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Abstract

For a scalar conservation law with strictly convex flux, by Oleinik’s estimates the total
variation of a solution with initial data u ∈ L∞(R) decays like t−1. This paper introduces
a class of intermediate domains Pα, 0 < α < 1, such that for u ∈ Pα a faster decay rate
is achieved: Tot.Var.

{
u(t, ·)

}
∼ tα−1. A key ingredient of the analysis is a “Fourier-type”

decomposition of u into components which oscillate more and more rapidly. The results
aim at extending the theory of fractional domains for analytic semigroups to an entirely
nonlinear setting.

Key words: Scalar conservation law, total variation decay, intermediate domain.

1 Introduction

Consider a scalar conservation law

ut + f(u)x = 0, (1.1)

with strictly convex flux. By a classical result [9, 19], there exists a contractive semigroup
S : L1(R)× R+ 7→ L1(R) such that, for every initial datum

u(0, ·) = u ∈ L1(R), (1.2)

the trajectory t 7→ u(t) = Stu is the unique entropy weak solution of the Cauchy problem.

It is well known that, even for smooth initial data, the solution can develop shocks in finite
time. Taking an abstract point of view, consider the operator Au

.
= ∂

∂xf(u) which generates
the semigroup. Then there exists data u ∈ Dom(A) in the domain of the generator, such that
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Sτu /∈ Dom(A) for some τ > 0. In other words, the domain of the generator is not positively
invariant.

To address this issue, the paper [10] introduced a definition of “generalized domain” D for the
operator. This consists of all initial data u for which the map t 7→ Stu is globally Lipschitz
continuous. Notice that for the conservation law (1.1) one has

L1 ∩BV ⊆ D.

Using the fact that the semigroup is contractive, it is easy to show that this generalized domain
is positively invariant. Indeed, the quantity

lim sup
ε→0+

∥∥St+εu− Stu
∥∥
L1

ε

is a non-increasing function of t.

Our present aim is to study intermediate domains

Dα ⊂ L1(R), 0 < α < 1, (1.3)

related to the decay properties of the corresponding trajectories of (1.1). As in [1] we define

Dα
.
=
{
u ∈ L1(R) ; sup

0<t<1
t−α
∥∥Stu− u∥L1 < +∞

}
. (1.4)

We also consider the domains (slightly different from the ones considered in [1])

D̃α
.
=
{
u ∈ L1(R) ∩ L∞(R) ; sup

0<t<1
t1−α · Tot.Var.

{
Stu} < +∞

}
. (1.5)

The domains Dα arise naturally in connection with balance laws:

ut + f(u)x = g(t, x). (1.6)

Indeed, as shown in [1], one has

Proposition 1.1. Let f ∈ C2 with f ′′(u) ≥ c > 0 for all u ∈ R. Consider a compactly
supported solution u = u(t, x) of (1.6), and assume that the source term satisfies∥∥g(t, ·)∥∥

L1 ≤ C for all t ∈ [0, T ]. (1.7)

Then for every 0 < t ≤ T , one has u(t, ·) ∈ D1/2.

We remark, however, that some of the functions u(t, ·) can be unbounded. In particular, they
can have infinite total variation.

In the theory of linear analytic semigroups [16, 20], intermediate domains arise naturally as
domains of fractional powers of sectorial operators. The faster decay of solutions is usually
related to higher Sobolev regularity of the initial data. In particular, this theory applies to
semilinear equations of the form

ut −∆u = F (x, u,∇u), u(0, ·) = u. (1.8)
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Under natural assumptions (see [16] for details), this Cauchy problem is well posed provided
that the initial datum u lies in the domain of some fractional power (−∆)α of the generator.

Our eventual goal is to develop a similar theory of intermediate domains for nonlinear semi-
groups generated by conservation laws. In particular, we conjecture that the Cauchy problem
for a genuinely nonlinear 2 × 2 hyperbolic system with L∞ initial data [4, 15] is well posed
within an intermediate domain such as (1.4) or (1.5).

As a first step in this research program, here we focus our attention on the scalar conservation
law (1.1), seeking conditions on the initial data u ∈ L1(R) that will imply u ∈ Dα or u ∈ D̃α,
respectively.

Assumptions that imply u ∈ Dα can be readily formulated in terms of fractional Sobolev
regularity. On the other hand, conditions that guarantee a faster decay rate of the total
variation are more subtle. Here we consider the assumption

(Pα) For every λ ∈ ]0, 1], there exists an open set V (λ) ⊂ R such that the following holds.

meas
(
V (λ)

)
≤ C λα, (1.9)

Tot.Var.
{
u ; R \ V (λ)

}
≤ C λα−1, (1.10)

for some constant C independent of λ.

Roughly speaking, u can have unbounded variation, but most of its variation should be con-
centrated on a set with small Lebesgue measure. Our main result establishes the implication

u satisfies (Pα) =⇒ u ∈ D̃α (1.11)

when 1/2 < α < 1. On the other hand, a counterexample shows that the above implication
fails for α ≤ 1/2. The proof of (1.11) relies on a structural result for functions satisfying (Pα),
which is of independent interest. Indeed, Theorem 5.1 provides a nonlinear “Fourier-type”
decomposition of such functions, in components which oscillate more and more rapidly.

The remainder of the paper is organized as follows. In Section 2 we describe a general class
of metric interpolation spaces, for functions defined on a set Ω ⊆ RN . This yields a natural
way to formulate conditions such as (Pα), in a general setting.

Section 3 contains some examples. The first one (Fig. 1) shows how to construct an initial
datum u with unbounded variation, such that u ∈ D̃α, for any given 0 < α < 1. We then
consider initial data consisting of a packet of triangular waves (Fig. 3). By suitably choosing
the size and distance of these triangular blocks we show that, if 0 < α ≤ 1/2, then there
exists an initial datum u that satisfies (Pα) and yet u /∈ D̃β for any β ∈ ]0, 1[ . As stated in
Proposition 3.2, the implication (1.11) thus cannot hold for α ≤ 1/2.

Section 4 is concerned with the intermediate domain Dα. For 0 < α < 1 we prove that any
one of the conditions: (i) u lies in the fractional Sobolev space Wα,1(R), or (ii) u satisfies
(Pα), implies u ∈ Dα. These results are valid for any flux f ∈ C1, not necessarily convex.

Section 5 establishes further properties of functions which satisfy (Pα), proving a useful de-
composition result, stated in Theorem 5.1. Finally, in Section 6 we prove our main theorem,
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showing that for 1/2 < α < 1 the property (Pα) implies that u ∈ D̃α. To simplify the expo-
sition, the proofs will first be given for Burgers’ equation. In Remark 6.2 we observe that all
results remain valid for a conservation law with uniformly convex flux.

For an introduction to the theory of conservation laws we refer to [6, 7, 12, 17]. Results on
the decay of solutions to conservation laws in generalized BV spaces can be found in [5, 21].
In addition to genuinely nonlinear conservation laws, several other examples of nonlinear
semigroups with regularizing properties are known in the literature, see in particular [2, 3, 11,
22].

2 A family of metric interpolation spaces

Consider an open set Ω ⊆ RN and let X be a Banach space contained in the set L0(Ω) of
Lebesgue measurable functions f : Ω 7→ R. Let 0 < α < 1 be given. A distance function
d(·, ·) : L0(Ω) × L0(Ω) → [0,+∞] can be defined as follows. For any λ ∈ ]0, 1], we begin by
setting

dλ(f, g)
.
= dλ(f − g, 0), (2.1)

dλ(f, 0)
.
= inf

{
C ≥ 0 ; there exists f̃ ∈ X such that

∥f̃∥X ≤ C λα−1 , meas
{
x ∈ Ω ; f(x) ̸= f̃(x)

}
≤ C λα

}
.

