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Abstract. In this study, we approach the analysis of a degenerate nonlinear func-
tional in one dimension, accommodating a degenerate weight w. Our investigation
focuses on establishing an explicit relaxation formula for a functional exhibiting p-
growth for 1 < p < +∞. We adopt the approach developed in [6], where some
assumptions like doubling or Muckenhoupt conditions are dropped. Our main tools
consist of proving the validity of a weighted Poincaré inequality involving an auxiliary
weight.
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2.2. A Poincaré inequality with a double weight 7
3. Relaxation for finitely degenerate weights 14
References 17

1. Introduction

In this work, we focus on the study of nonlinear functionals in one dimension, allowing
for a degenerate weight w. We aim to provide an explicit relaxation formula for a
functional that exhibits p-growth for 1 < p < +∞. More precisely, let us set

F (u) :=


�
Ω
|∇u|pwdx if u ∈ AC(Ω),

+∞ if u ∈ X \AC(Ω),

where Ω is an open bounded set in R, w is a nonnegative, locally integrable function,
and X is a topological space comprising measurable functions which will be introduced
later on. We then delve into its relaxation, aiming to provide an explicit expression of
the lower semicontinuous envelope of F , denoted as F .
In the last decades, some works have aimed to study the above functional by considering
different functional setups; see for instance, [4, 6, 7, 8, 11]. In particular, the attention
had been given to the case p = 2. This choice is canonical as it relates to probabilistic

2020 Mathematics Subject Classification. 26A15,49J45.
Key words and phrases. Lower semicontinuity, relaxation, degenerate variational integrals, weight,
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problems since in this case F is interpreted as a regular Dirichlet form, guaranteeing
the existence of right continuous stochastic processes, as treated in [1, 10]. It’s note-
worthy that the theory of Dirichlet forms is general, with the natural ambient space
being L2(Ω, µ), where µ := w(x) dx. However, the association between right continuous
stochastic processes and F usually requires the validity of a Poincaré inequality. Recent
extensions have involved the analysis of weighted Sobolev spaces, incorporating geomet-
ric aspects [2, 3].
Since the identification of the functional F is subtle, some authors have been used the
density of C1-functions in weighted Sobolev spaces as an important tool, see for instance,
[5, 6]. In this approach, however, some additional assumptions on w, as described in
[5], were necessary. For example, to prove the density of C1-functions, it is sometimes
assumed that w satisfies the doubling or Muckenhoupt conditions [9, 12]. Differently, in
[6], have been adopted the case where such requirements on w are not satisfied, p = 2,
and where X is not fixed a priori.
Let us now describe our approach to relax the functional F that extends to the case
1 < p < +∞ the method used in [6]. We underline that, a priori, we do not known
the space X because its precise structure depends on the choice of w. Specifically, for a
fixed w, we then construct a weight ŵp to define X. This function plays a crucial role
in compensating for degeneracy present in w, and it permits to characterize the domain
of F and analyze it (see Figure 1, for a precise example of such a function ŵp). In our
reasoning, the first step is to prove Poincaré inequalities involving w and ŵp. Specifi-
cally, we consider the p-norm of the gradient term of a generic function u weighted by
w, while the p-norm of u itself is weighted by (ŵp)

p−1. These inequalities are referred to
as Poincaré inequalities with double weight. Subsequently, assuming that w is finitely
degenerate (see Definition 2.1 below), we proceed to choose X = Lp((ŵp)

p−1), and we
show that AC-functions are dense, in a suitable Sobolev space W ⊆ X (see formula
(16) below). It is important to underline that the space Lp(w), and Lp((ŵp)

p−1) are not
comparable, see Remark 2.7 below. As a consequence, we are able to determine the do-
main of F performing the relaxation in the strong topology of X. The resulting relaxed
functional F maintains the same form as F , but its domain consists of functions that
are of Lp((ŵp)

p−1)-integrable type. Instead, the case where w is not finitely degenerate
is still an open problem.
This work is structured as follows. In Section 2, we study the validity of Poincaré in-
equalities with double weight, see Theorem 2.10 below. In Section 3, we formulate and
prove our relaxation theorem, see Theorem 3.1 below.

2. Weighted Poincaré inequalities

Let Ω be an open bounded subset of R, and for 1 < p < ∞, we let 1
p′ = 1 − 1

p . We

define

F (u) =


�
Ω
|∇u|pw dx if u ∈ AC(Ω)

+∞ if u ∈ X \AC(Ω).

Here, X is an appropriate set of integrable functions, that will be chosen in Section 2.
Further, let F : X → [0,+∞] denote the lower semicontinuous envelope of F w.r.t. the

2



topology of X. We consider a weight w : R → R satisfying

(1) w ≥ 0 a.e., w ∈ L1
loc(R).

