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Abstract

A singular limit of a FitzHugh-Nagumo system leads to a nonlocal geometric variational problem with
periodic boundary conditions. We study the stationary lamellar set and give a criterion to select out the
one with the lowest energy. Such an optimal structure is called a minimal lamella. While the empty set or
the full torus is a global minimizer for appropriate parameter regimes, the minimal lamellae beat both in
other circumstances. The concept of minimal lamella points out that a preferred 1D mesh size is universal.
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1. Introduction

Pattern formation is of great interest in many fields of science. In physical and biological systems, these
patterns are robust in the sense that they are stable and exist for a wide range of parameters. Periodic struc-
tures are observed in experiments in certain di-block copolymer melts [15, 18]. Such stationary patterns,
resulting from orderly outcomes of self-organization principles, also appeared in various models [2, 13, 17]
arisen in material sciences.

Recent advance in mathematical studies leads to a deeper understanding of the self-organized mechanism
in the generation of localized structures, typically from a delicate balance between gain and loss in free energy.
A simple example is

I(u) =

∫
D

(ε2
2
|∇u|2 +

u2(u− 1)2

4

)
dx, (1.1)

which is associated with the Allen-Cahn equation [3]. Replacing 1
4u

2(u − 1)2 by a unbalanced double-well
potential leads to the Nagumo equation. In both cases, lamellar solutions are not stable patterns.

To establish stable lamellar patterns, we need an inhibition mechanism in the free energy that prevents
unlimited growth or spreading. A geometric variational problem, derived in [8, 9] from a singular limit of
the FitzHugh-Nagumo system, takes the form

J(E) = PT(E)− α|E|+ σ

2

∫
E

NE dx (1.2)
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as an action functional. Here σ and α are two positive parameters, T is a N -dimensional square torus, which
can be thought of as the box [−T/2, T/2]N ⊂ RN with T -periodic boundary conditions. In (1.2), E is a
measurable subset of T with |E| as its Lebesgue measure. The admissible set of J is

A =
{
E ⊂ T : E is Lebesgue measurable

}
. (1.3)

The (possibly infinite) perimeter of E in T is denoted by PT(E). If E is of class C1, PT(E) is the length of
the boundary of ∂E ∩ T. For a general subset E of T, PT(E) is finite when the characteristic function χE ,
which takes values 0 or 1, is of bounded variation.

The nonlocal interaction term containing σ represents an inhibition effect that favors an identically zero
solution as a minimizer, while α measures the driving force towards a non-zero state. Many interesting
patterns emerge from homogeneous media through destabilization by a spatial modulation, and we are in-
terested in the structure of global or local minimizers of (1.2).

For the integral term in (1.2), N is an operator that assigns each E the solution of the following modified
Helmholtz equation:

−∆NE +NE = χE in T; NE is periodic in T , (1.4)

which is also the unique T-periodic minimizer of

v 7→
∫
T

( |Dv|2
2

+
v2

2
− vχE

)
dx . (1.5)

Remark 1.1. We list some easy properties of NE. By minimality one sees that necessarily NE ≥ 0, and
since NT\E = 1−NE also that NE ≤ 1. From (1.4), by the divergence theorem one gets∫

T
NE dx = |E| .

We thus have, writing E′ for the complement T \ E of E,∫
E

NE dx =

∫
T
NE dx−

∫
E′
NE dx = |E| −

∫
E′

(1−NE′) dx = |E| − |E′|+
∫
E′
NE′ dx . (1.6)

This implies

J(E) = J(E′) +
(σ

2
− α

)
(|E| − |E′|) . (1.7)

A classical stationary set of J has a C2 interface that satisfies the Euler-Lagrange equation

K(∂E ∩ T)− α+ σNE = 0 on ∂E ∩ T (1.8)

where K denotes the Gaussian curvature, see for example [8, 9].

Remark 1.2. The trivial states are given by E = ∅ and E = T, and since the corresponding functions NE
are the constants 0 and 1, the trivial state energies are simply

J(∅) = 0 , J(T) =
(σ

2
− α

)
TN =

σ

2

(
1− 2α

σ

)
TN .

It is convenient to name the constant between braces: we set

c = c(α, σ) := 1− 2α

σ
(1.9)
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so the line above reads
J(∅) = 0 , J(T) =

σ

2
c TN ;

the sign of the “fullness parameter” c determines whether the empty torus is more (when c > 0) or less
(c < 0) energetically favorable than the full torus, and not only that, we may now rewrite (1.7) as

J(E) = J(E′) +
σ

2
c(|E| − |E′|) . (1.10)

This implies the following:

Remark 1.3. If |E| < |T|/2 < |T \ E| then

if c > 0, then J(E) < J(T \ E),
if c < 0, then J(T \ E) < J(E).

