ∂Om. Hence,
we get

Hγn

∂On
(ξ ) = Hγm

∂Om
(ξ 0)≥ 0, ξ ∈ ∂On.

Let us fix σ > 0. On L2(On,γ
n), where γn is the standard Gaussian measure on Rn,

we consider the Ornstein-Uhlenbeck operator LOn with homogeneous Dirichlet boundary
conditions with respect to On and the bounded operator Jσ ,n = (I −σLOn)

−1. Let y ∈
FC1

b,0(O) and let v ∈ C1
b,0(On) be such that y(x) = v((Πn ◦πn)(x)) for every x ∈ X . We

claim that
(Jσ ,nv)(Πn ◦πn) = JO

σ y, γ-a.e. in O.
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Indeed, for every f ∈ FC1
b,0(O) with f = ϕ(Π j ◦ π j), where j ∈ N and ϕ ∈ C1

b(R j), if
m ≤ j ≤ n then we getˆ

O
⟨∇HJσ ,nv(Πn ◦πn),∇H f ⟩Hdγ =

ˆ
On

⟨∇Jσ ,nv,∇ϕ⟩Rndγ
n =

ˆ
On

LOn(Jσ ,nv) ·ϕdγ
n

=

ˆ
O
(LOn(Jσ ,nv))(Πn ◦πn) · f dγ,

and if j > n then it follows thatˆ
O
⟨∇HJσ ,nv(Πn ◦πn),∇H f ⟩Hdγ =

ˆ
R j−n

ˆ
On

⟨∇Jσ ,nv(ξ ),∇ϕ(ξ +η)⟩Rndγ
n(ξ )dγ

j−n(dη)

=

ˆ
R j−n

ˆ
On

LOn(Jσ ,nv)(ξ ) ·ϕ(ξ +η)dγ
n(ξ )dγ

j−n(η)

=

ˆ
O
(LOn(Jσ ,nv))(Πn ◦πn) · f dγ.

From the definition of LO and Lemma 4.3 we conclude that (Jσ ,nv)(Πn ◦πn)∈ D(LO) and

LO((Jσ ,nv)(Πn ◦πn)) = (LOn(Jσ ,nv))(Πn ◦πn).

Moreover, for γ-a.e. x ∈ X we get

σLO((Jσ ,nv)(Πn ◦πn))(x) =σLOn((Jσ ,nv))(Πn ◦πn)(x)

=(Jσ ,nv)(Πn ◦πn)(x)− v(Πn ◦πn)(x).

Combined with the fact that y = v(Πn ◦ πn), this gives the claim. In particular, we get
∥∇HJσ y∥Lp(O,γ,H) = ∥∇Jσ ,nv∥Lp(On,γn,Rn) for every y ∈ FC1

b,0(O).
Since ∥∇Hy∥Lp(O,γ,H) = ∥∇v∥Lp(On,γn,Rn), from Proposition 3.5 it follows that
ˆ

O
∥∇HJσ y∥p

Hdγ =

ˆ
On

∥∇Jσ ,nv∥p
Rndγ

n ≤
ˆ

On

∥∇v∥p
Rndγ

n =

ˆ
O
∥∇Hy∥p

Hdγ,

and we get the thesis when y∈FC1
b,0(O). From Remark 2.16 and Lemma 4.3 we conclude.

□

4.2. Generalization to the non-cylindrical case. For every f ∈ FC∞
b (X) of the form

f = v(Πn ◦πn), with v ∈C∞
b (Rn), we have

L f =
n

∑
i=1

∂
2
hihi

f −
n

∑
i=1

∂hi f ĥi.