From now on, it is not restrictive to assume that Ω = (a, b) is a bounded open interval,
and we consistently interchange Ω and (a, b) throughout the text. We denote by Ip,Ω,w

the set

Ip,Ω,w :=
{
x ∈ Ω :∃ ϵ > 0 such that w

− 1
p−1 ∈ L1 ((x− ϵ, x+ ϵ))

}
.

The set Ip,Ω,w is the largest open set in Ω such that w
− p′

p is locally summable. It is
noteworthy that this set has already been considered in [6] for p = 2. In this work, we
are exploring a p-version of the results studied in that work. Without loss of generality,
we can express Ip,Ω,w as the disjoint union

(2) Ip,Ω,w =

Np,w⋃
i=1

(ap,i, bp,i),

with 1 ≤ Np,w ≤ +∞. Subsequently, for the sake of a lean notation, we set ai := ap,i,
bi := bp,i, Nw := Np,w, and IΩ,w := Ip,Ω,w. Our objective is to characterize the relaxation
of the functional F concerning Lp(Ω, (ŵp)

p−1)-convergence, where ŵ is a suitable weight
(see (4)). To achieve this, we reintroduce the concept of a finitely degenerate weight, as
discussed in [6].

Definition 2.1. (i) If IΩ,w = ∅, we put Nw := 0.
(ii) If 1 ≤ Nw < +∞ we say that w is finitely degenerate in Ω.
(iii) If Nw = ∞ we say that w is not finitely degenerate in Ω.

Furthermore, we define the set

(3) Domw :=
{
u : Ω → R : u ∈ W 1,1

loc (IΩ,w),

�
IΩ,w

|u′|pw dx < +∞
}
.

As we will see below, this set must be the core of the relaxed functional of F with respect
to Lp(Ω, (ŵp)

p−1)-convergence.

Remark 2.2. We note that, if w
− 1
p−1 ∈ L1((a, b)), then, obviously, w is finitely degenerate

in Ω with Nw = 1. In this case

Domw = {u ∈ AC([a, b]) :

� b

a
|u′|pw dx < +∞}

(see [5]) since AC([a, b]) = W 1,1([a, b]).

Lemma 2.3 (Fundamental convergence). Let (uh)h ⊂ AC([a, b]) such that

(a) sup
h∈N

�
IΩ,w

|u′h|pw dx < +∞ ,

(b) for every i = 1, . . . , Nw there exists ci such that ai < ci < bi and there exist
finite the following limits

lim
h→+∞

uh(ci) = di ∈ R .
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Then there exists a subsequence (uhk
) and a function u : IΩ,w → R such that

(i) lim
k→+∞

uhk
(x) = u(x) for every x ∈ IΩ,w ,

(ii) u ∈ Domw,

(iii)

�
IΩ,w

|u′|pw dx ≤ lim inf
k→+∞

�
IΩ,w

|u′hk
|pw dx .

Proof. Let us notice that the proof of this Lemma coincides with the one given in [6,
Lemma 4.3]. We only need to notice that Lp

loc(IΩ,w) ⊂ L1
loc(IΩ,w), and the conclusion of

our Lemma follows. □

2.1. An auxiliary weight. In what follows, we construct a suitable weight ŵp for
1 < p < +∞ for which it is possible to prove a Poincaré inequality involving w and
(ŵp)

p−1. Let w : Ω = (a, b) → [0,∞) be a function satisfying (1) and (2). We let
ŵp : Ω → [0,+∞[ be defined as

(4) ŵp(x) :=



lim
x→a+i

(� ai+bi
2

x

1

w
1

p−1 (y)
dy

)−1

if x = ai(� ai+bi
2

x
1

w
1

p−1 (y)
dy

)−1

if ai < x ≤ 3ai+bi
4(� ai+3bi

4
3ai+bi

4

1

w
1

p−1 (y)
dy

)−1

if 3ai+bi
4 ≤ x ≤ ai+3bi

4(� x
ai+bi

2

1

w
1

p−1 (y)
dy

)−1

if ai+3bi
4 ≤ x < bi

lim
x→b−i

(� x

ai+bi
2

1

w
1

p−1 (y)
dy

)−1

if x = bi

0 if x ∈ Ω \ IΩ,w .

Remark 2.4. Let us notice that ŵp heavily depends on p. In this part, ŵp is defined
as the inverse of an integral term, which allows us to use its nice properties, such as
continuity, that we used to prove the Proposition 2.4.

In the next, we give an explicit example of the previous function ŵp. In the relaxation
of F , we will consider Lp(Ω, (ŵp)

p−1)-convergence. Before providing the precise details
of how we relax F , let us gather some properties of the functions ŵp in the following
proposition. The proof is elementary, taking the definitions into account.

Proposition 2.5.

(i) Suppose that w
− 1

p−1 is not locally summable in Ω, that is, IΩ,w = ∅. Then
ŵp ≡ 0.