Consequently when c > 0 global minimizers of J all have measure less than |T|/2, and the reverse is true if
c < 0.

For the moment it is convenient to rewrite J in order to manifest its dependence on c and σ: as α =
σ/2− cσ/2, we have

J(E) = PT(E) + (c− 1)
σ

2
|E|+ σ

2

∫
E

NE dx =: Jσ,c(E)

so that by (1.6)

2

σ
[Jσ,c(E)− Jσ,−c(E′)] = (c− 1)|E| − (−c− 1)|E′|+

∫
E

NE dx−
∫
E′
NE′ dx = c|T| .

Set
Gσ,c(E) = Jσ,c(E)− cσ

4
|T|,

a functional which shares the same minimizers as J since the difference is only an additive constant, we have
the following:

Remark 1.4. For the functional G defined above,

Gσ,c(E) = Gσ,−c(T \ E)

so that the (global or local) minimizers of J with c > 0 are the complements of those with c < 0.

The search for global minimizers of J is not easy, but we can draw some conclusions for certain ranges of
the parameters. Recall the isoperimetric inequality in a torus in RN

PT(E) ≥ cN min{|E|, |T \ E|}1−1/N (1.11)

for some positive constant cN .

Proposition 1.5. Let σ > 0 and cN be the isoperimetric constant in (1.11). If α < σ/2 satisfies α ≤
cN

N
√

2/T the unique global minimizer of J is the empty set, while if α > σ/2 satisfies α ≥ σ− cN N
√

2/T the
unique global minimizer is the full torus.

Proof: We first investigate a sufficient condition when the full torus is the absolute minimizer of J ; by
Remark 1.2 we may confine ourselves to the case c < 0, that is α > σ/2, and consider only sets whose
measure is greater than |T|/2.
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Writing F for the complement of E we have, by repeatedly using the properties of NE ,

J(E)− J(T) = PT(E)− α|E|+ σ

2

∫
E

NE dx+ α|T| − σ

2
|T|

= PT(F ) + α|F |+ σ

2

(
|E| − |F |+

∫
F

NF dx
)
− σ

2
|T|

= PT(F ) + (α− σ)|F |+ σ

2

∫
F

NF dx .

If α ≥ σ the sum is strictly positive unless F = ∅, that is E = T. For σ/2 <α < σ since |E| ≥ |T|/2 ≥ |F |,
using the isoperimetric inequality one gets

J(E)− J(T) ≥
[
cN + (α− σ)|F |1/N

]
|F |1−1/N +

σ

2

∫
F

NF dx

≥
[
cN − (σ − α)T/

N
√

2
]
|F |1−1/N +

σ

2

∫
F

NF dx

which is positive for E 6= T provided
α ≥ σ − cN N

√
2/T .

The above inequality can be cast as
c ≤ −1 + 2cN

N
√

2/σT . (1.12)

Now suppose c > 0. In view of Remark 1.4 simply replace c with −c in (1.12) so that

c ≥ 1− 2cN
N
√

2/σT , (1.13)

which yields the sufficient condition α ≤ cN N
√

2/T for the minimality of the empty set. �

Corollary 1.6. Suppose cN
N
√

2/T < σ/2, then there exists σ/2 ≥α∅ ≥ cN
N
√

2/T such that whenever α ≤
α∅, a global minimizer of J is the empty set, and if α > α∅, all global minimizers are not the empty set.
The empty set is also the unique global minimizer when α < α∅.

Proof: We show that whenever the empty set is a global minimizer for some α = ᾱ, then the empty set
is also the unique global minimizer for all α < ᾱ. Indeed to highlight dependence on α write

Hα(E) = J(E) = PT(E)− α|E|+ σ

2

∫
E

NE dx ;

if Hᾱ(E) ≥ 0 for every non-empty E, then for all α < ᾱ we immediately have Hα(E) > 0. �

Since σ − cN N
√

2/T > σ/2 is the same as cN
N
√

2/T < σ/2, the same reasoning gives:

Corollary 1.7. Suppose cN
N
√

2/T < σ/2, then there exists σ/2 ≤αT ≤ σ − cN N
√

2/T such that whenever
α ≥ αT, a global minimizer of J is the full torus, and if α < αT, all global minimizers are not the full torus.
The full torus is also the unique global minimizer when α > αT.

