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Abstract. We prove that the minimizing movements scheme á la Almgren-Taylor-Wang con-
verges towards level-set solutions to a nonlinear version of nonlocal curvature flows with time-

depending forcing term, in the rather general framework of variational curvatures introduced
in [16]. The nonlinearity involved is assumed to satisfy minimal assumptions, namely continu-

ity, monotonicity, and vanishing at zero. Under additional assumptions only on the curvatures

involved, we establish uniqueness for level-set solutions.

1. Introduction

This paper establishes existence via minimizing movements and uniqueness results for a nonlinear
modification of variational and nonlocal curvature flows in presence of mobility and time-dependent
forcing. This nonlinear and nonlocal generalization of the classical mean curvature flow (MCF in
short) is defined as follows: given a continuous, non-decreasing function G : R → R with G(0) = 0,
we consider the evolution of a family of sets t 7→ Et formally governed by the evolution law

(1.1) V (x, t) = ψ(νEt(x))G
(
− κ(x,Et) + f(t)

)
, for all x ∈ ∂Et, t ≥ 0,

where ψ is an anisotropy (usually called the mobility), νEt denotes the outer normal vector to
Et and f is a forcing term constant in space. In (1.1) the curvature κ(·, E) denotes a variational
curvature, belonging to a class of generalized nonlocal curvatures introduced in [16].

Generalised curvatures are functions defined on pairs (x,E), where E is a set of class C2 with
compact boundary and x ∈ ∂E, that are non-decreasing with respect to inclusion of sets touching
at x, continuous w.r.t. C2-convergence of sets, and translation invariant (see conditions (A)-(C) be-
low). We will focus on a particular instance of generalized curvatures, namely variational curvature.
These curvatures arise as the first variation (in a suitable sense) of perimeter-like functionals, which
are called generalized perimeters. A generalized perimeter J : M → [0,+∞] is a translation invari-
ant functional on the class of measurable sets M , which is insensitive to modifications on negligible
sets, finite on C2-sets with compact boundary, lower semicontinuous w.r.t. the L1

loc-convergence,
and satisfies a submodularity condition: J(E ∩F ) + J(E ∪F ) ≤ J(E) + J(F ) for every E,F ∈ M .

The evolution law (1.1) is relevant even in the specific instance where κ is the classical mean
curvature, arising as first variation of the perimeter. From a numerical point of view, as suggested
e.g. in [17, Remark 3.5], a truncation of the classical evolution speed V = −κ is usually encoded in
algorithms for the MCF, which corresponds to choosing G(s) = (−M) ∨ s ∧M in (1.1), for M > 0
large. Another interesting choice could be G(s) = −s− (so that G(−κ) = −κ+), which amounts to
consider a purely shrinking evolution. Moreover, evolution by powers of the mean curvature have
been previously studied in the smooth or convex setting [3, 18, 27, 29] and have been used to prove
isoperimetric inequalities [30], or considered in the setting of image processing algorithms [2, 28].

In particular, in [2, Section 4.5] it is remarked that the evolution law (1.1) with G(s) = s
1
3 and

ψ = |·|, f = 0 is particularly interesting as it is invariant under affine transformations (isometries and
1



2 DANIELE DE GENNARO

rescalings). See also [20] for interesting links between motion by powers of the mean curvature and
a time-fractional Allen-Cahn equation, and [5], where flat flows solutions to the power (anisotropic)
mean curvature flow are studied.

On the other hand, being able to address this study in the framework of generalized curvatures
and general nonlinearity G, allows us to prove new results for different geometric flows. This notion
of generalized curvature has been introduced in [16] to deal with a wide class of local and nonlocal
translation-invariant geometric flows in a unified framework. Some previous contributions can be
found in [6, 7, 8, 24, 31]. As detailed in [16, Section 5], some instances of geometric flows driven by
variational curvatures are the following: classical anisotropic MCF (driven by a suitably smooth and
translation invariant anisotropy), fractional MCF, capacity flows, and flows driven by the curvature
associated to the regularized pre-Minkowski content. See also [4] for some extensions.

Given the definition of variational curvature, and the formal gradient flow structure of the MCF,
one is naturally led to consider the minimizing movements approach, in the spirit of [1, 25], as a way
to prove existence for (1.1). This scheme provides a discrete-in-time approximation of the evolution
law (1.1) by iteratively solving a variational problem, where the energy to minimize consists of
the sum of J and a suitable dissipation term that penalizes the L2-distance between sets. In our
setting, we will modify the iterative scheme of [16] (reminiscent of [1, 25]), tailored for the present
general setting, by taking into account the nonlinearity in the dissipation term.

We provide here existence via minimizing movements and uniqueness of viscosity solutions to
nonlinear and possibly nonlocal curvature flows in the presence of continuous time-dependent forcing
and mobility, in the form (1.1). Our first main result concerns the instance of (1.1) where κ is a
variational curvature. In this case, we show in Theorem 3.5 that the minimizing movements scheme
produces discrete-in-time functions that converge, as the time-step parameter tends to zero, towards
a viscosity solution to (1.1). Subsequently, we establish uniqueness for the parabolic Cauchy problem
associated with the level set formulation of (1.1). This result, presented in Theorem 4.9, does not
require the curvature κ to be variational, though it must satisfy specific additional conditions.
Remarkably, no further assumptions on G are needed. In particular, κ is required to be either of
first-order type or to satisfy a strengthened uniform regularity condition in the second-order case
(see conditions (FO) and (C’) in Section 4 for details). All the relevant examples of generalized
curvatures presented above satisfy these assumptions.

The proofs are inspired by the techniques developed in [16], coupled with recent insights we devel-
oped in [11] (see also [9]). In [16], the authors prove existence and uniqueness of viscosity solutions
to curvature flows of the form V = −κ, with κ being a generalized curvature (the uniqueness result
requires additional assumptions on κ, the same we will require in the last section). In the specific
case of variational curvatures, existence can also be proved by using the minimizing movements
scheme, similar to the one sketched above. The starting observation is that, under our assumptions
on G, if κ is a generalized curvature, then −G(−κ) is still a generalized curvature. Therefore, the
same viscosity theory of [16] applies to evolution laws of the form

(1.2) V = G(−κ),

providing existence of viscosity solutions, convergence of the minimizing movements scheme and
uniqueness under further assumptions on G and κ. Anyhow, when dealing with (1.1) two problems
arise. Firstly, it is no longer true in general that if κ is a variational curvature, then so is −G(−κ).
In particular, convergence of the minimizing movements scheme does not follow immediately from
[16]. It is thus interesting to modify the minimizing movements scheme to account for the nonlinear
term, even in the simplified version of (1.1) given by (1.2). In this regard, nontrivial difficulties
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arise in the case where G is bounded from above or below, as some tools heavily employed in the
linear setting are no longer available (see e.g. the commonly used reformulation (2.15)). This issue
will be circumvented by an approximation procedure. One of the main goals of this paper was
indeed considering G with minimal regularity assumptions.

Secondly, the introduction of a time-dependent forcing term and a mobility requires some care.
Indeed, the level set formulation for (1.1) with time-dependent forcing and mobility does not fall in
the framework of [16]. In particular, the proof of the comparison principle needs some careful work.
It is inspired by [16] with some insights coming from the classical theory of viscosity solutions (see
for instance [21]).

This work is an extension and an improvement of the unpublished (and unfinished) preprint [10],
where the authors show the convergence of the minimizing movements scheme towards (1.2), where
κ the classical mean curvature and G is a smooth function with polynomial growth.

To conclude, it would be interesting to study the much more challenging case where the subjacent
perimeter is of crystalline type. In this setting the availability of the viscosity solutions of [22, 23]
and the development of distribution solutions of [13, 14, 15] may suggest the possibility of a future
investigation in this direction. Another interesting instance is the non translation invariant case,
and a first step could be considering the same setting of [11]. A simplified model would consist
in considering a forcing term f that also depends on the spatial variable. In this case, we expect
the convergence result to still hold, by suitably adapting the arguments from the present work and
from [11]. However, the uniqueness result appears to be more delicate as the proof presented here
does not carry effortlessly to this instance (see (4.19)).

The paper is structured as follows. In Section 2 we introduce some notation and the minimizing
movements scheme. Then, in Sections 3 we show the convergence of the minimizing movements
scheme towards viscosity solutions to (1.1). Uniqueness of viscosity solutions to (1.1), under addi-
tional assumptions on κ is the subject of Section 4.

2. The minimizing movements scheme

2.1. Preliminaries. We start introducing some notations. We will use both Br(x) and B(x, r) to
denote the Euclidean ball in RN centered in x and of radius r. If the ball is centered in zero, we
simply write Br. We let M denote the family of the measurable sets in RN , and E ∈ C2 to say
that the set E is of class C2. In the following, we will always speak about measurable sets and
refer to a set as the union of all the points of density 1 of that set i.e. E = E(1). Moreover, if not
otherwise stated, we implicitly assume that the function spaces considered are defined on RN , e.g
L∞ = L∞(RN ). Moreover, we often drop the measure with respect to which we are integrating, if
clear from the context.

Definition 2.1. We define anisotropy a function ψ : RN → [0,+∞) which is continuous, convex,
even and positively 1-homogeneous. Moreover, there exists cψ > 0 such that ∀p ∈ RN it holds

(2.1)
1

cψ
|p| ≤ ψ(p) ≤ cψ|p|.

We recall that the polar function ψ◦ of an anisotropy ψ is defined by

ψ◦(v) := sup
ψ(ξ)≤1

ξ · v.

The following identities hold for smooth anisotropies: ∀v, ξ ∈ RN

ψ(v)ψ◦(ξ) ≥ v · ξ, ψ◦(∇ψ(v)) = v, ∇ψ(v) · v = ψ(v).
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Definition 2.2. Given an anisotropy ψ and a set E, we define the ψ-distance from E as

distψE(x) = inf
y∈E

ψ◦(x− y),

and the signed ψ-distance from E as

sdψE(x) = distψE(x) − distψEc(x).

For δ ∈ R and E ∈ M , we denote

Eδ = {x ∈ RN : sdψE(x) ≤ δ},

and use the notation E−∞ := ∅, E+∞ := RN .

Note that (2.1) implies that

(2.2)
1

cψ
distE(x) ≤ distψE(x) ≤ cψdistE(x),

where distE denotes the Euclidean distance from the set E.
In this section we extend the previous study to nonlocal instances, in the spirit of [16]. We recall

some notation. For any given E ∈ C2, we consider1 a function x 7→ κ(x,E), defined for x ∈ ∂E,
and that we will call (generalized) curvature of E at x. This function must satisfy the following
axioms:

(A) Monotonicity: If E,F ∈ C2 and x ∈ ∂E ∩ ∂F with E ⊆ F , then κ(x,E) ≥ κ(x, F );
(B) translation invariance: For every E ∈ C2, x ∈ ∂E and y ∈ RN , it holds κ(x,E) = κ(x +

y,E + y);
(C) Continuity: If En → E in C2 and xn ∈ ∂En → x ∈ ∂E, then κ(xn, En) → κ(x,E).

Defining for x ∈ RN and ρ > 0

c(ρ) = max
x∈∂Bρ

max
{
κ(x,Bρ),−κ(x,Bcρ)

}
,

c(ρ) = min
x∈∂Bρ

min
{
κ(x,Bρ),−κ(x,Bcρ)

}
,

(2.3)

we note that by (C) these functions are continuous in ρ. We further require

(D) Curvature of balls: There exists K > 0 such that c(ρ) ≥ −K > −∞.