(ii) For each i = 1, . . . , Nw, ŵp is constant in [3ai+bi
4 , ai+3bi

4 ], increasing in [ai,
3ai+bi

4 ],

decreasing in [ai+3bi
4 , bi] and absolutely continuous in each interval. In particu-

lar, the following hold true:

0 < ŵp(x) ≤ sup
y∈(ai,bi)

ŵp(y) < ∞ ∀x ∈ (ai, bi) ,
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Figure 1. In the first figure on the left hand side, we have the profile of
w(x) = (1 − x2)2 for x ∈ (−2, 2), while in the right hand side, we have
its associated weight ŵ2. In this case, we note that Nw = 3.

inf
x∈[α,β]

w(x) > 0 for each x ∈ [α, β], ai < α < β < bi,

and ŵp(ai) = 0 (respectively ŵp(bi) = 0) if and only if w
− 1

p−1 /∈ L1((ai,
ai+bi

2 ))

(respectively w
− 1

p−1 /∈ L1((ai+bi
2 , bi))).

(iii) We have

(5) (ŵp)
′ =

(ŵp)
2

w
1

p−1

a.e. in

(
ai,

3ai + bi
4

)
∪
(
ai + 3bi

4
, bi

)
.

(iv) Suppose that w
− 1

p−1 ∈ L1(Ω). Then there exists a constant c > 0 such that

0 <
1

c
≤ ŵp(x) ≤ c a.e. x ∈ Ω .

(v) Suppose that w is finitely degenerate in Ω, that is, (2) holds with 1 ≤ Nw < ∞.
Then there exists a constant c > 0 such that

0 ≤ ŵp(x) ≤ c a.e. x ∈ Ω .

(vi) Suppose that w is not finitely degenerate in Ω, that is, (2) holds with Nw = ∞.
Then ŵp ∈ L∞

loc(IΩ,w).

Remark 2.6. Let us consider the following example already considered in [6, Example
4.7]. Let us take α > 0 such that α

p−1 > 1. Here, we also observe that if w is not finitely

degenerate in some open set Ω, then it can also happens that ŵp /∈ L1(Ω). Suppose
that Ω = (0, 1) and let (ai, bi), i = 1, . . . ,+∞, be a sequence of disjoint open intervals
in (0, 1) and mi be a sequence of positive real numbers which will be fixed later on. Let
w : (0, 1) → [0,+∞) defined as follows:

w(x) :=


mi(x− ai)

α if ai ≤ x ≤ ai+bi
2 ,

mi(bi − x)α if ai+bi
2 ≤ x ≤ bi,

0 otherwise.
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Let us fix ai ≤ x ≤ 3ai+bi
4 . Then by definition of ŵp we have

ŵp(x) =
(αp − 1)m

1
p−1

i (x− ai)
αp−1

1−
(
2(x−ai)
bi−ai

)αp−1 ,

where αp :=
α

p−1 . Let us notice that 0 ≤ 2(x−ai)
bi−ai

≤ 1
2 , and then

(αp − 1)m
1

p−1

i (x− ai)
αp−1 ≤ ŵp(x) ≤

(αp − 1)m
1

p−1

i (x− ai)
αp−1

1−
(
1
2

)αp−1 .

Therefore,

ŵp(x) ∼= m
1

p−1

i (x− ai)
αp−1, ai ≤ x ≤ 3ai + bi

4
,

and
� 3ai+bi

4

0
ŵp(x)dx ∼= m

1
p−1

i (bi − ai)
αp .

Hence, if we take the set {mi : i ∈ N} such that

+∞∑
i=1

m
1

p−1

i (bi − ai)
αp = +∞(6)

we get that ŵp /∈ L1((0, 1)). An example of function w for which the latter series diverges
can be given in the following manner. Suppose that for each i ∈ N, bi − ai =

1
2i
, and we

choose mi := 2(i+1)α. Since α > 0, we get that m
1

p−1

i > 2iαp , and thus (6) holds true.

Remark 2.7. We recall another example already considered in [6, Example 5.1] in order
to see that the Lebesgue spaces Lp(Ω, w) and Lp(Ω, (ŵp)

p−1) are independent. Let
Ω = (0, 1), w : (0, 1) → (0,∞), w(x) = xα, with −1 < α < p− 1, w ∈ L1((0, 1)) and

1

w
1

p−1

∈ L1((0, 1))

and so, by (iv) in Proposition 2.5, it follows that

Lp(Ω, (ŵp)
p−1) = Lp(Ω) .

Therefore, if α ∈ (0, p− 1), since w(x) < 1 for each x ∈ (0, 1),

Lp(Ω, (ŵp)
p−1) = Lp(Ω) ⊊ Lp(Ω, w) ;

if α = 0, since w(x) = 1 for each x ∈ (0, 1),

Lp(Ω, (ŵp)
p−1) = Lp(Ω) = Lp(Ω, w).

Let 1 < p < 2; if α ∈ (−p+ 1, 0), since w(x) > 1 for each x ∈ (0, 1),

Lp(Ω, ŵp) = Lp(Ω) ⊋ Lp(Ω, w) .
6



2.2. A Poincaré inequality with a double weight. In what follows, we derive a
weighted Poincaré inequality that we use later on. We first state some preliminary
lemmas.

