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Abstract. Equilibrium models based on a free energy functional deserve special interest in
recent investigations, as their critical points exhibit various pattern structures. These systems are
characterized by the presence of coexisting phases, whose distribution results from the competition
between short and long-range interactions. This article deals with an energy-driven sharp interface
model with long-range interaction being governed by a screened Coulomb kernel. We investigate a
number of criteria for the stability of lamellar configurations to ensure that they are indeed strict
local minimizers. We also give a sufficient condition to ensure a nontrivial periodic 2D minimal
energy configuration.
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1. Introduction. The mechanisms responsible for pattern formation have been
extensively studied in a number of fields of science [5, 6, 21, 23, 24, 25, 28, 30, 31,
32, 36]; for instance, ferroelectric and ferromagnetic films, diblock copolymers and
degenerate ferromagnetic semiconductors. Equilibrium models based on a free energy
functional deserve special interest in recent investigations, see e.g. [4, 15, 16, 17, 26,
33, 34] and the references therein. A typical form of this free energy functional is

(1.1) Jε(u) =

∫
Ω

(
ε

2
|∇u|2 + ε−1F (u)

)
dx +

σ

2

∫
Ω

∫
Ω

ψ(u(x))G(x, ξ)ψ(u(ξ))dξdx ,

where u is a scalar function, F is a double-well potential, G is a positive kernel, ψ
is a given smooth function, ε is a small parameter and Ω ⊂ RN is a given bounded
domain. These systems are characterized by the presence of coexisting phases induced
by the two wells; the resulting structure of sharp transition interfaces defines the pat-
tern. A well-known example of G is the Green’s function associated with a uniformly
elliptic operator. This turns (1.1) into a competition between short and long-range
interactions; who is winning depends on the precise tuning of the control parameters.
The short-range ramification, represented by the term with single integral, leads to
congregation, favoring large domains of pure phases with boundary shape that min-
imizes surface area. The long-range effect, depicted by the double integral term, is
repulsive in nature biasing towards small domains.

A diblock copolymer is a linear-chain molecule consisting of two subchains joined
covalently to each other. Depending on the material properties of the diblock macro-
molecules, the observed mesoscopic domains are highly regular periodic structures
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that include lamellae, spheres, cylindrical tubes, and double-gyroids [6]. It is a com-
mon belief that these patterns are metastable in certain ranges of the parameters
and that they can undergo morphological instabilities leading to the formation of
more complex patterns. In a model of microphase separation for diblock copoly-
mer melts [32], it was proposed to study the critical points of a functional like (1.1)
with G being the Green function for the Laplace operator subject to the homoge-
neous Neumann boundary conditions or periodic boundary conditions. By setting

ψ(u) = u− 1
|Ω|
∫

Ω
u dx and F (u) = u2(u−1)2

4 (or choosing F (u) = (u+1)2(u−1)2

4 in some

articles) in (1.1), several authors [4, 15, 17, 18, 22, 31, 33, 34] investigated the patterns
generated by

(1.2)

∫
Ω

(
ε

2
|∇u|2 +

u2(u− 1)2

4ε
)

)
dx +

σ

2

∫
Ω

∫
Ω

(u(x)−m)G(x, ξ)(u(ξ)−m)dξdx

with prescribed mass constraint 1
|Ω|
∫

Ω
u dx = m and small ε. A derivation of (1.2)

based on the statistical physics of interacting block copolymers can be found in [18].
We refer to a pioneer work of Nishiura and Ohnishi [31] for earlier results of this
model.

As ε → 0 the L1 norm Γ-limit of the functional (1.2) goes to (except for a
multiplicative constant)

(1.3)

∫
Ω

(
|∇χ|+ σ

2
|∇v|2

)
dx,

where χ is a characteristic function and

(1.4) v(x) =

∫
Ω

G(x, ξ)(χ(ξ)−m)dξ .

When Ω is a very large domain, one expects that the effect of boundary condition on
v diminishes in its interior and the minimizer may settle down into a natural minimal
energy periodic configuration. Indeed in one space dimension, minimizers of (1.2) and
(1.3) are periodic [15, 34]. To address the fundamental questions, namely to what
extent periodicity holds in higher space dimensions and what effect the nonlocal term
has on the stability of such periodic patterns, Alberti, Choksi and Otto [4] studied
the sharp interface model (1.3)-(1.4) when Ω was a N -dimensional square box T =
[−T/2, T/2]N ⊂ RN with homogeneous Neumann boundary condition. Using a direct
method in the calculus of variations, they showed uniform energy distribution for the
minimizers in the interior of a large torus; indeed the boundary condition influence
did diminish as far as energy was concerned. On the other hand one still could not tell
if a genuine multi-dimensional periodic minimal energy periodic configuration existed
and if so, what its structure was.

From now on in this paper we regard T as a torus by imposing periodic boundary
condition. We recall a local stability result: Acerbi, Fusco and Morini [3] proved that
any critical configuration of (1.3)-(1.4) in T, with positive definite second variation
is a strict local minimizer with respect to small L1-perturbations. In [19, 33, 34, 35]
the authors constructed several examples of lamellar, spherical and cylindrical critical
configurations and found related conditions under which they are stable. On the
other hand, it remains open if the global minimizers of (1.3)-(1.4) are one dimensional
lamellar configurations. We study this last question for the model (1.5) below.
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There are spatial patterns resulting from the competition between thermodynamic
forces operating on different length scales. In the derivation of the energy-driven
model, the Green’s function G associated with −∆+κ2 represents a screened Coulomb
kernel, while it is called unscreened Coulomb kernel when κ = 0. The constant κ has
the physical meaning of the inverse of the Debye screening length [28, 29].

In this paper we are interested in the following energy-driven model:

(1.5)

∫
T

( ε
2
|∇u|2 + F (u)

)
dx +

σ

2

∫
T

∫
T
u(x)(−∆ + 1)−1u(ξ)dξdx ;

With a screened Coulomb kernel, we seek the critical points of (1.5) with no volume (or
mass) constraint. Instead, the appearance of a volume term gets into the competition
process if the potential wells are slightly imbalanced; for instance

(1.6) F (u) =
u2(u− 1)2

4ε
+

α√
2

(
u3

3
− u2

2
)

for small ε. Through the Γ-convergence the sharp interface model associated with
(1.5) is

(1.7) J(E) = PT(E)− α|E|+ σ

2

∫
E

NE dx .

Here |E| is the Lebesgue measure of E and N is an operator that assigns a measurable
subset E of T the solution of the following modified Helmholtz equation:

(1.8) −∆NE +NE = χE in T, NE is periodic in T ;

as known to be the unique T-periodic minimizer of

(1.9) v 7→
∫
T

( |Dv|2
2

+
v2

2
− vχE

)
dx .

The admissible set of J is

(1.10) A =
{
E ⊂ T : E is Lebesgue measurable

}
.

The (possibly infinite) perimeter of E in T is denoted by PT(E). If E is of class C1,
PT(E) is the surface measure of the boundary of ∂E ∩ T. A classical stationary set
of J has a C2 interface that satisfies the Euler-Lagrange equation

(1.11) K(∂E ∩ T)− α+ σNE = 0 on ∂E ∩ T,

where as known in [12, 13], K denotes the sum of principal curvatures, which equals
(N − 1) times the mean curvature.

In recent years (1.5) has been extensively studied as a paradigmatic activator-
inhibitor system, like the FitzHugh-Nagumo equations, for patterns generated from
homogeneous media destabilized by a spatial modulation. Not only serving as a
prototype model for patterns like stripes and spots, variants of (1.5) preserve rich
structures in systems exhibiting dissipative soliton phenomena [8, 9, 10, 14, 15, 25, 41].
Following similar asymptotic analysis on the Ohta-Kawasaki model [16, 17, 32, 33] as
a certain physical parameter going to zero, a Γ-convergence treatment leads to the
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geometric variational functional (1.7) as a sharp interface model, which provides an
effective setting for studying localized patterns and waves. The extra volumetric term
α|E| is a result of the imbalance in energy wells due to the nonlinearity F . Depending
on the system parameters, the competitions among the perimeter, the volume and the
nonlocal interactions in this functional give rise to localized structures which may stay
at rest or propagate with a dynamically stabilized velocity. See [12, 13] for studying
pattern formation and [11] in dealing with traveling waves.

Our goal in this paper is to investigate the stability of lamellar configurations
of (1.7). The structure of global and local minimizers of (1.7) has recently been
investigated [2]. By minimality one sees that necessarily NE ≥ 0, and since NT\E =
1−NE also that NE ≤ 1. From (1.8), by the divergence theorem one gets∫

T
NE dx = |E| .

Writing E′ for the complement T \ E of E, we thus have
(1.12)∫
E

NE dx =

∫
T
NE dx−

∫
E′
NE dx = |E|−

∫
E′

(1−NE′) dx = |E|−|E′|+
∫
E′
NE′ dx .

This implies

(1.13) J(E) = J(E′) +
(σ

2
− α

)
(|E| − |E′|) .

The nonlocal interaction term of (1.7) containing a positive parameter σ. Its effect
favors an identically zero solution as a minimizer. On the other hand the positive
parameter α measures the driving force towards a non-zero state.

Partially motivated by (1.13), we introduce a parameter

(1.14) c = c(α, σ) := 1− 2α

σ
.

Clearly the empty state E = ∅ and the full state E = T satisfy

(1.15) J(∅) = 0 , J(T) =
σ

2
cTN ;

the sign of the “fullness parameter” c determines whether the empty torus is more
(when c > 0) or less (c < 0) energetically favorable than the full torus, and not only
that, as when c > 0 global minimizers of J all have measure less than |T|/2, and the
reverse is true if c < 0, see [2, Remark 1.3]. It is also true [2, Corollaries 1.6 and
1.7] that the empty (resp. full) state is a global minimizer iff 0 ≤ α ≤ α∅ (resp. iff
αT ≤ α ≤ σ) for some 0 < α∅ < αT < σ. As a remark, of the three terms composing
J(E), only the volumetric term is nonpositive. Since both the empty state and the
full state have no phase boundary, their competitive advantages depend only on the
volumetric and the nonlocal terms, which is determined by the ratio α/σ.

As been demonstrated in [2], there can be multiple laminar configurations in a
fixed torus with the same physical parameters. Among these configurations there is
a lamella with the lowest energy. For this new concept of minimal lamella we showed
that with suitable parameters α, σ in a large torus, a lamella has a lower energy than
both the empty set and the full torus (thus in particular there can be global minimizers
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other than both trivial states). Under this circumstance a periodic extension of the
minimal lamella is a global minimizer in one space dimension; we will address the
question if global minimizers in a two dimensional torus have lamella structures. The
main results of [2] together with some relevant properties will be given in Section 2
(see Remark 2.3); we will need them in such an investigation.

The central issue of this paper is the stability of lamellar configurations of (1.11),
that is, sets E which beside being T-periodic are also invariant by translations or-
thogonal to a certain direction v. Without loss of generality, we take v as the first
axis, and use (x, x′) ∈ [0, T ]× [0, T ]N−1 as coordinates. Next we fix the notation for a
single lamella and a k-lamella. Let 0 < x0 < T and let E = Lx0 = [0, x0]× [0, T ]N−1

be a single lamella with a thickness x0 in the torus T. A k-lamellar configuration
L is composed of k “vertical” lamellae (where χL = 1) separated by wedges (where
χL = 0) with the first lamella beginning at the left side of T, i.e. at x = 0, and the
total widths of all k lamellae being x0. It has been shown [2] that, in every station-
ary k-lamellar configuration, all lamellae have the same width x0/k and are equally
spaced; so this configuration is not only T -periodic, but has a smaller period T/k.
Moreover for fixed T and k, x0/k is determined by the ratios α/σ and T/k only (see
(2.5) for the precise formula). This observation helps our investigation later on. In
what follows, k will be referred to as the (lamellar) tightness.

In general it is (relatively) easy to check that a candidate E satisfies the Euler-
Lagrange equation of J , i.e., J ′(E) = 0; much, much harder is the task of proving
that the candidate is a local minimizer of J . As an intermediate step to eliminate
translation modes, one may prove that in some suitable sense J ′′(E) > 0, a property
which we call stability (see Definition 3.4 for the precise meaning of stability), and
then proceed to prove that all stable critical points are local minimizers indeed.

It is not difficult to show that for every given α, σ, T , the global minimizer of (1.7)
always exists. Below is a general result for the stability of lamellar configurations on
a N -dimensional torus.

Theorem 1.1. Let L be a lamellar configuration of (1.11).
(i) Stable lamellae are isolated local minimizers of (1.7).

(ii) Given σ and α, L is a stable solution on a N -dimensional torus [−T/2, T/2]N

if T is sufficiently small.

