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Abstract. An existence result for the quasi-static evolution of incomplete damage in elastic
materials is presented. The absence of gradient terms in the damage variable causes a critical
lack of compactness. Therefore, the analysis is developed in the framework of Young measures,
where a notion of solution is defined, presenting some improvements with respect to previous
contributions. The main new feature in the proof of the existence result regards a delicate
construction of the joint-recovery sequence.

1. Introduction

Damage processes are recurrent in Solid Mechanics. By undergoing loading cycles, real
materials experience to a variable extent a deterioration of the respective elastic properties.
This can be generally interpreted as the effect of the occurrence and growth of cracks and voids
at the level of the microscopic material structure and has a dramatic impact on materials and
structures performance. As such, damage modeling has been a remarkably active trend in the
Engineering community since the 50s, so that it is largely beyond our scope even to try to review
the huge existing literature on this subject. The Reader is however referred to [5, 15, 21, 22, 23]
for some recent contributions.

The usual approach to damage in Continuum Mechanics is that of directly incorporating
an internal variable descriptor of the state of the material into the constitutive relations. In
particular, in case of isotropic damage (i.e., by assuming deterioration to be distributed with
a uniform orientation), one is lead to introduce a scalar damage variable z taking the value
z = 1 at undamaged points and z = 0 at maximally damaged points. Hence, moving within
the small-strain realm, one is generally concerned with an elastic energy functional of the form

W(z, e(v)) :=
∫

Ω
W (z(x), e(v)(x)) dx

where e(v) := (∇v + ∇vT )/2 is the symmetrized strain tensor and v : Ω → Rd denotes the
displacement from the reference configuration Ω. Damage evolution is governed by the interplay
of energy minimization and dissipation. In particular, damage is often very well assimilable to
a quasi-static evolution process and, in this regard, the first possible choice for a dissipation
mechanism from the damage state zold to updated state znew may be assumed to be

D(zold, znew) :=
∫

Ω
d(zold(x), znew(x)) dx,
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where d : R2 → [0,∞] is the non-symmetric (pseudo-)distance defined by

d(θ1, θ2) :=

{
ρ(θ1 − θ2) if θ1 ≥ θ2

∞ else

for some ρ > 0. The asymmetry of the dissipation distance d encodes the quite natural ansatz
of irreversibility of damage. Moreover, the 1-homogeneity of D is the trademark of the rate-
independent nature of the damage process.

This very frame for a variational theory of rate-independent damage has attracted a good
deal of attention among in recent years and rigorous mathematical results are to be found, for
instance, in [2, 3, 14, 16, 28, 30]. The analysis of this paper moves exactly within the setting
of the result by Thomas & Mielke [35] where the Authors develop an existence theory for
incomplete damage by directly including a gradient term of the internal variable z into the
energy. By including such gradient term, one obtains a clear compactifing effect along with
the possible description of nonlocal interactions of damage in the material. On the other hand,
the occurrence of damage localization seems to be often a clear experimental evidence. In this
respect, one is motivated in considering possibly non-regularized damage models instead.

The novelty of our contribution with respect to [35] resides exactly in dropping the gradi-
ent term in the damage variable from the energy, thus excluding nonlocal damage interaction.
Correspondingly, we are lacking the above mentioned compact frame and we resort in consider-
ing Young measures as plausible objects for describing damage evolution. Young measures are
indeed a quite naturally suited tool for the treatment of non-compact problems. In particular,
for rate-independent models, analyses of mechanical phenomena within the framework of Young
measures have been devised in [12, 20, 24, 26, 27, 29] for phase transitions, [6, 8] for plasticity
with softening, and [4] for fracture mechanics. To our knowledge, no Young measure formulation
has been yet proposed in the context of rate-independent damage (in the case of a gradient-flow
damage model, a Young-measure analysis at the time-discrete level is reported in [33]).

The focus of this paper is on providing an existence theory for a suitable Young-measure quasi-
static evolution of the damage model in the frame of so-called energetic solutions à la Mielke &
Theil [31]. Our evolution will be represented by a family ν = (νt)t of time-parametrized Young
measures which replace the pair (z, e(v)). According to the expected unidirectionality of the
damage process, the energetic solution is required to satisfy a suitable irreversibility property.
To formulate this monotonicity condition in our generalized setting, we tailor a partial order
relation between Young measures (see Section 3.1), in the same spirit as in [4]. Then, the validity
of a specific global stability condition and of the energy balance will be achieved by passing to
the limit argument with respect to time-discretizations.

As already commented in [35], the discontinuity of the dissipation distance makes the proof
of the stability condition more complicated by requiring the construction of a so-called mu-
tual recovery sequence. This is exactly the point where the compactifying effect of the gra-
dient of damage in [35] has proved to be useful in order to ensure a stronger convergence of
the recovery sequence. Here, we overcome this point by two tools: a regularity result and a
measure-reconstruction lemma. At first, we exploit the fact that some higher integrability of the
approximating sequences can be achieved by exploiting the theory of quasi-minima [17]. We
believe this observation (already done in [12]) to be an interesting feature of our proof which
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could possibly be of some use also elsewhere. Then, we provide a constructive technique to build
a recovery sequence satisfying both the order constraint and the required convergence property.

The technical difficulties related to the Young measure approach force us to consider some
reduced global stability condition. In particular, as it is quite usual in these situations, we
obtain global stability for two class of competitors: translations of νt by functions (z̃, ũ) in
L1(Ω;R) × H1

0 (Ω;Rd), and Young measures with disintegration of the form µ̃x ⊗ δe(ṽ)(x) , for
any Young measure µ̃ on Ω × [0, 1]. Minimality with respect to translations by functions
coincides with the stability condition considered in [8] and [11]. Here, nevertheless we allow
milder assumptions on the energy density. On the other hand, the second class of tests represents
a quite remarkable enlargement of the set of competitors with respect to previous contributions.
These competitors, in particular, do not depend on the evolution νt and permit the comparison
of the evolution with all other possible damage states.

A further interesting feature of our result is that the specific form of the damage model
allows us to prove the existence result without the help of the technical tool of compatible
systems of Young measures developed in [7] (see also [11]). In particular, this entails a rather
straightforward formulation of our solution notion.

Our damage model is non-brittle in the sense that partially damaged situations z ∈ (0, 1) are
actually to be expected (see Subsection 2.1). We shall refer to Francfort & Garroni [14],
Garroni & Larsen [16], and Babadjian [2] for recent contributions on damage models for
brittle materials, namely assuming z ∈ {0, 1} . Besides brittleness, we have to remark that the
mechanical stand of the latter papers is quite different from ours. In particular, their starting
point is a z -mixture of a linearly elastic strong and weak material with elasticity tensors As and
Aw , respectively. This is to say that their energy density is assumed to be of the form

W (z, e) =


Asφ(e) if z = 1
Awφ(e) if z = 0
+∞ otherwise

(1.1)

with φ(e) = e2/2 (in the 1-dimensional case) in [14, 16] and a more general convex function φ in
[2]. As no gradient terms in the damage variable are considered, evolution via time-discretization
immediately calls for quasi-convexification and the passage to the limit is performed by deter-
mining the limiting materials via its elasticity tensor by homogenization tools. To this end, the
convexity of the energy density with respect to the strain variable is needed [2, Section 1] and
a price to pay is the replacement of the damage variable z by the elasticity tensor or by the
damage set in the limit.

Our approach here is somehow different as we already start from an (essentially) quasiconvex
energy in the first place so that no quasi-convexification is needed for the incremental step. From
the one hand, this prevents us from considering linear mixtures energies of the form of (1.1) in
our frame. In particular, the relaxed models from [14, 16, 2] seem not directly recoverable in
the present setting. From the other hand, this gives us the advantage of tracing the damage
variable z into the evolution.

The paper is organized as follows. In Section 2 we present the mechanical model, and in
Section 3 we recall some mathematical preliminaries. In particular, Subsection 3.1 presents a
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partial order relation between Young measures. Section 4 is devoted to the formulation of the
quasi-static evolution and our main result. The existence proof is detailed in Section 5. Some
technical lemmas are then collected in the Appendix.

2. The mechanical model

Let us specify here some notation and our general assumptions. The reference configuration
of the body is the bounded, connected, and open set Ω ⊂ Rd with Lipschitz boundary ∂Ω. We
indicate the displacement field by v and the linearized strain tensor by e(v) := 1

2(∇v +∇vT).
The damage variable is z : Ω→ R and will actually take values solely in [0, 1] as an effect of our
general assumptions below.

The stored energy density of the material is a function W : R × Rd×dsym → [0,+∞) satisfying
the following hypotheses:

(W.1) W is continuous and S-cross-quasiconvex, i.e. satisfies property (3.4) below;
(W.2) there exist two positive constants cW < CW such that cW |ε|2 ≤ W (θ, ε) ≤ CW |ε|2 for

every ε ∈ Rd×dsym and every θ ∈ (−∞, 2];
(W.3) for every θ ∈ R , W (θ, ·) is C1 and

∣∣∂W
∂ε (θ, ε)

∣∣ ≤ CW (|ε|+1), for every (θ, ε) ∈ (−∞, 2]×
Rd×dsym ;

(W.4) θ 7→W (θ, ε) is non-decreasing for every ε ∈ Rd×dsym ;
(W.5) W (θ, ε) = W (0, ε) for every θ ≤ 0.

Hence, stored energy of the material reads

W(z, e(v)) :=
∫

Ω
W (z(x), e(v)(x)) dx.

Though the most natural assumption for the stored energy density in linearized elasticity is
to be quadratic with respect to the strain variable, for sake of generality we assume here that
W satisfies the weaker condition (W.1). Indeed, our analysis could be retraced in the case of
nonlinear elasticity as well, and in this case the quasi-convexity assumption is more desirable
than the quadratic one.

The dissipation distance between two damage states zold and znew is given by

D(zold, znew) :=
∫

Ω
d(zold(x), znew(x)) dx,

where the density d is given by

d(θ1, θ2) :=

{
ρ|θ1 − θ2| if θ1 ≥ θ2

+∞ else,

for every θ1, θ2 ∈ R and for a suitable ρ > 0.
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Given two distinct times s < t , the global dissipation of a possibly discontinuous-in-time
damage evolution z : [0, T ]→ L1(Ω) in the interval [s, t] is given by

Diss(z; s, t) := sup
k∑
i=1

D(z(τi−1), (z(τi)),

where the supremum is taken among all finite partitions s = τ0 < τ1 < · · · < τk = t .

Note that, if z(τ) ≥ z(τ ′) almost everywhere in Ω, whenever τ ≤ τ ′ , then

Diss(z; s, t) = ρ

∫
Ω

(
z(s)− z(t)

)
dx.

For the sake of simplicity, the boundary displacement is prescribed at time t on the whole
boundary ∂Ω as u = ϕ where the given function ϕ(t) fulfills

ϕ ∈ AC([0, T ];W 1,p(Ω;Rd)), with 2 < p ≤ ∞.

Let us however note that other choices of boundary conditions are indeed possible.

2.1. A 0-dimensional example. We focus here on a 0-dimensional case, i.e. the case in
which damage and strain are independent of x . Our aim is showing that the materials we are
considering are not necessarily brittle, in the sense that the damage variable z can be expected
to take intermediate values between 0 and 1.

We consider a stored energy defined by

W (z, e) :=
e2

2g(z)
,

for g(z) :=
√

2− z+ for every z ∈ [0, 2). We observe that the function g is C2(0, 2) with g′ ≤ 0
and g′′ ≤ 0 in (0, 2) and g is constant on (−∞, 0]; it is now easy to see that the Hessian matrix
of W is positive definite and hence W is a convex function on [0, 2)×R (see [35, Lemma 5.1]).

The dissipation distance is given by

d(z1, z2) :=

{
|z1 − z2| if z1 ≥ z2

+∞ otherwise,

for every z1, z2 ∈ R .

In this example we analyze an evolution driven by time-dependent external forces instead of
time-varying boundary data; the external forces are given by l(t) := t .