In the following we will focus on the study of the geometric evolution equation

(2.4) V (x, t) = ψ(νEt)(x)G(−κ(x,Et) + f(t)), for x ∈ ∂Et and t > 0,

starting from an initial bounded set E0 (or an unbounded set with bounded complement), where ψ
is an anisotropy, κ(·, Et) is a variational curvature in the sense above, and f is a bounded forcing
term. Here and in the following, we fix T > 0 and consider the evolution for t ∈ (0, T ). The
functions G, f are required to satisfy the following conditions:

• G : R → R is a continuous, non-decreasing function, with G(0) = 0;
• f ∈ C0

b (R);

1One can slightly generalize this definition by considering sets in Ck,β with k ≥ 2, β ∈ [0, 1], but for simplicity
we consider the C2 case only.
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We then set

lim
s→−∞

G(s) = −a ∈ [−∞, 0], lim
s→+∞

G(s) = b ∈ [0,+∞].

Consider a function u : RN×[0,+∞) → R whose superlevel sets Es := {u(·, t) ≥ s} evolve according
to the nonlinear mean curvature equation (2.4). By classical computations (see for instance [21]),
the function u satisfies

(2.5)

{
∂tu(x, t) − ψ(∇u(x, t))G(−κ(x, {u(·, t) ≥ u(x, t)}) + f(t)) = 0

u(·, 0) = u0.

Let us recall the notion of viscosity solutions employed in [16]. One first introduces a family of
auxiliary functions.

Definition 2.3. Given a curvature κ defined as above, we consider a family L of functions ℓ ∈
C∞([0,+∞)), such that ℓ(0) = ℓ′(0) = ℓ′′(0) = 0, ℓ(ρ) > 0 for all ρ in a neighborhood of 0, ℓ is
constant in [M,+∞) for some M > 0 (depending on ℓ), and

lim
ρ→0+

ℓ′(ρ) G(c(ρ)) = 0,

where c is as in (2.3).

We refer to [21, Lemma 3.1.3] for a proof that the the family L is not empty. The notion of
admissible test function is the following. With a slight abuse of notation, in the following we will
say that a function is spatially constant outside a compact set even if the value of such constant is
time-dependent.

Definition 2.4. Let ẑ = (x̂, t̂) ∈ RN × (0, T ) and let A ⊆ (0, T ) be any open interval containing t̂.
We say that η ∈ C0(RN × A) is admissible at the point ẑ if it is of class C2 in a neighborhood of
ẑ, if it is constant out of a compact set, and, in case ∇η(ẑ) = 0, the following holds: there exists
ℓ ∈ L and ω ∈ C∞([0,+∞)) with ω′(0) = 0, ω(ρ) > 0 for ρ > 0 such that

|η(x, t) − η(ẑ) − ηt(ẑ)(t− t)| ≤ ℓ(|x− x̂|) + ω(|t− t̂|)
for all (x, t) in RN ×A.

Then, the notion of viscosity solutions employed in [16] is the following.

Definition 2.5. An upper semicontinuous function u : RN × [0, T ] → R, constant outside a
compact set, is a viscosity subsolution of the Cauchy problem (2.5) if u(·, 0) ≤ u0 and, for all
z := (x, t) ∈ RN × [0, T ] and all C∞-test functions η such that η is admissible at z and u− η has a
maximum at z, the following holds:

i) If ∇η(z) = 0, then

(2.6) ηt(z) ≤ 0;

ii) If ∇η(z) ̸= 0, then

(2.7) ∂tη(z) + ψ(∇η(x, t))G(−κ(x, {η(·, t) ≥ η(z)}) + f(t)) ≤ 0.

A lower semicontinuous function u : RN × [0, T ] → R, constant outside a compact set, is a viscosity
supersolution of the Cauchy problem (2.5) if u(·, 0) ≥ u0 and, for all z := (x, t) ∈ RN × [0, T ] and
all C∞-test functions η such that η is admissible at z and u− η has a minimum at z, the following
holds:

i) If ∇η(z) = 0, then ηt(z) ≥ 0,
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ii) If ∇η(z) ̸= 0, then ∂tη(z) + ψ(∇η(x, t))G(−κ(x, {η(·, t) ≥ η(x, t)}) + f(t)) ≥ 0.

Finally, a function u is a viscosity solution for the Cauchy problem (2.5) if it is both a subsolution
and a supersolution of (2.5).

Remark. By classical arguments, one could assume that the maximum of u − η is strict in the
definition of subsolution above (an analogous remark holds for supersolutions).

In the rest of the section we will consider a particular instance of generalized curvatures, namely
the variational curvatures introduced in [16]. We start by recalling the notion of generalized perime-
ters.

Definition 2.6. We will say that a functional J : M → [0,+∞] is a generalized perimeter if it
satisfies the following properties: for every E,E′ measurable sets and x ∈ RN

(i) J(E) < +∞ for every bounded C2-set E;
(ii) J(∅) = J(RN ) = 0;

(iii) J(E) = J(E′) if |E△E′| = 0;
(iv) J is lower semicontinuous in L1

loc;
(v) J is submodular, that is

(2.8) J(E ∩ E′) + J(E ∪ E′) ≤ J(E) + J(E′);

(vi) J is translation invariant: for every E ∈ C2 and x ∈ RN it holds J(x+ E) = J(E).

A generalized perimeter J can be extended to a functional on L1
loc(RN ) enforcing a generalized

co-area formula:

(2.9) J(u) =

ˆ +∞

−∞
J({u ≥ s}) ds for every u ∈ L1

loc(RN ).

It turns out that the functional above is a convex lsc functional on L1
loc(RN ) see [12].

Definition 2.7. Given a bounded C2-set E and x ∈ ∂E, we define

(2.10) κ+(x,E) = inf

{
lim inf
ε→0

J(E ∪Wε) − J(E)

|Wε \ E|
: Wε

H→ {x}, |Wε \ E| > 0

}
,

and

κ−(x,E) = inf

{
lim inf
ε→0

J(E) − J(E \Wε)

|Wε ∩ E|
: Wε

H→ {x}, |Wε ∩ E| > 0

}
,

where
H→ denotes Hausdorff convergence. We say that κ(x,E) is the curvature of E at x if

κ+(x,E) = κ−(x,E) =: κ(x,E).

In the rest of the section we will assume that κ exists for all sets of class C2, and furthermore
that it satisfies assumption (C) and (D). Assumptions (A) and (B) follow from the assumptions on
J , furthermore one can prove that the weak notion of curvature of Definition 2.7 coincides with the
more standard one based on the first variation of the functional J , whenever the latter exists (see
[16, Section 4] for details).
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2.2. The minimizing movements scheme. We set g as a selection of the set-valued inverse of
G, that is g(x) ∈ G−1(x) for every x ∈ (−a, b) and extend it setting g = −∞ for every x ≤ −a,
g = +∞ for every x ≥ b. Here, we extended G to [−∞,+∞] setting G(±∞) = limx→±∞ G(x). We
assume also that g(0) = 0. Note that these definitions imply G ◦ g = id in [−a, b]. Moreover, g is
strictly increasing. In the following we will denote for k ∈ N, h > 0

f(kh) =

 (k+1)h

kh

f(s) ds.

Given a bounded set E ∈ M and h > 0, t ∈ (0,+∞) we define a functional on the measurable sets
as

FE
h,t(F ) = J(F ) +

ˆ
E△F

∣∣∣∣∣g
(

sdψE
h

)∣∣∣∣∣− f([t/h]h)|F |,(2.11)

where [·] denotes the integer part. Before proving existence for the functional 2.11 we recall the
following existence result for a related problem, see [16, Proposition 6.1].

Lemma 2.8. Assume that η is a measurable function satisfying (−η) ∨ 0 = η− ∈ L1(RN ). Then,
the problem

(2.12) min

{
J(F ) +

ˆ
F

η(x) dx

}
admits a minimal and a maximal solution (with respect to inclusion). Moreover, if η1 ≤ η2 then
the minimal (resp. maximal) solution to (2.12) with η1 replacing η contains the minimal (resp.
maximal) solution to (2.12) with η2 replacing η.

We then prove existence of minimizers to FE
h,t. The proof of the boundedness of minimizers has

been taken from [26].

Lemma 2.9. Let E ∈ M be a bounded set and h > 0, t ∈ [0,+∞). Then, there exist minimizers of
FE
h,t and, denoting E

′ one such minimizer, it has the following properties: it is a bounded set such

that (up to negligible sets)

E−ah ⊆ E′ ⊆ Ebh.

Moreover, there exist a maximal and a minimal minimizer (with respect to inclusion) of FE
h,t.

Proof. We fix h > 0 and t ∈ (0, T ), and c = f([t/h]h). Let n ∈ N and denote gn := g(
sdψE
h ) ∨ −n

and g̃ := g(
sdψE
h ). We note that g−n ∈ L1

loc, thus Lemma 2.8 implies that the functional

J(F ) +

ˆ
F

(gn − c)

admits a minimal minimizer En. Since
´
E
gn is finite, one can check that En minimizes also

(2.13) J(F ) +

ˆ
E△F

|gn| − c|F |.

Note that En ⊆ En+1 by Lemma 2.8, therefore En → E′ =
⋃
n∈NEn in L1

loc. Since |g̃| is coercive,
there exists R > 0 such that |g̃| ≥ 2∥f∥L∞(R)+1 in BcR and E ⊆ BR. Testing (2.13) with ∅, we
deduce

0 ≥ J(En) +

ˆ
En

(gn − c) ≥ (∥f∥L∞(R) + 1)|En \BR|,
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that implies En ⊆ BR for every n ∈ N. By semicontinuity and Fatou’s lemma we get

FE
h,t(E

′) ≤ lim
n→∞

J(En) +

ˆ
En△E

|gn| − c|En|.

Since |gn| ≤ |g̃|, we conclude that E′ is a minimizer of FE
h,t. By classical arguments, one can check

that if E′
1, E

′
2 are minimizers of FE

h,t, then so are E′
1 ∩ E′

2, E
′
1 ∪ E′

2, implying the existence of a

minimal and a maximal solution (see e.g. [16, Proposition 6.1]).

Let now Ẽ denote a minimizer of FE
h,t. Since Ẽ has finite energy, it is straightforward to check

that |Ẽ| < +∞ and sdψE ∈ [−ah, bh] a.e. on Ẽ△E. If b < +∞ this clearly implies that Ẽ is
bounded; if b = +∞ we use a different argument. We first prove some preliminary results. □

The first one is a comparison principle, in the spirit of [25].

Lemma 2.10 (Weak comparison principle). Fix h > 0, t ∈ (0,+∞) and assume that F1, F2 are

bounded sets with F1 ⊂⊂ F2. Then, for any two minimizers Ei of FFi
h,t for i = 1, 2, we have

E1 ⊆ E2. If, instead, F1 ⊆ F2, then we have that the minimal (respectively, maximal) minimizer

of FF1

h,t is contained in the minimal (respectively, maximal) minimizer of FF2

h,t.

Proof. Firstly, we assume F1 ⊂⊂ F2, Testing the minimality of E1, E2 with their intersection and
union, respectively, we obtain

J(E1) +

ˆ
(E1\E2)\F1

g

(
sdψF1

h

)
+

ˆ
(E1\E2)∩F1

g

(
sdψF1

h

)
≤ J(E1 ∩ E2) + f([t/h]h)|E1 \ E2|

J(E2) ≤ J(E1 ∪ E2) +

ˆ
(E1\E2)\F2

g

(
sdψF2

h

)
+

ˆ
(E1\E2)∩F2

g

(
sdψF2

h

)
− f([t/h]h)|E1 \ E2|.

