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Abstract

The thesis relates to the research areas of the calculus of variations, geometric measure theory,
and PDEs with a focus on models from continuum mechanics and aims at moving forward from
the state of art with respect to the following two problems:

Part A: the existence of solutions for free-boundary problems in linear elasticity involving more
phases [65, 66],

Part B: the existence and uniqueness of solutions for dynamic perfect elasto-plasticity [12],

which represent the two parts of the thesis.

In Part A both the static model introduced in [66] for the description of the morphology of
two-phase continua with the feature of allowing for both coherent and incoherent interfaces, and
the extension to the setting of film multilayers addressed in [65] are discussed. Such models are
designed in the framework of the theory of Stress Driven Rearrangement Instabilities, which
are characterized by the competition between elastic and surface effects. For both settings the
existence of energy minimizers is established in the plane by means of the direct method of the
calculus of variations under a constraint on the number of boundary connected components,
and by prescribing a graph assumption for the underlying substrate phase in [66] and for the
interfaces between film layers in [65]. Both the wetting and the dewetting regimes are included
in the analysis.

In Part B the well-posedness of a dynamical model of perfect plasticity with mixed boundary
conditions for general closed and convex elasticity sets is addressed in [12]. The proof is based
on an asymptotic analysis for the perfect plasticity model with relaxed dissipative boundary
conditions, on extending the measure theoretic duality pairing between stresses and plastic strains,
as well as on a convexity inequality to a more general context where deviatoric stresses are not
necessarily bounded. Complete answers are given in the pure Dirichlet and pure Neumann cases,
while for general mixed boundary conditions in dimension 2 and 3 under additional geometric
hypotheses on the elasticity sets and the reference configuration.
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Kurzfassung

Die Thesis bezieht sich auf die Forschungsgebiete der Variationsrechnung und der PDEs mit
einem Schwerpunkt auf Modellen aus der Kontinuumsmechanik und zielt darauf ab, den Stand
der Technik in Bezug auf die folgenden zwei Probleme zu erweitern:

Teil A: die Existenz von Lösungen für freie Randbedingungen bei linearer Elastizität mit Beteili-
gung mehrerer Phasen [65, 66],

Teil B:. die Existenz und Einzigartigkeit der dynamischen perfekten Elasto-Plastizität [12],

die die beiden Teile der These darstellen.

In Teil A wird ein statisches Modell zur Beschreibung der Morphologie von Zweiphasenkontinua
vorgestellt, das sowohl kohärente als auch inkohärente Grenzflächen berücksichtigt, wird in [66]
vorgestellt. Das Modell wurde im Rahmen der Theorie der spannungsgesteuerten Umlagerungsin-
stabilitäten entwickelt, die durch die Konkurrenz zwischen elastischen und Oberflächeneffekten
gekennzeichnet sind. Das Vorhandensein von Energieminimierern wird in der Ebene mit Hilfe der
direkten Methode unter der Bedingung nachgewiesen, dass die Anzahl der zusammenhängenden
Komponenten der zugrundeliegenden Phase, deren äußerer Rand vorgeschrieben ist, um eine
Graphenannahme zu erfüllen, und der zweiphasigen zusammengesetzten Region begrenzt ist.
Sowohl das Benetzungs- als auch das Entnetzungsregime werden in die Analyse einbezogen, und
die Ausweitung auf die Situation von Folienmehrschichten wird in [65] untersucht.

In Teil B wird die Wohlgeformtheit eines dynamischen Modells der perfekten Plastizität mit
gemischten Randbedingungen für allgemeine geschlossene und konvexe Elastizitätsmengen in [12]
behandelt. Der Beweis basiert auf einer asymptotischen Analyse für das Modell der perfekten
Plastizität mit entspannten dissipativen Randbedingungen, auf der Erweiterung der maßtheo-
retischen Dualitätspaarung zwischen Spannungen und plastischen Dehnungen sowie auf einer
Konvexitätsungleichung für einen allgemeineren Kontext, in dem abweichende Spannungen nicht
unbedingt begrenzt sind. Vollständige Antworten werden für den reinen Dirichlet- und den reinen
Neumann-Fall gegeben, während für allgemeine gemischte Randbedingungen in den Dimensionen
2 und 3 unter zusätzlichen geometrischen Hypothesen über die Elastizitätsmengen und die
Referenzkonfiguration.
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Notations

In this manuscript, otherwise stated, we consider n = 2, 3. We denote by S1 the unit sphere, i.e.,
S1 := {x ∈ Rn : ∥x∥ = 1}.

Linear Algebra
Let a, b ∈ Rn.

a · b Euclidean scalar product between a and b, i.e., a · b := ∑n
i=1 aibi

|a| norm of a with respect to the Euclidean scalar product, i.e., |a| :=
√
a · a

Mn the set of n× n matrices
Mn

sym the space of symmetric n× n matrices.
a⊙ b the symmetric tensor product, i.e., a⊙ b := (abT + bTa)/2 ∈ Mn

sym

πi The projections onto xi-axis for i = 1, . . . , n, i.e., πi(x1, . . . , xi, . . . , xn) = xi

for every (x1, . . . , xi, . . . , xn) ∈ Rn and i = 1, . . . , n
Let A,B ∈ Mn

Id identity matrix of Mn

trA trace of A
A : B Fröbenius scalar product, i.e., A : B := tr

(
ATB

)
|A| Fröbenius norm, i.e., |A| :=

√
A : A.

AD deviatoric part of A, i.e., AD := A− 1
n(trA)Id

If n = 2, we denote the orthonormal basis of R2 as follows:

e1 (1, 0) ∈ R2

e2 (0, 1) ∈ R2

Measure theory
Let µ, ν be two Radon measures.

ν ≪ µ ν is absolutely continuous with respect to µ
ν ⊥ µ µ and ν are mutually singular
Ln Lebesgue measure in Rn

Hn−1 (n− 1)-dimensional Hausdorff measure
µ E restriction of the measure µ to E
dµ
dν Radon-Nikodým derivative of µ respect to ν

ix



Notations

Topology and metric space notation
Let x, x0 ∈ Rn, ν ∈ S1 and ρ > 0.
Bρ(x) the open ball with center x and radius ρ
Int(E) topological interior of E
E topological closure of E
∂E topological boundary of E
Cl(F ) the closure of a set F in E with respect to the relative topology in E
rE rE := {rx : x ∈ E}
Qρ,ν(x) the open square of sidelength 2ρ whose sides are either perpendicular or parallel

to ν
Qρ Qρ := Qρ,e2(0)
Iρ Iρ := [−ρ, ρ]
dist(·, E) distance function from E
sdist(·, ∂E) signed distance function from ∂E, i.e.,

sdist(x, ∂E) :=
{

dist(x,E) if x ∈ Rn \ E,
−dist(x,E) if x ∈ E

σρ,x0 the blow-up map centered in x0, i.e.,

σρ,y0 : R2 → R2

x 7→ σρ,x0 (x) := x−x0
ρ

σρ σρ = σρ,0, where 0 = (0, . . . , 0) ∈ Rn

Notice that σρ,x (Qρ,ν (x)) = Q1,ν(0) and σρ,x

(
Qρ,ν (x)

)
= Q1,ν(0).

Convex Analysis
Let X be a topological vector space and X∗ be the topological dual of X. Let A ⊂ X be a convex
set and f, g : A → [−∞,∞] two convex functions
IA indicator function of the convex set A, i.e., IA(x) = 0 if x ∈ A or IA(x) = ∞ if

x /∈ A
f∗ convex conjugate of f , i.e., f∗(x∗) := sup{⟨x∗, x⟩ − f(x) : x ∈ X}
f□g infimal convolution of f and g, i.e., f□g(x) := inf{f(x− y) + g(y) : y ∈ X}

Functions and functional spaces
Let Ω be an open set of Rn and let Y be an Euclidean space.
Du Distributional derivative of u
E(u) Symmetric distributional derivative of u
Ck(Ω;Rm) {u : Ω → Rm : u is k-continuously differentiable in U}
C∞(Ω;Rm) ⋂

k∈NC
k(Ω;Rm)

M(Ω;Y ) space of Y -valued bounded Radon measures in X
M(X) space of real valued bounded Radon measures in X
Lp(Ω;Rm) {u : Ω → Rm : u is measurable and

∫
Ω |u|p dx < ∞}, for p ∈ [1,∞)

L∞(Ω;Rm) {u : Ω → Rm : u is measurable and ess supu < ∞}, for p ∈ [1,∞)
W 1,p(Ω;Rm) {u ∈ Lp(Ω;Rm) : Du ∈ Lp(Ω;Rn×m)}, for p ∈ [1,∞)
BV (Ω;Rm) {u ∈ L1(Ω;Rm) : Du ∈ M(Ω;Rm)}
BD(Ω) {u ∈ L1(Ω;Rm) : Eu ∈ M(Ω;Rm)}
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1. Introduction

In this manuscript problems in Materials Science with a focus on models in the framework
of Continuum Mechanics are addressed. Specifically, the thesis includes results both for the
characterization of optimal crystalline morphologies as minimizers of new original variational
models and for the evolution of elastic-plastic deformation of crystalline materials under critical
stress. As such, this dissertation is divided in two parts containing the results introduced in the
papers [12, 65, 66]:

-Part A: Existence of solutions for free-boundary problems in linear elasticity
involving more phases;

-Part B: Existence and uniqueness of solutions for dynamic perfect elasto-plasticity.

Regarding the employed mathematical strategies, they are based on the fields of partial differential
equations, calculus of variations and geometric measure theory. The methods include various
variational techniques [4, 47, 68], such as the direct method of the calculus of variations, blow-
up techniques, the fine properties of the space of functions of bounded deformation, and the
variational treatment of evolutionary dissipative processes.

Regarding the mathematical modeling, the investigations find application in various settings of
Materials Science, such as epitaxially-strained thin films, material fractures, and delamination
phenomena. Moreover, models of elasto-plasticity have the capacity to predict the appearance of
permanent deformations in materials as related critical stresses are reached. From a microscopic
point of view, the so-called plastic deformations are the result of atomic defects due to inter-
crystalline slips inside a lattice, called dislocations. It is experimentally observed that plastic
flows occur on very thin zones called slip bands, on which there is a strain localization: these
zones are macroscopically interpreted as discontinuity surfaces of the displacement. We refer
to [9, 33, 55] for the theory of stress driven rearrangement instabilities, to [19] for the classical
variational approach to fracture, and to the monograph [67] for an comprehensive presentation
of elasto-plasticity models.

The state of the art, the results and the strategy used in this manuscript are described below
distinguishing the two parts in two sections. In Part A, the results of [65, 66] are described,
which relate to the static theory in dimension n = 2. In Part B the results of [12] are presented,
which regard the evolutionary theory for both dimensions n = 2, 3. In both parts, we consider
an open smooth set Ω ⊂ Rn as the reference region where the elasto(-plastic) body is located.
Furthermore, given a set of finite perimeter U ⊂ Ω we denote by U (s) the set of points in U with
density s ∈ {0, 1}, and by νU (x) the outward unit normal of U at x ∈ ∂∗U , where ∂∗U is the
reduced boundary of U [4, 68].

1.1. Introduction to Part A
In this part, we tackle the challenge of establishing a variational framework to characterize
the surface and elastic properties of multi-phase continua, by following Gibbs’s notion of a
well-defined interface [24, 51, 56] among phases. The interaction between two or more media can
cause considerable tension due to the discrepancy in their crystalline order, which is responsible

1



1. Introduction

for various morphological destabilizations often referred to in the literature as stress-driven
rearrangement instabilities (SDRI) [9, 33, 55, 58, 77]. These instabilities encompass features
like rough crystalline boundaries, bulk material cracks, dislocations in crystalline lattices, and
delamination at contact regions. Although the existing literature extensively studies these
phenomena assuming that one phase acts as a rigid continuous medium, either underlying or
constraining the other, there are scenarios where the hierarchy between phases is unclear. The
complexity arises from integrating material accretion and deletion responsible for phase interface
movement with the elasticity framework governing bulk deformation and fractures [26, 50],
leading to conceptual difficulties, as highlighted by Gurtin [56]. A crucial modeling issue concerns
the interplay between coherency, the microscopic arrangement of atoms in a homogeneous lattice
with deformation as the sole stress relief mechanism [56], and incoherency, representing debonding
between atoms and resulting in composite delamination at the two-phase interface [63].

First, in Chapter 3 the focus is on the two-phase scenario by presenting the results achieved
in [66], and then Chapter 4 addresses the multi-phase results for film multilayers contained in
[65]. In both these contexts the possibility of interfaces between phases presenting both coherent
and incoherent portions is incorporated into the models. To do so, the approach introduced in
[58, 59] for the setting of a fixed underlying substrate phase and based on the technique devised
for addressing the Mumford-Shah problem in [30] is adopted. The strategy consists in initially
imposing a fixed constraint on the number of connected components for the boundaries of the
free phases in order to apply adaptations of Gołąb’s Theorem [53] to obtain a compactness
property for energy equibounded sequences with respect to a proper selected topology. However,
extending the approach of [58] to a two-phase context requires significant adjustments to the
model configuration. Concerning the characterization of the incoherent interface, we do not
consider it as the discontinuous segment of the bulk displacement along the two-phase interface,
as done in [58, 59, 60], since this option shows to be unfeasible in our case because of the
irregularity of the two-phase interfaces exceeding that of Lipschitz manifolds, which was instead
the assumption in [58, 59, 60]. To address this challenge, the energy is defined as dependent
on set variables, which are not the regions occupied by the two phases (referred to as the film
and the substrate phase), but rather the ones of the substrate phase and of the entire composite
of both phases. In this framework, we characterize the incoherent interfaces as a segment of
the boundary intersection of these variables. In Chapters 3 and 4 we obtain existence results
comparable to the existence result established in [58], with the extension that also the possibility
of a countable number of film islands on top of the substrate (or of islands of a film layer on top
of another layer) is allowed, since the strategy eliminates the need to impose a constraint on the
number of boundary components of the film phases.

In Chapter 3 the container Ω := (−l, l) ×R2 (−L,L) ⊂ R2 represents the region where the
composite material is located for two positive parameters l and L. In accordance with the SDRI
theory [9, 33, 55], the total energy F is the sum of two contributions: the elastic energy W and
the surface energy S. More precisely, F is defined on triples (A,S, u) ∈ C̃, where u represents
the bulk displacement of the composite material consisting of the two phases, and A and S are
sets whose closures denote the composite region and the substrate region, respectively. Notice
that the film region is instead represented by A \ S(1). More specifically, the family of admissible
configurations C̃ is defined as

C̃ := {(A,S, u) : A and S are L2-measurable sets with S ⊂ A ⊂ Ω such that
∂A ∩ Int(S) = ∅, ∂A and ∂S are H1-rectifiable,
H1(∂A) + H1(∂S) < ∞, and u ∈ H1

loc(Int(A);R2)},

and F : C̃ → R is given by
F(A,S, u) := S(A,S) + W(A, u)

2



1.1. Introduction to Part A

for every (A,S, u) ∈ C̃. The elastic energy is considered in the framework of the theory of small
deformations of linear elasticity as

W(A, u) :=
∫

A
W (z, E(u) − E0)dz,

where Eu := (Du+DuT )/2 is the linearized strain tensor which takes its values in the set M2
sym

of symmetric 2 × 2 matrices, the elastic density W (z,M) := C(z)M : M is defined with respect
to a positive-definite elasticity tensor C, and E0 ∈ M2

sym is referred to as the mismatch strain.
The inclusion of mismatch strain in the SDRI theory addresses the scenario where the two phases
consist of potentially different crystalline materials, each with its own equilibrium lattice. The
surface energy S(A,S) is given by

S(A,S) :=
∫

Ω∩(∂A∪∂S)
ψ(x, ν(x)) dH1(x),

where, by denoting with νU (z) the normal unit vector pointing outward to a set U ⊂ R2 with
H1-rectifiable boundary at a point x ∈ ∂U ,

ν(x) :=
{
νA(x) if z ∈ ∂A \ ∂S,
νS(x) if z ∈ ∂S,

and ψ : Ω ×R2 → [0,∞] represents the surface tension of the composite of the two phases, which
we allow to be anisotropic. In order to properly define ψ we consider the following three surface
tensions φF, φS, φFS : Ω×R2 → [0,∞], which are supposed to characterize the three interfaces in
the two-phase setting: the interface between the film phase and the vapor, the interface between
the substrate phase and the vapor, and the interface between the film and substrate. Moreover,
to consider both the wetting and dewetting regimes, in [66] we introduce two auxiliary surface
tensions, referred to as the regime surface tensions, and defined as follows:

φ := min{φS, φF + φFS} and φ′ := min{φS, φF}.

We define

ψ(x, ν(x)) :=



φF(x, ν (x)) x ∈ Ω ∩ (∂∗A \ ∂∗S),
φ(x, ν (x)) x ∈ Ω ∩ ∂∗S ∩ ∂∗A,

φFS(x, ν (x)) x ∈ Ω ∩ (∂∗S \ ∂A),
(φF + φ)(x, ν (x)) x ∈ Ω ∩ ∂∗S ∩ ∂A ∩A(1),

2φF(x, ν (x)) x ∈ Ω ∩ ∂A ∩A(1) ∩ S(0),

2φ′(x, ν (x)) x ∈ Ω ∩ ∂A ∩A(0),

2φFS(x, ν (x)) x ∈ Ω ∩ (∂S \ ∂A) ∩
(
S(1) ∪ S(0)

)
∩A(1),

2φ(x, ν (x)) x ∈ Ω ∩ ∂S ∩ ∂A ∩ S(1),

(1.1.1)

where the sub-regions of Ω ∩ (∂A ∪ ∂S) appearing in (1.1.1) represents, by moving line by line,
the film free boundary, the substrate free boundary, the film-substrate coherent interface, the
film-substrate incoherent interface, the film cracks, the exposed filaments, the substrate filaments
and cracks in the film-substrate coherent interface, and the substrate cracks in the film-substrate
incoherent interface, respectively. For the physical justification of (1.1.1) we refer to Section 3.1
(see also [66]).

The existence of minimizers of F is established under a two-phase volume constraint and with a
constraint on the number of boundary connected components by following the strategy of [58] for
the setting of a fixed substrate region and of [30] for the Mumford-Shah problem. In particular,
in [66] we restrict to the family Cm ⊂ C̃ for m := (m0,m1) ∈ N2, where any configuration
(A,S, u) ∈ Cm has the following two properties:
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- the number of boundary connected components of S and A are fixed to be at most m0 and
m1, respectively,

- the substrate regions S satisfy an exterior graph constraint consisting in requiring that
∂∗S ∪ (∂S ∩S(0)) is the graph of an upper semicontinuous function with pointwise bounded
variation (while internal, also non-graph-like, substrate cracks are allowed).

More precisely, for any two volume parameters v0,v1 ∈ [L2(Ω)/2,L2(Ω)] such that v0 ≤ v1, we
consider the problem:

inf
(A,S,u)∈Cm

L2(S)=v0, L2(A)=v1

F(A,S, u),

which we tackle by employing the direct method of the calculus of variations, for which we choose a
proper topology in C̃ sufficiently weak to establish a compactness property for energy-equibounded
sequences in Cm and strong enough to prove the lower semicontinuity of F in Cm.

Finally, in Chapter 4 the extension of the results of [66] to the multi-phase setting of film
multilayered composites, which is achieved in [65], is presented. In [65] analogous existence results
to the one of [66] are achieved by means of the direct method of the calculus of variations for
a model that represents the combination of the implementation to the multilayer setting of
the model in [66] and of the variational models for singled-layer films previously addressed in
[25, 34, 35, 46]. As such, the existence result of [65] extends literature results for single-layered
films deposited on a fixed substrate in the following directions: by letting the substrate surface
free, by addressing the presence of multiple layers of various materials, and by including into
the analysis the possibility of a failure of the film coatings taking into account the delaminated
portions both at the contact interface with the substrate and at the interface between film layers.
The Reader is kindly referred to Section 4.2 for the detailed description of the model.

1.2. Introduction to Part B
By means of the variational principles of Hodge-Prager for the stress rate and of Greenberg for
the velocity, a variational formulation of the mathematical models of plasticity that consists in
highly-nonlinear hyperbolic systems, is possible, providing a more tractable setting to prove stress
existence and uniqueness (see, e.g., [42, 68]). The corresponding evolution problem for the velocity
(and the displacement) involves additional difficulties connected with the regularity of the strain
tensor, which were addressed in [84, 85] for the quasi-static case and in [8] for the dynamical
case by means of different types of visco-plastic regularizations. Furthermore, in [83] a proper
functional space for the kinematically admissible displacements, which can exhibit discontinuity,
was introduced by considering the space BD of functions of bounded deformation (see [89] for a
comprehensive treatment). Moreover, the quasi-static case was revisited more recently in [32]
within the general framework of variational evolutions of rate independent processes.

In the framework of small strain elasto-plasticity where the natural kinematic variable is the
displacement field u : Ω × [0, T ] → Rn. In small strain elasto-plasticity, Eu decomposes additively
in the following form:

Eu = e+ p,

where e : Ω × [0, T ] → Mn
sym is the elastic strain and p : Ω × [0, T ] → Mn

sym the plastic strain.
The elastic strain is related to the stress tensor σ : Ω × [0, T ] → Mn

sym by means of Hooke’s law
σ := Ce, where C is the symmetric fourth order elasticity tensor. In a dynamical framework and
in the presence of an external body load f : Ω × [0, T ] → Rn, the equation of motion is

ü− divσ = f in Ω × [0, T ],
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where u̇ and ü denote the time derivative and the second time derivative of u, respectively.
Plasticity is characterized by the existence of a yield zone beyond which permanent strains
appear. The stress tensor is indeed constrained to belong to a fixed closed and convex subset K
of Mn

sym, i.e., σ ∈ K. If σ lies inside the interior of K, the material behaves elastically, so that
unloading will bring back the body into its initial configuration (ṗ = 0). On the other hand, if
σ reaches the boundary of K, i.e., the yield surface, a plastic flow may develop, so that, after
unloading, there will remain a non-trivial permanent plastic strain p. Its evolution is described is
expressed with the Prandtl-Reuss law, i.e., ṗ ∈ NK(σ), where NK(σ) denotes the normal cone to
K at σ. From the theory of convex analysis, NK(σ) = ∂IK(σ), i.e., the sub-differential of the
indicator function IK of the set K (IK(σ) = 0 if σ ∈ K, while IK(σ) = +∞ otherwise). Hence,
from convex duality, the flow rule can be equivalently written as

σ : ṗ = max
τ∈K

τ : ṗ =: H(ṗ),

where H : Mn
sym → R is the support function of K. This reformulation of the flow rule is nothing

but Hill’s principle of maximum plastic work, and H(ṗ) denotes the plastic dissipation.

Therefore the problem under investigation in this project’s direction is to find a triplet (u, e, p) :
Ω × [0, T ] → Rn × Mn

sym × Mn
sym satisfying

Eu = e+ p in Ω × [0, T ],
σ = Ce, σ ∈ K in Ω × [0, T ],
ü− divσ = f in Ω × [0, T ],
σ : ṗ = H(ṗ) in Ω × [0, T ],
(u(0), e(0), p(0)) = (u0, e0, p0), u̇(0) = v0 in Ω,

(1.2.1)

for a given body force f : Ω × [0, T ] → Rn and initial data (u0, v0, e0, p0), together with suitable
boundary conditions. Well posedness of the problem under Dirichlet boundary conditions has
been established in [11].

We notice that problem (1.2.1) can be interpreted as a constrained Friedrichs system using an
entropic formulation (see [11] and [13] for the scalar and vectorial setting), which is inspired by
Otto’s formulation of initial-boundary-value scalar conservation laws [74] when the solution lies in
a functional space where there is no notions of trace on the boundary. However, this generalized
formulation, which did not explicitly appeal to the trace of the solution, requires to impose a
class of admissible boundary conditions well adapted to the underlying hyperbolic structure
of the problem. Following the seminal paper [44], one can see that all admissible dissipative
boundary conditions can be written as

σν + Su̇ = 0 on ∂Ω × [0, T ], (1.2.2)

for some suitable spatially dependent symmetric and positive definite matrix S(x). The well
posedness of the model of dynamical perfect plasticity (1.2.1) complemented by this so-called
dissipative boundary condition (1.2.2) has been established in [11]. It turns out that the coupling
between the stress constraint and the boundary condition leads the latter to accommodate the
former through a relaxation phenomena which modifies the original boundary condition into

σν + P−Kν(Su̇) = 0 on ∂Ω × [0, T ],

where P−Kν denotes the projection in Rn, with respect to a suitable scalar product, onto the
closed and convex set −Kν(x).

Unfortunately, standard Dirichlet, Neumann and Mixed boundary conditions fall outside this
general framework. In [12] we proved that it is possible to recover such boundary conditions
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through a limit procedure by letting the coefficients of the matrix S tend to 0 (for Neumann) and
+∞ (for Dirichlet). The argument is based in accurately analyze the energy estimates performed
in [11] and check their dependence with respect to the matrix S. More precisely and in view of
[32, 49, 61], we assume that ∂Ω can be decomposed into the disjoint union ΓD ∪ΓN ∪Σ, where ΓD

and ΓN stand for the Dirichlet and Neumann boundary, respectively, and Σ is a Hn−1-negligible
set. In [12], when we consider the re-scaling S = λ1ΓD

+ 1
λ1ΓN

, we proved that it is possible
to recover Dirichlet (ΓN = ∅) and Neumann (ΓD = ∅) boundary conditions through a limit
procedure by letting λ tends to ∞.
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In this chapter, we provide an overview of the preliminaries required for comprehending the
content presented in this manuscript. This collection of definitions and results are contained in
[4, 29, 43, 47, 64, 68, 69, 75], for the proofs of the following results, we refer to the references
enumerated before. To facilitate reader understanding, we have organized these results into
distinct sections.

2.1. Functional spaces
2.1.1. Functions of bounded pointwise variation
Within this section, we present an introduction of pointwise bounded variation functions. The
proof of the following results are stated in [4, 64].

Definition 2.1.1. Let I ⊂ R be an interval and let f : I → R be a function. The pointwise
variation of f on the interval I is

Varu := sup
{

n∑
i=0

|u(xi) − u(xi−1)| : {xi}n
i=1 is a partition of I

}
,

where the supremum is taken over all partitions of I. A function u has finite or bounded pointwise
variation if Varu < ∞.

A key property of the functions of pointwise bounded variation, stated in the following theorem,
is that the set of discontinuities is countable.

Theorem 2.1.2. Let I ⊂ R be an interval and let u : I → R be such that Varu < ∞. Then for
every x ∈ I the limits

lim
x→x+

0

u(x) =: u+(x0) and lim
x→x−

0

u(x) =: u−(x0)

exist in R, u has at most countably many discontinuity points and is differentiable L1-a.e. in I.
Furthermore, u is bounded and the limits

lim
x→(inf I)+

u(x) and lim
x→(sup I)−

u(x)

exist in R.

2.1.2. Functions of bounded deformation
For more reference about the BD-space, we refer to [10, 89].

Definition 2.1.3. Let Ω be an open set. The space of bounded deformation, denoted as BD(Ω),
is defined as

BD(Ω) =
{
u ∈ L1(Ω;Rn) : Eu := Du+DuT

2 ∈ M(Ω;Mn
sym)

}
.
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As seen in [10], we introduce the notion of strict convergence in BD(Ω) which plays a key role in
the continuity of the trace operator in BD(Ω).

Definition 2.1.4. We say that the sequence {uk} ⊂ BD(Ω) converges strictly to u ∈ BD(Ω) if
and only if 

uk → u strongly in L1(Ω;Rn),
Euk ⇀ Euweakly* in M(Ω;Mn

sym),
|Euk|(Ω) → |Eu|(Ω).

Theorem 2.1.5. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. There exists a
unique linear continuous mapping

γ : BD(Ω) → L1(∂Ω;Rn)

such that the following integration by parts formula holds: for every u ∈ BD(Ω) and φ ∈ C1(Rn),∫
Ω
u⊙ ∇φdx+

∫
Ω
φdEu =

∫
∂Ω
γ(u) ⊙ ν φ dHn−1,

where ν is the outer unit normal to ∂Ω. In addition,

γ(u) ≡ u ∂Ω for all u ∈ C0(Ω;Rn) ∩BD(Ω).

In the next result, we can notice that the trace operator is continuous with respect to the strict
convergence of BD(Ω) but not with respect to the weak* convergence in BD(Ω). More precisely,
by the construction presented in [10], we have that the trace mapping in BD(Ω) is continuous
with respect to the strong convergence and we can not expect that the trace operator is weakly*
continuous.

Proposition 2.1.6. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Let u ∈ BD(Ω)
and {uk} ⊂ BD(Ω) such that uk → u strictly in BD(Ω). Then γ(uk) → γ(u) strongly in
L1(∂Ω;Rn).

2.1.3. H(div) space
For any Ω ⊂ Rn, We introduce the H(div,Ω) space, which was first introduced by Jacques Louis
Lions in the context of studying the Laplacian equation with Neumann boundary conditions. For
an extensive treatment of this space, we recommend [86, 88, 89] to the reader.

Definition 2.1.7. We define

H(div,Ω) := {u ∈ L2(Ω;Rn) : div u ∈ L2(Ω)}.

We remark that in Part B, we make use of elastic stresses defined in the set of symmetric
matrices, in that case, the space H(div,Ω) is defined as follows

H(div,Ω) = {σ ∈ L2(Ω;Mn
sym) : div σ ∈ L2(Ω;Rn)} .

The space H(div,Ω) admits the existence of a trace operator in H− 1
2 (∂Ω;Rn). The proof of the

following theorem can be found in [88, Theorem 1.2] (or also in [89, Theorem 1.2, Chapter 1])

Theorem 2.1.8. Let Ω ⊂ Rn such that ∂Ω is Lipschitz. Let σ ∈ H(div,Ω), then there exists
σν ∈ H− 1

2 (∂Ω;Rn) and

⟨σν, ψ⟩
H− 1

2 (∂Ω;Rn),H
1
2 (∂Ω;Rn)

:=
∫

Ω
ψ · divσ dx+

∫
Ω
σ : Eψ dx . (2.1.1)

for every ψ ∈ H1(Ω;Rn), where ν is the outer unit normal to Ω.

8



2.2. Geometric Measure theory

2.2. Geometric Measure theory
In this section, we introduce the tools used in Part A, where we present a free boundary problem
and its variational approach. For an extensive reference of this topic, we refer [4, 44, 64, 68, 69].

2.2.1. Hausdorff and Net measures
Let s ∈ [0,∞], we recall that for any E ⊂ Rn, the Hausdorff outer measure is defined as

Hs(E) := lim
δ→0

Hs
δ(E),

where

Hs
δ(E) := inf

∑
i∈N

diam(Ei)s : E ⊂
⋃
i∈N

Ei, diam(Ei) ≤ δ

 .
Now, we introduce the definition of the net measure. To do this, we start by recalling the
definition of dyadic cubes, more precisely, we denote by Uk,l the (half-open) dyadic cube, i.e.,

Uk,l := [0, 2−k) × . . .× [0, 2−k) + 2−kl

for any k ∈ N and l ∈ Zn. We denote by Q the family of dyadic cubes and by N s the net
s-dimensional outer measure. More precisely, for any set E,

N s(E) := lim inf
δ→0

N s
δ (E), (2.2.1)

is the N s outer measure of E, where

N s
δ (E) := inf{

∑
i∈I

diam(Ui)s : {Ui}i∈I ⊂ Q is a countable disjoint covering of E

and diam(Ui) ≤ δ}. (2.2.2)

Note that this measure does not coincide with the Hausdorff measure, however we have the
following equivalence (see [69, Chapter 5])

Hs(E) ≤ N s(E) ≤ 4sns/2Hs(E), (2.2.3)

for any Borel set E ⊂ Rn.

2.2.2. Rectifiable sets
This section summarizes the notions of rectifiability used in Part A.

Definition 2.2.1. Let E ⊂ Rn be a Hk-measurable set for k = 1, . . . , n− 1. We say that E is
k-rectifiable, if there exists a family of Lipschitz maps {fi} such that fi : Rk → Rn for every
i ∈ N and

E ⊂
⋃
i∈N

fi(Rk).

We say that E is countable Hk-rectifiable if there exists a family of Lipschitz maps {fi}, such
that fi : Rk → Rn for every i ∈ N and

Hk

E \
⋃
i∈N

fi(Rk)

 = 0.

Finally, we say that E is Hk-rectifiable if Hk(E) < ∞ and E is countable Hk-rectifiable.
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There is another equivalent definition of rectifiability based on density properties of the k-
dimensional Hausdorff measures (Hk), thanks to the fact that for any Borel set E ⊂ Rn such
that E is Hk-rectifiable, we have that Hk E is a Radon measure for any k = 0, . . . , n− 1. First,
for any Borel set E ⊂ Rn we define the Hk-lower and Hk-upper densities respectively as follows

θ∗(E, x) := lim inf
r→0+

Hk(E ∩Br (x))
ωkrk

and θ∗(E, x) := lim sup
r→0+

Hk(E ∩Br (x))
ωkrk

,

for every k = 0, . . . , n− 1, where ωk := πk/2

Γ(1+k/2) and Γ : R → R is the Γ function defined in any
t ∈ R by

Γ(t) :=
∫ ∞

0
st−1e−sds.

The following theorem shows the relation between rectifiable sets and the density of a set.

Theorem 2.2.2 (Besicovitch-Mastrand-Mattila). Let E ⊂ Rn be a Borel set such that Hk(E) <
∞. Then, E is Hk-rectifiable if and only if θ∗(E, x) = θ∗(E, x) = 1 for Hk-a.e. x ∈ E.

An important example of a rectifiable set used throughout Part A are the parametrized curves,
more precisely, a parametrized curve in R2 is a continuous function r : [a, b] → R2 injective in
(a, b) for a, b ∈ R with a < b. The image of r, denoted by γ, is the support of the curve. If γ is
H1-finite, by [44, Lemma 3.2 and Corollary 3.3] (or also [44, Lemma 3.5] in view of Theorem
2.2.2), we obtain that γ is H1 rectifiable.

2.2.3. Lebesgue–Besicovitch differentiation theorem

In this section, we introduce the main tool of the blow up technique (used in Part A) which
is based on the Besicovith derivation theorem. For the proofs of the following results we make
reference to [4, 47, 68].

Theorem 2.2.3 (Besicovith derivation theorem). Let µ and ν be two nonnegative Radon
measures. Then there exists a Borel set N ⊂ Rn, with µ(N) = 0, such that for any x ∈ Rn \N ,

dνac
dµ

(x) = lim
r→0+

ν(x+ rC)
µ(x+ rC) ∈ R

where
ν = νac + νs, νac << µ, νs ⊥ µ,

and C is any bounded, convex closed set containing the origin in its interior.

One consequence of the Besicovith derivation theorem is that Lebesgue points exist for functions
u ∈ L1

loc(Rn;R) as stated by the following result.

Corollary 2.2.4. Let µ ∈ M(Rn; [0,∞]) and let u ∈ L1
loc(Rn;R). Then there exists a Borel set

N ⊂ Rn with µ(N) = 0 such that Rn \N ⊂ {x ∈ Rn : u(x) ∈ R} and for any x ∈ Rn \N ,

lim
r→0+

1
µ(Br(x))

∫
Br(x)

|u(y) − u(x)| dµ(y) = 0. (2.2.4)

Any point Rn satisfying (2.2.4) is called Lebesgue point of u. Thanks to Corollary 2.2.4, for any
E ⊂ Rn Borel set, we define the set of points of density α of E by

E(α) :=
{
x ∈ Rn : lim

r→0

|E ∩Br (x)|
|Br (x)| = α

}
.
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Remark 2.2.5. Let E ⊂ Rn be a Lebesgue measurable set. For a.e. x ∈ E we have that x ∈ E(1),
conversely, for a.e. x ∈ Rn \ E we have that x ∈ E(0). The set of points of density 1 are refereed
as measure theoretical interior points, analogously, the set of points of density 0 are refereed as
measure theoretical exterior points.

2.2.4. Sets of finite perimeter

Now, we introduce the notion of sets of finite perimeter (or Cacciopoli sets). In the following, we
state important definitions and properties used throughout Part A about sets of finite perimeter.
For an exhaustive treatment of this topic we refer to [4, 68].

Definition 2.2.6. Let E be a Ln-measurable subset of Rn. For any open set A ⊂ Rn the
perimeter of E in Ω, denoted by P (E,A), is the variation of 1E in A, i.e.,

P (E,A) := sup
{∫

A
divφdx : φ ∈ [C1

c (A)]n, ∥φ∥∞ ≤ 1
}
. (2.2.5)

We say that E is a set of locally finite perimeter in A if P (E,A) < ∞.

It is very well known that if |E ∩A| < ∞, then E has finite perimeter in A if and only if
1E ∈ BV(A). Now, we introduce a different notion of boundary.

Definition 2.2.7. Let E ⊂ Rn be a set of finite perimeter, the reduced boundary of E, denoted
as ∂∗E, is defined by

∂∗E :=
{
x ∈ R2 : ∃νE (x) := − lim

r→0

D1E(Br (x))
|D1E |(Br (x)) , |νE (x)| = 1

}
, (2.2.6)

furthermore, we call to νE (x) as the measure-theoretical unit normal at x ∈ ∂E.

Now, for a set E ⊂ Rn of finite perimeter, we state the relation that exists between the reduced
boundary and E(1/2).

Theorem 2.2.8. Let E ⊂ Rn be a set of locally finite perimeter and let x ∈ ∂∗E, then

lim
r→0+

|E ∩Br(x)|
ωnrn

= 1
2

and

lim
r→0+

P (E,Br(x))
ωn−1rn−1 = 1.

In particular, ∂∗E ⊂ E(1/2).

The last notion of boundary of a Lebesgue measurable set E ⊂ Rn used in this manuscript is the
essential boundary denoted as ∂∗E, more precisely,

∂∗E := Rn \ (E(1) ∪ E(0)).

Theorem 2.2.9 (Federer). Let E ⊂ Rn be a set of locally finite perimeter, then ∂∗E ⊂ E(1/2) ⊂
∂∗E and

H1(∂∗E \ ∂∗E) = 0.
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Let E ⊂ Rn be a set of finite perimeter, it follows the following decomposition of the topological
boundary of E thanks to the definition of the essential boundary and by Federer’s theorem,

∂E = (E(1/2) ∩∂E)∪((E(1) ∪E(0))∩∂E)∪N1 = (∂∗E∩∂E)∪((E(1) ∪E(0))∩∂E)∪N2, (2.2.7)

where N1 and N2 are Hn−1-negligibles sets. Let x ∈ ∂E, if νE(x) exists, we end this section by
defining the approximate tangent line and the half space at x by Tx,νE(x) :=

{
y ∈ R2 : y · νE (x) = 0

}
and Hx,νE(x) :=

{
y ∈ R2 : y · νE (x) ≤ 0

}
, respectively.

2.3. Convex analysis

In this section, we introduce some tools needed in throughout this manuscript. For a proof of the
following results, we refer to [4, 38, 39, 47, 54, 68, 75]. In the section we consider X and X∗ as a
vectorial space an its dual, respectively.

Definition 2.3.1. Let C ⊂ X be a set. We define the support function H : X∗ → R of C as

HC(y) := sup
x∈C

⟨x, y⟩.

Notice that if C ⊂ X is closed and convex, HC is a convex, lower semicontinuous and positively
1-homogeneous function. Furthermore, for any C ⊂ X convex and closed set in view of [75,
Theorem 13.2], we have that

H∗
C = IC ,

where IC is the indicator function of C.

We now state a result, which was proved by means of the Radon-Nikodym decomposition theorem
in [38, 39, 54]

Theorem 2.3.2. Let µ ∈ M(X;Y ) and let f : Y → [0,∞] be a convex, positively one homoge-
neous function. Then, f(µ), defined by

f(µ) := f

(
dµ

d|µ|

)
|µ|,

is a Borel measure.

Finally, we state the Reshentnyak lower semicontinuity theorem and an application to the case
of anisotropies.

Theorem 2.3.3 (Reshetnyak lower semicontinuity). Let A ⊂ Rn be an open set. Let {µk}k∈N be
a sequence of Rm-valued finite Radon measures and let µ be a finite Rm-valued Radon measure
such that µk → µ weakly* in A. Then,∫

A
f

(
x,

µ

|µ|
(x)
)
d|µ|(x) ≤ lim inf

k→∞

∫
A
f

(
x,

µk

|µk|
(x)
)
d|µk|(x),

for every lower semicontinuous function f : A × Rm → [0,∞], positively 1-homogeneous and
convex in the second variable.

By applying the Reshetnyak lower semicontinuity theorem, we can prove that the for any set of
finite perimeter, the anisotropic surface energy of the reduced boundary is lower semicontinuous,
this is the purpose of the following theorem.
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Theorem 2.3.4. Let A ⊂ Rn be an open set. Let φ : Rn → [0,∞] be a one homogeneous,
convex and lower semicontinuous anisotropy. Let {Ek}k∈N and E be a sequence of locally finite
perimeter sets and set of locally finite perimeter, respectively, such that 1Ek

→ 1E in L1
loc(R2)

and νEk
Hn−1 ∂∗Ek

∗
⇀ νEHn−1 ∂∗E. Then,∫

A∩∂∗E
φ(νE(x)) dHn−1 ≤ lim inf

k→∞

∫
A∩∂∗Ek

φ(νEk
(x)) dHn−1.
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3. Two-phase free boundary problem

In this chapter, the results contained in the following submitted paper are presented:

• R. Llerena, P. Piovano: Existence of minimizers for a two-phase free boundary problem with
coherent and incoherent interfaces, submitted (2023).

3.1. Introduction
In this chapter the problem of providing a mathematical variational framework for the description
of the morphology and the elastic properties of two-phase continua based on Gibbs’s notion of a
sharp phase-interface dividing them [24, 49, 56] is addressed. In the presence of two interacting
media large stresses due to the different crystalline order of the two materials originate and,
besides bulk deformation, various types of morphological destabilization may occur as a further
strain relief mode. These are often referred to as the family of stress driven rearrangement
instabilities (SDRI) [9, 33, 55, 58, 77], which include the roughness of the exposed crystalline
boundaries, the formation of cracks in the bulk materials, the nucleation of dislocations in the
crystalline lattices, and the delamination (as opposed to the adhesion) at the contact regions
with the other material.

Literature provides extensive studies of these phenomena under the assumption that one phase is
a rigid fixed continuous medium underlying, such as the substrates for epitaxially-strained thin
films [25, 28, 46, 62], or constraining, such as crystal cavities [45] or the containers in capillarity
problems [37], the other phase, which is instead let free, or by modeling the interactions with
other media simply by means of fixed boundary conditions. There are though settings in which
the hierarchy between the phases is not clear, or a rigidity ranking between them is not easily
identifiable, since the interplay among the deformation and the interface instabilities affecting all
phases is crucial, such as, in the shock-induced transformations and mechanical twinning [56] or
in the deposition of film multilayers [65].

As described in [56] the extension of classical theories of continuum mechanics to two-phase
deformable media is though “not as straightforward as it might appear”, since combining the
accretion and deletion of material constituents responsible for the moving of the interface between
the two phases and their boundaries, with the framework of elasticity related to bulk deformation
and fractures [26, 50], by quoting [56], “leads to conceptual difficulties”. A critical modeling
issue related to the interface between the two phases is the interplay between coherency, that is
here intended as the microscopical arrangement of atoms of the two materials in a homogeneous
lattice, with deformation being the solely stress relief mechanism [56], and incoherency, that
instead refers to the debonding occurring between the atoms of the two materials [24], which
results in the composite delamination at the two-phase interface [63]. This work seems to be,
to the best of our knowledge, the first attempt to provide a mathematical framework able to
simultaneously describe coherent and incoherent interfaces for a two-phase setting, which we
carry out by also keeping in the picture the other features of SDRI, such as the dichotomy
between the wetting regime, that is the setting in which it is more convenient for a phase to cover
the surface of the other phase with an infinitesimal layer of atoms, and the dewetting regime, in
which it is preferable to let such surface exposed to the vapor.
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3. Two-phase free boundary problem

The studies for the setting of only coherent interfaces go back to Almgren [1], who was the first
to formulate the problem in Rd, d > 1, in the context without elasticity for surface tensions
proportional among the various interfaces, by means of integral currents in geometric measure
theory and by singling out a condition ensuring the lower semicontinuity of the overall surface
energy with respect to the L1-convergence of the sets in the partition. Then, Ambrosio and
Braides in [2, 3] extended the setting to also non-proportional surface tensions by introducing a
new integral condition referred to as BV -ellipticity, which they show to be both sufficient and
necessary for the lower semicontinuity with respect to the L1-convergence. As such condition is
the analogous, for the setting of Caccioppoli partitions, of Morrey’s quasi-convexity, it is difficult
to check it in practice. In [2, 3] BV -ellipticity is proved to coincide with a simpler to check
triangle inequality condition among surface tensions for the case of partitions in 3 sets (like the
setting considered in this chapter, in which one element of the partition is always represented by
the vapor outside the two phases), which was then confirmed to be the only case by [22]. Other
conditions therefore have been introduced, such as B-convexity and joint convexity, with though
BV -ellipticity remaining so far the only condition known to be both necessary and sufficient for
lower semicontinuity apart from specific settings (see [23, 71] for more details). Recently, the
BV -ellipticity has been extended in the context of BD-spaces in [52]. Finally, in [18] a variant
of the Ohta–Kawasaki model is considered to model thin films of diblock copolymers in the
unconfined case, which represents a recent example in the literature of a two-phase model in the
absence of elasticity and of incoherent and crack interfaces, under a graph constraint for union of
the two phases.

Regarding incoherent interfaces the problem is intrinsically related to the renowned segmentation
problem in image reconstruction that was actually originally introduced by Mumford and Shah
in [72] with a multi-phase formulation, as a partition problem of an original image, with the
connected contours of the image areas characterized as discontinuity set of an auxiliary state
function. Then, the approaches developed to tackle the problem led to the study of a single
phase setting with the jump set of the state function representing internal interfaces, proven to
satisfy Ahlfors-type regularity result [4, 30]. Such single-phase framework has been then extended
to the context of linear elasticity in fracture mechanics with the state function being vectorial
and representing the bulk displacement of a crystalline material and the energy replaced by
the Griffith energy [26, 50]. The attempt to recover the original setting of [72] in a rigorous
mathematical formulation (apart from some formulations with piecewise-constant state functions
or numerical investigations) has been then addressed by Bucur, Fragalà, and Giacomini in [20]
and [21] (see also [27] for a related multi-phase boundary problem in the context of reaction-
diffusion systems). In [20] Ahlfors-type regularity is established for ad hoc notions of multi-phase
local almost-quasi minimizers of an energy accounting for incoherent isotropic interfaces and
disregarding the contribution of the coherent portions, while in [21] they introduce a multi-phase
version of the Mumford-Shah problem by treating all the reduced phase boundaries as incoherent
interfaces (like the internal jump sets) and by adding an extra (statistical) term, which induces
multi-phase minimizers.

In order to finally include in the model both coherent and incoherent portions (possibly also on
the same interface between the phases), in [66] we first restrict to the two-phase setting and
follow a different direction than the one of [20, 21], which works for d = 2: We adopt the approach
considered in [58, 59], that was relying on the strategy developed for the Mumford-Shah problem
in [30]. Such approach consists in first imposing a fixed constraint on the number of connected
components for the boundary of the free phases, in order then to employ adaptations of Golab’s
Theorem [53] for proving the compactness with respect to a proper selected topology, and then in
studying the convergence of the solutions of the different minimum problems related to different
constraints on the connected components, as such constraints tend to infinity. This second step
has been performed for the one-phase setting in [59] (and for higher dimension in [60]) by means
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of density estimates.

In [66] we performed the first step in this program, reaching an existence result analogous to
the one in [58]. However, the extension of [58] to the two-phase setting requires important
modification in the model setting, since characterizing the incoherent interface as the jump
portion of the bulk displacement on the two-phase interface as in [58, 59, 60] appears to be not
feasible, as in our setting the two-phase interfaces need to be considered much less regular than
Lipschitz manifolds like in [58, 59, 60]. To solve this issue the set variables of the energy are
not considered to be the two phases, referred to as the film and the substrate phase, but the
substrate phase and the whole region occupied by the composite of both the two phases, and
the incoherent interfaces are characterized as the portion of the boundary intersection of such
variables. As a byproduct of this strategy there is no need to impose a constraint on the number
of boundary components of the film phases (but only with respect to the substrates and the
composite regions), so that the physical relevant setting of countable separated isolated film
islands forming on top of the substrate is included in our analysis, even though it was prevented
by the formulation in [58]. Moreover, in [66] we can also extend [58] to the presence of adjacent
materials for the Griffith-type model with mismatch strain and delamination [26, 50, 60].