Proposition 2.8. Let us consider a fixed u ∈ Domw, i = 1, . . . , Nw, and let 1
p +

1
p′ = 1.

Let us take η, x such that ai < η ≤ x ≤ ai+bi
2 . The following hold true:

(7) |u(x)− u(η)| p′
√
ŵp(η) ≤

(� x

η
|u′(y)|pw(y) dy

) 1
p

;

(8) |u(η)|p(ŵp(η))
p−1 ≤ 2p−1

(
|u(x)|p(ŵp(η))

p−1 +

� x

ai

|u′(y)|pw(y) dy
)
.

Let us take η, x such that ai+bi
2 ≤ x ≤ η < bi. The following hold true:

(9) |u(x)− u(η)| p′
√
ŵp(η) ≤

(� η

x
|u′(y)|pw(y) dy

) 1
p

;

(10) |u(η)|p(ŵp(η))
p−1 ≤ 2p−1

(
|u(x)|p(ŵp(η))

p−1 +

� bi

x
|u′(y)|pw(y) dy

)
.

Proof. . By definition of Domw, and by the immersion of W 1,1(IΩ,w) into AC(IΩ,w) ,

we also have that u ∈ ACloc((ai, bi)). Then for every x, η ∈]ai, ai+bi
2 ] such that ai < η ≤

x ≤ ai+bi
2 we have

|u(x)− u(η)| =
∣∣∣∣� x

η
u′(y) dy

∣∣∣∣ ≤ (� x

η
|u′(y)|pw(y) dy

) 1
p
(� x

η
w

− p′
p (y) dy

) 1
p′

≤
(� x

η
|u′(y)|pw(y) dy

) 1
p

(� ai+bi
2

η
w

− p′
p (y) dy

) 1
p′

.

(11)

Let us noticing that, if ai < η ≤ min{3ai+bi
4 , x}, then (7) follows by (11) and the

definition of ŵ. Furthermore, if 3ai+bi
4 ≤ η ≤ ai+bi

2 , since we have that� ai+bi
2

η

1

w
p′
p (y)

dy

 1
p′

≤ 1
p′
√

ŵp(η)
,

(7) still follows by (11) and the definition of ŵp. Then, since

|u(η)|p ≤ 2p−1 (|u(x)|p + |u(η)− u(x)|p) ,
by (7), we then deduce (8). The remaining formulas (9) and (10) follow by arguing in a
similar way. □

Some consequences of Proposition 2.8 are summarized in the following Corollary.

Corollary 2.9. Let us fix u ∈ Domw, and i = 1, . . . , Nw. Then the following hold true:
7



(i) |u(η)|p(ŵp(η))
p−1 ≤ 2p−1

(∣∣∣∣u(ai + bi
2

)∣∣∣∣p (ŵp(η))
p−1 +

� bi

ai

|u′(y)|pw(y) dy
)

,

for each η ∈ (ai, bi). Furthermore, u ∈ Lp((ai, bi), (ŵp)
p−1), and if Nw < +∞

then u ∈ Lp(Ω, (ŵp)
p−1).

(ii) Suppose that

� ai+bi
2

ai

1

w
1

p−1

dx = +∞ (respectively, suppose that

� bi

ai+bi
2

1

w
1

p−1

dx = +∞).

Then there exists

lim
x→a+i

(up (ŵp)
p−1)(x) = 0 (respectively, lim

x→b−i

(up (ŵp)
p−1)(x) = 0) .

(iii) Suppose that

� ai+bi
2

ai

1

w
1

p−1

dx < ∞ (respectively, suppose that

� bi

ai+bi
2

1

w
1

p−1

dx < ∞).

Then

u ∈ AC
([

ai,
ai + bi

2

])
(respectively, u ∈ AC

([ai + bi
2

, bi
])

.

Proof. (i) Note that by (7) and (8) with x = ai+bi
2 , we can obtain the desired inequality.

We now aim to justify (ii). Let ai < η ≤ x ≤ ai+bi
2 . Suppose that

� ai+bi
2

ai

1

w
1

p−1

dx = +∞.

By the definition of ŵp, we obtain that limη→a+i
ŵp(η) = 0. Furthermore, for each

x ∈ (ai,
ai+bi

2 ), we have that by (8) the following inequality holds true:

lim sup
η→a+i

|u(η)|p(ŵp(η))
p−1 ≤ 2p−1

� x

ai

|u′(y)|pw dy.

Hence, by letting lim as x → a+i in the previous inequality, then that

lim
η→a+i

|u(η)|p(ŵp(η))
p−1 = 0 .

Now, let us suppose that

� bi

ai+bi
2

1

w
1

p−1

dx = +∞. Then, we immediately obtain that

lim
η→b−i

|u(η)|p(ŵp(η))
p−1 = 0 .