Both the empty set and the full torus are the homogeneous states of (1.2). With suitable parameters α, σ in
a large torus, it will be shown that a lamella has a lower energy than both the empty set and the full torus.
In Section 2 we employ (1.8) to study with multiple lamellar solutions with the same physical parameters
in a fixed torus. Of particular interest is to count the number of lamellae and the distance between them.
In fact, among all such solutions there is one with the lowest energy; that is, we seek a k-lamellae in a torus
which are optimal among all multi-lamellar configurations. Such a ground state is referred to as a minimal
lamellae and is expected to be the most stable pattern among all lamellae. By measuring the thickness of
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lamellae, one can therefore determine the physical parameters. To the best of our knowledge, the concept
of minimal lamellae seems to be new. Detailed analysis will be carried out in Section 3.

The FitzHugh-Nagumo system is a well-known activator-inhibitor type reaction-diffusion model which
exhibits rich phenomena [5, 6, 7, 12, 21] giving rise to a great diversity in structures. When the physical
parameters are suitably ordered, its stationary solutions are the critical points of the functional

Φε(u) =

∫
T

(ε2
2
|∇u|2 +

u2(u− 1)2

4
− εαu+

εσu

2
NDu

)
dx, (1.14)

here ε2 represents the ratio of diffusivity of the activator u to that of the inhibitor v. Unless they are local
minimizers, the patterns associated with these solutions are always unstable [10, 11]. Restricting our focus
to minimizers of Φε, it is natural to employ the tool of Γ-convergence to aid our analysis. It is known that
ε−1Φε Γ-converges in L1(T) norm to J in (1.2) as ε → 0; the minimizer uε of Φε then converges to the
minimizer u0 of J in L1(T) and sharp gradient in uε becomes a discontinuous jump in u0 [8, 9, 14]. In
a forthcoming paper the minimality of critical points with positive second variation will be studied. The
lamellae are one dimensional structures. It is also interesting to demonstrate multi-dimensional stationary
configurations in future work.

2. Lamellae

We devote this section to the study of lamellar solutions to (1.8), that is, sets E which beside being
T-periodic are also invariant by translations orthogonal to a certain direction v.

Remark 2.1. For any lamellar set in a 2-dimensional torus, v must have a rational slope 0 ≤ m/n ≤ 1
with respect to one of the axes (m and n coprime), and the set is then periodic in the v direction with period
T/
√
m2 + n2; the situation is a bit more intricate if the original torus was not a square but a rectangle

(unless the slope is zero).

Temporarily in this section we use (x, y) ∈ R×RN−1 to denote a point in the torus. To simplify analysis
we orient the coordinate axes so that v points in the x-direction. A lamellar solution is therefore independent
of y. Let 0 < x0 < T and let E = Lx0

= [0, x0] × [0, T ]N−1 be a single lamella with a thickness x0 in the
torus T. With PT(Lx0) = 2TN−1, it is immediate that

lim
x0→0+

J(Lx0
) = 2TN−1 and lim

x0→T−
J(Lx0

) = 2TN−1 + J(T) . (2.1)

We study multi-lamellar configurations which are stationary points for the energy; later on we need to
introduce an energy on a rectangular torus (a slice of the original one), but the changes are easy, so we stick
to the square case up to the end, see Remark 2.8. Consider a k-lamellar configuration L, which is composed
of k “vertical” lamellae (where χL = 1) separated by wedges (where χL = 0) and with the first lamella
beginning at the left boundary of T. Let the i-th lamella be [Li,Wi] × [0, T ]N−1 so that the i-th wedge is
[Wi, Li+1]× [0, T ]N−1 with L1 = 0 and Lk+1 = T , and of course Li ≤Wi ≤ Li+1. Call

L =

k⋃
i=1

[Li,Wi] ; L = L× [0, T ]N−1 .

The function NL appearing in the nonlocal term of (1.2) is the unique T-periodic minimizer of the strictly
convex energy (1.5). But replacing NL with its average in the y direction, by strict convexity we deduce
that NL depends only on x.