In agreement with the SDRI theory [9, 33, 55] the total energy F is given by the sum of two
contributions, namely the elastic energy W and the surface energy S, and it is defined on triples
(A,S, u) ∈ C̃, where u represent the bulk displacement of the composite material of the two
phases, and A and S are sets whose closures represents the composite region and the substrate
region, respectively, while the film region is given by A \ S(1) (for S(1) denoting the points with
density 1 in S). More precisely, given Ω := (−l, l) ×R2 (−L,L) ⊂ R2 as the region where the
composite material is located, which is defined for the two parameters l, L > 0 and that is referred
to as the container in analogy to the notation of capillarity problems, in [66] we introduce

C̃ := {(A,S, u) : A and S are L2-measurable sets with S ⊂ A ⊂ Ω such that
∂A ∩ Int(S) = ∅, ∂A and ∂S are H1-rectifiable,
H1(∂A) + H1(∂S) < ∞, and u ∈ H1

loc(Int(A);R2)}

and we define F : C̃ → R as

F(A,S, u) := S(A,S) + W(A, u)

for every (A,S, u) ∈ C̃. The elastic energy W(A, u) is defined analogously to [34, 58, 59, 60] by

W(A, u) :=
∫

A
W (x,E (u (x) − E0 (x))) dx,

where the elastic density W is determined by the quadratic form

W (x,M) := C (x)M : M,

for a fourth-order tensor C : Ω → M2
sym, E denotes the symmetric gradient, i.e., E(v) := ∇v+∇T v

2
for any v ∈ H1

loc(Int(A);R2), representing the strain, and E0 is the mismatch strain x ∈ Ω 7→
E0 (x) ∈ M2

sym defined as

E0 :=
{
E(u0) in Ω \ S,
0 in S,

for a fixed u0 ∈ H1(Ω;R2). The mismatch strain is included in the SDRI theory to represent the
fact that the two phases are given by possibly different crystalline materials whose free-standing
equilibrium lattice could present a lattice mismatch. In this context notice that C is allowed to
present discontinuities at the interface between the two materials (see hypothesis (H3) in Section
3.2.2).
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3. Two-phase free boundary problem

The surface energy S(A,S) is given by

S(A,S) :=
∫

Ω∩(∂A∪∂S)
ψ(x, ν(x)) dH1(x),

where, by denoting with νU (z) the normal unit vector pointing outward to a set U ⊂ R2 with
H1-rectifiable boundary at a point x ∈ ∂U ,

ν(x) :=
{
νA(x) if z ∈ ∂A \ ∂S,
νS(x) if z ∈ ∂S,

and ψ : Ω ×R2 → [0,∞] represents the surface tension of the composite of the two phases, which
it is allowed to be anisotropic.

In order to properly define ψ the three surface tensions φF, φS, φFS : Ω × R2 → [0,∞] charac-
terizing the three possible interfaces for the two-phase setting, i.e., the interface between the film
phase and the vapor, the interface between the substrate phase and the vapor, and the interface
between the film and the substrate phases, are considered. Furthermore, to simultaneously treat
both the wetting and the dewetting regime, in [66] we introduce two auxiliary surface tensions,
to which we refer as the regime surface tensions, that we defined as:

φ := min{φS, φF + φFS} and φ′ := min{φS, φF},

since φS is the surface tension associated to the dewetting regime, as the substrate surface
remains exposed to the vapor, while φF +φFS and φF are both associated to the wetting regime,
respectively, to the situation of an infinitesimal layer of film atoms covering the substrate surface
(by being bonded to the substrate atoms), which is referred to as the wetting layer, or of simply
a detached film filament. The surface tension ψ is then defined by

ψ(x, ν(x)) :=



φF(x, ν (x)) x ∈ Ω ∩ (∂∗A \ ∂∗S),
φ(x, ν (x)) x ∈ Ω ∩ ∂∗S ∩ ∂∗A,

φFS(x, ν (x)) x ∈ Ω ∩ (∂∗S \ ∂A),
(φF + φ)(x, ν (x)) x ∈ Ω ∩ ∂∗S ∩ ∂A ∩A(1),

2φF(x, ν (x)) x ∈ Ω ∩ ∂A ∩A(1) ∩ S(0),

2φ′(x, ν (x)) x ∈ Ω ∩ ∂A ∩A(0),

2φFS(x, ν (x)) x ∈ Ω ∩ (∂S \ ∂A) ∩
(
S(1) ∪ S(0)

)
∩A(1),

2φ(x, ν (x)) x ∈ Ω ∩ ∂S ∩ ∂A ∩ S(1),

(3.1.1)

where ∂∗U and U (α) denote, when well defined, the reduced boundary and the set of points of
density α ∈ [0, 1] for a set U ⊂ R2. We notice that the 8 subregions of the domain Ω ∩ (∂A∪ ∂S)
in which the definition of ψ is distinguished are the counterpart of the 5 terms appearing
in the surface energy of [58] for the two-phase setting (see Remark 3.2.13 for more details).
Each subregion appearing in (3.1.1) represents, by moving line by line, the film free boundary,
the substrate free boundary, the film-substrate coherent interface, the film-substrate incoherent
interface, the film cracks, the exposed filaments, the substrate filaments and cracks in the film-
substrate coherent interface, and the substrate cracks in the film-substrate incoherent interface,
respectively.

Observe that the surface tensions associated to the film free boundary, the coherent substrate-film
interface, and the substrate free boundary, are simply φF, φFS, and (to accommodate both wetting
and dewetting regimes) φ respectively, while the surface tension associated to the incoherent
film-substrate interface is chosen to be φF + φ in analogy with the film-substrate delamination
or delaminated region in [58, 59, 60], since the incoherent interface coincides with the portion
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3.1. Introduction

of the film-substrate interface in which there is no bonding between the film and the substrate
surfaces. All remaining 4 terms are weighted double (in analogy to the lower-semicontinuity
results previously obtained in [25, 34, 46, 58, 59, 60] for the one-phase setting) as they refer
to either material filaments in the void or cracks in the composite bulk. In particular, notice
that in the substrate bulk region represented by S(1) we distinguish between substrate cracks in
the coherent and in the incoherent film-substrate interface, that are counted with weight 2φFS
and 2φ, respectively, while in the film bulk region A(1) ∩ S(0) we distinguish between substrate
filaments that are not film cracks counted with 2φFS and film cracks counted 2φF (see Figure
3.1).

Ω

A \ S(1)

S

Figure (3.1): The admissible regions for an admissible configuration (A,S, u) ∈ Cm (see Definition 3.2.2)
are represented by indicating the substrate region S and the film region A \ S(1) with a darker and a
lighter gray, respectively. In particular, the film and the substrate free boundaries (with the film and
substrate filaments) are indicated with a thinner line, while the film-substrate interface is depicted with a
thicker line that is continuous or dashed to distinguish between its incoherent portions and its coherent
portions (inclusive of substrate cracks and filaments that are not film cracks), respectively.

The main result of [66] consists in finding a physically relevant family of admissible configurations
in C̃, which is denoted by Cm for m := (m0,m1) ∈ N2, in which we can prove that, under a
two-phase volume constraint, F admits a minimizer. We find such a family Cm ⊂ C̃ by considering
as admissible configurations (A,S, u) ∈ C̃ the ones for which (see Definition 3.2.2 for more
details):

- the number of boundary connected components of S and A are fixed to be at most m0 and
m1, respectively,

- the substrate regions S satisfy an exterior graph constraint consisting in requiring that
∂∗S ∪ (∂S ∩S(0)) is the graph of an upper semicontinuous function with pointwise bounded
variation (while internal, also non-graph-like, substrate cracks are allowed),

as shown in Figure 3.1. Notice that such an exterior graph constraint allows to have a more
involved description of the substrate regions than the previously considered graph constraint in
the literature for the one-phase setting [25, 28, 34, 46], which is indeed needed to achieve the
compactness result contained in Theorem 3.2.11.

Therefore, for any two volume parameters v0,v1 ∈ [L2(Ω)/2,L2(Ω)] such that v0 ≤ v1, we
consider the problem:

inf
(A,S,u)∈Cm

L2(S)=v0, L2(A)=v1

F(A,S, u), (3.1.2)

which we tackle by employing the direct method of the calculus of variations, namely by equipping
C̃ with a properly chosen topology τC sufficiently weak to establish a compactness property for
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3. Two-phase free boundary problem

energy-equibounded sequences in Cm and strong enough to prove the lower semicontinuity of F
in Cm. The topology τC is characterized by the convergence:

(Ak, Sk, uk) τC−−−→
k→∞

(A,S, u) ⇐⇒



supk∈N H1 (∂Ak) < ∞, supk∈N H1 (∂Sk) < ∞,
sdist (·, ∂Ak) −−−→

k→∞
sdist (·, ∂A) locally uniformly in R2,

sdist (·, ∂Sk) −−−→
k→∞

sdist (·, ∂S) locally uniformly in R2,

uk −−−→
k→∞

u a.e. in Int (A),

where the signed distance function is defined for any E ⊂ R2 as follows

sdist(x, ∂E) :=
{

dist(x,E) if x ∈ R2 \ E,
−dist(x,E) if x ∈ E.

The compactness property shared by energy-equibounded sequences (Ak, Sk, uk) ∈ Cm described
in Theorem 3.2.11 consists in the existence, up to a subsequence, of a possibly different sequence
(Ãk, S̃k, ũk) ∈ Cm compact in Cm with respect to τC such that

lim inf
n→∞

F(Ak, Sk, uk) = lim inf
n→∞

F
(
Ãk, S̃k, ũk

)
.

This is achieved by both extending to the two-phase setting and to the situation with the exterior
graph constraint the strategy used in [58, Theorem 2.7]. For the latter, we rely on the arguments
already used in [25, 46], while for the former we used the Blaschke-type selection principle proved
in [58, Proposition 3.1] together with the Golab’s Theorem [53, Theorem 2.1] and we implement
to the two-phase setting the construction of [58, Proposition 3.6]. Such construction is needed to
take care of those connected components of Ak that separate in the limit in multiple connected
components, e.g., in the case of neckpinches, in order to properly apply Korn’s inequality just
after having introduced extra boundary to create different components also at the level Ak (by
passing to the sequence with composite regions Ãk). We notice though that the characterization
of the delamination region introduced in this chapter allows for a simplification in the arguments
used [58, Theorem 2.7], as the surface energy does not involve the bulk displacements, also
yielding an extension of the result by including the situation with S ̸= ∅ and v1 := L2(Ω).

The crucial point in proving the τC-lower semicontinuity of F is the τC-lower semicontinuity of S,
as the τC-lower semicontinuity of W directly follows by convexity similarly to [46, 58]. In order
to establish the τC-lower semicontinuity of S in Proposition 3.4.13 we fix (Ak, Sk, uk) ∈ Cm and
(A,S, u) ∈ Cm such that (Ak, Sk, uk) τC−→ (A,S, u), and we associate the positive Radon measures
µk and µ in R2 to the localized energy versions of S(Ak, Sk, uk) and S(A,S, u), respectively. We
have that

lim inf
k→+∞

S(Ak, Sk, uk) ≥ S(A,S, u) ⇐⇒ lim inf
k→+∞

µk(R2) ≥ µ(R2), (3.1.3)

and since, up to a subsequence, µk weakly* converges to some positive Radon measure µ0, and µ
is absolutely continuous with respect to H1 ((∂A ∪ ∂S) ∩ Ω), by proving the following estimate
involving Radon-Nikodym derivatives:

dµ0
dH1 (Ω ∩ (∂A ∪ ∂S)) ≥ dµ

dH1 (Ω ∩ (∂A ∪ ∂S)) H1 -a.e. on Ω ∩ (∂A ∪ ∂S), (3.1.4)

which implies that limµk(R2) = µ0(R2) ≥ µ(R2), in view of (3.1.3), the τC-lower semicontinuity
of S follows.

The proof of (3.1.4) is very involved and it is performed by separating Ω ∩ (∂A ∪ ∂S) in 12
portions on which we apply a blow-up technique (see, e.g., [48] ) together with ad hoc (apart from
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the 2 portions in which it turns out that we can use [68, Theorem 20.1]) results, i.e., Lemmas
3.4.7-3.4.12, which can be seen as the counterpart in the two-phase setting of [58, Lemmas
4.4 and 4.5] (see Table 3.1 for more details on the 12 blow-ups). In order to prove Lemmas
3.4.7-3.4.12, firstly we formalize the notions of film islands, composite voids, and substrate grains
(see Definition 3.4.6), secondly we prove in Lemma 3.4.5 that the coherent interface associated to
any configuration (A,S, u) ∈ Cm can be regarded, up to an error and a modification of (A,S, u)
by passing to the family C̃, as given by a finite number (depending on the initial configuration
(A,S, u)) of connected components, and finally we design induction arguments (with respect
to the number of such components) in which we are able to use the induction hypothesis by
“shrinking" islands, “filling" voids, and “modifying grains in new voids” as depicted in Figures
3.3, 3.4, and 3.6, respectively, by means of employing the anisotropic minimality of segments [68,
Remark 20.3].

The chapter is organized as follows: in Section 3.2 we introduce the model under consideration,
present some preliminary results and state the main results of [66], i.e., the existence of a solution
to (3.1.2) in Theorem 3.2.10 together with the compactness result of Theorem 3.2.11 and the
lower semicontinuity result of Theorem 3.2.12, in Section 3.3, we prove Theorem 3.2.11, in Section
3.4 we prove Theorem 3.2.12, and finally in Section 3.5 we prove Theorem 3.2.10.

3.2. Mathematical setting and main results
In this section we present the model introduced in [66] with some preliminaries, and then we
state the main results of the chapter outlining the consequences for the related one-phase setting
of [58, 59, 60] and the multiple-phase setting of film multilayers considered in Chapter 4.

3.2.1. The two-phase model
Let Ω := (−l, l) ×R2 (−L,L) ⊂ R2 for positive parameters l, L ∈ R. We begin by introducing the
family Cm of admissible configurations and, in particular, the admissible substrate regions.

Roughly speaking, an admissible substrate region S ⊂ Ω is characterized as the subgraph of a
upper semicontinuous height function h with finite pointwise variation to which we subtract a
closed H1-rectifiable set K such that H1(K) < ∞, which represents the substrate internal cracks.
More precisely, we consider the family of admissible (substrate) heights AH(Ω) defined by

AH(Ω) := {h : [−l, l] → [0, L] : h is upper semicontinuous and Varh < ∞} (3.2.1)

and let Sh denote the closed subgraph with height h ∈ AH(Ω), i.e.,

Sh := {(x, y) : −l < x < l, y ≤ h(x)}. (3.2.2)

We then define the family of admissible (substrate) cracks AK(Ω) by

AK(Ω) := {K ⊂ Ω : K is a closed set in R2, H1-rectifiable and H1(K) < ∞} (3.2.3)

and the family of pairs of admissible heights and cracks AHK(Ω) by

AHK(Ω) := {(h,K) ∈ AH(Ω) × AK(Ω) : K ⊂ Int(Sh)}. (3.2.4)

Finally, given (h,K) ∈ AHK(Ω) we refer to the set

Sh,K := (Sh \K) ∩ Ω, (3.2.5)

as the substrate with height h and cracks K, and we define the family of admissible substrates as

AS(Ω) := {S ⊂ Ω : S = Sh,K for a pair (h,K) ∈ AHK(Ω)}. (3.2.6)
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We observe that
∂Sh,K = ∂Sh ∪K (3.2.7)

for every Sh,K ∈ AS(Ω), so that Sh,K = Sh and Int(Sh,K) = Int(Sh) \K. We denote the jumps
points and the vertical filament points of the graph of h ∈ AH by

J(h) := {x ∈ (−l, l) : h−(x) ̸= h+(x)} and F (h) := {x ∈ (−l, l) : h+(x) < h(x)}, (3.2.8)

respectively. By [64, Corollary 2.23] and thanks to the fact that h ∈ AH, J(h) and F (h) are
countable. Moreover, it follows that ∂Sh is connected and, ∂Sh and ∂Sh,K have finite H1-measure.
By [44, Lemma 3.12 and Lemma 3.13], for any h ∈ AH, ∂Sh is rectifiable and applying the
Besicovitch-Marstrand-Mattila Theorem (see [4, Theorem 2.63]), ∂Sh is H1-rectifiable, and hence,
∂Sh,K is H1-rectifiable. Furthermore, applying [59, Proposition A.1] Sh and Sh,K are sets of
finite perimeter.

The following result allows to interchangeably bound the pointwise variation of a function h ∈ AH
from the H1-measure of ∂Sh, and vice versa.

Lemma 3.2.1. Let h ∈ AH. Then

Varh ≤ H1(∂Sh) ≤ 2l + 2Varh, (3.2.9)

where Sh is defined as in (3.2.2).

Proof. The proof is divided in two steps.

Step 1. We prove the left inequality of (3.2.9). We proceed as in [25, Section A.2.3]. Let m ∈ N
and let {li : i ∈ {0, . . . ,m}, l0 = −l, lm = l and li < li+1} be a partition of [−l, l]. Take
i ∈ {0, . . . ,m− 1} and define by Li the segment connecting (li, h(li)) with (li+1, h(li+1)). By [44,
Lemma 3.12], there exists a parametrization ri : [0, 1] → R2 of ∂Int(Sh) ∩ ((li, li+1) ×R2 [0, L)),
whose support γi joins the points (li, h(li)) and (li+1, h(li+1)), furthermore, it follows that

|h(li+1) − h(li)| ≤
√

|li+1 − li|2 + |h(li+1) − h(li)|2 = H1(Li) ≤ H1(γi).

Moreover, repeating the same argument for any i ∈ {0, . . . ,m− 1} we have that
m−1∑
i=0

|h(li+1) − h(li)| ≤
m−1∑
i=0

H1(γi) ≤ H1(∂Sh),

where in the last inequality we have used that

∂Sh = ∂Int(Sh) ∪ (∂Sh ∩ S
(0)
h ) ∪N, (3.2.10)

where N is a H1-negligible set. Taking the supremum aver all partitions of we obtain the left
inequality of (3.2.9).

Step 2. In this step, we prove the right inequality of (3.2.9). We observe that

Int(Sh) = {(x, y) : −l < x < l, y < h−(x)}

and so,
r : [−l, l] → ∂Int(Sh)

x 7→ (x, h−(x))
is a parametrization of ∂Int(Sh), whose support we denote by γ. Therefore, from [64, Definition
4.6 and Remark 4.20] it follows that

H1(∂Int(Sh)) = sup
{

m−1∑
i=0

|r(xi+1) − r(xi)|
}
, (3.2.11)

24



3.2. Mathematical setting and main results

where the supremum is taken over all partitions of [−l, l]. By definition of r and thanks to
(3.2.11), we see that

H1(∂Int(Sh)) ≤ sup
{

m−1∑
i=0

(
|xi+1 − xi| +

∣∣h−(xi+1) − h−(xi)
∣∣)} ≤ 2l + Varh,

where we used the fact that Varh− ≤ Varh. Finally, by (3.2.10) we have that H1(∂Sh) =
H1(∂Int(Sh)) + H1(∂Sh ∩ S(0)

h ) and since H1(∂Sh ∩ S(0)
h ) ≤ Varh, by the fact that ∂Sh ∩ S(0)

h is
the union of vertical segments, we can deduce the right inequality of (3.2.9).

We now introduce the family of admissible region pairs and configurations.

Definition 3.2.2 (Admissible regions and configurations). We define the families of admissible
pairs B(Ω) and of admissible configurations C by

B(Ω) := {(A,S) : A is L2-measurable, ∂A is H1-rectifiable, H1(∂A) < ∞,

there exists (h,K) ∈ AHK(Ω), S = Sh,K ∈ AS(Ω),
Sh,K ⊂ A ⊂ Ω and ∂A ∩ Int(Sh,K) = ∅},

and
C :=

{
(A,S, u) ∈ C̃ : (A,S) ∈ B

}
,

respectively.

In the following we also refer to the sets A, S, and A \ S(1) with respect to an admissible pair
(A,S) ∈ B as the composite region, the substrate region, and the film region of the admissible pair.
Moreover, we refer to S(1) and A(1) ∩ S0 as the substrate and the film bulk regions, respectively.

In Theorem 3.2.12 we will need to consider a natural extension of the families B and C, which we
denote as B̃ and C̃, respectively.

Definition 3.2.3. We define the families of admissible pairs B̃(Ω) and of admissible configurations
C̃ by

B̃(Ω) := {(A,S) : A,S are L2-measurable, ∂A, ∂S are H1-rectifiable,
H1(∂A),H1(∂S) < ∞, S ⊂ A ⊂ Ω and ∂A ∩ Int(S) = ∅},

and
C̃ :=

{
(A,S, u) : (A,S) ∈ B̃, u ∈ H1

loc

(
Int(A);R2

)}
,

respectively.

We observe that B ⊂ B̃, since for any (A,S) ∈ B there exists (h,K) ∈ AHK(Ω) such that
S = Sh,K ∈ AS(Ω) and ∂Sh,K is H1-rectifiable, and thus, (A,S) ∈ B̃(Ω).

Notice that, for simplicity, in the absence of ambiguity we omit the dependence on the set Ω in
the notation B̃(Ω) and B(Ω) by writing in the following only B̃ and B, respectively.

Remark 3.2.4. We observe that any bounded L2-measurable set A ⊂ R2 such that H1(∂A) < ∞
is a set of finite perimeter in R2 by [59, Proposition A.1].

We now equip the family B̃ with a topology.

Definition 3.2.5 (τB-convergence). A sequence {(Ak, Sk)} ⊂ B̃ τB-converges to (A,S) ∈ B̃, if

- supk∈N H1 (∂Ak) < ∞,supk∈N H1 (∂Sk) < ∞,

- sdist (·, ∂Ak) → sdist (·, ∂A) locally uniformly in R2 as k → ∞,
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- sdist (·, ∂Sk) → sdist (·, ∂S) locally uniformly in R2 as k → ∞.

It will follow from Lemma 3.2.9 below that the τB-convergence is closed in the subfamily of
admissible triples Bm ⊂ B whose definition depending on the vector m = (m0,m1) ∈ N × N we
now provide.

Definition 3.2.6. For any m := (m0,m1) ∈ N×N the family Bm is given by all pairs (A,S) ∈ B
such that ∂A and ∂S have at most m1 and m0-connected components, respectively. Let us also
define

Cm := {(A,S,u) ∈ C : (A,S) ∈ Bm} ⊂ C. (3.2.12)

We denote the topology with which we equip the family C̃ by τC .

Definition 3.2.7 (τC-Convergence). A sequence {(Ak, Sk, uk)}k∈N ⊂ C is said to τC-convergence
to (A,S, u) ∈ C, denoted as (Ak, Sk, uk) τC−→ (A,S, u), if

- (Ak, Sk) τB−→ (A,S),

- uk → u a.e. in Int (A).

We now state some properties of the topology τC .

Remark 3.2.8. We notice that:

(i) The following assertions are equivalent

(i.1) sdist(·, ∂Ek) → sdist(·, ∂E) locally uniformly in R2.

(i.2) Ek
K−→ E and R2 \ Ek

K−→ R2 \ Int(E).

Moreover, these imply that ∂Ek
K−→ ∂E.

(ii) If there exist (hk,Kk) ∈ AHK(Ω) and (h,K) ∈ AHK(Ω) such that Ek = Ehk,Kk
∈ AS(Ω)

and E = Eh,K ∈ AS, for every k ∈ N, we observe that Item (i.1) above is equivalent to

Ek = Ehk,Kk

K−→ Eh and R2 \ Ek = R2 \ Ehk,Kk

K−→ (R2 \ Int(Eh)) ∪K,

where Ehk,Kk
, Eh,K are defined as in (3.2.5) and Eh is defined as in (3.2.2).

(iii) Let {(Ek, Fk)} ⊂ R2 ×R2 be a sequence of bounded sets and let E,F ⊂ R2 be two bounded
sets such that ∂Ek

K−→ ∂E and ∂Fk
K−→ ∂F . In view of the Kuratowski convergence (see [4,

Section 6.1], [29, Chapter 4] or [58, Appendix A.1]), we observe that for every x ∈ ∂E \ ∂F
there exist r := r(x) > 0 and kr,x ∈ N such that B(x, r) ∩ ∂Fk = ∅ for any k ≥ kr,x.
Similarly, for every x ∈ ∂F \ ∂E there exists r′ := r′(x) > 0 and kr′,x ∈ N such that
B(x, r) ∩ ∂Ek = ∅ for any k ≥ kr′,x.

From the next result the closedness and the compactness (see Theorem 3.3.2) of the family Bm
with respect to the topology τB follows for every m := (m0,m1) ∈ N × N.

Lemma 3.2.9. Let {Ek} be a sequence of L2-measurable subsets of Ω having H1-rectifiable
boundaries ∂Ek with at most m-connected components such that

- supk H1(∂Ek) < ∞,

- sdist(·, ∂Ek) → sdist(·, ∂E) locally uniformly in R2 as k → ∞ for a set E ⊂ R2.

Then, ∂E is H1-finite, H1-rectifiable, and with at most m-connected components, and E ⊂ Ω is
L2-measurable. Furthermore, if Ek = Ehk,Kk

∈ AS(Ω) for every k ∈ N and for some (hk,Kk) ∈
AHK(Ω), then

sup
k

(H1(Kk) + Varhk) < ∞ (3.2.13)
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and there exists (h,K) ∈ AHK(Ω) such that E = Eh,K ∈ AS(Ω).

Proof. The fact that ∂E is H1-finite, H1-rectifiable, and with at most m-connected components,
is a direct consequence of [58, Lemma 3.2]. Since H1(∂E) < ∞, it follows that L2(E \ Int(E)) =
L2(∂E) = 0, by applying [17, Theorem 14.5] to E \ Int(E) ⊂ E \ Int(E) we infer that E \ Int(E) is
L2-measurable and so, L2(E \ Int(E)) = 0. Therefore, E = E \ Int(E) ∪ Int(E) is L2-measurable.

It remains to prove the last assertion of the statement. Let (hk,Kk) ∈ AHK(Ω) such that
Ek = Ehk,Kk

∈ AS(Ω) for every k. We begin by observing that (3.2.13) is a direct consequence
of (3.2.7), by applying (3.2.9) to hk. To conclude the proof we proceed in 2 steps.

Step 1. We claim that E = Eh, where h is the upper semicontinuous function defined by

h(x1) := sup{lim sup
k→∞

hk(xk
1) : xk

1 → x1}.

Let x = (x1, x2) ∈ E, by Remark 3.2.8-(i) we observe that there exists xk = (xk
1, x

k
2) ∈ Ek such

that xk → x. We deduce that

x2 = lim
k→∞

xk
2 ≤ lim sup

k→∞
hk(xk

1) ≤ h(x1),

and by (3.2.2) we deduce that E ⊂ Eh. Now let x = (x1, x2) ∈ Eh, by definition we observe that

x2 ≤ h(x1) := sup{lim sup
k→∞

hk(xk
1) : xk

1 → x1}.

Let xk = (xk
1, x

k
2) ∈ Ω such that xk

1 → x1, hk(xk
1) → h(x1) and define xk

2 := min{x2, hk(xk
1)}. It

follows that xk ∈ Ek and xk → x, by Kuratowski convergence we have that x ∈ E, therefore,
Eh ⊂ E.

Step 2. We claim that Int(E) = Int(Eh,K), where K := ∂E ∩ Int(Eh). Notice that K is a closed
set in R2 and since ∂E is H1-rectifiable, we deduce that K is also H1-rectifiable. On one hand,
we see that

Int(E) = Int(E) \ (∂E ∩ Int(Eh)) ⊂ Int(Eh) \ (∂E ∩ Int(Eh)) =: Int(Eh) \K = Int(Eh,K),

where in the first equality we used the fact that Int(E)∩∂E = ∅ and in the inclusion we used Step
1 and the fact that E ⊂ E = Eh. On the other hand, let x ∈ Int(Eh,K) = Int(Eh)\(∂E∩Int(Eh))
and assume by contradiction that x /∈ Int(E). This assumption implies that either x ∈ ∂E or
x ∈ Ω \ E, which is a contradiction by the facts that ∂E ⊂ E = Eh and

x ∈ Int(Eh) \ (∂E ∩ Int(Eh)) = Int(Eh) \ ∂E ⊂ Eh = E.

Finally, observe that (h,K) ∈ AHK(Ω). Thanks to the uniqueness of Kuratowski convergence,
the facts that Eh,K = Eh and Int(Eh,K) = Int(Eh) \ (∂E ∩ Int(Eh)), and in view of Remark
3.2.8-(i) we conclude from the previous two steps that E = Eh,K .

The total energy F : C̃ → [0,+∞] of admissible configurations is given as the sum of two
contributions, namely the surface energy S and the elastic energy W, i.e.,

F(A,S, u) := S(A,S) + W(A, u)

for any (A,S, u) ∈ C̃, where we observe that the surface energy does not depend on the
displacements (as a difference from [58, 59]). The surface energy S is defined for any (A,S) ∈ B̃
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by

S(A,S) :=
∫

Ω∩(∂∗A\∂∗S)
φF(x, νA (x)) dH1 +

∫
Ω∩∂∗S∩∂∗A

φ(x, νA (x)) dH1

+
∫

Ω∩(∂∗S\∂A)∩A(1)
φFS(x, νS (x)) dH1 +

∫
Ω∩∂∗S∩∂A∩A(1)

(φF + φ)(x, νA (x)) dH1

+
∫

Ω∩∂A∩A(1)∩S(0)
2φF(x, νA (x)) dH1 +

∫
Ω∩∂A∩A(0)

2φ′(x, νA (x)) dH1

+
∫

Ω∩(∂S\∂A)∩(S(1)∪S(0))∩A(1)
2φFS(x, νS (x)) dH1

+
∫

Ω∩∂S∩∂A∩S(1)
2φ(x, νA (x)) dH1,

(3.2.14)

where φF, φFS : Ω × R2 → [0,∞] and, given also the function φS : Ω × R2 → [0,∞], we define
the functions φ and φ′ in in C(Ω × R2; [0,∞]) by

φ := min{φS, φF + φFS} and φ′ := min{φF, φS}.

Notice that φF, φS, φFS represent the anisotropic surface tensions of the film/vapor, the sub-
strate/vapor and the substrate/film interfaces, respectively, while φ and φ′ are referred to as the
anisotropic regime surface tensions and are introduced to include into the analysis the wetting
and dewetting regimes. We refer the Reader to the Introduction for related explanation and for
the motivation for the integral densities choice in (3.2.14).

Similarly to [34, 58, 59, 60], by also taking into account that in our setting the film and substrate
regions are given as subsets of the composite regions, the elastic energy is defined for configurations
(A,S, u) ∈ C̃ by

W(A, u) :=
∫

A
W (x,E (u (x) − E0 (x))) dx,

where the elastic density W is determined by the quadratic form

W (x,M) := C (x)M : M,

for a fourth-order tensor C : Ω → M2
sym, E denotes the symmetric gradient, i.e., E(v) := ∇v+∇T v

2
for any v ∈ H1

loc(Ω) and E0 is the mismatch strain x ∈ Ω 7→ E0 (x) ∈ M2
sym defined as

E0 :=
{
E(u0) in Ω \ S,
0 in S,

for a fixed u0 ∈ H1(Ω).

3.2.2. Main results
We state here the main results of the chapter and the connection to the one-phase and multiple-
phase settings.

Fix l, L > 0 and consider Ω := (−l, l)×R2 (−L,L). Let φ := min{φS, φF+φFS}, φ′ := min{φF, φS}
for three functions φF, φS, φFS : Ω × R2 → [0,∞]. We assume throughout the chapter that:

(H1) φF, φFS, φ, φ
′ ∈ C(Ω × R2; [0,∞]) are Finsler norms such that

c1|ξ| ≤ φF(x, ξ), φ(x, ξ), φFS(x, ξ) ≤ c2|ξ|. (3.2.15)

for every x ∈ Ω and ξ ∈ R2 and for two constants 0 < c1 ≤ c2.
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(H2) We have
φ(x, ξ) ≥ |φFS(x, ξ) − φF(x, ξ)| (3.2.16)

for every x ∈ Ω and ξ ∈ R2.

(H3) C ∈ L∞(Ω;M2
sym) and there exists c3 > 0 such that

C (x)M : M ≥ 2c3M : M (3.2.17)

for every M ∈ M2×2
sym.

We notice that under assumptions (H1)-(H3), the energy F(A,S, u) ∈ [0,∞] for every (A,S, u) ∈
C̃.

The main result of the chapter is the following existence result.

Theorem 3.2.10 (Existence of minimizers). Assume (H1)-(H3) and let v0,v1 ∈ [L2(Ω/2),L2(Ω))
such that v0 ≤ v1. Then for every m = (m0,m1) ∈ N × N the volume constrained minimum
problem

inf
(A,S,u)∈Cm, L2(A)=v1, L2(Sh,K)=v0

F(A,S, u) (3.2.18)

and the unconstrained minimum problem

inf
(A,S,u)∈Cm

Fλ(A,S, u) (3.2.19)

have solution, where Fλ : Cm → R is defined as

Fλ(A,S, u) := F(A,S, u) + λ1
∣∣∣L2(A) − v1

∣∣∣+ λ0
∣∣∣L2(S) − v0

∣∣∣,
for any λ = (λ0, λ1), with λ0, λ1 > 0.

To prove Theorem 3.2.10 we apply the direct method of calculus of variations. On the one hand,
in Section 3.3, we show that any energy equi-bounded sequence {(Ak, Sk, uk)} ⊂ Cm satisfy the
following compactness property.

Theorem 3.2.11 (Compactness in Cm). Assume (H1) and (H3). Let {(Ak, Shk,Kk
, uk)}k∈N ⊂ Cm

be such that
sup
k∈N

F(Ak, Shk,Kk
, uk) < ∞. (3.2.20)

Then, there exist an admissible configuration (A,S, u) ∈ Cm of finite energy, a subsequence
{
(
Akn , Shkn ,Kkn

, ukn

)
}n∈N, a sequence

{(
Ãn, S̃n, ukn

)}
n∈N

⊂ Cm and a sequence {bn}n∈N of

piecewise rigid displacements associated to Ãn such that
(
Ãn, S̃n, ukn + bn

)
τC−→ (A,S, u),

L2(Akn) = L2(Ãn), L2(Shkn ,Kkn
) = L2(S̃n) for all n ∈ N and

lim inf
n→∞

F(Akn , Shkn ,Kkn
, ukn) = lim inf

n→∞
F
(
Ãn, S̃n, ukn + bn

)
. (3.2.21)

On the other hand, in Section 3.4 we show that F is lower semicontinuous in Cm with respect to
the topology τC .

Theorem 3.2.12 (Lower semicontinuity of F). Assume (H1)-(H3). Let {(Ak, Shk,Kk
, uk)}k∈N ⊂

Cm and (A,Sh,K , u) ∈ Cm be such that (Ak, Shk,Kk
, uk) τC−→ (A,Sh,K , u). Then

F (A,Sh,K , u) ≤ lim inf
k→∞

F (Ak, Shk,Kk
, uk). (3.2.22)

We now describe the consequences for the one-phase setting of the results obtained in this chapter
for the two-phase setting.
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Remark 3.2.13 (Relation to literature models with fixed substrate). The energy considered in
this chapter can be seen as an extension of the energies previously considered in the literature,
e.g., in [58, 46, 45], by “fixing the substrate regions”. More precisely, if we consider the subfamily
B′ ⊂ B where

B′ := {(A,S) ∈ B : ∂S ∩ Ω is a Lipschitz 1-manifold}
and C′ := {(A,S, u) ∈ C : (A,S) ∈ B′}, then the energy F ′ defined for every (A,S) ∈ B′ by

F ′ (A,S, u) := F (A,S, u) −
∫

Ω∩∂∗S
φFS (z, νS(z)) dH1 −

∫
Ω∩(∂A\∂S)∩A(0)

2φ′(z, νA(z))dH1

=
∫

Ω∩∂∗A\∂S
φF(z, νA(z))dH1 +

∫
Ω∩(∂A\∂S)∩∪A(1)

2φF(z, νA(z))dH1

+
∫

Ω∩∂∗S∩∂A∩A(1)
(φF − β)(x, νA (x)) dH1 −

∫
Ω∩∂∗S∩∂∗A

β(z, νA(z))dH1,

where β := φFS − φ, is analogous to the energy F ′ of [58, Theorem 2.9] (where the notation φ
was referring to φF), which is an extension of the energies of [46, 45] as described in [58, Remark
2.10]. We notice though that, even in the situation of a fixed regular substrate, i.e., by considering
the family C′′ := {(A,S, u) ∈ C : S = S0} ⊂ C′ for a fixed admissible region S0 such that ∂S0 ∩ Ω
is a Lipschitz 1-manifold, the setting considered in this chapter allows to include into the analysis
the possibility of an uncountable number of film islands (or film voids) on top of the substrate
(which was instead precluded in [58]), because of the crucial difference introduced in the setting
of this chapter consisting of always including the substrate regions inside the admissible region
A (with the film region then being represented by A \ S(1)). We also notice that the hypotheses
on the surface tensions in this chapter coincide with the ones in [58] up to the observation that
on the right hand-side of (3.2.16) one can disregard the absolute value for the setting with a
fixed substrate).

We conclude the section by outlining the consequences of the results obtained in this chapter
for the two-phase setting in the multiple-phase setting of film multilayers that is the object of
investigation in Chapter 4.

Remark 3.2.14 (Relation to the setting of film multilayers). In Chapter 4, it is considered the
setting in which also the film region is subject to a graph constraint, by introducing a family
of admissible regions for the film and the substrate of the form B1 := {(Sh1,K1 , Sh0,K0) ∈
AS(Ω) × AS(Ω) : h0 ≤ h1 and ∂Sh1,K1 ∩ Int(Sh0,K0) = ∅} ⊂ B and the related family
C1 := {(Sh1,K1 , Sh0,K0 , u) : (Sh1,K1 , Sh0,K0) ∈ B1 and u ∈ H1

loc(Sh1,K1 ;R2)} ⊂ C of admissi-
ble configurations. By implementing in the compactness for both the substrate and the film
the arguments employed in this chapter for the substrate, a similar result to Theorem 3.2.10 is
established, thus providing an existence result for the problem of films resting on deformable
substrates in the presence of delaminations, which can be seen as an extension of [34, 35, 46].
Furthermore, in Chapter 4 by then performing also an iteration procedure an existence result is
provided also for the setting of finitely-many film multilayers.

3.3. Compactness
In this section, we fix m := (m0,m1) ∈ N × N and we prove that the families Bm and Cm are
compact with respect to τB and τC topologies, respectively.

Proposition 3.3.1. The following assertions hold:

(i) For every sequence of closed sets {Ek}, there exists E ⊂ R2 such that Ek
K−→ E.

(ii) For every sequence {Ek}k∈N of subsets of R2 there exists a subsequence {Ekl
}l∈N and

E ⊂ R2 such that sdist(·, ∂Ekl
) → sdist(·, ∂E) locally uniformly in R2.
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The proof of Proposition 3.3.1-(i) and -(ii) can be found in [4, Theorem 6.1] and [58, Theorem
6.1], respectively (see also [4, Theorem 6.1] for the version of Item (ii) with the signed-distance
convergence replaced by the Hausdorff-metric convergence).

Theorem 3.3.2 (Compactness of Bm). Let {(Ak, Shk,Kk
)} ⊂ Bm such that

sup
k∈N

S(Ak, Shk,Kk
) < ∞

for (hk,Kk) ∈ AHK(Ω). Then, there exist a not relabeled subsequence {(Ak, Shk,Kk
)} ⊂ Bm and

(A,Sh,K) ∈ Bm such that (Ak, Shk,Kk
) τB−→ (A,Sh,K).

Proof. For simplicity we denote Sk := Shk,Kk
. We begin by observing that by Proposition 3.3.1-

(ii) there exist A ⊂ R2 and S ⊂ R2 such that sdist(·, ∂Akl
) → sdist(·, ∂A) and sdist (·, ∂Skl

) →
sdist(·, ∂S) locally uniformly in R2. Let R := supk∈N S(Ak, Shk,Kk

). In view of Remark 3.2.4 and
by (2.2.7) we have the following decomposition of ∂Ak,

∂Ak = ∂∗Ak ∪ (∂Ak ∩ (A(0)
k ∪A

(1)
k )) ∪Nk,

where Nk is a H1-negligible set for every k ∈ N. Thus, for every k ∈ N we observe that

∂Ak \ ∂Sk = ∂∗Ak \ ∂Sk ∪
(
(∂Ak \ ∂Sk) ∩

(
A

(0)
k ∪A

(1)
k

))
∪N ′

k, (3.3.1)

where N ′
k := Nk \ ∂Sk is a H1-negligible set. Since for any k ∈ N, Sk is a set of finite perimeter,

by (2.2.7) we have that

∂Sk = ∂∗Sk ∪ (∂Sk ∩ (S(0)
k ∪ S

(1)
k )) ∪ Ñk,

where Ñk is a H1-negligible set for every k ∈ N. Reasoning similarly to (3.3.1) we have that

∂Sk \ ∂Ak = ∂∗Sk \ ∂Ak ∪ (∂Sk \ ∂Ak) ∩
(
S

(0)
k ∪ S

(1)
k

)
∪ Ñ ′

k, (3.3.2)

(∂Sk \ ∂Ak) ∩A
(1)
k =

(
∂∗Sk \ ∂Ak ∪

(
∂Sk \ ∂Ak ∩

(
S

(1)
k ∪ S

(0)
k

)))
∩A

(1)
k ∪ Ñ ′′

k (3.3.3)

and

∂Sk ∩ ∂Ak ∩A
(1)
k =

(
(∂∗Sk ∩ ∂Ak) ∪

(
(∂Sk ∩ ∂Ak) ∩ (S(1)

k ∪ S
(0)
k )

))
∩A

(1)
k ∪ Ñ ′′′

k , (3.3.4)

where Ñ ′
k, Ñ ′′

k and Ñ ′′′
k are H1-negligible sets for every k ∈ N. Furthermore, we can deduce that

∂Sk ∩ ∂Ak =
(
∂∗Sk ∪ (∂Sk ∩ (S(0)

k ∪ S
(1)
k ))

)
∩
(
∂∗Ak ∪ (∂Ak ∩ (A(0)

k ∪A
(1)
k ))

)
∪ N̂k

= (∂S∗
k ∩ ∂∗Ak) ∪

(
∂Sk ∩ ∂∗Ak ∩ (S(0)

k ∪ S
(1)
k )

)
∪
(
∂∗Sk ∩ ∂Ak ∩ (A(0)

k ∪A
(1)
k )
)

(
∂Sk ∩ ∂Ak ∩ ((A(0)

k ∪A
(1)
k ) ∪ (S(0)

k ∪ S
(1)
k ))

)
∪ N̂k,

(3.3.5)

where N̂k is a H1-negligible set, for every k ∈ N. By (H1),(H3), (3.3.1)-(3.3.5) and thanks to the
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fact that for every k ∈ N, Sk ⊂ Ak we have that

c1
(
H1(∂Ak) + H1(∂Sk \ ∂Ak)

)
≤ c1

(∫
∂∗Ak\∂Sk

dH1 +
∫

∂∗Sk∩∂∗Ak

dH1 +
∫

(∂Ak\∂Sk)∩(Ak
(0)∪Ak

(1))
dH1

+
∫

(∂∗Sk\∂Ak)∩Ak
(1)
dH1 +

∫
∂Sk∩∂Ak∩Sk

(1)
dH1 +

∫
∂Sk∩∂∗Ak∩Sk

(0)
dH1

+
∫

(∂Sk\∂Ak)∩(Sk
(1)∪Sk

(0))∩Ak
(1)
dH1 +

∫
∂∗Sk∩∂Ak∩Ak

(1)
dH1

+
∫

(∂Sk∩∂Ak)∩Sk
(0)∩Ak

(1)
dH1

)
≤ 2(S(Ak, Sk)) ≤ 2R,

(3.3.6)

for every k ∈ N, where in the first inequality we used Lemma 3.2.1 and in the second inequality
we used (3.2.15). It follows that

H1(∂Ak) ≤ 2R
c1

(3.3.7)

and
H1(∂Sk) = H1(∂Sk ∩ ∂Ak) + H1(∂Sk \ ∂Ak) ≤ 2R

c1
, (3.3.8)

for any k ∈ N.

In view of (3.3.7) and (3.3.8) we conclude by Lemma 3.2.9 that A ⊂ Ω is L2-measurable,
∂A is H1-finite, H1-rectifiable, and with at most m1-connected components, and that there
exists (h,K) ∈ AHK(Ω) such that S = Sh,K ∈ AS(Ω) and ∂Sh,K has at most m0-connected
components. Furthermore, in view of Remark 3.2.8-(i), since Sk ⊂ Ak for any k ∈ N, we have
that Sh,K ⊂ A.

In order to prove that (A,Sh,K) ∈ Bm it remains to check that ∂A ∩ Int(Sh,k) = ∅, to which the
rest of the proof is devoted. Assume by contradiction that

∂A ∩ Int(Sh,k) ̸= ∅. (3.3.9)

Then, there exists x ∈ ∂A ∩ Int(Sh,k). By Remark 3.2.8-(i), there exists xk ∈ ∂Ak such that
xk → x and hence, by τB-convergence we observe that

sdist(x, ∂Shk,Kk
) → sdist(x, ∂Sh,K) as k → ∞. (3.3.10)

Since by (3.3.9) there exists ε > 0 such that sdist(x, ∂Sh,K) = −ε, we can find k0 := k0(x) for
which sdist(x, ∂Shk0 ,Kk0

) is negative. Then, x ∈ Int(Shk0 ,Kk0
) and so, there exists δ ≤ ε/2 such

that
xk0 ∈ Bδ(x) ⊂ Int(Shk0 ,Kk0

),

which is an absurd since ∂Ak ∩ Int(Shk,Kk
) = ∅ for every k ∈ N.

We are now in the position to prove Theorem 3.2.11. To this end, we implement the arguments
used in [58, Theorem 2.7] to the situation with free-boundary substrates and in particular the
ones contained in Step 1 of the proof of [58, Theorem 2.7]. In fact, the original setting introduced
in [66] with respect to [58] to model the delaminated interface regions allows to avoid the further
modification of the film admissible regions that was performed in Steps 2 and 3 of [58, Theorem
2.7].
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Proof of Theorem 3.2.11. Denote R := supk∈N F(Ak, Shk,Kk
, uk). Without loss of generality (by

passing, if necessary, to a not relabeled subsequence), we assume that

lim inf
k→∞

F(Ak, Shk,Kk
, uk) = lim

k→∞
F(Ak, Shk,Kk

, uk) ≤ R. (3.3.11)

Since W is non-negative, by Theorem 3.3.2 there exist a subsequence {(Akn , Shkn ,Kkn
)} ⊂ Bm

and (A,S) ∈ Bm such that (Akn , Shkn ,Kkn
) τB−→ (A,S). As a consequence of Theorem 3.3.2, there

exists (h,K) ∈ AHK such that S = Sh,K .

The rest of the proof is devoted to the construction of a sequence (Ãn, S̃n) ⊂ Bm to which we
can apply [58, Corollary 3.8] (with P = Int(A) and Pn = Int(Ãn), respectively) in order to
obtain u ∈ H1

loc(Int(A);R2) such that (A,S, u) ∈ Cm has finite energy, and a sequence {bn}n∈N of
piecewise rigid displacements such that

(
Ãn, S̃n, ukn + bn

)
τC−→ (A,S, u). Furthermore, we observe

that also Equation (3.2.21) will be a consequence of such construction and hence, the assertion
will directly follow.

By [58, Proposition 3.6] applied to Akn and A there exist a not relabeled subsequence {Akn}
and a sequence {Ãn} with H1-rectifiable boundary ∂Ãn of at most m1-connected components
such that

sup
n∈N

H1(∂Ãn) < ∞, (3.3.12)

that satisfy the following properties:

(a1) ∂Akn ⊂ ∂Ãn and lim
n→∞

H1(∂Ãn \ ∂Akn) = 0,

(a2) sdist(·, ∂Ãn) → sdist(·, ∂A) locally uniformly in R2 as n → ∞,

(a3) if {Ei}i∈I is the family of all connected components of Int(A), there exist connected
components of Int(Ãn), which we enumerate as {En

i }i∈I , such that for every i and G ⊂⊂ Ei

one has that G ⊂⊂ En
i for all n large (depending only on i and G),

(a4) L2(Ãn) = L2(Akn).

Furthermore, from the construction of Ãn (namely from the fact that Ãn is constructed by adding
extra “internal” topological boundary to the selected subsequence Akn , see [58, Propositions 3.4
and 3.6]) it follows that

Ãn = Akn \ (∂Ãn \ ∂Akn) (3.3.13)

with ∂Ãn \ ∂Akn given by a finite union of closed H1-rectifiable sets connected to ∂Akn . More
precisely, there exist a finite index set J and a family {Γj}j∈J of closed H1-rectifiable sets of Ω
connected to ∂Akn such that

∂Ãn \ ∂Akn =
⋃
j∈J

Γj .

We define
K̃n := Kkn ∪ ((∂Ãn \ ∂Akn) ∩ Int(Shkn

)) ⊂ Int(Shkn
)

and we observe that K̃n is closed and H1-rectifiable in view of the fact that ∂Ãn \ ∂Akn is a
closed set in Ω and is H1-rectifiable, since ∂Ãn is H1-rectifiable. Therefore, (hkn , K̃n) ∈ AHK(Ω)
and S̃n := S

hkn ,K̃n
⊂ Ãn. We claim that ∂S̃n has at most m0-connected components, so that

(Ãn, S̃n) ∈ Bm. Indeed, if for every j ∈ J , Shkn ,Kkn
∩ Γj is empty there is nothing to prove, so

we assume that there exists j ∈ J such that Shkn ,Kkn
∩ Γj ̸= ∅. On one hand if Γj ⊂ Shkn ,Kkn

,
thanks to the facts that Γj is connected to ∂Akn and Shkn ,Kkn

⊂ Akn , we deduce that Γj needs
to be connected to ∂Shkn ,Kkn

. On the other hand, if Γj ∩ (Akn \ Shkn
) ̸= ∅, then we can find

x1 ∈ Γj ∩ Shkn ,Kkn
and x2 ∈ Γj ∩ (Akn \ Shkn

). Since Γj is closed and connected, by [44, Lemma
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3. Two-phase free boundary problem

3.12] there exists a parametrization r : [0, 1] → R2 whose support γ ⊂ Γj joins the point x1 with
x2. Thus, γ crosses ∂Shkn ,Kkn

and we conclude that Γj is connected to ∂Shkn ,Kkn
.