(iii) Lastly, let us suppose that

� ai+bi
2

ai

1

w
1

p−1

dx < ∞. We now prove that u ∈ AC
([
ai,

ai+bi
2

])
.

Since u ∈ AC([ai+ δ, ai+bi
2 ]), for each δ > 0, it is sufficient to prove that there exists the

following limit

(12) lim
η→a+i

u(η) ∈ R.

Let us first show that

(13) u′ ∈ L1

((
ai,

ai + bi
2

))
.
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Indeed, let us notice that by Hölder inequality, it holds that

� ai+bi
2

ai

|u′(x)|dx ≤

(� ai+bi
2

ai

|u′(x)|pw(x)dx

) 1
p
(� ai+bi

2

ai

w(x)
− 1

p−1dx

) 1
p′

< +∞.

On the other hand, by the fundamental theorem of Calculus for every η ∈ (ai,
ai+bi

2 ]

(14) u(η) = u
(ai + bi

2

)
−
� ai+bi

2

η
u′(x)dx.

Therefore, by (13) and (14),we then deduce the existence of the desired limit (12). Let
us observe that the remaining case is similar. □

We now aim to prove the validity of a Poincaré type inequality with respect to the
weight function (ŵp)

p−1.

Theorem 2.10 (Poincaré type inequality on Domw). Let 1 ≤ Nw ≤ +∞. For every
u ∈ Domw, it holds true that

(15)

Nw∑
i=1

−
� bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣p (ŵp(η))
p−1 dη ≤

�
IΩ,w

|u′(y)|pw(y) dy .

Proof. Let us set 1 ≤ i ≤ Nw, and consider x = ai+bi
2 in (7). Then one gets∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣p (ŵp(η))
p−1 ≤

� ai+bi
2

ai

|u′(y)|pw(y) dy.

Hence, by integrating with respect to η gives that
� ai+bi

2

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣p (ŵp(η))
p−1 dη ≤ bi − ai

2

� ai+bi
2

ai

|u′(y)|pw(y) dy.

Further, by letting the same reasoning, we get� bi

ai+bi
2

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣p (ŵp(η))
p−1 dη ≤ bi − ai

2

� bi

ai+bi
2

|u′(y)|pw(y) dy.

Therefore, by combining both inequalities, we deduce that� bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣p (ŵp(η))
p−1 dη ≤ (bi − ai)

� bi

ai

|u′(y)|pw(y) dy,

and thus

−
� bi

ai

∣∣∣∣u(η)− u

(
ai + bi

2

)∣∣∣∣p (ŵp(η))
p−1 dη ≤

� bi

ai

|u′(y)|pw(y) dy.

Since u ∈ Domw, then

Nw∑
i=1

� bi

ai

|u′(y)|pw(y) dy =

�
IΩ,w

|u′(y)|pw(y) dy < +∞,

and our conclusion follows. □
In what follows, we consider the following set

9



W = W (Ω, w) := Domw ∩ Lp(Ω, (ŵp)
p−1).(16)

In the next proposition we prove that W endowed with a suitable norm is a Banach
space and some related properties.

Proposition 2.11. Let us consider W be defined as in (16), and endow it with the norm

∥u∥W := p

√
∥u∥p

Lp(IΩ,w,(ŵp)p−1)
+ ∥u′∥pLp(IΩ,w,w) if u ∈ W .

Then (W, ∥u∥W ) is a Banach space. Further, if w is a finitely degenerate weight, then

(17) AC(Ω) is dense in (W, ∥ · ∥W )

in the following sense. For every u ∈ W there exists a sequence (uh)h ⊂ AC(Ω) such
that

(18) lim
h→∞

uh = u in (W, ∥ · ∥W ) ,

that is,

(19) lim
h→∞

uh = u in Lp(Ω, (ŵp)
p−1), and lim

h→+∞
u′h = u′ in Lp(IΩ,w, w) .

Proof. Let us first prove that W is a Banach space. Suppose that (uh)h ⊂ (W, ∥ · ∥W ) is
a Cauchy sequence. Hence, by definition, we have that (uh)h ⊂ Lp(IΩ,w, (ŵp)

p−1), and
(u′h)h ⊂ Lp(IΩ,w, w) are Cauchy sequences. Since Lp(IΩ,w, (ŵp)

p−1), and Lp(IΩ,w, w) are
complete spaces, it follows that there exist u ∈ Lp(IΩ,w, (ŵp)

p−1), and v ∈ Lp(IΩ,w, w)
such that,

(20) uh → u in Lp(IΩ,w, (ŵp)
p−1), and u′h → v in Lp(IΩ,w, w) ,

as h → +∞. In what follows, we need to prove that for each i = 1, . . . , Nw,

(21) u ∈ ACloc((ai, bi)) and u′ = v a.e. in (ai, bi) ,

and from which we conclude that u ∈ Domw, and thus proving that W is a Banach

space. Let us fix i = 1, . . . , Nw, and let ai < α < β < bi. Since w
− 1

p−1 ∈ L1
loc(IΩ,w),

together to Proposition 2.5 (ii), it follows that

(22)
1

ŵp
∈ L1((α, β)).