To dig into more delicate stability results, we focus on the case T = [−T/2, T/2] ×
[−T/2, T/2] in the investigation of the dependence of J on the parameter c defined by
(1.14). Although we are confident that some of the results hold in the general cases,
the delicate techniques employed here do not seem to extend for free to more than
two dimensions. The next theorem indicates how stability of lamellar configurations
is affected by the physical parameters α and σ, and the disturbance Fourier modes
m ∈ N ∪ {0} on each individual lamellar interface; in particular we work out good
comparison associated with the value c, the tightness k and the disturbance mode m.
It turns out that the mode m = 0 is always stable.

Theorem 1.2. Let T = [−T/2, T/2]× [−T/2, T/2] and Lk(c) denote a k-lamellar
stationary point of (1.11) with c being the measure of physical parameter.

(i) Lk(c) is stable if and only if the disturbance mode m = 1 is stable. In addition,
if Lk(c1) is stable and |c2| ≥ |c1|, then Lk(c2) is stable.

(ii) If Lk(0) is stable then Lj(c) is stable for all j ≥ k and |c| < 1.
(iii) A necessary and sufficient condition for all stationary k-lamellae to be stable
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for every value of c and k, is that

σ < 8π2

[
T 3

(
tanh(T/4)

T
− tanh(

√
T 2 + 4π2/4)√
T 2 + 4π2

)]−1

.

Without loss of generality, we only carry out the proof for the case c ≥ 0; in this case
x0 ∈ (0, T/2k]. In the whole space RN (an infinite torus), stationary 1-lamella will
occupy the whole space as c→ 0+, see [13, equations (1.18) and (1.19)]. This lamellar
solution disappears for c ≤ 0. Thus bifurcation from infinity occurs at c = 0 in RN . It
is interesting to note that for radially symmetric solutions in infinite domains, it has
also been demonstrated that the line σ = 2α in the (α, σ) plane, equivalently c = 0,
is a boundary where bifurcation occurs; see [13, Figure 2], [12, Figure 2]. In this case
an infinitely large bubble disappears once c turns negative. A further study in this
regard is underway.

From (2.5) it is observed that a stationary k-lamella in a torus of size T is a
stationary 1-lamella in a torus of size T/k; by Proposition 2.2 the corresponding v0

and d0 stay the same. They therefore possess the same stability properties with
respect to (T/k)-periodic perturbations. Since T -periodic disturbance is allowed in
the T -torus but not in the (T/k)-torus, the extra modes may induce instability in
the larger torus. In other words, in a torus a 1-lamella is always unstable whenever
k-lamellae are unstable.

As a further exploration, we introduced a function

(1.16) Γ(c) = |c| − 1− |c| log |c| , |c| ≤ 1,

extended by continuity at c = 0 by Γ(0) = −1. This function is a term derived [2] from
an asymptotic formula of the energy for extremely large tori; i.e. as T → ∞. More
detailed properties of Γ(c) will be given in Section 2, in particular see Remark 2.3.
Not only Γ(c) provides a guide to select out a lamellar configuration with least energy
(density), it points out a threshold of stability exchange as follows.

Theorem 1.3. The following stability results hold:
(i) When 4 + σΓ(c) > 0, stationary lamellae are stable for all T .

(ii) If 4 + σΓ(c) < 0, stationary lamellae are unstable when T is sufficiently
large. Moreover the global minimizer of (1.7) has a genuine (non-lamellar)
2D structure if 0 < c < 1.

(iii) In particular if c = 0 and σ > 4, there exists a Tk = Tk(σ) such that the
k-lamella is stable if T < Tk and unstable if T > Tk.

Even though x0 (i.e. the lamellar configuration) is completely determined by c, we
note that σ can change its stability while keeping a fixed c. As a consequence of
statement (ii), if periodicity were to hold in 2D, the mesoscopic structure has to be
a genuine 2D finite size minimal energy configuration when 4 + σΓ(c) < 0. Though
not the subject in this paper, knowing its structure will be extremely interesting.
For (iii), the same result may still be valid for any c, but the calculation complexity
prevents us from drawing a concrete conclusion. Numerical validation [38, 39, 40]
has been successfully worked out in certain problems of pattern formation (e.g. the
original Ohta-Kawasaki model). It should be equally interesting to have analogous
development for studying the geometric variational functional.

Section 2 begins with a list of known facts for minimal lamellae. Section 3 works
on first and second variation, as the preliminary for studying the stability of lamellar
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configurations. Theorem 1.1(i) follows from Theorem 3.5, which ensures that stable
critical points of (1.7) are isolated local minimizers. That the situation is not trivial is
made evident by the instablility result in Proposition 5.5 in some parameter regimes.
The proof of Theorem 3.5 is lengthy, and since it is similar to that of [3, Theorem
1.1], we highlight the relevant differences only (see Appendix A). Theorem 1.1(ii) is
an immediate cosequence of Poincaré inequality as to be seen in Theorem 5.1.

For a critical point E of (1.7), its local stability can be investigated through the
second variation calculated by imposing various flows generated by (smooth) velocity
vector fields X, detailed at the beginning of Section 3. The idea is that the critical
set is stable if the functional increases under the perturbation through every such
vector field over a short time interval. If E is a critical lamellar configuration L, only
the normal component η := X · ν matters, where ν is the unit outward normal to
L. We decompose η = µ + ζ where on each connected component of L the term µ
is a constant and the integral of ζ is zero; µ and ζ are called the mean part and
the zero-average part, respectively. One motivation for this decomposition is that
the rigid body translation mode resides only in the mean part; moreover both parts
are independent of one another in stability analysis as will be seen in expressions
(3.12) and (3.13), which make up the second variation formula. As a by-product,
our analysis on the mean part indicates that all stationary lamellae are stable with
respect to 1D perturbation, see Corollary 4.5.

The proof of stability naturally divides into two steps: the mean value part in
Section 4 for checking the stability against 1D periodic perturbations, and then the
zero-average part in Section 5 to draw complete conclusion. We recall that this ap-
proach was also used in a recent paper of Morini and Sternberg [27] who dealt with
the stability of lamellar configurations of the Ohta-Kawasaki model (or a nonlocal
isoperimetric problem) in a thin domain [0, ε] × [0, 1]. There the long-range inter-
action is governed by the Green function associated with the Laplace operator, so
a k-lamellar can be constructed by multiple repeated reflection of a single lamellar
in small interval. In our case the length rescaling argument does not work when
the Helmholtz operator replaces the Laplace operator, even the existence of minimal
lamella is not a simple process in the calculation of energy density. When ε is small
enough, the 1D stable periodic configuration remains stable on [0, ε] × [0, 1] because
the stabilizing effect resulted from the Poincaré inequality on the zero-average part
dominates anything else.

Our stability analysis quantitatively calculates for the first time the energy contri-
bution of the nonlocal term, without which an instability result cannot be formulated.
In addition to making extensive use of non-trivial properties of convex functions, we
rely on the explicit computation of the eigenvalues of symmetric block circulant Her-
mitian matrices in the investigation of the mean value part. Examining the similarity
of the structures of the stability matrices, we obtain a simple criterion (5.12) for
stability of zero-average part. The bulk of the paper is devoted to proving that in
dimension N = 2 the worst case for stability is when c = 0, depicted in Theorem 5.13,
and that stability is most delicate for 1-lamellae, Theorem 5.15. These give rise to
the main consequence, Corollary 5.20, that precisely describes the stability range as
been summarized in Theorem 1.2.

Stability of lamellar solutions in a Ohta-Kawasaki model has been studied in [35].
Computing the spectrum of the linearized governing equation, the authors obtained
good estimates for the eigenvalues with the help of a Γ-limit as ε→ 0. This calcula-
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tion determines the sign of all eigenvalues if the number of interfaces is large. As a
conclusion [35, p.26], 1D local minimizers with higher lamellar tightness are likely to
be stable while those with lower tightness are likely to be unstable in three dimen-
sions. Similar phenomena happen in our study as laid out in Theorem 1.2(ii). On the
other hand, our results indicate a sharp threshold governed by the sign of 4 + σΓ(c).
The calculation of spectrum in both studies employed the technique of separation of
variables.

2. Known facts on minimal lamellae. In this section we first prove the exis-
tence of global minimizer of (1.7) and then state certain properties of minimal lamellae
for the convenience of readers.

Theorem 2.1. There always exists a global minimizer of (1.7) for all positive
α, σ, T .

Proof. First we recall that for a T-periodic set E

PT(E) = ‖DχE‖per =: sup{
∫
T
χE divϕdz : ϕ ∈ C1(T), ϕ is T-periodic, |ϕ| ≤ 1}

which represents the variation measure of χE in a periodic setting. As J(E) ≥ −αTN
for any measurable E ⊂ T, there exists a minimizing sequence {Ej}∞j=1 such that
1 + inf J ≥ J(Ej)→ inf J , which leads to a uniform upper bound

PT(Ej) ≤ 1 + inf J + αTN .

By compactness there exists a T-periodic E0 ⊂ T and a subsequence, still designated
by {Ej}, such that χEj → χE0 in L1(T) and pointwise a.e.; moreover lim inf PT(Ej) ≥
PT(E0). As the L∞ norm of characteristic functions are 1, it follows that χEj →
χE0

in L2(T); this immediately gives NEj
→ NE0

in H1
per(T) so that

∫
Ej
NEj

dx →∫
E0
NE0

dx. Hence E0 is a global minimzier.

For a while we denote by L the projection of a lamella L on the x-axis; we also
denote the total thickness of the k-lamella by x0 := |L|. The function NL appearing
in the nonlocal term of (1.7) is the unique T-periodic minimizer of the strictly convex
energy (1.9). But replacingNL with its average in the x′ directions, by strict convexity
we deduce that NL depends only on x. Since not only L, but also NL has a one-
dimensional structure, it will be sometimes useful to drop all but the first variable
and work in one dimension; using the simpler notation u(x) in place of NL(x, x′), it is
useful to introduce the one-dimensional analogues of (1.8) and(1.9), that is, equation

(2.1) − v′′ + v = χL

(with periodic boundary conditions in [0, T ]) and energy

(2.2)
1

2

∫ T

0

(
|v′(x)|2 + |v(x)|2

)
dx−

∫
L

v(x) dx , v is T -periodic .

We collect some facts which will be useful in our stability analysis, all references being
to [2].

Proposition 2.2. Suppose that the k-lamella L is a stationary point of the energy
(1.7) and let v be the 1-dimensional function introduced above. Set v0 = v(0) and
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d0 = v′(0). Then (Proposition 2.6) all lamellae have the same size and are equally
spaced; (Lemma 2.4) the function v is symmetric inside each lamella and inside each
wedge, and in particular v takes the value v0 at all sides of the lamellae, whereas v′

takes value +d0 (resp. −d0) at each left (resp. right) side of the lamellae. If x0 is the
total width of the lamellae then (equations 2.6 and 2.7)

(2.3) v0 =
1

sinh T
2k

cosh
T − x0

2k
sinh

x0

2k
=

1

2 sinh T
2k

(
sinh

T

2k
− sinh

T − 2x0

2k

)
,

(2.4) d0 =
1

sinh T
2k

sinh
T − x0

2k
sinh

x0

2k
.

Moreover (Theorem 2.9) necessarily α ≤ σ (which is equivalent to |c| ≤ 1), the total
thickness x0 satisfies

(2.5)
x0

k
=

T

2k
− arcsinh

(
c sinh

T

2k

)
and the corresponding energy is

(2.6)

J(L) = kTN−1

{
2 + c

σ

2

[ T
2k
− arcsinh

(
c sinh

T

2k

)]

− σ

2 sinh T
2k

(
cosh

T

2k
−
√

1 + c2 sinh2 T

2k

)}
.

Equation (2.5) concretely justifies the name given to the fullness parameter c: for
stationary k-lamellae, when c > 0 lamellae are thinner than wedges, and the opposite
is true when c < 0.

We now specialize to minimal lamellae, i.e., k-lamellae in a torus which are optimal
among all multi-lamellar configurations (the focus is on the best choice of k). Given
(2.6) it is convenient to set

A(c, t) = arcsinh
(
c sinh(t)

)
, B(c, t) =

cosh t−
√

1 + c2 sinh2 t

sinh t
,

L(c, t) = c
(
t−A(c, t)

)
− B(c, t)

and

E(σ, c, t) =
1

t

(
2 +

σ

2
L(c, t)

)
,

so that (2.6) reads

JT(L) =
TN

2
E
(
σ, c,

T

2k

)
.

Many properties of these functions are investigated in [2, Section 3], but here we will
only need to know that

(2.7) t−A(c, t) =

{
− log c+ ωt if c > 0 ,
2t+ log |c|+ ωt if c < 0 ,

where ωt designates a function that vanishes as t→∞.
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A relevant property of the function tE(σ, c, t) = 2 + (σ/2)L, see [2, Proposition
3.4], is that if c > 0 its limit as t→ +∞ is

2 +
σ

2
(c− 1− c log c) ;

whereas if c < 0 it has as an asymptote as t→ +∞ the function

σct+
[
2 +

σ

2
(|c| − 1− |c| log |c|)

]
.