We claim that (Ãn, S̃n) τB−→ (A,Sh,K) as n → ∞. In view of (3.3.12), (a2) and the fact that by
(3.2.7) and the previous construction of K̃n,

sup
n∈N

H1(∂S̃n) = sup
n∈N

H1(∂S
hkn ,K̃n

) < ∞,

it remains to prove that
sdist(·, ∂S

hkn ,K̃n
) → sdist(·, ∂Sh,K) (3.3.14)

locally uniformly in R2 as n → ∞. Indeed, by Remark 3.2.8-(i), it suffices to prove that
S

hkn ,K̃n

K−→ Sh and that Ω \ S
hkn ,K̃n

K−→ Ω \ Int(Sh,K). On one hand, by the τB-convergence of

{(Akn , Skn)}, the fact that S̃n :=S
hkn ,K̃n

= Shkn
, and the properties of Kuratowski convergence,

it follows that S̃n :=S
hkn ,K̃n

K−→ Sh. On the other hand, let x ∈ Ω \ Int(Sh,K), since

Int(S
hkn ,K̃n

) = Int(Shkn
) \ K̃n ⊂ Int(Shkn

) \Kkn = Int(Shkn ,Kkn
)

and by the fact that Ω \ Int(Shkn ,Kkn
) K−→ Ω \ Int(Sh,K), there exists

xn ∈ Ω \ Int(Shkn ,Kkn
) ⊂ Ω \ Int(S

hkn ,K̃n
)

such that xn → x. Now, we consider a sequence xn ∈ Ω \ Int(S
hkn ,K̃n

) converging to a point
x ∈ Ω. We proceed by contradiction, namely we assume that x ∈ Int(Sh,K). Therefore, there
exists ϵ > 0 such that sdist(x, ∂Sh,K) = −ϵ, which implies that sdist(x, ∂Shkn ,Kkn

) → −ϵ as
n → ∞. Thus, there exists nϵ ∈ N, such that xn ∈ Bϵ/2(x) ⊂ Int(Shkn ,Kkn

), for every n ≥ nϵ.
However, notice that

xn ∈ Ω \ Int
(
S

hkn ,K̃n

)
= Ω \

(
Int(Shkn

) \ K̃n

)
=
(
Ω \ Int

(
Shkn ,Kkn

))
∪
((
∂Ãn \ ∂Akn

)
∩ Int(Shkn

)
)
,

(3.3.15)

where in the last equality we used the definition of K̃n := Kkn ∪((∂Ãn \∂Akn)∩Int(Shkn
)) and the

fact that Int(Shkn ,Kkn
) = Int(Shkn

)\Kkn . Therefore, by (3.3.15) we deduce that xn ∈ ∂Ãn \∂Akn

for every n ≥ nϵ and hence, x ∈ ∂A by (a2) and Remark 3.2.8-(i). We reached an absurd as it
follows that x ∈ Int(Sh,K) ∩ ∂A = ∅. This conclude the proof of (3.3.14) and hence, of the claim.

By (3.2.15) and by conditions (a1), (a4) and (3.3.13), we observe that

lim
n→∞

∣∣∣S(Akn , Skn) − S(Ãn, S̃n)
∣∣∣ = lim

n→∞

∣∣∣S(Akn , Shkn ,Kkn
) − S(Ãn, Shkn ,K̃n

)
∣∣∣ = 0, (3.3.16)

and
W(Akn , ukn) = W(Ãn, ukn). (3.3.17)

By (3.2.17), (3.3.11), (3.3.13), (3.3.17), (a3) and thanks to the fact that S is non-negative, we
obtain that ∫

En
i

|e(ukn)|2dx ≤
∫

Ãn

|e(ukn)|2dx ≤ R

2c3
,

for every i ∈ I and for n large enough. Therefore, by a diagonal argument and by [58, Corollary
3.8] (applied to, with the notation of [58], P = Ei and Pn = En

i ) up to extracting not relabeled
subsequences both for {ukn} ⊂ H1

loc(Ω;R2) and {En
i }n there exist wi ∈ H1

loc(Ei,R2), and a
sequence of rigid displacements {bi

n} such that (ukn + bi
n)1En

i
→ wi a.e. in Ei. Let {Dn

i }
i∈Ĩ

for an
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3.4. Lower semicontinuity

index set Ĩ be the family of open and connected components of Ãn \
⋃

i∈I E
n
i such that by (a3)

Int(Dn
i ) converges to the empty set for every i ∈ Ĩ. In Dn

i we consider the null rigid displacement,
and we define

bn :=
∑
i∈I

bi
n1En

i
and u :=

∑
i∈I

wi1Ei .

We have that u ∈ H1
loc(Int(A);R2), bn is a rigid displacement associated to Ãn, ukn + bn → u a.e.

in Int(A) and hence, (A,S, u) =(A,Sh,K , u) ∈ Cm and (Ãn, S̃n, ukn + bn) :=(Ãn, Shkn ,K̃n
, ukn +

bn) τC−→ (A,Sh,K , u). Furthermore, as e(ukn + bn) = e(ukn), from (3.3.16) and (3.3.17) it follows
that

lim
n→∞

∣∣∣F(Akn , Shkn ,Kkn
, ukn) − F(Ãn, S̃n, ukn + bn)

∣∣∣
= lim

n→∞

∣∣∣F(Akn , Shkn ,Kkn
, ukn) − F(Ãn, Shkn ,K̃n

, ukn + bn)
∣∣∣ = 0,

which implies (3.2.21) and completes the proof.

3.4. Lower semicontinuity

In this section we prove that for any fixed m := (m0,m1) ∈ N × N the energy F is lower
semicontinuous in the family of configurations Cm with respect to the topology τC. Since F is
given as the sum of the surface energy S and the elastic energy W, we proceed by proving that
both S and W are independently lower semicontinuous with respect to τC .

We begin with S and we adopt Fonseca-Müller blow-up technique [48], for which we make use of
a localized version SL of the surface energy, which we can consider with surface tensions constant
with respect to the variable in Ω.

Definition 3.4.1. Let ϕF, ϕS, ϕFS be three functions and let ϕ := min{ϕS, ϕF + ϕFS}, ϕ′ :=
min{ϕF, ϕS} be such that ϕF, ϕFS, ϕ , ϕ

′ ∈ C(R2; [0,∞]) are Finsler norms and the hypotheses
(H1) and (H2) are satisfied by the functions φα, φ, φ

′ ∈ C(Ω × R2) given for α = S,FS,F by
φα(x, ·) := ϕα(·), φ(x, ·) := ϕ(·) and φ′(x, ·) = ϕ′(·) for every x ∈ Ω. We define the localized
surface energy SL : BL → [0,+∞] by

SL (A,S,O) :=
∫

O∩(∂∗A\∂S)
ϕF(νA) dH1 +

∫
O∩∂∗S∩∂∗A

ϕ(νA) dH1

+
∫

O∩(∂∗S\∂A)∩A(1)
ϕFS(νS) dH1 +

∫
O∩∂∗Sh,K∩∂A∩A(1)

(ϕF + ϕ)(νA) dH1

+
∫

O∩∂A∩A(1)∩S(0)
2ϕF(νA) dH1+

∫
O∩∂A∩A(0)

2ϕ′(νA) dH1

+
∫

O∩(∂S\∂A)∩(S(1)∪S(0))∩A(1)
2ϕFS(νS) dH1 +

∫
O∩∂S∩∂A∩S(1)

2ϕ(νS) dH1

(3.4.1)

for every (A,S,O) ∈ BL := {(A,S,O) : (A,S) ∈ B, O open and contained in Ω}.

We start with some technical results needed in the blow-up argument used in Theorem 3.4.13.

Lemma 3.4.2. Let Q be any open square, K ⊂ Q be a nonempty closed set and Ek ⊂ Q be such
that sdist(·, ∂Ek) → dist(·,K) uniformly in Q as k → ∞. Then Ek

K−→ K as k → ∞. Analogously,
if sdist(·, ∂Ek) → −dist(·,K) uniformly in Q as k → ∞, then Q \ Ek

K−→ K as k → ∞.

The proof of the previous lemma follows from the same arguments of [58, Lemma 4.2].
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3. Two-phase free boundary problem

Proposition 3.4.3. Let m ∈ N and let E ⊂ R2 be a set such that ∂E has at most m-connected
components, is H1-rectifiable, and satisfies H1(∂E) < ∞. Let x ∈ ∂E be such that the measure-
theoretic unit normal νE (x) of ∂E at x and there exists R > 0 such that QR,νE(x) (x)∩∂σρ,x(E) K−→
QR,νE(x) (x) ∩ Tx as ρ → 0+, where Tx := Tx,νE(x). Then, the following assertions hold true:

(a) If x ∈ E(1) ∩ ∂E, then sdist(·, ∂σρ,x(E)) → −dist(·, Tx) uniformly in QR,νE(x) as ρ → 0+;

(b) If x ∈ E(0) ∩ ∂E, then sdist(·, ∂σρ,x(E)) → dist(·, Tx) uniformly in QR,νE(x) as ρ → 0+;

(c) If x ∈ ∂∗E then sdist(·, ∂σρ,x(E)) → sdist(·, ∂Hx) uniformly in QR,νE(x) as ρ → 0+.

Proof. The cases (a) and (b) follow directly from [58, Proposition A.5]. It remains to prove the
case (c) to which the remaining of the proof is devoted. Let x ∈ ∂∗E and R > 0 be such that

QR,νE(x) (x) ∩ ∂σρ,x(E) K−→ QR,νE(x) (x) ∩ Tx as ρ → 0+. (3.4.2)

Without loss of generality, we assume that x = 0, νE(0) = e2, Hx = H0 and Tx = T0 = ∂H0.

Let {ρk} ⊂ (0, 1) be such that ρk → 0 and let fk := sdist(·, σρk
(∂E))

∣∣
QR

∈ W 1,∞(QR). We see that
for any k > 0, fk is 1-Lipschitz continuous, moreover by the fact that fk(0) = sdist(0, σρk

(∂E)) =
0, we deduce that {fk} is uniformly bounded. By applying Ascoli-Arzelà Theorem, there exists
f ∈ W 1,∞(QR) and a non-relabeled subsequence {fk} such that fk → f uniformly in QR. In view
of [58, Proposition A.1], by (3.4.2) we obtain that |fk| = dist(·, σρk

(∂E)) → dist(·, T0) uniformly
in QR and thus, |f(x)| = dist(x, ∂H0) for any x ∈ QR.

It remains to prove that f(·) = sdist(·, ∂H0) in QR. We proceed by absurd. Assume by con-
tradiction that f ̸= sdist(·, ∂H0) then, either f ≡ sdist(·, ∂(QR \ H0)) or f ≡ dist(x, T0) or
f ≡ −dist(x, T0). Let us first consider the case in which f ≡ sdist(·, ∂(QR \ H0)). In view of
Remark 3.2.8-(i), it follows that σρk

(E) K−→ QR \ Int(H0) and so, as a consequence we have that
L2 (σρk

(E)△(QR \ Int(H0))) → 0 as k → ∞, which is in contradiction with the De Giorgi’s
structure theorem of sets of finite perimeter (see [43, Theorem 5.13] or [68, Theorem 15.5]).

In the case f(·) ≡ dist(·, T0), thanks to the fact that fk → f uniformly in QR and by Lemma
3.4.2, we have that σρk

(E) ∩ QR
K−→ T0 ∩ QR, and thus, 1σρk

(E) → 1T0 in L1(QR), which is a
contradiction with the fact that 1σρk

(E) → 1H0 in L1
loc(R2) by [43, Theorem 5.13].

In the last case in which f(·) ≡ −dist(·, T0), we proceed analogously, and by Lemma 3.4.2
we obtain that QR \ σρk

(E) K−→ T0 and hence, 1(Q1\σρk
(E)) → 1T0 in L1(QR). Therefore, we

reach a contradiction again by applying [43, Theorem 5.13] since x ∈ ∂∗(R2 \ E) and so,
1(QR\σρk

(E)) → 1R2\Int(H0) in L1
loc(R2).

We now introduce the notions of film free boundary, substrate free boundary, and film-substrate
adhesion interface for triples (A, h,K) ∈ B, and of triple junctions at the points where they
“meet”.

Definition 3.4.4. For any admissible pair (A,S) ∈ B̃ we denote:

• the film free boundary, the substrate free boundary and the film-substrate adhesion interface
by

ΓF(A,S) :=
(
(∂A \ ∂S) ∪ (∂S ∩ ∂A ∩A(1))∪(∂S ∩ ∂∗A ∩ S(0))

)
∩ Ω,

ΓS(A,S) :=
(
(∂S ∩ ∂A) \ (∂S ∩ ∂∗A ∩ S(0))

)
∩ Ω,

ΓA
FS(A,S) :=

((
(∂S \ ∂A) ∩A(1)

))
∩ Ω,
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3.4. Lower semicontinuity

respectively. Notice that the film-substrate delamination interface, that we define by

ΓD
FS(A,S) :=

(
(∂S ∩ ∂A) ∩A(1)

)
∩ Ω,

is contained both in ΓF(A,S) and in ΓS(A,S).

• triple junction (by including for simplicity also the “double” junctions at the boundary)
any point

p ∈
(
Cl(ΓF(A,S)) ∩ Cl(ΓS(A,S)) ∩ Cl(ΓA

FS(A,S)) ∩ Ω
)

∪
(
Cl(ΓF(A,S)) ∩ Cl(ΓS(A,S)) ∩ ∂Int(S) ∩ ∂Ω)

)
∪
(
Cl(ΓF(A,S)) ∩ Cl(ΓA

FS(A,S)) ∩ ∂Ω)
)
,

where the closures are considered with respect to the relative topology of ∂A ∪ ∂S.

The next result allows us to assume that the adhesion interface of any admissible pair (A,S) ∈ Bm
(without the substrate internal cracks) can be considered, up to an error and up to passing to
the family B̃, to be given by a finite number (depending on the initial pair (A,S)) of connected
components.

Lemma 3.4.5. Let R be an open rectangle with two sides, that are denoted by T1 and T2, per-
pendicular to e1. Let (A,Sh,K) ∈ Bm for (h,K) ∈ AHK be such that SL(A,Sh,K , R) < ∞, where
SL is the localized surface energy defined in (3.4.1). If H1

((
ΓA

FS (A,Sh,K) \ Int(Sh)
)

∩R
)
> 0,

for every η ∈ (0, 1) small enough there exist M := M(A,Sh,K , η) ∈ N ∪ {0} and (Ã, S̃) ∈ B̃ such
that (ΓA

FS(Ã, S̃) \ Int(S̃)) ∩R has at most M connected components and

SL(A,Sh,K , R) ≥ SL(Ã, S̃, R) − η. (3.4.3)

Furthermore, (Ã, S̃) satisfies the following properties:

(i) If ∂Sh ∩R ∩ Tℓ ̸= ∅ for ℓ = 1, 2, then also ∂S̃ ∩R ∩ Tℓ ̸= ∅ for ℓ = 1, 2;

(ii) If there exists a closed connected set Λ ⊂ ∂A ∩R such that Λ ∩ Tℓ ̸= ∅ for ℓ = 1, 2, then
there exists a curve with support Λ̃ ⊂ ∂Ã ∩R such that Λ̃ ∩ Tℓ ̸= ∅ for ℓ = 1, 2.

Proof. Notice that we cannot a priori exclude that (ΓA
FS(A,Sh,K) \ Int(Sh)) ∩ R is a totally

disconnected set with positive H1-measure (see, for instance, the Smith-Volterra-Cantor set in
[76, Chapter 3]). We denote by L(h) the set of substrate filaments of the substrate Sh,K , namely,

L(h) := {(x1, x2) ∈ Ω : x1 ∈ (−l, l) and h+(x1) < x2 ≤ h(x1)} ⊂ ∂Sh. (3.4.4)

Since h is upper semicontinuous, there exist an index set J1 and a countable family of disjoint
points {xj

1}j∈J1 ⊂ (−l, l) such that

L(h) =
⋃

j∈J1

Lj(h), (3.4.5)

where Lj(h) := {(xj
1, x2) ∈ Ω : h+(xj

1) < x2 ≤ h(xj
1)} for every j ∈ J1. In the following three

steps, in view of the outer regularity of Borel measures, we construct an admissible pair (Ã, S̃) ⊂ B̃
by modifying some portions of ∂Sh and ∂A. More precisely, in the first step, we construct an
admissible height h1 by eliminating a family of “small” filaments of L(h) so that L(h1) consists of
only a finite number of filaments, we accordingly modify A in an admissible region A1 containing
L(h)\L(h1), and we define K1 := K. In the second step, we construct S2 by modifying Sh1,K1 and
we introduce an admissible region A2 in such a way that (ΓA

FS(A2, S2)\ Int(S2))∩R is a countable
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3. Two-phase free boundary problem

union of connected components, and (i) and (ii) hold true. In the third step, by eliminating
some components of ΓA

FS(A2, S2) \ Int(S2)) ∩R we define an admissible pair (Ã, S̃) ∈ B̃ for which
(ΓA

FS(Ã, S̃) \ Int(S̃)) ∩R has at most M -connected components, (i) and (ii) are preserved, and
(3.4.3) holds true.

Step 1 (Modification of substrate filaments). We modify (A,Sh,K) in (A0, Sh1,K1) to have a
finite number of substrate filaments. We denote by J2 ⊂ J1 the set of indexes j ∈ J1 such
that H1(Lj \ Int(A)) = 0 and Lj is not connected to ∂A, and we denote by FJ2(h) the set
of the x1-coordinates corresponding to the points in each vertical segment Lj for j ∈ J2, i.e.,
FJ2(h) := {xj

1}j∈J2 , where xj
1 ∈ [−l, l] is such that (xj

1, h(xj
1)) ∈ Lj(h) and h+(xj

1) < h(xj
1) for

every j ∈ J2. We define as h0 the modification of h, given by

h0 : [−l, l] → [0, L]

x 7→ h0(x) :=
{
h(x) if x ∈ [−l, l] \ FJ2(h),
h+(x) if x ∈ FJ2(h),

and observe that by construction h0 ∈ AH and

H1(∂Sh0) ≤ H1(∂Sh), (3.4.6)

where Sh0 is defined as in (3.2.2). We notice that the triple (A,Sh0,K0) ∈ Bm, where K0 := K.
As a consequence of the construction and of the non-negativity of ϕFS, it follows that

SL(A,Sh,K , R) ≥ SL(A,Sh0,K0 , R). (3.4.7)

We notice that by (3.4.5) we have that

H1(L(h0)) = H1(L(h)) −
∑
j∈J2

H1(Lj(h)) =
∑
j∈J3

H1(Lj(h)),

where J3 := J1 \ J2 and L(h0) is the set of substrate filaments of Sh0,K0 defined as in (3.4.4).
Therefore, for a fix η̃ > 0 there is j′

1 := j′
1(η̃) ∈ J3 such that

∞∑
j=j′

1+1,j∈J3

H1(Lj(h)) ≤ η̃, (3.4.8)

and we define

A1 :=

A \

 ∞⋃
j=j′

1+1,j∈J3

(Lj(h) ∩ Int(A))

 ∪
∞⋃

j=j′
1+1,j∈J3

(Lj(h) ∩ (Ω \ Int(A))).

Furthermore, we denote by h1 the modification of h0, defined by

h1 : [−l, l] → [0, L]

x 7→ h1(x) :=
{
h0(x) if x ∈ [−l, l] \ FJ4(h0),
h0+(x) if x ∈ FJ4(h0),

where J4 := {j ∈ J3 : j ≥ j′
1 + 1} and FJ4(h0) := {xj

1}j∈J4 such that (xj
1, h(xj

1)) ∈ Lj(h) for
every j ∈ J4. We define K1 := K0, we notice that (h1,K1) ∈ AHK and Sh1,K1 ⊂ A1, thus
(A1, Sh1,K1) ∈ Bm and since Lj(h) is connected to ∂A for every j ∈ J4 ⊂ J3, we deduce that
∂A1 has at most m1-connected components. Finally, we observe that

SL(A,Sh,K , R) − SL(A1, Sh1,K1 , R) ≥ −
∑
j∈J4

2
∫

Lj(h)
ϕF(νLj(h))dH1 ≥ −2c2η̃, (3.4.9)
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3.4. Lower semicontinuity

where we used the non-negativeness of ϕ, ϕFS and (3.2.15), and we observe that (A1, Sh1,K1) ∈ Bm
has a finite number of substrate filaments, more precisely, we denote by j′ ∈ N the cardinality of
the index set J := J3 \J4 = {j ∈ J3 : j ≤ j′

1} and we have that L(h1) is the union of j′ filaments,
i.e.,

L(h1) =
⋃
j∈J

Lj(h), (3.4.10)

where L(h1) is defined as in (3.4.4) with respect to the substrate Sh1,K1 ∈ AS(Ω).

Step 2 (Modification of the substrate free boundary). Without loss of generality in the following
we assume that ∂Int(Sh1) ∩ L(h1) ⊂ R. Since H1 ∂Sh1,K1 is a finite Borel measure and

ΓA :=
(
ΓA

FS(A1, Sh1,K1) \ Int(Sh1)
)

∩R

is a Borel set, by the outer regularity of measures (see [68, Theorem 2.10]), there exists an open
set O = O(η̃) ⊂ R such that ΓA ⊂ O ∩ ∂Sh1,K1 and

H1
(
Λ̂
)

= H1
(
(O ∩ ∂∗Sh1,K1) \ ΓA

)
≤ H1

(
(O ∩ ∂Sh1,K1) \ ΓA

)
<

2−5/2

j′ + 1 η̃,
(3.4.11)

where Λ̂ := (O ∩ ∂Int(Sh1,K1)) \ ΓA and j′ is defined in the Step 1 as the number of filaments
of Sh1 . Moreover, by using the notation introduced in (3.2.2) and the fact that h1 ∈ AH(Ω) we
conclude that

∂Int
(
Sh1,K1

)
= ∂Int(Sh1) = ∂Sh1+ , (3.4.12)

and hence, since ∂Int(Sh1,K1) is a connected and compact set in R2 with finite H1-measure, by
[44, Lemma 3.12] there exists a parametrization r : [0, 1] → R2 of ∂Int(Sh1,K1) whose support γ
joins the points (−l, h1(−l+)) with (l, h1(l−)).

Notice that by Step 1, ∂Int(Sh1) ∩ L(h1) is the union of j′-points that we can order by labeling
them with p1, . . . , pj′ . Furthermore, we denote with p0 := r(t0) and pj′+1 := r(t1), where
t0 := inf{t ∈ [0, 1] : r(t) ∈ ∂R} and t1 := sup{t ∈ [0, 1] : r(t) ∈ ∂R}, and we consider the family
{Ri}j′+1

i=1 of the strips Ri defined as the open regions of R contained between the vertical lines
passing though the points pi−1 and pi.

Since Λ̂ is a Borel measurable set, by (2.2.3) and (3.4.11) we have that

N 1(Λ̂) ≤ 2
5
2 H1(Λ̂) < η̃

j′ + 1 , (3.4.13)

where N 1 is the net measure defined in (2.2.1). Therefore, there exists δ > 0 such that we can
find a family of disjoint dyadic squares {Un}n∈N ⊂ Q such that Λ̂ ⊂

⋃
n∈N Un, diam(Un) ≤ δ for

any n ∈ N and ∑
n∈N

diam(Un) ≤ N 1(Λ̂) + η̃

j′ + 1 <
2

j′ + 1 η̃. (3.4.14)

Without loss of generality we assume that (Λ̂ ≠ ∅ and that) Un ∩ Λ̂ is non-empty for every
n ∈ N. Let {U i

n} ⊂ {Un} be the subfamily of dyadic squares such that U i
n ∩Ri ∩ γ ̸= ∅ for every

n ∈ N. Furthermore, we assume for simplicity that Int(U i
n) ⊂ Ri. We begin by modifying the

pair (A1, Sh1,K1) in the strip R1, by denoting the modification by (A2
1, S

2
1). We characterize A2

1
and S2

1 as

A2
1 :=

A1 ∪
⋃

n∈N
U1

n

 \
⋃

n∈N
(∂U1

n \ U1
n) (3.4.15)
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and

S2
1 :=

Sh1,K1 \
⋃

n∈N
Int(U1

n)

 ∪
⋃

n∈N
(∂U1

n ∩ (R1 \ Sh1)), (3.4.16)

respectively. By construction, it follows that S2
1 ⊂ A2

1, ∂A2
1 and ∂S1

1 have finite H1 measure and
are H1-rectifiable, and ∂A2

1 ∩ Int(S2
1) = ∅ and hence, (A2

1, S
2
1) ∈ B̃. Furthermore, we have that

SL

(
A1, Sh1,K1 , R1

)
− SL

(
A2

1, S
2
1 , R

1
)

≥ −2
∫⋃

n∈N ∂U1
n

ϕF(νU1
n
) + ϕ(νU1

n
) + ϕFS(νU1

n
) dH1

≥ −
∑
n∈N

2
∫

∂U1
n

ϕF(νU1
n
) + ϕ(νU1

n
) + ϕFS(νU1

n
) dH1

≥ −
∑
n∈N

24 c2diam(U1
n) ≥ − 48

j′ + 1c2η̃,

(3.4.17)

where in the first inequality we used the non-negativeness of ϕF, ϕFS and ϕ, in the second inequality
we used the subadditivity of measures, in the third inequality we used (3.2.15), and in the last
inequality we used (3.4.14). We notice that ΓA

FS(A2
1, S

2
1) ∩ ∂Int(S2

1) ∩R1 is a countable union of
connected sets because by construction every connected component of ΓA

FS(A2
1, S

2
1)∩∂Int(S2

1)∩R1

is connected to an element in the family of sets {∂U1
n ∩ U1

n}n∈N.

Now, we modify (A2
1, S

2
1) in a new configuration (A3

1, S
3
1) in order to prove Assertion (ii). To this

end let Λ ⊂ ∂A ∩R be a closed connected set such that Λ ∩ Tℓ ̸= ∅ for ℓ = 1, 2. By [44, Lemma
3.12] there exists a parametrization r1 : [0, 1] → R2 whose support γ1 ⊂ Λ joins T1 with T2. We
define γ1

1 := γ1 ∩ R1 and we observe that (γ1
1 \ Int(U1

n)) ∪ ∂U1
n is a connected set. Let Z1 ⊂ N

be the set of indexes n such that γ1 ∩ (∂U1
n ∩ U1

n) ̸= ∅. If Z1 = ∅, then we define A3
1 := A2

1 and
S3

1 := S2
1 . If Z1 ̸= ∅, then we modify γ1

1 in ⋃n∈Z1 U
1
n by defining a new set Λ1. More precisely, by

using the fact that dyadic squares by definition do not intersect each other, we fix n ∈ Z1 and
we replace with a set Λ1

n (see (3.4.24) below) the portion of γ1 passing through U1
n. To this end,

let us denote the closures of the left and bottom sides of U1
n by L1

n and L2
n, respectively, and

proceed by defining Λ1
n in different way with respect to following three cases (see Figure 3.2):

Case 1 γ1
1 ∩L1

n ̸= ∅ and γ1 ∩L2
n = ∅. Since L1

n is closed, we deduce that γ1
1 ∩ L1

n is closed.
Therefore, there exist a2

n := max{a ∈ R; (l1n, a) ∈ γ1
1 ∩ L1

n} and b2
n := min{b ∈ R; (l1n, b) ∈

γ1
1 ∩ L1

n}, where l1n is the element in the singleton π1(L1
n). Since γ1 is parametrized by r1,

there exist t1n, t2n ∈ [0, 1] such that p1
n,1 := (l1n, a2

n) = r1(t1n) and p2
n,1 := (l1n, b2

n) = r1(t2n),
and by the continuity of r1 there exists q1

n,1 ∈ γ1
1 \ U1

n such that dist(p1
n,1, q

1
n,1) ≤ diam(U1

n)
2 .

If π1(q1
n,1) = l1n, then we define q̃1

n,1 := (l1n − ε, π2(q1
n,1) − ε) for a ε > 0 small enough such

that dist(q1
n,1, q̃

1
n,1) ≤ diam(U1

n)
2 , otherwise we let q̃1

n,1 := q1
n,1. We denote by L̃1

n,1 the segment
connecting q1

n,1 with q̃1
n,1, we denote by L̃2

n,1 the segment connecting q̃1
n,1 with p2

n,1, and
we denote by L̃3

n,1 the segment connecting p1
n,1 with the vertex of U1

n in ∂U1
n \ U1

n. Let
Λ1

n := L̃1
n,1 ∪ L̃2

n,1∪L̃3
n,1 and observe that by construction it follows that

H1(Λ1
n) = H1(L̃1

n,1 ∪ L̃2
n,1∪L̃3

n,1) ≤ 2 diam(U1
n). (3.4.18)

Case 2 γ1
1 ∩ L1

n = ∅ and γ1 ∩ L2
n ̸= ∅. By arguing analogously to Case 1 there exist

t1n, t
2
n ∈ [0, 1] such that p1

n,2 := (a1
n, l

2
n) = r1(t1n) and p2

n,2 := (b1
n, l

2
n) = r1(t2n), where

π2(L2
n) = {l2n}, a1

n := max{a ∈ R; (a, l2n) ∈ γ1
1 ∩L2

n}, and b1
n := min{b ∈ R; (b, l2n) ∈ γ1

1 ∩L2
n}.

By the continuity of r1 there exists q1
n,2 ∈ γ1

1 \ U1
n such that dist(p1

n,2, q
1
n,2) ≤ diam(U1

n)
2 . If

π2(q1
n,2) = l2n, then we define q̃1

n,2 := (π1(q1
n,2) − ε, l2n − ε) for ε > 0 small enough such that
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3.4. Lower semicontinuity

dist(q1
n,2, q̃

1
n,2) ≤ diam(U1

n)
2 , otherwise we let q̃1

n,2 := q1
n,2. We denote by L̃1

n,2 the segment
connecting q̃1

n,2 with p1
n,2, we denote by L̃2

n,2 the segment connecting q̃1
n,2 with p2

n,2 and we
denote by L̃3

n,2 the segment connecting p1
n,2 with with the vertex of U1

n in ∂U1
n \ U1

n. Let
Λ1

n := L̃1
n,2 ∪ L̃2

n,2∪L̃3
n,2 and observe that by construction it follows that

H1(Λ1
n) = H1(L̃1

n,2 ∪ L̃2
n,2∪L̃3

n,2) ≤ 2 diam(U1
n). (3.4.19)

Case 3 γ1
1 ∩L1

n ̸= ∅ and γ1 ∩L2
n ̸= ∅. We define pk

n,ℓ, q
1
n,ℓ, q̃

1
n,ℓ, L̃α

n,ℓ for k = 1, 2, α = 1, 2, 3
as in Case 1 for ℓ = 1 and as in Case 2 for ℓ = 2. Furthermore, we denote by L̃4

n the
segment connecting p2

n,1 with p2
n,2. Let Λ1

n := L̃1
n,1 ∪ L̃2

n,1 ∪ L̃1
n,2 ∪ L̃2

n,2∪L̃3
n,1 ∪ L̃3

n,2 ∪ L̃4
n

and observe that by construction it follows that

H1(Λ1
n) ≤ H1(L̃1

n,1 ∪ L̃2
n,1∪L̃3

n,1) + H1(L̃1
n,2 ∪ L̃2

n,2∪L̃3
n,2) + H1(L̃4

n)
≤ 5 diam(U1

n). (3.4.20)

R1 R1
A2

1

S2
1 S3

1

A3
1

γ1
1

Λ1

Figure (3.2): The three squares appearing in the illustration represent dyadic squares U1
n of the first strip

R1 in the three different cases, namely, by moving from the left to the right, Cases 1, 2, and 3, that are
considered in Step 2 of the proof of Lemma 3.4.5. On the left the initial pair (A2

1, S
2
1) is represented, while

on the right the pair (A3
1, S

3
1) that is obtained after the modification described in such step is depicted.

Let
Γ1 :=

(
ΓA

FS(A2
1, S

2
1) ∩ ∂Int(S2

1) ∩R1
)

\
⋃

n∈Z1

(U1
n).

We now observe that the previous construction of ⋃n∈Z1 Λ1
n does not divide Γ1 in an uncountable

number of connected components. More precisely, we claim that for every given a connected
component Γ̂ of Γ1, Γ̂ \

⋃
n∈Z1 Λ1

n is a countable union of disjoint connected sets. To prove this
claim, we notice that, since Γ̂ ⊂ γ and γ is parameterized by r, also Γ̂ is parametrizable and
hence, there exists a continuous injective map r̂ : [0, 1] → R2 whose support coincides with
Γ̂. This in particular proves that r̂ is a homeomorphism between [0, 1] and Γ̂. The claim then
follows from the fact that Γ̂ \

⋃
n∈Z1 Λ1

n is open with respect to the relative topology of Γ̂ and
[76, Proposition 8 in Part 1].

We are now in the position to define A3
1 and S3

1 as follows

A3
1 := A2

1 \

γ1 \
⋃

n∈Z1

U1
n

 ∪
⋃

n∈N
(∂U1

n \ U1
n) ∪

⋃
n∈Z1

(A2
1 ∩ Λ1

n)


∪
⋃

n∈Z1

((R1 \ Int(A2
1)) ∩ Λ1

n) (3.4.21)
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3. Two-phase free boundary problem

and

S3
1 := S2

1 \

 ⋃
n∈Z1

(A2
1 ∩ Λ1

n)

 . (3.4.22)

Therefore, we have that

SL

(
A2

1, S
2
1 , R

1
)

− SL

(
A3

1, S
3
1 , R

1
)

≥ −2
∫⋃

n∈Z1
Λ1

n

ϕF(νA2
3
) + ϕ(νA2

3
) dH1

≥ −
∑

n∈Z1

2
∫

Λ1
n

ϕF(νU1
n
) + ϕ(νU1

n
) dH1

≥ −
∑

n∈Z1

20 c2diam(U1
n) ≥ − 40

j′ + 1c2η̃,

(3.4.23)

where in the first inequality we used the non-negativeness of ϕF, ϕFS and ϕ, in the second
inequality we used the subadditivity of measures, in the third inequality we used (3.2.15) and
(3.4.18)–(3.4.20), and in the last inequality we used (3.4.14).

Moreover, by construction we have that

Λ1 :=

γ1 \

 ⋃
n∈Z1

U1
n

 ∪
⋃

n∈Z1

Λ1
n ⊂ ∂A3

1 (3.4.24)

is closed, connected, and joins T1 with T2.

We now modify the pair (A3
1, S

3
1) and Λ1 in the strip R2, first by employing the same construction

of (3.4.15) and (3.4.16) to obtain a configuration (A2
2, S

2
2) ∈ B̃, and then by employing the same

construction of (3.4.21) and (3.4.22) to modify the pair (A2
2, S

2
2), by denoting the final modified

pair with (A3
2, S

3
2) ∈ B̃. We then define

Λ2 :=

Λ1 \

 ⋃
n∈Z2

U2
n

 ∪
⋃

n∈Z2

Λ2
n ⊂ ∂A3

2. (3.4.25)

By iterating the same procedure on the strips Ri for i = 3, . . . , j′ + 1 we obtain the pair
(A2, S2) := (A3

j′+1, S
3
j′+1) ∈ B̃ and we define Λj′+1 as in (3.4.25) by replacing all the index 1 and

2 with j′ and j′ + 1, respectively. We observe that by [44, Lemma 3.12] there exists a support
Λ̃ ⊂ Λj′+1 of a curve joining T1 with T2.

Furthermore, as done in (3.4.23) for i=1,

SL

(
A2

i , S
2
i , R

i
)

− SL

(
A3

i , S
3
i , R

i
)

≥ − 40
j′ + 1c2η̃ (3.4.26)

for every i = 1, . . . , j′ + 1. Therefore, by iteration it follows that

SL

(
A1, Sh1,K1 , R

)
− SL

(
A2, S2, R

)
≥

j′+1∑
i=1

(
SL

(
A1, Sh1,K1 , Ri

)
−SL

(
A2

i , S
2
i , R

i
)

+SL

(
A2

i , S
2
i , R

i
)

− SL

(
A3

i , S
3
i , R

i
))

≥ −
j′+1∑
i=1

88
j′ + 1c2η̃

≥ −88c2η̃,

(3.4.27)

where in the second inequality we used (3.4.17) and (3.4.26). We notice that ΓA
FS(A2, S2) ∩

∂Int(S2) ∩ R is a countable union of connected sets because by construction every connected
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3.4. Lower semicontinuity

component of ΓA
FS(A2, S2) ∩ ∂Int(S2) ∩ R is connected to an element in the family of sets

{∂Un ∩Un}n∈N. Therefore, (ΓA
FS(A2, S2) \ Int(S2)) ∩R is equal to a countable union of connected

sets. More precisely, there exists a family of connected and disjoint sets {Γ̃i}i∈N such that

(ΓFS(A2, S2) \ Int(S2)) ∩R =
⋃
i∈N

Γ̃i, (3.4.28)

and hence,
H1

(
(ΓFS(A2, S2) \ Int(S2) ∩R

)
=
∑
i∈N

H1
(
Γ̃i

)
. (3.4.29)

We conclude this step by observing that Assertion (i) follows by the construction of S2, while
Assertion (ii) holds with the defined set Λ̃.

Step 3 (From countable to a finite number of components). Since H1((ΓFS(A2, S2)\Int(S2))∩R) ≤
H1(∂S2) < ∞, by (3.4.29) there exists i0 := i0(η̃) ∈ N such that

∞∑
i=i0+1

H1(Γ̃i) ≤ η̃. (3.4.30)

Notice that (Ã, S̃) ∈ B̃, where S̃ := S2 and Ã := A2 \
⋃

i∈Ĩ
Γ̃i with Ĩ := {i ∈ N : i ≥ i0 + 1}.

Furthermore, it follows from Steps 1 and 2 that

SL(A,Sh,K , R) − SL(Ã, S̃, R) = SL(A,Sh,K , R) ± SL(A2, S2, R) − SL(Ã, S̃, R)

≥ −88c2η̃ − 2
∞∑

i=i0+1

∫
Γ̃i

ϕF(νΓ̃i
) + ϕ(νΓ̃i

) dH1

≥ −92c2η̃,

(3.4.31)

where in the first inequality we used (3.4.9) and (3.4.27), and the definition of Ã and the non-
negativeness of ϕFS and, in the second inequality we used (3.2.15) and (3.4.30). We conclude this
step by defining M ∈ N ∪ {0} as the cardinality of N \ Ĩ, and we notice by construction that
(ΓA

FS(Ã, S̃) \ Int(S̃)) ∩R has at most M -connected components.

Finally, we observe that Assertion (i) is a direct consequence of the construction in Steps 1 and
2, while Assertion (ii) follows from the definition of Λ̃ in Step 2 (which is not modified in Step 3
since Λ̃ ∩ (ΓA

FS(A2, S2) \ Int(S2)) = ∅). The proof of this lemma is concluded by taking η̃ := η
92c2

in (3.4.31) with η ∈ (0,min{1, 92c2}).

We formalize below the notions of film islands, composite voids, and substrate grains for any
admissible pair (A,Sh,K) ∈ B.

Definition 3.4.6. Let R ⊂ Ω be an open rectangle and let (A,S) ∈ B. We refer to:

• any closed component V⊂ R of Ω \ Int(A) such that ∂V ∩ (ΓS(A,S) ∪ ΓD
FS(A,S)) is not

empty and it consists in one and only one connected component as an extended (as we also
include “connected delamination regions”) composite void of the configuration (A,S) (or
sometime for simplicity of the film region or of A).

• any open connected component P⊂ R of Int(A \ S) such that ∂P ∩ ΓA
FS(A,S) is not

empty and it consists in one and only one connected component as a film island of the
configuration (A,S) (or sometime for simplicity of the film region or of A), and to a film
island P = Int(A \ S) ∩R of (A,S) as the full island of A.

• any open connected component G⊂ R of Int(S) such that ∂G∩ ΓA
FS(A,S) is not empty and

it consists in one and only one connected component as a substrate grain of the configuration
(A,S) (or sometime for simplicity of the substrate region or of S), and to a substrate grain
G = Int(S) ∩R of (A,S) as the full grain of S.
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3. Two-phase free boundary problem

The following results can be seen as analogous of [58, Lemmas 4.4 and 4.5] though in our more
involved setting of three free interfaces (see Table 3.1), where we have to distinguish among the
blow-ups at:

- the substrate free boundary (Lemma 3.4.7),

- the film-substrate incoherent (delaminated) interface (Lemma 3.4.8),

- the substrate cracks in the film-substrate incoherent interface (Lemma 3.4.9),

- the filaments of both the substrate and the film (Lemma 3.4.10),

- the substrate filaments on the film free boundary (Lemma 3.4.11),

- the delaminated substrate filaments in the film (Lemma 3.4.12).

The strategy employed in these proofs is based on reducing to the situation of a finite number
of connected components for the film-substrate coherent interfaces by Lemma 3.4.5 and then
on designing induction arguments (with respect to the index of such components) in which we
“shrink" islands, “fill" voids, and modify “grains” in new voids (see Figures 3.3, 3.4, and 3.6,
respectively) by means of the minimality of segments (see [68, Remark 20.3]).

We begin by addressing the setting of the substrate free boundary.

Lemma 3.4.7. Let R ⊂ R2 be an open rectangle with a side parallel to e1 and let T ⊂ R2

be a line such that T ∩ R ≠ ∅. Let {ρk}k∈N ⊂ [0, 1] be such that ρk ↘ 0 and R ⊂ σρ1(Ω).
If {(Ak, Shk,Kk

)} ⊂ Bm(σρ1(Ω)) is a sequence such that ∂Shk,Kk
∩ R

K−→ T ∩R in R2 and
(Ak \ Int (Shk,Kk

)) ∩R
K−→ T ∩R in R2 as k → ∞, then for every δ ∈ (0, 1) small enough, there

exists kδ ∈ N such that
SL(Ak, Shk,Kk

, R) ≥
∫

T ∩R
ϕ(νT ) dH1 − δ (3.4.32)

for any k ≥ kδ.

Proof. We prove (3.4.32) in three steps. In the first step, we prove (3.4.32) for every k ∈ N such
that ΓA

k := (ΓA
FS(Ak, Shk,Kk

) \ Int(Shk,Kk
))∩R is H1-negligible by following the program of [58,

Lemma 4.4]. In the second step, we consider those k ∈ N such that ΓA
k has H1-positive measure

and observe that in view of Lemma 3.4.5 we can pass, up to a small error in the energy, to a
triple (Ãk, S̃k) ∈ Bm such that Γ̃A

k := (ΓA
FS(Ãk, S̃k) \ Int(S̃k))∩R has Mk connected components,

and which then is shown to always admit either an island or a void. Finally, in the third step,
we apply the anisotropic minimality of segments to prove (3.4.32) by means of an induction
argument based on shrinking the islands and/or filling the voids of the triple (Ãk, S̃k).

If T is a vertical segment we define cθ := 1, otherwise we define cθ := (1/ sin θ) + (1/ cos θ), where
θ < π/2 is the smallest angle formed by the direction of T with e1. Since Ak \ Int(Shk,Kk

)∩R K−→
T ∩R, for every δ′ ∈ (0, 1) there exits kδ′ ∈ N such that

∅ ≠ Ak \ Int(Shk,Kk
)∩R ⊂ T δ′ (3.4.33)

for any k ≥ kδ′ , where T δ′ := {x ∈ R : dist(x, T ) < δ′/(2cθ)} is the tubular neighborhood of T in
R.

Step 1. Assume that H1
(
ΓA

k

)
= 0 for a fix k ≥ kδ′ . Since

∂Int
(
Shk,Kk

)
= ∂Int(Shk

) = ∂Sh+
k
, (3.4.34)

by [44, Lemma 3.12] there exists a parametrization rk : [0, 1] → R2 of ∂Int
(
Shk,Kk

)
, whose

support we denote by γk. Notice that by (3.4.33), there exists p0 := rk(t0) and p1 := rk(t1),
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3.4. Lower semicontinuity

where t0 := inf{t ∈ [0, 1] : rk(t) ∈ ∂R} and t1 := sup{t ∈ [0, 1] : rk(t) ∈ ∂R}, and also
by (3.4.34) t0 < t1. Let T̃i ⊂ ∂R ∩ T δ′ for i = 0, 1 be the closed and connected set with
minimal length connecting pi with T ∩R. Therefore, by trigonometric identities we obtain that
H1(T̃i) ≤ δ′

2cθ
cθ = δ′

2 . We define Λk := (∂R ∩ T δ′) ∩ (σρk
(Ω) \ Int(Shk,Kk

)) and we observe that

SL(Ak, Shk,Kk
, R)+

∫
Λk

ϕ(νΛk
) dH1

≥
∫

γk∩R∩∂∗Shk,Kk
∩∂∗Ak

ϕ(νAk
) dH1 +

∫
γk∩R∩∂∗Shk,Kk

∩∂Ak∩A
(1)
k

ϕ(νAk
) dH1

+
∫

Λk

ϕ(νΛk
) dH1

=
∫

Γk

ϕ(νΓk
) dH1 −

1∑
i=0

∫
T̃i

ϕ(e1) dH1,

(3.4.35)

where Γk := T̃0 ∪ (γk ∩R) ∪ Λk ∪ T̃1. By the anisotropic minimality of segments (see [68, Remark
20.3]), it yields that ∫

Γk

ϕ(νΓk
) dH1 ≥

∫
T ∩R

ϕ(νT ) dH1, (3.4.36)

and so, thanks to the facts that H1(T̃0 ∪ T̃1) ≤ δ′ and H1(Λk) ≤ δ′, and by (3.2.15), (3.4.33)-
(3.4.36), we deduce that

SL(Ak, Shk,Kk
, R) ≥

∫
T ∩R

ϕ(νT ) dH1 − 2c2δ
′. (3.4.37)

Step 2. Assume that H1(ΓA
k ) > 0 for a fixed k ≥ kδ′ . By applying Lemma 3.4.5, with Ω =

Bm(σρk
(Ω)), there exist Mk := Mk(δ′, Ak, hk,Kk) ∈ N and an admissible triple (Ã1

k, S̃k) ∈
B(σρk

(Ω)) such that Γ̃A
k has Mk connected components and

SL(Ak, Shk,Kk
, R) ≥ SL(Ã1

k, S̃k, R) − c2δ
′. (3.4.38)

We consider Ãk := Ã1
k ∪ ((∂Ã1

k \ ∂S̃k) ∩ (Ã1
k)(1)). By (3.4.38) and by the non-negativeness of ϕF

we deduce that
SL(Ak, Shk,Kk

, R) ≥ SL(Ãk, S̃k, R) − c2δ
′. (3.4.39)

We denote by {Γj}Mk
j=1 the family of open connected components of Γ̃A

k . In this step we prove
that there exists at least an island or an extended void (see definition in (3.4.6)) in Ãk. More
precisely, by arguing by contradiction we prove that one of the following two cases always applies:
Mk ≥ 1 and there exists at least an island in Ãk, or Mk ≥ 2 and there exists at least an extended
void in Ãk.

To this end, assume that the admissible pair (Ãk, S̃k) does not present any island or extended
void. We begin by observing that, since H1(Γ̃A

k ) > 0, there exist a j0 ∈ {1, . . . ,Mk} and an
open connected component F1 of Int(Ãk \ S̃k) ∩ R such that Γj0 ⊂ ∂F1. By the contradiction
hypothesis, since F1 cannot be an island of Ãk, there exists j1 ∈ {1, . . . ,Mk} \ {j0} such that
Γj1 ⊂ ∂F1 and Γj0 ∩ Γj1 = ∅. Furthermore, as by the contradiction hypothesis there cannot
be also an extended void between Γj0 and Γj1 , and by using the fact that ∂S̃k contains Γj0

and Γj1 , and consists of only one component, we conclude that there exist an open connected
component F2 of Int(Ãk \ S̃k) ∩R, which could coincide or not with F1, and at least an extra
j2 ∈ {1, . . . ,Mk} \ {j0, j1} such that Γj2 ⊂ ∂F2.

We now claim that there exist an open connected component F3 of Int(Ãk \ S̃k) ∩R, which could
or not coincide with F2, and at least an extra j3 ∈ {1, . . . ,M} \ {j0, j1, j2} such that Γj3 ⊂ ∂F3.
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3. Two-phase free boundary problem

Indeed, if F1 ̸= F2, the claim is a direct consequence of applying to F2 the same argument applied
to F1 to find Γj1 , and we define F3 = F2, while, if F2 = F1, the claim is a direct consequence of
applying to F2 with the pair of components consisting, e.g., of Γj0 and Γj2 , the same argument
applied to F1 with the pair of components (Γj0 ,Γj1) to find Γj2 , with F3 being possibly, but not
necessary, equal to F2.