Then by (22), we get the continuous inclusions

(23) Lp((α, β), (ŵp)
p−1) ⊂ L1((α, β)), and Lp((α, β), w) ⊂ L1((α, β)) .

Indeed, if f ∈ Lp((α, β), (ŵp)
p−1), then

� β

α
|f(x)|dx ≤

(� β

α
|f(x)|p(ŵp(x))

p−1dx

) 1
p
(� β

α
(ŵp(x))

−1dx

) 1
p′

< +∞,

which proves (23). Therefore, by (20)

uh → u in L1((α, β)), and u′h → v in L1((α, β)) ,
10



and thus

u ∈ AC([α, β]), and u′ = v a.e. in [α, β] ,

from which we conclude that (21) holds true.

We now need to show that (17) is true. To this end, it is enough to show that for
each u ∈ W , there exists a sequence (ūh)h ⊂ AC(Ω) such that

(24) ūh → u in Lp(Ω, (ŵp)
p−1) and (ū′h)h bounded in Lp(IΩ,w, w) .

In fact, by (24) and the fact that W is a reflexive space, up to a subsequence, we can
assume that

ūh → u in W -weak .

Thanks to Mazur’s lemma, there exists a sequence (uh)h such that, for each h, there
exist real numbers ch,j ∈ R and hj ∈ N for j = 1, . . . ,mh, with

mh∑
j=1

ch,j = 1 and uh =

mh∑
j=1

ch,juhj
∈ AC(Ω) ,

such that (18) holds true. Thanks to (17), we only need to show that (24) is true.

Let us consider u ∈ W , so that u′ ∈ Lp(IΩ,w, w). It is well-known that there exists a
sequence of functions (vh)h ⊂ C0

c (IΩ,w) ⊂ Lp(IΩ,w, w) such that

(25) ∥vh − u′∥pLp(IΩ,w,w) =

Nw∑
i=1

� bi

ai

|vh − u′|pw dx → 0, as h → +∞ .

In what follows, we define for each h ∈ N, the function ũ
(i)
h : (ai, bi) → R, i = 1, 2, . . . , h

as

(26) ũ
(i)
h (x) := u

(
ai + bi

2

)
−
� ai+bi

2

x
vh(y) dy , x ∈ (ai, bi).

We now split the proof in three cases.
1st case. In this case, we suppose that Nw = 1, and thus IΩ,w = (a1, b1). Consider

(ũ
(1)
h )h∈N be the sequence defined in (26) for i = 1, and let uh := ūh : (a, b) → R be

defined as

ūh(x) :=


ũ
(1)
h (a1) if x ∈ (a, a1]

ũ
(1)
h (x) if x ∈ (a1, b1)

ũ
(1)
h (b1) if x ∈ [b1, b) .

Then by definition, we notice that see that (ūh)h ⊂ C1([a, b]) ⊂ AC([a, b]), and thus (18)
holds true. In the next, we will prove that (24) is truth. Since (25), and (26) hold truth,
we get that the sequence (ū′h)h is bounded in Lp(IΩ,w, w) . We now show the following:

(27)

� b

a
|ũh − u|p (ŵp)

p−1 dx → 0 as h → ∞ .

11



Indeed, since ŵp ≡ 0 in Ω \ IΩ,w, we have that

� b

a
|ũh − u|p (ŵp)

p−1 dx =

� b1

a1

|ũh − u|p (ŵp)
p−1 dx.

Hence, by our Poincaré inequality (15) with ũh−u instead of u, and due to ũh

(
a1+b1

2

)
=

u
(
a1+b1

2

)
, we deduce that

� b1

a1

|ũh − u|p (ŵp)
p−1 dx ≤

�
IΩ,w

|ũ′h − u′|pw dx

=

�
IΩ,w

|vh − u′|pw dx .

Therefore, by applying (25), our desired conclusion (27) follows. We now proceed with
the second case.
2nd case. Let us suppose that Nw = 2. Then IΩ,w = (a1, b1) ∪ (a2, b2). We suppose
without loss of generality that b1 ≤ a2 and we distinguish the cases b1 < a2 and b1 = a2.

Suppose that (ũ
(i)
h )h is the sequence as defined in (26) for i = 1, 2.

If b1 < a2 , for each h ∈ N, let us take uh = ūh : Ω → R be defined as

ūh(x) :=



ũ
(1)
h (a1) if x ∈ [a, a1)

ũ
(1)
h (x) if x ∈ [a1, b1)

ũ
(2)
h (a2)−ũ

(1)
h (b1)

a2−b1
(x− b1) + ũ

(1)
h (b1) if x ∈ [b1, a2)

ũ
(2)
h (x) if x ∈ [a2, b2)

ũ
(2)
h (b2) if x ∈ [b2, b] .