(2.2)

Finally, we define
d(f, g)

.
= sup

0<λ≤1
dλ(f, g). (2.3)

By possibly identifying couples of functions f, g, such that d(f, g) = 0, we claim that (2.3)
yields a distance on the set of Lebesgue measurable functions f ∈ L0(Ω) for which d(f, 0) <∞.
This is usually a strictly larger set than X.

Lemma 2.1. Let 0 < α < 1 be given, and let d(·, ·) be as in (2.1)–(2.3). Then the following
properties hold.

(i) d(f, g) = d(g, f) ≥ 0.

(ii) If f ∈ X, then d(f, 0) ≤ ∥f∥X .

(iii) d(f, h) ≤ d(f, g) + d(g, h).

Proof. 1. Part (i) is trivial. If f ∈ X, choosing f̃ = f in (2.2), we see that dλ(f, 0) ≤ ∥f∥X
for every λ > 0. This yields (ii).

2. We now check that each dλ(·, ·), 0 < λ ≤ 1, satisfies the triangle inequality. Toward this
goal, let f1, f2 be measurable functions such that

dλ(fi, 0) = Ci, i = 1, 2.

We then need to show that

dλ(f1, f2)
.
= dλ(f1 − f2, 0) ≤ C1 + C2 . (2.4)
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Given ε > 0, by assumption there exist functions f̃1, f̃2 ∈ X such that

∥f̃i∥X ≤ Ciλ
α−1 + ε, meas

{
x ∈ Ω ; f̃i(x) ̸= fi(x)

}
≤ Ciλ

α + ε, i = 1, 2. (2.5)

Then the function f̃1 − f̃2 satisfies

∥f̃1 − f̃2∥X ≤ (C1 + C2)λ
α−1 + 2ε,

meas
{
x ∈ Ω ; f̃1(x)− f̃2(x) ̸= f1(x)− f2(x)

}
≤ (C1 + C2)λ

α + 2ε.

Since ε > 0 was arbitrary, this proves (2.4).

3. In turn, the triangle inequality (iii) follows from

d(f − g, 0) = sup
λ∈]0,1]

dλ(f − g, 0) ≤ sup
λ∈]0,1]

(
dλ(f, 0) + dλ(g, 0)

)
≤ sup

λ∈]0,1]
dλ(f, 0) + sup

λ∈]0,1]
dλ(g, 0) = d(f, 0) + d(g, 0).

Remark 2.2. One should keep in mind that, in general, the balls {g ∈ L0(Ω) ; d(g, f) ≤ r}
are not convex. Moreover, the function f 7→ d(f, 0) is not a norm.

In connection with (Pα), for 0 < α < 1 we consider the distances dλ(f, g) as in (2.1), where
now

dλ(f, 0)
.
= inf

{
C ≥ 0 ; there exists f̃ ∈ L1(R) such that

Tot.Var.{f̃} ≤ C λα−1, meas{x ∈ R ; f(x) ̸= f̃(x)} ≤ C λα
}
.

(2.6)

Finally, given u ∈ L1(R) ∩ L∞(R), we define

∥u∥Pα

.
= sup

0<λ≤1
dλ(u, 0) (2.7)

and write u ∈ Pα if ∥u∥Pα < +∞. Notice that this holds provided that u satisfies the condition
(Pα). Throughout the following, we shall use ∥u∥Pα as a convenient notation. However, as
already pointed out in Remark 2.2, one should be aware that ∥ · ∥Pα is not a norm.

3 Examples

We present here some examples, to motivate the results proved in later sections. We consider
Burgers’ equation

ut +

(
u2

2

)
x

= 0. (3.1)

Throughout the following, we use the semigroup notation t 7→ Stu to denote the solution of
(3.1) with initial data (1.2).
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Example 3.1. Fix β > 0 and consider the decreasing sequence of points xn = n−β, n ≥ 1.
As shown in Fig. 1, define the piecewise affine function

u(x) =


0 if x /∈ [0, 1] ,

x− xn+1

xn − xn+1
if xn < x < xn−1 .

(3.2)

We claim that this initial data lies in some of the subdomains D̃α, depending on the exponent
β. Indeed, fix a time t ∈ ]0, 1]. Consider the position xk(t) of the shock which is initially located
at xk. By Oleinik’s inequality, the total variation of the solution u(t, ·) can be estimated by

Tot.Var.
{
u(t, ·) ; [0, xk(t)]

}
≤ 2

xk(t)

t
. (3.3)

On the other hand, for x > xk(t), still by Oleinik’s estimates we have

Tot.Var.
{
u(t, ·) ; [xk(t), x1(t)]

}
≤ 2

x1(t)− xk(t)

(xk−1 − xk) + t
. (3.4)

Observing that
xk(t) ≤ xk + t, x1(t)− xk(t) ≤ 1 + t,

from (3.3)-(3.4) we deduce

Tot.Var.
{
u(t, ·)

}
≤ 2

xk + t

t
+ 2

1 + t

(xk−1 − xk) + t
≤ 4 + 2

xk
t

+
2

(xk−1 − xk) + t
. (3.5)

Since we are assuming xk = k−β, the previous estimate yields

Tot.Var.
{
u(t, ·)

}
≤ 4 +

2k−β

t
+

2

βk−β−1 + t
.

Here k ≥ 1 is arbitrary. Choosing k ≈ t−γ , we obtain

Tot.Var.
{
u(t, ·)

}
≤ O(1) ·

(
tβγ

t
+

1

tγ(β+1) + t

)
= O(1) ·

(
tβγ−1 + t−γ(β+1)

)
.

Here and throughout the sequel, the Landau symbol O(1) denotes a uniformly bounded quan-
tity. The two terms on the right hand side have similar magnitude if γ = (1 + 2β)−1. With
this choice, we obtain

Tot.Var.
{
u(t, ·)

}
≤ O(1) · t−

β+1
2β+1 ,

hence

u ∈ D̃α, with α = 1− β + 1

2β + 1
=

β

2β + 1
.

In the next examples we consider initial data consisting of one or more triangular blocks. As
shown in Fig. 2, left, the most elementary case is

w(0, x) = w(x) =

{
h− 2h

ℓ · |x− ℓ/2| if x ∈ [0, ℓ],

0 otherwise.
(3.6)
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1
x0

n
x x

2n−1

1

x1x  =

Figure 1: The initial data considered in Example 3.1.

At time t = ℓ/(2h), a shock is created in the solution at the point ℓ > 0. Characteristics
originating from points 0 < x < ℓ/2 start impinging on the shock, and the solution has a right
triangle shape:

w(t, x) =

{
2hx

2ht+ℓ if x ∈ [0, L(t)],

0 otherwise
(3.7)

Conservation of mass implies that the shock at time t ≥ ℓ/(2h) is located at

L(t) =

√
ℓ

2
(2h t+ ℓ). (3.8)

Always for t ≥ ℓ/(2h), we thus have

Tot.Var.{Stw} = 2 p(t), p(t)
.
= h

√
2ℓ

2ht+ ℓ
. (3.9)

We notice for later use that the (decreasing) function p(t) satisfies the lower bound

p(t) ≥
√
h ℓ

2t
for all t ≥ ℓ/2h. (3.10)

and that the (increasing) function L(t) satisfies the upper bound

L(t) ≤
√
2 ℓ h t for all t ≥ ℓ/2h. (3.11)

We also consider initial data containing packets of triangular blocks, shifted by different
amounts so they do not overlap with each other. See Fig. 2, right.

In the following proposition we denote by C0,σ(R) the space of Holder functions u : R → R
with exponent 0 < σ < 1, equipped with the norm

∥u∥C0,σ
.
= ∥u∥C0 + |u|C0,σ

|u|C0,σ
.
= sup

x<y

|u(y)− u(x)|
|y − x|σ

.