Moreover, the same reasoning applied on F2, can be implement also on F3, yielding an open
connected component F4 of Int(Ãk \ S̃k) ∩ R and at least an extra j4 /∈ {jn}n=0,...,3 such that
Γj4 ⊂ ∂F4. As such, by keeping on iterating this reasoning we reach a contradiction with the fact
that the family of connected components of Γ̃A

k consists of at most Mk < ∞ elements.

Step 3. In this step we prove (3.4.32) for those k ≥ kδ′ such that H1(ΓA
k ) > 0, which together

with Step 1 concludes the proof of (3.4.32). More precisely, we prove that

SL(Ãk, S̃k, R) ≥
∫

T ∩R
ϕ(νT ) dH1 − 6c2δ

′, (3.4.40)

which, in view of (3.4.39), yields Assertion (i) by taking δ′ := δ
7c2

and kδ := kδ′ for any
δ ∈ (0,min {7c2, 1}).

In order to prove (3.4.40) we consider an auxiliary energy S1
L in B by defining

S1
L(Ãk, S̃k, R) := SL(Ãk, S̃k, R)+

2∑
i=1

∫
T k

i

ϕF(ν∂R) + ϕ(ν∂R) dH1 (3.4.41)

for every (Ãk, S̃k) ∈ Bm, where T k
1 and T k

2 are the closed connected components of ∂R ∩ T δ′ , we
recall that Γ̃A

k has Mk connected components, and we prove that

S1
L(Ãk, S̃k, R) ≥

∫
T ∩R

ϕ(νT ) dH1 − 2c2δ
′, (3.4.42)

by proceeding by induction on the number Mk ∈ N of connected components of Γ̃A
k in three

steps. Notice that (3.4.40) directly follows from (3.4.42), since

H1(T k
i ) ≤ δ′

by (3.4.33) and the definition of T k
i and hence,

SL(Ãk, S̃k, R) ≥ S1
L(Ãk, S̃k, R) − 4c2δ

′, (3.4.43)

by (3.2.15).

In Substeps 3.1 and 3.2 we prove the basis of the induction by proving it in both the two cases
provided by Step 2, i.e., if Mk = 1 and Ãk presents an island, and if Mk = 2 and Ãk presents an
extended void, respectively. Finally in Substep 3.3 we prove the induction and obtain (3.4.42).

Step 3.1. We consider the basis of the induction in the case in which Mk = 1 and there is an
island P1⊂ R of Ãk such that Γ1 ⊂ ∂P1. Let p1, p2 ∈ ∂P1 be two different triple junctions of P1

(see Definition 3.4.4) such that p1 and p2 belong to the relative boundary of Γ1 in ∂S̃k and let
L1 by the closed segment connecting p1 with p2. It follows that

Γ̂ := (∂S̃k \ Γ1) ∪ L1

is connected and closed. We consider by {P 1
n}n∈N the family of open connected components

enclosed by L1 and Γ1. We are now in the position to characterize the modification Ŝk of S̃k by

Ŝk :=

S̃k \
⋃

n∈N,P 1
n⊂S̃k

P 1
n

 ∪
⋃

n∈N,P 1
n⊂R\Int(S̃k)

P 1
n .
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3.4. Lower semicontinuity

Furthermore, we consider by {P 2
n}n∈N the family of open connected components enclosed by L1

and ∂P1 \ Γ1 such that for every n ∈ N, ∂P 2
n ∩ Γ1 and ∂P 2

n \ Γ1 have one non-empty connected
component. We define

Âk :=

Ãk \
⋃

n∈N,P 2
n⊂Ãk

P 2
n

 ∪
⋃

n∈N,P 2
n⊂R\Int(Ãk)

P 2
n

(see Figure 3.3). By applying the anisotropic minimality of segments (see [68, Remark 20.3]), it
yields that∫

(∂P1\Γ1)∩∂∗Ãk\∂S̃k

ϕF(ν
Ãk

) dH1 +
∫

(∂P1\Γ1)∩
(

∂Ãk\∂S̃k

)
∩
(

Ã
(0)
k

∪Ã
(1)
k

) 2ϕF(ν
Ãk

) dH1

+
∫

Γ1∩
(

∂∗S̃k\∂Ãk

)
∩Ã

(1)
k

ϕFS(ν
S̃k

) dH1 +
∫

Γ1∩
(

∂S̃k\∂Ãk

)
∩S̃

(0)
k

∩Ã
(1)
k

2ϕFS(ν
S̃k

) dH1

+
∫

(∂P1\Γ1)∩∂S̃k∩∂∗Ãk∩S̃
(0)
k

ϕF(ν
Ãk

) dH1 +
∫

(∂P1\Γ1)∩(T k
1 ∪T k

2 )
ϕF(ν∂P1) dH1

≥
∫

L1
ϕF(νL1) + ϕFS(νL1) dH1 ≥

∫
L1
ϕ(νL1) dH1,

(3.4.44)

where in the last inequality we used the definition of ϕ. We notice that the last term in the
left side of the previous inequality is needed to include in the analysis the situation in which
P1 ∩ ∂R ̸= ∅. From (3.4.44), the inequality (3.4.42) directly follows as

S1
L(Ãk, S̃k, R) ≥ S1

L(Âk, Ŝk, R) ≥
∫

T ∩R
ϕ(νT ) dH1 − 2c2δ

′, (3.4.45)

where in the last inequality we used the non-negativeness of ϕF and we proceeded by applying Step
1 to the configuration

(
Âk, Ŝk

)
for which by construction it holds that (ΓA

FS

(
Âk, Ŝk

)
\Int(Ŝk))∩R

is H1-negligible.

Γ1

R

Ŝk

p1

p2

p1

p2

Figure (3.3): The two illustrations above represent, passing from the left to the right, the construction
that consists in “shrinking” a film island, which is contained in Step 3.1 of the proof of Lemma 3.4.7 for
the basis of the induction in the case with M = 1 and with Ãk presenting an island P1.

Step 3.2. To conclude the basis of the induction, we consider the case with M = 2 and the
presence of an extended void V1⊂ R of Ãk. Let p1 and p2 be the two triple junctions such that
p1, p2 ∈ ∂V1 and pi ∈ Γi, for i = 1, 2. By [44, Lemma 3.12] there exists a curve with support
γ1 ⊂ ∂V1 ∩ ∂S̃k connecting p1 with p2. Furthermore, by [58, Lemma 4.3], since ∂V1 is connected,
H1-finite and V1 is bounded, there exists a curve with support γ2 ⊂ ∂V1 \ (γ1 ∩ ∂Int(V1). Notice
that γ1 and γ2 can intersect only in the delamination area, or more precisely γ1 ∩ ∂∗S̃k ∩ ∂∗Ãk
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3. Two-phase free boundary problem

and γ2 ∩ ∂∗Ãk \ ∂∗S̃k are disjoint up to a H1-negligible set. We denote by L1 the closed segment
connecting p1 with p2, notice that

Γ̂ := (∂S̃k \ γ1) ∪ L1.

is connected and closed. We consider by {V 1
n }n∈N the family of open connected components

enclosed by L1 and ∂V1 ∩ ∂S̃k such that for every n ∈ N, ∂V 1
n ∩ ∂S̃k and ∂V 1

n ∩ L1 have one
non-empty connected component. We characterize the modification Ŝk of S̃k as

Ŝk :=

S̃k \
⋃

n∈N,V 1
n ⊂S̃k

V 1
n

 ∪
⋃

n∈N,V 1
n ⊂R\Int(S̃k)

V 1
n .

Furthermore, we define
Âk := Âk ∪ (Int(Ŝk) \ S̃k).

We notice that by construction (Âk, S̃k) ∈ B(Ωk) and ΓA
FS

(
Âk, S̃k

)
\ Int(Ŝk) = Γ1 ∪ L1 ∪ Γ2 is a

connected set (see Figure (3.4)). Moreover, by the anisotropic minimality of segments (see [68,
Remark 20.3]), it follows that∫

γ2∩∂∗Ãk\∂S̃k

ϕF(ν
Ãk

) dH1 +
∫

γ1∩∂∗S̃k∩∂∗Ãk

ϕ(ν
Ãk

) dH1 +
∫

γ2∩∂∗Ãk∩S̃
(0)
k

ϕF(ν
Ãk

) dH1

+
∫

(γ1∪γ2)∩∂∗S̃k∩∂Ãk∩Ã
(1)
k

(ϕF + ϕ)(ν
Ãk

) dH1

≥
∫

L1
ϕF(νL1) + ϕ(νL1) dH1 ≥

∫
L1
ϕFS(νL1) dH1,

(3.4.46)

where in the last inequality we used (3.2.16). We now obtain (3.4.42) by observing that

S1
L(Ãk, S̃k, R) ≥ S1

L(Âk, Ŝk, R) ≥
∫

T ∩R
ϕ(νT ) dH1 − 2c2δ

′, (3.4.47)

where in the first inequality we used (3.4.46) and in the second inequality we proceed by applying
Step 3.1 to the configuration

(
Âk, Ŝk

)
, which by construction presents a island and is such that

(ΓA
FS

(
Âk, Ŝk

)
\ Int(Ŝk))∩R consists of one and only component.

S̃k

Âk

R

Ãk

R

Ŝk

V1

p1

p2

p1

p2

Figure (3.4): The two illustrations above represent, passing from the left to the right, the construction
that consists in “filling” a void, which is contained in Step 3.2 of the proof of the Lemma 3.4.7 for the
basis of the induction in the case with M = 2 and with Ãk presenting a void V1.

Step 3.3. Now we make the inductive hypothesis that (3.4.42) holds true if Γ̃A
k has Mk = j − 1

connected components, and we prove that (3.4.42) holds also if Γ̃A
k has Mk = j connected

components. We observe that by Step 2 we have the two cases:
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3.4. Lower semicontinuity

(a) j ≥ 1 and there exists at least an island P⊂ R in Ãk;

(b) j ≥ 2 and there exists at least an extended void V⊂ R in Ãk.

In the case (a) we proceed by applying the same construction done in Step 3.1 with respect to
the island P instead of P1 obtaining the configuration

(
Âk, Ŝk

)
∈ B(Ωk). We observe that by

construction (ΓA
FS

(
Âk, Ŝk

)
\ Int(Ŝk))∩R presents j−1 connected components (since a component

is canceled) and hence, we obtain that

S1
L(Ãk, S̃k, R) ≥ S1

L(Âk, Ŝk, R) ≥
∫

T ∩R
ϕ(νT ) dH1 − 2c2δ

′, (3.4.48)

where we used (3.4.45) in the first inequality and we applied the induction hypothesis on (Âk, Ŝk)
in the second.

In the case (b) we proceed by applying the same construction done in Step 3.2 with respect
to the extended void V instead of V1 obtaining the configuration

(
Âk, Ŝk

)
∈ Bm. We observe

that by construction
(
Âk, Ŝk

)
∈ B(Ωk) and (ΓA

FS

(
Âk, Ŝk

)
\ Int(Ŝk))∩R presents j − 1 connected

components (since two components are connected in one). Finally, we have that

S1
L(Ãk, S̃k, R) ≥ S1

L(Âk, Ŝk, R) ≥
∫

T ∩R
ϕ(νT ) dH1 − 2c2δ

′ (3.4.49)

where we used (3.4.47) in the first inequality and we applied the induction hypothesis on (Âk, Ŝk)
in the second.

We continue with the setting of the film-substrate incoherent delaminated interface.

Lemma 3.4.8. Let R ⊂ R2 be an open rectangle with a side parallel to e1 and let T ⊂ R2 be a
line such that T ∩R ̸= ∅ and let x ∈ T . Let {ρk}k∈N ⊂ [0, 1] be such that ρk ↘ 0 and R ⊂ σρ1(Ω).
If {(Ak, Shk,Kk

)} ⊂ Bm(σρ1(Ω)) is a sequence such that Shk,Kk
∩ R

K−→ Hx,νT ∩ R in R2 and
R \ Ak

K−→ T ∩ R in R2 as k → ∞, then for every δ ∈ (0, 1) small enough, there exists kδ ∈ N
such that

SL(Ak, Shk,Kk
, R) ≥

∫
T ∩R

ϕF(νT ) + ϕ(νT ) dH1 − δ. (3.4.50)

for any k ≥ kδ. The same statement remains true if we replace Hx,νT with Hx,−νT .

Proof. Without loss of generality, we assume that supk∈N SL(Ak, Shk,Kk
, R) < ∞. We prove

(3.4.50) in two steps. In the first step, we prove (3.4.50) for every k ∈ N such that ΓA
k :=

(ΓA
FS(Ak, Shk,Kk

) \ Int(Shk,Kk
))∩R is H1-negligible by repeating the same arguments of Step 1 in

the proof of Lemma 3.4.7. In the second step, by arguing as in [58, Lemma 4.4] we prove (3.4.50)
for those k ∈ N such that H1(ΓA

k ) is positive.

If T is a vertical segment we define cθ := 1, otherwise we define cθ := (1/ sin θ) + (1/ cos θ), where
θ < π/2 is the smallest angle formed by the direction of T with e1. Since ∂Shk,Kk

∩R
K−→ T ∩R

and R \Ak
K−→ T ∩R in R2 as k → ∞, for every δ′ ∈ (0, 1) there exits kδ′ ∈ N such that

∂Shk,Kk
∩R, R \Ak ⊂ T δ′ (3.4.51)

for every k ≥ kδ′ , where T δ′ := {x ∈ R : dist(x, T ) < δ′/(2cθ)} is a tubular neighborhood of T
in R. By arguing as in (3.4.34) there exists a parametrization rk : [0, 1] → R2 of ∂Int

(
Shk,Kk

)
,

whose support we denote by γk. Finally, let T δ′
1 and T δ′

2 be the connected components of ∂R∩T δ′ .
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3. Two-phase free boundary problem

Step 1. Assume that H1
(
ΓA

k

)
= 0 for a fix k ≥ kδ′ . Notice that by (3.4.51), there exists p1 := rk(t1)

and p2 := rk(t2), where t1 := inf{t ∈ [0, 1] : rk(t) ∈ ∂R} and t2 := sup{t ∈ [0, 1] : rk(t) ∈ ∂R},
and without loss of generality we assume that t1 < t2. Let T̃ 1

i ⊂ ∂R∩T δ′
i for i = 1, 2 be the closed

and connected set with minimal length connecting pi with T ∩R. Therefore, by trigonometric
identities we obtain that H1(T̃i) ≤ δ′

2cθ
cθ = δ′

2 . Since H1
(
ΓA

k

)
= 0 and by [58, Lemma 4.3], there

exists a curve with support γ̃k ⊂ ∂Ak \ (γ1 ∩ ∂Int(Ak) such that γk and γ̃k can intersect only
in the delamination area, more precisely, γk ∩ ∂∗Shk

∩ ∂∗Ak and γ̃k ∩ ∂∗Ak \ ∂Shk
are disjoint

up to a H1-negligible set. We define Λk := (∂R ∩ T δ′) ∩ (Ωk \ Int(Shk,Kk
)) and we denote by

T̃ 2
i ⊂ ∂R ∩ T δ′

i for i = 1, 2 be the closed and connected set with minimal length connecting γ̃k

with each point of T ∩ T δ′
i . It yields that

SL(Ak, Shk,Kk
, R)+

∫
Λk

ϕ(νΛk
) dH1

≥
∫

γ̃k∩∂∗Ak\∂Shk,Kk

ϕF(νAk
) dH1 +

∫
γk∩∂∗Shk,Kk

∩∂∗Ak

ϕ(νAk
) dH1

+
∫

(γk∪γ̃k)∩∂∗Shk,Kk
∩∂Ak∩Ak

(1)
(ϕF + ϕ)(νAk

) dH1 +
∫

Λk

ϕ(νΛk
) dH1

=
∫

Γ̃k

ϕF(νΓ̃k
) dH1 +

∫
Γk

ϕ(νΓk
) dH1 −

2∑
i=1

∫
T̃ 1

i

ϕ(ν
T̃ j

i
) dH1 −

2∑
i=1

∫
T̃ 2

i

ϕF(ν
T̃ j

i
) dH1,

(3.4.52)

where Γk := T̃ 1
1 ∪ (γk ∩R) ∪ Λk ∪ T̃ 1

2 and Γ̃k := T̃ 2
1 ∪ γ̃k ∪ T̃ 2

2 . By the anisotropic minimality of
segments (see [68, Remark 20.3]), it yields that∫

Γ̃k

ϕF(νΓ̃k
) dH1 +

∫
Γk

ϕ(νΓk
) dH1 ≥

∫
T ∩R

ϕF(νT ) + ϕ(νT ) dH1, (3.4.53)

and so, thanks to the facts that H1(T̃ j
0 ∪ T̃ j

1 ) ≤ δ′ and H1(Λk) ≤ δ′ for j = 1, 2, and by (3.2.15),
(3.4.51)-(3.4.53), we deduce that

SL(Ak, Shk,Kk
, R) ≥

∫
T ∩R

ϕF(νT ) + ϕ(νT ) dH1 − 3c2δ
′. (3.4.54)

Step 2. Since (Ak, Shk,Kk
) ∈ Bm(σk(Ω)) we can find an enumeration {Λn

k}n=1,...,m1
k

of the
connected components Λn

k of ∂Ak lying strictly inside of R such that m1
k ≤ m1. Moreover,

thanks to the fact that SL(Ak, Shk,Kk
, Q) < ∞ for each k ∈ N, the family {Λα

k }α∈N of connected
components Λα

k that intersect T δ′
1 or T δ′

2 of ∂Ak ∩ Q1, respectively, are at most countable.
Furthermore, we define Λmk+i for i = 1, 2 by

Λmk+i :=

 ⋃
α∈N, Λα∩T δ′

i ̸=∅

Λα

 ∪ T δ′
i

We denote by πT : R2 → R the orthogonal projection of R2 onto T and since for every
n = 1, . . . ,mk + 2, Λn is a connected set we have that πT (Λn) is a homeomorphic to a closed
interval in R. More precisely, ⋃mk+2

n=1 πT (Λj) is equal to a finite family of closed segments. Thanks
to the facts that R \Ak

K−→ T ∩R in R2 as k → ∞, and mk ≤ m1 for every k ∈ N, we have that

lim
k→∞

H1

(T ∩R) \
mk+2⋃
n=1

πT (Λn)

 = 0

and hence, there exists k1
δ′ > kδ′ such that

H1

(T ∩R) \
mk+2⋃
n=1

πT (Λn)

 < (m1 + 2)δ′ (3.4.55)
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for every k ≥ k1
δ′ . We denote by an, bn ∈ T∩R for every n = 1, . . . ,mk+2 the initial and final point

of each πT (Λj), respectively (notice that amk+1 ∈ T ∩ T δ′
1 and bmk+2 ∈ T ∩ T δ′

2 ). We decompose⋃mk+2
n=1 πT (Λn) as the finite union of disjoint open connected sets {Cj}j∈J , where the endpoints

of Cj are denoted by a′
j , b

′
j ∈

⋃mk+2
j=1 {aj , bj} for every j ∈ J , and ⋃j∈J{a′

j , b
′
j} = ⋃mk+2

n=1 {an, bn}.
Therefore, by definition the cardinality of J is bounded by 2mk + 3,

mk+2⋃
n=1

πT (Λn) =
⋃
j∈J

Cj ,

and also by (3.4.55) we have that

H1

(T ∩R) \
⋃
j∈J

Cj

 < (m1 + 2)δ′ (3.4.56)

for every k ≥ k1
δ′ . Let Ta′

j
and Tb′

j
be the lines parallel to νT and passing through a′

j and b′
j ,

respectively. Finally, we denote by Sj the intersection of the strip between Ta′
j

and Tb′
j

and
R ∩ T δ′ for every j ∈ J . If j ∈ J is such that Cj ∩ T δ

1 , we define T ′
a′

j
:= T δ′

1 and T ′
b′

j
= Tb′

j
∩ Sj ,

analogously, if j ∈ J is such that Cj ∩ T δ
2 we define T ′

a′
j

= Ta′
j

∩ Sj and T ′
b′

j
:= T δ′

2 , otherwise, if
Cj ∩

⋃2
i=1 T

δ
i = ∅, T ′

a′
j

= Ta′
j

∩ Sj and T ′
b′

j
= Tb′

j
∩ Sj . It follows that

H1(T ′
a′

j
∪ T ′

b′
j
) ≤ 2δ′. (3.4.57)

From now on we fix j ∈ J and we consider a fixed k ≥ k1
δ′ such that H1(ΓA

k ∩Sj) > 0. For simplicity
in the following part of this step we denote Λn := Λn

k for every n = 1, . . . ,mk + 2. By applying
Lemma 3.4.5 (with R, as from the notation of Lemma 3.4.5, coinciding with Sj) there exist Mk :=
Mk(Ak, Shk,Kk

, δ′) ∈ N ∪ {0} and (Ãk, S̃k) ∈ Bm such that Γ̃A
k := (ΓA

FS(Ãk, S̃k) \ Int(S̃k)) ∩ Sj

has Mk connected components and

SL(Ak, Shk,Kk
, Sj) ≥ SL(Ãk, S̃k, S

j) − c2δ
′, (3.4.58)

and there exists a path Λ̃j ⊂ ∂Ãk such that Λ̃j ∩T ′
cj

̸= ∅ and ∂S̃k ∩Sj ∩T ′
cj

̸= ∅ for cj ∈ {a′
j , b

′
j}.

Let {Γℓ}Mk
ℓ=1 be the family of connected components of Γ̃A

k . Without loss of generality, we assume
that Λ̃j intersects all islands and voids of Ãk that are not full ones (see Definition 3.4.6), because
otherwise we can always reduce to this situation by repeating Steps 3.1 and 3.2 of Lemma 3.4.7.
If Mk = 0, by repeating the same arguments of Step 1 we obtain that

SL(Ãk, S̃k, S
j) ≥

∫
Cj

ϕF(νT ) + ϕ(νT ) dH1 − 3c2δ
′. (3.4.59)

Therefore, by (3.4.58) and (3.4.59), we deduce that

SL(Ak, Sk, S
j) ≥

∫
Cj

ϕF(νT ) + ϕ(νT ) dH1 − 4c2δ
′. (3.4.60)

In the remaining of this step we assume that Mk ≥ 1 by proving the following claim: If Mk ≥ 1,
then there exists an island of Ãk or a substrate grain of S̃k (see Definition 3.4.6). In order to
prove this claim we proceed by contradiction. Therefore, let us assume that (Ãk, S̃k) does not
contain any island and substrate grain. Since Mk ≥ 1, there exists ℓ1 ∈ {1, . . . ,Mk} and, since the
endpoints of Γℓ1 must be connected through γ̃∪∂Int(Ãk), then there exists an open connected set
D1 ⊂ Int(Ãk) enclosed by Γ̃A

k and γ̃ ∪ ∂Int(Ãk) such that Γℓ1 ⊂ ∂D1. By assumption, since D1
cannot be an island and cannot be a grain of (Ãk, S̃k), there must exist ℓ2 ∈ {1, . . . ,Mk} \ {ℓ1}
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3. Two-phase free boundary problem

such that Γℓ2 ⊂ D1. Since the endpoints of Γℓ2 must be connected through γ̃ ∪ ∂Int(Ãk), then
there exists an open connected set D2 ⊂ Int(Ãk) enclosed by Γ̃A

k and γ̃ ∪ ∂Int(Ãk) such that
Γℓ2 ⊂ ∂D2, and we notice that D2 cannot coincide with D1 since ∂D1 ∩ (γ̃ ∪ ∂Int(Ãk)) is not
connecting the endpoints of Γℓ2 (besides not connecting also the endpoints of Γℓ1). By keeping
on iterating this reasoning we reach a contradiction with the fact that the family Mk < ∞, and
hence the claim holds true.

S̃k

Sj

Ãk

γ̃

Figure (3.5): The illustration represents the configuration of the admissible pair (Ãk, S̃k) that is modified
in Step 2 of Lemma 3.4.8 to obtain the pair (Ăk, S̆k) for which in the same step is proved the existence of
at least a film island or a substrate grain in accordance with Definition 3.4.4.

Step 3. In this step we assume that Mk ≥ 1 (for the case Mk = 0 see Step 2) and we prove that

SL(Ãk, S̃k, S
j) ≥

∫
Cj

ϕF(νT ) + ϕ(νT ) dH1 − 8c2δ
′, (3.4.61)

from which it easily follows from (3.2.15), (3.4.57) and (3.4.58), that

SL(Ak, Shk,Kk
, Sj) ≥

∫
Cj

ϕF(νT ) + ϕ(νT ) dH1 − 9c2δ
′. (3.4.62)

In order to prove (3.4.61) we consider an auxiliary energy S1
L given by SL with an extra term,

namely defined by

S1
L(Ãk, S̃k, R) := SL(Ãk, S̃k, R) +

∑
cj∈{a′

j ,b′
j}

2
∫

T ′
cj

(ϕF + ϕ) dH1 (3.4.63)

for every (Ãk, S̃k) ∈ B, and we prove that

S1
L(Ãk, S̃k, S

j) ≥
∫

Cj

ϕF(νT ) + ϕ(νT ) dH1, (3.4.64)

since (3.4.61) directly follows from (3.4.64) by (3.2.15) and (3.4.57). To prove (3.4.64) we proceed
by induction on the number Mk ∈ N of connected components of Γ̃A

k in three steps. In Steps 3.1
and 3.2 we show the basis of the induction for Mk = 1, by considering the two cases provided by
Step 2, i.e., the case in which Ãk presents an island in Step 3.1 and the case in which S̃k presents
a substrate grain in Step 3.2. We conclude then the induction in Step 3.3.

Step 3.1 Assume that Mk = 1 and that there exists an island P1 ⊂ Ãk \ Int(S̃k) of Ãk such that
P1 is enclosed by Γ1 ∪ γ̃ ∪ ∂Int(Ãk)) with Γ1 ⊂ ∂P1. Let p1 and p2 be the endpoints of Γ1, and
let L1 be the segment connecting p1 with p2. We denote by P 1

1 the open set enclosed by L1 and
∂P1 ∩ Γ1 and we denote by P 2

1 the open set enclosed by L1 and ∂P1 \ Γ1.
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3.4. Lower semicontinuity

We define a modification of S̃k, denoted by Ŝk, and a modification of Ãk, denoted by Âk, as

Ŝk := (S̃k \ (P 1
1 ∩ Int(S̃k))) ∪ (P 1

1 ∩ (Sj \ S̃k)),

and
Âk := Ãk \

(
P 2

1 ∩ (Int(Ãk) \ S̃k)
)

∪
(
P 2

1 ∩ (Sj \ Ãk)
)
,

respectively. Notice that (Âk, Ŝk) ∈ B(σk(Ω)). By the anisotropic minimality of segments, it
follows that∫

∂P1\C̃1
ϕF(ν∂P1) dH1 +

∫
∂P1∩C̃1

ϕFS(ν∂P1) dH1 ≥
∫

L1
ϕF(νL1) + ϕFS(νL1) dH1

≥
∫

L1
ϕ(νLn) dH1,

(3.4.65)

where in the second inequality we used the definition of ϕ, and hence, by (3.4.65) we obtain that

S1
L(Ãk, S̃k, S

j) ≥ S1
L(Âk, Ŝk, S

j). (3.4.66)

Moreover, we observe that by construction γ̂ := (γ̃ \ (γ̃ ∩ ∂Int(Ãk))) ∪ L1 is path connected and
it joins T ∩T ′

a′
j

with T ∩T ′
b′

j
, and (ΓA

FS(Âk, Ŝk) \ Int(Ŝk))∩Sj is H1-negligible. Thus, by repeating
the same arguments of Step 1, we deduce that

S1
L(Âk, Ŝk, S

j) ≥
∫

Cj

ϕF(νT ) + ϕ(νT ) dH1. (3.4.67)

By (3.4.57), (3.4.58), (3.4.63), (3.4.66), and (3.4.67) we obtain (3.4.61).

Step 3.2 Assume that Mk = 1 and that there exists a substrate grain G1 ⊂ S̃k of S̃k such that
G1 is enclosed by Γ1 ∪ γ̃ ∪ ∂Int(Ãk)) with Γ1 ⊂ ∂G1. Let p1 and p2 be the endpoints of Γ1, and
let L1 be the segment connecting p1 with p2. We denote by G1

1 the open set enclosed by L1 and
∂G1 ∩ Γ1 and we denote by G2

1 the open set enclosed by L1 and ∂G1 \ Γ1.

We define a modification of S̃k, denoted by Ŝk, and a modification of Ãk, denoted by Âk, as

Ŝk := S̃k \ ((G2
1 ∩ Int(S̃k)) ∪ (G1

1 ∩ Int(S̃k))),

and
Âk := Ãk \

(
G2

1 ∩ Int(Ãk)
)

∪
(
G1

1 ∩ Int(Ãk)
)
,

respectively (see Figure 3.6). Notice that (Âk, Ŝk) ∈ B(σk(Ω)).

By the anisotropic minimality of segments, it follows that∫
∂G1\Γ1

ϕ(ν∂G1) dH1 +
∫

∂G1∩Γ1
ϕFS(ν∂G1) dH1 ≥

∫
L1
ϕ(νL1) + ϕFS(νL1) dH1

≥
∫

L1
ϕF(νL1) dH1,

(3.4.68)

where in the second inequality we used (3.2.16) and hence, by (3.4.68) we obtain that

S1
L(Ãk, S̃k, S

j) ≥ S1
L(Âk, Ŝk, S

j). (3.4.69)

Moreover, we observe that by construction γ̂ := (γ̃ \ (γ̃ ∩ ∂Int(Ăk))) ∪ L1 is path connected and
it joins T ∩T ′

a′
j

with T ∩T ′
b′

j
, and (ΓA

FS(Âk, Ŝk) \ Int(Ŝk))∩Sj is H1-negligible. Thus, by repeating
the same arguments of Step 1, we deduce that

S1
L(Âk, Ŝk, S

j) ≥
∫

Cj

ϕF(νT ) + ϕ(νT ) dH1. (3.4.70)
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3. Two-phase free boundary problem

Sj

S̃k

G1

Λ̃

Sj

Ŝk

G1

Figure (3.6): The two illustrations above represent, passing from the left to the right, the construction
that consists in “modifying grains in new voids”, which is contained in Step 3.2 of the proof of the Lemma
3.4.8 for the modification of the grain in a new void.

By (3.2.15), (3.4.57), (3.4.58), (3.4.63), (3.4.69), and (3.4.70) we obtain (3.4.61).

Step 3.3. Assume that (3.4.61) holds true if Mk = i − 1. We need to show that (3.4.61) holds
also if Mk = i. By Step 2 we have two cases:

(a) i ≥ 1 and there exists at least an island P ⊂ Sj of Ãk;

(b) i ≥ 1 and there exists at least a grain substrate G ⊂ Sj of S̃k.

In the case (a) we proceed by applying the same construction done in Step 3.1 with respect to
the island P instead of P1 obtaining the configuration

(
Âk, Ŝk

)
∈ B(Ωk). We observe that by

construction the set Γ̂A
k := (ΓA

FS(Âk, Ŝk) \ Int(Ŝk)) ∩ Sj has cardinality i− 1 (since the island P
of Ăk is shrunk in Âk) and hence, we obtain that

S1
L(Ãk, S̃k, R) ≥ S1

L(Âk, Ŝk, R) ≥
∫

Cj

ϕF(νT ) + ϕ(νT ) dH1 (3.4.71)

where we used the inductive hypothesis in the last inequality.

In the case (b) we proceed by applying the same construction done in Step 3.2 with respect to
the substrate grain G instead of G1 obtaining the configuration

(
Âk, Ŝk

)
∈ B. We observe that

by construction the set Γ̂A
k := (ΓA

FS(Âk, Ŝk) \ Int(Ŝk)) ∩ Sj has cardinality i− 1 (since the grain
G of S̆k is opened in a void) and hence, we obtain that

S1
L(Ãk, S̃k, R) ≥ S1

L(Âk, Ŝk, R) ≥
∫

Cj

ϕF(νT ) + ϕ(νT ) dH1 (3.4.72)

where we used the inductive hypothesis in the last inequality.

Step 4. Let k ≥ k1
δ′ , which was defined in Step 2. If H1(ΓA

k ) > 0, we consider j ∈ J . By repeating
the arguments of Step 1 in Sj if H1(ΓA

k ∩ Sj) = 0 (see (3.4.54)), and by Steps 2 and 3 (see
(3.4.60) and (3.4.61)) we obtain that

SL(Ak, Shk,Kk
, Sj) ≥

∫
Cj

ϕF(νT ) + ϕ(νT ) dH1 − 9c2δ
′. (3.4.73)

Therefore, in view of the fact that the cardinality of J is bounded by 2mk + 3, by (3.4.56) and
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3.4. Lower semicontinuity

(3.4.73) it follows that

SL(Ak, Shk,Kk
, R) ≥

∑
j∈J

SL(Ak, Shk,Kk
, Sj)

≥
∫⋃

j∈J
Cj

ϕF(νT ) + ϕ(νT ) dH1 − 9(2mk + 3)c2δ
′

≥
∫

T ∩R
ϕF(νT ) + ϕ(νT ) dH1 − 2(m1 + 2)c2δ

′ − 9(2mk + 3)c2δ
′

=
∫

T ∩R
ϕF(νT ) + ϕ(νT ) dH1 − (20m1 + 31)c2δ

′,

(3.4.74)

where in the last inequality we used that mk ≤ m1. By recalling once again (3.4.54) of Step 1,
we observe that by (3.4.74) we obtain that

SL(Ak, Shk,Kk
, R) ≥

∫
T ∩R

ϕF(νT ) + ϕ(νT ) dH1 − (20m1 + 31)c2δ
′, (3.4.75)

for both the case with H1(ΓA
k ) > 0 and the case with H1(ΓA

k ) = 0. Finally, follows (3.4.50)
from choosing kδ := k1

δ′ and δ′ = δ
(20m1+31)c2

for δ ∈ (0,min{(20m1 + 31)c2, 1}) in (3.4.75). This
completes the proof.

We continue with the situation of the substrate cracks in the film-substrate incoherent interface.

Lemma 3.4.9. Let T0 be the x2-axis. Let {ρk}k∈N ⊂ [0, 1] be such that ρk ↘ 0 and Q1 ⊂ σρ1(Ω). If
{(Ak, Shk,Kk

)} ⊂ Bm(σρ1(Ω)) is a sequence such that Q1\Ak
K−→ T0∩Q1 and Q1\Shk,Kk

K−→ T0∩Q1
in R2 as k → ∞, then for every δ ∈ (0, 1) small enough, there exists kδ ∈ N such that

SL(Ak, Shk,Kk
, Q1) ≥ 2

∫
T0∩Q1

ϕ(e1) dH1 − δ (3.4.76)

for any k ≥ kδ.

Proof. Without loss of generality we assume that supk∈N SL(Ak, Shk,Kk
, Q1) < ∞. Since Q1 \

Ak
K−→ T0 ∩ Q1 and Q1 \ Shk,Kk

K−→ T0 ∩ Q1 in R2 as k → ∞, for every δ′ ∈ (0, 1) there exits
kδ′ ∈ N such that

Q1 \Ak, Q1 \ Shk,Kk
⊂ T δ′ (3.4.77)

for every k ≥ kδ′ , where T δ′ := {x ∈ Q1 : dist(x, T0) < δ′/2} is the tubular neighborhood with
thickness δ′ of T0 in Q1. Let T δ′

1 and T δ′
2 be the connected components of ∂Q1 ∩ T δ′ . Since

(Ak, Shk,Kk
) ∈ Bm(σk(Ω)) we can find an enumeration {Γn

k}1,...,m0
k

of connected components Γn
k of

∂Shk,Kk
lying strictly inside of Q1, and an enumeration {Λn

k}1,...,m1
k

of the connected components
Λn

k of ∂Ak lying strictly inside of Q1, such that mℓ
k ≤ mℓ for ℓ = 0, 1. Moreover, thanks to the

fact that SL(Ak, Shk,Kk
, Q) < ∞ for each k ∈ N, the families {Γα

k }α∈N and {Λα
k }α∈N of connected

components Γα
k and Λα

k that intersect T δ′
1 or T δ′

2 of ∂Shk,Kk
∩Q1 and of ∂Ak ∩Q1, respectively,

are at most countable. Furthermore, we define Γmk+i and Λmk+i for i = 1, 2 by

Γmk+i :=

 ⋃
α∈N, Γα∩T δ′

i ̸=∅

Γα

 ∪ T δ′
i and Λmk+i :=

 ⋃
α∈N, Λα∩T δ′

i ̸=∅

Λα

 ∪ T δ′
i .

Thanks to the Kuratowski convergences of Q1 \Ak and Q1 \ Shk,Kk
to T0 ∩Q1 in R2 as k → ∞,

the fact that mℓ
k ≤ mℓ for ℓ = 0, 1 and for every k ∈ N, we have that

lim
k→∞

H1

(T0 ∩Q1) \
m0

k+2⋃
n=1

π2(Γn)

 = 0 and lim
k→∞

H1

(T0 ∩Q1) \
m1

k+2⋃
n=1

π2(Λn)

 = 0
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3. Two-phase free boundary problem

Hence, there exists k1
δ′ ≥ kδ′ such that

H1

(T0 ∩Q1) \
m0

k+2⋃
n=1

π2(Γn)

 < (m0 + 2)δ′ (3.4.78)

for every k ≥ k1
δ′ , and there exists k2

δ′ ≥ kδ′ such that

H1

(T0 ∩Q1) \
m1

k+2⋃
n=1

π2(Λn)

 < (m1 + 2)δ′ (3.4.79)

for every k ≥ k2
δ′ . Let k3

δ′ := max{k1
δ′ , k2

δ′}. Similarly to Step 2 of Lemma 3.4.8, we can decompose⋃mk+2
n=1 π2(Γn) and ⋃mk+2

n=1 π2(Λn) as the finite union of disjoint open connected sets C 0 :=
{C0

j }j∈J0 and C 1 := {C1
j }j∈J1 , respectively. Notice that the cardinality of Jℓ is bounded by

2mℓ
k + 3 for ℓ = 0, 1. Therefore

m0
k+2⋃

n=1
π2(Γn) =

⋃
j∈J0

C0
j , and

m1
k+2⋃

n=1
π2(Λn) =

⋃
j∈J1

C1
j ,

and also by (3.4.78) and (3.4.79) we have that

H1

(T0 ∩Q1) \
⋃

j∈Jℓ

Cℓ
j

 < (mℓ + 2)δ′ (3.4.80)

for every k ≥ k3
δ′ and ℓ = 0, 1. We observe that

C := {C : ∅ ≠ C = C0 ∩ C1 with Cℓ ∈ C ℓ for ℓ = 0, 1}

is a family of pairwise disjoint sets and has cardinality mk bounded by (2m0
k + 3)(2m1

k + 3), i.e.,
C := {Cj}j∈J for an index set J with cardinality mk ≤ (2m0

k + 3)(2m1
k + 3). We observe that

H1

(T0 ∩Q1) \
⋃
j∈J

Cj

 ≤
∑

ℓ∈{0,1}
H1

(T0 ∩Q1) \
⋃

j∈Jℓ

Cℓ
j

 < (m0 +m1 + 4)δ′, (3.4.81)

where we used (3.4.80) in the last inequality. Finally, let Sj := ([−1, 1] ×R2 Cj) ∩ T δ′ and let T j
1

and T j
2 the portions of the boundary of Sj parallels to the x1-axis for every j ∈ J .

We now prove (3.4.76) in three steps. In the first step, we prove (3.4.76) for k ≥ k3
δ′ such that

ΓA
k := ΓA

FS(Ak, Shk,Kk
)∩Sj is H1-negligible by repeating the same arguments of Step 1 in the

proof of Lemma 3.4.8. In the second step, by arguing as in Steps 2 and 3 in the proof of 3.4.8 we
prove (3.4.50) for those k ≥ k3

δ′ such that H1(ΓA
k ) is positive. In the last step, by arguing as in

Step 4 in the proof of Lemma 3.4.8 we obtain (3.4.76).

Step 1. Assume that H1
(
ΓA

k

)
= 0 for a fix k ≥ k3

δ′ . By construction and by [44, Lemma 3.12] there
exists a curve with support γ1 ⊂ ∂Shk,Kk

∩ (Sj \ Int(Shk,Kk
)) connecting T j

1 with T j
2 , and hence,

by [58, Lemma 4.3], there exists also a curve with support γ2 ⊂ ∂Shk,Kk
\ (γ1 ∩ ∂Int(Shk,Kk

)
such that γ1 ∩ ∂∗Shk,Kk

, γ2 ∩ ∂∗Shk,Kk
are disjoint up to an H1-negligible set and γ2 joins T j

1
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3.4. Lower semicontinuity

with T j
2 . Since H1

(
ΓA

k

)
= 0, it yields that

SL(Ak, Shk,Kk
, Sj) +

2∑
i=1

2
∫

T j
i

ϕ(ν
T j

i
) dH1

≥
∫

(γ1∪γ2)∩∂∗Shk,Kk
∩∂∗Ak

ϕ(νAk
) dH1

+
∫

(γ1∪γ2)∩(∂Shk,Kk
∩∂Ak)∩(S(1)

hk,Kk
∪A

(0)
k

)
2ϕ(νAk

) dH1

+
∫

(γ1∪γ2)∩∂∗Shk,Kk
∩∂Ak∩Ak

(1)
(ϕF + ϕ)(νAk

) dH1

+
2∑

i=1
2
∫

T j
i

ϕ(ν
T j

i
) dH1

=
∫

Γ1
ϕ(νΓ1) dH1 +

∫
Γ2
ϕ(νΓ2) dH1,

(3.4.82)

where Γ1 := T j
1 ∪ γ1 ∪ T j

2 and Γ2 := T j
1 ∪ γ2 ∪ T j

2 . From the anisotropic minimality of segments
(see [68, Remark 20.3]) it follows that∫

Γ1
ϕ(νΓ1) dH1 +

∫
Γ2
ϕ(νΓ2) dH1 ≥ 2

∫
Cj

ϕ(e1) dH1, (3.4.83)

and so, thanks to the facts that H1(T j
1 ∪T j

2 ) ≤ 2δ′, and by (3.2.15), (3.4.77), (3.4.82) and (3.4.83),
we deduce that

SL(Ak, Shk,Kk
, Sj) ≥ 2

∫
Cj

ϕ(e1) dH1 − 4c2δ
′. (3.4.84)

Step 2. Assume that H1
(
ΓA

k

)
> 0 for a fix k ≥ kδ′ . By construction and by [44, Lemma 3.12],

there exists a curve with support γ̃1 ⊂ ∂Ak connecting T j1
1 with T j1

2 . If H1(γ̃1 ∩(∂Ak \∂Shk
)) = 0,

by repeating the same arguments of Step 1, we can deduce that

SL(Ak, Shk,Kk
, Sj) ≥ 2

∫
Cj

ϕ(e1) dH1 − 4c2δ
′. (3.4.85)

If H1(γ̃1 ∩ (∂Ak \ ∂Shk
)) > 0, then by reasoning as it was done in the proof of Lemma 3.4.8 to

reach (3.4.62) we obtain

SL(Ak, Shk,Kk
, Sj) ≥ 2

∫
Cj

ϕ(e1) dH1 − 9c2δ
′. (3.4.86)

More precisely, we reach (3.4.86) by noticing that νT0 = e1 and by following the proof of Step 2
(from after equation (3.4.57)) and of Step 3 in Lemma 3.4.8 with the only difference that we
replace the reference to Step 1 of Lemma 3.4.8 with the reference to Step 1 of the current lemma
and the extra term appearing in (3.4.63) with∑

i=1,2

∫
T j

i

(ϕF + 3ϕ)(e2) dH1.

.

Step 3. Let k ≥ k3
δ′ and let j ∈ J . By applying (3.4.84) if H1(ΓA

k ∩ Sj) = 0 and (3.4.86) if
H1(ΓA

k ∩ Sj) > 0 we obtain that

SL(Ak, Shk,Kk
, S̃j) ≥ 2

∫
Cj

ϕ(e1) dH1 − 9c2δ
′. (3.4.87)
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3. Two-phase free boundary problem

Therefore, since the cardinality of J is bounded by (2m0
k + 3) · (2m1

k + 3), (3.4.87) yields

SL(Ak, Shk,Kk
, Q1) ≥

∑
j∈J

SL(Ak, Shk,Kk
, Sj)

≥ 2
∫⋃

j∈J
Cj

ϕ(e1) dH1 − 9(2m0
k + 3) · (2m1

k + 3)c2δ
′

≥ 2
∫

T0∩Q1
ϕ(e1) dH1 − (m0 +m1 + 4)c2δ

′ − 9(2m0
k + 3) · (2m1

k + 3)c2δ
′

= 2
∫

T ∩R
ϕ(e1) dH1 − αδ′,

(3.4.88)

where α := (m0+m1+4)c2+9(2m0+3)·(2m1+3) and in the last inequality we used that mℓ
k ≤ mℓ

for ℓ = 0, 1. Finally, (3.4.76) follows from choosing kδ := k3
δ′ and δ′ = δ

α for δ ∈ (0,min{α, 1}) in
(3.4.88). This completes the proof.

We continue by treating the situation related to the blow up at a point in the filaments of both
the substrate and the film.

Lemma 3.4.10. Let T0 be the x2-axis. Let {ρk}k∈N ⊂ [0, 1] be such that ρk ↘ 0 and Q1 ⊂
σρ1(Ω). If {(Ak, Shk,Kk

)} ⊂ Bm(σρ1(Ω)) is a sequence such that Q1 ∩Ak
K−→ T0 ∩Q1 in R2 and

Q1 ∩ Shk,Kk

K−→ T0 ∩ Q1 in R2 as k → ∞, then for every δ ∈ (0, 1) small enough, there exists
kδ ∈ N such that

SL(Ak, hk,Kk, Q1) ≥ 2
∫

T0
ϕ′(e1) dH1 − δ (3.4.89)

for any k ≥ kδ.

Proof. The situation is symmetric to the situation of Lemma 3.4.9 and the proof is the same
since ϕ′ ≤ ϕ.

We continue with the situation in the blow up of the substrate filaments on the film free boundary.

Lemma 3.4.11. Let T0 be the x2-axis. Let {ρk}k∈N ⊂ [0, 1] be such that ρk ↘ 0 and Q ⊂
σρ1(Ω) ∩ H0,−e2 be an open square whose sides are either parallel or perpendicular to e1 and
T0 ∩Q ̸= ∅. If {(Ak, Shk,Kk

)} ⊂ Bm(σρ1(Ω)) is a sequence such that Q ∩ Shk,Kk

K−→ T0 ∩Q and
Q ∩Akn

K−→ H0,e1 ∩Q, then for every δ ∈ (0, 1), there exists kδ ∈ N such that for any k ≥ kδ,

SL(Ak, Shk,Kk
, Q) ≥

∫
T0∩Q

ϕF(e1) dH1 − δ. (3.4.90)

Proof. Without loss of generality we assume that supk∈N SL(Ak, Shk,Kk
, Q) < ∞. Since Q ∩

Shk,Kk

K−→ T0 ∩Q1 and Q ∩ Akn

K−→ H0,e1 ∩Q in R2 as k → ∞ for every δ′ ∈ (0, 1) there exists
kδ′ ∈ N such that

Q ∩ Shk,Kk
, Q ∩ ∂Ak ⊂ T δ′

, (3.4.91)

where T δ′ := {x ∈ Q : dist(x, T0) < δ′

2 }. Let T1 be the upper side of Q and let T δ′
1 := {x ∈ Q :

dist(x, T1) < δ′/2}. By the Kuratowski convergence of Q ∩ Shk,Kk
, there exists k1

δ′ ≥ kδ′ such
that Shk

∩ T δ′
1 ≠ ∅ for every k ≥ k1

δ′ . Let R := (T δ′ \ T δ′
1 ) and let T ′

1, T
′
2 ⊂ ∂R be the upper and

lower side of the rectangle R, respectively.

Since (Ak, Shk,Kk
) ∈ Bm(σk(Ω)) we can find an enumeration {Λn

k}n=1,...,m1
k

of the connected
components Λn

k of ∂Ak lying strictly inside of R, such that m1
k ≤ m1. Moreover, thanks to the

fact that SL(Ak, Shk,Kk
, Q) < ∞ for each k ∈ N, the family {Λα

k }α∈N of connected components
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3.4. Lower semicontinuity

Λα
k of ∂Ak ∩ R that intersect T ′

1 or T ′
2, respectively, are at most countable. Furthermore, we

define Λmk+i for i = 1, 2 by

Λmk+i
k :=

 ⋃
α∈N, Λα

k
∩T δ′

i ̸=∅

Λα
k

 ∪ T ′
i .

Thanks to the Kuratowski convergences of R ∩ ∂Ak to T0 ∩ R in R2 as k → ∞, the fact that
m1

k ≤ m1 for every k ∈ N, we have that

lim
k→∞

H1

(T0 ∩R) \
m1

k+2⋃
n=1

π2(Λn
k)

 = 0

Hence, there exists k2
δ′ ≥ k1

δ′ such that

H1

(T0 ∩R) \
m1

k+2⋃
n=1

π2(Λn
k)

 < (m1 + 2)δ′ (3.4.92)

for every k ≥ k2
δ′ . Similarly to Step 2 of Lemma 3.4.8, we can decompose ⋃mk+2

n=1 π2(Λn
k) as the

finite union of disjoint open connected sets C := {Cj}j∈J . Notice that the cardinality of J is
bounded by 2m1

k + 3. Therefore
m1

k+2⋃
n=1

π2(Λn
k) =

⋃
j∈J

Cj ,

and also by (3.4.104) we have that

H1

(T0 ∩R) \
⋃
j∈J

Cj

 < (m1 + 2)c2δ
′ (3.4.93)

for every k ≥ k2
δ′ . Finally, let Sj := (π1(R) ×R2 Cj) ∩ T δ′ and let T j

1 and T j
2 be the upper and

lower sides of the boundary of each rectangle Sj , respectively.