Remark 2.3. The threshold function Γ(c) plays a crucial role to distinguish the
best lamellar configuration. In particular from [2, Theorem 3.5, Remark 3.7] when
2 + σΓ(c)/2 ≥ 0, a finer lamella partition of the torus results in a higher energy
configuration; thus 1-lamella is the best, but this configuration is always beaten by
either trivial state); but if 2 +σΓ(c)/2 < 0 then there is a unique point t0 = t0(c, σ) >
0 such that E(σ, c, t) is strictly decreasing for 0 < t ≤ t0 and strictly increasing
afterwards, thus the best lamellar configuration divides the torus in approximately
T/2t0 bands, i.e. when T/2t0 is not an integer, then the optimal number of bands is
either the integer just above or just below T/2t0.

3. First and second variation, and preliminaries to stability. For the rest
of this paper, all functions defined on T are understood to be T-periodic, and those
defined on a face S of a lamella are S-periodic.

We first recall the definition of the variations of our functional J at a set E ⊂ T
of class C2. Let X : T → RN be a C2 vector field and consider the associated flow
Ψ : T× (−1, 1)→ T defined by Ψt = X(Ψ), Ψ(x, 0) = x and set

Et := Ψ(E, t) .

The first and second variations of J at E with respect to the flow associated with the
field X are defined as the first and second derivatives at t = 0 of J(Et). Computing the
first and second variation of the energy (1.7) is a lengthy exercise, already carried out
in similar settings, see for example [20, Theorem 2.6], [7, Theorem 3.6], [3, Theorem
3.1]. We highlight only the major differences as follows:

1. these papers use characteristic functions, denoted by u or U , with values in
{−1, 1} instead of our {0, 1}-valued χ. Some factors of 2’s will disappear,
in particular each time when a boundary integral appears in the derivation;
also, with respect to [20] which contains the bulk of the computation one may
dismiss the integrals on the complementary set (where U = −1), which cause
all the 2’s;

2. in place of a volumetric constraint on E, we have an extra term which is
proportional to the volume of E;

3. our potential function NE (as opposed to the notation v or V in the other pa-
pers) is governed by the (modified) Helmholtz operator instead of the Lapla-
cian.

The only likely dangerous point seems to be the last remark; but if GH and GL
denote the Green’s functions for the modified Helmholtz and the Laplacian operators,
respectively, in both instances one has

NE(x) =

∫
GH(x, y)χE(y) dy , v(x) =

∫
GL(x, y)u(y) dy
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and the nonlocal terms in their governing functionals are given by∫
NE(x)χE(x) dx ,

∫
v(x)u(x) dx ,

respectively. Then throughout the derivation all calculations are the same, since the
derivation in [20] uses this form as a starting point. Thus the variations coming from
the nonlocal term can be directly taken from [20], not forgetting to drop the extra 2’s
and stopping at formula (2.67) since after this the authors deal with the necessary
corrections due to the volume constraint.

The second variation of volume may be found in [20, formula (2.30)], and the
second variation of the perimeter is computed at every regular set E and not only
at critical points in [3, Theorem 3.1]. Neither in the derivation of the nonlocal term
nor in that of the perimeter term the infinitesimal volume preservation condition∫
∂E

(X · ν) dHN−1 = 0 is used, thus in the end one has the following result.

Proposition 3.1. The first variation of (1.7) with respect to the flow associated
with any (regular) vector field X : T→ RN defined near the boundary of a regular set
E, of class C2 in a torus T, is

dJ(E)X =

∫
∂E

(
K(∂E)− α+ σNE

)
(X · ν) dHN−1

and the second variation is

d2J(E)[X] =

∫
∂E

(
|∇τ (X · ν)|2 − ‖B∂E‖2(X · ν)2

)
dHN−1

+σ

∫
∂E

∫
∂E

G(x, y)(X · ν)(x)(X · ν)(y) dHN−1
x dHN−1

y

+σ

∫
∂E

(∇NE · ν)(X · ν)2 dHN−1

+

∫
∂E

(
K(∂E)− α+ σNE

)
(divX)(X · ν) dHN−1

−
∫
∂E

(
K(∂E) + σNE

)
divτ

(
Xτ (X · ν)

)
dHN−1 .

Here ‖B∂E‖2 is the sum of the squares of the principal curvatures of ∂E; G is the
Green’s function for the Helmholtz operator in T with periodic boundary conditions; ν
is the unit outward normal on ∂E; K(∂E) is the sum of principal curvatures of ∂E;
∇τ is the gradient on ∂E; and Xτ is the tangential component of X.

Definition 3.2. A regular subset E of T is a stationary (or critical) point for
(1.7) if

K(∂E)− α+ σNE = 0 on ∂E .

Remark 3.3. Since NE is of class W 2,p for any p > 1, standard regularity theory
and Schauder estimates imply that any regular critical set is of class C3,α(T) for any
0 < α < 1.

We remark that we may add to the last integral in Proposition 3.1 a harmless∫
∂E

−α divτ
(
Xτ (X · ν)

)
dHN−1
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(which vanishes by the tangential divergence theorem) so that the last two integrals
may be grouped into ∫

∂E

(
K(∂E)− α+ σNE

)
· (· · · ) dHN−1

which vanishes if E was stationary. As all other terms for d2J(E)[X] only depend on
the normal component of X, it is convenient to introduce a function defined on all
η ∈ H1(∂E) as

J ′′(E)[η] =

∫
∂E

(
|∇τη|2 − ‖B∂E‖2η2

)
dHN−1

+σ

∫
∂E

∫
∂E

G(x, y)η(x)η(y) dHN−1
x dHN−1

y + σ

∫
∂E

(∇NE · ν)η2 dHN−1 .

Since J(E) = J(E + τ) for any translation τ , no set (beside the empty and full
states) may be a strict minimum point, so following [3, formula (1.3)] we consider as
equivalent any two sets one of which is a translation of the other and define a distance
between sets modulo translations as

δ(E,F ) := min
τ
|E4(F + τ)| .

Invariance by translation implies that the second derivative of J(E + tτ) always van-
ishes. In particular on a critical point E the second variation is zero for every con-
stant vector field X = ei along the coordinate axes resulting in η = X · ν = νiE for
i = 1, 2, . . . , N (the i-th component of the normal ν). There is thus a linear subspace
of H1(∂E), spanned by the components of the normal, on which J ′′(E) vanishes. We
remark that this subspace can have a dimension less than N , as in the case for lamel-
lar sets. Using L{. . . } to denote the vector space spanned by the functions inside the
brackets and W 1,2

per(∂E) for periodic W 1,2(∂E) functions, we set

T (∂E) = L{ν1
E , . . . , ν

N
E }

T ⊥(∂E) = {η ∈W 1,2
per(∂E) :

∫
∂E

ηνiEdHN−1 = 0, i = 1, . . . , N} .

Definition 3.4. A regular critical point E of J is stable if

(3.1) J ′′(E)[η] > 0 for all η ∈ T ⊥(∂E) \ {0} .

The notion of stability of a stationary point E is crucial in the applications, since
as we will see it implies that E is a strict local minimizer of J , isolated in the δ
distance sense (which measures the norm in L1 modulo translations). In the spirit of
[3, Theorem 1.1] we have

Theorem 3.5. Let E ⊂ T be a regular critical set of J such that

J ′′(E)[η] > 0 for all η ∈ T ⊥(∂E) \ {0} .

Then there exist ε, C > 0 such that

J(F ) ≥ J(E) + Cδ2(E,F )

for all F ⊂ T with δ(E,F ) < ε.
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The proof closely follows that of [3, Theorem 1.1], which takes up 25 pages, so we only
highlight the relevant differences in the Appendix; the crucial estimate of [3, Lemma
2.6] is replaced by an easier readable version for the Helmholtz operator:

Lemma 3.6. If E,F ⊂ T are measurable then∣∣∣∫
T
(|DNE |2 +N 2

E) dx−
∫
T
(|DNF |2 +N 2

F ) dx
∣∣∣ ≤ 2|E4F | .

Proof. We write∫
T
(|DNE |2 +N 2

E) dx−
∫
T
(|DNF |2 +N 2

F ) dx

=

∫
T

[
(DNE +DNF )(DNE −DNF ) + (NE +NF )(NE −NF )

]
dx

=

∫
T
(NE +NF )

[
(−∆NE +NE)− (−∆NF +NF )

]
dx

=

∫
T
(NE +NF )(χE − χF ) dx

by (1.8), and the result follows since ‖χE − χF ‖L1 = |E4F | and 0 ≤ NE,F ≤ 1 .

Stationary points for the area functional have constant mean curvature; they are more
or less easily classified. A nonlocal perturbation of the area functional has been studied
in the Ohta-Kawasaki model; it gives rise to a series of interesting stationary surfaces
(the boundaries of lamellae and, in the Neumann case, also of cylinders, spheres and
some 3D-structures called gyroids) which have been proven to be stable under certain
assumptions on the parameters. Their shapes are easy to handle, the Laplacian scales
well and is well understood, so the proof of their stability requires some effort but is
quite general. Equation (1.11), which is another nonlocal perturbation, is less neat,
and the only known solution in the periodic setting is given by lamellae [2] (in the
entire space there are bubble solutions, see [12, 13]).

We now examine k-lamellar stationary points, in order to establish their stability
in certain parameter regimes. The second variation for stationary lamellae L takes a
simplified form and reads

J ′′(L)[η] =

∫
∂L
|∇η|2 dHN−1

+σ

∫
∂L

∫
∂L
G(x, y)η(x)η(y) dHN−1

x dHN−1
y(3.2)

+σ

∫
∂L

(∇NL · ν)η2 dHN−1 .

We recall that by Proposition 2.2 k-lamellae which are stationary points of J are
of equal size and spacing, and that the outward normal derivative of the function
NL takes value −d0 on both sides of each lamella, with d0 given by (2.4), since the
outward normal points backwards on left sides of lamellae.

We now fix some notation, some of which we already employed. As a coordinate
system we use z := (x, x′) ∈ T, where x ∈ [0, T ]; we consider a stationary k-lamella L
with all k lamellae having a total width 0 < x0 < T , orthogonal to the x-axis, with
the first lamella starting at x = 0, and we sequentially label `i, with i = 1, . . . , 2k+ 1,
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the x coordinates of the sides of the lamellae (the last is a duplicate of the first side,
but is included for convenience), so that

`1 = 0, `2 =
x0

k
, `3 =

T

k
, `4 =

T

k
+
x0

k
, `5 = 2

T

k
,(3.3)

. . . `2k = (k − 1)
T

k
+
x0

k
= T − T − x0

k
, `2k+1 = T .

We also name the corresponding faces, which are (N − 1)-dimensional squares or-
thogonal to the x axis, as L1, . . . , L2k+1. We easily identify the space T ⊥(∂L): since
the only non-zero component of the outward normal field to L is the first one, and it
takes value −1 on odd sides (i.e., on Li with i odd) and +1 on even sides, a periodic
function η ∈W 1,2

per(∂L) belongs to T ⊥ if

k∑
j=1

∫
L2j

η dHN−1 −
k∑
j=1

∫
L2j−1

η dHN−1 = 0 .

Following a reduction method introduced in [27, section 4], for any η ∈W 1,2
per(∂L) we

call ηi the function which coincides with η on Li and vanishes on all other Lj and we
further split ηi as its mean value µi on Li plus a zero-average term ζi:

µi =
1

TN−1

∫
Li

ηi(z) dHN−1 , ζi(z) = ηi(z)− µi ,

so in particular
∫
Li
ζi dHN−1 = 0. We remark that

(3.4) η ∈ T ⊥(∂L) ⇐⇒
k∑
j=1

µ2j −
k∑
j=1

µ2j−1 = 0

which is independent of ζ. For subsequent use we denote µ :=
∑2k
j=1 µj and ζ :=∑2k

j=1 ζj so that η = µ + ζ. We now examine the various components of J ′′(L); for
the first we immediately have

(3.5)

∫
∂L
|∇η|2 dHN−1 =

2k∑
i=1

∫
Li

|∇ζi|2 dHN−1 .

We have for all i∫
Li

|η2| dHN−1 =

∫
Li

|η2
i | dHN−1 = TN−1µ2

i +

∫
Li

|ζ2
i | dHN−1 + 2µi

∫
Li

ζi dHN−1

= TN−1µ2
i +

∫
Li

|ζ2
i | dHN−1 .

At the same time ∇NL · ν = −d0 at all Li so that the last term in (3.2) becomes

(3.6) − σd0

∫
∂L
η2 dHN−1 = −σd0T

N−1
2k∑
i=1

µ2
i − σd0

2k∑
i=1

∫
Li

|ζ2
i | dHN−1 .