Summing the two inequalities above and using the submodularity of J we get

(2.14)

ˆ
(E1\E2)\F1

g

(
sdψF1

h

)
+

ˆ
(E1\E2)∩F1

g

(
sdψF1

h

)

≤
ˆ
(E1\E2)∩F2

g

(
sdψF2

h

)
+

ˆ
(E1\E2)\F2

g

(
sdψF2

h

)
.

Assume by contradiction that |E1 \ E2| > 0. Since sdψF2
< sdψF1

and by the strict monotonicity of
g, we estimate the rhs of (2.14) by
ˆ
(E1\E2)\F2

g

(
sdψF2

h

)
+

ˆ
(E1\E2)∩F2

g

(
sdψF2

h

)
<

ˆ
(E1\E2)\F2

g

(
sdψF1

h

)
+

ˆ
(E1\E2)∩F1

g

(
sdψF1

h

)
and plug it in (2.14) to reach the desired contradiction. The other cases follow analogously, reasoning
by approximation if F1 ⊆ F2. □

Lemma 2.11. Let c ∈ R. Consider a bounded set E ∈ M and non-decreasing functions g1, g2 :
R → R such that g1 < g2 in R \ {0} and g1(0) = g2(0) = 0. Then, if Ei solves

min
F

{
J(F ) +

ˆ
E△F

∣∣∣gi(sdψE(x))
∣∣∣ dx+ c|F |

}
for i = 1, 2, we have that E2 ⊆ E1. If g1 ≤ g2 instead, an analogous statement holds for the
maximal and minimal solutions.
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Proof. Denote g̃i = gi ◦ sdψE for i = 1, 2 and assume by contradiction that |E2 \E1| > 0. Reasoning
as in Lemma 2.10, one getsˆ

E1△E
|g̃1| +

ˆ
E2△E

|g̃2| ≤
ˆ
(E1∪E2)△E

|g̃1| +

ˆ
(E1∩E2)△E

|g̃2|.

Simplifying2 the above expression and recalling that g̃i ≥ 0 on Ec, g̃i ≤ 0 on E, we reach

0 ≤
ˆ
(E2\E1)\E

(g̃1 − g̃2) +

ˆ
(E2\E1)∩E

(g̃1 − g̃2) =

ˆ
E2\E1

(g̃1 − g̃2),

which implies the contradiction. The case g1 ≤ g2 follows by approximation. □

We can then conclude the proof of the boundedness of minimizers to FE
h,t.

End of proof of Lemma 2.9. We prove that any minimizer Ẽ of FE
h,t is bounded. Recall that |Ẽ| <

+∞. We assume by contradiction the existence of points {xn}n∈N ⊆ RN of density one for Ẽ,
with |xn| → +∞ as n → +∞. For fixed M > 0, since |g| is coercive there exists R > 0 such that
|g̃| ≥ M in BcR. We can assume that E ⊆ BR, and, up to extracting an unrelabelled subsequence,
that |xn − xm| > 2R for n ̸= m and |xn| > 3R for all n ∈ N. We note that

MχBc2R < |g̃|(· + τ) for all |τ | ≤ R.

Let us denote by EM a minimizer of

J(F ) +

ˆ
F△E

MχBc2R = J(F ) +M |F \B2R|.

By translation invariance Ẽ+τ minimizes (2.11) with |g̃|(·+τ) substituting |g̃|, thus by comparison

Ẽ + τ ⊆ EM for all |τ | ≤ R.

In particular, the disjoint balls BR(xn) are all contained (up to negligible sets) in EM . This implies

J(EM ) +M |EM \B2R| ≥M |
⋃
n∈N

BR(xn)| = +∞,

a contradiction. □

If
´
E
g(sdψE/h) < +∞, minimizers of FE

h,t minimize also the functional

(2.15) F 7→ J(F ) +

ˆ
F

g
(

1
h sdψE

)
− f([t/h]h)|F |,

as can be see adding the (constant term)
´
E
g(sdψE/h) to the functional FE

h,t. In the present

setting, since
´
E
g(sdψE/h) may be infinite in the case a < +∞, we can not draw this conclusion

straightforwardly. We can nonetheless recover the minimal and the maximal solution to (2.16) by
means of a sequence of minimizers of a functional similar to (2.15), essentially as in the proof of
Lemma 2.9.

2Noting that

E1△E = ((E1 \ E2) \ E) ∪ ((E1 ∩ E2) \ E) ∪ ((E \ E1) \ E2) ∪ ((E ∩ E2) \ E1)

(E1 ∪ E2)△E = (E2 \ E1 \ E) ∪ ((E1 ∩ E2) \ E) ∪ ((E1 \ E2) \ E) ∪ ((E \ E1) \ E2)

(E1 ∩ E2)△E = ((E2 ∩ E1) \ E) ∪ ((E \ E1) \ E2) ∪ ((E ∩ E1) \ E2) ∪ ((E ∩ E2) \ E1).
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For a given bounded set E ∈ M and t ∈ (0,+∞), we denote

(2.16) T−
h,tE = min argmin FE

h,t, T+
h,tE = max argmin FE

h,t,

where the minimum and maximum above are made with respect to inclusion. We will often denote
Th,t := T−

h,t. From the previous results, we deduce this corollary.

Corollary 2.12. Assume a < +∞. Let E ∈ M be a bounded set and t ∈ (0,+∞), h > 0. Then,
there exists a sequence of uniformly bounded sets (En)n∈N such that En ↗ T−

h,tE and for any n ∈ N,
En is a minimizer of

(2.17) F 7→ J(F ) +

ˆ
F

g

(
sdψE
h

)
∨ (−n) − f([t/h]h)|F | =: FE,n

h,t (F ).

Analogously, there exists a sequence of uniformly bounded sets (En)n∈N such that En ↘ T+
h,tE in

L1 and for any n ∈ N, En is a solution to

(2.18) min

{
J(F ) +

ˆ
BR\F

g

(
sdψE
h

)
∧ n− f([t/h]h)|F | : F ⊆ BR

}
,

where T±
h,tE ⊆ BR.

Proof. We prove the statement for T−
h,tE, the other case being analogous. We set c = f([t/h]h),

gn := g(sdψE/h) ∨ (−n), and E′ = T−
h,tE. Arguing as in the proof of Lemma 2.9, one builds a

sequence of sets (En)n∈N, each being the minimal minimizer of FE,n
h,t , En ⊆ BR for all n ∈ N

and En ↗
⋃
n∈NEn =: Ẽ. Note that E′ ⊇ En as g ≤ gn, therefore Ẽ ⊆ E′ and also χEn△E′ =

|χEn − χE′ | → χẼ△E′ a.e. as n→ ∞. By lower semicontinuity of J and Fatou’s lemma we get

FE
h,t(Ẽ) = J(Ẽ) − c|Ẽ| +

ˆ
Ẽ△E′

|g(sdψE/h)| = J(Ẽ) − c|Ẽ| +

ˆ
RN

lim inf
n→∞

(|gn|χEn△E)

≤ lim inf
n→∞

(
J(En) − c|En| +

ˆ
En△E

|gn|
)
.

Since En minimizes FE,n
h,t we get

(2.19) FE
h,t(Ẽ) ≤ lim inf

n

(
J(E′) +

ˆ
E′△E

|gn| − c|E′|
)

≤ FE
h,t(E

′),

where in the last inequality we used that |gn| ≤ |g|. Since E′ is the minimal minimizer of FE
h,t we

conclude Ẽ = E′. The functional (2.17) is obtained from (2.11) adding
´
E
gn(sdψE/h). Finally, the

functional in (2.18) is obtained from functional (2.11) adding the (finite) term −
´
BR\E g(sdψE/h)∧n

and restricting the family of competitors. □

We now provide an estimate on the evolution speed of balls. It is interesting to note that, in the
isotropic setting (ψ = ϕ = | · |) and under the assumption of strict monotonicity of G, an explicit
evolution law for the radii of evolving balls can be obtained. In our more general case we need to
employ the variational proofs of [16, 11]. By Lemma 2.9, the relevant case is b = +∞.

Lemma 2.13. Assume b = +∞. There exists a positive constant C such that, for every R > 0 and
every t ∈ (0,+∞), h > 0 it holds

T±
h,tBR ⊆ BR+Ch.
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Proof. It is sufficient to prove the claim for T+
h,tBR. We fix h > 0 and set E = T+

h,tBR and

g̃ = g(sdψBR/h). We define
ρ̄ = inf{ρ ∈ (0,+∞) : |E \Bρ| = 0},

and note that ρ̄ < +∞ since E is bounded. We can assume wlog ρ̄ > R. Let x̄ ∈ ∂Bρ̄ such that
|E ∩B(x̄, ε)| > 0 for any ε > 0, and let ρ > ρ̄. Let τ = (ρρ̄ − 1)x̄ and note that B(−τ, ρ) ⊇ Bρ̄ and

∂B(−τ, ρ) is tangent to ∂Bρ̄ at x̄.
We let for ε > 0 small Bε = B(−(1 + ε)τ, ρ) and W ε = E \ Bε. We note that by construction

|W ε| > 0 and it converges to x̄ in the Hausdorff sense as ε→ 0.
Testing the minimality of E against E ∩Bε, we find

(2.20) J(E) − J(Bε ∩ E) ≤ f([t/h]h)|Wε| +

ˆ
Bε∩E△BR

|g̃| −
ˆ
E△BR

|g̃|.

We remark that, by the choice of ρ̄ and τ , taking ε small it holds BR ⊆ Bε ∩ E. Therefore, (2.20)
reads

J(E) − J(Bε ∩ E) ≤ f([t/h]h)|Wε| +

ˆ
Bε∩E\BR

|g̃| −
ˆ
E\BR

|g̃|,

implying

(2.21) J(E) − J(Bε ∩ E) ≤ f([t/h]h)|Wε| −
ˆ
(E\Bε)\BR

|g̃| = f([t/h]h)|Wε| −
ˆ
W ε

|g̃|.

By submodularity (2.8), using the definition of c and assumption (D) we conclude

−K + oε(1) ≤ ∥f∥∞ −
 
W ε

|g̃| ≤ ∥f∥∞ −
 
W ε

g(cψ(|x| −R)/h).

Passing to the limit ε→ 0 we get

K + ∥f∥∞ ≥ lim inf
s→cψ(ρ̄−R)h

g(s),

from which the thesis follows applying G on both sides. □

Note that the previous result implies, in particular, that the discrete evolution starting from an
initial bounded set remains bounded in every bounded time interval (0, T ).

We then provide an upper bound on the evolution speed of balls in the spirit of [16, 11]. We
remark that the relevant case is a = +∞ as otherwise Lemma 2.9 yields

T±
h,tBR ⊇ BR−ah.

Lemma 2.14. Let R0 > 0 and σ > 1 be fixed. Assume a = +∞. Then, there exist a positive
constant c such that, if h > 0 is small enough, for all R ≥ R0 and t ∈ (0,+∞) it holds

(2.22) T±
h,tBR ⊇ BR+ h

cψ
G(−c(R/σ)−∥f∥∞).