Step 1. Let k ≥ k2
δ′ and j ∈ J be such that H1(ΓA

FS(Ak, Shk,Kk
) ∩ Sj) = 0. In view of the

construction of Sj , by [44, Lemma 3.12] there exists a curve with support γk ⊂ ∂(Ak \ Int(Shk
))

joining T j
1 with T j

2 . It follows that

SL(Ak, Shk,Kk
, R) +

2∑
i=1

∫
T j

i

ϕF(e2) dH1

≥
∫

γk∩∂∗Ak\∂Shk,Kk

ϕF(νAk
) dH1

+
∫

γk∩(∂Ak\∂Shk,Kk
)∩(A(0)

k
∪A

(1)
k

)
2ϕF(νAk

) dH1

+
∫

γk∩∂∗Shk,Kk
∩∂Ak∩A

(1)
k

(ϕF + ϕ)(νAk
) dH1

+
∫

γk∩∂Shk,Kk
∩∂∗Ak∩S

(0)
hk,Kk

ϕF(νAk
) dH1 +

2∑
i=1

∫
T j

i

ϕF(e2) dH1

≥
∫

γ̂k

ϕF(νγ̃k
) dH1,

(3.4.94)
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3. Two-phase free boundary problem

where γ̂k := T j
1 ∪ γk ∪ T j

2 . By the anisotropic minimality of segments, we deduce that∫
γ̂k

ϕF(νγ̃k
) dH1 ≥

∫
Cj

ϕF(e1) dH1. (3.4.95)

By (3.2.15), (3.4.94) and (3.4.95), we conclude that

SL(Ak, Shk,Kk
, Sj) ≥

∫
Cj

ϕF(e1) dH1 − 2c2δ
′. (3.4.96)

Step 2. Let k ≥ k2
δ′ and j ∈ J be such that H1(ΓA

FS(Ak, Shk,Kk
) ∩ Sj) > 0. By reasoning as in the

proof of Lemma 3.4.8 to reach (3.4.62) we obtain

SL(Ak, Shk,Kk
, Sj) ≥

∫
Cj

ϕF(e1) dH1 − 7c2δ
′. (3.4.97)

More precisely, we reach (3.4.97) by noticing that νT0 = e1 and by following the proof of Step 2
(from after equation (3.4.57)) and of Step 3 of Lemma 3.4.8 with the only difference that we
replace the reference to Step 1 of Lemma 3.4.8 with the reference to Step 1 of the current lemma,
and the extra term appearing in (3.4.63) with∑

i=1,2

∫
T j

i

(2ϕF + ϕ)(e2) dH1. (3.4.98)

Notice that the difference of two units more in the error term of (3.4.97) with respect to (3.4.62)
is due to the fact that the extra term (3.4.98) contributes to the final error with exactly two
units more.

Step 3. Fix k ≥ k2
δ′ and let j ∈ J . By (3.4.96) if H1(ΓA

k ∩Sj) = 0 and by (3.4.97) if H1(ΓA
k ∩Sj) > 0

we obtain that
SL(Ak, Sk, S

j) ≥
∫

Cj

ϕF(e1) dH1 − 7c2δ
′. (3.4.99)

Therefore, since the cardinality of J is bounded by 2(m1 + 3), (3.4.99) yields

SL(Ak, Shk,Kk
, R) ≥

∑
j∈J

SL(Ak, Shk,Kk
, Sj) ≥

∫⋃
j∈J

Cj

ϕF(e1) dH1 − 7(2m1 + 3)c2δ
′

≥
∫

T0∩R
ϕF(e1) dH1 − (m1 + 2)c2δ

′ − 7(2m1 + 3)c2δ
′

=
∫

T0∩R
ϕF(e1) dH1 − (15m1 + 24)c2δ

′.

(3.4.100)

By the non-negativeness of ϕF, ϕ and ϕFS we have that

SL(Ak, Shk,Kk
, Q) ≥ SL(Ak, Shk,Kk

, R) ≥
∫

T0∩R
ϕF(e1) dH1 − (15m1 + 24)c2δ

′

≥
∫

T0∩Q
ϕF(e1) dH1 − (15m1 + 25)c2δ

′,
(3.4.101)

where in the second inequality we used (3.4.101) and in the last inequality we added and subtracted∫
T0∩T δ′

1
ϕF(e1) dH1, and we used (3.2.15) and the fact that H1(T0 ∩ T δ′

1 ) ≤ δ′/2. Finally, (3.4.90)

follows from choosing kδ := k2
δ′ and δ′ = δ

(15m1+25)c2
for δ ∈ (0,min{(15m1 + 25)c2, 1}) in

(3.4.111). This completes the proof.

We conclude these list of estimates by addressing the setting of the delaminated substrate
filaments in the film.
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3.4. Lower semicontinuity

Lemma 3.4.12. Let T0 be the x2-axis. Let {ρk}k∈N ⊂ [0, 1] be such that ρk ↘ 0 and Q ⊂
σρ1(Ω) ∩ H0,−e2 be an open square whose sides are either parallel or perpendicular to e1 and
T0 ∩Q ̸= ∅. If {(Ak, Shk,Kk

)} ⊂ Bm(σρ1(Ω)) is a sequence such that Q ∩ Shk,Kk

K−→ T0 ∩Q and
Q \Ak

K−→ T0 ∩Q, then for every δ ∈ (0, 1), there exists kδ ∈ N such that for any k ≥ kδ,

SL(Ak, Shk,Kk
, Q) ≥

∫
T0∩Q

2ϕF(e1) dH1 − δ. (3.4.102)

Proof. Without loss of generality we assume that supk∈N SL(Ak, Shk,Kk
, Q) < ∞. Since Q ∩

Shk,Kk

K−→ T0 ∩Q and Q \Ak
K−→ T0 ∩Q in R2 as k → ∞ for every δ′ ∈ (0, 1) there exists kδ′ ∈ N

such that
Q ∩ Shk,Kk

, Q \Ak ⊂ T δ′
, (3.4.103)

where T δ′ := {x ∈ Q : dist(x, T0) < δ′

2 }. Let T1 be the upper side of Q and let T δ′
1 := {x ∈ Q :

dist(x, T1) < δ′/2}. By the Kuratowski convergence of Q ∩ Shk,Kk
, there exists k1

δ′ ≥ kδ′ such
that Shk

∩ T δ′
1 ≠ ∅ for every k ≥ k1

δ′ . Let R := (T δ′ \ T δ′
1 ) and let T ′

1, T
′
2 ⊂ ∂R be the upper and

lower side of the rectangle R, respectively.

Since (Ak, Shk,Kk
) ∈ Bm(σk(Ω)) we can find an enumeration {Λn

k}n=1,...,m1
k

of the connected
components Λn

k of ∂Ak lying strictly inside of R, such that m1
k ≤ m1. Moreover, thanks to the

fact that SL(Ak, Shk,Kk
, Q) < ∞ for each k ∈ N, the family {Λα

k }α∈N of connected components
Λα

k of ∂Ak ∩ R that intersect T ′
1 or T ′

2, respectively, are at most countable. Furthermore, we
define Λmk+i for i = 1, 2 by

Λmk+i
k :=

 ⋃
α∈N, Λα

k
∩T δ′

i ̸=∅

Λα
k

 ∪ T ′
i .

Thanks to the Kuratowski convergences of Q \ Ak to T0 ∩ R in R2 as k → ∞, the fact that
m1

k ≤ m1 for every k ∈ N, we have that

lim
k→∞

H1

(T0 ∩R) \
m1

k+2⋃
n=1

π2(Λn
k)

 = 0

Hence, there exists k2
δ′ ≥ k1

δ′ such that

H1

(T0 ∩R) \
m1

k+2⋃
n=1

π2(Λn
k)

 < (m1 + 2)δ′ (3.4.104)

for every k ≥ k2
δ′ . Similarly to Step 2 of Lemma 3.4.8, we can decompose ⋃mk+2

n=1 π2(Λn
k) as the

finite union of disjoint open connected sets C := {Cj}j∈J . Notice that the cardinality of J is
bounded by 2m1

k + 3. Therefore
m1

k+2⋃
n=1

π2(Λn
k) =

⋃
j∈J

Cj ,

and also by (3.4.104) we have that

H1

(T0 ∩R) \
⋃
j∈J

Cj

 < (m1 + 2)c2δ
′ (3.4.105)

for every k ≥ k2
δ′ . Finally, let Sj := (π1(R) ×R2 Cj) ∩ T δ′ and let T j

1 and T j
2 be the upper and

lower sides of the boundary of each rectangle Sj , respectively.
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3. Two-phase free boundary problem

Step 1. Let k ≥ k2
δ′ and j ∈ J be such that H1(ΓA

FS(Ak, Shk,Kk
) ∩ Sj) = 0. In view of the

construction of Sj , by [44, Lemma 3.12] we can find a curve with support γ1
k ⊂ ∂(Ak \ Int(Shk

))
joining T j

1 with T j
2 , and there exists only one connected component of ∂(Ak \ Int(Shk

)) in Sj .
Therefore, by applying [58, Lemma 4.3] there exists a curve connecting T j

1 and T j
2 with support

γ2
k ⊂ Sj ∩ ∂(Ak \ Int(Shk

)) \ (γ1
k ∩ ∂Int(Ak \ Int(Shk

))). It follows that

SL(Ak, Shk,Kk
, Sj) + 2

2∑
i=1

∫
T ′

i

ϕF(e2) dH1

≥
∫

(γ1
k

∪γ2
k

)∩(∂∗Ak\∂Shk,Kk
)
ϕF(νAk

) dH1

+
∫

(γ1
k

∪γ2
k

)∩(∂Ak\∂Shk,Kk
)∩A

(0)
k

2ϕF(νAk
) dH1

+
∫

(γ1
k

∪γ2
k

)∩∂∗Shk,Kk
∩∂Ak∩A

(1)
k

ϕF(νAk
) dH1

+
∫

(γ1
k

∪γ2
k

)∩∂Shk,Kk
∩∂∗Ak∩S

(0)
hk,Kk

ϕF(νAk
) dH1 + 2

2∑
i=1

∫
T ′

i

ϕF(e2) dH1

≥
2∑

i=1

∫
γ̃i

k

ϕF(νγ̃i
k
) dH1,

(3.4.106)

where γ̃i
k := T j

1 ∪ γi
k ∪ T j

2 for i = 1, 2. By the anisotropic minimality of segments, we deduce that

2∑
i=1

∫
γ̃i

k

ϕF(νγ̃i
k
) dH1 ≥ 2

∫
Cj

ϕF(e1) dH1. (3.4.107)

By (3.2.15), (3.4.106) and (3.4.107), we conclude that

SL(Ak, Shk,Kk
, Sj) ≥ 2

∫
Cj

ϕF(e1) dH1 − 4c2δ
′. (3.4.108)

Step 2. Let k ≥ k2
δ′ and j ∈ J be such that H1(ΓA

FS(Ak, Shk,Kk
) ∩ Sj) > 0. By reasoning as in the

proof of Lemma 3.4.8 to reach (3.4.62) we obtain

SL(Ak, Shk,Kk
, Sj) ≥ 2

∫
Cj

ϕF(e1) dH1 − 9c2δ
′. (3.4.109)

More precisely, we reach (3.4.109) by noticing that νT0 = e1 and by following the proof of Step 2
(from after equation (3.4.57)) and of Step 3 of Lemma 3.4.8 with the only difference that we
replace the reference to Step 1 of Lemma 3.4.8 with the reference to Step 1 of the current lemma,
and the extra term appearing in (3.4.63) with

∑
i=1,2

∫
T j

i

(3ϕF + ϕ)(e2) dH1.

Step 3. Fix k ≥ k2
δ′ and let j ∈ J . By (3.4.108) if H1(ΓA

k ∩ Sj) = 0 and by (3.4.109) if
H1(ΓA

k ∩ Sj) > 0 we obtain that

SL(Ak, Shk,Kk
, Sj) ≥ 2

∫
Cj

ϕF(e1) dH1 − 9c2δ
′. (3.4.110)
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3.4. Lower semicontinuity

Therefore, the same reasoning of Step 3 of Lemma 3.4.11 yields that

SL(Ak, Shk,Kk
, Q) ≥ SL(Ak, Shk,Kk

, R) ≥ 2
∫

T ∩R
ϕF(e1) dH1 − (35m1 + 56)c2δ

′

≥ 2
∫

T ∩Q
ϕF(e1) dH1 − (35m1 + 57)c2δ

′,
(3.4.111)

where as a difference with Step 3 of Lemma 3.4.11 we added and subtracted 2
∫

T0∩T δ′
1
ϕF(e1) dH1

in the last inequality. Finally, (3.4.102) follows from choosing kδ := k2
δ′ and δ′ = δ

(35m1+57)c2
for

δ ∈ (0,min{(35m1 + 57)c2, 1}) in (3.4.111). This completes the proof.

We are now in the position to prove that the surface energy S is lower semicontinuous in Bm
with respect to the τB-convergence.

Theorem 3.4.13 (Lower semicontinuity of S). Let (Ak, Shk,Kk
)k∈N ⊂ Bm and (A,Sh,K) ∈ Bm

such that (Ak, Shk,Kk
) τB−→ (A,Sh,K) as k → ∞. Then,

S(A,Sh,K) ≤ lim inf
k→∞

S(Ak, Shk,Kk
). (3.4.112)

Proof. Without loss of generality, we assume that the liminf in the right side of (3.4.112) is
reached and finite in R. For every k ∈ N we denote Sk := Shk,Kk

∈ AS(Ω) for simplicity and we
define µk as the Radon measure associated to S(Ak, Sk), i.e., the measure µk given by

µk(B) :=
∫

B∩Ω∩(∂Ak∪∂Sk)
ψk(x, νk (x)) dH1

for every Borel set B ⊂ R2, where νk := ν∂Ak∪∂Sk
and the surface tension ψk is defined by

ψk(x, νk(x)) :=



φF(x, νAk
(x)) if x ∈ ∂∗Ak \ ∂Sk

φ(x, νAk
(x)) if x ∈ ∂∗Ak ∩ ∂∗Sk,

2φF(x, νAk
(x)) if x ∈ (∂Ak \ ∂Sk) ∩A(1),

2φ′(x, νAk
(x)) if x ∈ (∂Ak \ ∂Sk) ∩A(0),

φFS(x, νSk
(x)) if x ∈ (∂∗Sk \ ∂Ak) ∩A

(1)
k ,

2φ(x, νAk
(x)) if x ∈ (∂Sk ∩ ∂Ak) ∩ S

(1)
k ,

2φ′(x, νAk
(x)) if x ∈ (∂Sk ∩ ∂Ak) ∩A(0),

ϕ(x, νAk
(x)) if x ∈ ∂Sk ∩ ∂∗Ak ∩ S

(0)
k ,

2φFS(x, νSk
(x)) if x ∈ (∂Sk \ ∂Ak) ∩ (S(1)

k ∪ S
(0)
k ) ∩A

(1)
k ,

(φF + φ)(x, νAk
(x)) if x ∈ ∂Ak ∩ ∂∗Sk ∩A(1),

2φF(x, νSk
(x)) if x ∈ (∂Sk ∩ ∂Ak) ∩ S

(0)
k ∩A

(1)
k .

(3.4.113)

Furthermore, we denote by µ the Radon measure associated to S(A, h,K), i.e., the measure µ
given by

µ(B) :=
∫

B∩Ω∩(∂A∪∂Sh,K)
ψ(x, ν∂A∪∂Sh,K

(x)) dH1

for every Borel set B ⊂ R2, where ψ is defined analogously to ψk in (3.4.113), but with the sets
Ak and Sk replaced with A and Sh,K , respectively.

We observe that by (H1) there exists c := c(c2) > 0 such that

µk(R2) = S(Ak, Sk) ≤ c
(
H1(∂Ak) + H1(∂Sk)

)
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3. Two-phase free boundary problem

and since (Ak, Sk) τB−→ (A,Sh,K), we obtain that supk µk(R2) < +∞. It follows that {µk} is a
sequence of bounded Radon measures and hence, owing to the weak* compactness of Radon
measures (see [68, Theorem 4.33]), there exist a not relabeled subsequence {µk} and a Radon
measure µ0 such that µk

∗
⇀ µ0 as k → ∞. The purpose of this proof is to show the following

inequality in the sense of measures
µ0 ≥ µ. (3.4.114)

Since µ0 and µ are non-negative measures and µ << H1 (∂A ∪ ∂Sh,K), to obtain (3.4.114), it
is enough to prove that the surface tension ψ of µ on each subset of ∂A ∪ ∂Sh,K on which it is
uniquely defined, is bounded from above by the Radon-Nikodym derivative of µ0 with respect to
the H1-measure of the corresponding subset, namely the following 12 inequalities:

dµ0
dH1 (∂∗A \ ∂Sh,K) (x) ≥ φF(x, νA (x)) for H1-a.e. x ∈ ∂∗A \ ∂Sh,K , (3.4.115)

dµ0
dH1 (∂∗Sh,K ∩ ∂∗A) (x) ≥ φ(x, νA (x)) for H1-a.e. x ∈ ∂∗Sh,K ∩ ∂∗A, (3.4.116)

dµ0
dH1 ((∂A \ ∂Sh,K) ∩A(1))

(x) ≥ 2φF(x, νA (x)) for H1-a.e. x ∈ (∂A \ ∂Sh,K) ∩A(1),

(3.4.117)
dµ0

dH1 ((∂A \ ∂Sh,K) ∩A(0))
(x) ≥ 2φ′(x, νA (x)) for H1-a.e. x ∈ (∂A \ ∂Sh,K) ∩A(0),

(3.4.118)

dµ0
dH1 ((∂∗Sh,K \ ∂A) ∩A(1))

(x) ≥ φFS(x, νSh,K
(x))

for H1- a.e. x ∈ (∂∗Sh,K \ ∂A) ∩A(1), (3.4.119)

dµ0

dH1 ((∂Sh,K ∩ ∂A) ∩ S
(1)
h,K)

(x) ≥ 2φ(x, νA (x)) for H1-a.e. x ∈ (∂Sh,K ∩ ∂A) ∩ S
(1)
h,K ,

(3.4.120)
dµ0

dH1 ((∂Sh,K ∩ ∂A) ∩A(0))
(x) ≥ 2φ′(x, νA (x)) for H1-a.e. x ∈ (∂Sh,K ∩ ∂A) ∩A(0),

(3.4.121)

dµ0

dH1 (∂Sh,K ∩ ∂∗A ∩ S
(0)
h,K)

(x) ≥ φF(x, νA (x))

for H1-a.e. x ∈ ∂Sh,K ∩ ∂∗A ∩ S
(0)
h,K , (3.4.122)

dµ0

dH1 ((∂Sh,K \ ∂A) ∩ S
(1)
h,K ∩A(1))

(x) ≥ 2φFS(x, νSh,K
(x))

for H1-a.e. x ∈ (∂Sh,K \ ∂A) ∩ S
(1)
h,K ∩A(1), (3.4.123)

dµ0

dH1 ((∂Sh,K \ ∂A) ∩ S
(0)
h,K ∩A(1))

(x) ≥ 2φFS(x, νSh,K
(x))

for H1-a.e. x ∈ (∂Sh,K \ ∂A) ∩ S
(0)
h,K ∩A(1), (3.4.124)
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3.4. Lower semicontinuity

dµ0
dH1 (∂∗Sh,K ∩ ∂A ∩A(1))

(x) ≥ (φF + φ)(x, νA (x))

for H1-a.e. x ∈ ∂∗Sh,K ∩ ∂A ∩A(1) (3.4.125)

and

dµ0

dH1 ((∂Sh,K ∩ ∂A) ∩ S
(0)
h,K ∩A(1))

(x) ≥ 2φF(x, νSh,K
(x))

for H1-a.e. x ∈ (∂Sh,K ∩ ∂A) ∩ S
(0)
h,K ∩A(1). (3.4.126)

The rest of the proof is devoted to establish the previous 12 lower-bound estimates. In order to
do that we fix ε > 0 small enough and we recall that from the uniform continuity of φF, φS, φFS
it follows that there exists a δε > 0 such that

φF(y, ξ) ≥ φF(x0, ξ) − ε, φS(y, ξ) ≥ φS(x0, ξ) − ε, and φFS(y, ξ) ≥ φFS(x0, ξ) − ε, (3.4.127)

for every y ∈ Qδε(x0) ⊂ Ω, x0 ∈ Ω and |ξ| = 1. The proofs of (3.4.115) and (3.4.119) are based on
[68, Theorem 20.1], the proofs of (3.4.116), (3.4.120), (3.4.121), (3.4.122), (3.4.125) and (3.4.126)
are based on Lemmas 3.4.7, 3.4.8, 3.4.9, 3.4.10, 3.4.11 and 3.4.12, respectively. Finally, the proofs
of (3.4.118) and (3.4.124) are based on [58, Lemma 4.4], and the proofs of (3.4.117) and (3.4.123)
are based on [58, Lemma 4.5] (See Table 3.1).

Sets Conditions Surf. t. Assertions
∂∗A \ ∂Sh,K νAk

H1(∂∗Ak) ∗
⇀ νAH1(∂∗A) φF [68, Theorem 20.1]

∂∗Sh,K ∩ ∂∗A RνA∩(Akn\Int(Skn)) K−→ RνA∩T0,νA φ Lemma 3.4.7
(∂A \ ∂Sh,K) ∩A(1) Q1 \Akn

K−→ Q1 ∩ T0,e1 2φF [58, Lemma 4.5]
(∂A \ ∂Sh,K) ∩A(0) Q1 ∩Akn

K−→ Q1 ∩ T0,e1 2φ′ [58, Lemma 4.4]
∂∗Sh,K \ ∂A νSk

H1(∂∗Sk) ∗
⇀ νSh,K

H1(∂∗Sh,K) φFS [68, Theorem 20.1]

(∂Sh,K ∩ ∂A) ∩ S
(1)
h,K

Q1 \Akn

K−→ Q1 ∩ T0,e1 ,

Q1 \ Skn

K−→ Q1 ∩ T0,e1

2φ Lemma 3.4.9

(∂Sh,K ∩ ∂A) ∩A(0) Q1 ∩Akn

K−→ Q1 ∩ T0,e1 ,

Q1 ∩ Skn

K−→ Q1 ∩ T0,e1

2φ′ Lemma 3.4.10

∂Sh,K ∩ ∂∗A ∩ S
(0)
h,K

Q1 ∩Akn

K−→ Q1 ∩H0,e1 ,

Q1 ∩ Skn

K−→ Q1 ∩ T0,e1

φF Lemma 3.4.11

(∂Sh,K \ ∂A) ∩ S
(1)
h,K ∩A(1) Q1 \ Skn

K−→ Q1 ∩ T0,e1 2φFS [58, Lemma 4.5]

(∂Sh,K \ ∂A) ∩ S
(0)
h,K ∩A(1) Q1 ∩ Skn

K−→ Q1 ∩ T0,e1 2φFS [58, Lemma 4.4]

∂∗Sh,K ∩ ∂A ∩A(1) RνSh,K
∩ Skn

K−→ RνSh,K
∩H0,νSh,K

,

RνSh,K
\Akn

K−→ RνSh,K
∩ T0,νSh,K

φF + φ Lemma 3.4.8

(∂Sh,K ∩ ∂A) ∩ S(0)
h,K ∩A(1) Q1 ∩ Skn

K−→ Q1 ∩ T0,e1 ,

Q1 \Akn

K−→ Q1 ∩ T0,e1

2φF Lemma 3.4.12

Table (3.1): Sketch of the proof of (3.4.115)–(3.4.126) for Theorem 3.4.13: in the blow-ups centered
at a point of the sets listed in the first column, the corresponding conditions listed in the second
column are proven to hold and the lower bounds of the localized surface energy are reached with
surface tensions given in the third column by means of the assertions listed in the fourth column.
Note that RνU

for U = A,Sh,K is defined as RνU
:= Q1 if νU = ei for i = 1,2, or, otherwise,

RνU
:= (− cos θνU

, cos θνU
) ×R2 (− sin θνU

, sin θνU
), where θνU

is the angle formed between T0,νU
and

the x1-axis.
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3. Two-phase free boundary problem

Proof of (3.4.115). We begin by observing that by the definition of ∂∗A, the continuity of φ,
the Borel regularity of y ∈ ∂∗A 7→ φF(y, νA(y)) and the Besicovitch Derivation Theorem (see
[47, Theorem 1.153]), the set of points in ∂∗A \ ∂Sh,K not satisfying the following 3 conditions:

(a1) νA (x) exists,

(a2) x is a Lebesgue point of y ∈ ∂∗A \ ∂Sh,K 7→ φF(y, νA(y)), i.e.,

lim
r→0

1
2r

∫
Qr∩∂∗A\∂Sh,K

|φF(y, νA(y)) − φF(x, νA (x))| dH1(y) = 0,

(a3) dµ0
dH1 (∂∗A\∂Sh,K) (x) exists and it is finite,

is H1-negligible. Therefore, we prove (3.4.115) for a fixed x ∈ ∂∗A \ ∂Sh,K satisfying (a1)-(a3).
Without loss of generality, we consider x = 0 and νA(0) = e1, where we used (a1).

By [58, Lemma 3.2-(b)] and τB-convergence we have that Ak → A and Sk → S in L1(R2) and
hence, D1Ak

∗
⇀ D1A and D1Sk

∗
⇀ D1S , hence by the Structure Theorem for sets of finite

perimeter (see [43, Theorem 5.15]), it holds that

νAk
H1(∂∗Ak) ∗

⇀ νAH1(∂∗A). (3.4.128)

Furthermore, by Remark (3.2.8)-(i) and again the the τB-convergence we obtain that ∂Sk
K−→

∂Sh,K , from which it follows that for any η > 0 there exists kη ∈ N such that ∂Sk ⊂ Sη for every
k ≥ kη, where Sη := {x ∈ Ω : dist(x, ∂Sh,K) ≤ η}.

We observe that from the properties of Radon measures there exists a sequence ρn ↘ 0 such
that Qρn ⊂⊂ Ω, µ0(∂Qρn) = 0,

µ0(Qρn) = lim
k→+∞

µk(Qρn) (3.4.129)

and
dµ0

dH1 (∂∗A \ ∂Sh,K)(0) = lim
n→∞

µ0(Qρn)
2ρn

, (3.4.130)

where we also used (a3) and Besicovitch Derivation Theorem (see, e.g., [47, Theorem 1.153]).
Therefore, by (3.4.129) we deduce that

µ0(Qρn) = lim
k→+∞

µk(Qρn) ≥ lim inf
k→∞

∫
Qρn ∩∂∗Ak\∂Sk

φF(y, νAk
) dH1

≥ lim inf
k→∞

∫
Qρn ∩∂∗Ak\Sη

φF(y, νAk
) dH1 ≥

∫
Qρn ∩∂∗A\Sη

φF(y, νA) dH1,
(3.4.131)

where in the first inequality we used the non-negativeness of ψk, in the second inequality we used
the fact that ∂Sk ⊂ Sη for every k ≥ kη and in the last inequality, by using the fact that Ak → A
in L1(R2) and (3.4.128), we apply (see, e.g., [68, Theorem 20.1]). Moreover, taking η → 0 in
(3.4.131) we obtain that

µ0(Qρn) ≥ lim
η→0

∫
Qρn ∩∂∗A\Sη

φF(y, νA) dH1 =
∫

Qρn ∩∂∗A\∂Sh,K

φF(y, νA) dH1 (3.4.132)

by Lebesgue monotone convergence theorem [47, Theorem 1.79]. Finally, by (3.4.130) and (a2)
we conclude that

dµ0
dH1 (∂∗A \ ∂Sh,K)(0) = lim

n→∞
µ0(Qρn)

2ρn
≥ lim inf

n→∞
1

2ρn

∫
Qρn ∩∂∗A\∂Sh,K

φF(y, νA) dH1

= φF(0, e1).
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3.4. Lower semicontinuity

Proof of (3.4.116). By the definition of ∂∗A and ∂∗Sh,K , by [58, Proposition A.4] (applied with
K taken as first ∂A and then ∂Sh,K), and by the Besicovitch Derivation Theorem the set of
points x ∈ ∂∗A ∩ ∂∗Sh,K not satisfying the following 3 conditions:

(b1) νA (x), νSh,K
(x) exist and, either νA (x) = νSh,K

(x) or νA (x) = −νSh,K
(x),

(b2) for every open rectangle R containing x with sides parallel or perpendicular to e1 we have
that R ∩ ∂σρ,x(A) K−→ R ∩ Tx,νA(x) and R ∩ ∂σρ,x(Sh,K) K−→ R ∩ Tx,νA(x) as ρ → 0, where
Tx,νA(x) is the approximate tangent line at x of ∂A (or of ∂Sh,K),

(b3) dµ0
dH1 (∂∗Sh,K∩∂∗A) (x) exists and it is finite,

is H1-negligible. Therefore, we prove (3.4.116) for any fixed x ∈ ∂∗A∩∂∗Sh,K satisfying (b1)-(b3).
Without loss of generality we assume that x = 0 and we denote T0 = T0,νA(0). Furthermore,
by using (b1) we choose in (b2) the rectangle RνA := Q1 if νA(0) = ei for i = 1,2, or
RνA := (− cos θνA , cos θνA) ×R2 (− sin θνA , sin θνA), where θνA is the angle formed between the
tangent line T0 and the x1-axis, otherwise. For any ρ > 0, we write Rρ := ρRνA .

In view of the definition of RνA and again by using also the Besicovitch Derivation Theorem (see
[47, Theorem 1.153]) there exists a subsequence ρn ↘ 0 such that

µ0(∂Rρn) = 0, lim
k→+∞

µk(Rρn) = µ0(Rρn) (3.4.133)

and
dµ0

dH1 (∂∗Sh,K ∩ ∂∗A)(0) = lim
n→∞

µ0(Rρn)
2ρn

. (3.4.134)

We now claim that

sdist(·, ∂σρn(A)) → sdist(·, ∂H0) and sdist(·, ∂σρn(Sh,K)) → sdist(·, ∂H0) (3.4.135)

uniformly in RνA as n → ∞, where H0 is the half space centered in 0 with respect to the vector
νA. To prove the claim we can for example observe that by [58, Proposition A.4] we have (not only
(b2), but also) that Qr ∩ ∂σρ,x(A) K−→ Qr ∩ Tx and Qr ∩ ∂σρ,x(Sh,K) K−→ Qr ∩ Tx as ρ → 0
for any square Qr such that RνA ⊂ Qr and hence, by Proposition 3.4.3-(c) applied to Qr,
sdist(·, ∂σρn(A)) → sdist(·, ∂H0) and sdist(·, ∂σρn(Sh,K)) → sdist(·, ∂H0) uniformly in Qr ⊃ RνA .

Furthermore, from the τB-convergence it follows that

sdist(·, ∂Ak) → sdist(·, ∂A) and sdist(·, ∂Sk) → sdist(·, ∂Sh,K) (3.4.136)

uniformly in RνA as k → ∞ and hence, by (3.4.135) and (3.4.136), a standard diagonalization
argument yields that there exists a subsequence {(Akn , hkn ,Kkn)} such that

sdist(·, ∂σρn(Akn)) → sdist(·, ∂H0), sdist(·, ∂σρn(Skn)) → sdist(·, ∂H0) (3.4.137)

uniformly in RνA as n → ∞ and by (3.4.133) such that

µkn(Rρn) ≤ µ0(Rρn) + ρ2
n, (3.4.138)

for every n ∈ N. We also observe that

dµ0
dH1 (∂∗Sh,K ∩ ∂∗A)(0) ≥ lim sup

n→∞

µkn(Rρn)
2ρn

≥ c1 lim sup
n→∞

H1(Rρn ∩ ∂Akn) + H1(Rρn ∩ ∂Skn \ ∂Akn)
2ρn

,

(3.4.139)
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3. Two-phase free boundary problem

where in the first inequality we used (3.3.1)-(3.3.5), as Akn and Skn are sets of finite perimeter,
and (3.2.15) while in the second inequality we used (3.4.134) and (3.4.138).

Now, we claim that

RνA ∩ (σρn(Akn) \ Int(σρn(Skn))) K−→ RνA ∩ T0. (3.4.140)

We proceed by contradiction, let xn ∈ RνA ∩ σρn(Akn) \ Int(σρn(Skn)) such that xn → x and
assume that x ∈ Int(RνA ∩H0) or x ∈ RνA \H0. In the first case, there exists ε > 0 such that
sdist(x, ∂H0) = −ε. By (3.4.137) we observe that sdist(x, ∂σρn(Skn)) → −ε uniformly in RνA as
n → ∞. Furthermore, for n large enough, xn ∈ Bε/2(x) and it follows that sdist(xn, ∂σρn(Skn))
is negative. Therefore, for n large enough, xn ∈ Int(σρn(Skn))) which is an absurd. Analogously
if x ∈ RνA \ H0 we have that sdist(x, ∂H0) = ε and by (3.4.137), sdist(x, ∂σρn(Akn)) → ε
uniformly in RνA as n → ∞, similarly as before, we can conclude, for n large enough, that
xn ∈ RνA \ σρn(Akn), which is an absurd.

Now, let x ∈ RνA ∩ T0. By Kuratowski convergence there exists {xn} ⊂ RνA ∩ ∂σρn(Akn) such
that xn → x. We see that for all n ∈ N, xn ∈ RνA ∩ σρn(Akn) and xn /∈ RνA \ Int(σρn(Skn)), if
not, there exists n′ ∈ N such that xn′ ∈ RνA ∩ Int(σρn′ (Skn′ )) ⊂⊂ RνA ∩ Int(σρn′ (Akn′ )), which
is an absurd.

Since
{

(Akn , Shkn ,Kkn
)
}

⊂ Bm, we know that (σρn(Akn), S(1/ρn)hkn (ρn·),σρn (Kkn )) ∈ Bm(σρn(Ω)).
In view of (3.4.137) and (3.4.140) by applying Lemma 3.4.7 to (σρn(Akn), S(1/ρn)hkn (ρn·),σρn (Kkn ))
and RνA , with ϕα(·) = φα(0, ·) for α = F,S,FS, and by fixing ε ∈ (0, 1), there exists n1

ε ∈ N such
that for every n ≥ n1

ε,

SL(σρn(Akn), S(1/ρn)hkn (ρn·),σρn (Kkn ), RνA) ≥
∫

T0∩RνA

φ(0, νT0) dH1 − ε ≥ 2φ(0, νT0) − ε.

(3.4.141)

Moreover, by the uniform continuity of the Finsler norm φα for α = F,S,FS there exists n2
ε ≥ n1

ϵ

68



3.4. Lower semicontinuity

such that

µkn(Rρn) ≥ µkn(Rρn)

≥
∫

Rρn ∩∂∗Akn \∂Skn

φF(0, νAkn
(0)) dH1

+
∫

Rρn ∩(∂Akn \∂Skn )∩
(

A
(0)
kn

∪A
(1)
kn

) 2φF(0, νAkn
(0)) dH1

+
∫

Rρn ∩∂∗Skn ∩∂∗Akn

φ(0, νAkn (0)) dH1

+
∫

Rρn ∩(∂∗Skn \∂Akn )∩A
(1)
kn

φFS(0, νSkn
(0)) dH1

+
∫

Rρn ∩(∂Skn ∩∂Akn )∩
(

S
(1)
kn

∪A
(0)
kn

) 2φ(0, νAkn
(0)) dH1

+
∫

Rρn ∩∂Skn ∩∂∗Akn ∩S
(0)
kn

(φ+ φFS)(0, νAkn
(0)) dH1

+
∫

Rρn ∩(∂Skn \∂Akn )∩
(

S
(1)
kn

∪S
(0)
kn

)
∩A

(1)
kn

2φFS(0, νSkn
(0)) dH1

+
∫

Rρn ∩∂∗Skn ∩∂Akn ∩A
(1)
kn

(φF + φ)(0, νAkn
(0)) dH1

+
∫

Rρn ∩(∂Skn ∩∂Akn )∩S
(0)
kn

∩A
(1)
kn

(φF + φ+ φFS)(0, νSkn
(0)) dH1

− ε
(
H1(Rρn ∩ ∂Akn) + H1(Rρn ∩ ∂Skn \ ∂Akn)

)
,

=: SL(Akn , Shkn ,Kkn
, Rρn) − ε

(
H1(Rρn ∩ ∂Akn) + H1(Rρn ∩ ∂Skn \ ∂Akn)

)
(3.4.142)

for every n ≥ n2
ε, where in the first inequality we used the definition of µkn and in the second

inequality (3.4.127), and hence,

µkn(Rρn) ≥ ρn

(
SL(σρn(Akn), S(1/ρn)hkn (ρn·),σρn (Kkn ), RνA)

)
− ε

(
H1(Rρn ∩ ∂Akn) + H1(Rρn ∩ ∂Skn \ ∂Akn)

)
≥ 2ρnφ(0, νT0) − ερn − ε

(
H1(Rρn ∩ ∂Akn) + H1(Rρn ∩ ∂Skn \ ∂Akn)

)
,

(3.4.143)

where in the first inequality we used (3.4.142) and the properties of the blow up map, and in the
last inequality we used (3.4.141). Finally, we conclude that

dµ0
dH1 (∂∗Sh,K ∩ ∂∗A)(0) ≥ lim inf

n→∞
µkn(Rρn)

2ρn

≥ φ(0, νT0) − ε

2

− ε lim sup
n→∞

H1(Rρn ∩ ∂Akn) + H1(Rρn ∩ ∂Skn \ ∂Akn)
2ρn

≥ φ(0, νT0) − ε

2 − ε

c1

dµ0
dH1 (∂∗Sh,K ∩ ∂∗A)(0),

(3.4.144)

where in the first inequality we used (3.4.138), in the second inequality we used (3.4.143) and in
the last inequality we used (3.4.139). By (b3) and taking ε → 0+, in the inequality above, we
deduce (3.4.116).
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3. Two-phase free boundary problem

Proof of (3.4.117). By the H1-rectifiability of ∂A, by [58, Proposition A.4] (applied with K taken
as ∂A), and by the Besicovitch Derivation theorem, the set of points x ∈ (∂A \ ∂Sh,K) ∩A(1) not
satisfying the following 4 conditions:

(c1) θ∗(∂A, x) = θ∗(∂A, x) = 1,

(c2) νA(x) exists,

(c3) Q1,νA(x) ∩ ∂σρ,x(A) K−→ Q1,νA(x) ∩ Tx,νA(x) as ρ → 0,

(c4) dµ0
dH1 ((∂A\∂Sh,K)∩A(1)) (x) exists and it is finite,

is H1-negligible. Therefore, we prove (3.4.117) for any fixed x ∈ (∂A \ ∂Sh,K) ∩A(1) satisfying
(c1)-(c4). Without loss of generality we assume that x = 0 and νA(0) = e1, and we use the
notation T0 := T0,νA(0). Again by the Besicovitch Derivation Theorem there exists a subsequence
ρn ↘ 0 such that

µ0(∂Qρn) = 0, lim
k→+∞

µk(Qρn) = µ0(Qρn) (3.4.145)

and
dµ0

dH1 ((∂A \ ∂Sh,K) ∩A(1))
(0) = lim

n→∞
µ0(Qρn)

2ρn
. (3.4.146)

By (c3) and applying Proposition 3.4.3-(a) to A we have that

sdist(·, ∂σρn(A)) → −dist(·, T0) (3.4.147)

uniformly in Q1 as n → ∞. Furthermore, from the τB-convergence it follows that

sdist(·, ∂Ak) → sdist(·, ∂A) (3.4.148)

uniformly in Q1 as k → ∞ and hence, by (3.4.147) and (3.4.148), a standard diagonalization
argument yields that there exists a subsequence

{
(Akn , Shkn ,Kkn

)
}

such that

sdist(·, ∂σρn(Akn)) → −dist(·, T0). (3.4.149)

uniformly in Q1 as n → ∞ and, by also using (3.4.145), such that

µkn(Qρn) ≤ µ0(Qρn) + ρ2
n, (3.4.150)

for every n ∈ N. By arguing as in (3.4.139), we infer that

lim sup
n→∞

H1(Qρn ∩ ∂Akn) + H1(Qρn ∩ ∂Skn \ ∂Akn)
2ρn

≤ c−1
1

dµ0
dH1 (((∂A \ ∂Sh,K) ∩A(1))

(0).

(3.4.151)
By (3.4.149) and by applying Lemma 3.4.2, we have that Q1 \ σρn(Akn) K−→ Q1 ∩ T0 as n → ∞.
Since the number of connected components of ∂σρn(Akn) lying inside of Q1 does not exceed m1,
by [58, Lemma 4.5] (applied by taking m0, δ, ϕ in the notation of [58, Lemma 4.5] as m1, ε, and
φF(0, ·), respectively) implies that there exists n1

ε ≥ nε such that for every n ≥ n1
ε,∫

Q1∩∂∗σρn (Akn )
φF(0, νσρn (Akn )(0)) dH1

+
∫

Q1∩∂σρn (Akn )∩((σρn (Akn ))(0)∪(σρn (Akn ))(1))
2φF(0, νσρn (Akn )(0)) dH1

≥ 2
∫

Q1∩T0
φF(0, e1) dH1 − ε = 4φF(0, e1) − ε.

(3.4.152)
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3.4. Lower semicontinuity

In view of Remark 3.2.8-(iii) and by τB-convergence, there exists a ball Br(0)(0) and n2
ε ≥ n1

ε

such that Qρn ∩ ∂Skn ⊂ Br(0)(0) ∩ ∂Skn = ∅ for any n ≥ n2
ε, and thus,

∅ = Qρn ∩ ∂Skn = ρn(Q1 ∩ ∂σρn(Skn)). (3.4.153)

Therefore, by (3.4.152) and (3.4.153), we obtain that∫
Q1∩(∂∗σρn (Akn )\∂σρn (Skn ))

φF(0, νσρn (Akn )) dH1

+
∫

Q1∩(∂σρn (Akn )\∂σρn (Skn ))∩((σρn (Akn ))(0)∪(σρn (Akn ))(1))
2φF(0, νσρn (Akn )(0)) dH1

≥ 4φF(0, e2) − ε.

(3.4.154)

Furthermore, by (3.4.127) it follows that there exists n3
ε ≥ n2

ε such that

µkn(Qρn) ≥
∫

Qρn ∩∂∗Akn \∂Skn

φF(0, νAkn
) dH1

+
∫

Qρn ∩(∂Akn \∂Skn )∩(A(0)
kn

∪A
(1)
kn

)
2φF(0, νAkn

) dH1

− ε
(
H1(Qρn ∩ ∂Akn) + H1(Qρn ∩ ∂Skn \ ∂Akn)

)
= ρn

(∫
Q1∩(∂∗σρn (Akn )\∂σρn (Skn ))

φF(0, νσρn (Akn )) dH1

+
∫

Q1∩(∂σρn (Akn )\∂σρn (Skn ))∩((σρn (Akn ))(0)∪(σρn (Akn ))(1))
2φF(0, νσρn (Akn )) dH1

)
− ε

(
H1(Qρn ∩ ∂Akn) + H1(Qρn ∩ ∂Skn \ ∂Akn)

)
≥ 4ρnφF(0, e1) − ερn − ε

(
H1(Qρn ∩ ∂Akn) + H1(Qρn ∩ ∂Skn \ ∂Akn)

)
, (3.4.155)

for every n ≥ n3
ε, where in the first inequality we argued as in (3.4.142) (with Qρn instead of Rρn)

and we used the non-negativeness of ψkn , in the equality we used properties of the blow up map,
and in the second inequality we used (3.4.154). Finally, by (3.4.146), (3.4.150) and (3.4.155) and
by repeating the same arguments of (3.4.144), we deduce that

dµ0
dH1 ((∂A \ ∂Sh,K) ∩A(1))

(0) ≥ 2φF(0, e1) − ε

2 − ε

c1

dµ0
dH1 ((∂A \ ∂Sh,K) ∩A(1))

(0).

By (c4) and taking ε → 0+, in the inequality above, we deduce (3.4.117).

Proof of (3.4.118). Since φ′ ≤ φF, we repeat the same arguments of the proof of (3.4.117) by
using Proposition 3.4.3-(b) and [58, Lemma 4.4] instead of Proposition 3.4.3-(a) and [58, Lemma
4.5], respectively.

Proof of (3.4.119). We observe that (3.4.119) follows from the same arguments used in (3.4.115),
which are based on [68, Theorem 20.1], by “interchanging the roles” of Ak, A with Sk, Sh,K .

Proof of (3.4.120). By the H1-rectifiability of ∂A and ∂Sh,K , by [58, Proposition A.4] (applied
with K taken as first ∂A and then ∂Sh,K), and by the Besicovitch Derivation Theorem the set
of points x ∈ (∂Sh,K ∩ ∂A) ∩ S

(1)
h,K not satisfying the following 4 conditions:

(f1) θ∗(∂A, x) = θ∗(∂A, x) = θ∗(∂Sh,K , x) = θ∗(∂Sh,K , x) = 1,

(f2) νA (x), νSh,K
(x) exist and either νA (x) = νSh,K

(x) nor νA (x) = −νSh,K
(x),
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3. Two-phase free boundary problem

(f3) Q1,νA(x)(x) ∩ ∂σρ,x(A) K−→ Q1,νA(x)(x) ∩ Tx,νA(x) and Q1,νA(x)(x) ∩ ∂σρ,x(Sh,K) K−→
Q1,νA(x)(x) ∩ Tx,νA(x),

(f4) dµ0

dH1 ((∂Sh,K∩∂A)∩S
(1)
h,K

)
(x) exists and it is finite.

is H1-negligible. Therefore we prove (3.4.120) for any fixed x ∈ (∂Sh,K ∩ ∂A) ∩ S
(1)
h,K satisfying

(f1)-(f4). By (f2) and without loss of generality we assume that x = 0 and νA(0) = e1, and we
denote T0 := T0,νA(0). Again by the Besicovitch Derivation Theorem there exists a subsequence
ρn ↘ 0 such that

µ0(∂Qρn) = 0, lim
k→+∞

µk(Qρn) = µ0(Qρn) (3.4.156)

and
dµ0

dH1 ((∂Sh,K ∩ ∂A) ∩ S
(1)
h,K)

(0) = lim
n→∞

µ0(Qρn)
2ρn

. (3.4.157)

By (f3) and applying Proposition 3.4.3-(a) to A and Sh,K we have that

sdist(·, ∂σρn(A)) → −dist(·, T0) and sdist(·, ∂σρn(Sh,K)) → −sdist(·, T0) (3.4.158)

uniformly in Q1 as n → ∞. Furthermore, from the τB-convergence it follows that

sdist(·, ∂Ak) → sdist(·, ∂A) and sdist(·, ∂Sk) → sdist(·, ∂Sh,K) (3.4.159)

uniformly in Q1 as k → ∞ and hence, by (3.4.158) and (3.4.159), a standard diagonalization
argument yields that there exists a subsequence {(Akn , hkn ,Kkn)} such that

sdist(·, ∂σρn(Akn)) → −dist(·, T0) and sdist(·, ∂σρn(Skn)) → −dist(·, T0) (3.4.160)

uniformly in Q1 as n → ∞ and by (3.4.156) such that

µkn(Qρn) ≤ µ0(Qρn) + ρ2
n, (3.4.161)

for every n ∈ N. By arguing as in (3.4.139) we deduce that

lim sup
n→∞

H1(Qρn ∩ ∂Akn) + H1(Qρn ∩ ∂Skn \ ∂Akn)
2ρn

≤ c−1
1

dµ0

dH1 ((∂Sh,K ∩ ∂A) ∩ S
(1)
h,K)

(0).

(3.4.162)

By (3.4.160) and by applying Lemma 3.4.2 we deduce that

Q1 \ σρn(Akn) K−→ Q1 ∩ T0 and Q1 \ σρn(Skn) K−→ Q1 ∩ T0. (3.4.163)

Since
{

(Akn , Shkn ,Kkn
)
}

⊂ Bm, we know that (σρn(Akn), S(1/ρn)hkn (ρn·),σρn (Kkn )) ∈ Bm(σρn(Ω)).
By (3.4.163) and by applying Lemma 3.4.9 to (σρn(Akn), S(1/ρn)hkn (ρn·),σρn (Kkn )) and Q1, with
ϕα(·) = φα(0, ·) for α = F,S,FS, there exists n1

ε ∈ N such that for every n ≥ n1
ε,

SL(σρn(Akn), S(1/ρn)hkn (ρn·),σρn (Kkn ), Q1) ≥ 2
∫

Q1∩T0
φ(0, e1) dH1 − ε ≥ 4φ(0, e1) − ε.