Proposition 3.2. There exists a compactly supported function u : R → R with the following
properties:

1. u ∈ Pα for every 0 < α ≤ 1/2;
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v

v(t)

_

w(t)

0 l x0

w
_

h

L(t) L(t) 

p(t)

Figure 2: Left: the elementary solution to Burgers’ equation considered at (3.6)-(3.7). Right: the
superposition of several shifted copies of the same solution.

2. u ∈ C0,σ(R) for every 0 < σ < 1;

3. u /∈ D̃β for any 0 < β < 1. Namely:

lim sup
t→0+

t1−β · Tot.Var.{Stu} = +∞ for all 0 < β < 1. (3.12)

Remark 3.3. The function u constructed in Proposition 3.2 does not belong to any Pα if
1/2 < α < 1. This suggests that α = 1/2 is a critical exponent for the decay of solution with
initial data in Pα. In fact, this surprising behavior will be later confirmed by Theorem 6.1.

Remark 3.4. By part 2. of Proposition 3.2 and by the embedding C0,σ(R) ↪→ W s,p
loc (R) for

every 0 < s < σ < 1, p ≥ 1, we obtain that

W s,p(R) ̸⊂ D̃β for every 0 < s < 1, 1 ≤ p <∞ and 0 < β < 1.

On the other hand, the inclusion Wα,1(R) ⊂ Dα does hold for every 0 < α < 1, as proved in
Proposition 4.2.

The proof of Proposition 3.2 is based on the following lemma.

Lemma 3.5. For every fixed t ∈ (0, 1), there exists a function û : R → R satisfying{
û(x) ∈ [0, 1] if x ∈ [0, 1],

û(x) = 0 if x /∈ [0, 1],
(3.13)

∥û∥Pα ≤ C0 , for all 0 < α ≤ 1/2, Tot.Var.{Stû} ≥ 1

C0 t
. (3.14)

∥û∥C0,σ ≤ Cσ
.
=

(
e2
( 1
1−σ )

)(1−σ)e−1

for all σ ∈ ]0, 1[. (3.15)

Here C0 is a constant independent of t.

We postpone the proof of the lemma, and begin by showing that it implies the previous
proposition.
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Proof of Proposition 3.2. Let (tj)j≥1 be a sequence decreasing to 0 sufficiently fast (to be
specified later). Let

x0 = 0, xj
.
=

j−1∑
k=0

2 · 2−k, Ij
.
= [xj , xj+1], j = 0, 1, 2 . . .

Let ûj be a function satisfying the properties (3.13)-(3.14) in Lemma 3.5 for t = tj . Consider
the rescaled functions

uj(x)
.
= 2−j ûj

(
2j(x− xj)

)
, j = 0, 1, 2 . . .

By Lemma 3.5, the corresponding rescaled solution of Burgers’ equation satisfies

Tot.Var.{Stjuj} = 2−j Tot.Var.{Stj ûj} ≥ 1

C0 2j tj
.

Define the initial data

u =

∞∑
j=0

uj . (3.16)

Notice that

supp uj(t, ·) ⊆ [xj , xj + 2−j(1 + t)] ⊂ Ij for t ∈ [0, 1].

In particular for every i ̸= j and t < 1 the supports of Stui and Stuj remain disjoint. Choosing
tj < 2−j we thus obtain (

Stju
)
(x) =

(
Stjuj

)
(x) for all x ∈ Ij .

Since every ûj satisfies (3.14), for 0 < α ≤ 1/2, by the triangle inequality it now follows

∥u∥Pα ≤
∞∑
j=0

∥uj∥Pα ≤ C0

∞∑
j=0

2−j < +∞.

This implies that u satisfies assumption 1. of Proposition 3.2. By (3.15) of Lemma 3.5, we
infer that

∥uj∥C0,σ ≤ 2−(1−σ)j ∥ûj∥C0,σ ≤ Cσ 2
−(1−σ)j .

Therefore since the supports of uj are all disjoint, the function u belongs to all the Hölder
spaces C0,σ for 0 < σ < 1. Finally, choosing for example tj = exp(−2j), for any 0 < β < 1 we
obtain

lim sup
t→0+

tβ Tot.Var.{Stu} ≥ lim
j→+∞

tβj Tot.Var.{Stju} ≥ lim
j→+∞

tβj Tot.Var.{Stjuj}

≥ 1

C0 2j t
1−β
j

→ +∞,

completing the proof of 3. of Proposition 3.2.
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Proof of Lemma 3.5.

1. Let t > 0 be a fixed positive time. Given a sequence of positive numbers {ℓk}k satisfying
ℓk ≤ 2−k (to be chosen later), and an integer k ≥ 1, we construct a packet of triangular waves
by setting

vk =

Nk∑
j=1

wj
k , (3.17)

where wj
k = wk(x − j Lk) are translations by j Lk > 0 of elementary triangular blocks as in

(3.6), with width ℓk and height
hk

.
= 2kℓk ≤ 1 . (3.18)

The distance Lk between the supports of two blocks is chosen large enough so that the supports
of the corresponding solutions remain disjoint up to the given time t. By (3.11), it is sufficient
to separate these elementary blocks by a distance Lk

.
=

√
2hk ℓk t, see Figure 3. With this

choice, the support of vk is contained inside an interval Ik with length

meas(Ik) ≤ NkLk =
√
2t 2k/2Nkℓk . (3.19)

Moreover, since the elementary blocks do not interact with each other up to time t, assuming
ℓk/(2hk) ≤ t, by (3.10), one has

Tot.Var.{Stvk} = 2Nkpk(t) ≥
√
2Nk ·

√
hkℓk
t

=

√
2 · 2k/2 ℓk√

t
Nk . (3.20)

We now choose

ℓk
.
= 2−1 · 2−k/2 · k−k, Nk

.
= 2−1 · 2−k/2 · ℓ−1

k = kk (3.21)

and notice that, by (3.18), this implies

Tot.Var.{vk} = 2Nkhk = 2k/2.

.  .  .k
h

l

N   blocks
k

L 
k

h
k’

l
k’

L 
k

N   blocks
k’

’

k

v
k

v
k’

.  .  .

.  .  .

Figure 3: A family of triangular wave packets.
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2. We put next to each other all the wave packets vk, for k1 ≤ k ≤ k2, where k1, k2 ∈ N will
be chosen later (see Figure 3), and define

û
.
=

k2∑
k=k1

vk . (3.22)

Recalling (2.6)-(2.7), we now show that, for α = 1
2 , the above construction yields a uniform

bound
∥û∥Pα ≤ C, (3.23)

with a constant C independent of k1, k2. As a consequence, the same bound holds for α ∈ ]0, 12 [.

To prove (3.23), let λ ∈ ]0, 1] and choose k̄ such that λ ∈ ]2−k̄, 2−k̄+1]. Set V (λ) in (1.9)-(1.10)
to be the support of

∑k2
k=k̄

vk. By (3.21) the following estimates hold:

meas(V (λ)) ≤
k2∑
k=k̄

Nkℓk =
1

2

k2∑
k=k̄

2−k/2 <
1

2

√
2√

2− 1
· 2−k̄/2 < C0 λ

1/2,

Tot.Var.


k̄−1∑
k=k1

vk; R

 ≤
k̄−1∑
k=k1

Nk2
kℓk <

1

2

2k̄/2√
2− 1

< C0 λ
1/2.

This proves (3.23). A more general result will be obtained in Proposition 5.3, to which we
refer for additional details.