Proof. We prove the result for E := T−
h,tBR. Take h small enough so that Th,tB 1

4R0
̸= ∅. By

translation invariance and taking h small, one can see that3 BR
4
⊆ E. We set

(2.23) ρ̄ = sup{ρ ∈ [0,+∞) : |Bρ \ E| = 0} ∈ [R4 ,+∞),

3Indeed, by translation invariance it holds

Th,tBR
4
+B 3

4
R ⊆ Th,tBR,

and for h small (depending on R) the set T±
h,tBR/4 is not empty.
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and note that ρ̄ < +∞ by the boundedness of E. Assume wlog ρ̄ < R. Let x̄ ∈ ∂Bρ̄ be such that
|B(x̄, ε) \ E| > 0 for any ε > 0. Set ρ ∈ (0, ρ̄) and τ = (1 − ρ/ρ̄)x̄ such that ∂B(τ, ρ) ∩ ∂Bρ̄ = {x̄}.
Setting Bε := ((1 + ε)τ, ρ), consider the sets

W ε := Bε \ E.
Notice that by construction, for ε small, W ε has positive measure and it converges to {x} as ε→ 0
in the Hausdorff sense. Since E minimizes (2.15) (as a = +∞), we use its minimality to get

J(T±
h,tBR) − J(Bε ∪ T±

h,tBR) ≤ f([t/h]h)|Wε| +

ˆ
W ε

g

(
sdψBR
h

)
.

Dividing by |Wε| > 0 the equation above reads

(2.24)
J(T±

h,tBR) − J(Bε ∪ T±
h,tBR)

|Wε|
≤ f([t/h]h) +

 
W ε

g

(
sdψBR
h

)
.

By submodularity and the definition of variational curvature (2.10) we see that

J(T±
h,tBR) − J(Bε ∪ T±

h,tBR) ≥ J(Bε \Wε) − J(Bε) ≥ |Wε| (−κ(x̄, Bε) + oε(1)) ,

where oε(1) → 0 as ε→ 0. We plug the estimate above in (2.24) and send ε→ 0 to conclude

−c(ρ̄) − ∥f∥∞ ≤ lim sup
s→cψ(ρ̄−R)/h

g(s).

Applying G to both sides of (2.24), we conclude

(2.25) ρ̄ ≥ R+
h

cψ
G (−c(ρ̄) − ∥f∥∞) ≥ R+

h

cψ
G (−c(R/4) − ∥f∥∞) ,

where in the last inequality we recalled that ρ̄ ≥ R/4. Using again the previous analysis with the
bound (2.25), we show (2.22) by taking h small enough. □

2.3. The scheme for unbounded sets. We now define the discrete evolution scheme for un-
bounded sets having compact boundary. Let us introduce the generalized perimeter

J̃(E) := J(Ec) for all E ∈ M .

Is is easily checked that J̃ satisfies all the assumptions of Definition 2.6, and, denoting κ̃ the
corresponding curvature, that

κ̃(x,E) = −κ(x,Ec).

Therefore, one has the bounds

c(ρ) = max
x∈∂Bρ

max
{
κ̃(x,Bρ),−κ̃(x,Bcρ)

}
,

c(ρ) = min
x∈∂Bρ

min
{
κ̃(x,Bρ),−κ̃(x,Bcρ)

}
,

where the functions c, c are defined in (2.3). For every compact set K and h, t > 0, we let T̃±
h,tK

denote the maximal and the minimal minimizer of F̃K
h,t, which corresponds to (2.11) with g̃(s) :=

−g(−s) instead of g(s) and −f instead of f . By changing variable F̃ := F c in (2.11), we see that

(T̃−
h,tK)c is the maximal solution to

min

{
J(F̃ ) +

ˆ
F̃△Kc

∣∣∣g (sdψKc/h
)∣∣∣+ f([t/h]h)|F̃ c|

}
.(2.26)
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Therefore, for every unbounded set E with compact boundary we define4

(2.27) T±
h,tE :=

(
T̃∓
h,tE

c
)c
.

As in the case of compact sets, we set Th,tE := T−
h,tE. Since g̃ has the same properties of g, one

easily checks that analogous results to Lemmas 2.13, 2.10 and 2.14 hold also for (2.27).

Lemma 2.15. Let t, h > 0. The following statements hold.

• Let F1 ⊆ F2 be unbounded sets with compact boundary. Then, T±
h,tF1 ⊆ T±

h,tF2.

• There exists C > 0 such that for every R > 0, h > 0 it holds T±
h,tB

c
R ⊇ BcR+Ch.

• Let R0 > 0 and σ > 1 be fixed. Then, if a = +∞ there exist c > 0 such that for h > 0 small
enough and for all R ≥ R0, it holds

T±
h,tB

c
R ⊆ Bc

R+ h
cψ

G(−σ cR−∥f∥∞)
.

If instead a < +∞ it holds

T±
h,tB

c
R ⊆ BcR−ah.

Furthermore, Corollary 2.12 implies straightforwardly the following approximation result.

Corollary 2.16. Set t, h > 0 and let E ∈ M be an unbounded set with bounded complement. Then,
there exists two sequences of sets (En)n∈N, (E

′
n)n∈N with uniformly bounded complement with the

following property. Each (En)c is a minimizer of (2.26) with g ∨ (−n) substituting g, and (E′
n)c is

a minimizer of (2.26) with g ∧ n substituting g. Moreover En ↗ T−
h,tE and E′

n ↘ T+
h,tE.

We now deduce an equivalent version of (2.26), which will be used in the final proof. Let us
consider E such that Ec ⊆ BR and assume a = +∞. Recall that T±

h,tE ⊇ BcR+Ch for some C > 0 by

Lemma 2.15. Adding to the functional in (2.26) the term
´
BR+Ch\(Th,tE)c

g(sdψE/h) and restricting

the family of competitors, we note that T−
h,tE is the minimal solution to

(2.28) min

{
J(F̃ ) +

ˆ
F̃∩BR+ch

g
(

sdψE/h
)

+ f([t/h]h)|F̃ c| : F̃ c ⊆ BR+ch

}
.

The case a < +∞ needs to be treated by approximation using Corollary 2.16. Lastly, we state
a comparison principle between bounded and unbounded sets. Its proof follows the one of [16,
Lemma 6.10], up to employing Corollary 2.16.

Lemma 2.17. Let E1 be a compact set and let E2 be an open, unbounded set with compact boundary,
and such that E1 ⊆ E2. Then, for every h, t > 0 it holds T±

h,tE1 ⊆ T±
h,tE2.

3. Main result

We start by introducing the discrete approximation scheme. Given a continuous function u0 :
RN → R which is constant outside a compact set, we define the transformation

(3.1) Th,tu(x) = sup {s ∈ R : x ∈ Th,t{u0 ≥ s}} ,

4To justify this, one can check that if a set E is moving according to (1.1), its complement moves according to

V (x, t) = −ψ(νEc (x))G(κ(x,Ec) + f) in the direction νEc ,

from which the incremental problem follows.
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where the operators T±
h,t have been introduced in (2.16), and we recall that Th,t := T−

h,t. We then

set uh(x, t) = u0(x) for t ∈ [0, h) and define

(3.2) uh(x, t) := (Th,t−huh(·, t− h)) (x).

By lemmas 2.10 and 2.15, one can see that the operator Th,t maps functions into functions. The
following properties of the operator Th,t hold.

Lemma 3.1. Given t, h > 0, the operator Th,t defined in (3.1) satisfies the following properties:

• Th,t is monotone, meaning that u0 ≤ v0 implies Th,tu0 ≤ Th,tv0;
• Th,t is translation invariant, as for any z ∈ RN , setting τzu0(x) := u0(x − z), it holds
Th,t(τzu0) = τz(Th,tu0);

• Th,t commutes with constants, meaning Th,t(u+ c) = (Th,tu) + c for every c ∈ R.

Proof. The first assertion follows from Lemma 2.10 and 2.15. The second one follows easily em-
ploying the definition (3.1), recalling the fact that the functional defined in (2.11) is invariant
under translations and that {τzu0 ≥ λ} = {u0 ≥ λ} + z for all λ ∈ R. The last result follows
analogously. □

The previous properties satisfied by the operator, in turn, preserve the continuity in space of the
initial function. Indeed, assume u0 is uniformly continuous and let ω : R+ → R+ be an increasing,
continuous modulus of continuity for u0. Then, for any s > s′ we have

{u > s} +Bω−1(s−s′) ⊆ {u > s′},

thus, by translation invariance we deduce

Th,t{u > s} +Bω−1(s−s′) ⊆ Th,t{u > s′}.

This inclusion implies that the function Th,tu0 is uniformly continuous in space, with the same
modulus of continuity ω of u0.

The following lemma provides an estimate on the continuity in time of uh.

Lemma 3.2. Fix t, h > 0 and u0 a uniformly continuous function. For all λ ∈ R it holds

Th,t{uh(·, t) > λ} = {uh(·, t+ h) > λ}, T+
h,t{uh(·, t) ≥ λ} = {uh(·, t+ h) ≥ λ}.

Proof. Given ε > 0, by definition it is easy to see that

{Th,0u0 > λ+ ε} ⊆ T±
h,0{u0 > λ} ⊆ {Th,0u0 > λ− ε}.

Passing to the limit ε→ 0, we deduce

{uh(·, h) > λ} ⊆ T±
h,0{u0 > λ} ⊆ {uh(·, h) ≥ λ}.

Finally, since uh(·, h) is a continuous function, the equalities {uh(·, h) > λ} = int{uh(·, h) ≥ λ} and

{uh(·, h) ≥ λ} = {uh(·, h) ≥ λ} hold and we prove the result for t = h. The other cases follow by
iteration. □

With the previous results and reasoning exactly as in [16, Lemma 6.13], we can prove that the
functions uh are uniformly continuous in time.

Lemma 3.3. For any ε > 0, there exists τ > 0 and h0 = h0(ε) > 0 such that for all |t − t′| ≤ τ
and h ≤ h0 we have |uh(·, t) − uh(·, t′)| ≤ ε.
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Thus, the family {uh}h>0 is equicontinuous and uniformly bounded as implied by Lemma 2.13.
By the Ascoli-Arzelà theorem we can pass to the limit h → 0 (up to subsequences) to conclude
that uh → u uniformly in any compact in time subset of RN × [0,+∞), with u being a uniformly
continuous function. Moreover, the function u is bounded and constant outside a compact set (as
implied by Lemma 2.13).

Proposition 3.4. Let T > 0. Up to a subsequence, the family {uh}h>0 defined in (3.2) converges
uniformly on RN × [0, T ] to a uniformly continuous function u, which is bounded and constant out
of a compact set.

We can thus state our main result.

Theorem 3.5. The function u defined in Proposition 3.4 is a continuous viscosity solution to the
Cauchy problem (2.5).

We finally recall the notion of a level-set solution to the evolution equation (1.1) (see e.g. [21]).

Definition 3.6. Given an initial bounded set E0 (or unbounded set with bounded complement)
define an uniformly continuous function u0 : RN → R such that {u0 > 0} = E0. Then, setting u as
the solution to (2.5) with initial datum u0 given by Theorem 3.5, we define the level-set solution to
the nonlinear mean curvature evolution (1.1) of E0 as

Et := {u(·, t) > 0}.

3.1. Proof of the main result. We start by an estimate on the evolution speed. For every r > 0,
using the notation of Lemma 2.14, we set

κ̂(r) = min
{
−1, 1

cψ
G (−c(r) − ∥f∥∞)

}
and, given r0 > 0, we set r(t) as the unique solution to

(3.3)

{
ṙ(t) = κ̂(r(t))

r(0) = r0.

Note that, in general, the solution r(t) will exist in a finite time interval [0, T ∗(r0)], where T ∗(r0)
denotes the extinction time of the solution starting from r0 i.e. the first time t such that r(t) = 0.