Remark 2.2. If the set L is periodic in the x direction not only with period T , but also with a smaller
period T/k for some k ∈ N, then replacing NL(x, y) with k−1

∑k
i=1NL(x+ iT/k, y) we deduce as before that

also NL(x, y) is T/k-periodic with respect to x.
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Since not only L, but also NL has a one-dimensional structure, we are going to drop all but the first variable
and work in one dimension; we also use the simpler notation u(x) in place of NL(x, y). It is then useful to
introduce the one-dimensional analogues of (1.4) and(1.5), that is, equation

−u′′ + u = χL (2.2)

and energy
1

2

∫ T

0

(
|u′(x)|2 + |u(x)|2

)
dx−

∫
L

u(x) dx , u is T -periodic . (2.3)

Remark 2.3. If u ∈W 1,2
per [0, T̃ ] is the minimizer to (2.3) then u is continuous, hence u′′ = u−χL is bounded

so that u ∈ C1.

Lemma 2.4. Suppose that the k-lamella L is a stationary point of the energy (1.2) and let u be the 1-
dimensional function introduced above. Set u0 = u(L1) and d0 = u′(L1). Then for all i

u(Li) = u(Wi) ≡ u0 ,

the function u is symmetric inside each lamella and inside each wedge, and we have for all i

u′(Li) = −u′(Wi) ≡ d0 .

Proof: Indeed, the first assertion follows since (1.8) holds and curvature of a lamella is zero; to prove
symmetry, dropping indices for simplicity of notation, take a wedge [W̄ , L̄] and replace u in [W̄ , L̄] by its
symmetrized version

ū(x) =
1

2

(
u(x) + u(W̄ + L̄− x)

)
(which is admissible since u(W̄ ) = u(L̄) = u0). As ū is a periodic solution to (2.2), we contradict uniqueness
unless u is symmetric inside this lamella. In particular the derivatives of u at W and L are opposite. Since
the same applies inside each lamella, the result is proved. �

Lemma 2.5. Suppose that the k-lamella L is a stationary point of the energy (1.2) and let u be the 1-
dimensional function introduced above. Then minu > 0 and maxu < 1. A minimum point is located in a
wedge while a maximum point in a lamella.

Proof: That 0 ≤ u ≤ 1 follows from Remark 1.1 and we only have to prove the strict inequalities. Recall

u is C1 and piecewisely C2. By integrating (2.2) on the interval [0, T ] we observe 1
T

∫ T
0
u dx = |L|

T < 1; this
implies minu < 1. Since u is continuous and periodic it has an absolute minimum at a point xm, and we
assume u(xm) = 0: if xm belongs to a lamella [L̄, W̄ ] then u(x) < 1 near xm, and at least on one side of
xm we get u′′ = u − 1 < 0 which gives concavity; together with u′(xm) = 0 this contradicts minimality at
xm. If xm is inside a wedge, then u′′ = u in the whole wedge, which together with u(xm) = u′(xm) = 0
gives u(x) = 0 to the boundary of the wedge. This reduces to the previous case and we know it leads to a
contradiction.

Next let w = 1 − u so that −w′′ + w = χL′ , where L′ = [0, T ] \ L. Therefore minw > 0, which is
equivalent maxu < 1. The last assertions in the Lemma comes from the governing equation (2.2). �

Proposition 2.6. Suppose that the k-lamella L is a stationary point of the energy (1.2). Then all lamellae
have the same size and are equally spaced.
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Proof: Take a wedge [W̄ , L̄]: by the lemmas above, in this wedge the function u solves

u(W̄ ) = u0 , u′(W̄ ) = −d0 , u′′ = u , u > 0

and we know that u(L̄) = u0. As u is strictly convex it is necessary that d0 > 0 in order for a minimum to
be attained in a wedge. This Cauchy problem has a unique solution defined in [W̄ ,+∞) and this solution
takes the value u0 only once after W̄ , in the point W̄ + δ(u0, d0). As this holds in every wedge, we have that
all wedges have the same width δ(u0, d0). The same reasoning on lamellae, where u′′ = u− 1 < 0, gives that
all lamellae have the same size too. �

Now that the structure of lamellar stationary points is clear, restricting ourselves to admissible (i.e., equally
sized and spaced) configurations with vertical lamellae, we compute the energy of these one dimensional
structure. First recall some easy formulas:

sinh(a+ b) = sinh a cosh b+ cosh a sinh b , cosh(a+ b) = cosh a cosh b+ sinh a sinh b ,

2 sinh a cosh b = sinh(a+ b) + sinh(a− b) , 2 sinh a sinh b = cosh(a+ b)− cosh(a− b) .