3. In view of (3.19), (3.21), the support of û is contained in an interval I whose length is

meas(I) ≤
k2∑
k1

meas(Ik) =

k2∑
k1

√
2t2k/2Nkℓk =

√
t

2
(k2 − k1 + 1). (3.24)

We now compute the total variation of the corresponding solution Stû at a given time t > 0.
If t ≥ 2−1 · 2−k1 , i.e., if k1 ≥ log2(1/2t), then at time t all the elementary solutions appearing
in the blocks vk, k ≥ k1, have a right triangle shape and we can use the estimate (3.20). Since
these blocks do not interact with each other, we have

Tot.Var.{Stû} =

k2∑
k1

Tot.Var.{Stvk} ≥
√

2

t

k2∑
k1

2k/2Nkℓk =

√
1

2t
(k2 − k1 + 1). (3.25)

Using the notation ⌈a⌉ to denote the smallest integer ≥ a, we now choose k1 = ⌈log2(1/t)⌉ and
k2 = k1 − 2 + ⌈

√
2
t ⌉. By (3.24) we deduce that the support of û is contained in the interval I

whose length is

meas(I) ≤
√
t

2
(k2 − k1 + 1) =

√
t

2

(⌈√
2

t

⌉
− 1

)
≤ 1.

By (3.25), Stû has total variation

Tot.Var.{Stû} ≥
√

1

2t
(k2 − k1 + 1) =

√
1

2t

(⌈√
2

t

⌉
− 1

)
≥
√

1

2t

⌈√
2− 1√
t

⌉
≥ 1

c
· 1
t

11



where c > 0 is an absolute constant.

Finally, by (3.18), (3.21), the function û satisfies

sup
x<y

|û(y)− û(x)|
|y − x|σ

≤ sup
k

(
k−(1−σ)k · 2k

)
≤
(
e2

1
1−σ )(1−σ)e−1

,

since the function k 7→ k−(1−σ)k · 2k attains its maximum in R at k = 2
1

1−σ e−1.

4 The intermediate domains Dα

We consider entropy solutions to the scalar conservation law (1.1) and let S : L1(R)× R+ →
L1(R) be the corresponding semigroup of entropy weak solutions. Notice that in this section
the convexity assumption of the flux f is not necessary.

The goal of this section is to study the subdomains Dα ⊂ L1(R) ∩ L∞(R) defined by

Dα
.
=

{
u ∈ L1(R) ∩ L∞(R) ; sup

0<t≤1
t−α∥Stu− u∥L1 < +∞

}
. (4.1)

Since the semigroup St is nonlinear, the domains Dα are not vector spaces. However, we can
ask if they contain some classical linear spaces, such as fractional Sobolev spaces.

Let 1 ≤ p < +∞ and 0 < α ≤ 1 be given, together with an open set Ω ⊂ R. The fractional
Sobolev space Wα,p(Ω) is defined by (see for example [13])

Wα,p(Ω)
.
=

{
u ∈ Lp(Ω) ;

|u(x)− u(y)|

|x− y|
1
p
+α

∈ Lp(Ω× Ω)

}
, (4.2)

equipped with the norm

∥u∥Wα,p
.
= ∥u∥Lp +

(∫
Ω×Ω

|u(x)− u(y)|p

|x− y|1+αp
dxdy

) 1
p

. (4.3)

As it is well known, functions in Sobolev spaces can be approximated by smooth functions by
taking mollifications. Let η : R 7→ [0, 1] be a symmetric, C∞ mollifier with compact support,
so that 

η(s) = η(−s) ∈ [0, 1] if s ∈ [−1, 1],

η(s) = 0 if |s| ≥ 1,∣∣η′(s)∣∣ ≤ 2 for all s ∈ R,

∫
η(s) ds = 1. (4.4)

Here and in the sequel, the prime ′ denotes a derivative. For h > 0, define the rescaled kernels
by setting

ηh(s) =
1

h
η
( s
h

)
. (4.5)

For u ∈ L1
loc, consider the convolution uh = u ⋆ ηh. The rate of convergence of these mollifi-

cations depends on the regularity properties of the function u.
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Lemma 4.1. Assume u ∈ Wα,1(R) for some 0 < α ≤ 1. Then, for every h > 0, the
convolution uh = u ⋆ ηh satisfies

∥u− uh∥L1 ≤ ∥u∥Wα,1 · hα, ∥u′h∥L1 ≤ C∥u∥Wα,1 ·
1

h1−α
, (4.6)

for some constant C independent of u.

Proof. A direct computation yields∫
|u(x)− uh(x)| dx ≤

∫∫
|u(x)− u(y)|ηh(y − x) dxdy

=

∫
1

h
η(s/h)

∫
|u(x+ s)− u(x)| dxds

≤
∫ h

−h

(
1

|s|

∫ ∣∣u(x+ s)− u(x)
∣∣ dx) ds

≤ hα
∫∫

|u(x+ s)− u(x)|
|s|1+α

dxds

= ∥u∥Wα,1 · hα.

Moreover, the total variation of uh is bounded by∫
R
|u′h(x)| dx =

∫ ∣∣∣∣∫ u(y)η′h(y − x)dy

∣∣∣∣ dx
=

∫ ∣∣∣ ∫ u(x+ s)η′h(s)ds
∣∣∣dx

=

∫
1

h2

∣∣∣ ∫ u(x+ s)η′(s/h)ds
∣∣∣dx

=

∫
1

h2

∣∣∣ ∫ h

0
η′(s/h)(u(x+ s)− u(x− s))ds

∣∣∣dx
≤ C

∫
1

h1−α

∫ h

0

|u(x+ s)− u(x− s)|
s1+α

dsdx

≤ C ∥u∥Wα,1

1

h1−α
,

Notice that the constant C depends only on the mollifying kernel η.

Proposition 4.2. Let (1.1) be any conservation law with continuously differentiable flux. For
every α ∈ ]0, 1] we have the inclusion L∞(R) ∩Wα,1(R) ⊆ Dα.

Proof. Let u ∈ L∞(R)∩Wα,1(R) and consider the mollifications uh
.
= ηh ⋆ u. By Lemma 4.1

it follows

∥Shuh − uh∥L1 ≤ ∥f ′(uh)∥L∞ h · Tot.Var.{uh} ≤ C ∥f ′∥L∞∥u∥Wα,1hα,

where the L∞ norm of f ′ is taken on the interval [−∥u∥L∞ , ∥u∥L∞ ]. Therefore

∥Shu− u∥L1 ≤ ∥Shu− Shuh∥L1 + ∥Shuh − uh∥L1 + ∥uh − u∥L1

≤ (2 + C ∥f ′∥L∞) ∥u∥Wα,1hα.
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The second result in this section is formulated in terms of the property (Pα).

Proposition 4.3. Let (1.1) be a conservation law with continuously differentiable flux. For
any 0 < α < 1, if u ∈ L∞(R) satisfies (Pα), then u ∈ Dα.

Proof. Let u satisfy (Pα). Given t ∈ ]0, 1], set λ = t and let V (λ) ⊂ R be an open set
satisfying (1.9)-(1.10). Observing that this open set V (t) is a countable union of disjoint open
intervals

V (t) =
⋃
k≥1

]aj , bk[ ,

we define a new function v by replacing u with an affine function on each interval [aj , bj ].
Namely,

v(x) =


u(x) if x /∈ ∪k[ak, bk],

(bj − x)u(aj) + (x− aj)u(bj)

bj − aj
if x ∈ [aj , bj ] .

This implies
Tot.Var.{v} ≤ Tot.Var.

{
u ; R \ V (t)

}
≤ C tα−1,

∥v − u∥L1 ≤ 2∥u∥L∞ ·meas(V (t)) ≤ 2∥u∥L∞ · Ctα.

We thus obtain

∥Stu− u∥L1 ≤ ∥Stu− Stv∥L1 + ∥Stv − v∥L1 + ∥u− v∥L1

≤ ∥v − u∥L1 + t · ∥f ′∥L∞ · Tot.Var.{v}+ ∥v − u∥L1

≤ 4 ∥u∥L∞ C tα + ∥f ′∥L∞ Ctα,

where the L∞ norm of f ′ is taken on the interval [−∥u∥L∞ , ∥u∥L∞ ]. Since the same constant
C is valid for all t ∈ ]0, 1], this proves that u ∈ Dα.