Lemma 3.7. Let u be the function given by Proposition 3.4 and assume that there exists λ ∈ R
such that B(x0, r0) ⊆ {u(·, t0) > λ}. Then, if a = +∞, it holds

B(x0, r(t− t0)) ⊆ {u(·, t) > λ}

for every t ≤ T ∗(r0) + t0, where r(t) is the solution to (3.3) with extinction time T ∗(r0). If instead
a < +∞ it holds

B(x0, r0 − a(t− t0)) ⊆ {u(·, t) > λ}
for all t such that r0−a(t− t0) ≥ 0. The same result holds for sublevels substituting superlevel sets.

Proof. The result in the case a < +∞ follows directly by Lemma 2.9, so we assume a = +∞. We
consider wlog {u(·, t0) > λ} bounded, as the other case is analogous. For a fixed R0 < r0, taking
h(R0) small enough, we can ensure that B(x0, R0) ⊆ {uh(·, t0) > λ}. We then fix σ > 1 and define
recursively the radii Rn by

Rn+1 = Rn + h
cψ
G (−c(Rn/σ) − ∥f∥∞) .
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By Lemmas 2.10, 2.14 and 3.2, we see that B(x0, R[(t−t0)/h]+1) ⊆ {u(·, t) > λ} for every t ≥ t0 such
that R[(t−t0)/h]+1 > 0. Let then rσ be the unique solution to the ODE

(3.4)

{
ṙσ(t) = κ̂(rσ(t)/σ)

rσ(0) = R0.

Employing the monotonicity of κ̂, if rσ(t) ≤ Rn, then

rσ((n+ 1)h) ≤ Rn +

ˆ (n−1)h

nh

κ̂

(
rσ(s)

σ

)
ds ≤ Rn +

ˆ (n−1)h

nh

κ̂

(
Rn
σ

)
ds

≤ Rn +

ˆ (n−1)h

nh

1
cψ
G (−c(Rn/σ) − ∥f∥∞) ds = Rn+1.

Therefore, B(x0, rσ(h[(t − t0)/h] + h) ⊆ {uh(·, t) > λ} for t ≥ t0 as long as the radius is positive.
We conclude sending h→ 0, then R0 → r0 and σ → 1. □

We are now in the position to prove our main result.

Proof of Theorem 3.5. Consider u as defined in (3.4): we show that u is a subsolution, as proving
that it is a supersolution is analogous. Let η(x, t) be an admissible test function in z̄ := (x̄, t̄) and
assume that (x̄, t̄) is a strict maximum point for u− η. Assume furthermore that u− η = 0 in such
point.

Case 1: We assume that ∇η(z̄) ̸= 0. Firstly, in the case a < +∞ we remark that if
∂tη/ψ(∇η(ẑ)) ≤ −a, then (2.7) is trivially satisfied, thus we can assume wlog that

(3.5)
∂tη(z̄)

ψ(∇η(ẑ))
> −a.

By classical arguments (recalled in [11]) we can assume that each function uhk − η assumes a local
supremum in Bρ(z̄) at a point zhk =: (xk, tk) and that uhk(zhk) → u(z̄) as k → ∞. Moreover, we
can assume that ∇η(zk) ̸= 0 for k large enough.
Step 1: We define a suitable competitor for the minimality of the level sets of uh. By the previous
remarks we have that

(3.6) uh(x, t) ≤ η(x, t) + ck

where ck := uhk(xk, tk) − η(xk, tk), with equality if (x, t) = (xk, tk). Let σ > 0 and set

ησhk(x) := η(x, tk) + ck +
σ

2
|x− xk|2.

Then, for all x ∈ RN ,

uhk(x, tk) ≤ ησhk(x)

with equality if and only if x = xk. We set lk = uhk(xk, tk) = ησhk(xk). We fix ε > 0, to be chosen

later, and define Ekε := {uhk(·, tk) > lk − ε} = Thk,tk−hk {uhk(·, tk − hk) > lk − ε}5 and

(3.7) W k
ε := Ekε \

{
ησhk(·) > lk + ε

}
.

5The choice of working with the open superlevel sets is motivated by our need to employ (2.17)
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Assume that Ekε is bounded and let us define Ekε,n as the sets constructed by Corollary 2.12 where

{uhk(·, tk − hk) > lk − ε} , Ekε substitute E, T−
h,tE respectively. We thus have that Ekε,n ↗ Ekε as

n→ ∞ and that each Ekε,n is the minimal minimizer of a problem in the form (2.15). We define

(3.8) W k
ε,n := Ekε,n \

{
ησhk(·) > lk + ε,

}
.

It is easy to see that, along any subsequence n(ε) → ∞ as ε→ 0, it holds W k
ε,n(ε) → {x} as ε→ 0 in

the Hausdorff sense. Furthermore, we check that for every ε, k > 0 there exists n(ε, k) large enough
such that |W k

ε,n| > 0 for all n ≥ n(ε, k). Indeed, by the continuity of ησ and since |∇η(z̄)| ≠ 0 there
exists a positive radius r such that

(B(xk, r) ∩ Ekε ) ⊆W k
ε .

Since xk ∈ Ekε and it is an open set, it holds |W k
ε | > 0. Recalling that Ekε,n → Ekε in L1, we conclude

that |W k
ε,n| > 0 for all n = n(ε, k) large enough. Note also that, for every fixed k, n(ε, k) → ∞ as

ε→ 0.
By minimality of Ekε,n we have

J(Ekε,n) +

ˆ
Ekε,n

g

(
1
hk

sdψ{uhk (·,tk−hk)>lk−ε}
(x)

)
∨ (−n) dx− f

([
t
hk

]
hk

)
|W k

ε,n|

≤ J
(
Ekε,n ∩ {ησhk > lk}

)
+

ˆ
Ekε,n∩{ησhk>lk}

g

(
1
hk

sdψ{uhk (·,tk−hk)>lk−ε}
(x)

)
∨ (−n) dx.(3.9)

Adding to both sides J
(
{ησhk > lk} ∪ Ekε,n

)
and using the submodularity of J , we obtain

J({ησhk > lk + ε} ∪W k
ε,n) − J({ησhk > lk + ε}) − f

([
t
hk

]
hk

)
|W k

ε,n|

+

ˆ
Wk
ε,n

g

(
1
hk

sdψ{uhk (·,tk−hk)>lk−ε}
(x)

)
∨ (−n) dx ≤ 0.

Equation (3.6) implies {uhk(·, tk − hk) > lk − ε} ⊆ {η(·, tk − hk) > lk − ck − ε}, therefore by
monotonicity we get

J({ησhk > lk + ε} ∪W k
ε,n) − J({ησhk > lk + ε}) − f

([
t
hk

]
hk

)
|W k

ε,n|

+

ˆ
Wk
ε,n

g
(

1
hk

sdψ{η(·,tk−hk)>lk−ck−ε}(x)
)
∨ (−n) dx ≤ 0.

(3.10)

If instead Ekε is an unbounded set with compact boundary, we employ (2.28) instead of (3.9) to
obtain (3.10) in the computations above. See [16, 11] for details.
Step 2: We now estimate the terms appearing in (3.10). We start with the first two terms
J({ησhk > lk + ε} ∪W k

ε,n) − J({ησhk > lk + ε}). By definition of variational curvature, we get

(3.11) J({ησhk > lk + ε} ∪W k
ε,n) − J({ησhk > lk + ε}) ≥ |W k

ε,n|
(
κ(xk, {ησhk > lk + ε}) + oε(1)

)
,

The last term in (3.10) can be treated as follows. For any z ∈Wε, we have

(3.12) η(z, tk) + ck +
σ

2
|z − xk|2 ≤ lk + ε.

Since, in turn, η(z, tk) + ck > lk − ε it follows that σ|z − xk|2 < 4ε and thus, for ε small enough,

(3.13) W k
ε ⊆ Bc

√
ε(xk).
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Therefore, by Hausdorff convergence it holds that for every ε, k > 0 there exists n = n(ε, k) large
enough such that

(3.14) W k
ε,n ⊆ B2c

√
ε(xk).

On the other hand, by a Taylor expansion, for every z ∈W k
ε,n we have

(3.15) η(z, tk − hk) = η(z, tk) − hk∂tη(z, tk) + h2k

ˆ 1

0

(1 − s)∂2ttη(z, tk − shk) ds.

Then, we consider y ∈ {η(·, tk − hk)(y) = lk − ck − ε} being a point of minimal ψ-distance from z,

that is, ψ◦(z − y) = |sdψ{η(·,tk−hk)(y)>lk−ck−ε}(z)|. One can prove (see [11, eq. (4.26)] for details)

that

(3.16) |z − y| = O(hk).

Moreover, it holds (see [16, eq (6.26)] for details)

(z − y) · ∇η(y, tk − hk)

|∇η(y, tk − hk)|
= ±ψ

(
∇η(y, tk − hk)

|∇η(y, tk − hk)|

)
distψ{η(·,tk−hk)(y)=lk−ck−ε}(z),

with a “+” if z ∈ {η(·, tk − hk)(y) ≤ lk − ck − ε} and a “-” otherwise. We get

η(z, tk − hk) = η(y, tk − hk) + (z − y) · ∇η(y, tk − hk)

+

ˆ 1

0

(1 − s)
(
∇2η(y + s(z − y), tk − hk)(z − y)

)
· (z − y) ds

= lk − ck − ε− sdψ{η(·,tk−hk)(y)=lk−ck−ε}(z)ψ(∇η(y, tk − hk))

+

ˆ 1

0

(1 − s)
(
∇2η(y + s(z − y), tk − hk)(z − y)

)
· (z − y) ds.(3.17)

Note that, in view of (3.12) it holds |η(z, tk) − η(y, tk)| ≤ cε+ chk = O(hk), provided ε ≪ hk and
small enough. Thus, using also (3.14),(3.16) we deduce

1

hk
sdψ{η(·,tk−hk)>lk−ck−ε}(z) ≥

∂tη(z, tk) − 2ε
hk

−O(hk) −Ohk(1)

ψ(∇η(y, tk − hk))

=
∂tη(xk, tk) +O(

√
ε) − 2ε

hk
−O(hk) −Ohk(1)

ψ(∇η(xk, tk − hk)) +O(
√
ε) +O(hk)

,

and we apply g to both sides to conclude

(3.18) g
(

1
hk

sdψ{η(·,tk−hk)>lk−ck−ε}(z)
)
≥ g

(
∂tη(xk, tk) −Ohk(1)

ψ(∇η(xk, tk − hk)) +O(hk)

)
Step 4: We conclude the proof. Combining (3.10), (3.11) and (3.18), we arrive at

(3.19) 0 ≥ |W k
ε,n|
(
κ(xk, {ησhk > lk + ε}) + oε(1) − f

([
t
hk

]
hk

)
+

g

(
∂tη(xk, tk) −Ohk(1)

ψ(∇η(xk, tk − hk)) +O(hk)

)
∨ (−n)

)
.

Choosing n = n(ε, k), we can divide by |W k
ε,n(ε,k)| > 0 and apply G to both sides to get

G
(
−κ(xk, {ησhk > lk + ε}) + oε(1) + f

([
t
hk

]
hk

))
≥



VARIATIONAL NONLINEAR AND NONLOCAL CURVATURE FLOWS 19

G

(
g

(
∂tη(xk, tk) −Ohk(1)

ψ(∇η(xk, tk − hk)) +O(hk)

)
∨ (−n(ε, k))

)
.