Next comes the Green’s function term which, upon setting aside the factor σ, we copy
as ∫

∂L

∫
∂L
G(X,Y )η(X)η(Y ) dHN−1

X dHN−1
Y

=

∫
∂L

∫
∂L
G(X,Y )

(
(µ+ ζ)(X)

)(
(µ+ ζ)(Y )

)
dHN−1

X dHN−1
Y
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where X = (x, x′) and Y = (y, y′). We define two (arrays of) measures on T and one
on [0, T ] as

(3.7) M i = µiHN−1 Li , Zi = ζiHN−1 Li , mi = µiδ`i ,

and we solve Helmholtz equation (twice in T and once in [0, T ]), thus defining V iM ,
V iZ and vim as the weak solutions of

(3.8) −∆V iM + V iM = M i , −∆V iZ + V iZ = Zi , −(vim)′′ + vim = mi

with periodic boundary conditions. Notice that if we extend each of the functions
vim(x) to T as ṽim(x, x′) = vim(x), then ṽim is T-periodic and satisfies the same
Helmholtz equation as V iM , thus it coincides with V iM , which means that each V iM
only depends on x but not on x′. In particular this implies

(3.9)

∫
Li

G(X,Y ) dHN−1
Y = G1D(x, `i)

where G1D : [0, T ]× [0, T ]→ R is the Green’s function of − d2

dx2 +1 in 1D with periodic
boundary condition on [0, T ]. For latter purpose we explicitly compute it: to begin
with, if G(x) is the [0, T ]-periodic solution of

−G′′ + G = δ0 ,

a direct computation yields

(3.10) G(x) =
1

2 sinh(T/2)
cosh

(
x− T

2

)
in [0, T ] ,

and we view it as periodically repeated on R. It is readily checked that G1D(x, y) =
G(|x− y|T ) where |x− y|T ≤ T/2 represents the closest distance of x, y ∈ [0, T ] in the
torus, i.e. |x− y|T = minm∈Z |x+mT − y|. Other easy properties are

G(x) = G(|x|) = G(x+ T ) = G(T − x)

and from these we deduce

0 ≤ x ≤ y ≤ T ⇒ G1D(x, y) =
1

2 sinh(T/2)
cosh

(
y − x− T

2

)
(3.11)

0 ≤ y < x ≤ T ⇒ G1D(x, y) =
1

2 sinh(T/2)
cosh

(
(y + T )− x− T

2

)
,

which will be useful since in general x, y ∈ [0, T ].
By linearity when setting

VM =

2k∑
i=1

V iM , VZ =

2k∑
i=1

V iZ , vm =

2k∑
i=1

vim ,

these functions solve with periodic boundary conditions the Helmholtz equations

−∆VM + VM = M , −∆VZ + VZ = Z , −v′′m + vm = m ,
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and VM only depends on x. Now∫
∂L

∫
∂L
G(X,Y )µ(X)ζ(Y ) dHN−1

X dHN−1
Y

=

∫
T

∫
T
G(X,Y ) dM(X) dZ(Y ) =

∫
T
vm(y) dZ(y, y′)

=

2k∑
i=1

vm(`i)

∫
Li

ζi(`i, y
′) dHN−1

y′ = 0

so using (3.9)∫
∂L

∫
∂L
G(X,Y )η(X)η(Y ) dHN−1

X dHN−1
Y

=

∫
∂L

∫
∂L
G(X,Y )µ(X)µ(Y ) dHN−1

X dHN−1
Y

+

∫
∂L

∫
∂L
G(X,Y )ζ(X)ζ(Y ) dHN−1

X dHN−1
Y

=

2k∑
i,j=1

µiµj

∫
∂Li

∫
∂Lj

G(X,Y ) dHN−1
X dHN−1

Y

+

∫
∂L

∫
∂L
G(X,Y )ζ(X)ζ(Y ) dHN−1

X dHN−1
Y

=

2k∑
i,j=1

µiµj

∫
∂Li

G1D(x, `j) dHN−1
X +

∫
T

(
|∇VZ |2 + |VZ |2

)
dX

= TN−1
2k∑

i,j=1

µiµjG(|`i − `j |T ) +

∫
T

(
|∇VZ |2 + |VZ |2

)
dX .

This equality, together with (3.5) and (3.6), may be put into the expression (3.2) for
J ′′, thus obtaining for any stationary lamella

J ′′(L)[µ+ ζ]

= σTN−1
( 2k∑
i,j=1

µiµjG(|`i − `j |T )− d0

2k∑
i=1

µ2
i

)
(3.12)

+

2k∑
i=1

(∫
Li

(
|∇ζi|2 − σd0|ζ2

i |
)
dHN−1

)
+ σ

∫
T

(
|∇VZ |2 + |VZ |2

)
dX .(3.13)

As a reminder, we impose only translation-free perturbation η = µ + ζ for stability
consideration; this amounts to requiring that µ ∈ R2k satisfies (3.4). Remark that the
two lines on the right hand side of the above equation are entirely independent: then
it is easy to see that a necessary and sufficient condition for a stationary k-lamella
to be stable is to establish that the first line (3.12) on the right hand side is positive
for all µ ∈ R2k\{0} satisfying (3.4), for ζ may well be zero; and that the second line
(3.13) is positive for all not identically vanishing ζ such that each ζi is periodic and
with zero average on Li, because positivity of J ′′ must be attained also at 0µ+ ζ.
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4. Stability, mean value part. We study the mean part µ in (3.12). To prove
positivity of (3.12) it suffices to show

2k∑
i,j=1

µiµjG(|`j − `i|T )− d0

2k∑
i=1

µ2
i > 0

for all non-zero µ ∈ R2k satisfying (3.4). Defining the (symmetric) matrix

(4.1) Ai,j = G(|`j − `i|T )

and considering the vector in R2k

E = (−1, 1,−1, 1, · · · )

(so that (3.4) reads µ · E = 0) the above may be rewritten as

(4.2) 〈(A− d0I)µ, µ〉 > 0 for all µ ⊥ E , µ 6= 0

where I is the identity matrix. We prove in this section the following

Theorem 4.1. The matrix A has one simple eigenvalue d0, corresponding to the
eigenvector E, and all other eigenvalues are strictly larger than d0. In particular (4.2)
holds, so (3.12) is positive for all µ ∈ R2k satisfying (3.4).

We highlight some properties of A. The matrix A is symmetric because G is even.
Next, since the distance from Li to Lj is the same as the distance of the sides we get
by shifting both in the same direction by T/k, i.e. |`i− `j |T = |`i+2− `j+2|T , we have

Ai+2,j+2 = Ai,j ,

thus all entries in A repeat themselves if we shift (modulo 2k) by 2 columns right and
2 rows down. It is convenient to think of A as made of 2× 2 blocks B0, B1, . . . , Bk−1

for a k-lamella: the structure of A is then

A =


B0 B1 B2 · · · Bk−1

Bk−1 B0 B1 · · · Bk−2

Bk−2 Bk−1 B0 · · · Bk−3

...
. . .

...
B1 B2 B3 · · · B0

 .

Due to symmetry of A, we have Bj = BTk−j for j = 0, 1, 2, . . . , k− 1. This means that
A is a block circulant symmetric matrix, which has interesting properties regarding
its eigenvalues: let all k distinct complex roots of the unity be denoted by

(4.3) ρp = eiφp , φp = p
2π

k
, p = 0, . . . , k − 1 .

With p = 0, . . . , k − 1 define the 2× 2 matrices

(4.4) Hp = B0ρ
0
p +B1ρ

1
p + · · ·+Bk−1ρ

k−1
p :

each has two (if we count multiplicity) eigenvalues λ′p, λ
′′
p , and we have, see [37, Section

3.1]:
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Proposition 4.2. The eigenvalues of A are all the numbers λ′p and λ′′p for p =
0, 1, . . . , k − 1.

Now recall Bk−j = BTj for j = 0, 1, 2, . . . , k− 1. In particular B0 is symmetric and, if

k is even, also the middle one Bk/2 is symmetric. We remark that ρjp is the conjugate

of ρk−jp . Therefore in the sum (4.4) we may group terms ρjBj in pairs, excluding the
first one and also Bk/2 if k was even, to get

ρjpBj + ρk−jp Bk−j = ρjpBj + ρ̄jpB
T
j

for j = 1, 2, . . . , k/2 − 1 when k is even or for j = 1, 2, . . . , (k − 1)/2 when j is odd.
Each pair forms a Hermitian matrix, thus Hp in (4.4) is a Hermitian matrix since the
first term B0 is real symmetric and so is the middle term (−1)pBk/2 for even k.

Finally we remark that for every p, the entry [Bp]1,1 comes from evaluating ṽ with
an input equal to the distance between the left sides of some two lamellae, and [Bp]2,2
relates to the distance between the right sides of the same lamellae. Since these two
distances are the same, the diagonal elements in each matrix on the right hand side
in (4.4) equal one another, thus the same is true for Hp. We combine the above facts
to obtain that each matrix Hp has the form

(4.5) Hp =

(
ap bp
b̄p ap

)
for some ap, bp. As Hp is Hermitian, ap has to be real. Its eigenvalues are

λ′p = ap − |bp| , λ′′p = ap + |bp| .

Since λ′′p ≥ λ′p, to prove Theorem 4.1, in view of Proposition 4.2 we will show that

Proposition 4.3. The number b0 is not zero. Moreover λ′0 = d0 and λ′p > d0

for all p > 0.

Proof. In the course of the proof we will also see that E is the eigenvector corre-
sponding to d0. We are about to compute ap and bp. Only the first row of the matrix
A needs to be considered in computing Hp. We write it in full using (3.11),(4.1):
since `1 = 0, the odd elements are for p = 0, . . . , k − 1

(4.6) a1,2p+1 =
1

2 sinh(T/2)
cosh

(T
2
− pT

k

)
,

(so for e.g. p = 3 we get [B3]1,1) whereas the even elements are

(4.7) a1,2p+2 =
1

2 sinh(T/2)
cosh

(T
2
− x0

k
− pT

k

)
.

To proceed further we first establish the following lemma.

Lemma 4.4. If eiφ is any k-th root of 1 and δ ∈ R then

k−1∑
n=0

einφ cosh
(T

2
+ δ − nT

k

)
=

sinh(δ + T/k)− e−iφ sinh δ

cosh(T/k)− cosφ
sinh

T

2
.

Proof. We expand the hyperbolic cosine so that

einφ cosh
(T

2
+ δ − nT

k

)
=

1

2

(
eδ+T/2 en(iφ−T/k) + e−δ−T/2 en(iφ+T/k))
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and thus (recalling in the second equality below that kφ is a multiple of 2π)

k−1∑
n=0

einφ cosh
(T

2
+ δ − nT

k

)
=

1

2
eδ+T/2

1− e−T+ikφ

1− eiφ−T/k
+

1

2
e−δ−T/2

1− eT+ikφ

1− eiφ+T/k

=
1

2
eδ
eT/2 − e−T/2

1− eiφ−T/k
− 1

2
e−δ

eT/2 − e−T/2

1− eiφ+T/k

= sinh
T

2
·
( eδ

1− eiφ−T/k
− e−δ

1− eiφ+T/k

)
= sinh

T

2
· e

δ − e−δ − eδ+iφ+T/k + e−δ+iφ−T/k

(1− eiφ−T/k)(1− eiφ+T/k)
.

But

1− eiφ−T/k =
(
e(T/2k)−i(φ/2) − e−(T/2k)+i(φ/2)

)
e−T/2keiφ/2

1− eiφ+T/k =
(
e−(T/2k)−i(φ/2) − e(T/2k)+i(φ/2)

)
eT/2keiφ/2

so using hyperbolic function identities

(1− eiφ−T/k)(1− eiφ+T/k) = −4eiφ sinh
( T

2k
− iφ

2

)
sinh

( T
2k

+ i
φ

2

)
= −2eiφ

(
cosh

T

k
− cosh iφ

)
= −2eiφ

(
cosh

T

k
− cosφ

)
since cos z = cosh(iz), as well as i sin z = sinh(iz). We may thus resume by writing

k−1∑
n=0

einφ cosh
(T

2
+ δ − nT

k

)
= − sinh

T

2
· e

δ − e−δ − eδ+iφ+T/k + e−δ+iφ−T/k

2eiφ
(
cosh(T/k)− cosφ

)
= sinh

T

2
· −e

−iφ sinh δ + sinh(δ + T/k)

cosh(T/k)− cosφ

which concludes the proof.

Returning now to the proof of Proposition 4.3, we apply this formula to compute the
coefficients in the matrices Hp: let ρp = eiφp , recall (3.10),(4.1),(4.5),(4.6) and we
have

(4.8) ap = [Hp]1,1 =

k−1∑
n=0

ρnp
1

2 sinh(T/2)
cosh

(T
2
− nT

k

)
.