5 A decomposition property for functions u ∈ Pα

In this section we study properties of functions that lie in the metric space Pα introduced at
(2.7). These are functions that satisfy the property (Pα) at (1.9)-(1.10). Our main result
provides a decomposition of a function u ∈ Pα, as the sum of countably many components
with different degrees of regularity.

Theorem 5.1. Let ū : R 7→ R be a measurable function and let 0 < α < 1 be given. Then
u ∈ Pα if and only if it can be decomposed as

u(x) =
∞∑
k=0

vk(x) for a.e. x ∈ R, (5.1)

where the vk satisfy the following properties. For some constant C = O(1) · ∥u∥Pα one has

(i) - bounds on the support and on the total variation:

Tot.Var.{v0} ≤ C, (5.2)

Tot.Var.{vk} ≤ C · 2(1−α)k, meas
(
{vk ̸= 0}

)
≤ C · 2−αk, for all k ≥ 1. (5.3)
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(ii) - one-sided Lipschitz bound:

vk(x2)− vk(x1) ≤ 2k · (x2 − x1) for all x1 < x2 . (5.4)

(iii) - a further decomposition:

For each k ≥ 1 we can further decompose

vk =
∞∑
p=1

vpk

so that the following conditions hold: the functions vpk satisfy (5.4), their supports have
disjoint interiors, and setting ℓpk

.
= meas(supp vpk) it holds∣∣vpk(x)∣∣ ≤ hpk
.
= 2kℓpk, for all x ∈ supp vpk ,

and ∑
p≥1

ℓpk ≤ C · 2−αk. (5.5)

The proof of Theorem 5.1 will be achieved in three steps. We first show in Lemma 5.3 that
the existence of a decomposition as in (5.1) which satisfies property (i) is equivalent to the
statement that u ∈ Pα. Next, in Lemma 5.4 we show that this decomposition can be refined
so to satisfy also property (ii), still with some constant C of the same order of ∥u∥Pα . Finally,
Lemma 5.5 shows that (iii) is an easy consequence of (i) and (ii)

Remark 5.2. One can estimate the Lp norm of u ∈ Pα, for 1 ≤ p < +∞, by

∥u∥Lp ≤
+∞∑
k=0

∥vk∥Lp ≤
+∞∑
k=0

∥vk∥L∞meas({vk ̸= 0})
1
p ≤ C

2
· C1/p ·

+∞∑
k=0

2k(1−α−αp−1),

where C = O(1) · ∥u∥Pα is the same constant as in Theorem 5.1. If p < α
1−α , we thus have the

embedding Pα ↪→ Lp
loc. Indeed, for every compact set K ⊂ R, there holds

∥u∥Lp(K) ≤ c(K) · 1

1− 2(1−α−αp−1)
· ∥u∥

1+ 1
p

Pα
.

In particular Pα ↪→ L1
loc if α > 1/2. Notice that this is consistent with the scaling property

∥u∥Pα = ∥uµ∥Pα with uµ(x)
.
= µ

1−α
α u(µx) for µ ≥ 1.

More generally, if p < α
1−α , the immersion Pα ↪→ Lp

loc is compact, namely a bounded sequence
{un}n∈N ⊂ Pα admits a convergent subsequence in Lp

loc.

Indeed, if un is a sequence of functions with ∥un∥Pα uniformly bounded in n, and if {vnk}k∈Z
are the functions appearing in the decomposition of un, by a diagonal argument using Helly’s
compactness theorem one extracts a subsequence {ni}i∈N such that vni

k converges in Lp(K),
for every k and every compact set K ⊂ R.
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Lemma 5.3. Let ū : R 7→ R be a measurable function. Then u ∈ Pα if and only if it can be
decomposed as (5.1), where the vk satisfy (5.2) and (5.3). The smallest constant C for which
(5.2) and (5.3) hold for every k ≥ 1 is of the same order of ∥u∥Pα.

Proof. 1. Assume that u admits a decomposition as in (5.1)-(5.3). We show that

∥u∥Pα = O(1) · C.

Consider the case where λ ∈ ]0, 1] is of the form λ = 2−q for some integer q ≥ 1. Then we set

ṽ
.
=

q∑
k=0

vk

and estimate

Tot.Var.{ṽ} ≤
q∑

k=0

Tot.Var.{vk} ≤ C ·
q∑

k=0

2(1−α)k = O(1) · C · 2(1−α)q.

Moreover

meas
(
{u ̸= ṽ}

)
≤ C ·

+∞∑
k=q+1

2−αk = O(1) · C · 2−αq.

This proves
sup
q≥1

d(2
−q)(u, 0) = O(1) · C.

A simple argument now shows that the estimate holds when the supremum is taken over all
0 < λ ≤ 1.

2. Assume now that u ∈ Pα. By the definition of ∥ · ∥Pα at (2.6)-(2.7), choosing λ = 2−k, for
every k ≥ 0 we obtain a function uk such that

Tot.Var.{uk} ≤ ∥u∥Pα · 2(1−α)k, meas
(
{u ̸= uk}

)
≤ ∥u∥Pα · 2−αk. (5.6)

One can choose the functions uk so that they also satisfy

{u ̸= uk} ⊆ {u ̸= uk−1} for all k ≥ 1.

We define the functions {vk}k≥1 by setting

v0
.
= u0, vk

.
= uk − uk−1 for all k ≥ 1. (5.7)

By the second inequality in (5.6) it follows

lim
k→+∞

uk(x) = u(x), pointwise for a.e. x ∈ R.

Using a telescopic sum one obtains

u(x) = lim
N→+∞

uN (x) = lim
N→+∞

N∑
k=0

vk(x) pointwise for a.e. x ∈ R.

We conclude by observing that

Tot.Var.{vk} ≤ Tot.Var.{uk}+Tot.Var.{uk−1} ≤ 2 · ∥u∥Pα · 2(1−α)k

and
meas

(
{uk ̸= uk−1}

)
≤ meas

(
{u ̸= uk−1}

)
≤ 2α · ∥u∥Pα · 2−αk.
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We now show that one can choose the decomposition in Lemma 5.3 in such a way that all
functions vk are one-sided Lipschitz.

Lemma 5.4. Consider any function u ∈ Pα. Then, it is possible to choose the functions vk
in (5.1)–(5.3) in such a way that the additional one-sided Lipschitz bound (5.4) holds.

Proof. 1. In the following, given p > 0 and a function f , we denote by Ep(f) its lower
one-sided p-Lipschitz envelope:

Epf(x)
.
= sup

{
u(x) ; u : R → R, u(y) ≤ f(y) , u(y′)−u(y) ≤ p(y′−y) for all y, y′ ∈ R, y < y′

}
.

f

pL f

Figure 4: The lower one-sided p-Lipschitz envelope Epf . Here the straight lines have slope p.

The function Epf is the largest one-sided p-Lipschitz function whose graph lies below the graph
of f . Denoting by Tot.Var.+{g} the positive variation of a function g

Tot.Var.+{g} .
= sup

∑
x0≤···≤xn

[
g(xi)−g(xi−1)

]+
,

[
g(xi)−g(xi−1)

]+
= max

{
0, g(xi)−g(xi−1)

}
,

the following relations hold:
Tot.Var.+{Epf} ≤ Tot.Var.+{f},

meas
{
x ∈ R ; Epf(x) < f(x)

}
≤ 1

p · Tot.Var.+{f},

Tot.Var.+{f − Epf} ≤ Tot.Var.+{f},

(5.8)

Notice that the second inequality is a consequence of Riesz’ sunrise lemma (see for example
[18], p.319), while the other two inequalities are straightforward.