The one-dimensional set L associated to L is made of k equal lamella-intervals with total length x0, divided
by k equal spaces; the function u solves u′′ = u in the wedges, u′′ = u− 1 in the lamellae, takes value u0 at
all endpoints and its derivative at endpoints is ±d0. We remark that on each interval [L̄, W̄ ] we have∫ W̄

L̄

u(x) dx =

∫ W̄

L̄

(u′′ + 1) dx = u′(W̄ )− u′(L̄) + (W̄ − L̄) = (W̄ − L̄)− 2d0 ,

so that by (1.2)

J(L) = 2kTN−1 − αTN−1x0 +
σ

2
(TN−1x0 − 2kTN−1d0) . (2.4)

To compute (u0 and) d0, it is convenient to fix coordinates so that each lamella-interval has length 2ξ, each
wedge space has length 2τ and [L̄, W̄ ] = [−2ξ, 0]. Then by the symmetry properties we proved, we have for
some λ, µ > 0

u(x) = 1− λ cosh(x+ ξ) in [−2ξ, 0] , u(x) = µ cosh(x− τ) in [0, 2τ ] ,

and we must match conditions at the origin only. Thus

(u0 =)1− λ cosh ξ = µ cosh τ , (−d0 =)− λ sinh ξ = −µ sinh τ

from which by canceling the right hand sides

sinh τ − λ(sinh τ cosh ξ + cosh τ sinh ξ) = 0 ⇒ λ =
sinh τ

sinh(τ + ξ)

and finally

d0 = λ sinh ξ =
sinh τ sinh ξ

sinh(τ + ξ)
=

cosh(τ + ξ)− cosh(τ − ξ)
2 sinh(τ + ξ)

.

Taking 2ξ = x0/k and 2τ = (T − x0)/k, by (2.4) we deduce :

Proposition 2.7. Suppose that the k-lamella L is a stationary point of the energy (1.2), with lamellae of
total width x0. Then

J(L) = kTN−1

[
2 +

(σ
2
− α

)x0

k
− σ

sinh T
2k

sinh
T − x0

2k
sinh

x0

2k

]

= kTN−1

[
2 +

(σ
2
− α

)x0

k
− σ

2 sinh T
2k

(
cosh

T

2k
− cosh

T − 2x0

2k

)]
.

(2.5)
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We will be interested in u0, for which we have

u0 = 1− sinh τ cosh ξ

sinh(τ + ξ)
=

cosh τ sinh ξ

sinh(τ + ξ)

or, substituting the values of ξ and τ ,

u0 =
1

sinh T
2k

cosh
T − x0

2k
sinh

x0

2k
=

1

2 sinh T
2k

(
sinh

T

2k
− sinh

T − 2x0

2k

)
, (2.6)

whereas

d0 =
1

sinh T
2k

sinh
T − x0

2k
sinh

x0

2k
. (2.7)

Remark 2.8. If the torus T was not a square, but an n-dimensional rectangle, with side of length T in the
direction orthogonal to lamellae and of measure T ′ in the other, the only change needed in formula (2.5) is
replacing the initial TN−1 with T ′.

Not all k-lamellae with equal size and spacing are stationary points of energy (1.2), since (1.8) must be
satisfied. But, with our notations, (1.8) reads u0 = α/σ, which by (2.6) gives

1

2 sinh T
2k

(
sinh

T

2k
− sinh

T − 2x0

2k

)
=
α

σ
,

that is

sinh
T − 2x0

2k
=
(

1− 2α

σ

)
sinh

T

2k
. (2.8)

Recalling the definition (1.9) of c, the above says

sinh
T − 2x0

2k
= c sinh

T

2k
⇒ cosh

T − 2x0

2k
=

√
1 + c2 sinh2 T

2k

(we included last equality for use in the sequel). As 0 ≤ x0 ≤ T , we have −T ≤ T − 2x0 ≤ T , so (2.8) may
hold only if −1 ≤ c ≤ 1, i.e., only if α ≤ σ. Solving (2.8) for x0 we immediately deduce the following (where
we summarize the results of this section).

Theorem 2.9. Suppose that the k-lamella L is a stationary point of the energy (1.2), with lamellae of total
width x0. Then it is necessary and sufficient that α ≤ σ, all lamellae have the same width

x0

k
=

T

2k
− arc sinh

(
c sinh

T

2k

)
(2.9)

and are equally spaced, and the corresponding energy is

J(L) = kTN−1

{
2 + c

σ

2

[ T
2k
− arc sinh

(
c sinh

T

2k

)]

− σ

2 sinh T
2k

(
cosh

T

2k
−
√

1 + c2 sinh2 T

2k

)}
.