In particular, a quasi-static evolution in the time interval [0, 3
√

2] with initial datum (z0, e0) :=
(1, 0) is defined energetically (see [31]) as a pair of time-dependent functions (z(t), e(t)) with
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z(t) ≥ 0, such that the following conditions are satisfied:

initial condition : (z(0), e(0)) = (1, 0); (2.1)

irreversibility : z(s) ≥ z(t) if s ≤ t; (2.2)

stability :
e2(t)

2g(z(t))
− te(t) ≤ ẽ2

2g(z̃)
− tẽ+ d(z(t), z̃) ∀t ∈ [0, 3/

√
2], z̃, ẽ ∈ R; (2.3)

energy equality :
e2(t)

2g(z(t))
− te(t) + z(0)− z(t) = −

∫ t

0
e(s) ds ∀t ∈ [0, 3/

√
2]. (2.4)

Condition (2.3) implies that e(t) = tg(z(t)). Indeed, if we choose z̃ = z(t) in (2.3), we obtain
that e(t) is the unique minimizer of the convex function e 7→ e2/(2g(z(t)))− te . Therefore, it is
enough to choose z(t) satisfying the initial condition and the irreversibility condition, such that
the energy equality (2.4) holds true for (z(t), tg(z(t))), and satisfying for every t ∈ [0, 3

√
2]

t2g(z(t))
2

− t2g(z(t)) ≤ t2g(z̃)
2
− t2g(z̃) + z(t)− z̃,

for every z̃ ≤ z(t), i.e.,

t2

2
[
g(z̃)− g(z(t))

]
≤ z(t)− z̃, (2.5)

for every z̃ ≤ z(t).

Let us first consider z(t) ≡ 1 for every t ∈ [0, 2]. This choice may be easily proved to fulfill
(2.1)-(2.4) and hence is a quasi-static evolution for t ∈ [0, 2]. We want to show that, for t > 2,
z(t) = 1 does not satisfy the stability condition (2.5) and hence z(t) has to be strictly smaller
than 1. We rephrase this by saying that there exists z̃ ∈ [0, 1] such that f(z̃) > 0 where f is
given by

f(z̃) :=
t2

2
[
g(z̃)− 1

]
− 1 + z̃.

Indeed, let us consider z̃t := t2 − t4/4 + 1 = (8− (t2 − 2)2)/4. We observe that z̃t ∈ (0, 1) and
f(z̃t) = 0 if t ∈ (2, 3/

√
2). Moreover,

f ′(z̃t) = − t2

4
√

2− z̃t
+ 1 = − t2

4
√

2−
(
t2 − t4

4 + 1
) + 1 = − t2

4
(
t2

2 − 1
) + 1 =

t2 − 4
2(t2 − 2)

> 0,

since t > 2. Therefore, there exists z̃ ∈ (z̃t, 1) such that f(z̃) > 0. Hence, z(t) = 1 does not
fulfill the stability condition (2.5) for t ∈ (2, 3/

√
2) and we will necessarily have z(t) ∈ (−∞, 1).



YOUNG-MEASURE QUASI-STATIC DAMAGE EVOLUTION 7

On the other hand, we cannot have z(t) = 1 for t ∈ [0, 2] and z(t) ≤ 0 for t ∈ (2, 3/
√

2),
because in this case the energy balance for s ∈ (2, 3/

√
2) would not be fulfilled as

s2g(0)
2
− s2g(0) + 1− z(t) +

∫ s

0
tg(z(t)) dt = −s

2
√

2
2

+ 1−z(t) +
∫ 2

0
tdt+

∫ s

2
t
√

2 dt

= −s
2
√

2
2

+ 1−z(t) + 2 +
s2
√

2
2
− 2
√

2 = 1−z(t)− 2(
√

2− 1) > 0.

Eventually, we have proved that there exists t ∈ (2, 3/
√

2) with z(t) ∈ (0, 1).

3. Mathematical preliminaries

Let Ld denote the Lebesgue measure on Rd , d ≥ 1. We sometimes use the notation |E| for
the Lebesgue measure of the measurable subset E ⊆ Rd as well. Throughout the paper Ω will
be a bounded, connected, open subset of Rd with Lipschitz boundary. The Borel σ -algebra on
Ω is denoted by B(Ω). For 1 ≤ p ≤ ∞ , ‖ · ‖p stands for the usual norm on Lp , W 1,p(Ω;Rd)
denotes the usual Sobolev space , H1(Ω;Rd) := W 1,2(Ω;Rd) , and the symbol 〈·, ·〉 is the scalar
product in H1 , if not otherwise specified. Given a function f ∈ L1(Ω) and a measurable Q ⊆ Ω,
the mean value of f over Q is denoted by (f)Q , i.e.,

(f)Q :=
1
|Q|

∫
Q
f(x) dx.

We indicate the positive part of a function f with f+ := f ∨ 0.

We recall the notion of quasi-minima of integral functionals. Given ϕ ∈ H1(Ω;Rd), let G be
the functional defined by

G(v) = G(v,Ω) :=
∫

Ω
G(x,∇v(x)) dx

for every v ∈ ϕ+H1
0 (Ω;Rd), where G : Ω× Rd×d → R is a Carathéodory function satisfying

G(x, F ) ≤ L(|F |2 + 1)

G(x, F ) ≥ G̃(F )− l

for suitable positive constants L, l , for every (x, F ) ∈ Ω × Rd×d , where G̃ : Rd×d → R satisfies
the following estimate:

∃K > 0 :
∫

Ω
G̃(∇φ(x)) dx ≥ K‖∇φ‖22 for every φ ∈ H1

0 (Ω;Rd)

Definition 3.1. (Quasi-minimum, [17]) Let V ∈ W 1,p(Ω;Rd) and λ > 0. A function v ∈
V +H1

0 (Ω;Rd) is said to be a cubic λ-quasi-minimum for the functional G if for every cube of
side R , QR ⊂ Rd , and every w ∈ H1(Ω;Rd) such that v − w ∈ H1

0 (Ω ∩QR) we have∫
(QR∩Ω)

G(x,∇v(x)) dx ≤ λ
∫
QR∩Ω

G(x,∇v(x)) dx.
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Theorem 3.2. (Higher integrability, [18, Chapter 6]) Let V ∈ W 1,p(Ω;Rd), for 2 < p,
and let v ∈ V +H1

0 (Ω;Rd) be a λ-cubic quasi-minimum of the functional G . Then, there exist
constants γ > 0 and r > 1, depending only on λ and V , such that∫

Ω
|∇v|2r dx ≤ γ

{(∫
Ω
|∇v|2 dx

)
r + 1

}
.

We recall the statement of the Korn-Poincaré inequality (see [34]): for every open, Lipschitz
set D ⊂ Rd , there exists a positive constant C(D) such that

‖∇v‖H1(D) ≤ C(D)‖e(v)‖L2(D), (3.1)

for every v ∈ H1
0 (D).

We recall the definition of cross-quasiconvexity in the form used in [13] and a related semicon-
tinuity result ([13, Theorem 4.4]). A continuous function G : R×Rd×d → R is cross-quasiconvex
if for every θ ∈ [0, 1], F ∈ Rd×d we have

G(θ, F ) ≤ 1
|Ω|

∫
Ω
G(θ +m(x), F +∇u(x)), (3.2)

for every u ∈ H1
0 (Ω;Rd) and every m ∈ L∞(Ω), with θ + m(x) ∈ [0, 1] for a.e. x ∈ Ω and∫

Ωm(x) dx = 0.

Lemma 3.3. (Lower semicontinuity) If G : R×Rd×d → R is cross-quasi-convex and fulfills

0 ≤ G(θ, F ) ≤ g(θ)(1 + |F |2) (3.3)

for every θ ∈ R, F ∈ Rd×d , and some g ∈ L∞loc(R) we have that∫
Ω
G(z(x),∇v(x)) dx ≤ lim inf

k

∫
Ω
G(zk(x),∇vk(x)) dx,

whenever zk ⇀ z L∞ -weakly*, zk(x) ∈ [0, 1] for a.e. x ∈ Ω, and vk ⇀ v weakly in H1(Ω;Rd).

Note that if H : R× Rd×dsym → R is a continuous function satisfying

0 ≤ H(θ, ε) ≤ g(θ)(1 + |ε|2) for g ∈ L∞loc(R);

H(θ, ε) ≤ 1
|Ω|

∫
Ω
H(θ +m(x), ε+ e(u)(x)), (3.4)

for every u ∈ H1
0 (Ω;Rd), m ∈ L∞(Ω;R) with

∫
Ωm(x) dx = 0 and θ + m(x) ∈ [0, 1] for a.e.

x ∈ Ω, then the function G(θ, F ) := H(θ, S(F )), with S(θ, F ) := (θ, F+FT

2 ), satisfies properties
(3.2) and (3.3). We will say that a function satisfying (3.4) is S-cross-quasiconvex.

We define Mb(Ω × RN ) as the space of bounded Radon measures on Ω × RN . This space
can be identified with the dual of the Banach space C0(Ω × RN ) of all continuous functions
φ : Ω×RN → R such that |φ| ≥ ε is compact for every ε > 0. We will consider on Mb(Ω×RN )
the weak* topology deriving from this duality.

Let us refer to [36] for a general introduction on Young measures and just recall some definition
and fix notation. A Young measure µ ∈ Y (Ω;RN ) is a nonnegative measure in Mb(Ω × RN ),
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such that πΩ(µ) = Ld , where πΩ(x, ξ) := x . By the Disintegration Theorem, one can associate
to µ a measurable family of probability measures (µx)x∈Ω on RN in such a way that∫

Ω×RN
f(x, ξ) dµ(x, ξ) =

∫
Ω

(∫
RN

f(x, ξ) dµx(ξ)
)

dx,

for every bounded Borel function f : Ω×RN → R . We define the barycentre of µ as the function

bar(µ)(x) :=
∫

RN
ξ dµx(ξ) for a.e. x ∈ Ω,

and the p-moment of µ , for 1 < p ≤ ∞ , as the quantity∫
Ω×RN

|ξ|p dµ(x, ξ).

We denote by Y p(Ω;RN ) the set of measures in Y (Ω;RN ) with finite p-moments. Given a
sequence (µk)k in Y (Ω;RN ), we say that µk ⇀ µ p-weakly*, for 1 < p ≤ ∞ , if

µk ⇀ µ in the weak* topology of Mb(Ω× RN ),∫
Ω×Rn

|ξ|p dµk(x, ξ) are equibounded in k.

Let (D,F) be a measure space and µ ∈ Y (Ω;RN ). For every B(Ω × RN )-F -measurable
function f : Ω × RN → D , the image measure, defined by µ(f−1(B)) for every measurable set
B ⊆ D , will be denoted by f(µ). In particular, if we define the translation map TrG associated
to a function G ∈ L1(Ω;RN ) by

TrG(x, ξ) := (x, ξ +G(x)), for a.e. x ∈ Ω and every ξ ∈ RN ,

for every measure µ ∈ Y (Ω;RN ) we can consider the translated measure TrG(µ), defined by∫
Ω×RN

φ(x, ξ) dTrG(µ)(x, ξ) =
∫

Ω×RN
φ(x, ξ +G(x)) dµ(x, ξ),

for every bounded Borel function φ : Ω× RN → R .

Given ξ0 ∈ RN , the measure δξ0 ∈Mb(RN ) is classically defined by∫
RN

f(ξ) dδξ0(ξ) = f(ξ0),

for every bounded Borel function f : RN → R . Fixed a B(Ω)-B(RN )-measurable function
u : Ω→ RN , the Young measure δu ∈ Y (Ω;RN ) is defined by∫

Ω×RN
g(x, ξ) dδu(x, ξ) =

∫
Ω
g(x, u(x)) dx,

for every bounded Borel function g : Ω× RN → R .

The following lemma is a slight modification of [32, Proposition 6.5, pg. 103].
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Lemma 3.4. (Continuity) Let 1 < p ≤ ∞, and let (µk)k ⊆ Y p(Ω;RN ) converge p-weakly*
to µ ∈ Y p(Ω;RN ). Then, for every Carathéodory function f : Ω × RN → R, with |f(x, ξ)| ≤
a(x) + b(x)|ξ|q , for every x ∈ Ω, ξ ∈ RN , 1 ≤ q < p, b ∈ Lp/(p−q)(Ω), and a ∈ L1(Ω), it holds∫

Ω×RN
f(x, ξ) dµk(x, ξ) −→

∫
Ω×RN

f(x, ξ) dµ(x, ξ).

Finally, we recall that a measure ν ∈ Y p(Ω;Rd×d) is a W 1,p -gradient Young measure (see,
e.g., [19]) for p > 1 if there exists a bounded sequence (vn)n ∈W 1,p(Ω;Rd) such that δ∇vn ⇀ ν
p-weakly* as n→∞ . For the characterization and the properties of such measures we refer to
[32].

Note that, thanks to Lemma 3.4, given a bounded sequence (vn)n in W 1,p(Ω;Rd) with
δ∇vn ⇀ ν p-weakly*, for p > 1, we have that δe(vn) ⇀ Sν p-weakly*, where we recall that
S : Ω× Rd×d → Ω× Rd×dsym is defined by S(x, F ) := (x, F+FT

2 ), for every x ∈ Ω and F ∈ Rd×d .

Henceforth C will stand for any positive constant, possibly depending on data and varying
from line to line.

3.1. An order relation between Young measures. In this section we want to define an
order relation on the set Y (Ω; [0, 1]) of the Young measures on Ω with values in R and support
contained in Ω× [0, 1].