2. Let {pik}i,k∈N be positive numbers (to be chosen later) such that

lim
i→+∞

pik = +∞ for all k ≥ 0, (5.9)

and consider the decomposition (5.1) constructed in Lemma 5.3. As an intermediate step, we
claim that for every k ≥ 0, the function vk can be further decomposed as

vk(x) =
+∞∑
i=0

vik(x) for a.e. x ∈ R, (5.10)

where each vik is one-sided pik-Lipschitz and satisfies

meas
(
{vik ̸= 0}

)
≤ C · 2

k(1−α)

pi−1
k

, Tot.Var.+{vik} ≤ C · 2(1−α)k if i+ k ̸= 0,

Tot.Var.{v00} ≤ C,

(5.11)
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with C = O(1) · ∥u∥Pα , as in Lemma 5.3.

For k ≥ 0, we first prove the claim assuming vk ≥ 0. Define

v0k
.
= Ep0k(vk).

By (5.8) one has

Tot.Var.+{v0k} ≤ Tot.Var.+{vk} ≤ C · 2(1−α)k, for all k ≥ 0.

meas({v0k ̸= 0}) ≤ meas({vk ̸= 0}) ≤ C · 2−αk for all k ≥ 1.

Setting ψ0 = vk − v0k and using again (5.8) we get

meas({ψ0 ̸= 0}) ≤ C · 1

p0k
· 2(1−α)k, Tot.Var.+{ψ0} ≤ C · 2(1−α)k.

Defining v1k = Ep1kψ0 we obtain

meas({v1k ̸= 0}) ≤ C · 1

p0k
· 2(1−α)k, Tot.Var.+{v1k} ≤ C · 2(1−α)k.

By induction, assume we are given ψi−2 and vi−1
k = Epi−1

k
ψi−2, i ≥ 2, both with positive

variation ≤ C · 2(1−α)k. We then define ψi−1 = ψi−2 − vi−1
k and vik = Epikψi−1. This yields

meas({ψi−1 ̸= 0}) ≤ C · 1

pi−1
k

· 2(1−α)k, Tot.Var.+{ψi−1} ≤ C · 2(1−α)k

and hence

meas({vik ̸= 0}) ≤ C · 2
(1−α)k

pi−1
k

, Tot.Var.+{vik} ≤ C · 2(1−α)k. (5.12)

Therefore, by induction (5.12) holds for every i and every k.

Finally, we prove that (5.10) holds. Indeed, by the second inequality in (5.8) it follows

meas

({
vk ̸=

i∗∑
i=0

vik

})
≤ 1

pi
∗
k

· Tot.Var. vk for all i∗ ≥ 1.

Letting i∗ → +∞, this proves our claim in the case vk ≥ 0.

3. Next, we show how to handle the general case where vk = v+k − v−k has a positive and a
negative part. We already know how to decompose the positive part v+k .

We treat the negative part v−k in the same way, but using instead the lower one-sided Lipschitz
envelope, defined by

E−
p f(x)

.
= sup

{
u(x) ; u(y) ≤ f(y) , u(y′)− u(y) ≥ −p(y′ − y) for all y, y′ ∈ R, y < y′

}
.

This yields a decomposition

v−k =
∞∑
i=0

wi
k
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where wi
k are positive one sided Lipschitz functions which satisfy the same inequalities as in

(5.11), and whose distributional derivatives satisfy Dwk
i ≥ −pik.

Then

vk(x) = v+k (x)− v−k (x) =
∞∑
i=0

vik(x) +
∞∑
i=0

(
−wi

k(x)
)
.

is the desired decomposition.

4. We now conclude the proof of the lemma, relying on (5.10)-(5.11). Defining

ṽq =

q∑
i=0

viq−i , (5.13)

we obtain

u =
+∞∑
q=0

ṽq . (5.14)

Next, we choose

pik
.
=

6

π2
· 2k+i

(i+ 2)2
.

By (5.11), for every q ≥ 1 we obtain

meas
(
{ṽq ̸= 0}

)
≤ π2

6
C ·2−αq

q∑
i=0

2q · (i+ 1)2

2(1−α)i · 2q−1
≤ π2

3
·C ·2−αq ·

q∑
i=0

(i+ 1)2

2(1−α)i
= O(1)·C ·2−αq.

Moreover, always for q ≥ 1, the one-sided Lipschitz constant for ṽq is estimated by

Dṽq ≤ 6

π2

q∑
i=0

piq−i ≤ 2q
6

π2

q∑
i=0

1

(i+ 1)2
≤ 2q.

The one-sided Lipschitz property and the estimate on the support of ṽq readily imply

Tot.Var.{ṽq} = O(1) · C · 2(1−α)q.

If q = 0, by definition we have ṽq = v00, so that by (5.11)

Tot.Var. {ṽ0} ≤ C, Dṽ0 ≤ p00 ≤ 1.

The conclusion of the lemma is achieved by renaming vk
.
= ṽq, with q = k.

Lemma 5.5. For every k ≥ 0, the function vk constructed in Lemma 5.4 satisfies 3 of Theorem
5.1.

Proof. Since vk is one-sided Lipschitz, the set {vk ̸= 0} has at most countably many connected

components, that we denote by {Ipk}p≥1. Consider then the restrictions vpk
.
= vk

∣∣∣
Ipk

. On every

interval Ipk , having length ℓpk, since vk is one-sided 2k-Lipschitz, one has

|vk(x)| ≤ 2kℓpk = hpk, for all x ∈ Ipk

Therefore ∑
p≥1

ℓpk = meas({vk ̸= 0}) ≤ C2−αk,

which proves (5.5).
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6 Decay rate of the Total Variation

In this section we prove that if 1/2 < α < 1, then the conjectured decay of the total variation
with rate tα−1 holds.

Theorem 6.1. Consider a bounded, compactly supported initial datum u ∈ Pα, with 1/2 <
α < 1. Then the solution to Burgers’ equation (3.1) satisfies

lim sup
t→0+

(
t1−α · TV

{
Stu
})

≤ C0
∥u∥Pα

2α− 1
, (6.1)

where C0 is some absolute constant.

Proof. 1. Let u = u(t, x) be a solution of Burgers’ equation and let t > 0 be given. Denote
by Jt ⊂ R the jump set of u(t, ·). By the Lax-Oleinik formula, for every x ∈ R \ Jt there is
a unique backward characteristic from the point (t, x) along which the solution is constant:
namely

u(t, x) = u(s, x− u(t, x)(t− s)) for all s ∈ ]0, t]. (6.2)

If (6.2) holds we say that the couple

(x0, v)
.
=
(
x− u(t, x)t , u(t, x)

)
survives up to time t, and we denote by Q(t) the set of couples which survive up to time t. The
point x0 is the starting point of the characteristic passing through (t, x) and v is the value of
u along the characteristic. Notice however, for example in the case of a centered rarefaction,
that we can have u(x0) ̸= v. Indeed, (6.2) does not extend to t = 0, in general. We will
estimate Tot.Var.{Stu} by means of the equality

Tot.Var.
{
Stu ; R

}
= Tot.Var.

{
Stu ; R \ Jt

}
= sup

∑
x1≤···≤xn,
(xi,vi)∈Q(t)

|vi − vi−1|, (6.3)

where in the last sum we assume that if xi−1 = xi, then vi−1 ≤ vi. By the Lax formula, the
constraint (x0, u0) ∈ Q(t) is satisfied if and only if∫ y

x0

u(z)−
[
u0 −

1

t
(z − x0)

]
dz ≥ 0 for all y ≥ x0 ,∫ x0

y
u(z)−

[
u0 −

1

t
(z − x0)

]
dz ≤ 0 for all y ≤ x0 .

(6.4)

Equivalently:∫ y

x0

[
u(z)−

(
u0−

z − x0
t

)]+
dz ≥

∫ y

x0

[
u(z)−

(
u0−

z − x0
t

)]−
dz for all y ≥ x0 , (6.5)

∫ x0

y

[
u(z)−

(
u0−

z − x0
t

)]+
dz ≤

∫ x0

y

[
u(z)−

(
u0−

z − x0
t

)]−
dz for all y ≤ x0 , (6.6)

where we used the notation

[z]+
.
= max{z, 0}, [z]−

.
= −min{z, 0}.
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The interpretation of (6.5) is that for every y > x0 the area of the hypograph of u in [x0, y]
that lies above the line passing through (x0, u0) with slope −1/t must be bigger then the area
of the epigraph lying below the same line. Analogously, the interpretation of (6.6) is that for
every y < x0 the area of the hypograph of u in [x0, y] that lies above the line passing through
(x, u0) with slope −1/t must be smaller then the area of the epigraph lying below the same
line.