Let us fix k > 0 and send ε→ 0 (thus also n(ε, k) → 0). Thanks to the continuity of G and recalling
also that W k

ε,n(ε,k) → {x} as ε→ 0, we let ε→ 0 and arrive at

G
(
−κ(xk, {ησhk > lk + ε}) + f

([
t
hk

]
hk

))
≥ ∂tη(xk, tk) −Ohk(1)

ψ(∇η(xk, tk)) +O(hk)
,

which finally implies the thesis by letting simultaneously σ → 0 and k → +∞.
Case 2: We assume ∇η(x̄, t̄) = 0 and prove that ∂tη(x̄, t̄) ≤ 0. The proof follows the line of the

one in [16]. We focus on the case a = +∞, the other being simpler.
Since ∇η(z̄) = 0, there exist ℓ ∈ L and ω ∈ C∞(R) with ω′(0) = 0 such that

|η(x, t) − η(z̄) − ∂tη(z̄)(t− t̄)| ≤ ℓ(|x− x̄|) + ω(|t− t̄|)

thus, we can define

η̃(x, t) = ∂tη(z̄)(t− t̄) + 2ℓ(|x− x̄|) + 2ω(|t− t̄|)

η̃k(x, t) = η̃(x, t) +
1

k(t̄− t)
.

We remark that u− η̃ achieves a strict maximum in z̄ and the local maxima of u− η̃k in RN × [0, t̄]
are in points (xk, tk) → z̄ as k → ∞, with tn ≤ t̄. From now on, the only difference from [16] is in
the case xk = x̄ for an (unrelabeled) subsequence. We thus assume xk = x̄ for all k > 0 and define
bk = t̄− tk > 0 and the radii

rk := ℓ−1(akbk),

where ak → 0 must be chosen such that the extinction time for the solution of (3.3) satisfies
T ∗(rk) ≥ t̄− tk, for k large enough. To show that such a choice for ak is possible, we set

(3.20) β(t) = sup
0≤s≤t

κ̂(ℓ−1(s))ℓ′(ℓ−1(s)),

where κ̂ is as in (3.3). Note that by Definition 2.3 it holds β(t) ≤ κ̂(t) for t small, β is non decreasing
in t and g(t) → 0 as t→ 0. We then have

T ∗(rk)

bk
≥ 1

bk

ˆ rk

rk/2

1

κ̂(s)
ds =

1

bk

ˆ ℓ−1(akbk)

ℓ−1(akbk/2)

1

κ̂(s)
ds

=
ak
2

 akbk

akbk/2

1

κ̂(ℓ−1(r))ℓ′(ℓ−1(r))
dr ≥ ak

2

1

β(bk)
= 2,(3.21)

where in the last equality we chose ak := 4β(bk) which tends to 0 as k → ∞.
By definition of η̃k it holds

B(x̄, rk) ⊆ {η̃k(·, tk) ≤ η̃k(x̄, tk) + 2ℓ(rk)}
⊆ {u(·, tk) ≤ u(x̄, tk) + 2ℓ(rk)},

by maximality of u− η̃k at zk and since u(zk) = η̃k(zk). Since the balls B(·, rk) are not vanishing,
by Lemma 3.7 we have

(3.22) x̄ ∈ {u(·, t̄) ≤ u(x̄, tk) + 2ℓ(rk)}.
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Finally, using again the maximality of u− η at z̄, the choice of rk and (3.22), we obtain

η(z̄) − η(x̄, tk)

t̄− tk
=
η(z̄) − η(x̄, tk)

bk
≤ u(z̄) − u(x̄, tk)

bk
≤ 2ℓ(rk)

bk
= 2ak.

Passing to the limit k → ∞, we conclude that ∂tη(z̄) ≤ 0. □

4. Uniqueness of Viscosity Solutions

The viscosity theory developed in [16] shows uniqueness for viscosity solutions to the Cauchy
problem {

∂tu(x, t) + |∇u(x, t)|κ(x, {u(·, t) ≥ u(x, t)}) = 0

u(·, 0) = u0,

which corresponds to (2.5) for G = id, ψ = | · | and f = 0, under some additional assumptions on
the curvature considered. In particular, the curvature κ must either be of first order or satisfy a
uniform continuity property (see conditions (FO) and (C’) below). Given that the nonlinearity G

is continuous, it follows that if κ satisfies the first-order condition, then −G(−κ) also satisfies it.
Similarly, assuming G is uniformly continuous, we deduce that if κ satisfies the uniform continuity
condition, so does −G(−κ). Consequently, uniqueness for continuous viscosity solutions to{

∂tu(x, t) − |∇u(x, t)|G(−κ(x, {u(·, t) ≥ u(x, t)})) = 0

u(·, 0) = u0

can be deduced from [16, Theorem 3.5] (assuming (FO) below) and [16, Theorem 3.8] (assuming
(C’) below and G uniformly continuous). Note however that the curvature G(−κ) is in general not
a variational one, thus the convergence of the minimizing movements scheme does not follow from
the results of [16]. This is instead ensured by Theorem 3.5.

In this section we detail how one can generalize the results of [16] to show uniqueness of viscosity
solutions to (2.5), under some additional assumptions on κ (but, quite surprisingly, not on G). In
particular, the major difficulty comes from the presence of a time-dependent term in the operator
involving the curvature, which can not be decoupled straightforwardly (because of the presence of
the nonlinearity G), see (2.5).

4.1. Setup. We start recalling notation and some results from [16]. We start introducing the notion
of super/subjets.

Definition 4.1. Let E ⊆ RN , x0 ∈ ∂E, p ∈ RN , and X ∈ Sym(N). We say (p,X) ∈ J 2,+
E (x0),

the superjet of E at x0, if for every δ > 0 there exists a neighborhood Uδ of x0 such that, for every
x ∈ E ∩ Uδ it holds

(4.1) (x− x0) · p+
1

2
(X + δI)(x− x0) · (x− x0) ≥ 0.

Moreover, we say that (p,X) is in the subjet J 2,−
E (x0) of E at x0 if (−p,−X) is in the superjet

J 2,+
RN\E(x0) of RN \ E at x0. Finally, we say that (p,X) is in the jet J 2

E(x0) of E at x0 if (p,X) ∈
J 2,+
E (x0) ∩ J 2,−

E (x0).

Analogously, one introduces the notion of parabolic super/subjet.
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Definition 4.2. Let u : RN×(0, T ) → R be upper semicontinuous at (x, t). We say that (a, p,X) ∈
R× RN × Sym(N) is in the parabolic superjet P2,+u(x, t) of u at (x, t), if

u(y, s) ≤ u(x, t) + a(s− t) + p · (y − x) + 1
2 (X(y − x)) · (y − x) + o(|t− s| + |x− y|2)

for (y, s) in a neighborhood of (x, t). If u is lower semicontinuous at (x, t) we can define the parabolic
subjet P2,−u(x, t) of u at (x, t) as P2,−u(x, t) := −P2,+(−u)(x, t).

The notion of semijet induces a notion of convergence.

Definition 4.3. Let En ⊆ RN and x0 ∈ ∂En. We say that (pn, Xn) are in the superjet J 2,+
En

(x0)
uniformly, if for every positive δ > 0 there exists a neighborhood Uδ of x0 (independent of n) such
that, for all n ∈ N ,

(4.2) (x− x0) · pn +
1

2
(Xn + δI)(x− x0) · (x− x0) ≥ 0 for every x ∈ En ∩ Uδ.

We say that (pn, Xn, En) converge to (p,X,E) with uniform superjet at x0 if En → E in the

Hausdorff sense, the (pn, Xn)’s are in the superjet J 2,+
En

(x0) uniformly and (pn, Xn) → (p,X) as
n → ∞. Moreover, we say that (pn, Xn, En) converge to (p,X,E) with uniform subjet at x0 if
(−pn,−Xn, E

c
n) converge to (−p,−X,Ec) with uniform superjet.

One can then introduce semicontinuous extensions of κ.

Definition 4.4. For every F ⊆ RN with compact boundary and (p,X) ∈ J 2,+
F (x), we define

κ∗(x, p,X, F ) := sup
{
κ(x,E) : E ∈ C2 , E ⊇ F , (p,X) ∈ J 2,−

E (x)
}

Analogously, for any (p,X) ∈ J 2,−
F (x) we set

κ∗(x, p,X, F ) = inf
{
κ(x,E) : E ∈ C2 , E̊ ⊆ F , (p,X) ∈ J 2,+

E (x)
}
.

As shown in [16, Lemma 2.8], one can prove that κ∗, κ
∗ are the l.s.c and the u.s.c. envelope of

κ with respect to the convergence with uniform superjet and subjet. Noting that

(−G(−κ))∗ = −G(−κ∗), (−G(−κ))∗ = −G(−κ∗),

one can also show the following equivalent characterization of viscosity solutions.

Lemma 4.5. Let u be a viscosity subsolution of (2.5) in the sense of Definition 2.4. Then, for all
(x, t) in RN × (0, T ), if (a, p,X) ∈ P2,+u(x, t), and p ̸= 0, it holds

a − ψ(|p|) G(−κ∗ (x, p,X, {y : u(y, t) ≥ u(x, t)} + f(t)) ≤ 0.

A similar statement holds for supersolutions, with P2,−, κ∗ replacing P2,+, κ∗.

4.2. Proof of the Comparison Principle. We now show how to adapt the proofs of Theorem 3.5
and Theorem 3.8 of [16] to our setting. We will assume that κ satisfies assumptions (A)-(D) and
either:

(FO) For any Σ ∈ C2, x ∈ ∂Σ and (p,X), (q, Y ) in J 2,+
Σ (x),J 2,−

Σ (x) respectively, then

κ∗(x, p,X,Σ) = κ∗(x, q, Y,Σ)
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(C’) Replace (C) by the following. For every R > 0 there exists a modulus of continuity ωR
with the following property. For all Σ ∈ C2, x ∈ ∂Σ, such that Σ has both an internal and
external ball condition of radius R at x, and for all C2−diffeomorphism Φ : RN → RN ,
with Φ(y) = y for |y − x| ≥ 1, we have

|κ(x,Σ) − κ(Φ(x),Φ(E))| ≤ ωR(∥Φ − Id∥C2).

If (FO) holds, we say that the curvature κ is of first-order, since its relaxation depends only on the
first-order elliptic jet. Otherwise, we say that the curvature κ is of second-order. As detailed in
[16], an instance of first-order curvature is the one associated to the fractional perimeter, while the
classical mean curvature is a second-order one satisfying (C’).

Assuming (FO), the following comparison between κ∗ and κ∗ holds.

Lemma 4.6 (Lemma 3.4 in [16]). Assume (FO), and let F,G be a closed and an open set respec-
tively, with compact boundary and such that F ⊆ G. Let x ∈ ∂F, y ∈ ∂G satisfy

|x− y| = dist(∂F, ∂G).

Then, for all (p,X) ∈ J 2,+
F (x) and (p, Y ) ∈ J 2,−

G (x) with p = x− y, it holds

κ∗(x, p,X, F ) ≥ κ∗(y, p, Y,G).

Assuming instead (C’), we recall the following results from [16].

Lemma 4.7. Assume (C’). Then, given R > 0, there exists a modulus of continuity ωR with the
following property. For any F ∈ C2, x ∈ ∂F , with internal and external ball condition at x of
radius R, any (p,X) ∈ J 2,+

F (x) with p ̸= 0, |X|/|p| ≤ 1/R, and any Φ : RN → RN diffeomorphism
of class C2, it holds

|κ∗(x, p,X, F ) − κ∗(Φ(x), D(ψ ◦ Φ−1)(Φ(x)), D2(ψ ◦ Φ−1)(Φ(x)),Φ(F ))| ≤ ωR(∥Φ − Id∥C2)

where ψ(y) = (y − x) · p+ 1
2X(y − x) · (y − x). The same holds for κ∗.