Let us notice that for these functions we have

L f (x) = Lnv(ξ ) := ∆v(ξ )−⟨ξ ,∇v(ξ )⟩Rn , ξ = (Πn ◦πn)(x), x ∈ X ,

where ∆ is the Laplace operator in Rn.
Assume that Hypothesis 2.11 are satisfied, and recall that ∂O=G−1(0) and that at every

point x ∈ ∂O the outer H-normal is ∇HG(x)/∥∇HG(x)∥H . For every n ∈ N we consider
the cylindrical function Gn := G ◦ πn (see [11, Section 4]). From the definition, Gn is a
H-differentiable cylindrical function and ∇HGn is everywhere H-differentiable. Hence,
there exists gn ∈ C2(Rn) such that Gn(x) = gn((Πn ◦ πn)(x)) for every x ∈ X . For every
n ∈ N we introduce the sets On := G−1

n ((−∞,0)) and On := g−1
n ((−∞,0)). Therefore,
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∂On = G−1
n (0), On = g−1

n ({0}) and On = (Πn ◦ πn)
−1(On) for every n ∈ N. For every

x ∈ ∂On with ∇HGn(x) ̸= 0 we set

Hγ

∂On
(x) :=

LGn(x)
∥∇HGn(x)∥H

− ⟨D2
HGn(x)∇HGn(x),∇HGn(x)⟩

∥∇HGn(x)∥3
H

.

Let us assume the following conditions on On, On and Hγ

∂On
.

Hypothesis 4.2. We suppose that there exists n0 ∈ N such that ∥πn0(∇HG)∥H ̸= 0 on ∂O,
for every n ≥ n0 the set On is a C2,α -regular open set in Rn and Hγ

∂On
(x) ≥ 0 for every

x ∈ ∂On.

Remark 4.5. Assume that Hypothesis 4.2 is satisfied. At first, we notice that, for every
n ≥ n0, the assumption ∥πn0(∇HG)(x)∥H ̸= 0 for every x ∈ ∂O implies that, for every
x ∈ ∂On, we get ∥∇HGn(x)∥H ≥ ∥πn0(∇HGn(x))∥H = ∥πn0(∇HG(πn(x)))∥H ̸= 0, since
x ∈ ∂On if and only if πn(x) ∈ ∂O.

Hence, ν∂On = ∇gn/∥∇gn∥Rn for every n ≥ n0, and for every x ∈ ∂On we have

⟨D2
HGn(x)∇HGn(x),∇HGn(x)⟩H

∥∇HGn∥3
H

=
⟨D2gn(ξ )∇gn(ξ ),∇gn(ξ )⟩Rn

∥∇gn∥3
Rn

,

with ξ = (Πn ◦πn)(x). This implies that

Hγn

∂On
(ξ ) =

∆ngn(ξ )

∥∇gn(ξ )∥Rn
− ⟨D2gn(ξ )∇gn(ξ ),∇gn(ξ )⟩Rn

∥∇gn∥3
Rn

− ⟨ξ ,∇gn(ξ )⟩Rn

∥∇gn(ξ )∥Rn

=
Lngn(ξ )

∥∇gn(ξ )∥Rn
− ⟨D2gn(ξ )∇gn(ξ ),∇gn(ξ )⟩Rn

∥∇gn∥3
Rn

=
LGn(x)

∥∇HGn∥H
− ⟨D2

HGn(x)∇HGn(x),∇HGn(x)⟩H

∥∇HGn∥3
H

=Hγ

∂On
(x)≥ 0,

for every x ∈ ∂On and ξ := (Πn ◦πn)(x) ∈ ∂On.

Theorem 4.6. Let O ⊆ X be an open set satisfying Hypotheses 2.11 and 4.2. Then, for
every p ∈ [1,∞) and σ > 0, it follows thatˆ

O
∥∇HJσ (y)∥p

H dγ ≤
ˆ

O
∥∇Hy∥p

H dγ,

for every y∈W 1,q
0 (O,γ), where q= p if p> 1 and q> 1 if p= 1. In particular, the operator

LO,p is dissipative in W 1,p
0 (O,γ) for every p ∈ (1,∞).

Remark 4.7. For the case p = q = 1 see Remark 3.6.