2. It suffices to prove the decay estimate (6.1) for all times of the form t = 2−k, k ≥ 1. We
thus need to estimate the quantity

lim sup
k→+∞

2(α−1)k Tot.Var.
{
S2−ku

}
In the following we fix a time t = 2−k and show that

Tot.Var.
{
S2−ku

}
≤ c · 2

(1−α)k

2α− 1
· ∥u∥Pα , (6.7)

where c is some constant depending only on ∥u∥L∞ .

Let u =
∑∞

q=0 vq be a decomposition satisfying all the properties listed in Theorem 5.1. We
write u as the sum of two terms:

u =
k−1∑
q=0

vq +
∞∑
q=k

vq
.
= ũk + ûk. (6.8)

We regard the function ũk as the regular part of u, in the sense that it has total variation that
is bounded, of size O(1) · 2(1−α)k. In fact, since each vq is one-sided Lipschitz with constant
2q and with total variation bounded by C 2(1−α)q, the function ũk is one-sided Lipschitz with
constant 2k and with total variation bounded by C2(1−α)k.

We recall that C is the constant coming from Lemmas 5.3 and 5.4, of the same order of ∥u∥Pα .

3. To simplify the exposition, we first give a proof under two additional assumptions:

(H1) the regular part ũk is zero, i.e.

u =
+∞∑
q=k

vq = ûk. (6.9)

(H2) All functions vq are positive:

vq(x) ≥ 0 for all x ∈ R.

This implies that all the functions vpq constructed in Lemma 5.5 are positive as well,

Assuming (H1) and (H2), let x0 ≤ x1 ≤ · · · ≤ xn and v0, . . . , vn, be such that (xi, vi) ∈ Q(2−k).
According to (6.3), it suffices to estimate the total variation over these points:

n∑
i=1

|vi − vi−1|.
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Since u is compactly supported, it is enough to estimate the negative variation, namely

n∑
i=1

[
vi − vi−1

]−
. (6.10)

The set of downward jumps

N .
=
{
i ∈ {1, . . . , n} ; vi < vi−1

}
.

can be partitioned as N = I ∪ J , where

I .
=
{
i ∈ N ; ]xi−1, xi[⊆ {ûk ̸= 0}

}
, J .

= N \ I.

In the next two steps, the negative variation (6.10) will be estimated by considering the terms
i ∈ I and i ∈ J separately.

4. Let i ∈ I. Since the characteristics starting at xi, xi+1 do not cross up to time t = 2−k,
this implies

vi−1 − vi ≤ (xi − xi−1) · 2k.

Summing over I one obtains∑
i∈I

[
vi−1 − vi

]
≤ 2k

∑
i∈I

(xi − xi−1) ≤ 2k ·meas
(
{ûk ̸= 0}

)
≤ 2C · 2k · 2−αk = c1C · 2(1−α)k,

(6.11)
where we used the inequalities

meas
(
{ûk ̸= 0}

)
≤

∞∑
q=k

meas
(
{vq ̸= 0}

)
≤ C

∞∑
q=k

2−αq ≤ 2α

2α − 1
C · 2−αk.

5. Next, consider the case where i ∈ J . As shown in Fig. 5, consider the triangle

Ti
.
=
{
(x, v) ∈ R2 ; xi−1 < x < xi, vi ≤ v ≤ vi−1 − 2k(x− xi−1)

}
.

with height δi
.
= vi−1 − vi and base of length δi2

−k.

In the following, we denote by Ûk ⊂ R2 the region below the graph of ûk:

Ûk
.
=
{
(x, v) ∈ R2 ; 0 ≤ v ≤ ûk(x)

}
⊂ R2.

By (6.5), the fact that (xi−1, vi−1) ∈ Q(2−k), implies that the area of the triangle Ti is bounded
by the area of Û in the strip [xi−1, xi]× R:

meas(Ti) = 2−(k+1)δ2i ≤ meas
(
Ûk ∩

(
[xi−1, xi]× R

))
.

This implies

δi ≤ 2
k+1
2 ·meas

(
Ûk ∩

(
[xi−1, xi]× R

))1/2
. (6.12)
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Ti

slope = −2k

bumps vpq

xi−1 xi

δi

vi−1

vi

ûk

Figure 5: The configuration considered in the estimate for i ∈ J , in step 5 of the proof.

For each i ∈ J , we now consider the set of indices Z(i) ⊂ N× N defined by

Z(i)
.
=
{
(p, q) ∈ N2 ; q ≥ k, supp vpq ∩ ]xi−1, xi[ ̸= ∅

}
.

This is the set of all functions vpq in the decomposition of ûk whose support intersects the open
interval ]xi−1, xi[ .

At this stage, we make an important observation:

• For any couple (p, q) with q ≥ k, there can be at most two indices i ∈ J such that
(p, q) ∈ Z(i)

Indeed, assume that this were not the case, i.e. for some i1 < i2 < i3 one had (p, q) ∈
Z(i1) ∩ Z(i2) ∩ Z(i3). Since the set {vpq ̸= 0} is connected, we would have

]xi2−1, xi2 [ ⊂ {vpq ̸= 0} ⊆ {ûk ̸= 0}.

But this is a contradiction because i /∈ I.

As in Lemma 5.5, call ℓpq
.
= meas

(
supp vpq

)
. By (6.12) it follows

δi ≤
√
2 · 2k/2 ·

( ∑
(p,q)∈Z(i)

hpq · ℓpq

)1/2

≤
√
2 · 2k/2 ·

∑
(p,q)∈Z(i)

(
hpq · ℓpq

)1/2
.

Summing over i ∈ J , and using the fact that each couple (p, q) can appear in the sum at most
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twice, we obtain ∑
i∈J

δi ≤
√
2 · 2k/2 ·

∑
i∈J

∑
(p,q)∈Z(i)

(
hpq · ℓpq

)1/2
≤ 23/2 · 2k/2 ·

∞∑
q=k

∑
p∈N

(
hpq · ℓpq

)1/2
.

(6.13)

Observing that (
ℓpq · hpq

)1/2
= 2q/2ℓpq

and using (5.5), from (6.13) we obtain

∑
i∈J

δi ≤ 23/2 · 2k/2 ·
∞∑
q=k

∑
p∈N

2q/2ℓpq ≤ 23/2 · C · 2k/2 ·
∞∑
q=k

2q/22−αq

≤ c2C · 1

1− 2α
2k/2 · 2(1/2−α)k = c2C · 1

2α− 1
· 2(1−α)k,

(6.14)

where c2 is another absolute constant. Combining (6.11) with (6.14), we obtain the desired
decay rate, under the additional assumptions (H1)-(H2).

6. In the remaining steps we complete the proof of the theorem, removing the assumptions
(H1)-(H2).

Recalling the decomposition (6.8), we observe that the function ũk is one-sided 2k-Lipschitz,
because each vq is one-sided 2q Lipschitz.

Let x0 ≤ x1 ≤ . . . ≤ xn and vi, i = 0, . . . , n be such that (xi, vi) ∈ Q(2−k). As before, it
suffices to estimate the negative variation, i.e.∑

i∈N

[
vi−1 − vi

]
,

where
N .

=
{
i ∈ {1, . . . , n} ; vi < vi−1

}
.

We partition the above set of indices as N = I ∪ J , where

I .
=

{
i ∈ N ; ]xi−1, xi[ ⊂

⋃
q≥k

{vq ̸= 0}

}
, J .