It is customary to demonstrate that (uh)h ⊂ AC([a, b]), ensuring the validity of (18). In
fact, we can derive (24) by employing a strategy similar to the one used in the first case,
while also noting that ŵp ≡ 0 in Ω \ IΩ,w.

In what follows, we consider the second subcase b1 = a2. Let h ∈ N such that

1

h
< min

{
bi − ai

4
: i = 1, 2

}
.

12



Let uh = ūh : Ω → R be defined as

ūh(x) :=



ũ
(1)
h (a1) if x ∈ [a, a1),

ũ
(1)
h (x) if x ∈ [a1,

a1+b1
2 ),

u(x) if x ∈ [a1+b1
2 , b1 − 1

h),

u(x)
p
√

ŵp(x)

p
√

ŵp(b1− 1
h
)

if x ∈ [b1 − 1
h , b1),

u(x)
p
√

ŵp(x)

p
√

ŵp(a2+
1
h
)

if x ∈ [a2, a2 +
1
h),

u(x) if x ∈ [a2 +
1
h ,

a2+b2
2 ),

ũ
(2)
h (x) if x ∈ [a2+b2

2 , b2),

ũ
(2)
h (b2) if x ∈ [b2, b] .

Observe that (uh)h ⊂ AC([a, b]), and thus (18) can be obtained. We now need to show
(24). To do that, we prove that

(28)

� b1

a1+b1
2

|ũh − u|p (ŵp)
p−1 dx → 0 as h → +∞ ,

and

(29)

� b1

a1+b1
2

|ũ′h|pw dx ≤ C < +∞ .

Indeed, we have

� b1

a1+b1
2

|ũh − u|p (ŵp)
p−1 dx =

� b1

b1− 1
h

up

1−
p
√
ŵp(x)

p

√
ŵp(b1 − 1

h)

p

(ŵp)
p−1 dx.

Then by Proposition 2.5 the weight ŵp is decreasing in [a1+3b1
4 , b1], and thus

(30)
ŵp(x)

ŵp(b1 − 1
h)

≤ 1, x ∈
(
b1 −

1

h
, b1

)
.

From here, we obtain that
� b1

a1+b1
2

|ũh − u|p (ŵp)
p−1 dx ≤

� b1

b1− 1
h

up (ŵp)
p−1 dx → 0 as h → ∞ .

Since the last conclusion can be also deduced in the interval (a2,
a2+b2

2 ), then (28) holds
true. We now need to prove (29). Notice that

ū′h(x) :=


u′(x) if x ∈ [a1+b1

2 , b1 − 1
h)

1
p
√

ŵp(b1− 1
h
)

(
u′(x) p

√
ŵp(x) +

u(x)(ŵp)′(x)( p′
√

ŵp(x))−1

p

)
if x ∈ [b1 − 1

h , b1).

Therefore
13



� b1

a1+b1
2

|ū′h|pw dx =

� b1− 1
h

a1+b1
2

|u′|pw dx+

+

� b1

b1− 1
h

1

ŵp(b1 − 1
h)

(
u′ p
√

ŵp +
u(ŵp)

′( p′
√
ŵp)

−1

p

)p

w dx

≤
� b1

a1+b1
2

|u′|pw dx+ 2p−1

(� b1

a1+b1
2

|u′|p ŵp

ŵp(b1 − 1
h)

w dx

+
1

pp

� b1

b1− 1
h

1

ŵp(b1 − 1
h)

up|(ŵp)
′|p(ŵp)

− p
p′ w dx

)
.

Since (30) holds true, we can then conclude that the second integral is finite. Now,
let us prove that the last integral is also finite. Now, since up(ŵp)

p−1 is bounded in
(b1 − 1/h, b1) (see Corollary 4.6 (i)) and ŵp(b1) = 0, we have that

� b1

b1− 1
h

1

ŵp(b1 − 1
h)

up|(ŵp)
′|p w

(ŵp)
p
p′
dx =

� b1

b1− 1
h

1

ŵp(b1 − 1
h)

up
(
(ŵp)

2

w
1

p−1

)p
w

(ŵp)
p
p′
dx

=

� b1

b1− 1
h

1

ŵp(b1 − 1
h)

up(ŵp)
p−1 (ŵp)

2

w
1

p−1

dx

≤ Cp

ŵp(b1 − 1
h)

� b1

b1− 1
h

(ŵp)
2

w
1

p−1

dx.

Now, by (5) we have

(ŵp)
′ =

(ŵp)
2

w
1

p−1

a.e. in

(
b1 −

1

h
, b1

)
,

and then� b1

b1− 1
h

1

ŵp(b1 − 1
h)

up|(ŵp)
′|p w

(ŵp)
p
p′
dx ≤ Cp

ŵp(b1 − 1
h)

� b1

b1− 1
h

|(ŵp)
′|dx

=
Cp

ŵp(b1 − 1
h)

[
ŵp

(
b1 −

1

h

)
− ŵp(b1)

]
= Cp.