Analogously

(4.9) bp = [Hp]1,2 =

k−1∑
n=0

ρnp
1

2 sinh(T/2)
cosh

(T
2
− x0

k
− nT

k

)
.

Lemma 4.4 then implies

ap =
sinh(T/k)

2
(
cosh(T/k)− cosφp

) , bp =
sinh(T/k − x0/k) + e−iφp sinh(x0/k)

2
(
cosh(T/k)− cosφp

) .
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We are now ready to conclude the proof of Proposition 4.3:
Case p = 0 : we first consider the case p = 0 in (4.3). This gives

a0 =
sinh(T/k)

2
(
cosh(T/k)− 1

) , b0 =
sinh(T/k − x0/k) + sinh(x0/k)

2
(
cosh(T/k)− 1

) ,

the number b0 is strictly positive so the two eigenvalues of H0 are distinct, and the
lower one is λ′0 = a0 − b0. We now

(4.10) claim: a0 − b0 = d0 ,

thus d0 will be a simple eigenvalue of H0 and therefore also an eigenvalue of A. We
remark that a0 is the sum of the odd elements in the first row of A and b0 is the sum
of even elements, so our claim, when proved, will show that their difference is d0.

Assume the validity of the claim for the time being; by the symmetry of all
matrices Bj , j = 0, 1, . . . , k − 1, for p = 0, the second row of A − d0I has the same
entries as the first, only interchanging the pair of consecutive odd and even places
starting from the first entry; thus the difference between the sum-of-odd and the
sum-of-even entries of the second row is also zero. These facts may be rewritten as:
the first two entries of (A − d0I)E are zero. But as all subsequent rows of A − d0I
are just shifted copies of the first two, we get

(A− d0I)E = 0 ,

so E will be an eigenvector corresponding to the eigenvalue d0. All we have to do is
to prove our claim which we rewrite as

(4.11) a0−b0 = d0 ⇔ sinh
T

k
−sinh

x0

k
−sinh

T − x0

k
= 2d0

(
cosh(T/k)−1

)
.

We now make extensive use of identities associated with hyperbolic functions [1,
Chapter 4, section 5] in this paper without further reference. At the left hand side

sinh
T

k
− sinh

x0

k
= 2 cosh

T + x0

2k
sinh

T − x0

2k

and observe

sinh
T − x0

k
= 2 sinh

T − x0

2k
cosh

T − x0

2k
,

so the left hand side of (4.11) is equal to

2 sinh
T − x0

2k

(
cosh

T + x0

2k
− cosh

T − x0

2k

)
= 4 sinh

T − x0

2k
sinh

T

2k
sinh

x0

2k
.

On the other hand, using the expression (2.4) of d0 and applying hyperbolic function
identity to

[
cosh(T/k)− cosh 0

]
the right hand side of (4.11) is equal to

2
sinh(x0/2k) sinh

(
(T − x0)/2k

)
sinh(T/2k)

· 2 sinh2 T

2k
= 4 sinh

T − x0

2k
sinh

T

2k
sinh

x0

2k

and claim (4.10) is proved.

Case p 6= 0 : the eigenvalues of Hp are now ap ± |bp|, and we

(4.12) claim: λ′p = ap − |bp| > d0 ,



STABLE LAMELLAR CONFIGURATIONS 21

which would conclude the proof of Proposition 4.3 and therefore also of Theorem 4.1.
We write the inequality as

sinh
T

k
−
√(

sinh
T − x0

k
+ sinh

x0

k
cosφp

)2

+
(

sinh
x0

k
sinφp

)2

> 2d0

(
cosh

T

k
− cosφp

)
.

We make use of what we proved in the case p = 0 by subtracting

sinh
T

k
− sinh

x0

k
− sinh

T − x0

k

from the left hand side and 2d0

(
cosh(T/k) − 1

)
, which is the same by (4.11), from

the right hand side. The claim now reads

sinh
T − x0

k
+ sinh

x0

k
−
√(

sinh
T − x0

k
+ sinh

x0

k
cosφp

)2

+
(

sinh
x0

k
sinφp

)2

> 2d0(1− cosφp) .(4.13)

We rewrite the argument of the square root, which is

sinh2 T − x0

k
+ sinh2 x0

k
cos2 φp + 2 sinh

T − x0

k
sinh

x0

k
cosφp + sinh2 x0

k
sin2 φp

= sinh2 T − x0

k
+ sinh2 x0

k
+ 2 sinh

T − x0

k
sinh

x0

k
cosφp

=
(

sinh
T − x0

k
+ sinh

x0

k

)2

− 2 sinh
T − x0

k
sinh

x0

k

(
1− cosφp

)
.

Now (4.13) may be rewritten

a−
√
a2 − 2bt > 2d0t

where we have put

a = sinh
T − x0

k
+ sinh

x0

k
, b = sinh

T − x0

k
sinh

x0

k
, t = 1− cosφp .

We remark that a, b, d0 > 0 and that 0 < t ≤ 2 because cosφp is not equal to 1 in the
case p 6= 0. Set

f(t) = a−
√
a2 − 2bt− 2d0t

so that f(0) = 0; all we have to prove is that f(t) > 0 for 0 < t ≤ 2. We first remark
that

a2 − 2bt ≥ a2 − 4b =
(

sinh
T − x0

k
− sinh

x0

k

)2

≥ 0

and we note that for 0 ≤ t < 2

f ′(t) =
b√

a2 − 2bt
− 2d0

which is a strictly increasing function of t, so f is strictly convex in [0, 2]. We now
prove that f ′(0) ≥ 0: we have f ′(0) = (b/a)−2d0 so we have to prove that b/a ≥ 2d0.
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We use hyperbolic function identities at both the numerator and the denominator to
write

b

a
=

sinh
(
(T − x0)/k

)
sinh(x0/k)

sinh
(
(T − x0)/k

)
+ sinh(x0/k)

=
4 sinh

(
(T − x0)/2k

)
sinh(x0/2k) cosh

(
(T − x0)/2k

)
cosh(x0/2k)

2 sinh(T/2k) cosh
(
(T − 2x0)/2k

)
= 2d0

cosh
(
(T − x0)/2k

)
cosh(x0/2k)

cosh
(
(T − 2x0)/2k

) ,

so b/a ≥ 2d0 provided
(4.14)

cosh
(
(T − x0)/2k

)
cosh(x0/2k)

cosh
(
(T − 2x0)/2k

) ≥ 1 ⇔ cosh
T − x0

2k
cosh

x0

2k
≥ cosh

T − 2x0

2k
.

By hyperbolic function identity

cosh
T − x0

2k
cosh

x0

2k
=

1

2

(
cosh

T − 2x0

2k
+ cosh

T

2k

)
so (4.14) becomes

cosh
T

2k
≥ cosh

T − 2x0

2k
= cosh

|T − 2x0|
2k

,

which is true because from 0 ≤ x0 ≤ T we deduce that |T − 2x0| ≤ T . This concludes
the proof that f ′(0) ≥ 0, consequently the convex function f is strictly increasing
in [0, 2]. As f(0) = 0 this impies that f(t) > 0 for t > 0, as desired, and the
proof of (4.12) is concluded, thus ending the proof of of Proposition 4.3, and also of
Theorem 4.1.

Global minimizers in 1D (which may be the empty set, the full torus or the minimal
lamella) are stable when subjecting to 1D perturbation. The above Theorem 4.1
yields a related strong result.

Corollary 4.5. All stationary periodic lamellae are stable with respect to 1D
periodic perturbations.

For use in the next section, we need an important

Remark 4.6. Throughout this section we did not use the explicit value (2.5) of
x0 for minimal lamellae, but only the fact that 0 ≤ x0 ≤ T and the expression (2.4) of
d0 in terms of the numbers T and x0, so in particular Propositions 4.2 and 4.3 hold
for any numbers 0 ≤ x0 ≤ T and d0 linked by (2.4), provided the coefficients of the
matrix A are defined through (4.1) and (3.10).

5. Stability, zero-average part and conclusion. To conclude the stability
analysis for stationary lamellar configurations we have to prove that the sum of the
two terms appearing in (3.13) is non-negative for periodic functions defined on all
sides of the lamellae, with zero average on each side. We begin with a general (easy)
result, then we specialize to a k-lamella in dimension 2, to get some results which to
our knowledge are in an entirely new spirit.
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Let CP,N−1 denote the Poincaré constant in the unit torus T1 of RN−1 with
periodic boundary conditions (and zero mean), i.e.,∫

T1

|∇ζ|2 dHN−1 ≥ CP,N−1

∫
T1

ζ2 dHN−1 ∀ζ ∈ H1
per(T1) s.t.

∫
T1

ζ dHN−1 = 0 ;

then∫
Li

|∇ζi|2 dHN−1 − σd0

∫
Li

|ζ2
i | dHN−1 ≥

(CP,N−1

T 2
− σd0

)∫
Li

|ζ2
i | dHN−1 .

Theorem 5.1. Let L be a stationary k-lamella, and assume

(5.1)
CP,N−1

T 2
− σd0 > 0 .

Then L is stable in the sense of (3.1).

The proof is just a check: the first part of (3.13) is non-negative due to assumption
(5.1), whereas the last part of (3.13), which contains the contribution of Green’s
function term, is obviously non-negative.

Remark 5.2. If the original torus T was not a cube but had length T in the x
direction and sides of length T ′ in the orthogonal direction, the factor T 2 appearing
in (5.1) should be (T ′)2 instead. Thus, the smaller is T ′ the easier it is to obtain
stability, as e.g. in [27].

We now focus only on a stationary k-lamella in a two dimensional torus T, so that
N = 2, and let X = (x, x′) ∈ T. First we recall
(5.2)

J ′′(L)[ζ] =

2k∑
i=1

(∫
Li

|ζ ′i(x′)|2 dx′ − σd0

∫
Li

|ζi(x′)|2 dx′
)

+ σ

∫
T

(
|∇VZ |2 + |VZ |2

)
dX

on zero-average functions ζ. For r = 1, 2, . . . , define ρ2r−1 = ρ2r := ( 2πr
T )2 and

ϕ2r−1(x′) := sin
2πrx′

T
, ϕ2r(x

′) := cos
2πrx′

T
.

The eigenvalues for the operator −d2/dx′2 for zero-average functions with periodic
boundary condition on each Li are then the numbers ρm with corresponding eigen-
functions ϕm, for m = 1, 2, . . .. Moreover∫

Li

ϕm(z)ϕr(z) dz =

{
0, if m 6= r,
T/2, if m = r,

(5.3) ∫
Li

ϕ′m(z)ϕ′r(z) dz =

{
0, if m 6= r,
ρmT/2, if m = r.

(5.4)

We keep the notation in Section 3, and in particular we label `i the x coordinates of
the sides of lamellae as in (3.3) where x0/k is the thickness of each lamella. Suppose
ζi(x

′) =
∑
m α

i
mϕm(x′), where henceforth all sums run for m ≥ 1 unless otherwise

noted; then

(5.5)

2k∑
i=1

∫
Li

|ζi|2 dx′ =
T

2

2k∑
i=1

∑
m

(αim)2 ,

2k∑
i=1

∫
Li

|ζ ′i|2 dx′ =
T

2

2k∑
i=1

∑
m

ρm(αim)2 .
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With slight abuse, regard ζi(x, x
′) =

∑
m α

i
mϕm(x′) dx′ Li as a measure in the

equation −∆Vi + Vi = ζi on the torus T, analogously to what we did in (3.7); it is
easily verified that Vi(x, x

′) =
∑
m u

i
m(x)ϕm(x′) is the unique solution provided uim

satisfies

−(uim)′′(x) + (1 + ρm)uim(x) = αimδ`i(x)

and the periodic boundary condition on [0, T ]. This yields

uim(x) = αimCm cosh
(√

1 + ρm(|x− `i|T − T/2)
)

for 0 ≤ x ≤ T when we set

(5.6) Cm =
1

2
√

1 + ρm sinh
(
T
2

√
1 + ρm

) .
In other words

(5.7) Vi(x, x
′) =

∑
m

αimCm cosh
(√

1 + ρm(|x− `i|T − T/2)
)
ϕm(x′) .

As the functions ϕm are orthogonal to one another, we obtain (again we treat the
functions ζi as measures)

σ

∫
T
Vi dζj = σ

∑
m

∫
Lj

Vi(`j , x
′)αjmϕm(x′)dx′

= σ
∑
m

αimα
j
mCm cosh

(√
1 + ρm(|`j − `i|T − T/2)

) ∫
Lj

ϕ2
m(x′) dx′

=
σT

2

∑
m

αimα
j
mCm cosh

(√
1 + ρm(|`j − `i|T − T/2)

)
.