Definition 3.5. (Order) Given µ1, µ2 ∈ Y (Ω; [0, 1]), we write µ1 � µ2 if

µx1(α,∞) ≥ µx2(α,∞) for a.e. x ∈ Ω and for every α ∈ R. (3.5)

It is easy to see that � is an order and that, in the case of µ1 = δz1 and µ2 = δz2 for
some measurable functions z1, z2 : Ω → [0, 1], we have δz1 � δz2 if and only if z1 ≥ z2 almost
everywhere in Ω.

Now we give an equivalent characterization of this order relation.

Theorem 3.6. (Order characterization) Given two Young measures µ1, µ2 ∈ Y (Ω; [0, 1]),
we have µ1 � µ2 if and only if there exists µ12 ∈ Y (Ω; [0, 1]2) such that

π1(µ12) = µ1, π2(µ12) = µ2, (3.6)
µx12({θ1 < θ2}) = 0 for a.e. x ∈ Ω, (3.7)

where π1(x, θ1, θ2) := (x, θ1), π2(x, θ1, θ2) := (x, θ2), for every (x, θ1, θ2) ∈ Ω× R2 .

Proof. Let us first prove the necessity. If µ1 6� µ2 , then there exists a measurable set E ⊆ Ω
with positive measure, such that µx1((−∞, αx]) > µx2((−∞, αx]), for x ∈ E , for a suitable
αx ∈ [0, 1]. This implies that, for every µ12 satisfying the projection properties (3.6), we have
µx12({θ1 < θ2}) > 0 for x ∈ E . Indeed, for every x ∈ E we have

µx12([0, 1]× [0, αx]) = µx2((−∞, αx]) < µx1((−∞, αx]) = µx12([0, αx]× [0, 1]);

and this implies

0 ≤ µx12((αx, 1]× [0, αx]) = µx12([0, 1]× [0, αx])− µx12([0, αx]× [0, αx]) <
< µx12([0, αx]× [0, 1])− µx12([0, αx]× [0, αx]) = µx12([0, αx]× (αx, 1]) ≤ µx12({θ1 < θ2}),
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for every x ∈ E .

Now we prove the sufficiency of inequality (3.5). We fix n ∈ N and consider the measures
µ1,n , µ2,n whose disintegration is defined by

µx1,n := µx1([0, 1
n ])δ 1

n
+

n∑
i=2

µx1(( i−1
n , in ])δ i

n
,

µx2,n := µx2([0, 1
n ])δ 1

n
+

n∑
i=2

µx2(( i−1
n , in ])δ i

n
.

Since (µx1,n)x and (µx2,n)x are measurable families of probability measures on [0, 1], we have that
µ1,n, µ2,n ∈ Y (Ω; [0, 1]).

Moreover, µ1,n ⇀ µ1 and µ2,n ⇀ µ2 weakly*, as n→∞ . Indeed, let f ∈ C0(Ω× R); since
f is uniformly continuous, there exists a modulus of continuity ωf : R→ R such that for every
(x1, θ1, ξ1), (x2, θ2, ξ2) ∈ Ω× R2

|f(x1, θ1, ξ1)− f(x2, θ2, ξ2)| ≤ ωf (|(x1, θ1, ξ1)− (x2, θ2, ξ2)|), and lim
δ→0

ωf (δ) = 0.

Therefore, we have for h = 1, 2∣∣∣ ∫
Ω×R

f(x, θ) dµh,n(x, θ)−
∫

Ω×R
f(x, θ) dµh(x, θ)

∣∣∣
=

∣∣∣ ∫
Ω

(∫
R
f(x, ξ) dµxh,n(θ)−

∫
R
f(x, θ) dµxh(θ)

)
dx
∣∣∣

≤
∫

Ω

∣∣∣µxh([0, 1
n ])f(x, 1

n) +
n∑
i=2

µxh(( i−1
n , in ])f(x, in)

−
∫

R
f(x, θ) dµxh(θ)

)∣∣∣ dx

≤
∫

Ω

(∫
[0,

1
n ]
|f(x, 1

n)− f(x, θ)| dµxh(θ)
)

dx

+
∫

Ω

( n∑
i=2

∫
(
i−1
n ,

i
n ]
|f(x, in)− f(x, θ)| dµxh(θ)

)
dx

≤ ωf (1/n)
∫

Ω
µxh([0, 1]) dx = ωf (1/n)|Ω| → 0 as n→∞.

For almost every x ∈ Ω, we set

Ax1 := µx1,n([0, 1
n ]), Axi := µx1,n(( in ,

i+1
n ]) for every i = 2, . . . , n,

Bx
1 := µx2,n([0, 1

n ]), Bx
j := µx2,n(( jn ,

j+1
n ]) for every j = 2, . . . , n.
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Since µ1 � µ2 , we deduce that
k∑
i=1

Axi ≤
k∑
j=1

Bx
j for every k = 1, . . . , n,

n∑
i=1

Axi = µx1([0, 1]) = 1 = µx2([0, 1]) =
n∑
j=1

Bx
j ,

0 ≤ Axi ≤ 1, 0 ≤ Bx
j ≤ 1, for every i and j,

for almost every x ∈ Ω. Hence (Axi )i and (Bx
j )j satisfy the hypotheses of Theorem 5.6 in

Appendix A, and we can find a matrix (Cxij)ij with measurable entries in [0, 1] such that
n∑
i=1

Cxij = Bx
j , (3.8)

n∑
j=1

Cxij = Axi , (3.9)

Cxij = 0 if i < j. (3.10)

Let us define

µx12,n :=
n∑

i,j=1

Cxijδ(
i
n ,
j
n )
,

for almost every x ∈ Ω. We have, therefore, that µx12,n([0, 1]2) =
∑

ij C
x
ij =

∑
iA

x
i =

∑
j B

x
j =1,

and x 7→ µx12,n(E) is measurable for every Borel set E . Hence, (µx12,n)x represents the disinte-
gration of a Young measure in Y (Ω; [0, 1]2). Thanks to conditions (3.8), (3.9), and (3.10), we
have

µx12,n({θ1 < θ2}) =
∑
i<j

Cij = 0, (3.11)

[π1(µ12,n)]x =
∑
ij

Cxijδ i
n

=
∑
i

(
∑
j

Cxij)δ i
n

=
∑
i

Axi δ i
n

= µx1,n, (3.12)

[π2(µ12,n)]x =
∑
ij

Cxijδ
j
n =

∑
j

(
∑
i

Cxij)δ j
n

=
∑
j

Bx
j δ j

n

= µx2,n, (3.13)

for almost every x ∈ Ω. Since (µ12,n)n are Young measures with compact support and hence
have equibounded moments of every order, we can always find a subsequence (µ12,nk)k and
a Young measure µ12 ∈ Y (Ω; [0, 1]2) such that µ12,n ⇀ µ12 weakly*. Since µ1,n ⇀ µ1 and
µ2,m ⇀ µ2 weakly*, thanks to the projections properties (3.12) and (3.13), we deduce that

π1(µ12) = µ1 π2(µ12) = µ2,

and hence µ12 satisfies the projection property (3.6). Eventually, we observe that for every open
subset E of Ω, E×{θ1 < θ2} is open, and hence µ12(E×{θ1 < θ2}) ≤ lim infk µ12,nk(E×{θ1 <
θ2}) = 0, thanks to identity (3.11). This implies that µx12({θ1 < θ2}) = 0 for almost every
x ∈ Ω, i.e. (3.7).
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�

Remark 3.7. (Order of the barycentres) Note that µ1 � µ2 implies bar(µ1) ≥ bar(µ2) a.e.
in Ω, whereas the opposite implication is false. Indeed, if µ1 � µ2 , by Lemma 3.6 there exists
µ12 ∈ Y (Ω; [0, 1]2) with πi(µ12) = µi , i = 1, 2 and µx12({θ1 < θ2}) = 0, a.e. x ∈ Ω; in particular
we have ∫

E

[
bar(µ1)− bar(µ2)

]
dx =

∫
E×[0,1]

θ1 dµ1(x, θ1)−
∫
E×[0,1]

θ2 dµ(x, θ2)

=
∫
E×[0,1]2

(θ1 − θ2) dµ12(x, θ1, θ2) =
∫
E×{θ1≥θ2}

(θ1 − θ2) dµ12(x, θ1, θ2) ≥ 0,

for every measurable subset E of Ω. This implies bar(µ1) ≥ bar(µ2) a.e. in Ω. On the other
hand, let us consider

µx1 :=
1
2
δ1/4 +

1
2
δ3/4 for a.e. x ∈ Ω

µx2 :=
1
2
δ0 +

1
2
δ1 for a.e. x ∈ Ω.

We have bar(µ1) = bar(µ2) ≡ 1
2 a.e. in Ω, but µx1(0, 1] = 1 > µx2(0, 1] = 1/2 and µx1(3/4, 1] =

0 < µx2(3/4, 1] = 1/2, for a.e. x ∈ Ω, therefore µ1 � µ2 � µ1 .

3.2. Sequences of functions generating a Young measure. Let us recall (see [32, Theorem
7.7]) that any Young measure µ ∈ Y p(Ω;RN ) can be generated by a suitable sequence of
functions (zn)n ⊂ Lp(Ω;RN ), in the sense that δzn ⇀ µ p-weakly*, as n→∞ .

In particular, given a measure µ12 ∈ Y (Ω; [a, b] × [c, d]), for −∞ < a < b < ∞ , −∞ <
c < d < ∞ , there exists a sequence (z1

n, z
2
n)n of pairs of functions in L1(Ω; [a, b]×[c, d]), such

that δ(z1n(x),z2n(x)) ⇀ µ12 weakly*. The question we want to consider in this section is the
following: assume that we have already fixed a sequence (z̄1

n)n generating the projection of µ12

over Ω× [a, b] . Is it possible to construct a sequence (z2
n)n such that δ(z̄1n,z

2
n) ⇀ µ12 weakly* as

n→∞? An affirmative answer to this question is given by the following.

Theorem 3.8. (Measure reconstruction) Let Ω be a bounded open subset of Rd , and µ
a measure in Y (Ω;R2) with support contained in Ω × [a, b] × [c, d], for −∞ < a < b < ∞,
−∞ < c < d < ∞. We write µ1 for π1(µ) and µ2 for π2(µ), where π1(x, θ, ξ) := (x, θ) and
π2(x, θ, ξ) := (x, ξ), for every (x, θ, ξ) ∈ Ω× R2 .

Given a sequence (z1
n)n in L∞(Ω; [a, b]) such that

δz1n ⇀ µ1 weakly*, (3.14)

there exists a sequence (z2
n)n in L∞(Ω; [c, d]) such that

δ(z1n,z
2
n) ⇀ µ weakly*.

Proof. For every m , we consider a finite partition of measurable sets (Ωm
i )I(m)

i=1 of Ω, and two
finite partitions of intervals (Hm

j )J(m)
j=1 of [a − 1, b + 1] and (Km

k )K(m)
k=1 of [c, d] . We choose

these three partitions in such a way that the diameter of each Ωm
i , Hm

j , and Km
k is less than

1/m . Since the support of µ1 is strictly contained in [a − 1, b + 1], it is not difficult to see
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that we can always choose (Hm
j )j such that µ1(Ωm

i × ∂Hm
j ) = 0 for every i = 1, . . . , I(m)

and j = 1, . . . J(m). Hence, µ1(∂(Ωm
i ×Hm

j )) = 0 for every i and j , thanks to the projection
property on Ω satisfied by the Young measure µ1 .

We fix now n ∈ N and, for every i = 1, . . . , I(m), we define a family of subsets of Ωm
i , which

we term (Ωm,n
ij )J(m)

j=1 , by setting

Ωm,n
ij := {x ∈ Ωm

i : z1
n(x) ∈ Hm

j },

for every j = 1, . . . , J(m). Since (Hm
j )j are pairwise disjoint, (Ωm,n

ij )j are pairwise disjoint too,

and
⋃J(m)
j=1 Ωm,n

ij = Ωm
i . We observe that

∑K(m)
k=1 µ(Ωm

i × Hm
j ×Km

k ) = µ(
⋃K(m)
k=1 Ωm

i × Hm
j ×

Km
k ) = µ(Ωm

i ×Hm
j × [c, d]), hence, if µ(Ωm

i ×Hm
j × [c, d]) > 0 we have

µ(Ωm
i ×Hm

j ×Km
k )

µ(Ωm
i ×Hm

j × [c, d])
≤ 1 for every k = 1, . . . ,K(m),

K(m)∑
k=1

µ(Ωm
i ×Hm

j ×Km
k )

µ(Ωm
i ×Hm

j × [c, d])
= 1.