Finally, we address the last case.
3rd case. In the general case where IΩ,w =

⋃Nw
i=1(ai, bi) with bi ≤ ai+1 for every

i = 1, . . . , Nw − 1, it is sufficient to replicate the arguments of the 2nd case for each
i = 1, . . . , Nw − 1. □

3. Relaxation for finitely degenerate weights

We consider X = Lp(Ω, (ŵp)
p−1) where ŵp is the weight as defined in (4). Let us set

14



F (u) :=


� b

a
|u′|pw dx if u ∈ AC([a, b])

+∞ if u ∈ X \AC([a, b])
and consider the lower semicontinuous envelopes w.r.t. Lp((ŵp)

p−1)-convergence, that
is

F (u) = sc−(Lp((ŵp)
p−1))− F (u).

We set

D := {u ∈ Lp((a, b), (ŵp)
p−1) : F (u) < +∞} .

Let us recall that, if IΩ,w = ∅, then ŵp ≡ 0 (see Proposition 2.5 (i)). This implies that

Lp((a, b), (ŵp)
p−1) = {0}, D = {0} and F (u) = 0. In the next theorem, we state an

explicit formula for the relaxed functional F with respect to the chosen convergence.

Theorem 3.1. Suppose that w is a finitely degenerate weight. Then

D = Domw

where Domw is defined by (3) and the following representation holds for the relaxed
functional

F (u) =


�
IΩ,w

|u′|pw dx if u ∈ Domw

+∞ if u ∈ Lp(Ω, (ŵp)
p−1) \Domw.

Proof. Note that by Lemma 2.3 and Proposition 2.8, we deduce that D ⊆ Domw. Fur-
thermore, for every u ∈ D one gets

u ∈ W 1,1
loc (IΩ,w) ∩ Lp(IΩ,w, (ŵp)

p−1), up(ŵp)
p−1 ∈ L∞(IΩ,w) .

In the next, we show that for every u ∈ Lp(Ω, (ŵp)
p−1)�

IΩ,w

|u′|pw dx ≤ F (u).

By the definition of F , we directly suppose that F (u) < +∞. Therefore there exists a
sequence (uh) ⊂ Domw such that uh → u in Lp(Ω, (ŵp)

p−1) and

F (u) = lim
h→+∞

F (uh) = lim
h→+∞

�
Ω
|u′h|pw dx.

Then, thanks to Lemma 2.3 we get up to extracting a subsequence that�
Ω
|u′|pw dx ≤ lim inf

h→+∞

�
Ω
|u′h|pw dx = lim

h→+∞

�
Ω
|u′h|pw dx = F (u)

and we are done. To conclude, it remains to prove that

(31) F (u) ≤
�
IΩ,w

|u′|pw dx, ∀u ∈ Domw

and thus Domw ⊆ D. In fact, this is a consequence of (17). Indeed, by property (i) in
Corollary 2.9 we have that that Domw ⊂ Lp(Ω, (ŵp)

p−1). Thus, if u ∈ W = Domw ∩
15



Lp(Ω, (ŵp)
p−1) = Domw, by (17), there exists a sequence (uh)h ⊂ AC([a, b]) such that

(19) holds true. Hence, from (19), one has that

F (u) ≤ lim inf
h→∞

F (uh) ≤ lim
h→∞

�
IΩ,w

|u′h|pw dx =

�
IΩ,w

|u′|pw dx ,

and thus (31) holds true. □

We consider the following functionals defined on the space Lp(Ω, (ŵp)
p−1)

F 1(u) :=


� b

a
|u′|pw dx if u ∈ C1([a, b]),

+∞ if u ∈ Lp(Ω, (ŵp)
p−1) \ C1([a, b]),

F 2(u) :=


� b

a
|u′|pw dx if u ∈ Lip([a, b]),

+∞ if u ∈ Lp(Ω, (ŵp)
p−1) \ Lip([a, b]),

F 3(u) =


� b

a
|u′|pw dx if u ∈ H1((a, b)),

+∞ if u ∈ Lp(Ω, (ŵp)
p−1) \H1((a, b)),

and the corresponding lower semicontinuous envelopes w.r.t. the Lp(Ω, (ŵp)
p−1)-convergence

(32) F j(u) = sc−(Lp(Ω, (ŵp)
p−1))− Fj(u) j = 1, 2, 3 .

Corollary 3.2. For every u ∈ Lp(Ω, (ŵp)
p−1) we have

F 1(u) = F 2(u) = F 3(u) = F (u),

where F j(u), j = 1, 2, 3 are the functionals in (32).

Proof. As in the proof of Corollary 4.20 in [6] it suffices to apply the classical argument
of approximation by convolution.

□
Acknowledgments. The authors are members of the Istituto Nazionale di Alta

Matematica (INdAM), GNAMPA Gruppo Nazionale per l’Analisi Matematica, la Prob-
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