(2.10)

Remark 2.10. One may wonder if the problem is trivial, in the sense that minimal energy is attained at a
trivial state, so we may now show that at least for certain values of the parameters α and σ this is not the
case: take α = σ/2, so that trivial states have zero energy by Remark 1.2. Take any x0 > 0 and T = 2x0,
one immediately sees that for k = 1 and σ → +∞ the content of the square bracket in (2.5) becomes negative.
Thus there will be a non trivial global minimizer (which is not necessarily a lamella).

Remark 2.11. As we see, for stationary k-lamellae the proportion of lamella thickness to intermediate
space depends on the fullness parameter c: when positive, lamellae are thinner than spaces, and the opposite
is true when c < 0, a generalization of Remark 1.2.
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3. Minimal lamellae

Let α ≤ σ so that −1 ≤ c ≤ 1 and stationary lamellar solution exists. We now seek minimal lamellae,
i.e., k-lamellae in a torus which are optimal among all multi-lamellar configurations. We still do not know
if they exist, so we investigate the properties of the energy, beginning with some notation and an easy but
interesting remark. We set

A(c, t) = arc sinh
(
c sinh(t)

)
, B(c, t) =

cosh t−
√

1 + c2 sinh2 t

sinh t
,

L(c, t) = c
(
t−A(c, t)

)
− B(c, t)

and

E(σ, c, t) =
1

t

(
2 +

σ

2
L(c, t)

)
,

so that by (2.10)

JT(L) =
TN

2
E
(
σ, c,

T

2k

)
.

We list some properties of the functions we introduced, sketching the proof where needed; to avoid cluttering
with symbols, primes will always denote derivatives with respect to t (we do not need derivatives with respect
to c). Remember that −1 ≤ c ≤ 1, and that everything is quite trivial when c = 0 or c = ±1, so we will not
mention these cases.

Proposition 3.1. The function B(c, t) satisfies:

i) B(c, t) =
(1− c2) sinh t

cosh t+
√

1 + c2 sinh2 t
;

ii) B(c, 0) = 0 , B(c,+∞) = 1− |c| ;
iii) B is even with respect to c (and odd with respect to t);

iv) B′(c, t) =
1− c2(

cosh t+
√

1 + c2 sinh2 t
)√

1 + c2 sinh2 t
;

v) B is increasing and B′ is decreasing with respect to t ;

vi) B′(c, 0) =
1− c2

2
, B′(c,+∞) = 0+ .

Proof: The first point is an easy algebraic manipulation, from which points 2, 3 follow. Point 4 is just a
computation plus algebraic manipulation, from which one deduces that B′ > 0 and points 5, 6 follow (and
in particular B is a concave function of t). �

We employ the notation ωt to denote any function (which may change from line to line) vanishing as
t→ +∞.

Proposition 3.2. The function A(c, t) satisfies

i) A(c, 0) = 0, A is odd respect to c (and respect to t);

ii) A′(c, t) =
c cosh t√

1 + c2 sinh2 t
= c

√
1 +

1− c2

c2 + (1/ sinh2 t)
;

iii) A′(c, 0) = c , A′(c,+∞) = sign(c) ;

iv) A′ always has the same sign as c, and is increasing with respect to t if c > 0, decreasing with respect
to t if c < 0 (thus −cA is always decreasing);

v) A′′(c, t) =
c(1− c2) sinh t

(1 + c2 sinh2 t)3/2
;
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vi) as t→ +∞

t−A(c, t) =

{
− log c+ ωt if c > 0
2t+ log |c|+ ωt if c < 0 .

Proof: Recalling that arc sinhx = log
(
x+
√

1 + x2
)

and with some manipulations point 2 follows, so also
point 4 becomes clear, using the second version of A′; we will not use point 5, but we included it since the
formula is nice (as opposite to the second derivative of B). As for point 6 one has for large x (positive or
negative)

φ(x) := x+
√

1 + x2 =

 2x
(
1 + o(1/x)

)
if x→ +∞

1

2|x|
(
1 + o(1/x)

)
if x→ −∞ ,

so that writing 2 sinh t = et
(
1 + o(e−t)

)
φ(c sinh t) =

 cet(1 + ωt) if c > 0
1

|c|et
(1 + ωt) if c < 0 ,

and the assertion follows. �

Collecting these results we obtain the properties of L.

Proposition 3.3. The function L(c, t) satisfies

i) L′(c, t) = − (1− c)(1− c2)(
cosh t+

√
1 + c2 sinh2 t

)(
c cosh t+

√
1 + c2 sinh2 t

) ;

ii) L′(c, t) is negative and it is increasing with respect to t (and with respect to c);

iii) L is decreasing and convex as a function of t, for any c;

iv) L′(c, 0) = −(1− c)2/2 , L′(c,+∞) = 0− if c > 0, whereas L′(c,+∞) = 2c if c < 0 ;

v) L(c, 0) = 0 , and L(c,+∞) = c− 1− c log c if c > 0 whereas if c < 0

L(c, t) = 2ct+ c log |c|+ |c| − 1 .