Making use of self-adjointness of the Green’s function G, and grouping terms by
oscillation mode m, the last term in (5.2) becomes

σ

∫
T

(
|∇VZ |2 + |VZ |2

)
dX(5.8)

= σ

∫
T

( 2k∑
i=1

Vi

)
d
( 2k∑
j=1

ζj

)
= σ

2k∑
i,j=1

∫
T
Vi dζj

=
σT

2

∑
m

Cm

2k∑
i,j=1

αimα
j
m cosh

(√
1 + ρm(|`j − `i|T − T/2)

)
.

Putting (5.5), (5.8) to (5.2), we obtain

2

T
J ′′(L)[ζ] =

∑
m

{
(ρm − σd0)

2k∑
i=1

(αim)2(5.9)

+σCm

2k∑
i,j=1

αimα
j
m cosh

(√
1 + ρm(|`j − `i|T − T/2)

)}
.
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Since the function ζ may well exhibit just one mode, for the k-lamella to be stable it
is necessary and sufficient to show that

(ρm − σd0)

2k∑
i=1

(αim)2 + σCm

2k∑
i,j=1

αimα
j
m cosh

(√
1 + ρm(|`j − `i|T − T/2)

)
> 0

∀(α1
m, . . . , α

2k
m ) 6= 0(5.10)

for each m. We study the last term and we rewrite it as

σCm

2k∑
i,j=1

αimα
j
m cosh

(√
1 + ρm(|`j − `i|T − T/2)

)
=

σ√
1 + ρm

2k∑
i,j=1

(
A(m)

)
i,j
αimα

j
m

where we set, according to (5.6),(
A(m)

)
i,j

:=
1

2 sinh
(
T
2

√
1 + ρm

) cosh
(√

1 + ρm(|`j − `i|T − T/2)
)
.

We now define
T (m) := T

√
1 + ρm , x

(m)
0 := x0

√
1 + ρm

so that the numbers
`
(m)
i := `i

√
1 + ρm

have the same definition in terms of T (m) and x
(m)
0 as the numbers `i had in terms

of T and x0 in (3.3); it is convenient to put

(5.11) a := x0/T

(and we remark in particular that a = x
(m)
0 /T (m)), and finally

d
(m)
0 =

1

sinh(T (m)/2k)
sinh

T (m) − x(m)
0

2k
sinh

x
(m)
0

2k

=
1

sinh(T (m)/2k)
sinh

(1− a)T (m)

2k
sinh

aT (m)

2k
.

Then we may rewrite(
A(m)

)
i,j

=
1

2 sinh(T (m)/2)
cosh

(
|`(m)
j − `(m)

i |T (m) − T (m)/2)
)
.

Comparing this with (4.1),(3.10), by Remark 4.6 we may apply the first part of Theo-

rem 4.1 and obtain that the least eigenvalue of A(m) is d
(m)
0 . Recalling the coefficient

in front of A(m), we have that (5.10) is equivalent to proving that

(5.12) ρm − σd0 +
σ√

1 + ρm
d

(m)
0 > 0

for each m ≥ 1.
We may now precise the result of Theorem 5.1 to obtain a somewhat generic

stability result: as the Poincaré constant on the segment [0, 1] with periodic boundary
conditions is CP,1 = 4π2, equation (5.1) turns into

σ <
4π2

d0T 2
;
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if we want to get a result which is independent of the fullness parameter c = 1−2α/σ
of (1.14), and therefore of the ratio of x0 to T as seen from (2.5), we may remark that

d0 ≤ max
0≤y≤T

sinh
(
(T − y)/2k

)
sinh y/2k

sinh(T/2k)
,

which is attained at y = T/2. Hence

(5.13) d0 ≤
sinh2 T/4k

sinh(T/2k)
=

1

2
tanh(T/4k) ,

thus a sufficient condition for any (i.e. for any fullness parameter c) stationary k-
lamella to be stable is the following.

Corollary 5.3. When σ<8π2/[T 2 tanh(T/4k)], the stationary k-lamella is sta-
ble for any value of the fullness parameter c.

Remark that the most delicate case (thus the worst for stability) is k = 1, and small
values of T contribute to stability; also remark that the worst (i.e., the maximum)
value of d0 was obtained for x0 = T/2, thus for c = 0. Theorem 5.1 was obtained by
disregarding the positive contribution of the Green’s function term, and we may now
show that when instead we take it into account this corollary becomes much stronger,
see Corollary 5.17.

Recall that ρ2r−1 = ρ2r so the same happens with all the various quantities

depending on the eigenvalues, such as Cm, T
(m), x

(m)
0 , d

(m)
0 ; it therefore suffices to

prove (5.12) only for even m. With slight abuse, we redefine

ρm =
4π2m2

T 2
for m = 0, 1, . . .

and study (5.12) for all m = 1, 2, . . . . We set for m = 0, 1, . . .

(5.14) θm :=
T 2

4k2
+
π2m2

k2
=

T 2

4k2
(1 + ρm) =

(T (m)

2k

)2

so that

ρm =
4k2

T 2
θm − 1 =

4k2

T 2
(θm − θ0)

as θ0 = (T/2k)2; we remark that (since x
(m)
0 /T (m) = x0/T = a)

d
(m)
0 =

1

sinh
√
θm

sinh
(
(1− a)

√
θm
)

sinh
(
a
√
θm
)

thus
d

(m)
0√

1 + ρm
=

T

2k

sinh
(
(1− a)

√
θm
)

sinh
(
a
√
θm
)

√
θm sinh

√
θm

.

Since d
(0)
0 = d0, it is useful to introduce the function

(5.15) h(x) :=
4k2

T 2
x+

σT

2k

sinh
(
(1− a)

√
x
)

sinh
(
a
√
x
)

√
x sinh

√
x

so that we may rewrite (5.12) as

(5.16) h(θm)− h(θ0)> 0 ∀m ≥ 1 .
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Now define for every real x ≥ 0

θ(x) :=
T 2

4k2
+
π2

k2
x ,

so that θm = θ(m2). A sufficient condition for (5.16) is to check that

(5.17) h(θ(x))− h(θ(0))> 0 ∀x ≥ 1 .

Remark 5.4. Although we did not stress dependence on the various quantities
involved, not to overburden the notation, from (2.5) and (2.4), both x0 and d0 depend
only on T and c, but not on σ. In addition, changing sign of c converts x0 into T−x0;
this in turn converts a to 1−a. However this change will not affect h, so it suffices to
study stability only for c ≥ 0. The cases x0 = 0 (empty set) and x0 = T (full torus)
corresponding to c = ±1 are trivially stable, we therefore focus only on 0 < x0 < T ,
equivalently 0 < a < 1, so that the last term in the definition (5.15) of h is positive.

We see that an unrestricted stability statement, such as Theorem 4.1, cannot be
attained, through the negative result underneath with Γ as defined in (1.16).

Proposition 5.5. If 0 < |c| < 1 and σ > −4/Γ(c), then for any sufficiently large
T the stationary 1-lamella is unstable.

Proof. From Remark 5.4 and the observation Γ(c) = Γ(−c), it suffices to study
the case 0 < c < 1. We will show m = 1 is an unstable mode for (5.12). Let T >> 1
and denote by ωT all terms which are exponentially small in T (we need to keep track
of algebraic small quantities). Then (2.7) still holds, so x0 = − log c+ ωT from (2.5)
(see [2, Proposition 3.2 (vi)]) and d0 = 1−c

2 + ωT from (2.4); moreover

√
θ1 =

√
T 2

4
+ π2 =

T

2
(1 +

2π2

T 2
+O(

1

T 4
)) ,√

1 + ρ1 = 2
√
θ1/T ,

T (1) = 2
√
θ1 , x

(1)
0 = 2x0

√
θ1/T .

Thus computing directly from the left side of (5.12), we obtain

h(θ1)− h(θ0) =
4π2

T 2
− σ(

1− c
2

+ ωT ) +
σT

4
√
θ1

(1− c+
2π2cx0

T 2
+O(

1

T 4
))

=
4π2

T 2
− σ(

1− c
2

+ ωT )

+
σ

2

(
1− 2π2

T 2
+O(

1

T 4
)

) (
1− c+

2π2cx0

T 2
+O(

1

T 4
)

)
=
π2

T 2
(4 + σΓ(c)) +O(

1

T 4
)

< 0

for T large.

Remark 5.6. The condition σ > 4/|Γ(c)| imposed in Proposition 5.5 turns out to
be both necessary and sufficient for instability of all k-lamellae in a sufficiently large
torus. Indeed in the above proof we only treat the mode m = 1; but by Theorem 5.11
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(which will be proved later) we do not discard any generality for stability studies.
Second, if we carry out the above proof on a k-lamella, then x0/k = − log c + ωT ;
however the same final condition, which is independent of k, results.

In view of Remark 2.3, when c > 0 and we pick a large square torus with side T = 2t0,
then J(L) < J(∅) = 0 < J(T). This gives

Corollary 5.7. Let 0 < c < 1 and 4 + σΓ(c) < 0. Then for some sufficiently
large torus there exists an unstable minimal lamella L such that J(L) < J(∅) =
0 < J(T). Hence in this parameter regime global minimizers (which always exist by
Theorem 2.1), being neither the trivial states nor the lamellae, has to have a genuine
2D structure.

We now collect the necessary preliminaries to prove the main results. We begin
with easy properties of convex functions.

Lemma 5.8. If f is (strictly) convex then so is ef ; if f is (strictly) convex, so is
f(a+ bx) for b 6= 0; if f is convex on [0,+∞), then for 0 < a < 1

f(a) + f(1− a) ≤ f(0) + f(1) ,

and the inequality is strict if f is strictly convex.

Proof. We only care about the last assertion; convexity of f implies f(a) ≤ (1−
a)f(0) + af(1). Replace a by 1 − a to obtain a similar inequality and sum the two
inequalities.

Lemma 5.9. The function P (t) := t
tanh t + t2

sinh2 t
− 2, continuously extended by

P (0) = 0, is increasing and strictly convex on [0,∞), thus positive for t > 0.

Proof. We have

P ′ =
1

tanh t
+

t

sinh2 t
− 2t2 cosh t

sinh3 t
=

1

sinh2 t

(
sinh t cosh t+ t− 2t2 coth t

)
=

1

sinh2 t

( sinh 2t

2
+ t− 2t2 coth t

)
=:

1

sinh2 t
g(t) .

It is clear that g(0) = 0. A direct calculation gives

g′(t) = cosh 2t+ 1 +
2t2

sinh2 t
− 4t cosh t

sinh t
= 2 cosh2 t+

2t2

sinh2 t
− 4t cosh t

sinh t

= 2
(

cosh t− t

sinh t

)2

> 0
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for t ∈ (0,∞). Hence g > 0 and we conclude that P is strictly increasing. Moreover

P ′′ =
1

sinh2 t
g′(t)− 2

sinh3 t
cosh t g(t)

=
2

sinh2 t

(
(cosh t− t

sinh t
)2 − cosh t

sinh t
(sinh t cosh t+ t− 2t2 coth t)

)
=

2

sinh2 t

( t2

sinh2 t
− 3t cosh t

sinh t
+

2t2 cosh2 t

sinh2 t

)
=

2t

sinh4 t
(t− 3 cosh t sinh t+ 2t cosh2 t) =

2t

sinh4 t
(2t− 3

2
sinh 2t+ t cosh 2t)

=
2t

sinh4 t

(
−3

2

∞∑
n=1

(2t)2n+1

(2n+ 1)!
+ t

∞∑
n=1

(2t)2n

(2n)!

)

=
t

sinh4 t

∞∑
n=1

(2t)2n+1

(2n+ 1)!
(2n+ 1− 3)

> 0 .

The key tool is the following result.

Lemma 5.10. The functions h and h ◦ θ are strictly convex.

Proof. By Lemma 5.8, since θ is an affine function of x it is enough to prove h
is strictly convex, which we will do for x > 0 or, extending h at 0 by continuity, for
x ≥ 0; we remark that this precision will not be needed, since θ(0) = θ0 = T 2/4k2

will be the least value of the argument of h we will be interested in. As the first term
in the definition (5.15) of h is linear, we are only concerned with the second (which,
we recall, is positive), and in view of Lemma 5.8 again we may just prove that its
logarithm is strictly convex. Disregarding the coefficient σT/2k we set

u(x) := log
sinh

(
(1− a)

√
x
)

sinh
(
a
√
x
)

√
x sinh

√
x

;

then

2u′(x) =
a

√
x tanh

(
a
√
x
) +

1− a
√
x tanh

(
(1− a)

√
x
) − 1√

x tanh
√
x
− 1

x
,

(5.18)

4x2u′′(x) =− a
√
x

tanh
(
a
√
x
) − a2x

sinh2
(
a
√
x
) − (1− a)

√
x

tanh
(
(1− a)

√
x
) − (1− a)2x

sinh2
(
(1− a)

√
x
)

+

√
x

tanh
√
x

+
x

sinh2√x
+ 2 .(5.19)

Now let x be fixed and define

Q(t) :=
t
√
x

tanh
(
t
√
x
) +

t2x

sinh2
(
t
√
x
) − 2 .