(3.4.164)

By (3.4.164), by the uniform continuity in (3.4.127) and by repeating the same arguments of
(3.4.143) we obtain that there exists n2

ε ≥ n1
ε such that

µkn(Qρn) ≥ 4φ(0, e1) − ερn − ε
(
H1(Qρn ∩ ∂Akn) + H1(Qρn ∩ ∂Skn \ ∂Akn)

)
, (3.4.165)
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3.4. Lower semicontinuity

for every n ≥ n2
ε. By (3.4.157), (3.4.161), (3.4.165) and by arguing as in (3.4.144) we have that

dµ0

dH1 ((∂Sh,K ∩ ∂A) ∩ S
(1)
h,K)

(0) ≥ 2φ(0, e1) − ε

2 − ε

c1

dµ0

dH1 ((∂Sh,K ∩ ∂A) ∩ S
(1)
h,K)

(0).

Finally, by (f4) and taking ε → 0+, in the inequality above, we reach (3.4.120).

Proof of (3.4.121). Since φ′ ≤ φ, we repeat the same arguments of the proof of (3.4.120) in view
of the fact that ∂Sh,K ∩∂A∩S(0)

h,K ∩A(0) = ∂Sh,K ∩∂A∩A(0) by employing Proposition 3.4.3-(b)
in place of Proposition 3.4.3-(a) and Lemma 3.4.10 in place of Lemma 3.4.9.

Proof of (3.4.122). In order to obtain (3.4.122) we combine the arguments of the proof of
(3.4.116) and the proof of (3.4.120), by using the argumentations of the former with Proposition
3.4.3-(c) with νA = e1 for the sets A and Ak and their convergence, and the argumentations
of the latter with Proposition 3.4.3-(b) for the sets Sh,K and Sk and their convergence, but
employing Lemma 3.4.11 in place of Lemmas 3.4.7 and 3.4.9, which were used in such previous
proofs.

Proof of (3.4.123). We repeat the same arguments of the proof of (3.4.117) which are based on
[58, Lemma 4.5], by “interchanging the roles” of Ak, A with Sk, Sh,K .

Proof of (3.4.124). We repeat the same arguments of the proof of (3.4.118) which are based on
[58, Lemma 4.4], by “interchanging the roles” of Ak, A with Sk, Sh,K .

Proof of (3.4.125). By the definition of ∂∗Sh,K , by the H1-rectifiability of ∂A, by [58, Proposition
A.4] (applied with K taken as first ∂A and then ∂Sh,K), and the Besicovitch Derivation Theorem
the set of points x ∈ ∂∗Sh,K ∩ ∂A ∩A(1) not satisfying the following 4 conditions:

(h1) θ∗(∂A, x) = θ∗(∂A, x) = 1,

(h2) νA (x), νSh,K
(x) exist and, either νA (x) = νSh,K

(x) or νA (x) = −νSh,K
(x),

(h3) for every open rectangle R containing x with sides parallel or perpendicular to e1 we have
that R ∩ ∂σρ,x(A) K−→ R ∩ Tx,νA(x) and R ∩ ∂σρ,x(Sh,K) K−→ R ∩ Tx,νA(x) as ρ → 0, where
Tx,νA(x) is the approximate tangent line at x of ∂A (or of ∂Sh,K),

(h4) dµ0
dH1 (∂∗Sh,K∩∂A∩A(1)) (x) exists and it is finite,

is H1-negligible. Therefore, we prove (3.4.125) for any fixed x ∈ ∂∗Sh,K ∩ ∂A ∩ A(1) satisfying
(h1)-(h4). Without loss of generality we assume that x = 0 and we denote T0 = T0,νA(0).
Furthermore, by using (h2) we choose in (h3) the rectangle RνA := Q1 if νA(0) = ei for i = 1,2,
or RνA := (− cos θνA , cos θνA) ×R2 (− sin θνA , sin θνA), where θνA is the angle formed between the
tangent line T0 and the x1-axis, otherwise. For any ρ > 0, we write Rρ := ρRνA .

In view of the definition of RνA and again by using also the Besicovitch Derivation Theorem (see
[47, Theorem 1.153]) there exists a subsequence ρn ↘ 0 such that

µ0(∂Rρn) = 0, lim
k→+∞

µk(Rρn) = µ0(Rρn) (3.4.166)

and
dµ0

dH1 (∂∗Sh,K ∩ ∂A ∩A(1))
(0) = lim

n→∞
µ0(Rρn)

2ρn
. (3.4.167)

We now claim that

sdist(·, ∂σρn(A)) → −dist(·, T0) and sdist(·, ∂σρn(Sh,K)) → sdist(·, ∂H0) (3.4.168)
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3. Two-phase free boundary problem

uniformly in RνA as n → ∞. To prove the claim we can for example observe that by
[58, Proposition A.4] we have (not only (h3), but also) that Qr ∩ ∂σρ,x(A) K−→ Qr ∩
Tx and Qr ∩ ∂σρ,x(Sh,K) K−→ Qr ∩ Tx as ρ → 0 for any square Qr such that RνA ⊂ Qr

and hence, by Proposition 3.4.3 Items (a) and (c), applied to Qr, sdist(·, ∂σρn(A)) →
−dist(·, T0) and sdist(·, ∂σρn(Sh,K)) → sdist(·, ∂H0) uniformly in Qr ⊃ RνA .

Furthermore, from the τB-convergence it follows that

sdist(·, ∂Ak) → sdist(·, ∂A) and sdist(·, ∂Sk) → sdist(·, ∂Sh,K) (3.4.169)

uniformly in RνA as k → ∞ and hence, by (3.4.168) and (3.4.169), a standard diagonalization
argument yields that there exists a subsequence {(Akn , hkn ,Kkn)} such that

sdist(·, ∂σρn(Akn)) → −dist(·, T0) and sdist(·, ∂σρn(Skn)) → sdist(·, ∂H0) (3.4.170)

uniformly in RνA as n → ∞ and by (3.4.166) such that

µkn(Rρn) ≤ µ0(Rρn) + ρ2
n, (3.4.171)

for any n ∈ N. By (3.4.166), (3.4.171) and arguing as in (3.4.140) we infer that

lim sup
n→∞

H1(Rρn ∩ ∂Akn) + H1(Rρn ∩ ∂Skn \ ∂Akn)
2ρn

≤ c−1
1

dµ0
dH1 (∂∗Sh,K ∩ ∂A ∩A(1))

(0).

(3.4.172)

By applying Lemma 3.4.2, we have that RνA \ σρn(Akn) K−→ T0 and in view of Remark
3.2.8-(i) we have that RνA ∩ ∂σρn(Skn) K−→ T0. Since

{
(Akn , Shkn ,Kkn

)
}

⊂ Bm, we know that
(σρn(Akn), S(1/ρn)hkn (ρn·),σρn (Kkn )) ∈ Bm(σρn(Ω)). By applying Lemma 3.4.8 with ϕα(·) = φα(0, ·)
for α = F,S,FS and δ = ε, there exists n1

ε ∈ N such that for every n ≥ n1
ε,

SL(σρn(Akn), Sσρn (Skn ),σρn (Kkn ), RνA) ≥
∫

RνA
∩T0

φF(0, νT0)) + φ(0, νT0) dH1 − ε

= 2(φF(0, νT0) + φ(0, νT0)) − ε.

(3.4.173)

By definition of µk, the non-negativeness of φF, φ and φFS, (3.4.127), (3.4.173) and arguing as
in (3.4.143) we deduce that

µkn(Qρn) ≥ 2(φF(0, νT0) + φ(0, νT0)) − ερn − ε
(
H1(Qρn ∩ ∂Akn) + H1(Qρn ∩ ∂Skn \ ∂Akn)

)
,

(3.4.174)
for every n > n′

ε. By (3.4.167), (3.4.171), (3.4.174) and by arguing as in (3.4.144) we have that

dµ0
dH1 (∂A ∩ ∂∗S ∩A(1))

(0) ≥ φF(0, νT0) + φ(0, νT0) − ε

2

− εc−1
1

dµ0

dH1 ((∂Sh,K ∩ ∂A) ∩ S
(1)
h,K)

(0).

Finally, by (h4) and by taking ε → 0+ in the inequality above, we deduce (3.4.123).

Proof of (3.4.126). We repeat the arguments of (3.4.120) by using Proposition 3.4.3-(a) for the
sets A and Ak, and Proposition 3.4.3-(b) for the sets Sh,K and Sk, and by replacing Lemma 3.4.7
with Lemma 3.4.12.
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3.5. Existence

We are finally in position to prove Theorem 3.2.12.

Proof of Theorem 3.2.12. Without loss of generality, we assume that the liminf in the right side
of (3.2.22) is reached and finite in R. From Theorem 3.4.13 it follows that

S(A,Sh,K) ≤ lim inf
k→∞

S(Ak, Shk,Kk
). (3.4.175)

In view of the definition of F , in order to reach the assertion, it suffices to establish the lower
semicontinuity of W, to which the rest of the proof is devoted.

Let D ⊂⊂ Int(A), by the fact that Int(Ak) K−→ Int(A), we deduce that D ⊂⊂ Int(Ak) for k large
enough. As uk → u a.e. in Int(A), then, uk → u a.e. in D. Furthermore, since e(uk) are bounded
in the L2(D) norm, we have that e(uk) ⇀ e(u) in L2(D). By convexity of W(D, ·) we obtain that

W(D,u) ≤ lim inf
k→+∞

W(D,uk) ≤ lim inf
k→+∞

W(Ak, uk).

To conclude it is now enough to let D ↗ Int(A).

3.5. Existence
In view of Theorems 3.2.11 and 3.2.12 we are in position to prove Theorem 3.2.10 by employing
the direct method of the calculus of variations.

Proof of Theorem 3.2.10. Fix m ∈ N and let {(Ak, Shk,Kk
, uk)} ⊂ Cm be a minimizing sequence

of F such that L2(Ak) = v1, L2(Shk,Kk
) = v0, and

sup
k∈N

F(Ak, Shk,Kk
, uk) < ∞.

By Theorem 3.2.11 there exist a subsequence {(Akl
, Shkl

,Kkl
, ukl

)}, a sequence
{(Ãl, Shkl

,K̃kl

, vl)} ⊂ Cm, and (A,Sh,K , u) ∈ Cm such that (Ãl, Shkl
,K̃kl

, vl)
τC−→ (A,Sh,K , u) as

l → ∞ and
lim inf

l→∞
F(Ãl, Shkl

,K̃kl

, vl) = lim inf
l→∞

F(Akl
, Shkl

,Kkl
, ukl

). (3.5.1)

By Theorem 3.2.12, we have that

F(A,Sh,K , u) ≤ lim inf
l→∞

F(Ãl, Shkl
,K̃kl

, vl). (3.5.2)

We claim that {(Ãl, Shkl
,K̃kl

, vl)} and (A,Sh,K , u) satisfy the volume constraints of (3.2.18).

Indeed, by Theorem 3.2.11, for any l ≥ 1, v1 = L2 (Akl
) = L2(Ãl) and v0 = L2(Shkl

,Kkl
) =

L2
(
S

hl,K̃l

)
, where S

hl,K̃l
∈ AS(Ω). Thanks to the fact that (Ãl, Shkl

,Kkl
) τB−→ (A,Sh,K) as l → ∞,

by applying [58, Lemma 3.2] we infer that Ãl → A in L1(R2) as l → ∞, and thus L2(A) = v1,
and, similarly, we deduce that L2(Sh,K) = v0. Finally, from (3.5.1) and (3.5.2) we deduce that

inf
(A,Sh,K ,u)∈Cm, L2(A)=v1, L2(Sh,K)=v0

F(A,Sh,K , u) = lim
k→∞

F(Ãl, Shkl
,K̃kl

, vl)

≥ lim inf
l→∞

F
(
Ãl, Shkl

,K̃kl

, vl

)
≥ F(A,Sh,K , u)

and hence, (A,Sh,K , u) is a solution of the minimum problem (3.2.18). By observing that (3.5.1)
and (3.5.2) hold true also by replacing F with Fλ for λ := (λ0, λ1), with λ0, λ1 > 0, we deduce
that also the unconstrained minimum problem (3.2.19) can be solved by employing the same
method. This concludes the proof.
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4. Film multilayers

In this chapter, the results contained in the following preprint are presented:

• R. Llerena, P. Piovano: Solutions for a free-boundary problem modeling film multilayers
with coherent and incoherent interfaces, preprint (2023).

4.1. Introduction
In this chapter, it is addressed the problem of modeling the morphology of multilayered film
composites consisting of different crystalline materials deposited on a substrate. The goal is to
advance the literature on the variational modeling of single-layered films deposited on a fixed
substrate [25, 34, 35, 46] in a twofold direction: on the one hand, by letting the substrate surface
free and by addressing the presence of multiple layers of various materials, and, on the other
hand, by including into the analysis the possibility of a failure of the film coatings, since, as
described in [82] for the case of some oxide films, the compressive stresses generated during film
growth can lead to the delamination (and the buckling) between different layers.

Nowadays film-based nanostructures find several applications, in particular for the manufacturing
of electronic and photonic devices, such as for the creation of their semiconductor components,
and of solar and photovoltaic cells. The great interest that films and, in particular multilayer films
[81, 87, 90], created by vapor deposition of different material constituents, continue attracting is
due to the fact that, as they are self-assembled heterostructures, their employment represents one
of the nanostructure design methods with most feasibility potential; therefore, any advancement in
the mathematical modeling of film and multilayer film materials can have an important practical
impact for their design control. Examples of multilayer films that are used for optoelectronic
applications, are multiple quantum well structures with alternating compressive and tensile
strained layers, and short-period quantum-dot superlattices. Also for the latter, as described
in [87, 90], it is really the superposition of various layers of materials that allows to reach the
highest degree order needed for the applications with respect to the size, the density and the
distribution of the quantum dots.

The adopted strategy consists in combining the implementation to the multi-phase setting of
the film models considered in [25, 34, 35, 46], in which delamination is not taken into account,
with the recent results for a two-phase setting of [66], in which the interfaces between phases are
instead allowed to present both coherent and incoherent portions. Coherency is interpreted as a
microscopic organization of atoms that can be regarded as a (possibly deformed) uniform lattice
that is homogeneous through the interface, while incoherency refers to the presence of debonding
and delamination at the interface. In this way the extension of the single-layer literature to
the multilayer setting (with possible delamination at each layer interface) is performed within
the theory of stress driven rearrangement instabilities (SDRI) [9, 33, 53, 77], which was also at
the basis of the variational single-layer models introduced in [79, 80] and analytical validated
in [25, 34, 35, 46]. In fact, as in [79, 80] for thin films, and more generally for free crystals in
[58, 59, 60], it is considered the mismatch between the free-standing equilibrium lattices of the
materials of each pair of film layers and of the first layer with the substrate by means of the
so-called mismatch strain in the elastic energy. As described by the SDRI theory the lattice
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mismatch is responsible for the migration of the atoms of each phase from their crystalline order,
since the lattice mismatch induces large stresses in the bulk material and, in order to release
the related elastic energy, the atoms move forming corrugations, cracks, and other interface
instabilities [9, 53, 33, 77].

In regard to the literature results for settings with phase interfaces exclusively assumed to be
coherent, the authors of [65] refer to the literature on optimal shape of partitions in the absence
of elastic effects, which was initiated by Almgren in [1], who formulated the problem in Rd, for
d > 1, for surface tensions proportional at each interface. By working in the framework of integral
currents of geometric measure theory he singled out a condition referred to as “partitioning
regularity", that ensures the lower semicontinuity of the overall surface energy with respect
to the L1-convergence of the sets in the partition. Then, Ambrosio and Braides expanded the
scope in [2, 3] by including also non-proportional surface tensions and by introducing an integral
condition called BV -ellipticity, which they proved to be both sufficient and necessary for the
L1-lower semicontinuity. Afterwards, various other conditions have been introduced and studied,
such as B-convexity and joint convexity, in the attempt of finding a more practical condition
than BV -ellipticity, as the latter can be challenging to be verified as it represents the analogous
of Morrey’s quasi-convexity condition in the setting of Caccioppoli partitions. BV -ellipticity
though remains the only known condition characterizing the the L1-lower semicontinuity apart
from specific contexts (see [23, 71] for more details), and the fact that it coincides with the
triangle-inequality condition, which is simpler to check, for the case with 3 phases [2, 3]. Finally,
in [52] the analogous version of the BV -ellipticity condition in the framework of BD-spaces has
been studied.

Instead, in regard to the settings with only incoherent interfaces, the authors of [65] refer to the
results obtained with respect to the related Mumford-Shah problem for also the application to
image segmentation, which was actually originally introduced in [72] as a multi-phase formulation.
In this context interfaces represent the contours of the image color areas that can be characterized
as the discontinuity set of an auxiliary state function. The reference for existence and Ahlfors-type
regularity results is made to [4, 30], which has been then extended also to the Griffith model in
fracture mechanics in the context of linear elasticity with respect to vectorial state functions
representing the bulk displacement of crystalline materials [26, 50]. Finally, Bucur, Fragalà, and
Giacomini addressed the original multi-phase setting of [72] in [20] and [21] by providing a rigorous
mathematical formulation with incoherent interfaces (see also [27] for a related multi-phase
boundary problem for reaction-diffusion systems).

In [20] they recover Ahlfors-type regularity results for an ad hoc nonstandard notion of multi-
phase local almost-quasi minimizers for an energy accounting for the incoherent portions of each
interface and disregarding the contribution of the remaining coherent portions. Afterwards, in
[21] the same Authors introduced what they refer to as the multi-phase Mumford-Shah problem,
that is characterized by the sum of possibly different Mumford-Shah-type energy contributions,
each related to a different phase, to which an extra term (justified on statistical reasons) is
added. Such extra term is needed as otherwise minimizing configurations would present a single
phase. However, in [21] coherent interfaces are not counted in the energy as “no-jump interface
portions” along the reduced phase boundary are weighted in each phase energy in the same way
as the jump portions.

To include the interplay between coherency and incoherency in the model considered in this
chapter, by allowing each phase interface to present also both coherent and incoherent portions,
it is adopted the strategy initiated in [66] for the setting with a film phase deposited on a
substrate. Since the results in [66] regards d = 2 and were achieved under a so-called exterior
graph constraint on the substrate surface, in order to implement those results to multiple film
phases, it is also restricted to d = 2 and the exterior graph constraint is assumed on both the
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substrate surface and the film profiles. It is noticed that even in the presence of such condition
internal cracks in each film layer and in the substrate are allowed to be also of non-graph type.

In this chapter, it is denoted by Ω := (−l, l) × (−L,+∞) for positive parameters l, L ∈ R the
region where the multilayer films and the substrate are located, and, given α ∈ N, it is denoted a
multilayered film composite with α layers on top of the substrate phase S0, which is also denoted
in the following as the 0th layer, by Sα. Furthermore, for each j ∈ {0, . . . , α} it is assumed
that the profile of each jth layer is parametrizable by a height function hj : [−l, l] 7→ [−L,+∞)
measuring the thickness of the profile of jth composite Sj , i.e., the j-layered film composite
including all ith layers for i ∈ {0, . . . , j}, by assuming that hj−1 ≤ hj for j ∈ {1, . . . , α}. It is also
denoted by Kj ⊂ Int(Shj ), where Shj is the subgraph of hj , the cracks of the jth composite, which
are assumed such that Kj ∩ Int(Shj−1) ⊂ Kj−1, so that then for j ∈ {1, . . . , α} the j-composite
Sj coincides with

Shj ,Kj := Shj \Kj ,

and the jth film layer coincides with Shj ,Kj \ S(1)
hj−1,Kj−1 (see Figure 4.1). It follows that there is

no formal distinction in the hypotheses taken on the substrate phase S0 and the one taken on
each jth film composite Shj ,Kj (apart from the fact of being contained in all of them).

In particular, by writing that (hj ,Kj) ∈ AHK(Ω) it is assumed that each jth layer height
function hj is an upper semicontinuous function with bounded pointwise variation and each jth
composite crack set Kj is a closed H1-rectifiable set with finite H1 measure. More precisely, it
is denoted the family Bα of admissible multilayered film composites in Ω with α layers (on the
substrate layer), as a (α+ 1)-tuple of all the jth composites Shj ,Kj for j ∈ {0, . . . , α}, namely

Bα := {(Shα,Kα , . . . , Sh0,K0) : (hj ,Kj) ∈ AHK(Ω), hj−1 ≤ hj , Kj ⊂ Int(Shj ),
Kj ∩ Int(Shj−1) ⊂ Kj−1 for j ∈ {1, . . . , α}}.

Furthermore, by following the SDRI theory [9, 33, 53, 79, 77] and in the analogy with the
single-layer film setting [25, 34, 35, 46, 66], the family of admissible configurations Cα is defined
by

Cα := {(Shα,Kα , . . . , Sh0,K0 , u) : (Shα,Kα , . . . , Sh0,K0) ∈ Bα, u ∈ H1
loc(Int(Shα,Kα))},

where the functions u represent the bulk displacement in the multilayered film composites, and
the total configurational energy Fα : C → [−∞,∞] as given by the sum of an elastic energy W
and a surface energy Sα, i.e.,

Fα(Shα,Kα , . . . , Sh0,K0 , u) := W(Shα,Kα , . . . , Sh0,K0 ,u) + Sα(Shα,Kα , . . . , Sh0,K0)

for any (Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα.

The elastic energy W is defined in Cα by

W(Shα,Kα , . . . , Sh0,K0 ,u) :=
∫

Shα,Kα

W (x,Eu(x) − Eα
0 (x)) dx,

where the elastic density W denotes the quadratic form

W (x,M) := C (x)M : M,

defined for the fourth-order tensor C : Ω → M2
sym, E denotes the symmetric part of the gradient,

i.e., E(v) := ∇v+∇T v
2 for any v ∈ H1

loc(Int(A);R2) for a set A, and represents the strain, and Eα
0

is the mismatch strain x ∈ Ω 7→ Eα
0 (x) ∈ M2

sym defined as

Eα
0 :=


E(uα

0 ) in Ω \ Shα−1 ,

E(ui
0) in Int(Shi) \ Sh1−1 for i = 1, . . . , α− 1

0 in Int(Sh0,K0),
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4. Film multilayers

with respect to fixed α functions ui
0 ∈ H1(Ω;R2) for i ∈ {1, . . . , α}.

The surface energy Sα is defined as the sum of all the pairwise contributions S(i,j) : B1 → [0,∞]
for 0 ≤ i < j ≤ α given by

S(i,j)(Shj ,Kj , Shi,Ki) :=
∫

∂Shi,Ki ∪∂S
hj ,Kj

ψi,j(z, ν) dH1,

for every admissible multilayered composite (Shα,Kα , . . . , Sh0,K0) ∈ Bα, where ψi,j denotes the
anisotropic surface tension that takes different definition with respect to the various portions
of ∂Shi,Ki ∪ ∂Shj ,Kj . More precisely, in order to properly define ψi,j it is considered the three
surface tensions φi, φj , φij : Ω × R2 → [0,∞] characterizing the vapor-ith layer interface, the
vapor-j layer interface, and the ith layer-j layer interface. Moreover, in order to address both
the wetting and dewetting regimes with respect to the materials of each pair of film layers, it
is introduced two additional surface tensions for each pair (Shj ,Kj , Shi,Ki), denoted as the i, j
regime surface tensions, which are defined as follows:

φ1
ij := min{φi, φj + φij} and φ2

ij := min{φi, φj},

in analogy to the definitions given in [66] for two-phase setting. It follows that

ψi,j(x, ν(x)) :=



φj(x, νS
hj ,Kj (x)) x ∈ Ω ∩ (∂∗Shj ,Kj \ ∂∗Shi,Ki)

φ1
ij(x, νS

hj ,Kj (x)) x ∈ Ω ∩ ∂∗Shi,Ki ∩ ∂∗Shj ,Kj ,

φij(x, νShi,Ki (x)) x ∈ Ω ∩ (∂∗Shi,Ki \ ∂Shj ,Kj )
(φj + φ1

i )(x, νS
hj ,Kj (x)) x ∈ Ω ∩ ∂∗Shi,Ki ∩ ∂Shj ,Kj ∩ S

(1)
hj ,Kj ,

2φj(x, νS
hj ,Kj (x)) x ∈ Ω ∩ ∂Shj ,Kj ∩ S

(1)
hj ,Kj ∩ S

(0)
hi,Ki ,

2φ2
ij(x, νS

hj ,Kj (x)) x ∈ Ω ∩ ∂Shj ,Kj ∩ Shj ,Kj
(0),

2φij(x, νShi,Ki (x))
x ∈ Ω ∩ (∂Shi,Ki \ ∂Shj ,Kj )

∩
(
S

(1)
hi,Ki ∪ S

(0)
hi,Ki

)
∩ S

(1)
hj ,Kj ,

φ1
ij(x, νS

hj ,Kj (x)) x ∈ Ω ∩ ∂Shi,Ki ∩ ∂Shj ,Kj ∩ S
(1)
hi,Ki ,

where, given a set U ⊂ R2, νU , ∂∗U , and U (α) denote, when well defined, the outward pointing
normal to ∂U , the reduced boundary, and the set of points of density α ∈ [0, 1], respectively.
Notice that if α = 1 the energy S(0,1) coincides with the surface energy defined in [66] as, by
following the notation of [66] it follows that φ0 := φS, φ1 := φF, φ01 := φFS and as a consequence
φ1

01 = φ and φ2
0,1 = φ′. Finally, the α-surface energy Sα : Bα → [−∞,∞] is given by

Sα(Shα,Kα , . . . , Sh0,K0) :=
α∑

j=1

j−1∑
i=0

S(i,j)(Shj ,Kj , Shi,Ki).

Observe that are choices for the definition of Sα are possible, which will be evaluated in the
future.

It was observed in [58, 66] that the family B1 lacks compactness with respect to the signed
distance convergence. In order to overcome this issue and being able to apply Gołąb’s’s Theorem
[53] to recover compactness, it is imposed a constraint mj ∈ N on the number of connected
components of the cracks of the jth composite that are not connected to the jth layer for
j = 0, . . . , α. Therefore, it is restricted to the family of configurations Cα

m ⊂ Cα for which such
constraints hold, where m := (m0, . . . ,mα) ∈ Nα+1.

The main goal of [65] is to prove that the minimum problem

inf
(Shα,Kα , . . . , S

h0,K0 , u) ∈ Cα
m,

L2(S
hi,Ki ) = vi, for i = 0, . . . , α

Fα(Shα,Kα , . . . , Sh0,K0 , u). (4.1.1)
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Ω

Sh0,K0

Sh1,K1

Sh2,K2

Figure (4.1): A multilayered film composite with 2 layers (on the substrate 0th layer Sh0,K0) associated to
an admissible configuration (Sh2,K2 , . . . , Sh0,K0 , u) ∈ C2

m (see Definition 4.2.1) is represented by indicating
each jth layer with a gray color with decreasing value with respect to the increasing order of the index
j = 0, 1, 2. Furthermore, the jth layer is indicated with a thinner line with respect to the increasing
order of the index j = 0, 1, 2, and for the 0th and 1st layer it is distinguished between their coherent and
incoherent portions by using a dashed or a continuous line, respectively.

admits a solution for every family of area constraints {vi}α
i=0 ⊂ [L2(Ω)/2,L2(Ω)].

To do that the Direct Method of Calculus of Variations is employed, which consists in in finding
a proper topology τCα weak enough to prove compactness in Cα

m ⊂ Cα and strong enough to
have lower semicontinuity of Fα in Cα

m. The topology τCα considered is the one for which the
convergence

(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, uk) τCα−−−→

k→∞
(Shα,Kα , . . . , Sh0,K0 , u)

is equivalent to
for every i = 0, . . . , α, supk∈N H1

(
∂Shi

k
,Ki

k

)
< ∞,

sdist
(
·, ∂Shi

k
,Ki

k

)
−−−→
k→∞

sdist
(
·, ∂Shi,Ki

)
locally uniformly in R2 and

uk −−−→
k→∞

u a.e. in Int (Shα,Kα),

where the signed distance function is defined for any E ⊂ R2 as follows

sdist(x, ∂E) :=
{

dist(x,E) if x ∈ R2 \ E,
−dist(x,E) if x ∈ E.

For the compactness it is implemented in the multilayer setting the compactness results proven
for the substrate in [66], which were based on [25, 34, 35, 46] (with the difference that instead of
lower semicontinuous graph it is assumed an upper semicontinuity property). Notice that in order
to include incoherency in the setting of [25, 34, 35, 46] it is implemented for multilayers the setting
of [66], where in the elements in the (α+1)-tuple are not each film layers, but the jth composites.
In particular, this allows to include in the model also the possible presence of a countable island
of one material onto the other layers. In order to establish the lower semicontinuity property, the
mathematical induction proceeds by directly using the lower semicontinuity result of [66] for the
basis of the induction.
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4. Film multilayers

This chapter is organized as follows: in Section 4.2, the model and the main results of the chapter
are introduced. In Section 4.3 it is proved the existence of minimizers for single-layer films with
delamination. Finally, in Section 4.4 it is proved the existence result for the minimum problem
(4.1.1) with a finite number α of layers over the substrate 0th layer.

4.2. Mathematical setting and main results

4.2.1. Multilayer model

In this section, we introduce the family of admissible regions with finite number of composite
layers and the respective family of admissible configurations. Let Ω := (−l, l) × (−L,∞) ⊂ R2

for positive parameters l, L ∈ R.

Analogously to [66], we assume a graph-crack constraint of the composite of layers, in other words,
we consider a graph constraint on the strict epigraph of the composite of layers, while inside of
it, we consider cracks as closed and H1-rectifiable sets of Ω, roughly speaking, the profile of the
composite is given by a function representing its thickness, plus a countable number of external
vertical filaments and internal cracks. More precisely, we consider the family of admissible heights
AH(Ω) defined by

AH(Ω) := {h : [−l, l] → [0, L] : h is upper semicontinuous and Varh < ∞} (4.2.1)

and let Sh denote the closed subgraph with height h ∈ AH(Ω), i.e.,

Sh := {(x, y) : −l < x < l, y ≤ h(x)}. (4.2.2)

Furthermore, we define the family of admissible cracks AK(Ω) by

AK(Ω) := {K ⊂ Ω : K is a closed set in R2, H1-rectifiable and H1(K) < ∞} (4.2.3)

and the family of pairs of admissible heights and cracks AHK(Ω) by

AHK(Ω) := {(h,K) ∈ AH(Ω) × AK(Ω) : K ⊂ Int(Sh)}. (4.2.4)

Finally, given (h,K) ∈ AHK(Ω) we refer to the region characterized as the subgraph of the
height function h without the internal cracks of K, namely,

Sh,K := (Sh \K) ∩ Ω, (4.2.5)

as the (generalized) subgraph with height h and cracks K, and we define the family of admissible
subgraphs as

AS(Ω) := {S ⊂ Ω : S = Sh,K for a pair (h,K) ∈ AHK(Ω)}. (4.2.6)

We observe that for every (h,K) ∈ AHK(Ω)

Sh,K = Sh, Int(Sh,K) = Int(Sh) \K and ∂Sh,K = ∂Sh ∪K. (4.2.7)

We have that ∂Sh is connected and, ∂Sh and ∂Sh,K have finite H1-measure. By [44, Lemma
3.12 and Lemma 3.13], for any h ∈ AH(Ω), ∂Sh is rectifiable and applying the Besicovitch-
Marstrand-Mattila Theorem (see [4, Theorem 2.63]), ∂Sh is H1-rectifiable, and hence, ∂Sh,K

is H1-rectifiable. Furthermore, by applying [59, Proposition A.1] Sh and Sh,K are sets of finite
perimeter.
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Definition 4.2.1 (Admissible multilayers and admissible configurations). We define the family
of two layers B1 by

B1 := {(Sh1,K1 , Sh0,K0) : for i = 0, 1 there exists (hi,Ki) ∈ AHK(Ω), Shi,Ki ∈ AS(Ω),
h0 ≤ h1 and ∂Sh1,K1 ∩ Int(Sh0,K0) = ∅} ⊂ AS(Ω) × AS(Ω).

Let α ∈ N, we define the family of admissible (α+ 1)-layers Bα by

Bα := {(Shα,Kα , . . . , Sh0,K0) ∈ [AS(Ω)]α+1 : (Shj ,Kj , Shi,Ki) ∈ B1

for every 0 ≤ i ≤ j ≤ α},

where [AS(Ω)]α+1 := AS(Ω) × . . .× AS(Ω) represents the (α+ 1) cartesian product of AS(Ω).
We define the family of admissible configurations by

Cα := {(Shα,Kα , . . . , Sh0,K0 , u) : (Shα,Kα , . . . , Sh0,K0) ∈ Bα, u ∈ H1
loc(Int(Shα,Kα))}.

For any α ∈ N, motivated in [58, 59, 66] we introduce a notion of convergence for the families
Bα and Cα.

Definition 4.2.2 (τBα-Convergence). A sequence {(Shα
n ,Kα

n
, . . . , Sh0

n,K0
n
)} ⊂ Bα τα

B -converges to
(Shα,Kα , . . . , Sh0,K0) ∈ Bα if

- supk∈N H1(∂Shi
k

,Ki
k
) < ∞, for every i = 0, . . . , λ

- sdist
(
·, ∂Shi

k
,Ki

k

)
→ sdist

(
·, ∂Shi,Ki

)
locally uniformly in R2 as k → ∞ for every i =

0, . . . , λ,

where
Shi

k
,Ki

k
:= Shi

k
\Ki

k and Shi,Ki := Shi \Ki,

for every k ∈ N and i = 0, . . . , α.

Definition 4.2.3 (τCα-Convergence). A sequence {(Shα
n ,Kα

n
, . . . , Sh0

n,K0
n
, un)} ⊂ Cα τCα-converges

to (Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα if

- (Shα
n ,Kα

n
, . . . , Sh0

n,K0
n
) τBα−−→ (Shα,Kα , . . . , Sh0,K0),

- un → u a.e. in Int(Shα,Kα).

Analogously to [58, 59, 66], we introduce a subfamily of Bα with a restriction on the number of
connected components of the boundary of each composite layer.

Definition 4.2.4. Let α ∈ N. For any m := (m0, . . . ,mα) ∈ Nα+1 the family Bα
m is given by all

elements (Shα,Kα , . . . , Sh0,K0) ∈ B such that ∂Shi,Ki has at most mi-connected components for
i = 0, . . . , α. We define

Cα
m := {(Shα,Kα , . . . , Sh0,K0 , u) ∈ C : (Shα,Kα , . . . , Sh0,K0) ∈ Bα}.

In the sequel we fix α ∈ N. Motivated in the model introduced in [66], we consider the surface
tension between two layers S(i,j) : Bα → [−∞,∞] in the family of admissible layers Bα by

S(i,j)(Shj ,Kj , Shi,Ki) :=
∫

∂Shi,Ki ∪∂S
hj ,Kj

ψi,j(z, ν) dH1,
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4. Film multilayers

where (Shα,Kα , . . . , Sh0,K0) ∈ Bα for 0 ≤ i < j ≤ α, and the surface tension ψi,j is defined in
different portions of ∂Shi,Ki ∪ ∂Shj ,Kj , more precisely,

ψ(x, ν(x)) :=



φj(x, νS
hj ,Kj (x)) x ∈ Ω ∩ (∂∗Shj ,Kj \ ∂∗Shi,Ki)

φ1
ij(x, νS

hj ,Kj (x)) x ∈ Ω ∩ ∂∗Shi,Ki ∩ ∂∗Shj ,Kj ,

φij(x, νShi,Ki (x)) x ∈ Ω ∩ (∂∗Shi,Ki \ ∂Shj ,Kj )
(φj + φ1

i )(x, νS
hj ,Kj (x)) x ∈ Ω ∩ ∂∗Shi,Ki ∩ ∂Shj ,Kj ∩ S

(1)
hj ,Kj ,

2φj(x, νS
hj ,Kj (x)) x ∈ Ω ∩ ∂Shj ,Kj ∩ S

(1)
hj ,Kj ∩ S

(0)
hi,Ki ,

2φ2
ij(x, νS

hj ,Kj (x)) x ∈ Ω ∩ ∂Shj ,Kj ∩ Shj ,Kj
(0),

2φij(x, νShi,Ki (x))
x ∈ Ω ∩ (∂Shi,Ki \ ∂Shj ,Kj )

∩
(
S

(1)
hi,Ki ∪ S

(0)
hi,Ki

)
∩ S

(1)
hj ,Kj ,

φ1
ij(x, νS

hj ,Kj (x)) x ∈ Ω ∩ ∂Shi,Ki ∩ ∂Shj ,Kj ∩ S
(1)
hi,Ki ,

(4.2.8)

where φj , φij : Ω × R2 → [0,∞] and, given also the function φi : Ω × R2 → [0,∞], we define the
functions φ1

ij and φ2
ij in C(Ω × R2; [0,∞]) by

φ1
ij := min{φi, φj + φij} and φ2

ij := min{φj , φi}.

In view of [66], for every 0 ≤ i ≤ j ≤ α, φj , φi, φij represent the anisotropic surface tensions of
the film/vapor, the substrate/vapor and the substrate/film interfaces, respectively, while φ1

ij and
φ2

ij are referred to as the anisotropic regime surface tensions and are introduced to include into
the analysis the wetting and dewetting regimes.

Remark 4.2.5. If α = 1, we can observe that the surface tension S considered in [66] coincides
with S(0,1) by considering, with respect to the notation of [66], φ0 := φS, φ1 := φF, φ01 := φFS
and as a consequence φ1

01 = φ and φ2
01 = φ′.

Now, we are in position to define the α-surface energy Sα : Bα → [−∞,∞] by

Sα(Shα,Kα , . . . , Sh0,K0) :=
α∑

j=1

j−1∑
i=0

S(i,j)(Shj ,Kj , Shi,Ki).

Let α ∈ N, the total energy Fα : Cα → [−∞,∞] is defined by

Fα(Shα,Kα , . . . , Sh0,K0 , u) := Sα(Shα,Kα , . . . , Sh0,K0) + W(Shα,Kα , . . . , Sh0,K0 ,u)

for any (Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα, where W stands for the elastic energy, more precisely,

W(Shα,Kα , . . . , Sh0,K0 ,u) :=
∫

Shα,Kα

W (x,Eu(x) − Eα
0 (x)) dx,

and W is determined by the quadratic form

W (x,M) := C (x)M : M,

for a fourth-order tensor C : Ω → M2
sym, E denotes the symmetric gradient, i.e., E(v) := ∇v+∇T v

2
for any v ∈ H1

loc(Ω) and Eα
0 is the mismatch strain x ∈ Ω 7→ Eα

0 (x) ∈ M2
sym defined as

Eα
0 :=


E(uα

0 ) in Ω \ Shα−1 ,

E(ui
0) in Int(Shi) \ Sh1−1 for i = 1, . . . , α− 1

0 in Int(Sh0,K0),

for a fixed sequence {ui
0}α−1

i=1 ⊂ H1(Ω;R2).
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4.2.2. Main results
We state here the main results of the paper [65]. Let α ∈ N. We fix l, L > 0 and we consider Ω :=
(−l, l) × (−L,∞). For every pair of integers 0 ≤ i ≤ j ≤ α we consider φ1

ij := min{φi, φj + φij}
and φ2

ij := min{φj , φi} and we assume throughout this manuscript that:

(H1) φj , φij , φ
1
ij , φ

2
ij ∈ C(Ω × R2) are Finsler norms such that there exists c2 ≥ c1 > 0 such that

c1|ξ| ≤ φj(x, ξ), φ1
ij(x, ξ), φij(x, ξ) ≤ c2|ξ| for every x ∈ Ω and ξ ∈ R2, (4.2.9)

(H2) We have

φ1
ij(x, ξ) ≥ |φij(x, ξ) − φj(x, ξ)| for every x ∈ Ω and ξ ∈ R2. (4.2.10)

(H3) C ∈ L∞(Ω;M2
sym) and there exists c3 > 0 such that

C (x)M : M ≥ 2c3M : M (4.2.11)

for every M ∈ M2
sym.

We notice that under assumptions (H1)-(H3), the energy Fα(Shα,Kα , . . . , Sh0,K0 , u) ∈ [0,∞] for
every (Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα.

Theorem 4.2.6 (Existence of minimizers). Let α ∈ N and let λ := (λ0, . . . , λα) ∈ Rα+1 such
that λi > 0 for every i = 0, . . . , α. Assume (H1)-(H3) and let {vi}α

i=0 ⊂ [L2(Ω)/2,L2(Ω)] such
that for every 0 ≤ i1 ≤ i2 ≤ α, vi1 ≤ vi2. Then for every m = (m0, . . . ,mα) ∈ Nα+1 the volume
constrained minimum problem

inf
(Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα

m,

L2(Shi,Ki) = vi, i = 0, . . . , α

Fα(Shα,Kα , . . . , Sh0,K0 , u) (4.2.12)

and the unconstrained minimum problem

inf
(Shα,Kα ,...,Sh0,K0 ,u)∈Cα

m
Fα,λ(Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα

m (4.2.13)

have solution, where Fα,λ : Cα
m → R is defined as

Fα,λ(Shα,Kα , . . . , Sh0,K0 , u) := Fα(Shα,Kα , . . . , Sh0,K0 , u) +
α∑

i=0
λi

∣∣∣L2(Shi,Ki) − vi

∣∣∣.
In [65] we employ the Direct Method of Calculus of Variations to prove Theorem 4.2.6. In order
to apply this method we prove that any energy equi-bounded sequence {(Ak, Sk, uk)} ⊂ Cm
satisfy the following compactness property.

Theorem 4.2.7. Let {(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, uk)}k∈N ⊂ Cα

m be such that

sup
k∈N

(
Fα(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk) + L2

(
Shα

k
,Kα

k

))
< ∞. (4.2.14)

Then, there exist an admissible configuration (Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα
m of finite energy, a

subsequence {(Shα
kn

,Kα
kn
, . . . , Sh0

kn
,K0

kn
, ukn)}n∈N, a sequence {(S

hα
kn

,K̃α
n
, . . . , S

h0
kn

,K̃0
n
, ukn)}n∈N ⊂

Cα
m and a sequence {bn}n∈N of piecewise rigid displacements associated to S

hα
kn

,K̃α
n

such that

(S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
, ukn + bn) τCα−−→ (Shα,Kα , . . . , Sh0,K0 , u)

and

lim inf
n→∞

Fα(Shα
kn

,Kα
kn
, . . . , Sh0

kn
,K0

kn
, ukn) = lim inf

n→∞
Fα(S

hα
kn

,K̃α
n
, . . . , S

h0
kn

,K̃0
n
, ukn + bn). (4.2.15)
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4. Film multilayers

Furthermore, we show that Fα is lower semicontinuous in Cα
m with respect to the topology τCα

for any α ∈ N.

Theorem 4.2.8 (Lower semicontinuity of Fα). Assume (H1)-(H3). Let
{(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk)}k∈N ⊂ Cα

m and (Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα
m be such that

(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, uk) τCα−−→ (Shα,Kα , . . . , Sh0,K0 , u).

Then
Fα(Shα,Kα , . . . , Sh0,K0 , u) ≤ lim inf

k→∞
Fα(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk). (4.2.16)

4.3. Single-layer films with delamination
In order to establish Theorem 4.2.6 in [65] we use an induction argument, and in this section,
we prove the basis of the induction. More precisely, we prove Theorem 4.2.6 by assuming that
α = 1 and hence, in the following, we consider m := (m1,m0) ∈ N2. We begin by observing that
the double-layered film setting of α = 1 is a particular case of the two-phase setting considered
in [66], with the only difference that the “exterior graph condition” is assumed not only on the
substrate region but also on the film phase. The analogy comes also from the fact, that as proved
below, for energy equibounded admissible configurations in C1, we can easily reduced to bounded
rectangular containers Ω̃ := (−l, l) × (−L, L̃) for a properly chosen constant L̃ > 0.

We recall that in [66] the families of admissible regions B(Ω̃) and Bm(Ω̃) are defined as

B(Ω̃) := {(A,Sh,K) : (h,K) ∈ AHK(Ω̃), A is L2-measurable set with Sh,K ⊂ A ⊂ Ω̃
such that ∂A ∩ Int(Sh,K) = ∅, ∂A is H1-rectifiable,
H1(∂A) + H1(∂S) < ∞}

and

Bm(Ω̃) := {(A,Sh,K) ∈ B(Ω̃) : ∂A and ∂Sh,K have at most
m1 and m0 connected components, respectively}.

Notice that B1(Ω̃) ⊂ B(Ω̃) and B1
m(Ω̃) ⊂ Bm(Ω̃). Furthermore, the families of admissible

configurations in [66] are C(Ω̃) and Cm(Ω̃) defined by

C(Ω̃) := {(A,Sh,K , u) : (A,Sh,K) ∈ B(Ω̃) and u ∈ H1
loc(Int(A);R2)}

and
Cm(Ω̃) := {(A,Sh,K , u) ∈ C(Ω̃) : (A,Sh,K) ∈ Bm(Ω̃)},

so that C1(Ω̃) ⊂ C(Ω̃) and C1
m(Ω̃) ⊂ Cm(Ω̃). Therefore, since the elastic energy W and the

surface energy S considered in [66] coincide with the energies W and S1 of this manuscript (by
also observing that, following the notation of [66], φ0 = φS, φ1 = φF, φ01 = φFS, φ1

01 = φ and
φ2

01 = φ′), we have that
S ≡ S1 and F ≡ F1, (4.3.1)

in C1(Ω̃) and C1
m(Ω̃). Finally, we also observe have that the topologies τB and τC defined in [66]

coincide with the topologies τB1 and τC1 , respectively.

On the basis of this observations and by using the results for the two-phase setting of [66], we now
prove that energy-equibounded sequences in C1

m are compact and that F1 is lower semicontinuous
with respect to the topology τC1 .
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4.3. Single-layer films with delamination

Ω

Sh0,K0

Sh1,K1

Figure (4.2): A single-layer film (on the substrate 0th layer Sh0,K0) associated to an admissible configu-
ration (Sh1,K1 , Sh0,K0 , u) ∈ C1

m (see Definition 4.2.1) is represented by indicating each jth layer with a
gray color with decreasing value with respect to the increasing order of the index j = 0, 1 and each jth
layer with a thinner line with respect to the increasing order of the index j = 0, 1. Furthermore, in the
0th layer we distinguish between its coherent and incoherent portions by using a dashed or a continuous
line, respectively.

Proposition 4.3.1. Let {(Sh1
k

,K1
k
, Sh0

k
,K0

k
)} ⊂ B1

m be such that

sup
k∈N

(
S1(Sh1

k
,K1

k
, Sh0

k
,K0

k
)+L2(Sh1

k
,K1

k
)
)
< ∞. (4.3.2)

Then, there exist a not relabeled subsequence {(Sh1
k

,K1
k
, Sh0

k
,K0

k
)} ⊂ B1

m and (Sh1,K1 , Sh0,K0) ∈ B1
m

such that (Sh1
k

,K1
k
, Sh0

k
,K0

k
)

τB1−−→ (Sh1,K1 , Sh0,K0).

Proof. We begin by observing that in view of [4, Theorem 3.47] from (4.3.2) it follows that there
exists L̃ > 0 such that for every k ∈ N, Sh1

k
,K1

k
⊂ (−l, l) × (−L, L̃) =: Ω̃. Since (Sh1

k
,K1

k
, Sh0

k
,K0

k
) ∈

B1
m for every k ∈ N, by (4.3.1), where in [66] we consider φ0 = φS, φ1 = φF, φ01 = φFS, φ1

01 = φ
and φ2

01 = φ′, we have that

sup
k∈N

S(Sh1
k

,K1
k
, Sh0

k
,K0

k
) = sup

k∈N
S1(Sh1

k
,K1

k
, Sh0

k
,K0

k
) < ∞. (4.3.3)

By applying [66, Theorem 4.2] with respect to the region Ω̃, there exist a not relabeled subsequence
{(Sh1

k
,K1

k
, Sh0

k
,K0

k
)} ⊂ Bm and (S, Sh0,K0) ∈ Bm such that

(Sh1
k

,K1
k
, Sh0

k
,K0

k
) τB−→ (S, Sh0,K0). (4.3.4)

By definition of τB-convergence and by the second statement of [66, Lemma 3.8] there exists
(h1,K1) ∈ AHK(Ω) such that

S = Sh1,K1 . (4.3.5)
In view of the definition of h0 and h1 that comes from [66, Lemma 3.8], we see that

h0(x1) := sup{lim sup
k→∞

h0
k(xk

1) : xk
1 → x1} ≤ sup{lim sup

k→∞
h1

k(xk
1) : xk

1 → x1} =: h1(x1)

for every x1 ∈ [−l, l]. Thus, (Sh1,K1 , Sh0,K0) ∈ B1
m. Finally, from (4.3.4) and (4.3.5), and by the

fact that the τB1-convergence is similar to the τB-convergence of [66] we obtain that

(Sh1
k

,K1
k
, Sh0

k
,K0

k
)

τB1−−→ (Sh1,K1 , Sh0,K0)

which concludes the proof.
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4. Film multilayers

We are in the position to prove that C1
m is compact with respect to the topology τC1 .