Proof: Once one checks point 1 (again, just algebraic manipulation) everything follows. One has to take
care, in the case c < 0, of the factor

c cosh t+
√

1 + c2 sinh2 t =
√

1 + c2 sinh2 t− |c| cosh t =
1− c2√

1 + c2 sinh2 t+ |c| cosh t

so that

L′(c, t) = −
(1− c)

(√
1 + c2 sinh2 t+ |c| cosh t

)
cosh t+

√
1 + c2 sinh2 t

= −(1− c)
(

1− (1− |c|) cosh t

cosh t+
√

1 + c2 sinh2 t

)
= −(1− c) + (1− c2)

1

1 +
√

1− (1− c2) tanh2 t
.

�

Before concluding with the properties of E we summarize the relevant properties of the function tE(σ, c, t) =
2 + (σ/2)L, where we re-include the easy cases.
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Proposition 3.4. For −1 ≤ c ≤ 1 the function 2 + (σ/2)L(c, t) satisfies:

i) it is strictly convex and decreasing (except it is 2 for c = 1 and 2− σt for c = −1);

ii) for t = 0 it takes the value 2;

iii) if c > 0 its limit as t→ +∞ is

2 +
σ

2
(c− 1− c log c) ;

iv) if c < 0 it has as an asymptote as t→ +∞ the function

σct+
[
2 +

σ

2
(|c| − 1− |c| log |c|)

]
;

v) if c = 0 its limit as t→ +∞ is 2− σ/2 .

A crucial role is played by the threshold function

Γ(c) = |c| − 1− |c| log |c| , |c| ≤ 1 (3.1)

extended by continuity at c = 0 by Γ(0) = −1, since points 3 and 4 may be rewritten as

as t→ +∞ , 2 + (σ/2)L ∼
{

2 + σΓ(c)/2 if c ≥ 0,
σct+ 2 + σΓ(c)/2 if c ≤ 0.

We remark that Γ(0) = −1, Γ(±1) = 0 and Γ (which is an even function) decreases if c < 0 and increases if
c > 0. Note that when c ≤ 0, the asymptote has an intercept of 2 + σΓ(c)/2 at the vertical axis.

Since f(t)/t is the slope of the line connecting (0, 0) with
(
t, f(t)

)
, we obtain the main result of this

section.

Theorem 3.5. (a) If 2 + σΓ(c)/2 ≥ 0 then E(σ, c, t) is a decreasing function of t;
(b) if 2 + σΓ(c)/2 < 0 then there is a unique point t0 = t0(c, σ) > 0 such that E(σ, c, t) is strictly decreasing
for 0 < t ≤ t0 and strictly increasing afterwards.

Proof: It all depends on point 1 in the crucial Proposition 3.4 and the fact that the slope of the line from
the origin to a point on the graph of tE(σ, c, t) will tend to zero if c ≥ 0 and to σc if c < 0. We examine 4
different cases.
(i) If c≥0 and 2 + σΓ(c)/2 ≥ 0 then the graph of tE(σ, c, t) always stays above 0. Thus E is a strictly
decreasing function of t with E → 0 as t→∞.
(ii) If c < 0 and 2 + σΓ(c)/2 ≥ 0, then E(σ, c, t) decreases monotonically from a positive value to a negative
value σc as t→∞.
(iii) If c ≥ 0 and 2 + σΓ(c)/2 < 0, the graph of tE(σ, c, t) starts above but ends below 0 with a horizontal
asymptote. Then there is a unique point t0 = t0(c, σ) > 0 satisfying (3.2) such that E(σ, c, t) is strictly
decreasing for 0 < t ≤ t0 and strictly increasing afterwards.
(iv) If c < 0 and 2 + σΓ(c)/2 < 0, then there is a point t0 = t0(c, σ) > 0 such that E(σ, c, t) is strictly
decreasing for 0 < t ≤ t0 and strictly increasing afterwards. Thus E(σ, c, t0) < σc < 0. �

We now determine the minimum location t0 in Cases (iii) and (iv). Observe that the tangent line at
t = t0 to the graph y = 2 + σ