With P as denoted in Lemma 5.9, it is clear that Q(t) = P
(
t
√
x
)
; moreover

4x2u′′(x) = Q(1)−Q(a)−Q(1− a) .

Using Lemma 5.9 we see that Q is non-negative and vanishing at 0, strictly convex
and increasing, and applying the last part of Lemma 5.8 we obtain 4x2u′′(x) > 0.
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We may now examine the function h and the necessary and sufficient condition (5.16).

Theorem 5.11. It is necessary and sufficient for the k-lamella to be stable that
the first mode is stable, that is, h(θ1)> h(θ0).

Proof. The necessity of a stable first mode is clear. On the other hand suppose
h(θ1)>h(θ0). From the strict convexity of h and the fact that θm is strictly increasing
with respect to m,

h(θm)− h(θ1)

θm − θ1
>
h(θ1)− h(θ0)

θ1 − θ0
> 0 ,

hence h(θm)> h(θ1)> h(θ0) for all m = 2, 3, . . . ; this immediately gives (5.16).

Remark 5.12. Whenever h(θ1) > h(θ0), a slight modification of the above argu-
ment gives h(θm+1)> h(θm) for m = 0, 1, 2, . . . .

We saw right after Corollary 5.3 that c = 0 and k = 1 seemed the most delicate cases;
we are now going to substantiate the claim.

Theorem 5.13. Stability is increasing with |c|, in the sense that if the stationary
k-lamella with |c| = c0 < 1 is stable, then it is stable also for c0 < |c| ≤ 1.

Corollary 5.14. A necessary and sufficient condition for the stationary k-la-
mella to be stable for all values of c is that it is stable for c = 0.

Proof. By Remark 5.4 we may confine ourselves to the case c ≥ 0, that is 0 ≤
a ≤ 1/2 keeping the notation introduced in (5.11). By (5.15) and hyperbolic function
identities we may rewrite

h(x) =
4k2

T 2
x+

σT

2k

sinh
(
(1− a)

√
x
)

sinh
(
a
√
x
)

√
x sinh

√
x

=
4k2

T 2
x+

σT

4k

cosh
√
x− cosh

(
(1− 2a)

√
x
)

√
x sinh

√
x

,

so it is convenient to set λ = 1− 2a and remark that, as x0 is decreasing with c, the
parameter λ is increasing with c. We will prove that the function

h(θ1)− h(θ0) =
4k2

T 2
(θ1 − θ0) +

σT

4k

(
cosh

√
θ1√

θ1 sinh
√
θ1

− cosh
√
θ0√

θ0 sinh
√
θ0

)
−σT

4k

(
cosh

(
λ
√
θ1

)
√
θ1 sinh

√
θ1

−
cosh

(
λ
√
θ0

)
√
θ0 sinh

√
θ0

)
is increasing with respect to λ, and therefore to c, thus if it is non-negative for a
certain value of c ≥ 0 (which by Theorem 5.11 is equivalent to stability) it is positive
for all larger values of c: this claim would prove the result. We set

φ(λ) =
cosh

(
λ
√
θ1

)
√
θ1 sinh

√
θ1

−
cosh

(
λ
√
θ0

)
√
θ0 sinh

√
θ0

;

it suffices to show that φ is decreasing. Indeed (writing for simplicity A =
√
θ0 and

B =
√
θ1 and remarking that A < B)

φ′(λ) =
sinh(λB)

sinhB
− sinh(λA)

sinhA

and to prove that φ′ < 0 for 0 < λ < 1 (which is enough) we establish that

ψ(x) =
sinh(λx)

sinhx
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is decreasing for x > 0:

ψ′(x) =
λ cosh(λx) sinhx− sinh(λx) coshx

sinh2 x
=

cosh(λx) coshx

sinh2 x

(
λ tanhx− tanh(λx)

)
.

The function
ω(x) = λ tanhx− tanh(λx)

vanishes at x = 0 and its derivative is

ω′(x) =
λ

cosh2 x
− λ

cosh2(λx)
< 0

because 0 < λ < 1, therefore ω < 0 which concludes the proof.

Now that we proved the worst case for stability is c = 0 we turn our attention to k.

Theorem 5.15. In the case c = 0, stability is increasing with k, in the sense that
if the stationary k0-lamella with c = 0 is stable, then all k-lamellae with k ≥ k0 and
c = 0 are stable, which implies they are stable also for every c.

Corollary 5.16. A necessary and sufficient condition for the stationary k-la-
mella to be stable for all values of c and all values of k is that the stationary 1-lamella
is stable for c = 0.

Proof. We take c = 0 (correspondingly a = 1/2); recalling the definition (5.14) of
the numbers θm, we introduce the quantities

ϑ1 := k2θ1 =
T 2

4
+ π2 , ϑ0 := k2θ0 =

T 2

4

so they are independent of k, and we rewrite the left hand side of the stability in-
equality h(θ1)− h(θ0) ≥ 0 as

h(θ1)− h(θ0) =
4k2

T 2
(θ1 − θ0) +

σT

4k

(
cosh

√
θ1 − 1√

θ1 sinh
√
θ1

− cosh
√
θ0 − 1√

θ0 sinh
√
θ0

)
=

4

T 2
(ϑ1 − ϑ0) +

σT

4

(
cosh

√
θ1 − 1√

ϑ1 sinh
√
θ1

− cosh
√
θ0 − 1√

ϑ0 sinh
√
θ0

)
=

4

T 2
(ϑ1 − ϑ0) +

σT

4

(
tanh(

√
θ1/2)√
ϑ1

− tanh(
√
θ0/2)√
ϑ0

)
=

4

T 2
(ϑ1 − ϑ0) +

σT

8

(
tanh(

√
ϑ1/2k)√

ϑ1/2
− tanh(

√
ϑ0/2k)√

ϑ0/2

)
.(5.20)

The first term is independent of k, and to prove the assertion we will show that the
second term is increasing with respect to k. We set

A =
√
ϑ0/2 , B =

√
ϑ1/2 , x = 1/k

so we have to show that if A < B the function

φ(x) =
tanh(Bx)

B
− tanh(Ax)

A

is decreasing. But

φ′(x) =
1

cosh2(Bx)
− 1

cosh2(Ax)
< 0 .
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We now see how taking the Green’s function term into consideration dramatically
improves the estimate of Corollary 5.3. According to Theorem 5.11, the worst case of
all, that is, c = 0 and k = 1, is stable if and only if

0< h(θ1)− h(θ0) =
4

T 2
(ϑ1 − ϑ0) +

σT

4

(
tanh(

√
ϑ1/2)√
ϑ1

− tanh(
√
ϑ0/2)√
ϑ0

)
=

4π2

T 2
− σT

2

(
tanh(T/4)

T
− tanh(

√
T 2 + 4π2/4)√
T 2 + 4π2

)
.

Immediately we deduce that

Corollary 5.17. A necessary and sufficient condition for all stationary k-la-
mellae to be stable, for every value of c and k, is that

σ < 8π2

/[
T 3

(
tanh(T/4)

T
− tanh(

√
T 2 + 4π2/4)√
T 2 + 4π2

)]
.

To compare this result (which is a sharp condition) with Corollary 5.3 we recall that
tanh t = 1−O(e−2T ) as T → +∞, so that

tanh(T/4)

T

{
→ 1

4 = 0.25 as T → 0

∼ 1
T as T → +∞

whereas

tanh(T/4)

T
− tanh(

√
T 2 + 4π2/4)√
T 2 + 4π2

{
→ 1

4 −
1

2π tanh π
2 ∼ 0.10 as T → 0

∼ 2π2/T 3 as T → +∞ .

To leading order accuracy, the estimate of the easier Corollary 5.3 reads

σ ≤ 32π2

T 3
as T → 0 , σ ≤ 8π2

T 2
as T → +∞

whereas Corollary 5.17 gives (the numerical figure at 0 is an approximation only)

σ <
77π2

T 3
as T → 0 , σ ≤ 4 as T → +∞ .

We do an independent check for the case T → ∞. By Remark 5.6 all lamellae
are stable when σ < 4/|Γ(c)| and the torus is large. If we insist on stability for all
|c| < 1, then σ < infc

4
|Γ(c)| = 4.

In the sequel we set

η(x) =
tanhx

x
, G(x) =

tanh
√
x√

x
.

Referring to the calculation in the proof of Corollary 5.16, for c = 0 the condition
h(θ1)− h(θ0)> 0 may be rewritten as

4π2

T 2
+
σT

8k

[
G(ϑ1/4k

2)−G(ϑ0/4k
2)
]
> 0 ,

so we investigate some properties of G.
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Fig. 5.1. The critical σ as a function of T for Corollaries 5.3 (lower) and 5.17 (upper).

Lemma 5.18. The function G, continuously extended by G(0) = 1, is decreasing
and strictly convex for x ≥ 0. Moreover

(5.21) G′(x) ∼ − 1

2x3/2
for large x.

Finally as x→ +∞, for any α > 0

(5.22) G(x+ α)−G(x) = − α

2x3/2
+ o(x−3/2) .

Before proving the result, we note that instead, η is not convex near the origin.

Proof. Taking logarithmic differentiation for x > 0 we see that

G′

G
=

1

2
√
x

(cosh2√x− sinh2√x)

sinh
√
x cosh

√
x

− 1

2x

leading by hyperbolic function identity to

(5.23) G′ =

(
1√

x sinh 2
√
x
− 1

2x

)
G := p(x)G(x) ,

which immediately gives monotonicity of G and (5.21). Taking another derivative and
replacing G′ with pG we have G′′ = (p′ + p2)G. It is clear now

G′′ > 0 ⇐⇒ p′ + p2 > 0 ⇐⇒ 1− (
1

p
)′ > 0

⇐⇒ 1− d

dx

−2x+
2x

1− sinh 2
√
x

2
√
x

 > 0 ⇐⇒ 3− 2
d

dx

 x

1− sinh 2
√
x

2
√
x

 > 0

⇐⇒ 3 + 2
d

dx

(( ∞∑
n=1

22nxn−1

(2n+ 1)!

)−1 )
> 0 .
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A direct computation yields∣∣∣ d
dx

(( ∞∑
n=1

22nxn−1

(2n+ 1)!

)−1)∣∣∣
=

∣∣∣∣∣∣−
( ∞∑
n=1

22nxn−1

(2n+ 1)!

)−2 ∞∑
m=1

4m

(2m+ 2)(2m+ 3)

22mxm−1

(2m+ 1)!

∣∣∣∣∣∣
<

∣∣∣∣∣∣
( ∞∑
n=1

22nxn−1

(2n+ 1)!

)−1
∣∣∣∣∣∣

< 3/2 by taking only the first term,

thus G′′ > 0. Next, the behavior at infinity is an exercise, since 1 − tanhx decays
exponentially fast.

Now we set

Hk(T, σ) = h(θ1)− h(θ0) =
4π2

T 2
+
σT

8k

[
G(ϑ1/4k

2)−G(ϑ0/4k
2)
]

;

to begin with, since G is decreasing the difference enclosed by the brackets is negative,
so for any T > 0 there exists a unique

σk(T ) =
32kπ2

T 3

/[
G(ϑ0/4k

2)−G(ϑ1/4k
2)
]

at which Hk(T, σ) = 0 with Hk being positive for σ < σk(T ). We remark that

ϑ0

4k2
=

T 2

16k2
,

ϑ1

4k2
=

ϑ0

4k2
+

π2

4k2

and using (5.22) we see that
lim

T→+∞
σk(T ) = 4

whereas σk(T )→ +∞ as T → 0+. We will now prove

Proposition 5.19. The function σk(T ) is injective, thus strictly decreasing from
]0,+∞[ to ]4,+∞[.

Proof. We begin by remarking that by (5.22)

lim
T→0+

Hk(T, σ) = +∞ , lim
T→+∞

T 2Hk(T, σ) = (4− σ)π2 < 0

for any σ > 4, thus for any σ̂ > 4 there is at least one value T̂ of T such that
Hk(T̂ , σ̂) = 0, i.e. σk(T̂ ) = σ̂. The result will be proved if we show that such T̂ is
unique; to this aim, we remark that

Hk(T, σ̂) = 0 ⇐⇒ 4π2

T 2
+
σ̂T

8k

[
G(ϑ1/4k

2)−G(ϑ0/4k
2)
]

= 0

⇐⇒
(T
k

)3[
G(ϑ1/4k

2)−G(ϑ0/4k
2)
]

= −32π2

σ̂k2
,

and uniqueness of T̂ will be proved if we show that the function at the left hand side
in the last line is strictly decreasing with respect to T . Now we rewrite this function
as

64 · (T/4k)3
[
G
(
(T/4k)2 + π2/4k2

)
−G

(
(T/4k)2

)]



STABLE LAMELLAR CONFIGURATIONS 35

and we prove that
x 7→ x3

[
G(x2 + π2/4k2)−G(x2)]

is strictly decreasing. We have

x3
[
G(x2 + π2/4k2)−G(x2)] =

∫ π2/4k2

0

x3G′(x2 + s) ds

and the claim will be proved if we show that

∂

∂x
[x3G′(x2 + s)] < 0 for all s > 0 .