Let us set A := {(i, j) : µ(Ωm
i ×Hm

j × [c, d]) = 0} . Therefore, for every (i, j) /∈ A , it is possible

to find a family of pairwise disjoint subsets of Ωm,n
ij , which we denote by (Ωm,n

ijk )K(m)
k=1 such that⋃K(m)

k=1 Ωm,n
ijk = Ωm,n

ij , and satisfying

|Ωm,n
ijk | =

µ(Ωm
i ×Hm

j ×Km
k )

µ(Ωm
i ×Hm

j × [c, d])
|Ωm,n
ij |.

Let us define zm,2n (x) := ξmk , for some ξmk ∈ Km
k , whenever x ∈ Ωm,n

ijk for (i, j) /∈ A , and
zm,2n (x) := c whenever x ∈ Ωm,n

ij for (i, j) ∈ A .

Since δz1n ⇀ µ1 , thanks to assumption (3.14) , and µ1(∂(Ωm
i ×Hm

j )) = 0 for every i, j , we
have

|Ωm,n
ij | = δz1n(Ωm

i ×Hm
j ) −→ µ1(Ωm

i ×Hm
j ) = µ(Ωm

i ×Hm
j × [c, d]),

as n→∞ . Therefore, for every m , there exists nm such that∣∣∣∣ |Ωm,n
ij |

µ(Ωm
i ×Hm

j × [c, d])
− 1
∣∣∣∣ ≤ 1

m
for every (i, j) /∈ A, (3.15)

∑
(i,j)∈A

|Ωm,n
i,j | ≤

1
m
. (3.16)

whenever n ≥ nm . Without loss of generality we can assume that (nm)m is an increasing
sequence of integers. We are now ready to define z2

n , by setting z2
n(x) := zm,2n (x) whenever

nm ≤ n < nm+1 .
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We have now to show that for every f ∈ C0(Ω×R2) and for every ε > 0 there exists N such
that

∣∣∣∣ ∫
Ω×R2

f(x, θ, ξ) dδ(z1n(x),z2n(x)) −
∫

Ω×R2

f(x, θ, ξ) dµ(x, θ, ξ)
∣∣∣∣ ≤ ε, (3.17)

whenever n ≥ N .

Since f is uniformly continuous, there exists a modulus of continuity ωf : R → R , namely,
for every (x1, θ1, ξ1), (x2, θ2, ξ2) ∈ Ω× R2 ,

|f(x1, θ1, ξ1)− f(x2, θ2, ξ2)| ≤ ωf (|(x1, θ1, ξ1)− (x2, θ2, ξ2)|), with lim
δ→0

ωf (δ) = 0.

Given n , let m be such that nm ≤ n < nm+1 . Then we have

∫
Ω×R2

f(x, θ, ξ) dδ(z1n,z
2
n)(x, θ, ξ) =

∫
Ω×R2

f(x, θ, ξ) dδ
(z1n,z

m,2
n )

(x, θ, ξ)

=
∑

(i,j)/∈A

∑
k

∫
Ωm,nijk

f(x, z1
n(x), ξmk ) dx+

∑
(i,j)∈A

∫
Ωm,ni,j

f(x, z1
n(x), c) dx.

In particular, for every xmi ∈ Ωm
i and θmj ∈ Hm

j we have

∣∣∣ ∫
Ω×R2

f(x, θ, ξ) dδ(z1n,z
2
n)(x, θ, ξ)−

∑
(i,j)/∈A

∑
k

∫
Ωm,nijk

f(xmi , θ
m
j , ξ

m
k ) dx−

∑
(i,j)∈A

∫
Ωm,ni,j

f(xmi , θ
m
j , c) dx

∣∣∣
≤

∑
(i,j)/∈A

∑
k

∫
Ωm,nijk

|f(x, z1
n(x), ξmk )− f(xmi , θ

m
j , ξ

m
k )| dx+

∑
(i,j)∈A

∫
Ωm,ni,j

|f(x, z1
n(x), c)− f(xmi , θ

m
j , c)|dx

≤ ωf (2/m)
[ ∑

(i,j)/∈A

∑
k

|Ωm,n
ijk |+

∑
(i,j)∈A

|Ωm,n
i,j |

]
= ωf (2/m)

∑
ij

|Ωm,n
ij |

= ωf (2/m)
∑
i

|Ωm
i | = ωf (2/m)|Ω|. (3.18)
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Using now the construction of Ωm,n
ijk , and the estimates (3.15) and (3.16), we get∣∣∣ ∑

(i,j)/∈A

∑
k

∫
Ωm,nijk

f(xmi , θ
m
j , ξ

m
k ) dx+

∑
(i,j)∈A

∫
Ωm,ni,j

f(xmi , θ
m
j , c) dx

−
∑

(i,j)/∈A

∑
k

f(xmi , θ
m
j , ξ

m
k )µ(Ωm

i ×Hm
j ×Km

k )−
∑

(i,j)∈A

f(xmi , θ
m
j , c)µ(Ωm

i ×Hm
j × [c, d])

∣∣∣
≤

∣∣∣ ∑
(i,j)/∈A

∑
k

f(xmi , θ
m
j , ξ

m
k )|Ωm,n

ijk | −
∑

(i,j)/∈A

∑
k

f(xmi , θ
m
j , ξ

m
k )µ(Ωm

i ×Hm
j ×Km

k )
∣∣∣

+
∣∣∣ ∑

(i,j)∈A

f(xmi , θ
m
j , c)|Ω

m,n
i,j | − 0

∣∣∣
≤ ‖f‖∞

∑
(i,j)/∈A

∑
k

µ(Ωm
i ×Hm

j ×Km
k )
[ |Ωm,n

ij |
µ(Ωm

i ×Hm
j × [c, d])

− 1
]

+ ‖f‖∞
∑

(i,j)∈A

|Ωm,n
i,j |

=
‖f‖∞
m

[∑
ij

µ(Ωm
i ×Hm

j × [c, d]) + 1
]

=
‖f‖∞
m

[|Ω|+ 1]. (3.19)

Finally, we have∣∣∣ ∑
(i,j)/∈A

∑
k

f(xmi , θ
m
j , ξ

m
k )µ(Ωm

i ×Hm
j ×Km

k ) +
∑

(i,j)∈A

f(xmi , θ
m
j , c)µ(Ωm

i ×Hm
j × [c, d])

−
∫

Ω×R2

f(x, θ, ξ) dµ(x, θ, ξ)
∣∣∣

≤
∑

(i,j)/∈A

∑
k

∫
Ωmi ×Hm

j ×Km
k

|f(xmi , θ
m
j , ξ

m
k )− f(x, θ, ξ)| dµ(x, θ, ξ)

+
∑

(i,j)∈A

∫
Ωmi ×Hm

j ×[c,d]
|f(x, θ, ξ)| dµ(x, θ, ξ)

≤ ωf (3/m)
∑

(i,j)/∈A

∑
k

µ(Ωm
i ×Hm

j ×Km
k ) + ‖f‖∞

∑
(i,j)∈A

µ(Ωm
i ×Hm

j × [c, d])

= ωf (3/m)|Ω|. (3.20)

Therefore, putting together the estimates (3.18), (3.19), and (3.20) we obtain∣∣∣ ∫
Ω×R2

f(x, θ, ξ) dδ
(z1n,z

m,2
n )

(x, θ, ξ)−
∫

Ω×R2

f(x, θ, ξ) dµ(x, θ, ξ)
∣∣∣

≤ |Ω|
[
ωf

( 2
m

)
+
‖f‖∞
m

+ ωf

( 3
m

)]
+
‖f‖∞
m

.

In particular, fixed ε > 0, condition (3.17) is satisfied for m sufficiently large, m ≥ M . Hence
it is enough to choose N such that nM ≤ N ≤ nM+1 . In this way, for every n ≥ N , we have
nm ≤ n < nm+1 for some m ≥M and hence (3.17) holds true for every n ≥ N . �
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Corollary 3.9. (Measure reconstruction with order) In addition to the hypotheses of
Theorem 3.8, if a = c, b = d, and µ satisfies the condition

µx({(θ, ξ) ∈ R2 : θ < ξ}) = 0 for a.e. x ∈ Ω, (3.21)

we can construct the sequence (z2
n)n with the property

z1
n(x) ≥ z2

n(x) for a.e. x ∈ Ω

Proof. For every m , we can assume that (Hm
j )j is ordered in the sense that θj+1 > θj whenever

θj ∈ Hm
j , θj+1 ∈ Hm

j+1 . Since [c, d] = [a, b] , we can choose Km
k := Hm

k ∩ [a, b] for every k . If
(i, j) ∈ A , z2,m

n (x) = a ≤ z1
n(x) for almost every x ∈ Ωm,n

i,j . So let us consider from now on
(i, j) /∈ A . Since µx({θ < ξ}) = 0 for almost every x ∈ Ω, due to assumption (3.21), we have
that µ(Ωm

i ×Hm
j × (Hm

k ∩ [a, b])) = 0 for every i and every k > j . In particular, |Ωm,n
ijk | = 0

whenever k > j . Nothing changes in the proof of Theorem 3.8 if we take ξmk in the closure of
Km
k ∩ [a, b] . In this way, for k = j we are able to choose ξmj with the property ξmj ≤ z1

n(x)
whenever x ∈ Ωm,n

ij (notice that z1
n(x) ∈ [a, b]), so that z2,m

n (x) ≤ z1
n(x) whenever x ∈ Ωm,n

ijj .
Finally, if k < j , then for every ξmk ∈ Hm

k ∩ [a, b] we have ξmk ≤ z1
n(x) whenever x ∈ Ωm,n

ij and
hence z2,m

n (x) ≤ z1
n(x) whenever x ∈ Ωm,n

ijk . In conclusion, z2,m
n (x) ≤ z1

n(x) for almost every
x ∈ Ω, and hence z2

n(x) ≤ z1
n(x) for almost every x ∈ Ω too. �

3.3. Admissible set in terms of Young measures. We now introduce the admissible set
for the generalized notion of evolution we will consider.We recall that µ ∈ Y 2(Ω;Rd×d) is a
H1 -gradient Young measure (H1 -GYM), if there exists a bounded sequence (vn)n ∈ H1(Ω;Rd)
such that δ∇vn ⇀ µ 2-weakly* as n→∞ .

Definition 3.10. (Admissible set) Given a set of times [0, T ] and ϕ : [0, T ] → W 1,p(Ω;Rd),
for p > 2, we define AY ([0, T ], ϕ) as the set of all ν ∈ Y 2(Ω;R×Rd×dsym)[0,T ] such that for every
t ∈ [0, T ] there exists a measure ν̃t ∈ Y 2(Ω;R× Rd×d) with

νt = Sν̃t, (3.22)
suppπ1(ν̃t) = suppπ1(νt) ⊆ Ω× [0, 1], (3.23)

π2(ν̃t) is a H1-GYM, and bar(π2 ν̃t) = ∇v with v ∈ ϕ(t) +H1
0 (Ω;Rd), (3.24)

where S(x, θ, F ) := (x, θ, F+FT

2 ) for every (x, θ, F ) ∈ Ω × R × Rd×d , and π1 and π2 are
projections, π1 : Ω× R× Rd×d → Ω× R and π2 : Ω→ R× Rd×d → Ω× Rd×d , respectively.

From [13, Theorem 3.1], ν̃t satisfies properties (3.23) and (3.24) if and only if there exist a
bounded sequence (zn)n in L∞(Ω; [0, 1]) and a bounded sequence (vn)n in H1(Ω;Rd×d) such
that δ(zn,∇vn) ⇀ ν̃t 2-weakly* as n → ∞ . Moreover, by using for instance [1, Lemma 11.4.1],
it is possible to choose (vn)n in ϕ(t) + H1

0 (Ω;Rd×d). Eventually note that δ(zn,∇vn) ⇀ ν̃t
2-weakly* implies δ(zn,e(vn)) ⇀ Sν̃t 2-weakly*.
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4. Main result

We shall now aim at introducing the existence result for quasi-static damage evolution.

Before giving the definition of quasi-static damage evolution and stating the main result, we
need to be fixing some extra notation.

Given ν ∈ Y 2(Ω;R× Rd×dsym) and µ12 ∈ Y 1(Ω; [0, 1]2), we set

〈W, ν〉 :=
∫

Ω×R×Rd×dsym

W (θ, ε) dν(x, θ, ε),

〈d, µ12〉 :=
∫

Ω×R2

d(θ1, θ2) dµ12(x, θ1, θ2).

Given µ1, µ2 ∈ Y 1(Ω; [0, 1]), we define

D(µ1, µ2) :=

ρ
[ ∫

Ω×R
θ dµ1(x, θ)−

∫
Ω×R

θ dµ2(x, θ)
]

if µ1 � µ2

∞ otherwise.