Proof. Let p and q be as in the statement.
Let y ∈ H 1

b,0(O) and for every n ∈ N let us set yn := y ◦ πn. From Lemma 2.13 we
deduce that yn ∈ H 1

b,0(On), and from Remark 4.5 it follows that Hγ

∂On
≥ 0 on ∂On, which

implies that the assumptions of Lemma 4.4 are satisfied. Let σ > 0. Since yn ∈H 1
b,0(On)⊆

W 1,q
0 (On,γ) we get ˆ

On

∥∇HJσ ,n(yn)∥p
H dγ ≤

ˆ
On

∥∇Hyn∥p
H dγ,
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for every n ≥ n0, where LOn is the Ornstein-Uhlenbeck operator with homogeneous Dirich-
let boundary conditions on On, and Jσ ,n = (Id−σLOn)

−1.
Since y ∈ W 1,q

0 (O,γ) it follows that y ∈ W 1,q(X ,γ) and ∇Hy(x) = ∇Hy(x) for γ-a.e.
x ∈ X . Analogously, yn ∈ W 1,q(X ,γ) and ∇Hyn(x) = ∇Hyn(x) for γ-a.e. x ∈ X , for every
n ∈ N. Since y ∈ H 1(X) is bounded and yn = y◦πn for every n ∈ N, from Lemma 2.6 we
infer that (yn)n∈N converges to y in W 1,q(X ,γ) as n tends to infinity, and soˆ

O
∥∇Hy∥p

Hdγ =

ˆ
X
∥∇Hy∥p

Hdγ =

ˆ
X
∥∇Hy∥p

Hdγ = lim
n→∞

ˆ
X
∥∇Hyn∥p

Hdγ

= lim
n→∞

ˆ
X
∥∇Hyn∥p

Hdγ = lim
n→∞

ˆ
On

∥∇Hyn∥p
Hdγ.

If we set u := JO
σ (y) and un := JOn

σ ,n(yn) for every n ≥ n0, then from Proposition 4.4 applied
to yn we deduce that

liminf
n→∞

ˆ
On

∥∇Hun∥p
Hdγ ≤ liminf

n→∞

ˆ
On

∥∇Hyn∥p
Hdγ =

ˆ
O
∥∇Hy∥p

Hdγ. (4.1)

From Proposition 2.17 we infer that (un)n∈N converges to u in W 1,2(X ,γ) as n goes to
infinity, and Remarks 2.15 and 2.16 (with O = X and r = 2) imply thatˆ

O
∥∇Hu∥p

Hdγ =

ˆ
X
∥∇Hu∥p

Hdγ ≤ liminf
n→∞

ˆ
X
∥∇Hun∥p

Hdγ = liminf
n→∞

ˆ
On

∥∇Hun∥p
Hdγ.

(4.2)

From (4.1) and (4.2) we conclude thatˆ
O
∥∇HJσ (y)∥p

Hdγ ≤
ˆ

O
∥∇Hy∥p

Hdγ,

for every y ∈H 1
b,0(O). For the general case y ∈W 1,q

0 (O,γ), we recall that H 1
b,0(O) is dense

in W 1,q
0 (O) by Lemma 2.8, and the thesis follows from the boundedness of JO

σ on Lq(O,γ)
and Remark 2.16. □

5. EXAMPLES

In this last section we provide three examples to which our results apply. Such situations
have been already considered in [9, Section 5] and [11, Section 5].

5.1. Epigraphs. Let (X ,γ) be an abstract Wiener space. We fix an orthonormal basis
{hn : n ∈ N} of H in Q(X∗), i.e., hn = Q(x∗n) with x∗n ∈ X∗ for every n ∈ N. We define a
function G such that O = G−1((−∞,0)) is the epigraph of a function.

Hypothesis 5.1. Let Φ : X → R be a continuous function such that

(1) Φ ∈ H 1(X) (hence ∇HΦ exists everywhere);
(2) ∂h1(Φ)(x) = 0 for every x ∈ X ;
(3) ∇HΦ is everywhere H-differentiable, with ∥D2

HΦ∥HS uniformly bounded;
(4) LΦ is uniformly bounded;
(5) the function fn := Φ◦ (Πn ◦πn)

−1 ∈C2,α
loc (R

n) for every n ∈ N, for some α > 0;
(6) there exist C,C1,C2,C3 > 0, with C −C1 −C2 −C3 ≥ 0, such that Φ(x) ≥ C,

∥D2
HΦ(x)∥HS ≤ C1, ⟨∇HΦ(h),h⟩H ≤ C2 and ∥D2

HΦ(x)∥L (H,H) ≤ C3, for every
x ∈ X and every h ∈ H.
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Hypothesis 5.1(2) implies that Φ(x) = Φ(x−π1(x)) for every x ∈ X . We set

G(x) = ĥ1(x)+Φ(x), x ∈ X ,

and O := G−1((−∞,0)) = {x ∈ X : ĥ1(x)≤−Φ(x)}. We have

∇HG(x) = h1 +∇HΦ(x−π1(x)), x ∈ X ,

and

D2
HG(x) = D2

HΦ(x−π1(x)), x ∈ X .