But

∂

∂x
[x3G′(x2 + s)] = x2[3G′(x2 + s) + 2x2G′′(x2 + s)] < 0

⇐⇒ 3G′(x2 + s) + 2x2G′′(x2 + s) < 0

⇐⇒ 3G′(x2 + s) + 2(x2 + s)G′′(x2 + s) < 2sG′′(x2 + s) .

We prove the left hand side is strictly negative, so the conclusion follows by the
convexity of G proved in Lemma 5.18: it is enough to show that for any X > 0

(5.24) 3G′(X) + 2XG′′(X) < 0 ,

but recalling that G(X) = η(
√
X) we compute

G′(X) = η′(
√
X) · 1

2
√
X

, G′′(X) = η′′(
√
X) · 1

4X
− 1

4X
√
X
η′(
√
X)

so that

3G′(X) + 2XG′′(X) =
η′(
√
X)√
X

+
1

2
η′′(
√
X)

and (5.24) is equivalent to

η′(t)

t
+

1

2
η′′(t) < 0 ∀t > 0 .

A direct computation yields

η′(t)

t
+

1

2
η′′(t) = − (tanh t)(1− tanh2 t)

t
< 0 .

We call Tk(σ) the inverse function of σk(T ).

Corollary 5.20. In the case c = 0, for every σ > 4 the k-lamella is stable for
T < Tk(σ) and unstable for T ≥ Tk(σ).

Appendix A. Road map to prove Theorem 3.5. Throughout this Appendix
we refer to statements, formulas and pages of [3], and highlight the changes and
focal points needed to adapt the proof of [3, Theorem 1.1] for our Theorem 3.5 in
this paper. The proof in [3] needs to resolve a major technicality: the volumetric
constraint. Addressing this issue requires lots of efforts to reduce the problem to
an unconstrained one, to keep track of the inequalities needed, then to tackle the
Lagrange multiplier (and a sequence of them, too).
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1. The Euler-Lagrange equation [3, formula (2.8)], which contains a Lagrange
multiplier, takes a new form (see Proposition 3.1)

K(∂E)− α+ σNE = 0 .

The corresponding new weak formulation drops the volumetric constraint in
[3, Definition 2.2], but adds a term −αζ · ν in its integrands.

2. The key [3, Lemma 2.6] for the Laplacian is replaced by the (stronger) Lem-
ma 3.6 for the Hemholtz operator.

3. We do not need [3, Proposition 2.7], which is used to weaken volume con-
straint.

4. The slight changes to the derivation of the second variation formula [3, The-
orem 3.1] have already been summarized at the beginning of Section 3.

5. The definition [3, formula (3.4)] of ∂2J , which is our J ′′, acts on all of H1(∂E);
there is no need to only specify volume preserving vector field X, see (3.2).

6. The very convenient equality [3, formula (3.5)] regarding Green’s function for
the Laplacian (and zero average) is replaced by the equally versatile∫

∂E

∫
∂E

G(x, y)φ(x)φ(y) dHN−1(x) dHN−1(y) =

∫
T
(|∇V |2 + |V |2) dx

where V is the unique weak solution to the equation −∆V +V = φHN−1 ∂E
with periodic boundary conditions on T; we use this e.g. in Lemma 3.6.

7. The field X in [3, Corollary 3.4] is to be chosen as the gradient of the solution
u of

−∆u =
1

|∂E|

∫
∂E

φdHN−1 ;

ours has no such restriction.
8. The function spaces and vector fields with tilde, introduced on page 528 of

[3] and afterwards, are not needed. Our ambient space is all of H1.
Both [3, formula (3.9) and Lemma 3.6] still hold, whereas in [3, Theorem 3.7]
the last assertion does not, but is not needed in our case (again, it relates to
volume preservation).

9. The proof of the tricky [3, Lemma 3.8], used to control and later remove the
translation part, is not related to energies or equations, so it still holds.

10. The trouble after [3, formula (3.39)] to keep track of the zero average condition
is not necessary, thus ah is not needed and φ̃h is simply φh ◦ Φh, that is φh
acts on ∂E.
In [3, formula (3.40)] we use that the full H1 product of (vh − v) and φ is
≤ cε‖φ‖.
In [3, formula (3.43)] we also have the difference of z2

h− z̃2
h, but next equation

contains the Helmholz operator and not only the Laplacian, so convergence
of µh − µ̃h to zero is preserved.
After [3, formula (3.46)] we also have the volume term α and another term
appears, but it is not dangerous because the full (not only tangential) diver-
gence of X is zero.

11. The volume penalization after [3, formula (4.2)] is not needed; on the other
hand in the chain of inequalities after [3, formula (4.7)] we also have a
−α(|F | − |Kh|) ≥ −α|F4Kh| so the number Λ chosen in [3, formula (4.6)]
must be increased by α.
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12. We have no Lagrange multipliers, so the choice of fh in [3, formula (4.9)] is

fh :=

{
α− σvFh

α− σvE + ρh

and the rest of the proof becomes silly.

Acknowledgments. The authors warmly acknowledge the hospitality and nice
atmosphere of the National Center for Theoretical Sciences, Taiwan, of the University
of Parma and of the University of Connecticut at Storrs.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Se-
ries, No. 55, U. S. Government Printing Office, Washington, D. C., 1964. For sale by the
Superintendent of Documents.

[2] E. Acerbi, C.-N. Chen, and Y.-S. Choi, Minimal lamellar structures in a periodic FitzHugh-
Nagumo system, Nonlinear Analysis, 194 (2020), 111436 (13 pages).

[3] E. Acerbi, N. Fusco, and M. Morini, Minimality via second variation for a nonlocal isoperi-
metric problem, Comm. Math. Phys., 322 (2013), pp. 515–557.

[4] G. Alberti, R. Choksi, and F. Otto, Uniform energy distribution for an isoperimetric prob-
lem with long-range interactions, J. Amer. Math. Soc., 22 (2009), pp. 569–605.

[5] S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application
to antiphase domain coarsening, Acta Metall., 27 (1979), pp. 1085–1095.

[6] F. Bates and G. Fredrickson, Block copolymers-designer soft materials, Phys. Today, 52
(1999), pp. 32–38.

[7] F. Cagnetti, M. G. Mora, and M. Morini, A second order minimality condition for the
Mumford-Shah functional, Calc. Var. Partial Differential Equations, 33 (2008), pp. 37–74.

[8] C.-N. Chen, C.-C. Chen, and C.-C. Huang, Traveling waves for the FitzHugh-Nagumo system
on an infinite channel, J. Differential Equations, 261 (2016), pp. 3010–3041.

[9] C.-N. Chen and Y.-S. Choi, Standing pulse solutions to FitzHugh-Nagumo equations, Arch.
Rational Mech. Anal., 206 (2012), pp. 741–777.

[10] C.-N. Chen and Y.-S. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations, Calc.
Var. Partial Differential Equations, 54 (2015), pp. 1–45.

[11] C.-N. Chen, Y.-S. Choi, and N. Fusco, The Γ-limit of traveling waves in the FitzHugh-
Nagumo system, J. Differential Equations, 267 (2019), pp. 1805–1835.

[12] C.-N. Chen, Y.-S. Choi, Y. Hu, and X. Ren, Higher dimensional bubble profiles in a sharp
interface limit of the FitzHugh-Nagumo system, SIAM J. Math. Anal., 50 (2018), pp. 5072–
5095.

[13] C.-N. Chen, Y.-S. Choi, and X. Ren, Bubbles and droplets in a singular limit of the FitzHugh-
Nagumo system, Interfaces Free Bound., 20 (2018), pp. 165–210.

[14] C.-N. Chen, Y. Morita, and S.-Y. Kung, Planar standing wavefronts in the FitzHugh-
Nagumo equations, SIAM J. Math. Anal., 46 (2014), pp. 657–690.

[15] X. Chen and Y. Oshita, Periodicity and uniqueness of global minimizers of an energy func-
tional containing a long-range interaction, SIAM J. Math. Anal., 37 (2005), pp. 299–1332.

[16] R. Choksi and M. Peletier, Small volume fraction limit of the diblock copolymer problem:
I. Sharp-Interface Functional, SIAM J. Math. Anal., 42 (2010), pp. 1334–1370.

[17] R. Choksi and M. Peletier, Small volume fraction limit of the diblock copolymer problem:
II. Diffuse-Interface Functional, SIAM J. Math. Anal., 43 (2011), pp. 739–763.

[18] R. Choksi and X. Ren, On the derivation of a density functional theory for microphase
separation of diblock copolymers, J. Statist. Phys., 113 (2003), pp. 151–176.

[19] R. Choksi and P. Sternberg, Periodic phase separation: the periodic Cahn-Hilliard and
isoperimetric problems, Interfaces Free Bound., 8 (2006), pp. 371–392.

[20] R. Choksi and P. Sternberg, On the first and second variations of a nonlocal isoperimetric
problem, J. Reine Angew. Math., 611 (2007), pp. 75–108.

[21] A. Doelman, P. van Heijster, and T. Kaper, Pulse dynamics in a three-component system:
existence analysis, J. Dynam. Differential Equations, 21 (2008), pp. 73–115.

[22] P. Fife and D. Hilhorst, The Nishiura-Ohnishi free boundary problem in the 1D case, SIAM
J. Math. Anal., 33 (2001), pp. 589–606.



38 EMILIO ACERBI, CHEN CHAO-NIEN AND CHOI YUNG-SZE

[23] R. Kapral and K. Showalter, Chemical Waves and Patterns, Kluwer, 1995.
[24] L. Leibler, Theory of microphase separation in block copolymers, Macromolecules, 13 (1980),

pp. 1602–1617.
[25] A. Liehr, Dissipative Solitons in Reaction-Diffusion Systems. Springer Series in Synergetics,

2013.
[26] L. Modica, The gradient theory of phase transitions and minimal interface criterion, Arch.

Rational Mech. Anal., 98 (1987), pp. 123–142.
[27] M. Morini and P. Sternberg, Cascade of minimizers for a nonlocal isoperimetric problem

in thin domains, SIAM J. Math. Anal., 46 (2014), pp. 2033–2051.
[28] C. Muratov, Theory of domain patterns in systems with long-range interactions of Coulomb

type, Phys. Rev. E, 66 (2002), 066108.
[29] C. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in

two dimensions, Commun. Math. Phys., 299 (2010), pp. 45–87.
[30] F. Niedernostheide, Nonlinear Dynamics and Pattern Formation in Semiconductors and

Devices, Springer, 1994.
[31] Y. Nishiura and I. Ohnishi, Some mathematical aspects of the micro-phase separation in

diblock copolymers, Phys. D, 84 (1984), pp. 31–39.
[32] T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules,

19 (1986), pp. 2621–2632.
[33] X. Ren and J. Wei, On the multiplicity of solutions of two nonlocal variational problems,

SIAM J. Math. Anal., 31 (2000), pp. 909–924.
[34] X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem, Interfaces Free

Bound., 5 (2003), pp. 193–238.
[35] X. Ren and J. Wei, On the spectra of three dimensional lamellar solutions of the diblock

copolymer problem, SIAM J. Math. Anal., 35 (2003), pp. 1–32.
[36] A. Scheel, Coarsening fronts, Arch. Rational Mech. Anal., 181 (2006), pp. 505–534.
[37] G. Tee, Eigenvectors of block circulant and alternating circulant matrices, New Zealand J.

Math., 36 (2007), pp. 195–211.
[38] J. B. van den Berg and J. F. Williams, Validation of the bifurcation diagram in the 2D

Ohta-Kawasaki problem, Nonlinearity, 30 (2017), pp. 1584–1638.
[39] J. B. van den Berg and J. F. Williams, Rigorously computing symmetric stationary states of

the Ohta-Kawasaki problem in three dimensions, SIAM J. Math. Anal., 51 (2019), pp. 131–
158.

[40] J. B. van den Berg and J. F. Williams, Optimal periodic structures with general space group
symmetries in the Ohta-Kawasaki problem, Phys. D, 415 (2021), 132732.

[41] P. van Heijster, C.-N. Chen, Y. Nishiura, and T. Teramoto, Localized patterns in a
three-component FitzHugh-Nagumo model revisited via an action functional, J. Dynam.
Differential Equations, 30 (2018), pp. 521–555.


	Introduction
	Known facts on minimal lamellae
	First and second variation, and preliminaries to stability
	Stability, mean value part
	Stability, zero-average part and conclusion
	Appendix A. Road map to prove Theorem 3.5
	Acknowledgments
	References