= N \ I.

Set
δi
.
= vi−1 − vi for all i ∈ N .

We further partition J = J1 ∪ J2, by setting

J1
.
=
{
i ∈ J | ũk(xi−1) ≥ vi−1 −

δi
3

and ũk(xi) ≤ vi +
δi
3

}
, J2

.
= J \ J1 .

We will estimate the quantity∑
i∈N

δi =
∑
i∈I

δi +
∑
i∈J1

δi +
∑
i∈J2

δi
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δi

1
3δi

1
3δi

1
3δi

ũk

Figure 6: Illustration of the case i ∈ J1. At least one third of the variation is due to the regular part
ũk.

by providing a bound on each term on the right hand side, in the following three steps.

7. (Estimate of the sum over I). With exactly the same argument as in Step 4., we
obtain the estimate ∑

i∈I

[
vi−1 − vi

]
≤ c1 · C · 2(1−α)k (6.15)

where c1 is an absolute constant.

8. (Estimate of the sum over J1). In this case (see Figure 6), by definition of J1 the
variation of ũk on [xi−1, xi] is at least one third of δi. Therefore the jump δi is controlled
by the variation of ũk, which is the regular part. More precisely, from the definition of J1 it
follows

δi
.
= vi−1 − vi ≤

(
ũk(xi−1) +

δi
3

)
−
(
ũk(xi)−

δi
3

)
≤ ũk(xi−1)− ũk(xi) +

2δi
3
,

and therefore
δi ≤ 3 ·

(
ũk(xi−1)− ũk(xi)

)
.

Summing over i ∈ J1 we obtain∑
i∈J1

δi ≤ 3
∑
i∈J1

(
ũk(xi−1)− ũk(xi)

)
≤ 3Tot.Var.{ũk} ≤ c2 · C · 2(1−α)k. (6.16)

9. (Estimate of the sum over J2). The idea here is that we reduced to a situation where
we can proceed as in the simplified case of the previous section, up to a modification of the
definition of the triangles Ti that takes into account the presence of ũk, which is one-sided
2k-Lipschitz. Since i ∈ J2, at least one of the following inequalities is true:

ũk(xi−1) < vi−1 −
δi
3

or ũk(xi) > vi +
δi
3
. (6.17)

The proof splits in two cases depending on which one is true. To fix ideas, we assume that
the first inequality holds. The second case is entirely similar. It can be handled by the same
argument, in connection with the reversed initial datum: v(x)

.
= −u(−x).
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δi

1
3δi

1
3δi

1
3δi

ũk
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vi

Ti

slope = −2k

u

Figure 7: The estimate for i ∈ J2. From the fact that the value vi−1 survives up to time 2−k, we
deduce that the area of the yellow triangle can be controlled by the L1 norm of all the vpq in the interval
(xi−1, xi).

Assuming that the first inequality in (6.17) holds, define the triangle:

Ti
.
=
{
(x, v) ∈ R2 | x ∈ (xi−1, xi), vi−1 −

δi
3
+ (x− xi−1) · 2k ≤ v ≤ vi−1 − (x− xi−1)2

k
}
,

as shown in Fig. 7. We let U ⊂ R2 be the hypograph of u:

U
.
=
{
(x, v) ∈ R2 ; v ≤ u(x)

}
⊂ R2,

and let Ũk be the hypograph of ũk:

Ũk
.
=
{
(x, v) ∈ R2 ; v ≤ ũk(x)

}
⊂ R2.

The fact that the couple (xi−1, vi−1) survives up to time t = 2−k already implies that

meas(Ti \ Ũk) ≤ meas
{
(x, v) ∈ (U \ Ũ) ; x ∈ [xi−1, xi]

}
.
= Ai . (6.18)

Actually, we claim that Ũk ∩ Ti = ∅. In fact, ũk is one-sided 2k-Lipschitz and satisfies
ũk(xi−1) ≤ vi−1 − δi

3 . This implies

ũk(x) ≤ vi −
δi
3
+ (x− xi−1) · 2k for all x ∈ ]xi−1, xi[ .

By definition of the triangle Ti, this means that the hypograph of ũk lies entirely below the
lower side of Ti. Hence Ũk ∩ Ti = ∅. From (6.18) it thus follows

meas(Ti) ≤ Ai . (6.19)

On the other hand, the area of the triangle Ti is

meas(Ti) =
δ2i
64

2−k. (6.20)
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Combining (6.19) with (6.20) we obtain

δi ≤ 8 · 2k/2 ·A1/2
i . (6.21)

The area Ai on the right hand side is bounded above by the sum of the areas of the blocks
vpq whose support intersects the interval ]xi, xi+1[ . More precisely, for each i ∈ J2, define the
set of indices

Z(i)
.
=
{
(p, q) ∈ N2 | q ≥ k, supp vpq∩ ]xi−1, xi[ ̸= ∅

}
.

With the same argument used in step 5. we obtain that, for every couple (p, q) with q ≥ k,
there can be at most two indices i ∈ J2 such that (p, q) ∈ Z(i).

By (6.21) we now obtain

δi ≤ 8 · 2k/2 ·

( ∑
(p,q)∈Z(i)

hpq · ℓpq

)1/2

≤ 8 · 2k/2 ·
∑

(p,q)∈Z(i)

(
hpq · ℓpq

)1/2
.

Summing over i, and using the fact that each (p, q) appears in the sum at most twice, we
obtain∑

i∈J2

δi ≤ 8 · 2k/2 ·
∑
i∈J2

∑
(p,q)∈Z(i)

(
hpq · ℓpq

)1/2
≤ 16 · 2k/2 ·

∞∑
q=k

∑
p∈N

(
hpq · ℓpq

)1/2
. (6.22)

Observing that
(
ℓpq · hpq

)1/2
= 2q/2ℓpq and using (5.5), we finally obtain

∑
i∈J2

δi ≤ 16 · 2k/2 ·
∞∑
q=k

∑
p∈N

2q/2ℓpq ≤ 16 · 2k/2 · C ·
∞∑
q=k

2q/22−αq

≤ c3 ·
1

2α− 1
· ∥u∥Pα2

k/2 · 2(1/2−α)k = c3 ·
1

2α− 1
· ∥u∥Pα · 2(1−α)k,

(6.23)

where c3 is an absolute constant. Combining the three estimates (6.15), (6.16) and (6.23), the
proof is completed.

Remark 6.2. If Burgers’ equation is replaced by a general scalar conservation law with a
C2, uniformly convex flux f , so that f ′′ ≥ c > 0, from the Hopf-Lax formula we obtain that
(x0, u0) ∈ Q(t) if and only if∫ y

x0

[
u(z)− (f∗)′

(
f ′(u0)−

z − x0
t

)]+
dz ≥

∫ y

x0

[
u(z)− (f∗)′

(
f ′(u0)−

z − x0
t

)]−
dz

(6.24)
for all y ≥ x0 , and∫ x0

y

[
u(z)− (f∗)′

(
f ′(u0)−

z − x0
t

)]+
dz ≤

∫ x0

y

[
u(z)− (f∗)′

(
f ′(u0)−

z − x0
t

)]−
dz

(6.25)
for all y ≤ x0 . Here

f∗(u)
.
= sup

v∈R

{
uv − f(v)

}
denotes the Legendre transform of f . By a well known property of the Legendre transform
(see e.g. [8, 14]) we have

(f∗)′
(
f ′(u0)

)
= u0 .
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By uniform convexity it thus follows

u0 −
1

ct
(z − x0) ≤ (f∗)′

(
f ′(u0)−

z − x0
t

)
for all z > x0 ,

(f∗)′
(
f ′(u0)−

z − x0
t

)
≤ u0 −

1

ct
(z − x0) for all z < x0.

Using the inequalities above, the above proof remains valid up to minor modifications. There-
fore, Theorem 5.1 remains valid for any uniformly convex flux f .
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