By Hypothesis 5.1(1)− (4) the function G satisfies Hypothesis 2.11 (see [3, Subsection
5.1]), and for every n ∈ N we set

Gn(x) = ĥ1(x)+Φ(πn(x)−π1(x)), x ∈ X .

Hence, the function gn := Gn((Πn ◦πn)
−1) belongs to C2,α(Rn) for every n ∈N. Let us set

xn = πn(x)−π1(x) ∈ H for every x ∈ X , so Gn(x) = ĥ1(x)−Φ(xn) and

∇HGn(x) = h1 +πn∇HΦ(xn),

LGn(x) =
n

∑
i=2

⟨D2
HΦ(xn)hi,hi⟩H − ĥ1(x)−⟨∇HΦ(xn),xn⟩H ,

This implies that the first part of Hypothesis 4.2 is verified with n0 = 1, since π1(∇HΦ(xn))=

0. Further, on G−1(0) = {x ∈ X : ĥ1(x) =−Φ(x)}, for every n ∈ N we get

Hγ

∂On
(x) =

LGn(x)
∥∇HGn(x)∥H

− ⟨D2
HGn(x)∇HGn(x),∇HGn(x)⟩H

∥∇HGn(x)∥3
H

=
Φ(x)+∑

n
i=2⟨D2

HΦ(xn)hi,hi⟩H −⟨∇HΦ(xn),xn⟩H

∥∇HGn(x)∥H
− ⟨D2

HΦ(xn)∇HΦ(xn),∇HΦ(xn)⟩H

∥∇HGn(x)∥3
H

≥ C−C1 −C2

∥∇HGn(x)∥H
− C3∥∇HΦ(xn)∥2

H

∥∇HGn(x)∥3
H

≥ C−C1 −C2 −C3

∥∇HGn(x)∥H
≥ 0, x ∈ ∂O.

Hence, G satisfies Hypothesis 4.2 with n0 = 1. In particular, if Φ ≡ C ≥ 0 everywhere,
the above conditions are verified, which means that the open half-spaces {ĥ1 <−C} with
C ≥ 0 fulfill our assumptions.

5.2. Brownian motion and Brownian bridge.

5.2.1. Brownian motion starting from 0. We recall the definition of Brownian motion (see
[5, Section 2.3]). We consider the classical Wiener space (X ,γW ) where X = L2[0,1], γW

is the Wiener measure on L2[0,1], and the Cameron-Martin space H is the set of absolutely
continuous functions f on [0,1] such that f ′ ∈ L2[0,1] and f (0) = 0.

For every f1, f2 ∈ H the inner product in H is defined as

⟨ f1, f2⟩H =

ˆ 1

0
f ′1(x) f ′2(x) dx.

We consider the orthonormal basis {en : n ∈ N} of L2[0,1] defined by

en(x) :=
√

2sin
( x√

λn

)
=
√

2sin
((

n− 1
2

)
πx
)
, x ∈ [0,1], n ∈ N,
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where

λn =
1

π2
(
n− 1

2

)2 , n ∈ N.

The system {hn =
√

λnen : n ∈ N} is an orthonormal basis of H and for every m ∈ N we
denote by πm : X → Fm the projection on Fm := span{h1, . . . ,hm}. For every h ∈ H we have

∥h∥C([0,1]) ≤
ˆ 1

0
|h′(t)| dt ≤

(ˆ 1

0
|h′(t)|2 dt

)1/2

= ∥h∥H . (5.1)

Let g∈C2,α
b (R), α ∈ (0,1), satisfying for some c> 0, α1,α2,β1,β2 ∈R the inequalities

|g′(ξ )| ≥ c, α1g(ξ )+β1 ≤ ξ g′(ξ )≤ α2g(ξ )+β2 (5.2)

for every ξ ∈R. The above assumptions are satisfied, for instance, by the function g= p/q,
where q is a positive polynomial of degree m ∈ N and p is a polynomial of degree m+ 1
such that g′(ξ ) ̸= 0 for all ξ ∈ R.