The distance D(µ1, µ2) coincides with the infimum of 〈d, µ12〉 for µ12 varying in the set of
measures in Y 1(Ω; [0, 1]2) such that π1(µ12) = µ1 and π2(µ12) = µ2 , where π1(x, θ1, θ2) :=
(x, θ1) and π2(x, θ1, θ2) := (x, θ2) for every (x, θ1, θ2) ∈ Ω×R2 . Indeed, this is true if µ1 6� µ2 ,
because, thanks to Theorem 3.6 and to the definition of d , in this case we have 〈d, µ12〉 = ∞
for every µ12 satisfying the required projection properties. On the other hand, if µ1 � µ2 , by
Theorem 3.6 there exists a measure µ12 satisfying the projection properties and with µx12({θ1 <
θ2}) = 0 for almost every x ∈ Ω. Therefore, for every such a measure µ12 , we have 〈d, µ12〉 <∞
and

〈d, µ12〉 =
∫

Ω×[0,1]2
d(θ1, θ2) dµ12(x, θ1, θ2) =

∫
Ω

(∫
{θ1≥θ2}

d(θ1, θ2) dµx12(θ1, θ2)
)

dx

=
∫

Ω

(∫
{θ1≥θ2}

ρ(θ1 − θ2) dµx12(θ1, θ2)
)

dx = ρ

∫
Ω×[0,1]2

(θ1 − θ2) dµ12(x, θ1, θ2)

= ρ
[ ∫

Ω×R
θ1 dµ1(x, θ1)−

∫
Ω×R

θ2 dµ2(x, θ2)
]
.

Therefore, 〈d, µ12〉 is independent of the choice of µ12 , provided it has the required order
property, and coincides with D(µ1, µ2). In other words, D(µ1, µ2) corresponds to a Wasserstein-
like distance associated with d between µ1 and µ2 (see e.g. [25]). Note that we may have
D(µ1, µ2) = ∞ and D(bar(µ1), bar(µ2)) < ∞ , because µ1 � µ2 is a stronger condition than
bar(µ1) ≥ bar(µ2) almost everywhere in Ω, as explained in Remark 3.7.

Given a measure ν ∈ Y 2(Ω; [0, 1]×Rd×d), we will denote the projection of ν on Ω× [0, 1] by
π1(ν). We are now ready to define our solution notion for the quasi-static problem.

Definition 4.1. (Quasi-static evolution) Given ϕ : [0, T ]×Ω→ Rd , z0 : Ω→ [0, 1], v0 : Ω→
Rd , and T > 0, a quasi-static damage evolution with boundary datum ϕ and initial condition
(z0, v0), in the time interval [0, T ] , is ν ∈ AY ([0, T ], ϕ), satisfying the following conditions:
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(E0) initial condition: ν0 = δ(z0,e(v0)) ,

(E1) irreversibility : π1(νs) � π1(νt), whenever 0 ≤ s < t ≤ T ,

(E2) translational stability : for every t ∈ [0, T ] , we have

〈W, νt〉 ≤ 〈W,Tr(z̃,e(ũ))(νt)〉+ D(π1νt,Trz̃(π1νt)),

for every z̃ ∈ L1(Ω) and every ũ ∈ H1
0 (Ω;Rd),

(E3) global-stability for the internal variable: for every t ∈ [0, T ] , we have

〈W, νt〉 ≤ 〈W, (µ̃x ⊗ δe(ṽ)(x))x∈Ω〉+ D(π1(νt), µ̃), (4.1)

for every ṽ ∈ ϕ(t) +H1
0 (Ω;Rd), and every µ̃ ∈ Y (Ω;R),

(E4) energy equality : for every t ∈ [0, T ] the map

t 7→ 〈σ(t), e(ϕ̇(t))〉 (4.2)

is measurable on [0, T ] , where σ(t) is the function defined by

σ(t)(x) :=
∫

R×Rd×dsym

∂W

∂ε
(θ, ε) dνxt (θ, ε);

moreover for every t ∈ [0, T ] we have

〈W, νt〉+ Diss(ν; 0, t) =W(z0, v0) +
∫ t

0
〈σ(s), e(ϕ̇(s))〉 ds,

where Diss(ν; 0, t) := sup
∑k

i=1D(π1 νti−1 , π1 νti), where the supremum is taken among
all finite partitions 0 = t0 < · · · < tk = t .

The main result of this paper reads as follows.

Theorem 4.2. (Existence of a quasi-static evolution) Let ϕ ∈ AC([0, T ];W 1,p(Ω;Rd)),
p > 2, T > 0, z0 ∈ L1(Ω; [0, 1]), and v0 ∈ ϕ(0) +H1

0 (Ω;Rd) be such that

W(z0, v0) ≤ W(z̃, ṽ) +D(z0, z̃), (4.3)

for every z̃ ∈ L1(Ω) and every ṽ ∈ ϕ(0) +H1
0 (Ω;Rd). Then there exists a quasi-static evolution

with boundary datum ϕ and initial condition (z0, v0) in the time interval [0, T ].

The proof is obtained via time discretization, incremental minimization, and passage to the
limit and is detailed in Section 5.

5. Proof of the existence theorem 4.2

5.1. The incremental minimum problem. Let us fix a time step τ := T/n , and let tiτ := iτ
and ϕiτ := ϕ(tiτ ), for every i = 0, . . . , n . We will define (ziτ , v

i
τ ) iteratively: set (z0

τ , v
0
τ ) :=

(z0, v0), and, for i > 0, define (ziτ , v
i
τ ) as a minimizer (see Lemma 5.1 below) of the functional

F iτ (z, v) :=W(z, e(v)) +D(zi−1
τ , z), (5.1)

among all z ∈ L1(Ω) and v ∈ ϕiτ +H1
0 (Ω;Rd).
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Lemma 5.1. (Incremental minimization) Let (z0, v0) be as in Theorem 4.2. Then, for
every i the functional F iτ has a minimizer (z, v) in L1(Ω)× (ϕiτ +H1

0 (Ω;Rd)). Moreover, (z, v)
satisfies the following properties:

0 ≤ z ≤ zi−1
τ a.e. in Ω, (5.2)

v is a CW
cW

-cubic quasi-minimum of the functional v 7→
∫

Ω
|e(v)|2. (5.3)

Remark 5.2. In particular for every i and τ , we have that 0 ≤ ziτ (x) ≤ z0(x) ≤ 1 for almost
every x ∈ Ω, since z0(x) ∈ [0, 1] for almost every x ∈ Ω.

Proof. Let us first observe that, whenever zi−1
τ ≥ 0 almost everywhere in Ω, we have

F iτ (z, v) ≥ F iτ ((z ∧ zi−1
τ )+, v), (5.4)

for every (z, v) ∈ L1(Ω) × H1(Ω;Rd). Indeed, F iτ (z, v) < ∞ if and only if z ≤ zi−1
τ almost

everywhere in Ω, hence F iτ (z, v) ≥ F iτ (z ∧ zi−1
τ , v). On the other hand, W (θ, ε) ≡ W (0, ε) if

θ ≤ 0 (see hypothesis (W.5)). Hence, W(z ∧ zi−1
τ , e(v)) = W((z ∧ zi−1

τ )+, e(v)). Finally, since
zi−1
τ ≥ 0 almost everywhere in Ω, D(zi−1

τ , (z ∧ zi−1
τ )+) ≤ D(zi−1

τ , z ∧ zi−1
τ ) (with the strict

inequality if z(x) /∈ [0, 1] for almost every x ∈ Ω). In conclusion, F iτ (z, v) ≥ F iτ (z ∧ zi−1
τ , v) ≥

F iτ ((z ∧ zi−1
τ )+, v). This implies that, if ziτ exists, it satisfies

0 ≤ ziτ (x) ≤ zi−1
τ (x) for a.e. x ∈ Ω, (5.5)

whenever zi−1
τ ≥ 0 almost everywhere in Ω. Since z0(x) ∈ [0, 1] for a.e. x ∈ Ω, by induction

we get that, if ziτ exists, it fulfills (5.5).

Fix now i = 1, . . . , n , and let (zk, vk) be a minimizing sequence for F iτ . Then

F iτ (zk, vk) =
∫

Ω
W (zk, e(vk)) dx+D(zi−1

τ , zk) < C,

for a suitable positive constant C . In particular, thanks to (W.2) and Korn-Poincaré inequality
(3.1), the sequence (vk)k is bounded in ϕiτ +H1

0 (Ω;Rd). Since zi−1
τ ∈ L1(Ω; [0, 1]), we can apply

(5.4) in order to deduce that ((zk ∧ zi−1
τ )+, vk) is still a minimizing sequence. Since zi−1

τ ≤ 1,
(zk ∧ zi−1

τ )+ is bounded in L∞(Ω). Up to a subsequence, we can assume that vk converges
weakly in H1 to a function v ∈ ϕiτ + H1

0 (Ω;Rd), and (zk ∧ zi−1
τ )+ converges weakly* in L∞

to a function z with values in [0, 1] almost everywhere in Ω. Since W is S-cross-quasiconvex,
thanks to Lemma 3.3, the functional in (5.1) is sequentially lower semicontinuous with respect
to the product of the weak* topology of L∞ and the weak topology of H1 . This proves that
(z, v) is a minimum of the functional (5.1) and satisfies the condition (5.2).

Hence, it remains to show that v is a CW
cW

-cubic quasi-minimum of the functional v 7→∫
Ω |e(v)|2 . Let w be a function such that v − w ∈ H1

0 (Ω ∩QR). We extend it to a function in
H1(Ω;Rd) by setting w := v on Ω \QR . Then (z, w) is a competitor for the minimum problem
solved by (z, v). Hence,∫

Ω
W (z(x), e(v)(x)) dx ≤

∫
Ω
W (z(x), e(w)(x)) dx.
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By construction of w , this implies∫
Ω∩QR

W (z(x), e(v)(x)) dx ≤
∫

Ω∩QR
W (z(x), e(w)(x)) dx.

Hence, by the hypothesis (W.2) on W , we get

cW

∫
Ω∩QR

|e(v)(x)|2 dx ≤ CW
∫

Ω∩QR
|e(w)(x)|2 dx,

which proves that v satisfies the condition (5.3). �

Let (zτ , vτ ) and ϕτ be the functions in L∞([0, T ];L1(Ω)×H1(Ω;Rd)) and L∞([0, T ];H1(Ω;Rd)),
respectively, defined by

(zτ (t), vτ (t)) := (ziτ , v
i
τ ) if tiτ ≤ t < ti+1

τ ,

ϕτ (t) := ϕiτ if tiτ ≤ t < ti+1
τ , i = 0, 1, . . . , n.

We define στ ∈ L∞([0, T ];L2(Ω;Rd×dsym)) (thanks to (W.3)) by

στ (t) :=
∂W

∂ε
(zτ (t), e(vτ (t))), (5.6)

for every t ∈ [0, T ] .

5.2. Improved integrability. Since viτ is a CW
cW

-cubic quasi-minimum of the functional v 7→∫
Ω |e(v)|2 dx , we use Theorem 3.2 (see also [12, Appendix]) to obtain the existence of two

constants γ > 0 and r > 1, depending only on cW , CW , and ϕ , such that∫
Ω
|e(viτ )|2r dx ≤

∫
Ω
|∇viτ |2r dx ≤ γ2r

(∫
Ω
|∇viτ |2 dx+ 1

)r
≤ C(Ω)2rγ2r

(∫
Ω
|e(viτ )|2 dx+ 1

)r
, (5.7)

where C(Ω) is the Korn-Poincaré constant. In particular, all the above constants are indepen-
dent of τ and i .

5.3. A priori estimates. Next, we obtain an apriori estimate for the piecewise constant inter-
polations (zτ , vτ ).

Since (zi−1
τ , vi−1

τ −ϕi−1
τ +ϕiτ ) ∈ L1(Ω)× (ϕiτ +H1

0 (Ω;Rd)), the minimality of (ziτ , v
i
τ ) implies

that

W(ziτ , e(v
i
τ )) +D(zi−1

τ , ziτ ) ≤ W(zi−1
τ , e(vi−1

τ − ϕi−1
τ + ϕiτ ))

= W(zi−1
τ , e(vi−1

τ )) +W(zi−1
τ , e(vi−1

τ − ϕi−1
τ + ϕiτ ))−W(zi−1

τ , e(vi−1
τ )). (5.8)
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The last two terms of the right-hand side above may be controlled as follows

W(zi−1
τ , e(vi−1

τ − ϕi−1
τ + ϕiτ ))−W(zi−1

τ , e(vi−1
τ ))

=
∫ tiτ

ti−1
τ

[ ∫
Ω

∂W

∂ε
(zi−1
τ , e(vi−1

τ − ϕi−1
τ + ϕ(s))):e(ϕ̇(s)) dx

]
ds

=
∫ tiτ

ti−1
τ

[ ∫
Ω
στ (s):e(ϕ̇(s)) dx

]
ds

+
∫ tiτ

ti−1
τ

[ ∫
Ω

(
∂W

∂ε
(zi−1
τ , e(vi−1

τ − ϕi−1
τ + ϕ(s)))− ∂W

∂ε
(zi−1
τ , e(vi−1

τ ))
)

:e(ϕ̇(s)) dx
]
ds

Taking the sum in (5.8) for t ∈ [0, T ] , τ(t) := max{tiτ : tiτ ≤ t} , we have

W(zτ (t), e(vτ (t))) + Diss(zτ ; 0, t) ≤ W(z0, v0) +
∫ τ(t)

0

[ ∫
Ω
στ (s):e(ϕ̇(s)) dx

]
ds (5.9)

+
∫ τ(t)

0

[ ∫
Ω

(
∂W

∂ε
(zτ (s), e(vτ (s)− ϕτ (s) + ϕ(s)))− ∂W

∂ε
(zτ (s), e(vτ (s)))

)
:e(ϕ̇(s)) dx

]
ds.