Theorem 4.3.2 (Compactness of C1
m). Let {(Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk)}k∈N ⊂ C1

m be such that

sup
k∈N

(
F1(Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk)+L2(Sh1

k
,K1

k
)
)
< ∞. (4.3.6)

Then, there exist an admissible configuration (Sh1,K1 , Sh0,K0 , u) ∈ C1
m of finite F1 energy, a

subsequence {(Sh1
kn

,K1
kn
, Sh0

kn
,K0

kn
, ukn)}n∈N, a sequence {(S

h1
kn

,K̃1
n
, S

h0
kn

,K̃0
n
, ukn)}n∈N ⊂ C1

m and
a sequence {bn}n∈N of piecewise rigid displacements associated to S

h1
kn

,K̃1
n

such that

(S
h1

kn
,K̃1

n
, S

h0
kn

,K̃0
n
, ukn + bn)

τC1−−→ (Sh1,K1 , Sh0,K0 , u)

and

lim inf
n→∞

F1(Sh1
kn

,K1
kn
, Sh0

kn
,K0

kn
, ukn) = lim inf

n→∞
F1(S

h1
kn

,K̃1
n
, S

h0
kn

,K̃0
n
, ukn + bn). (4.3.7)

Proof. We begin by observing that in view of [4, Theorem 3.47] from (4.3.2) it follows that
there exists L̃ > 0 such that for every k ∈ N, Sh1

k
,K1

k
⊂ (−l, l) × (−L, L̃) =: Ω̃. In view of the

observations at the beginning of the section by (4.3.1) and (4.3.6) we have that

sup
k∈N

F(Sh1
k

,K1
k
, Sh0

k
,K0

k
, uk) = sup

k∈N
F1(Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk) < ∞,

where F : C(Ω̃) → [0,∞] is the total energy considered in [66]. Hence, by applying [66, Theorem
4.3] with respect to the region Ω̃, we deduce that there exist a triple (S, Sh0,K0 , u) ∈ Cm(Ω̃) of finite
F-energy, a subsequence {(Sh1

kn
,K1

kn
, Sh0

kn
,K0

kn
, ukn)}n∈N, a sequence {(S̃n, Sh0

kn
,K̃0

n
, ukn)}n∈N ⊂

Cm and a sequence {bn}n∈N of piecewise rigid displacements associated to S̃n such that

(S̃n, Sh0
kn

,K̃0
n
, ukn + bn) τC−→ (S, Sh0,K0 , u) (4.3.8)

and
lim inf
n→∞

F(Sh1
kn

,K1
kn
, Sh0

kn
,K0

kn
, ukn) = lim inf

n→∞
F(S̃n, Sh0

kn
,K̃0

n
, ukn + bn). (4.3.9)

In view of the proof of [66, Theorem 4.3] we have that

S̃n := Sh1
kn

,K1
kn

\
(
∂S̃n \ ∂Sh1

kn
,K1

kn

)
(4.3.10)

In analogy to the definition of K̃0
n in the proof of [66, Theorem 4.3], we define

K̃1
n := K1

n ∪
(
∂S̃n \ ∂Sh1

kn
,K1

kn

)
(4.3.11)

and we claim that S̃n = S
h1

kn
,K̃1

n
. Indeed, we have that

S
h1

kn
,K̃1

n
:= ∂Sh1

kn
∪
(
Sh1

kn
\ K̃1

n

)
= ∂Sh1

kn
∪
(
Sh1

kn
\
(
K1

n ∪
(
∂S̃n \ ∂Sh1

kn
,K1

kn

)))
= ∂Sh1

kn
∪
(
Sh1

kn
∩
(
(K1

n)c ∩
(
∂S̃n \ ∂Sh1

kn
,K1

kn

)c))
=
(
∂Sh1

kn
∪
(
Sh1

kn
\K1

n

))
∩
(
∂Sh1

kn
∪
(
∂S̃n \ ∂Sh1

kn
,K1

kn

)c)
=: Sh1

kn
,K1

kn
∩
(
∂Sh1

kn
∪ (∂S̃n)c ∪ ∂Sh1

kn
,K1

kn

)
= Sh1

kn
,K1

kn
\ (∂S̃n \ ∂Sh1

kn
,K1

kn
)

=: S̃n,

(4.3.12)
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4.3. Single-layer films with delamination

where we used (4.2.5) in the first and fifth equalities, (4.3.11) in the second equality, De
Morgan’s laws in the third, forth and sixth equalities, and (4.3.10) in the last equality, and hence
(S

h1
kn

,K̃1
kn

, S
h0

kn
,K̃0

kn

, ukn) ∈ C1
m.

Furthermore, by (4.3.6) and the non-negativeness of F it follows from Proposition 4.3.1 that S =
Sh1,K1 for a proper pair (h1,K1) ∈ AHK(Ω) and, in particular, we have that (Sh1,K1 , Sh0,K0 , u) ∈
C1

m. Finally, in view of the definition of τC1-convergence, by (4.3.8) we obtain that

(S
h1

kn
,K̃1

kn

, S
h0

kn
,K̃0

kn

, ukn + bn)
τC1−−→ (Sh1,K1 , Sh0,K0 , u),

and, by (4.3.1), (4.3.9) we obtain (4.3.7), which concludes the proof.

Now, by applying [66, Theorem 5.14] we prove that F1 is lower semicontinuous with respect to
the τC1-topology.

Theorem 4.3.3 (Lower semicontinuity of F1). Assume (H1)-(H3). Let
{(Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk)}k∈N ⊂ C1

m and (Sh1,K1 , Sh0,K0 , u) ∈ C1
m be such that

(Sh1
k

,K1
k
, Sh0

k
,K0

k
, uk)

τC1−−→ (Sh1,K1 , Sh0,K0 , u). Then

F1(Sh1,K1 , Sh0,K0 , u) ≤ lim inf
k→∞

F1(Sh1
k

,K1
k
, Sh0

k
,K0

k
, uk). (4.3.13)

Proof. Without loss of generality, we assume that the right side of (4.3.13) is finite. In view of
[4, Theorem 3.47] and from the fact that and since (Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk)

τC1−−→ (Sh1,K1 , Sh0,K0 , u)it
follows that there exists L̃ > 0 such that for every k ∈ N, Sh1

k
,K1

k
⊂ (−l, l) × (−L, L̃) =: Ω̃. Since

the topology τB considered in [66] coincide with the topology τB1 , by (4.3.1) and by applying
[66, Theorem 5.13] applied in the regions Ω = Ω̃, we have that

S1
(
Sh1,K1 , Sh0,K0

)
≤ lim inf

k→∞
S1
(
Sh1

k
,K1

k
, Sh0

k
,K0

k

)
. (4.3.14)

Now, we are going to prove that the elastic energy is lower semicontinuous. Indeed, let D ⊂⊂
Int(Sh1,K1), by properties of the signed distance convergence we have that D ⊂⊂ Int(Sh1

k
,K1

k
) for

k large enough. By definition of τC1 convergence we have that uk → u a.e. in D. Furthermore,
since E uk are bounded in the L2(D) norm, we have that E uk ⇀ E u in L2(D). By convexity of
W we obtain that∫

D
W (x,E u− E1

0) dx ≤ lim inf
k→∞

∫
D
W (x,E uk − E1

0) dx ≤ lim inf
k→+∞

W(Sh1
k

,K1
k
, Sh0

k
,K0

k
, uk)

By taking D ↗ Int(Sh1,K1) we conclude that

W(Sh1,K1 , Sh0,K0 , u) ≤ lim inf
k→+∞

W(Sh1
k

,K1
k
, Sh0

k
,K0

k
, uk). (4.3.15)

By (4.3.14) and (4.3.15) and thanks to the superadditivity of the liminf, we get that

F1(Sh1,K1 , Sh0,K0 , u) := W(Sh1,K1 , Sh0,K0 , u) + S1
(
Sh1,K1 , Sh0,K0

)
≤ lim inf

k→+∞
W(Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk) + lim inf

k→∞
S1
(
Sh1

k
,K1

k
, Sh0

k
,K0

k

)
≤ lim inf

k→+∞
W(Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk) + S1

(
Sh1

k
,K1

k
, Sh0

k
,K0

k

)
=: lim inf

k→∞
F1(Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk),

which concludes the proof.
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Finally, we state the main result of this section. The following result is the analogous result of
Theorem 4.2.6, more precisely, we prove the existence of minimizers for a volume constrained
problem and for an unconstrained problem, respectively, with respect to the admissible family of
deformable film and substrate C1

m for every m := (m0,m1) ∈ N × N.

Theorem 4.3.4 (Existence of minimizers). Assume (H1)-(H3) and let v0,v1 ∈ [L2(Ω/2),L2(Ω)]
such that v0 ≤ v1. Then for every m = (m0,m1) ∈ N2, the volume constrained minimum problem

inf
(Sh1,K1 ,Sh0,K0 ,u)∈C1

m, L2(Sh1,K1 )=v1, L2(Sh0,K0 )=v0
F1(Sh1,K1 , Sh0,K0 , u) (4.3.16)

and the unconstrained minimum problem

inf
(Sh1,K1 ,Sh0,K0 ,u)∈C1

m
F1,λ(Sh1,K1 , Sh0,K0 , u) (4.3.17)

have solution, where F1,λ : C1
m → R is defined as

F1,λ(Sh1,K1 , Sh0,K0 , u) := F1(Sh1,K1 , Sh0,K0 , u) +
1∑

i=0
λi

∣∣∣L2(Shi,Ki) − vi

∣∣∣.
for any λ = (λ0, λ1) ∈ R2 such that λ0, λ1 > 0.

Proof. We follow the Direct Method of the Calculus of Variations. Fix m := (m1,m0) ∈ N2.
Let {(Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk)} ⊂ C1

m be a minimizing sequence of F1 such that L2(Shi
k

,Ki
k
) = vi for

i = 0, 1, and
sup
k∈N

F1(Sh1
k

,K1
k
, Sh0

k
,K0

k
, uk) < ∞.

Since L2(Sh1
k

,K1
k
) = v1 for every k ∈ N, by Theorem 4.3.2, there exist a subsequence

{(Sh1
kl

,K1
kl

, Sh0
kl

,K0
kl

, ukl
)}, a sequence {(S

h1
kl

,K̃1
l

, S
h0

kl
,K̃0

l

, vl)}n∈N ⊂ C1
m and (Sh1,K1 , Sh0,K0 , u) ∈

C1
m such that

(S
h1

kl
,K̃1

l

, S
h0

kl
,K̃0

l

, vl)
τC1−−→ (Sh1,K1 , Sh0,K0 , u)

as l → ∞ and

lim inf
l→∞

F1(S
h1

kl
,K̃1

l

, S
h0

kl
,K̃0

l

, vl) = lim inf
l→∞

F1(Sh1
kl

,K1
kl

, Sh0
kl

,K0
kl

, ukl
). (4.3.18)

According to Theorem 4.3.3, we have that

F1(Sh1,K1 , Sh0,K0 , u) ≤ lim inf
l→∞

F1(S
h1

kl
,K̃1

l

, S
h0

kl
,K̃0

l

, vl). (4.3.19)

We claim that {(Sh1,K1 , Sh0,K0)} and (S
h1

kl
,K̃1

l

, S
h0

kl
,K̃0

l

) satisfy the volume constraints of (4.3.16).

Indeed, fix i = 0, 1, by [66, Theorem 4.3], for any l ≥ 1, vi = L2(Shi
kl

,Ki
kl

) = L2(S
hi

kl
,K̃i

l

). Thanks
to the fact that

(S
h1

kl
,K̃1

l

, S
h0

kl
,K̃0

l

)
τB1−−→ (Sh1,K1 , Sh0,K0),

applying [58, Lemma 3.2] we infer that S
hi

kl
,K̃i

l

→ Shi,Ki in L1(R2) as l → ∞, and thus

L2(Shi,Ki) = vi. From (4.3.18) and (4.3.19), we deduce that

inf
(Sh1,K1 ,Sh0,K0 ,u)∈C1

m, L2(Sh1,K1 )=v1, L2(Sh0,K0 )=v0
F1(Sh1,K1 , Sh0,K0 , u)

= lim
k→∞

F1(Sh1
k

,K1
k
, Sh0

k
,K0

k
, uk) ≥ lim inf

l→∞
F1(S

h1
kl

,K̃1
l

, S
h0

kl
,K̃0

l

, vl)

≥ F1(Sh1,K1 , Sh0,K0 , u).
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We conclude from the previous inequality that (A, h,K, u) is a minimum of (4.3.16). The same
arguments are used to solve the unconstrained problem (4.3.17) by noticing that for a minimizing
sequence {(Sh1

k
,K1

k
, Sh0

k
,K0

k
, uk)} ⊂ C1

m of F1,λ such that

sup
k∈N

F1,λ(Sh1
k

,K1
k
, Sh0

k
,K0

k
, uk) < ∞

we have that

L2(Sh1
k

,K1
k
) ≤

∣∣∣L2(Sh1
k

,K1
k
) − v1

∣∣∣+ v1 ≤ 1
λ1

F1,λ(Sh1
k

,K1
k
, Sh0

k
,K0

k
, uk) + v1,

and thus supk∈N L2(Sh1
k

,K1
k
) < ∞.

4.4. Multilayered films
In this section, we consider α > 1 and we denote m := (m0, . . . ,mα) ∈ Nα+1. The main goal of
this section is to prove Theorem 4.2.6. In order to do this, first we prove that Cα

m is compact and
by induction, with respect to α ∈ N we show that Fα is lower semicontinuous with respect to
the topology of τCα . Notice that in the previous section, we proved the basis of the induction for
the lower semicontinuity property. We start by proving that Bα

m and Cα
m are compact.

Proposition 4.4.1. Let {(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
)} ⊂ Bα

m such that

sup
k∈N

(
Sα(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
)+L2(Shα

k
,Kα

k
)
)
< ∞ (4.4.1)

Then, there exist a not relabeled subsequence {(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
)} ⊂ Bm and

{(Shα,Kα , . . . , Sh0,K0)} ∈ Bα
m such that (Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
) τBα−−→ (Shα,Kα , . . . , Sh0,K0).

Proof. We proceed by induction on α ∈ N. If α = 1 by Proposition 4.3.1 the assertion holds.
Assume now that for α = n the thesis of the proposition is true. We prove that the assertion
holds if α = n+ 1. First, we observe that

Sn+1(Shn+1
k

,Kn+1
k

, . . . , Sh0
k

,K0
k
) :=

n+1∑
j=1

j−1∑
i=0

S(i,j)(Shj ,Kj , Shi,Ki)

=
n∑

j=1

j−1∑
i=0

S(i,j)(Shj ,Kj , Shi,Ki)

+
n∑

j=0
S(n+1,j)(Shn+1,Kn+1 , Shi,Ki)

=: Sn(Shn
k

,Kn
k
, . . . , Sh0

k
,K0

k
)

+
n∑

j=0
S(n+1,j)(Shn+1,Kn+1 , Shi,Ki)

(4.4.2)

for every k ∈ N. By (4.4.1), (4.4.2), the non-negativeness of the second term in the right side of
(4.4.2) and thanks to the induction hypothesis we obtain that there exists (Shn,Kn , . . . , Sh0,K0) ∈
Bn

mn such that (Shn
k

,Kn
k
, . . . , Sh0

k
,K0

k
) τBn−−→ (Shn,Kn , . . . , Sh0,K0), where mn := (m0, . . . ,mn). Fur-

thermore, by non-negativeness of S(n+1,j) for every j = 0, . . . , n, by (4.4.1) and (4.4.2) we see
that

S(n+1,j)(Shn+1,Kn+1 , Sh0,K0) ≤
n∑

j=0
S(n+1,j)(Shn+1,Kn+1 , Shj ,Kj ), (4.4.3)
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for every j = 0, . . . , n. Now we observed that since supk∈N L2(Shn+1
k

,Kn+1
k

) < ∞ by (4.4.2)
and (4.4.3) Proposition 4.3.1 applied for every j = 0, . . . , n yields that there exist a sub-
sequence (Shn+1

k
,Kn+1

k
, S

hj
k

,Kj
k
) and a region Shn+1,Kn+1 with (hn+1,Kn+1) ∈ AHK(Ω) (and

(Shn+1,Kn+1 , Shj ,Kj ) ∈ B1
mj for mj := (mj ,mn+1) ∈ N2) such that (Shn+1

k
,Kn+1

k
, S

hj
k

,Kj
k
)

τB1−−→
(Shn+1,Kn+1 , Shj ,Kj ) for every j = 0, . . . , n, where we used the uniqueness of the sign-distance
convergence.

It remains to prove that (Shn+1,Kn+1 , . . . , Sh0,K0) ∈ Bn+1
m . Since ∂Shi,Ki has at most mi connected

components for i = 0, . . . , n+ 1, it remains to check that ∂Shn+1,Kn+1 ∩ Int(Shi,Ki) = ∅ for every
i = 0, . . . , n+ 1, to which the rest of the proof is devoted. Let us fix i = 0, . . . , n+ 1 and assume
by contradiction that

∂Shn+1,Kn+1 ∩ Int(Shi,Ki) ̸= ∅. (4.4.4)

Then, there exists x ∈ ∂Shn+1,Kn+1 ∩ Int(Shi,Ki). By properties of the signed distance convergence
(see [66, Remark 3.8]) there exists xk ∈ ∂Shn+1

k
,Kn+1

k
such that xk → x, and by the τB1-convergence

it follows that
sdist(x, ∂Shi

k
,Ki

k
) → sdist(x, ∂Shi,Ki) as k → ∞. (4.4.5)

By (4.4.4) there exists ε > 0 such that sdist(x, ∂Shi,Ki) = −ε, we can find k0 := k0(x) for which
sdist(x, ∂Shi

k0
,Ki

k0
) is negative. Then, x ∈ Int(Shi

k0
,Ki

k0
) and so, there exists δ ≤ ε/2 such that

xk0 ∈ Bδ(x) ⊂ Int(Shi
k0

,Ki
k0

),

which is an absurd since ∂Shn+1
k

,Kn+1
k

∩Int(Shi
k

,Ki
k
) = ∅. Finally, we conclude the proof by observing

that there exists (Shn+1,Kn+1 , . . . , Sh0,K0) ∈ Bn+1
m such that (Shn+1

k
,Kn+1

k
, . . . , Sh0

k
,K0

k
)

τBn+1−−−−→
(Shn+1,Kn+1 , . . . , Sh0,K0).

Now, we prove that Cα
m is compact with respect to the topology τCα .

Proof of Theorem 4.2.7. Denote R := supk∈N

(
Fα(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk)+L2(Shα

k
,Kα

k
)
)
. With-

out loss of generality (by passing, if necessary, to a not relabeled subsequence), we assume
that

lim inf
k→∞

Fα(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, uk) = lim

k→∞
Fα(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk) ≤ R. (4.4.6)

Since W is a non-negative energy, by Proposition 4.4.1 there exist a subsequence
{(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
)} ⊂ Bα

m and (Shα,Kα , . . . , Sh0,K0) ∈ Bα
m such that

(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
) τBα−−→ (Shα,Kα , . . . , Sh0,K0).

The rest of the proof is devoted to the construction of a sequence (S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
, ukn) ⊂ Bα

m

to which we can apply [58, Corollary 3.8] (with P = Int(Shα,Kα) and Pn = Int(S
hα

kn
,K̃α

n
),

respectively) in order to obtain u ∈ H1
loc(Int(Shα,Kα);R2) such that (Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα

m
has finite energy, and a sequence {bn}n∈N of piecewise rigid displacements such that

(S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
, ukn + bn) τCα−−→ (Shα,Kα , . . . , Sh0,K0 , u).

Furthermore, we observe that also Equation (4.2.15) will be a consequence of such construction
and hence, the assertion of the theorem will directly follow.
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By [58, Proposition 3.6] applied to Shα
kn

,Kα
kn

and Shα,Kα there exist a not relabeled subsequence
{Shα

kn
,Kα

kn
} and a sequence {Ãn} with H1-rectifiable boundary ∂Ãn of at most mα-connected

components such that
sup
n∈N

H1(∂Ãn) < ∞, (4.4.7)

that satisfy the following properties:

(a1) ∂Shα
kn

,Kα
kn

⊂ ∂Ãn and lim
n→∞

H1(∂Ãn \ ∂Shα
kn

,Kα
kn

) = 0,

(a2) sdist(·, ∂Ãn) → sdist(·, ∂Shα,Kα) locally uniformly in R2 as n → ∞,

(a3) If {Ei}i∈I is the family of all connected components of Int(Shα,Kα), we can find the
connected components of Int(Ãn), which we enumerate as {En

i }i∈I , such that for any i and
G ⊂⊂ Ei one has G ⊂⊂ En

i for all n large (depending only on i and G),

(a4) L2(Ãn) = L2(Shα
kn

,Kα
kn

).

Furthermore, from the construction of Ãn (namely from the fact that Ãn is constructed by adding
extra “internal” topological boundary to the selected subsequence Shα

kn
,Kα

kn
, see [58, Propositions

3.4 and 3.6]) it follows that

Ãn = Shα
kn

,Kα
kn

\ (∂Ãn \ ∂Shα
kn

,Kα
kn

) (4.4.8)

with ∂Ãn \∂Shα
kn

,Kα
kn

given by a finite union of closed H1-rectifiable sets connected to ∂Shα
kn

,Kα
kn

.
More precisely, there exist a finite index set J and a family {Γj}j∈J of closed H1-rectifiable sets
of Ω connected to ∂Skn such that

∂Ãn \ ∂Shα
kn

,Kα
kn

=
⋃
j∈J

Γj .

We define
K̃i

n := Ki
kn

∪ ((∂Ãn \ ∂Shα
kn

,Kα
kn

) ∩ Shi
kn

) ⊂ Shi
kn
,

for every i = 0, . . . , α, and we observe that K̃i
n is closed and H1-rectifiable in view of the fact that

∂Ãn \ ∂Shα
kn

,Kα
kn

is a closed set in Ω and is H1-rectifiable, since ∂Ãn is H1-rectifiable. Therefore,
(hi

kn
, K̃i

n) ∈ AHK(Ω) for every i = 0, . . . , α. Furthermore, we have that

S
hi

kn
,K̃i

n
⊂ Shi

kn
⊂ S

hj
kn

= S
hj

kn
,K̃j

n
,

for every 0 ≤ i ≤ j ≤ α. We claim that ∂S
hi

kn
,K̃i

n
has at most mi-connected components for

i = 0, . . . , λ. Indeed, let i ∈ {0, . . . , α}, if for every j ∈ J , Shi
kn

,Ki
kn

∩ Γj is empty there is nothing
to prove, so we assume that there exists j ∈ J such that Shi

kn
,Ki

kn
∩ Γj ̸= ∅. On one hand if

Γj ⊂ Shi
kn

,Ki
kn

, thanks to the facts that Γj is connected to ∂Shα
kn

,Kα
kn

and Shi
kn

,Ki
kn

⊂ Shλ
kn

, we
deduce that Γj needs to be connected to ∂Shα

kn
,Kα

kn
. On the other hand, if Γj∩(Shα

kn
,Kα

kn
\Shi

kn
) ̸= ∅,

then we can find x1 ∈ Γj ∩ Shi
kn

,Ki
kn

and x2 ∈ Γj ∩ (Shα
kn

,Kα
kn

\ Shkn
). Since Γj is closed and

connected, by [44, Lemma 3.12] there exists a parametrization r : [0, 1] → R2 whose support
γ ⊂ Γj joins the point x1 with x2. Thus, γ crosses ∂Shi

kn
,Ki

kn
and we conclude that Γj is connected

to ∂Shi
kn

,Ki
kn

. Finally, by repeating the same arguments of (4.3.12), we obtain that

Ãn = S
hλ

kn
,K̃λ

kn

and thus, (S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
) ∈ Bα

m.
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We claim that (S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
) τBα−−→ (Shα,Kα , . . . , Sh0,K0) as n → ∞. In view of (4.4.7),

(a2), by (4.2.7) and the previous construction of K̃i
n,

sup
n∈N

H1(∂S
hi

kn
,K̃i

n
) < ∞,

for every i = 0, . . . , λ. It remains to prove that

sdist(·, ∂Si
hi

kn
,K̃n

) → sdist(·, ∂Shi,K1) (4.4.9)

locally uniformly in R2 as n → ∞ for every i = 0, . . . , α. Let us fix i = 0, . . . , α, by properties of
the signed distance convergence, it suffices to prove that S

hi
kn

,K̃i
n

K−→ Shi and that Ω \ S
hi

kn
,K̃i

n

K−→
Ω \ Int(Shi,Ki). On one hand, by the τBα-convergence of {(S

hα
kn

,K̃α
n
, . . . , S

h0
kn

,K̃0
n
)}, the fact that

S
hi

kn
,K̃i

n
= Shi

kn
, and the properties of Kuratowski convergence, it follows that S

hi
kn

,K̃i
n

K−→ Shi .
On the other hand, let x ∈ Ω \ Int(Shi,Ki), since

Int(S
hi

kn
,K̃i

n
) = Int(Shi

kn
) \ K̃i

n ⊂ Int(Shi
kn

) \Ki
kn

= Int(Shi
kn

,Kkn
)

and by the fact that Ω \ Int(Shi
kn

,Ki
kn

) K−→ Ω \ Int(Shi,Ki), there exists

xn ∈ Ω \ Int(Shi
kn

,Ki
kn

) ⊂ Ω \ Int(S
hi

kn
,K̃i

n
)

such that xn → x. Now, we consider a sequence xn ∈ Ω \ Int(S
hi

kn
,K̃i

n
) converging to a point

x ∈ Ω. We proceed by contradiction, namely we assume that x ∈ Int(Shi,Ki). Therefore, there
exists ϵ > 0 such that sdist(x, ∂Shi,Ki) = −ϵ, which implies that sdist(x, ∂Shi

kn
,Ki

kn
) → −ϵ as

n → ∞. Thus, there exists nϵ ∈ N, such that xn ∈ Bϵ/2(x) ⊂ Int(Shi
kn

,Ki
kn

), for every n ≥ nϵ.
However, notice that

xn ∈ Ω \ Int
(
S

hi
kn

,K̃i
n

)
= Ω \

(
Int(Shi

kn
) \ K̃i

n

)
=
(
Ω \ Int

(
Shi

kn
,Ki

kn

))
∪
((

∂S
hα

kn
,K̃α

kn

\ ∂Shα
kn

,Kα
kn

)
∩ Shi

kn

)
,

(4.4.10)

where in the last equality we used the definition of K̃i
n := Ki

kn
∪ ((∂S

hα
kn

,K̃α
kn

\ ∂Shα
kn

,Kα
kn

) ∩Shi
kn

)
and the fact that Int(Shi

kn
,Ki

kn
) = Int(Shi

kn
) \ Ki

kn
. Therefore, by (4.4.10) we deduce that

xn ∈ ∂S
hα

kn
,K̃α

kn

\∂Shα
kn

,Kα
kn

for every n ≥ nϵ and hence, x ∈ ∂Shα,Kα by (a2) and by [66, Remark
3.7]. We reached an absurd as it follows that x ∈ Int(Shi,Ki) ∩ ∂Shα,Kα = ∅. This conclude the
proof of (4.4.9) and hence, of the claim.

By (4.2.9) and by conditions (a1), (a4) and (4.4.8), we observe that

lim
n→∞

∣∣∣∣Sα(Shα
kn

,Kα
kn
, . . . , Sh0

kn
,K0

kn
) − Sα(S

hα
kn

,K̃α
n
, . . . , S

h0
kn

,K̃0
n
)
∣∣∣∣ = 0, (4.4.11)

and
W(Shα

kn
,Kα

kn
, . . . , Sh0

kn
,K0

kn
, ukn) = W(S

hα
kn

,K̃α
n
, . . . , S

h0
kn

,K̃0
n
, ukn). (4.4.12)

By (4.2.11), (4.4.6), (4.4.8), (4.4.12), (a3) and thanks to the fact that Sα is non-negative, we
obtain that ∫

En
i

|e(ukn)|2dx ≤
∫

S
hα

kn
,K̃α

kn

|e(ukn)|2dx ≤ C
R

2c3
,
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for every i ∈ I, for n large enough and for a constant C := C(u1
0, . . . , u

α
0 ) > 0. Therefore, by

a diagonal argument and by [58, Corollary 3.8] (applied to, with the notation of [58], P = Ei

and Pn = En
i ) up to extracting not relabeled subsequences both for {ukn} ⊂ H1

loc(Ω;R2) and
{En

i }n there exist wi ∈ H1
loc(Ei,R2), and a sequence of rigid displacements {bi

n} such that
(ukn + bi

n)1En
i

→ wi a.e. in Ei. Let {Dn
i }

i∈Ĩ
for an index set Ĩ be the family of open and

connected components of S
hα

kn
,K̃α

kn

\
⋃

i∈I E
n
i such that by (a3) Int(Dn

i ) converges to the empty

set for every i ∈ Ĩ. In Dn
i we consider the null rigid displacement, and we define

bn :=
∑
i∈I

bi
n1En

i
and u :=

∑
i∈I

wi1Ei .

We have that u ∈ H1
loc(Int(Shα,Kα);R2), bn is a rigid displacement associated to

S
hα

kn
,K̃α

kn

, ukn + bn → u a.e. in Int(S
hα,K̃α) and hence, (Shα,Kα , . . . , Sh0,K0 , u) ∈ Cm and

(S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
, ukn +bn) τC−→ (Shα,Kα , . . . , Sh0,K0 , u). Furthermore, as E(ukn +bn) = Eukn ,

from (4.4.11) and (4.4.12) it follows that

lim
n→∞

∣∣∣∣Fα(Shα
kn

,Kα
kn
, . . . , Sh0

kn
,K0

kn
, ukn) − Fα(S

hα
kn

,K̃α
n
, . . . , S

h0
kn

,K̃0
n
, ukn + bn)

∣∣∣∣ = 0, (4.4.13)

which implies (4.2.15) and completes the proof.

In the following proof, we show by induction that Fα is lower semicontinuous.

Proof of Theorem 4.2.8. Since

Fα(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, uk) := Sα(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
) + W(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk),

and by non-negativeness of Sα and W we prove first that Sα is lower semicontinuous with respect
to the convergence in τBα , and then we prove that W is lower semicontinuous with respect to
the convergence in τCα .

To prove that Sα is lower semicontinuous we proceed by induction on α ∈ N. Notice that if
α = 1, by Theorem 4.3.3 the assertion holds. Assume now that for α = n the assertion of the
theorem holds. We are going to prove that the assertion of theorem holds if α = n + 1. By
definition of the energy Sn+1 we see that

Sn+1(Shn+1
k

,Kn+1
k

, . . . , Sh0
k

,K0
k
) = Sn(Shn

k
,Kn

k
, . . . , Sh0

k
,K0

k
)

+
n∑

j=0
S(n+1,j)(Shn+1

k
,Kn+1

k
, S

hj
k

,Kj
k
)

(4.4.14)

for every k ∈ N. By the induction hypothesis and the fact that

(Shn
k

,Kn
k
, . . . , Sh0

k
,K0

k
) τBn−−→ (Shn,Kn , . . . , Sh0,K0)

we have that
Sn(Shn,Kn , . . . , Sh0,K0) ≤ lim inf

k→∞
Sn(Shn

k
,Kn

k
, . . . , Sh0

k
,K0

k
). (4.4.15)

Furthermore, by definition of τBn+1-convergence it follows that

(Shn+1
k

,Kn+1
k

, S
hj

k
,Kj

k
)

τB1−−→ (Shn+1,Kn+1 , S
hj

k
,Kj

k
) (4.4.16)

for every j = 0, . . . , n. Thus, by (4.4.16) and by the induction hypothesis we deduce that

S(n+1,j)(Shn+1,Kn+1 , S
hj

k
,Kj

k
) ≤ lim inf

k→∞
S(n+1,j)(Shn+1

k
,Kn+1

k
, S

hj
k

,Kj
k
) (4.4.17)
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for every j = 0, . . . , n. It follows from the superadditivity of the liminf that
n∑

j=0
S(n+1,j)(Shn+1,Kn+1 , S

hj
k

,Kj
k
) ≤

n∑
j=0

lim inf
k→∞

S(n+1,j)(Shn+1
k

,Kn+1
k

, S
hj

k
,Kj

k
)

≤ lim inf
k→∞

n∑
j=0

S(n+1,j)(Shn+1
k

,Kn+1
k

, S
hj

k
,Kj

k
),

(4.4.18)

where in the first inequality we used (4.4.17). Therefore, we have that

Sn+1(Shn+1,Kn+1 , . . . , Sh0,K0) = Sn(Shn,Kn , . . . , Sh0,K0)

+
n∑

j=0
S(n+1,j)(Shn+1,Kn+1 , Shj ,Kj )

≤ lim inf
k→∞

Sn(Shn
k

,Kn
k
, . . . , Sh0

k
,K0

k
)

+ lim inf
k→∞

n∑
j=0

S(n+1,j)(Shn+1
k

,Kn+1
k

, S
hj

k
,Kj

k
)

≤ lim inf
k→∞

(
Sn(Shn

k
,Kn

k
, . . . , Sh0

k
,K0

k
)

+
n∑

j=0
S(n+1,j)(Shn+1

k
,Kn+1

k
, S

hj
k

,Kj
k
)


= lim inf

k→∞
Sn+1(Shn+1

k
,Kn+1

k
, . . . , Sh0

k
,K0

k
),

(4.4.19)

where in first and second equality we used (4.4.14) the definition of Sn+1, in the first inequality
we used (4.4.15) and (4.4.18) and in the second inequality we used the superadditivity of the
liminf, and thus, Sα is lower semicontinuous with respect to the topology τBα .

By repeating the same arguments of the proof of lower semicontinuity of W in the proof of
Theorem 4.3.3 we can deduce that

W(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, u) ≤ lim inf

k→∞
W(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk) (4.4.20)

Finally, we conclude the proof by observing that by the superadditivity of the liminf it follows
that

Fα(Shα,Kα , . . . , Sh0,K0 , u) := Sα(Shα,Kα , . . . , Sh0,K0) + W(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, u)

≤ lim inf
k→∞

Sα(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
)

+ lim inf
k→∞

W(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, uk)

≤ lim inf
k→∞

(
Sα(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
) + W(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk)

)
=: lim inf

k→∞
Fα(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk),

where in the first inequality we used the lower semicontinuity of Sα and W.

Finally, we are now in a position to prove the main result of this chapter.

Proof of Theorem 4.2.6. We follow the Direct Method of the Calculus of Variations. Fix m =
(m0, . . . ,mα) ∈ Nα+1 and let {(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk)} ⊂ Cα

m be a minimizing sequence of Fα

such that L2(Shi
k

,Ki
k
) = vi for i = 0, . . . , α, and

sup
k∈N

Fα(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, uk) < ∞.
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Since L2(Shα
k

,Kα
k

) = vα, by Theorem 4.2.7 there exist a subsequence
{(Shα

kn
,Kα

kn
, . . . , Sh0

kn
,K0

kn
, ukn)}, a sequence {(S

hα
kn

,K̃α
n
, . . . , S

h0
kn

,K̃0
n
, vn)}n∈N ⊂ Cα

m and
(Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα

m such that

(S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
, vn) τCα−−→ (Shα,Kα , . . . , Sh0,K0 , u)

as n → ∞ and

lim inf
n→∞

Fα(S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
, vn) = lim inf

n→∞
Fα(Shα

kn
,Kα

kn
, . . . , Sh0

kn
,K0

kn
, ukn). (4.4.21)

According to Theorem 4.2.8, we have that

Fα(Shα,Kα , . . . , Sh0,K0 , u) ≤ lim inf
n→∞

Fα(S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
, vn). (4.4.22)

We claim that for every i = 0, . . . , α, S
hi

kn
,K̃i

n
and S

hi,K̃i satisfy the volume constraints of
(4.2.12). Indeed, by Theorem 4.2.7, for any n ∈ N, vi = L2(Shi

kn
,Ki

kn
) = L2(S

hi
kn

,K̃i
n
) for every

i = 0, . . . , α. Fix i = 0, . . . , α. By definition of τBα-convergence and by applying [58, Lemma 3.2]
we infer that S

hi
kn

,K̃i
n

→ Shi,Ki in L1(R2) as n → ∞, and thus L2(Shi,Ki) = vi. From (4.4.21)
and (4.4.22), we deduce that

inf
(Shα,Kα , . . . , Sh0,K0 , u) ∈ Cα

m,

L2(Shi,Ki) = vi, i = 0, . . . , α

Fα(Shα,Kα , . . . , Sh0,K0 , u)

= lim
n→∞

Fλ(S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
, ukn)

≥ lim inf
n→∞

Fλ(S
hα

kn
,K̃α

n
, . . . , S

h0
kn

,K̃0
n
, ukn) ≥ Fλ(Shα,Kα , . . . , Sh0,K0 , u).

We conclude from the previous inequality that (Shα,Kα , . . . , Sh0,K0 , u) is a minimum of (4.2.12).

The same strategy is used to solve the unconstrained problem (4.2.13) thanks to the extra
observation that for any minimizing sequence {(Shα

k
,Kα

k
, . . . , Sh0

k
,K0

k
, uk)} ⊂ Cα

m of Fα,λ such that

sup
k∈N

Fα,λ(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, uk) < ∞

we have that

L2(Shα
k

,Kα
k

) ≤
∣∣∣L2(Shα

k
,Kα

k
) − vα

∣∣∣+ vα ≤ 1
λα

Fα,λ(Shα
k

,Kα
k
, . . . , Sh0

k
,K0

k
, uk) + vα

for every k ∈ N.

This concludes the proof.
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Part B.

Perfect Dynamical Elasto-Plasticity with
dissipative boundary conditions
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In this chapter, we present the results published in the paper

• J.-F. Babadjian, R. Llerena: Mixed boundary conditions as limits of dissipative boundary
conditions in dynamic perfect plasticity, Journal of Convex Analysis 30 (2023), no. 1,
81–110.

5.1. Introduction
Elasto-plasticity is a classical theory of continuum mechanics [57, 67] that predicts the appearance
of permanent deformations in materials when an internal critical stress is reached. At the atomistic
level, these plastic deformations occur when the crystal lattice of the atoms are misaligned due
to the accumulation of slips defects, called dislocations. These dislocations determine the change
of behavior of a body from an elastic and reversible state to a plastic and irreversible one.

At the continuum level, and in the context of small deformations, the theory involves the
displacement field u : Ω × (0, T ) → Rn and the Cauchy stress tensor σ : Ω × (0, T ) → Mn

sym, both
defined on the reference configuration Ω of the body, a bounded open subset of Rn (n = 2, 3).
They first satisfy the equation of motion

ü− divσ = f in Ω × (0, T ), (5.1.1)

for some (given) external body load f : Ω × (0, T ) → Rn. In the previous expression, and in the
sequel, the dot stands for the partial derivative with respect to time. One particular feature of
perfect plasticity is that the stress tensor is constrained to take its values into a fixed closed and
convex set K of the space Mn

sym of symmetric n× n matrices, also called elasticity set:

σ ∈ K. (5.1.2)

In classical elasticity, the linearized strain is purely elastic and it is represented by the symmetric
part of the gradient of displacement, i.e. Eu := (Du+DuT )/2. In perfect elasto-plasticity, the
elastic strain e : Ω × (0, T ) → Mn

sym only represents a part of the linearized strain Eu. It stands
for the reversible part of the total deformation and it is related to σ by means of Hooke’s law,
which we assume to be isotropic:

σ = Ce = λ(tr e)Id+ 2µe, (5.1.3)

for some constants (λ, µ) ∈ R2, called Lamé coefficients, which satisfy the ellipticity conditions
µ > 0 and nλ+ 2µ > 0. The remaining part of the strain,

p := Eu− e (5.1.4)

stands for the plastic strain leading to irreversible deformations. It is a new unknown of the
problem whose evolution is described by means of a flow rule. Assuming that K has nonempty
interior, it stipulates that if σ belongs to the interior of K, then the material behaves elastically
and no additional inelastic strains are created, i.e. ṗ = 0. On the other hand, if σ reaches the
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5. Dissipative boundary conditions

boundary of K, then ṗ may develop in such a way that a non–trivial permanent plastic strain p
may remain after unloading. The evolution of p is described by the Prandtl-Reuss law

ṗ ∈ NK(σ),

where NK(σ) stands for the normal cone to K at σ, or equivalently, thanks to convex analysis,
by Hill’s principle of maximum plastic work

H(ṗ) = σ : ṗ, (5.1.5)

where H(q) := supτ∈K τ : q is the support function K. The system (5.1.1)–(5.1.5) has to be
supplemented by initial conditions

(u(0), u̇(0), e(0), p(0)) = (u0, v0, e0, p0) (5.1.6)

as well as suitable boundary conditions to be discussed later, and which will be one of the main
focus of this work.

For most of metals and alloys, standard models of perfect plasticity involve elasticity sets K which
are invariant in the direction of hydrostatic matrices (multiples of the identity) and bounded
in the direction of deviatoric (trace free) ones. This is for example the case of the Von Mises
and Tresca models (see e.g. [5, 7, 89] in the static case, [6, 49, 85, 32] in the quasi-static case
and [8, 36] in the dynamic one). In other situations like in the context of soils mechanics, it
is of importance to consider elasticity sets K that are not necessarily invariant with respect
to hydrostatic matrices. So called Drucker-Prager or Mohr-Coulomb models fall within this
framework (see [11, 14, 15]). In this chapter, we treat as utmost as possible the case of a general
elasticity set K.

Let us now discuss the boundary conditions. Having in mind that the system of dynamic elasto-
plasticity described so far has a hyperbolic nature, one has to consider boundary conditions
compatible with this hyperbolic structure, in particular, with the finite speed propagation of the
initial data along the characteristic lines. A general approach to this type of initial–boundary
value constrained hyperbolic systems has been studied in [41] (see also [40]) where a class of
so-called admissible dissipative boundary conditions has been introduced. This problem has
subsequently been specified to the case of plasticity, first in [13] for a simplified scalar model, and
then in [11] for the general vectorial model as described before. In this context, all admissible
(homogeneous) dissipative boundary conditions take the form (see [11, Section 3])

Su̇+ σν = 0 on ∂Ω × (0, T ), (5.1.7)

where ν denotes the outer unit normal to Ω, and S : ∂Ω → Mn
sym is a spatially dependent positive

definite boundary matrix. The well posedness of the initial–boundary value system (5.1.1)–(5.1.7)
has been carried out in [11]. It has been established existence and uniqueness of two equivalent
notions of relaxed solutions (variational and entropic solutions). The relaxation phenomena
is a simple consequence of the fact that, formally, the stress constraint (5.1.2) might not be
compatible with the boundary condition (5.1.7). Indeed, if σ(t) ∈ K in Ω, we would expect that
σ(t)ν ∈ Kν on ∂Ω while σ(t)ν = −Su̇(t) is free on the boundary. Thus, the boundary condition
and the stress constraint have to accommodate to each other and the dissipative boundary
condition (5.1.7) has to be relaxed into

P−Kν(Su̇) + σν = 0 on ∂Ω × (0, T ), (5.1.8)

where, for x ∈ ∂Ω, P−Kν(x) stands for the orthogonal projection in Rn onto the convex set
−Kν(x) with respect to a suitable scalar product. This is indeed a relaxation in the sense of the
Calculus of Variations, because the energy balance involves a term of the form∫

Ω
H(ṗ) dx+ 1

2

∫
∂Ω
Su̇ · u̇ dHn−1 + 1

2

∫
∂Ω
S−1(σν) · (σν) dHn−1.
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The previous energy functional turns out of not being lower semicontinuous with respect to weak
convergence in the energy space, and its relaxation with respect to this topology is explicitly
given by ∫

Ω
H(ṗ) dx+

∫
∂Ω
ψ(x, u̇) dHn−1 + 1

2

∫
∂Ω
S−1(σν) · (σν) dHn−1,

where ψ(x, ·) is the inf-convolution of the functions z 7→ 1
2S(x)z · z and z 7→ H(−z ⊙ ν(x)). The

connection between the relaxed energy and the modified boundary condition (5.1.8) comes from
a first order minimality condition and the following formula (see [11, Section 4])

Dzψ(x, u̇(t, x)) = P−Kν(x)(S(x)u̇(t, x)).

Unfortunately, Dirichlet, Neumann and mixed boundary conditions are not admissible because
the matrix S is not allowed to vanish nor to take the value ∞. It is the main focus of the present
work to show that these type of natural boundary conditions can actually be obtained by means
of an asymptotic analysis letting S → ∞ in a portion of the boundary where we want to recover a
Dirichlet condition, and letting S → 0 on the complementary part where one wishes to formulate
a Neumann condition. This type of analysis has already been performed in [13] in the simplified
case of antiplane scalar plasticity where pure Dirichlet and pure Neumann boundary conditions
have been derived. We extend here this analysis to the general vectorial case where additional
issues arise, and to the case of mixed boundary conditions.

To be more precise, in the spirit of [49, 61, 32], we partition ∂Ω into the disjoint union of
ΓD,ΓN and Σ, where ΓD and ΓN stand for the Dirichlet and Neumann parts of the boundary,
respectively, and Σ is the interface between ΓD and ΓN which is Hn−1-negligible. We consider a
boundary matrix of the form

Sλ(x) :=
(
λ1ΓD

+ 1
λ

1ΓN

)
Id (5.1.9)

for some parameter λ > 0 which will be sent to ∞. Denoting by (uλ, eλ, pλ, σλ) the unique weak
solutions of the system (5.1.1)–(5.1.6) with the relaxed dissipative boundary condition (5.1.8)
associated to the boundary matrix Sλ, using the results of [11], we easily derive bounds in the
energy space for this quadruple, which allow one to get weak limits (u, e, p, σ) and pass to the
limit into the equation of motion (5.1.1), the stress constraint (5.1.2), Hooke’s law (5.1.3), the
additive decomposition (5.1.4) and the initial condition (5.1.6). This is the object of Lemma
5.3.10. As usual in plasticity, the main difficulty consists in passing to the limit in the flow
rule expressed by (5.1.5) and in the relaxed boundary condition (5.1.8). In accordance with
[11, 13, 14], the idea consists in taking the limit as λ → ∞ into the energy balance. The main
difficulty is concerned with the term∫

Ω
H(ṗλ) dx+

∫
∂Ω
ψλ(x, u̇λ) dHn−1 + 1

2

∫
∂Ω
S−1

λ (σλν) · (σλν) dHn−1,

where
ψλ(x, z) := inf

w∈Rn

{1
2

(
λ1ΓD

+ 1
λ

1ΓN

)
|w|2 +H((w − z) ⊙ ν(x))

}
.

A uniform bound on the previous energy easily shows that∫
ΓN

|σλν|2 dHn−1 ≤ C

λ
→ 0, as λ → ∞,

which leads to the Neumann boundary condition σν = 0 on ΓN . The obtention of the Dirichlet
boundary condition on ΓD is more involved because, as usual in perfect plasticity, concentration
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phenomena might occur. A convex analysis argument based on the Moreau-Yosida approximation
of H yields the following lower bound on the energy (see Lemma 5.3.11)∫

Ω
H(ṗ) dx+

∫
ΓD

H(−u̇⊙ ν) dHn−1 ≤ lim inf
λ→∞

(∫
Ω
H(ṗλ) dx+

∫
∂Ω
ψλ(x, u̇λ) dHn−1

)
.

Proving that this lower bound is also an upper bound is formally a consequence the convexity
inequality

H(ṗ) ≥ σ : ṗ

(because σ ∈ K), and integrations by parts in space and time. Unfortunately, this formal
convexity inequality is difficult to justify in the context of perfect plasticity because the Cauchy
stress σ and the plastic strain rate ṗ are not in duality. Indeed, the natural energy space gives
σ(t) ∈ H(div,Ω) while ṗ((t) ∈ M(Ω ∪ ΓD;Mn

sym) since the support function H grows linearly
with respect to its argument. In particular, the plastic dissipation∫

Ω
H(ṗ(t)) dx

has to be understood as a convex function of a measure (see [38, 39, 54]). Whenever the quadruple
(u, e, p, σ) belongs to the energy space, it follows that (u̇(t), ė(t), ṗ(t)) belongs to the space of all
kinematically admissible triples{

(v, η, q) ∈ [BD(Ω) ∩ L2(Ω;Rn)] × L2(Ω;Mn
sym) × M(Ω ∪ ΓD;Mn

sym) :

Ev = η + q in Ω, q = −v ⊙ νHn−1 on ΓD

}
,

and σ(t) belongs to the space of all statically and plastically admissible stresses

{τ ∈ H(div,Ω) : τν = 0 on ΓN , τ(x) ∈ K a.e. in Ω}.

In the spirit of [49, 61, 32], it allows one to consider a generalized stress/strain duality (see
Definition 5.2.2) as the first order distribution [σ(t) : ṗ(t)] ∈ D′(Rn), compactly supported in Ω,
defined as

⟨[σ(t) : ṗ(t)], φ⟩ = −
∫

Ω
φσ(t) : ė(t) dx−

∫
Ω
u̇(t) · divσ(t)φdx−

∫
Ω
σ(t) :

(
u(t) ⊙ ∇φ

)
dx (5.1.10)

or any φ ∈ C∞
c (Rn). The question now reduces to prove that

H(ṗ(t)) ≥ [σ(t) : ṗ(t)] in M(Rn), (5.1.11)

and this is the object of Section 5.2 . In Propositions 5.2.4 we show that this generalized convexity
inequality is always satisfied in the pure Dirichlet (ΓD = ∂Ω) and pure Neumann (ΓN = ∂Ω)
cases. In the case of mixed boundary conditions, there might be some concentration effects at the
interface Σ between the Dirichlet and the Neumann parts, and the previous convexity inequality
is shown to hold only in M(Rn \ Σ) in Proposition 5.2.5. Unfortunately, this weaker result is
not enough to conclude the energy upper bound because, although Σ is Hn−1-negligible, some
undesirable energy concentration might accumulate on that set. We further exhibit special cases
in dimensions n = 2 and n = 3 which guarantee the validity of (5.1.11) also in the case of mixed
boundary conditions (see Propositions 5.2.6 and 5.2.7). In dimension n = 2, it is enough to
assume that Σ is a finite set (as in [49]) while in dimension n = 3, we suppose that the convex set
K is invariant in the direction of hydrostatic matrices and bounded in the direction of deviatoric
ones, as well as additional regularity assumptions on the reference configuration Ω (as in [61]).