Remark 5.2. We have
∞

∑
n=1

(
n− 1

2

)−2

=
π2

2
. (5.3)

This is a consequence of the well known Basel problem
∞

∑
n=1

n−2 =
π2

6
,

by using the fact that
∞

∑
n=1

(
n− 1

2

)−2

= 4
∞

∑
i=1

(2n−1)−2

and
∞

∑
n=1

n−2 =
∞

∑
n=1

(2n−1)−2 +
∞

∑
n=1

(2n)−2 =
∞

∑
n=1

(2n−1)−2 +
1
4

∞

∑
n=1

n−2.

Proposition 5.3. In the above hypotheses, given r in the range of g such that

α2r ≤−
(

β2 +
∥g′′∥Cb(R)

2

)
, (5.4)

we define

G(x) =
ˆ 1

0
g(x(s)) ds− r, x ∈ X .

Then, G satisfies Hypotheses 2.11 and 4.2.

Proof. To prove that Hypothesis 2.11 is satisfied it is enough to argue as in [3, Proposition
5.1]).

We stress that G is H-differentiable at every x ∈ X and, for every h ∈ H,

⟨∇HG(x),h⟩H =

ˆ 1

0
g′(x(s))h(s) ds. (5.5)

This implies that, for every x ∈ X , from (5.2) and the definition of h1 it follows that

∥π1(∇HG(x))∥2
H =

(ˆ 1

0
g′(x(s))h1(s)ds

)2

≥ 8a
π2 .

Hence, the first part of Hypothesis 4.2 is satisfied with n0 = 1.
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Moreover, DHG is H-differentiable at every x ∈ X and, for every h,k ∈ H,

⟨D2
HG(x)(h),k⟩H =

ˆ 1

0
g′′(x(s))h(s)k(s) ds,

and so, fixed h,k ∈ H, for every x1,x2 ∈ X we have

|⟨D2
HG(x1)(h),k⟩H −⟨D2

HG(x2)(h),k⟩H | ≤|
ˆ 1

0
(g′′(x1(s))−g′′(x2(s)))h(s)k(s) ds|

≤[g′′]α

ˆ 1

0
|x1(s)− x2(s)|α |h(s)||k(s)| ds

≤[g′′]α∥h∥H∥k∥H∥x1 − x2∥α
X ,

where [g′′]α is the Hölder seminorm of g′′. It follows that G is a C2,α function on every
subspace F of H with dim(F) < ∞, which means that On is a C2,α -regular open set in Rn

for every n ∈ N.
It remains to show that Hγ

∂On
≥ 0 on ∂On for every n∈N. To this aim, for every s∈ [0,1]

we set

f (s) =
∞

∑
n=1

(hn(s))2 =
∞

∑
n=1

2π
−2
(

n− 1
2

)−2(
sin
((

n− 1
2
)
)

πs
))2

=
1
2
−

∞

∑
n=1

π
−2
(

n− 1
2

)−2

cos
(
(2n−1)πs

)
,

where the last equality follows from (5.3). Since
ˆ 1

0
(cos(2n−1)πs)ds = 0, n ∈ N

and the series which defines f totally converges, we conclude that
ˆ 1

0
f (s) ds =

1
2
.

Let us fix m ∈ N and x ∈ ∂Om, and let us set ϕm = ∇HGm(x) = πm(∇HG(πm(x))). It
follows that ϕm ∈ H and ∥ϕm∥H ≤ ∥g∥C1

b(R)
. We introduce the function

fm(s) =
m

∑
n=1

(hn(s))2,

Then, fm > 0 on [0,1], ∥ fm∥L1(0,1) ≤ ∥ f∥L1(0,1) =
1
2 and

TrH [D2
HGm(x)] =

m

∑
n=1

ˆ 1

0
g′′((πmx)(s))(hn(s))2ds =

ˆ 1

0
g′′((πmx)(s)) fm(s)ds. (5.6)