We observe that, thanks to (W.3), we have∣∣∣∣ ∫ τ(t)

0

[ ∫
Ω

(
∂W

∂ε
(zτ (s), e(vτ (s)− ϕτ (s) + ϕ(s)))− ∂W

∂ε
(zτ (s), e(vτ (s)))

)
:e(ϕ̇(s)) dx

]
ds
∣∣∣∣

≤ 2C
(

sup
t∈[0,T ]

‖e(vτ (t))‖2 + sup
t∈[0,T ]

‖e(ϕ(t))‖2 + 1
)∫ T

0
‖e(ϕ̇(s))‖2 ds.

Now,
∫ T

0 ‖e(ϕ̇(s))‖2 ds+ supt∈[0,T ] ‖e(ϕ(t))‖2 <∞ , since ϕ ∈ AC([0, T ], H1(Ω;Rd). Hence, also
owing definition (5.6) and (W.2), we get

cW sup
t∈[0,T ]

‖e(vτ (t))‖22 ≤ sup
t∈[0,T ]

W(zτ (t), e(vτ (t))) + Diss(zτ ; 0, T )

≤ W(z0, v0) + C

(
sup
t∈[0,T ]

‖e(vτ (t))‖2 + 1
)
,

for every t ∈ [0, T ] and a positive constant C . Therefore, we deduce that there exists a positive
constant K , independent of the choice of the time step τ , such that

sup
t∈[0,T ]

‖e(vτ (t))‖2 ≤ K.

In particular, we get

sup
t∈[0,T ]

‖∇vτ (t)‖2 ≤ C(Ω)K (5.10)

sup
t∈[0,T ]

‖στ (t)‖2 ≤ CW (K + 1). (5.11)

Thanks to the improved regularity estimate (5.7), we get

sup
t∈[0,T ]

‖∇vτ (t)‖2r ≤ C(Ω)γ
√
K2 + 1. (5.12)
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5.4. Passage to the limit. Let us now consider a sequence of time steps (τn)n converging
to 0, and the associated interpolations (zτn , vτn)n . We want to define a family of measures
ν ∈ AY ([0, T ];ϕ). We will do this by passage to the limit in the sequence of approximate
solutions (zτn(t), vτn(t))n . For technical reasons, which will appear patent in the proof, we need
to proceed by defining νt on larger and larger time sets. In particular, we will first define νt for
t ∈ [0, T ] ∩Q and then in the rest of [0, T ] .

Thanks to the uniform bound (5.10) and to the higher integrability estimate (5.12), and
by using a diagonalization argument, we can find a not relabeled subsequence (zτn , vτn) and
ν̃ ∈ Y 2r(Ω;R× Rd×d)[0,T ]∩Q , such that

δ(zτn (t),∇vτn (t)) ⇀ ν̃t 2r-weakly*,

for every t ∈ [0, T ] ∩Q .

For every t ∈ [0, T ]\Q , let us choose an increasing sequence of integers ntk possibly depending
on t , such that

lim sup
n
〈στn(t), e(ϕ̇(t))〉 = lim

k
〈στ

nt
k

(t), e(ϕ̇(t))〉. (5.13)

Again, we are allowed to extract a further subsequence, still denoted by (zτ
nt
k

, vτ
nt
k

)k satisfying

(5.13) and such that there exists ν̃t ∈ Y 2r(Ω;R× Rd×d) with

δ(zτ
nt
k

(t),∇vτ
nt
k

(t)) ⇀ ν̃t 2r-weakly*, as k →∞

for every t ∈ [0, T ] \Q . Note that, for every t ∈ [0, T ] \Q ,

lim sup
n
〈στn(t), e(ϕ̇(t))〉 = lim

k
〈στ

nt
k

(t), e(ϕ̇(t))〉

= lim
k

∫
Ω

∂W

∂ε
(zτ

nt
k

(t), e(vτ
nt
k

(t))):e(ϕ̇(t)) dx = 〈σ(t), e(ϕ̇(t)〉,

where σ is defined by

σ(t, x) :=
∫

R×Rd×d

∂W

∂ε
(θ, ε) dν̃xt (θ, ε).

Moreover, for every t ∈ [0, T ] ∩Q we have

lim sup
n
〈στn(t), e(ϕ̇(t))〉 = lim

n
〈στn(t), e(ϕ̇(t))〉 = 〈σ(t), e(ϕ̇(t)〉.

This implies that the map in (4.2) is measurable on [0, T ] .

In this way, we have defined ν̃ in Y 2r(Ω;R×Rd×d)[0,T ] , satisfying by construction properties
(3.23) and (3.24) in Definition 3.10. Therefore, by letting νt := Sν̃t for every t ∈ [0, T ] , we get
that ν satisfies also condition (3.22), and hence ν ∈ AY ([0, T ], ϕ).

In particular we have:

δ(zτn (t),e(vτn (t))) ⇀νt 2r-weakly*, for t ∈ [0, T ] ∩Q,

δ(zτ
nt
k

(t),e(vτ
nt
k

(t))) ⇀νt 2r-weakly*, for t ∈ [0, T ] \Q. (5.14)
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Since (zτn(0), vτn(0)) = (z0, v0) for every n , the initial condition (E0) is automatically
satisfied.

5.5. Irreversibility. Let us consider 0 ≤ s < t ≤ T and fix q ∈ [s, t] ∩Q .

Up to not relabeled subsequences, we have that there exist µsq, µqt ∈ Y (Ω; [0, 1]2) with

δ(zτns
k

(s),zτns
k

(q)) ⇀ µsq weakly*,

δ(zτ
nt
k

(q),zτ
nt
k

(t)) ⇀ µqt weakly*.

Thanks to the construction of ν , we have that µsq has projections π1(νs) and π1(νq), re-
spectively, and µqt has projections π1(νq) and π1(νt), respectively.

Now, we have zτn(t) ≤ zτn(q) ≤ zτn(s) almost everywhere in Ω, for every n . This implies
that δ(zτn (s),zτn (q))(E × {θ1 < θ2}) = 0 and δ(zτn (q),zτn (t))(E × {θ1 < θ2}) = 0 for E ⊆ Ω open,
for every n .

Since δ(zτns
k

(s),zτns
k

(q)) ⇀ µsq weakly* as n→∞ , and E × {θ1 < θ2} is open, we have

µsq(E × {θ1 < θ2}) ≤ lim inf
k

δ(zτns
k

(s),zτns
k

(q))(E × {θ1 < θ2}) = 0;

therefore µxsq({θ1 < θ2}) = 0 for almost every x ∈ Ω. The same holds for µqt : µxqt({θ1 < θ2}) =
0 for almost every x ∈ Ω.

This implies, by Theorem 3.6, that π1(νs) � π1(νq) and π1(νq) � π1(νt). By transitivity,
this implies π1(νs) � π1(νt), namely the irreversibility condition (E1).

5.6. Stability. Let z̃ ∈ L1(Ω) and ũ ∈ H1
0 (Ω;Rd). Let us observe that if z̃ > 0 on Ω′ ⊆ Ω with

|Ω′| > 0, then D(µ,Trz̃µ) = ∞ , for every µ ∈ Y (Ω; [0, 1]). Indeed, if µ � Trz̃µ , then for every
α ∈ R we would have µx(α,∞) ≥ Trz̃(x)µ

x(α,∞) = µx(α− z̃(x),∞). Therefore, for x ∈ Ω′ , we
would have µx(α − z̃(x), α] = 0, for every α ∈ R . This would imply µx([0, 1]) = 0, which is a
contradiction with the fact that µx is a probability measure on [0, 1], for almost every x . In
conclusion, if z̃ > 0 on a subset of Ω with positive measure, (E2) is automatically satisfied.

Hence, we reduce to the case z̃ ≤ 0 almost everywhere in Ω. For every n and every
i = 1, . . . , n , the function (ziτn + z̃, viτn + ũ) is an admissible competitor for the minimum
problem defining (ziτn , v

i
τn). Therefore, we have

W(ziτn , v
i
τn) +D(zi−1

τn , ziτn) ≤ W(ziτn + z̃, viτn + ũ) +D(zi−1
τn , ziτn + z̃).

Since z̃ ≤ 0 almost everywhere in Ω, we have that ziτn + z̃ ≤ ziτn ≤ zi−1
τn . This implies that

D(zi−1
τn , ziτn − z̃) = ρ

∫
Ω(zi−1

τn − z
i
τn + z̃) dx and hence

D(zi−1
τn , ziτn + z̃)−D(zi−1

τn , ziτn) = D(ziτn , z
i
τn + z̃) = D(0, z̃).

Hence, we get

W(ziτn , v
i
τn) ≤ W(ziτn + z̃, viτn + ũ) +D(0, z̃).

This means that, for every t ∈ [0, T ] , we have

W(zτn(t), vτn(t)) ≤ W(zτn(t) + z̃, vτn(t) + ũ) +D(0, z̃), (5.15)
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We observe that θ + z̃(x) ≤ 1 for a.e. x ∈ Ω, for every θ ∈ [0, 1] ( z̃ ≤ 0 almost everywhere in
Ω). Hence, thanks to (W.2), we have

|W (θ + z̃(x), ε+ e(ũ))| ≤ C(|e(ũ)(x)|2 + |ε|2).

Therefore, by using the convergence (5.14) and Lemma 3.4 we get∫
Ω
W (zτ

nt
k

(t), e(vτ
nt
k

(t))) dx −→
∫

Ω×R×Rd×dsym

W (θ, ε) dνt(x, θ, ε),∫
Ω
W (zτ

nt
k

(t) + z̃(x), e(vτ
nt
k

(t)) + e(ũ)(x)) dx −→
∫

Ω×R×Rd×dsym

W (θ + z̃(x), ε+ e(ũ)(x)) dνt(x, θ, ε)

= 〈W,Tr(z̃,e(ũ))(νt)〉,
for every t ∈ (0, T ] , as n → ∞ . Therefore, we can deduce the translational stability (E2)
passing to the limit in inequality (5.15). For t = 0, relation (E2) comes immediately from the
hypothesis on the initial datum (4.3).

Now we want to prove the global stability for the internal variable (E3). Let us denote π1(νt)
by µt , for every t ∈ [0, T ] .

Let us start by proving (E3) for µ̃ ∈ Y (Ω; [0, 1]). From the minimality of (ziτn , v
i
τn), we get

that for every (z̃, ṽ) ∈ L1(Ω)× (ϕiτn +H1
0 (Ω;Rd)),

W(ziτn , v
i
τn) +D(zi−1

τn , ziτn) ≤ W(z̃, ṽ) +D(zi−1
τn , z̃).

Hence, using the triangle inequality for D , we get

W(ziτn , v
i
τn) ≤ W(z̃, ṽ) +D(ziτn , z̃).

Therefore, we deduce that for every n , t ∈ [0, T ] , and (z̃, ṽ) ∈ L1(Ω)× (ϕ(t) +H1
0 (Ω;Rd)), we

have

W(zτn(t), e(vτn(t))) ≤ W(z̃, e(ṽ − ϕ(t) + ϕτn(t))) +D(zτn(t), z̃)
= W(z̃, e(ṽ)) +D(zτn(t), z̃) +Rn(t), (5.16)

where

Rn(t) :=W(z̃, e(ṽ − ϕ(t) + ϕτn(t)))−W(z̃, e(ṽ)).

Arguing as in Subsection 5.3, it is not difficult to show that

|Rn(t)| ≤ 2C
(

sup
t∈[0,T ]

‖e(ϕ(t))‖2 + ‖e(ṽ)‖2 + 1
)∫ t

t−τn
‖e(ϕ̇(s))‖2 ds.