2L(c, t) passes through the origin in both cases, it follows that

σ

2
L′(c, t0)t0 = 2 +

σ

2
L(c, t0) . (3.2)

Define g(t) = L′(c, t)t−L(c, t). It is readily checked that g′(t) = tL′′(c, t) > 0, g(c, 0) = 0 and limt→∞ g(t) =
−Γ(c) whenever c 6= 0. With g being a strictly increasing function and 4/σ < −Γ(c), this t0 = t0(c, σ) is the
unique root of g(t0) = 4/σ. It is clear that t0 is a strictly decreasing function of σ (for fixed c), moreover

t0 → 0 as σ →∞, and t0 →∞ as σ → −4/Γ(c) . (3.3)
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Recall J(∅) = 0, 2J(T)/TN = σc and 2J(L)/TN = E . The points where the lines y = 0, y = σct and
y = Et cut the graph y = 2+σL(c, t)/2 determine the pecking order of the energy associated with the empty
set, the full torus and the minimal lamella, respectively. Let tf be the unique intersection point, if exist,
of the straight line y = σct and the curve y = 2 + σL(c, t)/2, and te be the unique point, if exist, at which
0 = 2 + σL(c, te)/2. As can be seen in the 4 cases in the proof of Theorem 3.5:
Case (i): tf exists (te =∞); lowest energy is empty torus if T > 0.
Case (ii): te exists. (tf =∞); lowest energy is the full torus if T > 0.
Case (iii): tf ≤ te < t0; lowest energy can be the minimal lamella if T > 2te.
Case (iv): te < tf < t0; lowest energy can be the minimal lamella if T > 2tf .

We now show that for sufficiently large T , the lowest energy configuration is the one associated with
max{t0, te, tf}. Thus in Cases (iii) and (iv) the lowest energy configuration is the minimal torus.

Corollary 3.6. Given a torus with side T , if 2 + σΓ(c)/2 ≥ 0 the minimal energy among stationary k-
lamellae is attained for k = 1; moreover if c > 0 (Case (i)) the trivial empty state has lower energy than all
lamellae and the full torus, whereas if c < 0 (Case (ii)) the full torus has lower energy than all lamellae and
the empty state. The case 2 + σΓ(c)/2 ≥ 0 will thus never see a lamellar configuration having less energy
than both trivial states.

If instead 2+σΓ(c)/2 < 0 (Cases (iii) and (iv)) then the minimal energy configuration among k-lamellae
will divide the torus in k bands with mesh size close to T0 = 2t0(c, σ), and precisely for k = T/T0 if this is
an integer, or (if T/T0 is not an integer) for k equal to either the integer part of T/T0, or the integer part
plus one. We remark that 2 + σΓ(c)/2 < 0 is possible only when σ > 4; then the inequality will be satisfied
for c in a neighbourhood of 0.

Comparison with the trivial “full torus” state and with the empty state, in the case 2 + σΓ(c)/2 < 0, is
less neat. Indeed, in the latter case even when c > 0 there are values of t (all values beyond the point te
where E(σ, c, t) = 0) for which the slope of E(σ, c, t)/t is negative, but if the torus is small (T < te) one can
never have T/k > te as k ≥ 1; together with E(σ, c, ·) being decreasing on the interval [0, te], the empty
torus wins. Instead, if the torus is large (T > te) some stationary lamella can beat the empty torus. Similar
considerations hold for the comparison of lamellae and full torus if c < 0 (otherwise the full torus has higher
energy than the already considered empty one).

In fact when T is very large, we can pick k so that T/k := tk ≈ t0, where t0 is defined just above
Corollary 3.6; Cases (iii) and (iv) then dictate that tk > max{te, tf}. Thus there exists a stationary lamellar
solution which has a lower energy than both trivial states.

Remark 3.7. For Cases (iii) and (iv) the function t 7→ E(σ, c, t) has a single global minimum point at
t = t0. Then for the torus T0 with side T0 = 2t0 the minimal configuration among all (multi-)lamellae exists
and is a single lamella, with thickness x0 = t0 −A(c, t0). Moreover for the torus with side kT0 the minimal
configuration will be a k-lamella, with each strip of thickness x0 (thus kT0 will be divided in k bands, all
equal to the band appearing in T0); and if a torus has side kT0 < T < (k + 1)T0 the minimal configuration
will be either a k- or a (k + 1)-lamella.

Thus the Fitzhugh-Nagumo energy (1.2) induces a preferred width (and spacing) of lamellae, to which
minimal configurations try to conform when the torus is large. The preferred mesh size T0 is thus “universal”.
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