From (5.5) and (5.6) it follows that

LGm(x) =
ˆ 1

0
g′′((πmx)(s)) fm(s)ds−

ˆ 1

0
g′((πmx)(s))(πmx)(s)ds,
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and so

Hγ

∂Om
(x) =

=
LGm(x)

∥∇HGm(x)∥H
− ⟨D2

HGm(x)∇HGm(x),∇HGm(x)⟩H

∥∇HGm(x)∥3
H

=

´ 1
0 g′′((πmx)(s)) fm(s)ds−

´ 1
0 g′((πmx)(s))(πmx)(s)ds

∥ϕm∥H
−
´ 1

0 g′′((πmx)(s))(ϕm(s))2ds
∥ϕm∥3

H

=∥ϕm∥−1
H

(ˆ 1

0
g′′((πmx)(s))

(
fm(s)−

(ϕm(s))2

∥ϕm∥2
H

)
ds−
ˆ 1

0
g′((πmx)(s))(πmx)(s)ds

)
.

(5.7)

An explicit computation on ϕm gives

(ϕm(s))2 =

(
m

∑
n=1

⟨∇HGm(x),hn⟩Hhn(s)

)2

≤ ∥ϕm∥2
H fm(s), s ∈ [0,1]. (5.8)

Further, from (5.2) we infer thatˆ 1

0
g′((πmx)(s))(πmx)(s) ds ≤α2

ˆ 1

0
g((πmx)(s))ds+β2, (5.9)

and so from (5.7), (5.8) and (5.9) we get

Hγ

∂Om
(x)≥

≥ ∥ϕm∥−1
H

(ˆ
{s∈(0,1):g′′((πmx)(s))≤0}

g′′((πmx)(s))
(

fm(s)−
(ϕm(s))2

∥ϕm∥2
H

)
ds

−α2

ˆ 1

0
g((πmx)(s))ds−β2

)

≥ ∥ϕm∥−1
H

(ˆ
{s∈(0,1):g′′((πmx)(s))≤0}

g′′((πmx)(s)) fm(s)ds−α2

ˆ 1

0
g((πmx)(s))ds−β2

)

≥ ∥ϕm∥−1
H

(
−∥g′′∥Cb(R)

ˆ 1

0
fm(s)ds−α2(Gm(x)+ r)−β2

)

= ∥ϕm∥−1
H

(
−

∥g′′∥L∞(R)

2
−α2r−β2

)
,

where we have used the fact that Gm(x) = 0 for x ∈ ∂Om. Finally, from (5.4) it follows that

−
∥g′′∥L∞(R)

2
−α2r−β2 ≥ 0,

which gives H γ
m (x)≥ 0 for every x ∈ ∂Om, for every m ∈N. This implies that also the last

point in Hypothesis 4.2 is fulfilled. □

5.2.2. Brownian bridge on 0. We consider a pinned Wiener space, which describes a
Brownian bridge with starting point at 0 and subjected to the condition that at 1 the ar-
rival point is 0. In this setting, X = L2[0,1], the Cameron-Martin space is H = H1

0 (0,1)
and γ is the pinned Wiener measure on X , see [22]. We recall that it is defined an orthonor-
mal basis {en =

√
2sin(πn·) : n∈N} of X with eigenvalues λn = (πn)−2 with respect to the
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covariance operator Q of γ , and {
√

λnen =
√

2π−1n−1 sin(nπ·) : n ∈ N} is an orthonormal
basis of H of eigenvectors of Q.

We introduce a function g which satisfies the same assumptions as in Example 5.2.1.
Arguing as in the proof of Proposition 5.3 we can prove the following result.

Proposition 5.4. In the above hypotheses, given r in the range of g and

α2r ≤−
(

β2 +
∥g′′∥Cb(R)

6

)
,

we define

G(x) =
ˆ 1

0
g(x(s)) ds− r, x ∈ X .

Then, O = G−1((−∞,0)) satisfies Hypotheses 2.11 and 4.2.

The main difference in the proof is that, in this case, we get f = s − s2 and fm =
2∑

m
n=1 λn sin(nπs)2 (see [11, Example 5.4] for details).

Acknowledgments. The authors are grateful to Michael Röckner for the suggestion to
extend to the finite dimensional setting the result in [4, Appendix 8].
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