Since ϕ̇ ∈ L1([0, T ];H1(Ω;Rd)), we have that, for every t ∈ [0, T ]

Rn(t)→ 0, as n→∞. (5.17)

Let us now fix t ∈ [0, T ] and a competitor µ̃ ∈ Y (Ω; [0, 1]). If µt 6� µ̃ , we have D(µt, µ̃) =∞
and hence (4.1) holds true. So we can assume that µt � µ̃ . Thanks to Theorem 3.6, there exists
a measure µ12,t such that

π1(µ12,t) = µt, π2(µ12,t) = µ̃,

µx12,t({θ1 < θ2}) = 0 for a.e. x ∈ Ω.
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Let us consider the sequence (zτ
nt
k

(t), vτ
nt
k

(t))k such that δ(zτ
nt
k

(t),e(vτ
nt
k

(t))) ⇀ νt 2r -weakly*.

This implies, by Lemma 3.4, that

W(zτ
nt
k

(t), e(vτ
nt
k

(t))) = 〈W, δ(zτ
nt
k

(t),e(vτ
nt
k

(t)))〉 → 〈W, νt〉, as k →∞. (5.18)

Moreover δzτ
nt
k

(t) ⇀ π1(µ12,t) weakly*, so we can apply Theorem 3.8 and Corollary 3.9 to

construct a sequence (z̃k)k in L1(Ω; [0, 1]) such that, as k →∞ ,

z̃k ≤ zτ
nt
k

(t) a.e. in Ω,

δ(zτ
nt
k

(t),z̃k) ⇀ µ12,t weakly*,

δz̃k ⇀ µ̃ weakly*.

We can apply Lemma 3.4 to obtain

W(z̃k, e(ṽ)) =
∫

Ω×R
W (θ, e(ṽ(x)) dδz̃k(x, θ)→

→
∫

Ω×R
W (θ, e(ṽ(x)) dµ̃(x, θ) = 〈W, (µ̃x ⊗ δe(ṽ)(x))x∈Ω〉, (5.19)

as k →∞ . As z̃k ≤ zτnt
k

(t) almost everywhere in Ω, we have that

D(zτ
nt
k

(t), z̃k) =
∫

Ω
d
(
zτ
nt
k

(x, t), z̃k(x)
)

dx =
∫

Ω
ρ
(
zτ
nt
k

(x, t)− z̃k(x)
)

dx

=
∫

Ω×R2

ρ(θ1 − θ2) dδ(zτ
nt
k

(t),z̃k)

→
∫

Ω×R2

ρ(θ1 − θ2) dµ12,t(x, θ1, θ2) = ρ

[ ∫
Ω×R

θ1 dµt(x, θ1)−
∫

Ω×R
θ2 dµ̃(x, θ2)

]
= D(µt, µ̃) = D(π1(νt), µ̃), (5.20)

as k →∞ .

Therefore, putting together inequality (5.16) for z̃ = z̃k , and the convergence properties
(5.17), (5.18), (5.19), and (5.20), we get (4.1).

Let us now consider a general µ̂ ∈ Y (Ω;R). If supp(µ̂) * Ω × (−∞, 1], then µt � µ̂ .
Therefore, D(µt, µ̂) = ∞ and (E3) is proved. So let us assume that supp(µ̂) ⊆ Ω × (−∞, 1].
We define µ̃ ∈ Y (Ω; [0, 1]), by setting:∫

Ω×R
f(x, θ) dµ̃(x, θ) :=

∫
Ω×(0,1]

f(x, θ) dµ̂(x, θ) +
∫

Ω×(−∞,0]
f(x, 0) dµ̂(x, θ),

for every bounded Borel function f : Ω × R → R . It is immediate to see that if µt � µ̂ ,
then µt � µ̃ . Indeed, let α ∈ [0, 1], then µ̃x(α, 1] = µ̂x(α, 1] ≤ µxt (α, 1], and, if α < 0,
µ̃x(α, 1] = µ̃x[0, 1] = 1 = µxt [0, 1] = µxt (α, 1], for a.e. x ∈ Ω.

We claim that

〈W, (µ̃x ⊗ δe(ṽ)(x))x∈Ω〉 −
∫

Ω×R
θ dµ̃(x, θ) ≤ 〈W, (µ̂x ⊗ δe(ṽ)(x))x∈Ω〉 −

∫
Ω×R

θ dµ̂(x, θ).
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Indeed, we have ∫
Ω×R

θ dµ̃(x, θ) =
∫

Ω×(0,1]
θ dµ̂(x, θ) +

∫
Ω×(−∞,0]

0 dµ̂(x, θ)

≥
∫

Ω×(0,1]
θ dµ̂(x, θ) +

∫
Ω×(−∞,0]

θ dµ̂(x, θ) =
∫

Ω×R
θ dµ̂(x, θ).

On the other hand, thanks to (W.5) we have∫
Ω×R

W (θ, e(ṽ)(x)) dµ̃(x, θ) =
∫

Ω×(0,1]
W (θ, e(ṽ)(x)) dµ̂(x, θ) +

∫
Ω×(−∞,0]

W (0, e(ṽ)(x)) dµ̂(x, θ)

=
∫

Ω×(0,1]
W (θ, e(ṽ)(x)) dµ̂(x, θ) +

∫
Ω×(−∞,0]

W (θ, e(ṽ)(x)) dµ̂(x, θ) =
∫

Ω×R
W (θ, e(ṽ)(x)) dµ̂(x, θ).

The claim is hence proved, and we have that

〈W, (µ̃x ⊗ δe(ṽ)(x))x∈Ω〉+ D(µt, µ̃) ≤ 〈W, (µ̂x ⊗ δe(ṽ)(x))x∈Ω + D(µt, µ̂)〉.

Eventually we have checked that the global stability for the internal variable (E3) holds for
µ̃ ∈ Y (Ω;R) as well.

5.7. Upper energy estimate. First of all we observe that, thanks to the irreversibility prop-
erty (E1) and Theorem 3.6, we have, for every t ∈ [0, T ] ,

Diss(ν; 0, t) =
∫

Ω×R
ρ(z0(x)− θ) dπ1(νt)(x, θ).

Since zτn(s) ≥ zτn(t) almost everywhere in Ω, whenever s ≤ t , we have

Diss(zτn ; 0, t) =
∫

Ω×R
ρ(z0(x)− θ) dδzτn (t)(x, θ).

We have that δzτ
nt
k

(t) ⇀ π1(νt) weakly*, and hence we get Diss(zτ
nt
k

; 0, t) → Diss(ν; 0, t) as

k →∞ . Let us fix t ∈ [0, T ] . We have

〈W, νt〉+ Diss(ν; 0, t) ≤ lim inf
k

[
W(zτ

nt
k

(t), e(vτ
nt
k

(t))) + Diss(zτ
nt
k

; 0, t)
]
.

By using estimate (5.9), we deduce that

〈W, νt〉+ Diss(ν; 0, t) ≤ lim inf
k

[
W(z0, e(v0)) +

∫ τ
nt
k

(t)

0
〈στ

nt
k

(s), e(ϕ̇(s))〉ds+ ρntk

]
≤ W(z0, e(v0)) + lim sup

n

∫ τn(t)

0
〈σn(s), e(ϕ̇(s))〉ds+ lim sup

n
ρn,

where

ρn :=
∫ τn(t)

0

[ ∫
Ω

(∂W
∂ε

(zτn(s), e(vτn(s)− ϕτn(s) + ϕ(s)))− ∂W

∂ε
(zτn(s), e(vτn(s)))

)
:e(ϕ̇(s)) dx

]
ds.
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Since supt,n ‖στn(t)‖2 is finite thanks to estimate (5.11), by Fatou Lemma we get

lim sup
n

∫ τn(t)

0
〈σn(s), e(ϕ̇(s))〉ds ≤

∫ T

0
lim sup

n
1[0,τn(t)]〈σn(s), e(ϕ̇(s))〉 ds

=
∫ t

0
〈σ(s),e(ϕ̇(s))〉 ds.

Finally we apply the following lemma with X = Ω, H = ∂W
∂ε , q = 2, Φn = (zτn(s), e(vτn(s))),

Ψn := (0, e(ϕτn(s)− ϕ(s))), and Φ = e(ϕ̇(s)).

Lemma 5.3. [10, Lemma 4.9] Let (X,A, µ) be a finite measure space, let q > 1, let m,n ≥ 1,
and let H : X × RN → Rm be a Carathéodory function. Assume that there exist a constant
a ≥ 0 and a nonnegative function b ∈ Lq′(X), with q′ = q/(q − 1), such that

|H(x, ξ)| ≤ a|ξ|q−1 + b(x)

for every (x, ξ) ∈ X × RN . Let Φn and Ψn be two sequences in Lq(X;RN ). Assume that Φn

is bounded in Lq(X;RN ) and Ψn converges to 0 strongly in Lq(X;RN ). Then∫
X

[
H(x,Φn(x) + Ψn(x))−H(x,Φn(x))

]
Φ(x) dµ(x)→ 0

for every Φ ∈ Lq(X;Rm).

We obtain∫
Ω

(
∂W

∂ε
(zτn(s), e(vτn(s)− ϕτn(s) + ϕ(s)))− ∂W

∂ε
(zτn(s), e(vτn(s)))

)
:e(ϕ̇(s)) dx→ 0,

as n→∞ , for a.e. s ∈ [0, T ] . Moreover, we have∣∣∣∣ ∫
Ω

(
∂W

∂ε
(zτn(s), e(vτn(s)− ϕτn(s) + ϕ(s)))− ∂W

∂ε
(zτn(s), e(vτn(s)))

)
:e(ϕ̇(s)) dx

∣∣∣∣
≤ c̃

(
sup
n,t
‖e(vτn(t))‖2 + sup

t

∫ t

t−τn
‖e(ϕ̇(s))‖2 ds+ 1

)
‖e(ϕ̇(s))‖2 ≤ C‖e(ϕ̇(s))‖2 ∈ L1([0, T ]),

for a.e. s ∈ [0, T ] . Therefore, by Dominated Convergence we get limn ρn = 0 and we can deduce
that

〈W, νt〉+ Diss(ν; 0, t) ≤ W(z0, e(v0)) +
∫ t

0
〈σ(s), e(ϕ̇(s))〉 ds. (5.21)

5.8. Lower energy estimate. To prove the lower energy estimate, we proceed in the same
way as in [12, Subsection 7.6]. We recall the main passages for the Reader’s convenience. Let
us denote π1(νt) by µt for every t ∈ [0, T ] . Let s < t , with s ∈ [0, T ] ∩ Q and t ∈ [0, T ] .
Thanks to the minimality property satisfied by (zτn , vτn), the fact that zτn(s) ≥ zτn(t) almost
everywhere in Ω, and the triangle inequality for D , we get

W(zτn(s), e(vτn(s))) ≤ W(zτn(t), e(vτn(t)− ϕ(t) + ϕ(s))) +D(zτn(s), zτn(t)) +Rn(s, t), (5.22)

where now

Rn(s, t) :=W(zτn(t), e(vτn(t) + ϕτn(s)− ϕτn(t)))−W(zτn(t), e(vτn(t)− ϕ(t) + ϕ(s))).
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As in Subsection 5.3, it is easy to see that Rn(s, t)→ 0 as n→∞ .

Since s ∈ [0, T ] ∩Q , we have

δ(zτn (s),e(vτn (s))) ⇀ νs 2r-weakly* as n→∞,
δ(zτ

nt
k

(t),e(vτ
nt
k

(t))) ⇀ νt 2r-weakly* as k →∞, (5.23)

where ntk is the subsequence chosen in Subsection 5.4, if t /∈ [0, T ] ∩Q .

Hence, passing to the limit in inequality (5.22) we get

〈W, νs〉 ≤ 〈W, νt〉+ D(µs, µt)−
∫ t

s
〈σ(τ), e(ϕ̇(τ))〉dτ +R(s, t), (5.24)

where

R(s, t) :=
∫ t

s

{∫
Ω×R×Rd×d

[
− ∂W

∂ε
(θ, ε+ e(ϕ(τ)− ϕ(t))) +

∂W

∂ε
(θ, ε)

]
:e(ϕ̇(τ)) dνt(x, θ, ε)

}
dτ.

By changing the choice of the subsequence in (5.23), we obtain inequality (5.24) for s ∈ [0, T ]
and t ∈ [0, T ] ∩Q .

Now we use a measure theoretic result (see [10], or [9, Lemma 4.12] for a detailed proof), which
allows us to approximate a Lebesgue integral by Riemann sums. For the Reader’s convenience
we recall the statement of this result in the formulation of [12].