Lemma 4.8. Assume (C’). Let x ∈ RN , F,G ∈ C2 with F ⊂ G ∪ {x} and ∂F ∩ ∂G = {x}. Let

(p,X) ∈ J 2,+
F (x), (p, Y ) ∈ J 2,−

G (x), with X ≤ Y . Then,

κ∗(x, p,X, F ) ≥ κ∗(x, p, Y,G).

Our main result of this section is a comparison principle for sub/supersolutions.

Theorem 4.9. Assume either (FO) or (C’). Let u, v be u.s.c and l.s.c functions on RN × [0, T ],
both constant outside a compact set, a subsolution and a supersolution to (2.5), respectively. If
u(·, 0) ≤ v(·, 0), then u ≤ v in RN × [0, T ].

Proof assuming (FO). We assume wlog that u(·, 0) < v(·, 0) and by contradiction that there exists
(x̄, t̄) ∈ RN × (0, T ] such that u(x̄, t̄) − v(x̄, t̄) > 0. Setting F (t) := {u(·, t) ≥ u(x̄, t)} and G(t) :=
{v(·, t) ≥ v(x̄, t)}, it holds F (t̄) ⊈ G(t̄). Note that one can perturb the set F (respectively, the set
G) so that it satisfies an internal ball condition (resp. an external ball condition), uniformly in
time, and χF is still a subsolution (resp. χG is still a supersolution). This can be done replacing
F by Fr and G by {sdG < −r} = int(G−r) for r > 0 small so that F (0) ⊆ G(0). Let ℓ ∈ L. We
replace u, v by

u(x, t) = max
ξ∈RN ,τ∈[t−T,t]

χF (t−τ)(x− ξ) − λ(ℓ(ξ) + τ2)

v(x, t) = min
ξ∈RN ,τ∈[t−T,t]

χG(t−τ)(x− ξ) + λ(ℓ(ξ) + τ2),
(4.3)
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where λ is a positive parameter, big enough so that u(·, 0) ≤ v(·, 0). The function u (respectively,
the function v) is equal to one on F (resp. on G), zero outside a compact set, and each superlevel set
satisfies an internal ball condition (resp. external ball condition), uniformly in time. Furthermore,
for λ large enough (so that the max in (4.7) is not reached at τ = t), u is a subsolution while v is

a supersolution in RN × [2/
√
λ, T ]. We refer to [16] for the proof of these facts.

Let α, β, ε > 0 and set

Φ(x, t, y, s) := u(x, t) − v(y, s) − αℓ(|x− y|) − β|t− s|2 − ε(t+ s).

Noticing that Φ is u.s.c., let zβ = (xβ , tβ , yβ , sβ) be a maximum point of ϕ. Note that choosing ε
small (depending on t̄), we can assume that the maximum is strictly positive and that tβ , sβ are

strictly positive. Moreover, for λ large enough and β ≥ λ, one can ensure that tβ , sβ > 2/
√
λ.

Case 1: xβ = yβ along a sequence βn → +∞. In this case, defining

φ(x, t) = v(yβ , sβ) + ε(t+ sβ) + αℓ(|x− yβ |) + β|t− sβ |2

ψ(y, s) = u(xβ , tβ) − ε(tβ + s) − αℓ(|xβ − y|) − β|tβ − s|2,
(4.4)

since u, v are a sub- and supersolution respectively, we have

0 ≥ φt(x
β , tβ) = 2β(tβ − sβ) + ε, 0 ≤ ψt(y

β , sβ) = 2β(tβ − sβ) − ε,

which yields a contradiction.
Case 2: xβ ̸= yβ for all β sufficiently large. Note that(

2β(tβ − sβ) + ε, αf ′(|pβ |) p
β

|pβ |
, X
)
∈ P2,+u(xβ , tβ),(

2β(tβ − sβ) − ε, αf ′(|pβ |) p
β

|pβ |
,−X

)
∈ P2,−v(yβ , sβ),

where pβ := xβ − yβ and X := ∇2φ(xβ , tβ), with φ defined in (4.4). Thus, by Lemma 4.5, we have

2β(tβ − sβ) + ε− ψ(|pβ |) G
(
−κ∗(xβ , αf ′(|pβ |) p

β

|pβ |
, X, {u(·, tβ) ≥ u(xβ , tβ)}) + f(tβ)

)
≤ 0,

2β(tβ − sβ) − ε− ψ(|pβ |) G
(
−κ∗(yβ , αf ′(|pβ |) p

β

|pβ |
,−X, {v(·, tβ) ≥ v(xβ , tβ)}) + f(sβ)

)
≤ 0.

(4.5)

Let us denote p̂β := αf ′(|pβ |) pβ

|pβ | , F
β := {u(·, tβ) ≥ u(xβ , tβ)}, Gβ := {v(·, tβ) ≥ v(xβ , tβ)}. We

then remark that

{u(·, tβ) ≥ u(xβ , tβ)} +B(0, |yβ − xβ |) ⊆ {v(·, sβ) > v(yβ , sβ)}.

Indeed, if x ∈ {u(·, tβ) ≥ u(xβ , tβ)} and |y − x| < |yβ − xβ |, since zβ is a maximum point for Φ, it
holds

v(yβ , sβ) − v(y, sβ) ≤ u(xβ , tβ) − u(x, t) + αℓ(|x− y|) − αℓ(|xβ − yβ |) < 0

so that y ∈ {v(·, sβ) > v(yβ , sβ)}. Thus, we can apply Lemma 4.6 to infer from (4.5) that

(4.6) 2ε ≤ −ψ(|pβ |)
(
G(−κβ + f(sβ)) − G(−κβ + f(tβ))

)
,

where we set κβ := κ∗(yβ , p̂β ,−X,Gβ). Since all the superlevel sets of u, v satisfy a uniform
internal, external (respectively) ball condition, and thanks to Lemma 4.6, the term κβ is bounded
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as β → +∞, and so we can assume (|κβ |+∥f∥∞) ≤M. Since G is uniformly continuous in [−M,M ],
(4.6) implies

2ε = O(|f(sβ) − f(tβ)|)
as β → +∞, a contradiction.

□

Proof assuming (C’). We assume wlog that u(·, 0) < v(·, 0) and argue by contradiction. Assume
that there exists a ∈ R and t ∈ (0, T ] such that F (t) := {u(·, t) ≥ a} ⊈ G(t) := {v(·, t) > a}.
As sketched in the previous case, can assume that F satisfies an internal ball condition while G
satisfies an external ball condition, uniformly in time, and χF , χG are still a sub and supersolution.
For fixed ℓ ∈ L and λ > 0, we can replace u, v by

u(x, t) = max
ξ∈RN ,τ∈[t−T,t]

χF (t−τ)(x− ξ) − λ (ℓ(ξ) + τ2)

v(y, s) = min
ξ∈RN ,τ∈[s−T,s]

χG(s−τ)(y − ξ) + λ (ℓ(ξ) + τ2).
(4.7)

Note that it holds u(·, 0) ≤ v(·, 0) for λ big enough. The function u (respectively, the function v)
is equal to one on F (resp. on G), zero outside a compact set, and each superlevel set satisfies
an internal ball condition (resp. external ball condition), uniformly in time. Furthermore, for λ
large enough (so that the max in (4.7) is not reached at τ = t), u is a subsolution while v is a

supersolution in RN × [2/
√
λ, T ]. In the following, we omit the dependence on λ, as it will be a

fixed parameter. For α, β, ε > 0 and N ∋ β ≥ λ, we define

Φ(x, t, y, s) := u(x, t) − v(y, s) − ε(t+ s) − αℓ(|x− y|) − β|t− s|2,

which is semiconvex. For ε > 0 small and α, β large enough the function Φ admits a positive
maximum at some (xβ , tβ , yβ , sβ) ∈ RN × [0, T ] × RN × [0, T ] with tβ , sβ > 0. Note also that

|tβ − sβ | → 0 as β → +∞.

Since u, v are constant outside a compact set, and by translation invariance it is not difficult to see
that xβ , yβ admit cluster points x0, y0 as β → +∞ (see for instance [26, page 14]). We thus assume
wlog that (xβ , yβ) → (x0, y0) as β → +∞. If xβ = yβ infinitely often, one can conclude considering
φ,ψ defined in (4.4) (see the previous proof and [16]). Thus, we assume xβ ̸= yβ for all β. One can
also assume that ℓ(|xβ − yβ |) < 1 (taking λ large) and check that

(4.8) u(xβ , tβ) < 1.

Indeed, Du(xβ , tβ) = Dℓ(|xβ − yβ |) ̸= 0, while u(x, t) = 1 if and only if x ∈ F (t), but on F (t) it
holds Du = 0.
Step 1: In this step we provide estimates for the final argument. The constructions are essentially
the same introduced in [16], which we recall for the reader’s convenience. We fix β and omit the
dependence on it of the approximating parameters.

Let q : [0,+∞] → [0, 1] be a smooth, nondecreasing, function with q(r) = r4 for r < 1/2 and
q(r) = 1 for r > 3/2. For ρ > 0 we define

Φρ(x, t, y, s) := Φ(x, t, y, s) − ρ[q(|x− xβ |) + q(|y − yβ |) + q(|t− tβ |) + q(|s− sβ |)],

so that (xβ , tβ , yβ , sβ) is a strict maximum of Φρ. Let η : RN → R be a smooth cut-off function, with
compact support and equal to one in a neighborhood U of the origin. For every ∆ := (ζu, τu, ζv, τv) ∈
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RN × R× RN × R, the function

Φρ(x, t, y, s) −
(
η(x− xβ) (ζu, τu) · (x, t) + η(y − yβ) (ζv, τv) · (y, s)

)
is maximized at some (x∆, t∆, y∆, s∆) converging to (xβ , tβ , yβ , sβ) as |∆| → 0. Therefore, by
Jensen’s Lemma [19, Lemma A.3] we may assume that for every δ > 0 sufficiently small there exists
∆ρ,δ := (ζρ,δu , hρ,δu , ζρ,δv , hρ,δv ), with |∆ρ,δ| ≤ δ, such that the function

Φρ,δ(x, t, y, s) := Φρ(x, t, y, s) −
(
η(x− xβ)(ξρ,δu , hρ,δu ) · (x, t) + η(y − yβ)(ξρ,δv , hρ,δv ) · (y, s)

)
attains a maximum at some zρ,δ := (xρ,δ, tρ,δ, yρ,δ, sρ,δ) where Φδ,ρ is twice differentiable and such
that xρ,δ − xβ , yρ,δ − yβ ∈ U and tρ,δ, sρ,δ > 0. Moreover,

(4.9) zρ,δ → (xβ , tβ , yβ , sβ) as δ → 0.

Notice that since Φρ is twice differentiable at zρ,δ it follows that also u, v are twice differentiable
at (xρ,δ, tρ,δ) and (yρ,δ, sρ,δ), respectively.

Let τρ,δu ∈ R (resp. τρ,δv ∈ R) be the maximizing (resp. minimizing) τ in (4.7) corresponding to
the point (xρ,δ, tρ,δ) (resp. (yρ,δ, sρ,δ)). Setting

ũ(x, t) := max
ξ∈RN

{
χF (t−τρ,δu )(x− ξ) − λℓ(|ξ|)

}
− λ(τρ,δu )2

ṽ(y, s) := min
ξ∈RN

{
χG(s−τρ,δv )(y − ξ) + λℓ(|ξ|)

}
+ λ(τρ,δv )2,

we note that

u ≥ ũ, u(xρ,δ, tρ,δ) = ũ(xρ,δ, tρ,δ),

v ≤ ṽ, v(yρ,δ, sρ,δ) = ṽ(yρ,δ, sρ,δ).
(4.10)

Set now

û(x, t) := ũ(x, t) − ρ
(
q(|x− xρ,δ|) + q(|x− xβ |) + q(|t− tβ |)

)
− η(x− xβ)(ξρ,δu , hρ,δu ) · (x, t),

v̂(y, s) := ṽ(y, s) + ρ
(
q(|y − yρ,δ|) + q(|y − yβ |) + q(|s− sβ |)

)
+ η(y − yβ)(ξρ,δv , hρ,δv ) · (y, s).

Then, the function

û(x, t) − v̂(y, s) − ε(t+ s) − αℓ(|x− y|) − β|t− s|2

has a maximum at zρ,δ, which is strict with respect to the spatial variables. Thus

F̂ρ,δ(t) := {û(·, t) ≥ û(xρ,δ, tρ,δ)}, Ĝρ,δ(s) := {v̂(·, s) > v̂(yρ,δ, sρ,δ)}.

satisfy F̂ρ,δ(tρ,δ) ⊆ Ĝρ,δ(sρ,δ) and moreover xρ,δ ∈ F̂ρ,δ(tρ,δ) and yρ,δ ∈ Ĝρ,δ(tρ,δ) are the only

points realizing the distance between F̂ρ,δ(tρ,δ) and Ĝρ,δ(tρ,δ). In particular, F̂ρ,δ(tρ,δ) (respectively,

Ĝρ,δ(tρ,δ)) satisfies an external ball condition (resp. internal ball condition) of radius |xβ−yβ | > 0.
We observe that at the maximum point,∣∣∣|Dû(xρ,δ, tρ,δ)| − αℓ′(|xβ − yβ |)

∣∣∣ = ω(ρ, δ)

where ω → 0 as its arguments tend to 0, thus since ℓ′(|xβ − yβ |) ̸= 0, the term |Dû(xρ,δ, tρ,δ)|
is bounded below for ρ, δ small. In addition, the function û is semiconvex, hence F̂ρ,δ(tρ,δ) has
an interior ball condition at xρ,δ with a radius depending on λ only, thus independent on ρ, δ, if

small enough, and β. Analogously, Ĝρ,δ(sρ,δ) has an exterior ball condition at yρ,δ with a radius
depending on λ only.
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Set

Φ̆ρ,δ(x, t, y, s) := Φρ,δ(x, t, y, s) + αℓ(|x− y|) + β|t− s|2

and

(ăρ,δ, p̆ρ,δ, X̆ρ,δ) := (∂tΦ̆ρ,δ(zρ,δ), DxΦ̆ρ,δ(zρ,δ), D
2
xΦ̆ρ,δ(zρ,δ)),

(b̆ρ,δ, q̆ρ,δ, Y̆ρ,δ) := (∂sΦ̆ρ,δ(zρ,δ), DyΦ̆ρ,δ(zρ,δ), D
2
yΦ̆ρ,δ(zρ,δ)).

Then, recalling (4.10), we observe that the superjet (ăρ,δ, p̆ρ,δ, X̆ρ,δ) of

u(x, t) − ρ[q(|x− xβ |) + q(|t− tβ |)] − η(x− xβ)(ξρ,δu , hρ,δu ) · (x, t)

at (xρ,δ, tρ,δ) is also a superjet for û(x, t) at the same point. Since û(x, t) ≥ û(xρ,δ, tρ,δ)χF̂ρ,δ(t)(x)

and xρ,δ ∈ F̂ρ,δ(tρ,δ), we have

(ăρ,δ, p̆ρ,δ, X̆ρ,δ) ∈ P2,+
û(xρ,δ,tρ,δ)χF̂ρ,δ

(xρ,δ, tρ,δ),(4.11)

(b̆ρ,δ, q̆ρ,δ, Y̆ρ,δ) ∈ P2,−
v̂(yρ,δ,sρ,δ)χĜρ,δ

(yρ,δ, sρ,δ).(4.12)

Since zρ,δ is a maximum of Φρ,δ,

(4.13) ăρ,δ − b̆ρ,δ = 2ε, p̆ρ,δ = q̆ρ,δ, X̆ρ,δ ≤ Y̆ρ,δ.

By construction, Φ̆ρ,δ is also semiconvex, so that X̆ρ,δ ≥ −cI, Y̆ρ,δ ≤ cI for a constant c that does
not depend on ρ, δ.

We then let

cρ,δ(x, t) = ũ(x, t) + (û(xρ,δ, tρ,δ) − û(x, t))

and note that cρ,δ → u(xβ , tβ) uniformly as ρ, δ → 0. Thus, thanks to (4.8) we can assume
cρ,δ < 1. Note also that cρ,δ is smooth and constant away from a neighborhood of (xβ , tβ), and
cρ,δ(xρ,δ, tρ,δ) = u(xρ,δ, tρ,δ).

Since F̂ρ,δ(t) = {ũ(·, t) ≥ cρ,δ(·, t)}, by definition of ũ one can check that

F̂ρ,δ(t) =
{
x ∈ RN : x ∈ ξ + F (t− τρ,δu ) for some ξ ∈ RN with |ξ| ≤ ℓ−1

(
1 − cρ,δ

λ

)}
.(4.14)

For ρ, δ small enough it holds xρ,δ /∈ F (tρ,δ − τρ,δu ) (from (4.7)), and so we introduce wρ,δ such that
xρ,δ + wρ,δ is the projection of xρ,δ on F (tρ,δ − τρ,δu ). In particular, ξ = −wρ,δ reaches the max in
(4.7) for x = xρ,δ. Also, |wρ,δ| = ℓ−1((1 − cρ,δ(xρ,δ, tρ,δ))/λ). We define

Ψρ,δ(x) = x− ℓ−1

(
1 − cρ,δ(x, tρ,δ)

λ

)
wρ,δ
|wρ,δ|

+ wρ,δ,

which is a C2 diffeomorphism, since cρ,δ is bounded away from 1. Moreover, Ψρ,δ is a constant
small translation out of a neighborhood of xβ , converges in C2 to the identity as ρ, δ → 0, and
Ψρ,δ(xρ,δ) = xρ,δ. From this, define the set

F̌ρ,δ(t) := Ψρ,δ(F (t− τρ,δu ) − wρ,δ).

By construction, F̌ρ,δ(tρ,δ) ⊆ F̂ρ,δ(tρ,δ) and xρ,δ ∈ ∂F̌ρ,δ(tρ,δ)∩ ∂F̂ρ,δ(tρ,δ). Since F̂ρ,δ(tρ,δ) satisfies

a uniform external ball condition in xρ,δ, so does F̌ρ,δ(tρ,δ) (with possibly a different radius). Since
F satisfies an internal ball condition uniformly in time and Ψρ,δ converges C2 to the identity as

ρ, δ → 0, we can assume additionally that F̌ρ,δ(tρ,δ) satisfies a uniform internal ball condition for
ρ, δ small enough, with radius depending on λ.
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Finally, defining

(pρ,δ, Xρ,δ) :=
(
Dx(Φ̆ρ,δ(·, tρ,δ, yρ,δ, sρ,δ) ◦ Ψρ,δ)(xδ),

D2
x(Φ̆ρ,δ(·, tρ,δ, yρ,δ, sρ,δ) ◦ Ψρ,δ)(xδ)

)
,

one can check that by construction (see (4.11)) it holds

(ăρ,δ, pρ,δ, Xρ,δ) ∈ P2,+
û(xρ,δ,tρ,δ)χ

F (t−τρ,δu )

(xρ,δ + wρ,δ, tρ,δ)

Since û(xρ,δ, tρ,δ)χF (t−τρ,δu ) is a subsolution, we have

(4.15) ăρ,δ + ψ(|pρ,δ|)G
(
κ∗(xρ,δ + wρ,δ, pρ,δ, Xρ,δ, F (tρ,δ − τρ,δu )) + f(tρ,δ)

)
≤ 0.

Note that
pρ,δ → Du(xβ , tβ) ̸= 0 ,

as ρ, δ → 0, and thus |pρ,δ| is bounded away from zero for ρ and δ sufficiently small. Since also

X̆ρ,δ and hence Xρ,δ is bounded, the curvature terms κ∗(xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ)) are uniformly
bounded from above and below as ρ, δ → 0. Thus, G is uniformly continuous and by Lemma 4.7 we
deduce from (4.15) that

(4.16) ăρ,δ + ψ(|p̆ρ,δ|)G
(
κ∗(xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ)) + f(tρ,δ)

)
≤ ω(ρ, δ),

where ω is a modulus of continuity that depends on β, and ω(ρ, δ) → 0 as ρ, δ → 0. Analogously,
from (4.12), (4.13) and since v̂(yρ,δ, sρ,δ)χG(t−τρ,δv ) is a supersolution, we also have

(4.17) ăρ,δ − 2ε+ ψ(|p̆ρ,δ|)G
(
κ∗(yρ,δ, p̆ρ,δ, Y̆ρ,δ, Ǧρ,δ(sρ,δ)) + f(sρ,δ)

)
≥ ω(ρ, δ)

for a suitable set Ǧρ,δ(sρ,δ)) such that

F̂ (tρ,δ) + (yρ,δ − xρ,δ) ⊆ Ǧρ,δ(sρ,δ)) and ∂(F̌ρ,δ(tρ,δ) + (yρ,δ − xρ,δ)) ∩ ∂Ǧρ,δ(sρ,δ)) = {yρ,δ}.
By the equation above, (4.13) and Lemma 4.8 we get

κ∗(xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ)) ≥ κ∗(yρ,δ, p̆ρ,δ, Y̆ρ,δ, Ǧρ,δ(sρ,δ)),

and thus by (4.16) and (4.17) we arrive at

−2ε+ ψ(|p̆ρ,δ|)
[
G
(
κ∗(xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ)) + f(sρ,δ)

)
−G
(
κ∗(xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ)) + f(tρ,δ)

) ]
≥ 2ω(ρ, δ).

(4.18)

Step 2: We now pass to the limit ρ, δ → 0 then β → +∞. Recalling that (xβ , yβ) → (x0, y0) as
β → +∞, we distinguish two cases.
Case 1: Assume that x0 ̸= y0. In this case, |xβ − yβ | is uniformly bounded from below, and thus

the term κ∗(xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ)) is uniformly bounded in ρ, δ, β. Therefore, the continuity of
G is uniform as ρ, δ, β vary, and (4.18) implies

(4.19) ω̃
(
|f(sβ) − f(tβ)|

)
+ ω(ρ, δ) ≥ ε,

for a modulus of continuity ω̃ such that ω̃(r) → 0 as r → 0. We pass to the limit ρ, δ → 0 then
β → +∞ to arrive at a contradiction.
Case 2: It holds x0 = y0. In this case, we recall that

pρ,δ → Du(xβ , tβ) = αℓ′(|xβ − yβ |), as ρ, δ → 0.
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Recall that the set F̌ρ,δ(tρ,δ) satisfies a uniform internal and external ball condition of radius
|xβ − yβ |. In particular

|κ∗(xρ,δ, p̆ρ,δ, X̆ρ,δ, F̌ρ,δ(tρ,δ))| ≤ c(|xβ − yβ |).
Therefore, equation (4.18) implies

ψ(|pρ,δ| + ω(ρ, δ)) G
(
c(|xβ − yβ | + ∥f∥∞)

)
+ 2ω(ρ, δ) ≥ 2ε.

Sending ρ, δ → 0 we get

cψ|ℓ′(|xβ − yβ |)| G
(
c(|xβ − yβ |)

) G (c(|xβ − yβ | + ∥f∥∞)
)

G (c(|xβ − yβ |))
≥ 2ε.

recalling the properties of ℓ (see Definition 2.3), we arrive at a contradiction sending β → +∞. □
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