Lemma 5.4. Let X be a Banach space, and let F : [0, t]→ X be a Bochner integrable function.
Then, there exists a sequence of partitions Sj := {sij , 0 ≤ i ≤ nj}, j ∈ N of the interval [0, t],
with

0 = s0
j < · · · < s

nj−1

j < s
nj
j = t,

s1
j ≤ 1/j, t− snj−1

j ≤ 1/j, (5.25)

sij − si−1
j = 1/j for i = 2, . . . , nj − 1, (5.26)

such that

lim
j

nj∑
i=1

∫ sij

si−1
j

‖F (sij)− F (τ)‖ dτ = 0.

We apply this Lemma to the functional defined by

F : [0, t] 3 τ 7→ (e(ϕ̇(τ)), 〈σ(τ), e(ϕ̇(τ))〉) ∈ L2(Ω;Rd)× R

in order to find a sequence of partitions Sj of [0, t] satisfying requirements (5.25) and (5.26),
and such that

lim
j

nj∑
i=1

∫ sij

si−1
j

‖e(ϕ̇(sij)− ϕ̇(τ))‖2 dτ = 0, (5.27)

lim
j

nj∑
i=1

∫ sij

si−1
j

|〈σ(sij), e(ϕ̇(sij))〉 − 〈σ(τ), e(ϕ̇(τ))〉| dτ = 0. (5.28)
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Whenever both si−1
j and sij belong to [0, T ] \Q , we consider ti−1

j ∈ (si−1
j , si−1

j + 1/j2) ∩Q ,
so that the estimate (5.24) holds true for si−1

j , ti−1
j and ti−1

j , sij . Hence we get

〈W, νsi−1
j
〉 ≤ 〈W, νsij 〉+ D(µsi−1

j
, µti−1

j
) + D(µti−1

j
, µsij

)

−
∫ sij

si−1
j

〈σ(sij), e(ϕ̇(τ))〉 dτ −
∫ ti−1

j

si−1
j

〈(σ(ti−1
j )− σ(sij)), e(ϕ̇(τ))〉dτ

+R(si−1
j , ti−1

j ) +R(ti−1
j , sij).

Summing up with respect to i and using (E0), we get

W(z0, e(v0))− 〈W, νt〉 −Diss(ν; 0, t) ≤ −
ij∑
i=1

∫ sij

si−1
j

〈σ(sij), e(ϕ̇(τ))〉 dτ

−
ij∑
i=1

∫ ti−1
j

si−1
j

〈(σ(ti−1
j )− σ(sij)), e(ϕ̇(τ))〉 dτ

+
ij∑
i=1

[
R(si−1

j , ti−1
j ) +R(ti−1

j , sij)
]
.

By arguing as in [11, Lemma 7.5], we deduce that
ij∑
i=1

[
R(si−1

j , ti−1
j ) +R(ti−1

j , sij)
]
→ 0 as j →∞.

We now use Hölder inequality and the fact that supt ‖σ(t)‖2 is bounded by estimate (5.11), in
order to deduce that∣∣∣∣ ij∑

i=1

∫ ti−1
j

si−1
j

〈(σ(ti−1
j )− σ(sij)), e(ϕ̇(τ))〉 dτ

∣∣∣∣→ 0 as j →∞.

We have ∣∣∣∣ ij∑
i=1

∫ sij

si−1
j

〈σ(sij), e(ϕ̇(τ))〉 dτ −
∫ t

0
〈σ(τ), e(ϕ̇(τ))〉dτ

∣∣∣∣
≤

∣∣∣∣ ij∑
i=1

∫ sij

si−1
j

〈σ(sij), e(ϕ̇(τ))〉 dτ −
ij∑
i=1

∫ sij

si−1
j

〈σ(sij), e(ϕ̇(sij))〉dτ
∣∣∣∣ (5.29)

+
∣∣∣∣ ij∑
i=1

∫ sij

si−1
j

〈σ(sij), e(ϕ̇(sij))〉 dτ −
∫ t

0
〈σ(τ), e(ϕ̇(τ))〉dτ

∣∣∣∣.
Using properties (5.27) and (5.28) it is now possible to show that both the two last lines of
(5.29) converge to 0 as j →∞ , and hence we get

W(z0, e(v0)) +
∫ t

0
〈σ(τ), e(ϕ̇(τ))〉 dτ ≤ 〈W, νt〉+ Diss(ν; 0, t),

which, together with inequality (5.21), gives (E4).
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Remark 5.5. (Properties of the barycentre of the evolution) Let W be a convex function,
ϕ ∈ AC([0, T ];W 1,p(Ω;Rd)), p > 2, z0 ∈ L1(Ω; [0, 1]), v0 ∈ ϕ(0) + H1

0 (Ω;Rd), and (νt)t∈[0,T ]

be a damage quasi-static evolution. Let (zb(t), e(vb(t)) be the barycentre of νt , for every t .
A natural question is whether (zb(t), e(vb(t)) can be seen as a quasi-static evolution too. Let
us focus on the stability condition. Thanks to Jensen’s inequality, the global stability for the
internal variable (E3), satisfied by νt , gives

W(zb(t), e(vb(t))) ≤ 〈W, νt〉 ≤ 〈W, (µ̃x ⊗ δe(ṽ(x)))〉+ ρ

[ ∫
Ω×R

θ dµt(x, θ)−
∫

Ω×R
θ dµ̃(x, θ)

]
,

for every µ̃ with µt � µ̃ and every ṽ ∈ ϕ(t) +H1
0 (Ω;Rd). In particular, let us consider µ̃ := δz̃ ,

for z̃ ∈ L1(Ω); we get

W(zb(t), e(vb(t))) ≤ W(z̃, e(ṽ)) +
∫

Ω
ρ
(
zb(t)− z̃

)
dx,

whenever µt � δz̃ . Since µt � δz̃ implies zb(t) ≥ z̃ almost everywhere in Ω (see Remark 3.7),
we get

W(zb(t), e(vb(t))) ≤ W(z̃, e(ṽ)) +D(zb(t), z̃). (5.30)

Unfortunately, as observed in Remark 3.7, it may happen that z̃ ≤ zb(t) almost everywhere in
Ω, but µt � δz̃ . Therefore, the minimality condition (5.30) is true, again, only for restricted
class of competitors z̃ (specifically, for those with µt � δz̃ ), and it is not the desired complete
stability property.

Acknowledgments

The authors would like to warmly thank Gianni Dal Maso for a crucial lead toward the proof
of Theorem 3.8 and Gilles Francfort for some interesting discussions. This work is partially
financed by the FP7-IDEAS-ERC-StG Grant 200497 BioSMA: Mathematics for Shape Memory
Technologies in Biomechanics and by the PRIN08 Grant Optimal transport theory, geometric
and functional inequalities and applications.

Appendix

In this appendix, we prove a result which has been used in the proof of Theorem 3.6 in order
to construct a discrete version of a Young measure coupling two other given measures.

Theorem 5.6. (Matrix reconstruction) Fixed n ∈ N, let (Ai)ni=1 , (Bj)nj=1 be two vectors
in [0, 1]n satisfying the following conditions:

k∑
i=1

Ai ≤
k∑
j=1

Bj for every k ≤ n, (5.31)

n∑
i=1

Ai =
n∑
j=1

Bj . (5.32)
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Then there exist a matrix (Cij)ni,j=1 with entries in [0, 1] such that
n∑
i=1

Cij = Bj , (5.33)

n∑
j=1

Cij = Ai, (5.34)

Cij = 0 if i < j. (5.35)

The following lemma will be used to prove Theorem 5.6, by induction.

Lemma 5.7. (Iteration) Given two vectors (Ai)ni=1 and (Bj)nj=1 in [0, 1]n satisfying assump-
tions (5.31) and (5.32), there exists a vector (Ci1)ni=1 in [0, 1]n such that

C11 = A1, (5.36)
Ci1 ≤ Ai for every i, (5.37)
n∑
i=1

Ci1 = B1, (5.38)

k∑
i=2

(Ai − Ci1) ≤
k∑
j=2

Bj , for every 2 ≤ k ≤ n, (5.39)

n∑
i=2

(Ai − Ci1) =
n∑
j=2

Bj . (5.40)

Proof. According to (5.36), let us recursively define

C11 := A1, Ci1 := Ai −
[
Ai −

(
B1 −

i−1∑
k=1

Ck1

)]+
, for i > 1.

We observe that B1 − C11 = B1 −A1 ≥ 0 by assumption (5.31), and that for i > 2

B1 −
i−1∑
k=1

Ck1 = B1 −
i−2∑
k=1

Ck1 − Ci−1,1

= B1 −
i−2∑
k=1

Ck1 −
{
Ai−1 −

[
Ai−1 −

(
B1 −

i−2∑
k=1

Ck1

)]+}

= −
[
Ai−1 −

(
B1 −

i−2∑
k=1

Ck1

)]
+
[
Ai−1 −

(
B1 −

i−2∑
k=1

Ck1

)]+

= 0 ∨
{
−
[
Ai−1 −

(
B1 −

i−2∑
k=1

Ck1

)]}
≥ 0.

In particular, we have Ai−(B1−
∑i−2

k=1Ck1) ≤ Ai and 0 ≤ Ci1 = Ai−[Ai−(B1−
∑i−2

k=1Ck1)]+ ≤
Ai ≤ 1. Hence, Ci1 ∈ [0, 1] for every i , and condition (5.37) holds true.
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Now, we show that there exists i such that Ci1 = B1 −
∑i−1

k=1Ck1 . By contradiction, let
us suppose that for every i = 1, . . . , n we have Ci1 = Ai and hence Ai < B1 −

∑i−1
k=1Ck1 . In

particular, thanks to assumption (5.32), we have

An < B1 −
n−1∑
k=1

Ck1 = B1 −
n−1∑
k=1

Ak = B1 −
n∑
k=1

Bk +An = −
n∑
k=2

Bk +An,

which is a contradiction since Bj ≥ 0 for every j . Hence, there exists ī such that Aī1 =
B1 −

∑ī−1
k=1Ck1 . This implies that Ci1 = 0 for every i > ī and that

∑n
i=1Ci1 =

∑ī
i=1Ci1 =∑ī−1

i=1Ci1 +B1 −
∑ī−1

i=1Ci1 = B1 , so condition (5.38) is satisfied.

Using C11 = A1 and (5.38), we obtain condition (5.40). Indeed, we have
n∑
i=2

(Ai − Ci1) =
n∑
i=1

Ai −
n∑
i=1

Ci1 =
n∑
i=1

Ai −B1 =
n∑
j=1

Bj −B1 =
n∑
j=2

Bj .

It remains only to show inequality (5.39). We prove it by induction on k . For k = 2, we
have A2 − C21 = [A2 − (B1 − A1)]+ = [A1 + A2 − B1]+ = 0 ∨ [A1 + A2 − B1] ≤ 0 ∨ B2 = B2 ,
thanks to assumption (5.31). Let us now assume that inequality (5.39) holds for k− 1. Thanks
to condition (5.37) and assumtpion (5.31), we have

k∑
i=2

(Ai − Ci1) =
k−1∑
i=2

(Ai − Ci1) +Ak − Ck1

=
k−1∑
i=2

(Ai − Ci1) +
[
Ak −

(
B1 −

k−1∑
i=1

Ci1

)]+

=
k−1∑
i=2

(Ai − Ci1) +
[
0 ∨

(
Ak −B1 +

k−1∑
i=1

Ci1

)]
≤

k−1∑
i=2

(Ai − Ci1) ∨
( k∑
i=1

Ai −B1

)
≤

k−1∑
i=2

(Ai − Ci1) ∨
k∑
j=2

Bj ;

the inductive hypothesis implies that
∑k−1

i=2 (Ai − Ci1) ≤
∑k−1

j=2 Bj ≤
∑k

j=2Bj , and hence we
can conclude that (5.39) holds true for every k ≥ 2. �

We are now able to prove Theorem 5.6.

Proof of Theorem 5.6. For j = 1 we define Ci1 as in Lemma 5.7. For 2 ≤ j ≤ n , we repeat the
construction of Lemma 5.7, with (Ai)ni=1 , (Bj)nj=1 substituted by the vectors (Ai−

∑j−1
k=1Cik)

n
i=j

and (Bk)nk=j . Thanks to properties (5.39) and (5.40) we can prove by induction that the vectors
(Ai −

∑j−1
k=1Cik)

n
i=j and (Bk)nk=j satisfy the assumption of the lemma. For i < j , we define

Cij := 0, so that condition (5.35) is satisfied. Due to identity (5.38), condition (5.33) holds
true for every j . Thanks to this construction, we have Cii = Ai −

∑i−1
k=1Cik for every i . In
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particular,
∑n

j=1Cij =
∑i

j=1Cij = Cii +
∑i−1

j=1Cij = Ai , for every i , and therefore property
(5.34) is fulfilled. �
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