To conclude this introduction, let us mention that our method only allows one to derive homoge-
neous mixed boundary conditions. Indeed, at a formal level, even starting from a non-homogeneous
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dissipative boundary condition of the form Su̇ + σν = g on ∂Ω × (0, T ), for some non trivial
source term g, (or its relaxed counterpart P−Kν(Su̇− g) + σν = 0 on ∂Ω × (0, T ) given by an
adaptation of [11]), we obtain an energy balance involving the following additional term∫ T

0

∫
∂Ω
S−1g · g dHn−1 dt.

Specializing the problem to a boundary matrix S = Sλ of the form (5.1.9) and some λ-dependent
source term gλ ∈ L2(∂Ω × (0, T );Rn), the previous discussion shows that a uniform bound on
the solution (uλ, eλ, pλ, σλ) in the energy space would require that

sup
λ>0

{ 1
λ

∫
ΓD

|gλ|2 dHn−1 + λ

∫
ΓN

|gλ|2 dHn−1
}
< ∞.

It would imply that
σλν = gλ − λ−1u̇λ → 0 in ΓN × (0, T )

in a weak sense as λ → ∞ (because the trace of u̇λ is bounded in L1(∂Ω × (0, T );Rn)), leading
to a homogeneous Neumann condition in ΓN . Concerning the Dirichlet part, formally reporting
this information in the dissipative boundary condition restricted to ΓD would lead to

u̇λ = λ−1gλ − λ−1σλν → 0 in ΓD × (0, T ),

in some weak sense as λ → ∞ (because σλν is bounded in L2(0, T ;H−1/2(∂Ω;Rn))), leading to
a homogeneous Dirichlet boundary condition. Strictly speaking one should rather consider the
relaxed boundary condition which would lead to a strain concentration on ΓD associated to a
homogeneous Dirichlet boundary condition.

This chapter is organized as follows. In Section 2, we discuss the notion duality between plastic
strains and Cauchy stresses, and we prove generalized convexity inequalities of the form (5.1.11)
involving these two arguments which are not in duality in the energy space. Finally, in Section
3, we state and prove our main result, Theorem 5.3.9, about the convergence of the solutions
obtained in [11] to the (unique) solution of a dynamical elasto-plastic model with homogeneous
mixed boundary conditions.

5.2. Duality between stress and plastic strain
In the spirit of [14, 49, 61], we define a generalized notion of stress/strain duality.

(H1) The reference configuration. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary.
We assume that ∂Ω is decomposed as the following disjoint union

∂Ω = ΓD ∪ ΓN ∪ Σ,

where ΓD and ΓN are open sets in the relative topology of ∂Ω, and Σ = ∂|∂ΩΓD = ∂|∂ΩΓN is
Hn−1-negligible.

On the Neumann part ΓN , we will prescribe a surface load given by a function g ∈ L∞(ΓN ;Rn).
The space of statically admissible stresses is defined by

Sg := {σ ∈ H(div,Ω) : σν = g on ΓN }.

In the sequel we will also be interested in stresses σ taking values in a given set.

(H2) Plastic properties. Let K ⊂ Mn
sym be a closed convex set such that 0 belongs to the

interior point of K. In particular, there exists r > 0 such that{
τ ∈ Mn

sym : |τ | ≤ r
}

⊂ K. (5.2.1)
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The support function H : Mn
sym → [0,+∞] of K is defined by

H(q) := sup
σ∈K

σ : q for all q ∈ Mn
sym.

We can deduce from (5.2.1) that

H(q) ≥ r|q| for all q ∈ Mn
sym. (5.2.2)

If p ∈ M(Ω ∪ ΓD;Mn
sym), we denote the convex function of a measure H(p) by

H(p) := H

(
dp

d|p|

)
|p|,

and the plastic dissipation is defined by

H(p) :=
∫

Ω∪ΓD

H

(
dp

d|p|

)
d|p|.

We define the set of all plastically admissible stresses by

K := {σ ∈ H(div,Ω): σ(x) ∈ K for a.e. x ∈ Ω}

which defines a closed and convex subset of H(div,Ω).

The portion ΓD of ∂Ω stands for the Dirichlet part of the boundary where a given displacement
w will be prescribed. We assume that it extends into a function w ∈ H1(Ω;Rn) (so that
w|ΓD

∈ H1/2(ΓD;Rn)). We define the space of kinematically admissible triples by

Aw :=
{

(u, e, p) ∈ [BD(Ω) ∩ L2(Ω;Rn)] × L2(Ω;Mn
sym) × M(Ω ∪ ΓD;Mn

sym) :

Eu = e+ p in Ω, p = (w − u) ⊙ νHn−1 on ΓD

}
,

where ν is the outer unit normal to Ω. The function u stands for the displacement, e is the elastic
strain and p is the plastic strain. The following result provides an approximation for triples
(u, e, p) ∈ Aw and its proof follows the line of Step 1 in [49, Theorem 6.2].

Lemma 5.2.1. Let (u, e, p) ∈ [BD(Ω) ∩ L2(Ω;Rn)] × L2(Ω;Mn
sym) × M(Ω;Mn

sym) be such that
Eu = e+ p in Ω. Then, there exists a sequence {(uk, ek, pk)}k∈N in C∞(Ω;Rn × Mn

sym × Mn
sym)

such that
Euk = ek + pk in Ω,

uk → u strongly in L2(Ω;Rn),
ek → e strongly in L2(Ω;Mn

sym),
pk ⇀ p weakly* in M(Ω;Mn

sym),
|pk|(Ω) → |p|(Ω),
|Euk|(Ω) → |Eu|(Ω),
uk → u strongly in L1(∂Ω;Rn).

(5.2.3)

and for all φ ∈ C∞
c (Rn) with φ ≥ 0,

lim sup
k→∞

∫
Ω
φdH(pk) ≤

∫
Ω
φdH(p). (5.2.4)
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Proof. The construction of a sequence {(uk, ek, pk)}k∈N in C∞(Ω;Rn × Mn
sym × Mn

sym) such that
Euk = ek + pk in Ω together with the four first convergences of (5.2.3) result from Step 1 in [49,
Theorem 6.2]. Moreover, a careful inspection of that proof also shows that |Euk|(Ω) → |Eu|(Ω).
The strong convergence of the trace in L1(∂Ω;Rn) is a consequence of [10, Proposition 3.4]. The
last condition (5.2.4) follows as well from the proof of [49, Theorem 6.2] using the subadditivity
and the positive one-homogeneity of H. Note that (5.2.4) cannot be directly obtained from the
strict convergence of {pk}k∈N and Reshetnyak continuity Theorem (see [4, Theorem 2.39] or [78])
because H is just lower semicontinuous and it can take infinite values.

We now define a distributional duality pairing between statically admissible stresses and plastic
strains.

Definition 5.2.2. Let σ ∈ Sg and (u, e, p) ∈ Aw. We define the first order distribution [σ : p] ∈
D′(Rn) by

⟨[σ : p], φ⟩ :=
∫

Ω
φσ : (Ew − e) dx+

∫
Ω

(w − u) · divσ φdx+
∫

Ω
σ :
(
(w − u) ⊙ ∇φ

)
dx

+
∫

ΓN

φg · (u− w) dHn−1

for all φ ∈ C∞
c (Rn).

Remark 5.2.3. If φ ∈ C∞
c (Ω), thanks to the integration by parts formula in H1(Ω;Rn), the

expression of the stress/strain duality becomes independent of w and g, and it reduces to

⟨[σ : p], φ⟩ = −
∫

Ω
φσ : e dx−

∫
Ω
u · divσ φdx−

∫
Ω
σ : (u⊙ ∇φ) dx . (5.2.5)

As already observed in [14], contrary to [49, 61], we are not able to show in general that [σ : p]
extends into a bounded Radon measure. This is due to the fact that, in our context, σD fails to
belong to L∞(Ω;Mn

D). However, provided σ ∈ K and under suitable assumption on Ω and K, we
are going to show a convexity inequality which will ensure that H(p) − [σ : p] is a nonnegative
distribution, hence that [σ : p] actually defines a bounded Radon measure supported in Ω.

5.2.1. Pure Dirichlet or pure Neumann boundary conditions

As the following result shows, the distribution [σ : p] always extends into a bounded Radon
measure in the pure Dirichlet or pure Neumann cases.

Proposition 5.2.4. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Assume
that either ∂Ω = ΓD or ∂Ω = ΓN . Then, for every σ ∈ Sg ∩ K and (u, e, p) ∈ Aw with
H(p) ∈ M(Ω ∪ ΓD), the distribution [σ : p] extends to a bounded Radon measure supported in Ω
and

H(p) ≥ [σ : p] in M(Rn). (5.2.6)

Proof. In the case of pure Dirichlet boundary conditions, ∂Ω = ΓD, we first note that Sg =
H(div,Ω). The duality pairing is then independent of g and reduces to

⟨[σ : p], φ⟩ =
∫

Ω
φσ : (Ew − e) dx+

∫
Ω

(w − u) · divσ φdx+
∫

Ω
σ :
(
(w − u) ⊙ ∇φ

)
dx

for all φ ∈ C∞
c (Rn). This case has already been addressed in [14, Section 2]. The result is a direct

consequence an approximation result for σ ∈ K by smooth functions (see e.g. [32, Lemma 2.3])
as well as the integration by parts formula in BD(Ω) (see [10, Theorem 3.2]).
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5. Dissipative boundary conditions

In the case of pure Neumann boundary conditions, ∂Ω = ΓN , using the integration by parts
formula in H1(Ω;Rn) for the function w, the duality pairing becomes independent of w and
reduces to

⟨[σ : p], φ⟩ := −
∫

Ω
φσ : e dx−

∫
Ω
u · divσ φdx−

∫
Ω
σ :
(
u⊙ ∇φ

)
dx+

∫
∂Ω
φg · u dHn−1

for all φ ∈ C∞
c (Rn). According to Lemma 5.2.1, there exists a sequence {(uk, ek, pk)}k∈N in

C∞(Ω;Rn ×Mn
sym ×Mn

sym) such that Euk = ek + pk in Ω and (5.2.3)–(5.2.4) hold. By definition
of the duality pairing [σ : pk], for all φ ∈ C∞

c (Rn) we have

⟨[σ : pk] , φ⟩ := −
∫

Ω
σ : ekφdx−

∫
Ω
φuk · divσ dx−

∫
Ω
σ : (uk ⊙ ∇φ) dx+

∫
∂Ω
φg · uk dHn−1,

(5.2.7)
and using the integration by parts formula (2.1.1) for σ ∈ H(div,Ω), we get that

⟨[σ : pk] , φ⟩ :=
∫

Ω
σ : pkφdx. (5.2.8)

By definition of the support function H, we have that H(pk) ≥ σ : pk a.e. in Ω, hence if φ ≥ 0,
by (5.2.7), it yields∫

Ω
H(pk)φdx ≥

∫
Ω
σ : pkφdx

= −
∫

Ω
σ : ekφdx−

∫
Ω
φuk · divσ dx−

∫
Ω
σ : (uk ⊙ ∇φ) dx

+
∫

∂Ω
φg · uk dHn−1.

Hence, passing to the limit as k → ∞ thanks to the convergences (5.2.3)–(5.2.4) yields∫
Ω
φdH(p) ≥ −

∫
Ω
σ : eφ dx−

∫
Ω
φu · divσ dx−

∫
Ω
σ : (u⊙ ∇φ) dx+

∫
∂Ω
φg · u dHn−1

=: ⟨[σ : p] , φ⟩ ,

where we used once more the definition of duality [σ : p]. As a consequence, the distribution
H(p) − [σ : p] is nonnegative, hence it extends into a bounded Radon measure in Rn. Thus,
[σ : p] extends as well into a bounded Radon measure in Rn. Finally [σ : p] is clearly supported
in Ω from its very definition.

5.2.2. Mixed boundary conditions
When ΓD ̸= ∅ and ΓN ̸= ∅, the situation is more delicate as in [49]. We first prove the following
general result giving the required convexity inequality but only outside Σ (see [49, Theorem
6.2]) which, unfortunately, will not be enough for our purpose. We will later introduce additional
assumptions in dimensions n = 2 and 3 which will ensure the validity of the convexity inequality
in the whole Rn.

Proposition 5.2.5. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. For every
σ ∈ Sg ∩ K and (u, e, p) ∈ Aw with H(p) ∈ M(Ω ∪ ΓD), the restriction of the distribution [σ : p]
to Rn \ Σ extends to a bounded Radon measure in Rn \ Σ and

H(p) ≥ [σ : p] in M(Rn \ Σ). (5.2.9)

Proof. Without loss of generality, we can assume w = 0 in Definition 5.2.2. Let us fix a test
function φ ∈ C∞

c (Rn \ Σ), and let U ⊂ Rn be an open set such that Σ ⊂ U and U ∩ supp(φ) = ∅.
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5.2. Duality between stress and plastic strain

Let us consider another open set W ⊂ Rn such that ΓN \U ⊂ W and W ∩ ∂Ω ⊂ ΓN . Finally, let
W ′ ⊂ Rn be a further open set such that W ′ ⊂⊂ W , ΓN \ U ⊂ W ′ and supp(φ) ∩ ΓN ⊂ W ′. Let
ψ ∈ C∞

c (Rn) be a cut-off function such that 0 ≤ ψ ≤ 1, Supp(ψ) ⊂ W and ψ = 1 on W ′. We
decompose σ as follows,

σ = ψσ + (1 − ψ)σ =: σ1 + σ2.

Note that, for i = 1, 2, we have that σi ∈ H(div,Ω). Moreover,

σ1ν := ψ(σν) = ψg on ∂Ω and σ2 = 0 on W ′. (5.2.10)

Substituting σ with this decomposition in Definition 5.2.2 we get that

⟨[σ : p], φ⟩ := −
∫

Ω
φσ : e dx−

∫
Ω
u · divσ φdx−

∫
Ω
σ :
(
u⊙ ∇φ

)
dx+

∫
ΓN

φg · u dHn−1

= −
∫

Ω
φσ1 : e dx−

∫
Ω
u · divσ1 φdx−

∫
Ω
σ1 :

(
u⊙ ∇φ

)
dx+

∫
ΓN

φg · u dHn−1

−
∫

Ω
φσ2 : e dx−

∫
Ω
u · divσ2 φdx−

∫
Ω
σ2 :

(
u⊙ ∇φ

)
dx. (5.2.11)

We first approximate (u, e, p) in the expression (5.2.11) involving σ1. Indeed, thanks to Lemma
5.2.1, there exists a sequence {(uk, ek, pk)}k∈N in C∞(Ω;Rn × Mn

sym × Mn
sym) such that Euk =

ek + pk in Ω and (5.2.3)–(5.2.4) hold. On the one hand, we have

−
∫

Ω
φσ1 : ek dx−

∫
Ω
uk · divσ1 φdx−

∫
Ω
σ1 :

(
uk ⊙ ∇φ

)
dx+

∫
ΓN

φg · uk dHn−1

→ −
∫

Ω
φσ1 : e dx−

∫
Ω
u · divσ1 φdx−

∫
Ω
σ1 :

(
u⊙ ∇φ

)
dx+

∫
ΓN

φg · u dHn−1. (5.2.12)

On the other hand, for any k ∈ N, thanks to the integration by parts formula for σ1 ∈ H(div,Ω)
together with (5.2.10), we can observe that

−
∫

Ω
φσ1 : ek dx−

∫
Ω
uk · divσ1 φdx−

∫
Ω
σ1 :

(
uk ⊙ ∇φ

)
dx+

∫
ΓN

φg · uk dHn−1

=
∫

Ω
φσ1 : pk dx− ⟨σ1ν, φuk⟩

H− 1
2 (∂Ω;Rn),H

1
2 (∂Ω;Rn)

+
∫

ΓN

φg · uk dHn−1

=
∫

Ω
φσ1 : pk dx−

∫
∂Ω
φψg · uk dHn−1 +

∫
ΓN

φg · uk dHn−1

=
∫

Ω
φσ1 : pk dx, (5.2.13)

where we used that ψ = 1 on Supp(φ) ∩ ΓN and ψ = 0 in ∂Ω \ ΓN . Hence, by definition of the
support function H, we have that H(pk) ≥ σ : pk a.e. in Ω. As a consequence, if φ ≥ 0,∫

Ω
H(pk)ψφdx ≥

∫
Ω
σ1 : pkφdx

= −
∫

Ω
φuk · divσ1 dx−

∫
Ω
σ1 : (uk ⊙ ∇φ) dx

−
∫

Ω
σ1 : ekφdx+

∫
ΓN

φg · uk dHn−1.

We can pass to the limit as k → ∞ owing to (5.2.4) and (5.2.12). We deduce that∫
W ∩Ω

φdH(p) ≥
∫

Ω
φψ dH(p)

≥ −
∫

Ω
φu · divσ1 dx−

∫
Ω
σ1 : (u⊙ ∇φ) dx

−
∫

Ω
σ1 : eφ dx+

∫
ΓN

φg · u dHn−1, (5.2.14)
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5. Dissipative boundary conditions

where we have used the fact that p, hence H(p), does not charge ΓN .

Coming back to (5.2.11), we now approximate the last term in the right-hand side by approx-
imating σ2. Arguing as in [32, Lemma 2.3] or Step 2 in [49, Theorem 6.2] and using (5.2.10),
there exists a sequence

{
σk

2

}
k∈N

⊂ C∞(Ω;Mn
sym) such that σk

2 (x) ∈ K for all x ∈ Ω and

{
σk

2 → σ2 strongly in H(div,Ω),
σk

2ν = 0 on W ′ ∩ ΓN .
(5.2.15)

Therefore, using the integration by parts formula in BD(Ω), we infer that

−
∫

Ω
φσk

2 : e dx−
∫

Ω
u · divσk

2 φdx−
∫

Ω
σk

2 :
(
u⊙ ∇φ

)
dx

=
∫

Ω
φσk

2 : dp−
∫

∂Ω
φ(σk

2ν) · u dHn−1

=
∫

Ω
φσk

2 : dp−
∫

ΓD

φ(σk
2ν) · u dHn−1

=:
∫

Ω∪ΓD

φσk
2 : dp

(5.2.16)

where in the second equality, we have used the fact that supp(φ) ∩ ∂Ω ⊂ ΓD ∪ (ΓN ∩W ′) and the
last condition of (5.2.15), while in the third equality we used that p ΓD = −u⊙ νHn−1 ΓD.
Using that σk

2 (x) ∈ K for all x ∈ Ω, we get that∫
Ω∪ΓD

φdH(p) ≥
∫

Ω∪ΓD

φσk
2 : dp,

hence passing to the limit as k → ∞ using (5.2.15) and (5.2.16) leads to∫
Ω∪ΓD

φdH(p) ≥ −
∫

Ω
φσ2 : e dx−

∫
Ω
u · divσ2 φdx−

∫
Ω
σ2 :

(
u⊙ ∇φ

)
dx. (5.2.17)

Combining (5.2.11), (5.2.14) and (5.2.17), we conclude that

⟨[σ : p], φ⟩ ≤
∫

Ω∪ΓD

φdH(p) +
∫

W ∩Ω
φdH(p).

Let us finally consider a decreasing sequence of open sets {Wj}j∈N such that ΓN \ U ⊂ Wj and
Wj ∩∂Ω ⊂ ΓN for all j ∈ N, and ⋂j Wj = ΓN \ U . Passing to the limit in the previous expression
as j → ∞ owing to the monotone convergence theorem yields

⟨[σ : p], φ⟩ ≤
∫

Ω∪ΓD

φdH(p) +
∫

ΓN \U
φdH(p).

As ΓN \ U ⊂ ΓN ∪ Σ and p is concentrated on Ω ∪ ΓD, we deduce that

⟨[σ : p], φ⟩ ≤
∫

Ω∪ΓD

φdH(p)

which completes the proof of the proposition.

In the remaining part of this section, we exhibit some particular cases where we can extend
inequality (5.2.9) above into one in M(Rn). The following result deals with the two-dimensional
case where the convexity inequality holds provided Σ is a finite set.
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5.2. Duality between stress and plastic strain

Proposition 5.2.6. Under the same assumptions as in Proposition 5.2.5, assume further that
n = 2 and that Σ is a finite set. Then, for all σ ∈ Sg ∩ K and all (u, e, p) ∈ Aw,

H(p) ≥ [σ : p] in M(R2).

Proof. We again reduce to the case w = 0. Arguing as in [49, Example 2], for all (u, e, p) ∈ A0,
there exists a sequence {(uk, ek, pk)}k∈N in A0 such that, for each k ∈ N, (uk, ek, pk) = 0 in an
open neighborhood Uk of Σ and

uk → u strongly in L2(Ω;R2),
ek → e strongly in L2(Ω;M2

sym),
pk ⇀ p weakly* in M(Ω ∪ ΓD;M2

sym),
|pk|(Ω ∪ ΓD) → |p|(Ω ∪ ΓD).

(5.2.18)

A careful inspection of the argument used in [49, Example 2] shows that |Euk|(Ω) → |Eu|(Ω).
Thus, applying [10, Proposition 3.4], we deduce the convergence of the trace

uk → u strongly in L1(∂Ω;Rn). (5.2.19)

Moreover, for all φ ∈ C∞
c (R2) with φ ≥ 0,

lim sup
k→∞

∫
Ω∪ΓD

φdH(pk) ≤
∫

Ω∪ΓD

φdH(p). (5.2.20)

Once more, (5.2.20) does not follow from the Reshetnyak continuity Theorem because our H
does not fulfill the assumptions of that result.

Let Vk be an open set satisfying Σ ⊂ Vk ⊂⊂ Uk, and let ψk ∈ C∞
c (R2; [0, 1]) be a cut-off

function such that ψk = 1 in Vk and Supp(ψk) ⊂ Uk. For every φ ∈ C∞
c (R2) with φ ≥ 0, then

(1 − ψk)φ ∈ C∞
c (R2 \ Σ) so that by Proposition 5.2.5,∫

Ω∪ΓD

φdH(pk) ≥
∫

Ω∪ΓD

φ(1 − ψk) dH(pk) ≥ ⟨[σ : pk], φ(1 − ψk)⟩.

Since by construction Supp(uk, ek, pk) ⊂ R2 \ Uk, it is easily seen that Supp([σ : pk]) ⊂ R2 \ Uk

hence ⟨[σ : pk], φψk⟩ = 0. As a consequence∫
Ω∪ΓD

φdH(pk) ≥ ⟨[σ : pk], φ⟩,

and the conclusion follows passing to the limit as k → ∞ owing to the convergences (5.2.18)–
(5.2.20).

The three-dimensional case requires additional regularity assumptions for the domain Ω, and a
particular geometric structure for the elasticity set K which has to be a cylinder whose axis is
given by the set of spherical matrices. Note that these assumptions cover the physical cases of
Von Mises and Tresca models.

Proposition 5.2.7. Under the same assumptions as in Proposition 5.2.5, assume further that
n = 3 and that:

(i) Ω ⊂ R3 is a bounded open set of class C2 and Σ is 1-dimensional submanifold of class C2;

(ii) K = KD ⊕ (R Id) = {σ ∈ M3
sym : σD ∈ KD} where KD ⊂ M3

D is a compact and convex set
containing 0 in its interior.
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5. Dissipative boundary conditions

Then, for all σ ∈ Sg ∩ K and all (u, e, p) ∈ Aw,

H(p) ≥ [σ : p] in M(R3).

Proof. Since σ ∈ L2(Ω;M3
sym) satisfies divσ ∈ L2(Ω;R3) and σD ∈ L∞(Ω;M3

sym) (because
σ ∈ K implies σD(x) ∈ KD a.e. in Ω), we claim that σ ∈ L6(Ω;M3

sym). Indeed, arguing as in
[49, Proposition 6.1], using the decomposition σ = σD + 1

3(trσ)Id, we have that 1
3∇(trσ) =

divσ − divσD ∈ L2(Ω;R3) +W−1,∞(Ω;R3), hence by the Sobolev embedding,

∇(trσ) ∈ W−1,6(Ω) +W−1,∞(Ω) ⊂ W−1,6(Ω).

Applying Nečas Lemma (see [73]), we infer that trσ ∈ L6(Ω), hence σ ∈ L6(Ω;M3
sym).

In particular, σ ∈ L3(Ω;M3
sym), σD ∈ L∞(Ω;M3

D), divσ ∈ L3/2(Ω;R3) and σν ∈ L∞(ΓN ;R3).
These conditions turn out to be sufficient to apply [61, Proposition 2.7] (with, in the notation of
[61], n = 3, p = 3/2 and p∗ = 3). Then, an immediate adaptation of the proof of [61, Lemma
3.5] (using [61, Proposition 2.7] instead of [61, Corollary 2.8]) shows the validity of the so-called
Kohn-Temam condition:

lim
δ→0

1
δ

∫
Σδ

|σ||u| dx = 0,

where Σδ := Ω ∩ {x ∈ R3 : dist(x,Σ) < δ}. We are thus in position to argue as in the proof of
[49, Theorem 6.5] to get the conclusion. Indeed, let ψδ ∈ C∞

c (Σδ; [0, 1]) be a cut-off function such
that ψδ = 1 in a neighborhood of Σ and |∇ψδ| ≤ 2/δ. Then, for all φ ∈ C∞

c (R3) with φ ≥ 0, we
have

⟨[σ : p], (1 − ψδ)φ⟩ = −
∫

Ω
(1 − ψδ)φσ : e dx−

∫
Ω
u · divσ (1 − ψδ)φdx

−
∫

Ω
(1 − ψδ)σ :

(
u⊙ ∇φ

)
dx

+
∫

Ω
φσ :

(
u⊙ ∇ψδ

)
dx+

∫
ΓN

(1 − ψδ)φg · u dHn−1.

Since ψδ ↘ 0 pointwise, and∣∣∣∣∫
Ω
φσ :

(
u⊙ ∇ψδ

)
dx

∣∣∣∣ ≤
2∥φ∥L∞(Ω)

δ

∫
Σδ

|σ||u| dx → 0,

the dominated convergence Theorem allows us to pass to the limit as δ → 0, and get that

⟨[σ : p], (1 − ψδ)φ⟩ → ⟨[σ : p], φ⟩.

On the other hand, since (1 − ψδ)φ ∈ C∞
c (R3 \ Σ), Proposition 5.2.5 ensures that∫

Ω∪ΓD

φdH(p) ≥
∫

Ω∪ΓD

(1 − ψδ)φdH(p) ≥ ⟨[σ : p], (1 − ψδ)φ⟩.

The conclusion follows passing to the limit as δ → 0.

5.3. Dynamic elasto-plasticity

5.3.1. The model with dissipative boundary conditions

We consider a small strain dynamical perfect plasticity problem under the following assumptions:
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5.3. Dynamic elasto-plasticity

(H3) The elastic properties. We assume that the material is isotropic, which means that the
constitutive law, expressed by Hooke’s tensor, is given by

Cξ = λ(tr ξ)Id+ 2µξ for all ξ ∈ Mn
sym,

where λ and µ are the Lamé coefficients satisfying µ > 0 and 2µ + nλ > 0. These conditions
imply the existence of constants α > 0 and β > 0 such that

α|ξ|2 ≤ Cξ : ξ ≤ β|ξ|2 for all ξ ∈ Mn
sym.

We define the following quadratic form

Q(ξ) := 1
2Cξ : ξ = λ

2 (tr ξ)2 + µ|ξ|2 for all ξ ∈ Mn
sym.

If e ∈ L2(Ω;Mn
sym), we further define the elastic energy by

Q(e) :=
∫

Ω
Q(e) dx.

(H4) The dissipative boundary conditions. Let S ∈ L∞(∂Ω;Mn
sym) be a boundary matrix

satisfying the conditions: there exists a constant c > 0 such that

S(x)z · z ≥ c|z|2 for Hn−1-a.e. x ∈ ∂Ω and for all z ∈ Rn.

(H5) The external forces. We assume the body is subjected to external body forces

f ∈ H1(0, T ;L2(Ω;Rn)).

(H6) The initial conditions. Let u0 ∈ H1(Ω;Rn), v0 ∈ H2(Ω;Rn), e0 ∈ L2(Ω;Mn
sym) and

p0 ∈ L2(Ω;Mn
sym) be such that 

σ0 := Ce0 ∈ K,
Eu0 = e0 + p0 in Ω,
Sv0 + σ0ν = 0 on ∂Ω.

In order to formulate the main result of [11], we further need to introduce the function ψ :
∂Ω × Rn → R+ defined by

ψ(x, z) = inf
w∈Rn

{1
2S(x)w · w +H((w − z) ⊙ ν(x))

}
for Hn−1-a.e. x ∈ ∂Ω and all z ∈ Rn,

(5.3.1)
where ν(x) is the outer normal to Ω at x ∈ ∂Ω. We recall (see [11, Remark 4.7]) that the
differential of ψ in the z-direction is given by

Dzψ(x, z) = P−Kν(x)(S(x)z),

where P−Kν(x) is the orthogonal projection in Rn onto the closed and convex set −Kν(x) with
respect to the scalar product (u, v) ∈ Rn × Rn 7→ ⟨u, v⟩S(x)−1 := S(x)−1u · v. We further denote
by ∥ · ∥S(x)−1 its associated norm.

The following well posedness result with homogeneous dissipative boundary conditions has been
established in [11].
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5. Dissipative boundary conditions

Theorem 5.3.1. Assume that assumptions (H1)–(H6) hold. Then, there exists a unique triple
(u, e, p) such that 

u ∈ W 2,∞(0, T ;L2(Ω;Rn)) ∩ C0,1([0, T ] ;BD(Ω)),
e ∈ W 1,∞(0, T ;L2(Ω;Mn

sym)),
p ∈ C0,1([0, T ] ; M(Ω;Mn

sym)),

σ := Ce ∈ L∞(0, T ;H(div,Ω)), σν ∈ L∞(0, T ;L2(∂Ω;Rn)),

and satisfying

1. The initial conditions:

u(0) = u0, u̇(0) = v0, e(0) = e0, p(0) = p0;

2. The additive decomposition: for all t ∈ [0, T ],

Eu(t) = e(t) + p(t) in M(Ω;Mn
sym);

3. The equation of motion:

ü− divσ = f in L2(0, T ;L2(Ω;Rn));

4. The relaxed dissipative boundary condition:

P−Kν(Su̇) + σν = 0 in L2(0, T ;L2(∂Ω;Rn));

5. The stress constraint: for every t ∈ [0, T ],

σ(t) ∈ K a.e. in Ω;

6. The flow rule: for a.e. t ∈ [0, T ],

H(ṗ(t)) = [σ(t) : ṗ(t)] in M(Ω);

7. The energy balance: for every t ∈ [0, T ]

1
2

∫
Ω

|u̇(t)|2 dx+ Q(e(t)) +
∫ t

0
H(ṗ(s))(Ω) ds+

∫ t

0

∫
∂Ω
ψ(x, u̇) dHn−1 ds

+ 1
2

∫ t

0

∫
∂Ω
S−1(σν) · (σν) dHn−1 ds = 1

2

∫
Ω

|v0|2 dx+ Q(e0) +
∫ t

0

∫
Ω
f · u̇ dx ds.

(5.3.2)

Moreover, the following uniform estimate holds

∥ü∥2
L∞(0,T ;L2(Ω;Rn)) + ∥ė∥2

L∞(0,T ;L2(Ω;Mn
sym)) ≤ C∗, (5.3.3)

for some constant C∗ > 0 depending on ∥u0∥H1(Ω;Rn), ∥v0∥H2(Ω;Rn), ∥e0∥L2(Ω;Mn
sym), ∥σ0∥H(div,Ω)

and ∥p0∥L2(Ω;Mn
sym), but which is independent of S.
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5.3. Dynamic elasto-plasticity

5.3.2. Elasto-visco-plastic model
The proof of Theorem 5.3.1 is obtained by means of an elasto-visco-plastic approximation, which
is treated in this section. We follow the program of [70, Theorem 3.4.1] which treats the antiplanar
case.

Theorem 5.3.2. Assume that (H1)–(H6). Then, for every ε > 0 there exists a unique triple
(uε, eε, pε) with 

uε ∈ W 2,∞(0, T ;L2(Ω;Rn)) ∩H2(0, T ;H1(Ω;Rn)),
eε ∈ W 1,∞(0, T ;L2(Ω;Mn

sym)),
pε ∈ H1(0, T ;L2(Ω;Mn

sym)),
which satisfies the following properties

1. The initial conditions:

uε(0) = u0, u̇ε(0) = v0, eε(0) = e0 and pε(0) = p0;

2. The additive decomposition:

Euε = eε + pε a.e. in Ω × (0, T );

3. The constitutive law:
σε := Ceε a.e. in Ω × (0, T );

4. The equation of motion:

üε − div(σe + εEu̇ε) = f in L2(0, T ;L2(Ω;Rn));

5. The dissipative boundary conditions:

Su̇ε + (σε + εEu̇ε)ν = εEv0ν in L2(0, T ;L2(∂Ω;Rn));

6. The visco-plastic flow rule:

ṗε = σε − PK(σε)
ε

a.e. in Ω × (0, T );

7. The energy balance: for every t ∈ [0, T ]

1
2

∫
Ω

|u̇ε(t)|2 dx+ Q(eε(t)) +
∫ t

0

∫
Ω
H(ṗε)) dx ds+

∫ t

0

∫
∂Ω
Su̇ε · u̇ε dHn−1 ds

+ ε

∫ t

0

∫
Ω

|ṗε|2 dHn−1 ds

= 1
2

∫
Ω

|v0|2 dx+ Q(e0) +
∫ t

0

∫
Ω
f · u̇ dx ds+

∫ t

0

∫
∂Ω
εEv0ν · u̇ε dHn−1 ds. (5.3.4)

Moreover, the following uniform estimate holds

∥üε∥2
L∞(0,T ;L2(Ω;Rn)) + ∥ėε∥2

L∞(0,T ;L2(Ω;Mn
sym)) + ε∥Eüε∥2

L2(0,T ;L2(Ω;Mn
sym))

+
∫ T

0

∫
∂Ω
Süε · üε dHn−1 dt ≤ C, (5.3.5)

where C is a positive constant independent of ε and S.

First, we notice that for every ϵ > 0, εEv0ν ∈ H1(0, T ;L2(∂Ω;Rn)). The proof of Theorem
5.3.2 follows the program of [70, Section 3.4.1], which is based on a time discretization of the
hyperbolic system. In the following sections, we prove the existence and uniqueness of Theorem
5.3.2.
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5. Dissipative boundary conditions

Time discretization

For any N ∈ N, we define a partition of the interval [0, T ] in N sub-intervals of equal length
δ := T/N as follows:

0 =: t0 < t1 < . . . < tN := T,

moreover, we have that δ = ti −ti−1 for every i = 1, . . . , N . We define the discrete body fi := f(ti)
for every i = 0, . . . , N . Consequently, we define inductively

(u0, e0, p0) = (u0, e0, p0) and (u1, e1, p1) = (u0, e0, p0) + δ(u0, e0, p0).

and for all i ≥ 2, (ui, ei, pi) is the unique solution to the minimum problem

min
(v,η,q)∈X

{
Q(η) +

∫
Ω
H(q − pi−1) dx+ 1

2δ2

∫
Ω

(v − 2ui−1 + ui−2)2 dx

+ ε

2δ

∫
Ω

|Ev − Eui−1|2 + |q − pi−1|2 dx+ 1
2δ

∫
∂Ω
S(v − ui−1) · (v − ui−1) dHn−1

−
∫

Ω
fi−1 · v dx−

∫
∂Ω
εEv0ν · v dHn−1

}
(5.3.6)

where

X = {(v, η, q) ∈ H1(Ω;Rn) × L2(Ω;Mn
sym) × L2(Ω;Mn

sym) : Ev = η + q in Ω}.

Notice that (5.3.6) admits an unique solution by strictly convexity, coercivity and sequentially
weakly lower semi-continuity in X . Let (v, η, q) ∈ X and s ∈ (0, 1), it follows that (ui, ei, pi) +
s(v, η, q) is an admissible for the minimum problem (5.3.6). We choose (ui, ei, pi) + s(v, η, q) as a
competitor in (5.3.6) and by taking s → 0 we see that∫

Ω
Cei : η dx+

∫
Ω
H(pi + q − pi−1) dx−

∫
Ω
H(pi − pi−1) dx

+ 1
δ2

∫
Ω

(ui − 2ui + ui−2) · v dx+ ε

δ

∫
Ω

((Eui − Eui−1) : v + (pi − pi−1) : q) dx

+ 1
δ

∫
∂Ω
S(ui − ui−1) · v dHn−1 −

∫
Ω
fi−1 · v dx−

∫
∂Ω
εEv0ν · v dHn−1 ≥ 0.

(5.3.7)

Furthermore, since (v, η, q) = ±(v,∇v, 0) ∈ X is an admissible of (5.3.6), from the inequality
above we observe that∫

Ω
Cei : Ev dx+ 1

δ2

∫
Ω

(ui − 2ui−1 + ui−2) · v dx+ ε

δ

∫
Ω

(Eui − Eui−1) : Ev dx

+ 1
δ

∫
∂Ω
S(ui − ui−1) · v dHn−1 =

∫
Ω
fi−1 · v dx+

∫
∂Ω
εEv0ν · v dHn−1.

From this and by considering v ∈ C∞
0 (Ω), we have that

ui − 2ui−1 + ui−2
δ2 − div

(
Cei + ε

δ
(Eui − Eui−1)

)
= fi−1 in D′(Ω). (5.3.8)

By the integration by parts, we see that∫
Ω

ui − 2ui−1 + ui−2
δ2 · v dx−

∫
Ω

div
(
Cei + ε

δ
(Eui − Eui−1)

)
· v dx−

∫
Ω
fi−1 · v dx

=
∫

∂Ω
εEv0ν · v dHn−1 − ⟨(Cei + ε

δ
(Eui − Eui−1))ν⟩|v⟩

H− 1
2 (∂Ω),H

1
2 (∂Ω)

− 1
δ

∫
∂Ω
S(ui − ui−1) · v dHn−1

(5.3.9)
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5.3. Dynamic elasto-plasticity

It follows from (5.3.8) and (5.3.9) that

1
δ
S(ui − ui−1) + ⟨(Cei + ε

δ
(Eui − Eui−1))ν⟩|v⟩

H− 1
2 (∂Ω),H

1
2 (∂Ω)

= εEv0ν in H− 1
2 (∂Ω),

in other words, the equation above represents the discrete boundary conditions. Let q̃ ∈
L2(Ω;Mn

sym). Concerning the visco-plastic equation, first we consider the admissible competitor
(0,−q, q̃ − (pi − pi−1)) ∈ X , it follows from (5.3.7) that∫

Ω
H(q̃) dx ≥

∫
Ω
H(pi − pi−1) dx+

∫
Ω

(σi − ε

δ
(pi − pi−1)) : (q̃ − (pi − pi−1)) dx (5.3.10)

where σi := Cei. By localizing (5.3.10), we see that

H(q̃) ≥ H(pi − pi−1) +
(
σi − ε

δ
(pi − pi−1)

)
: (q̃ − (pi − pi−1)), (5.3.11)

for every q̃ ∈ Mn
sym × R and for a.e. x ∈ Ω. As a consequence, σi − ε

δ (pi − pi−1) belongs to the
sub-differential of q̃ 7→ H(q̃) at the point pi − pi−1. More precisely,

σi ∈ ∂

(
H(·) + ε

2 |·|2
)(

pi − pi−1
δ

)
.

By duality we have that
pi − pi−1

δ
= 1
ε

(σi − PK(σi)),

from where we deduce that
pi − pi−1

δ
= 1
ε

(σi − PK(σi)) (5.3.12)

a.e. in Ω × (0, T ).

Interpolations
In this section we construct three different types of interpolations. First, we consider the piecewise
constant interpolation as follows

u(0) := u0, σ(0) := σ0, p(0) := p0, e(0) := e0, and f(0) := f(0),

moreover, for all t ∈ (ti−1, ti] and i = 1, . . . , N ,

u(t) := ui, σ(t) := σi, p(t) := pi, e(t) := ei, and f(t) := fi−1.

Now, we consider the piecewise affine interpolation as follows

û(0) := u0, σ̂(0) := σ0, p̂(0) := p0, and ê(0) := e0,

and for every i = 1, . . . , N and for every t ∈ (ti−1, ti], we define

û(t) := ui−1 + t− ti−1
δ

(ui − ui−1), σ̂(t) := σi−1 + t− ti−1
δ

(σi − σi−1),

p̂(t) := pi−1 + t− ti−1
δ

(pi − pi−1), and ê(t) := ei−1 + t− ti−1
δ

(ei − ei−1).

Finally, we define the quadratic interpolation of u on [ti−1ti], denoted as ũ, as follows

ũ(t) = ui − 2ui−1 + ui−2
2δ2 (t− ti−1)2 + ui − ui−1

2δ (t− ti−1) + ui−1,
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5. Dissipative boundary conditions

where we define u−1 := u0. Notice that

Eu(t) = e(t) + p(t), Eû(t) = ê(t) + p̂(t), Eũ(t) = ẽ(t) + p̃(t), σ(t) = Ce(t)

and
σ̂(t) = Cê(t),

for every t ∈ [0, T ]. Therefore, it follows from the discrete elastic equation (5.3.8) and from the
discrete equation for the plasticity (5.3.12), that

¨̃u(t) − div(σ(t) + εE ˙̂u(t)) = f(t), ˙̂p(t) = −1
ε

(σ − PK(σ))

for a.e. in Ω and for a.e. t ∈ [δ, T ], and

S ˙̂u(t) + (εE ˙̂u(t) + σ)ν = εEv0ν in H− 1
2 (∂Ω) (5.3.13)

for a.e. t ∈ [δ, T ].

A priori estimates

Since ui − ui−1 ∈ H1(Ω;Rn) and by taking v = ui − ui−1 in (5.3.9) we deduce that

1
2

(∥∥∥∥ui − ui−1
δ

∥∥∥∥2

L2(Ω;Rn)
−
∥∥∥∥ui−1 − ui−2

δ

∥∥∥∥2

L2(Ω;Rn)
+
∥∥∥∥ui − 2ui−1 + ui−2

δ

∥∥∥∥2

L2(Ω;Rn)

)

+ εδ

∥∥∥∥Eui − Eui−1
δ

∥∥∥∥2

L2(Ω;Mn
sym)

+
∫

Ω
σi : (pi − pi−1) dx

+Q(ei) −Q(ei−1) +Q(ei − ei−1) + 1
δ

∫
∂Ω
S(ui − ui−1) · (ui − ui−1) dHn−1

=
∫

Ω
fi−1 · (ui − ui−1) dx+

∫
∂Ω
εEv0ν · (ui − ui−1) dHn−1,

(5.3.14)

where we used the discrete additive decomposition of the symmetric gradient, i.e., Eui −Eui−1 =
ei − ei−1 + pi − pi−1. Now, if we consider q̃ ≡ 0 in (5.3.11), we deduce that

∫
Ω
σi : (pi − pi−1) dx ≥

∫
Ω
H(pi − pi−1) dx+ εδ

∥∥∥∥pi − pi−1
δ

∥∥∥∥2

L2(Ω;Mn
sym)

. (5.3.15)

By inserting (5.3.15) in (5.3.14) we obtain that

1
2

(∥∥∥∥ui − ui−1
δ

∥∥∥∥2

L2(Ω;Rn)
−
∥∥∥∥ui−1 − ui−2

δ

∥∥∥∥2

L2(Ω;Rn)
+
∥∥∥∥ui − 2ui−1 + ui−2

δ

∥∥∥∥2

L2(Ω;Rn)

)

+ εδ

∥∥∥∥Eui − Eui−1
δ

∥∥∥∥2

L2(Ω;Mn
sym)

+
∫

Ω
H(pi − pi−1) dx+ εδ

∥∥∥∥pi − pi−1
δ

∥∥∥∥2

L2(Ω;Mn
sym)

+Q(ei) −Q(ei−1) +Q(ei − ei−1) + 1
δ

∫
∂Ω
S(ui − ui−1) · (ui − ui−1) dHn−1

≤
∫

Ω
fi−1 · (ui − ui−1) dx+

∫
∂Ω
εEv0ν · (ui − ui−1) dHn−1.

(5.3.16)
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5.3. Dynamic elasto-plasticity

Let j ∈ N be such that j ≤ N . By summing (5.3.16) from i = 2 to j yields that

1
2

∥∥∥∥uj − uj−1
δ

∥∥∥∥2

L2(Ω;Rn)
+ 1

2

j∑
i=1

∥∥∥∥ui − 2ui−1 + ui−2
δ

∥∥∥∥2

L2(Ω;Rn)
+ εδ

j∑
i=1

∥∥∥∥Eui − Eui−1
δ

∥∥∥∥2

L2(Ω;Mn
sym)

+
j∑

i=1

∫
Ω
H(pi − pi−1) dx+ εδ

j∑
i=1

∥∥∥∥pi − pi−1
δ

∥∥∥∥2

L2(Ω;Mn
sym)

+Q(ej)

+ 1
δ

j∑
i=1

∫
∂Ω
S(ui − ui−1) · (ui − ui−1) dHn−1

≤ ∥v0∥2
L2(Ω;Rn) + 2εδ∥Ev0∥2

L2(Ω;Mn
sym) + δ

∫
Ω
H(Ev0) +Q(e0) + δ

∫
∂Ω
Sv0 · v0 dHn−1

+
j∑

i=2

∫
Ω
fi−1 · (ui − ui−1) dx+

j∑
i=2

∫
∂Ω
εEv0ν · (ui − ui−1) dHn−1.

(5.3.17)

In view of the three different types of interpolation, it follows for all t ∈ (tj−1, tj ]

1
2
∥∥∥ ˙̂u(t)

∥∥∥2

L2(Ω;Rn)
+ ε

∫ tj

0

∥∥∥E ˙̂u(t)
∥∥∥2

L2(Ω;Mn
sym)

dt+
∫ tj

0

∫
Ω
H( ˙̂p(t)) dx dt

+ ε

∫ tj

0

∥∥∥ ˙̂p(t)
∥∥∥2

L2(Ω;Mn
sym)

dt+Q(e(t)) +
∫ tj

0

∫
∂Ω
S ˙̂u(t) · ˙̂u(t) dHn−1 dt

≤ ∥v0∥2
L2(Ω;Rn) + 2εδ∥Ev0∥2

L2(Ω;Mn
sym) + δ

∫
Ω
H(Ev0) +Q(e0) + δ

∫
∂Ω
Sv0 · v0 dHn−1

+
∥∥∥f(t)

∥∥∥
L1(0,T ;L2(Ω;Rn))

∥∥∥ ˙̂u(t)
∥∥∥

L∞(0,T ;L2(Ω;Rn))

+ ∥εEv0ν∥L2(0,T ;L2(∂Ω;Rn))

∥∥∥ ˙̂u(t)
∥∥∥

L2(0,T ;L2(∂Ω;Rn))
,

(5.3.18)

where we used the Cauchy-Schwarz inequality in the last two terms of the right side of (5.3.17).
By (H4) and by applying the Young’s inequality in the last two terms of the right side of (5.3.18),
we deduce that

1
2
∥∥∥ ˙̂u(t)

∥∥∥2

L2(Ω;Rn)
+ ε

∫ tj

0

∥∥∥E ˙̂u(t)
∥∥∥2

L2(Ω;Mn
sym)

dt+
∫ tj

0

∫
Ω
H( ˙̂p(t)) dx dt

+ ε

∫ tj

0

∥∥∥ ˙̂p(t)
∥∥∥2

L2(Ω;Mn
sym)

dt+
∫ tj

0

∫
∂Ω
S ˙̂u(t) · ˙̂u(t) dHn−1 dt

≤ ∥v0∥2
L2(Ω;Rn) + 2εδ∥Ev0∥2

L2(Ω;Mn
sym) + δ

∫
Ω
H(Ev0) +Q(e0) + δ

∫
∂Ω
Sv0 · v0 dHn−1

+
∥∥∥f(t)

∥∥∥2

L1(0,T ;L2(Ω;Rn))
+ ∥εEv0ν∥2

L2(0,T ;L2(∂Ω;Rn)).

(5.3.19)

Recall that

û(t, x) = u0(x) +
∫ t

0
˙̂u(s, x) dx ds and Eû(t, x) = Eu0(x) +

∫ t

0
E ˙̂u(s, x) dx ds,

therefore, thanks to (5.3.19), there exists cε > 0, depending on ε, such that

∥û∥L∞(0,T ;H1(Ω;Rn)) ≤ cε. (5.3.20)

Furthermore, by the additive decomposition of the symmetric gradient with respect to the
piecewise affine interpolation, i.e., E ˙̂u(t) = ˙̂σ(t) + ˙̂p(t), there exists cε, depending on ε, such that∥∥∥ ˙̂σ

∥∥∥
L2(0,T ;L2(Ω;Mn

sym))
≤ cε. (5.3.21)
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5. Dissipative boundary conditions

Weak convergence

As a consequence of the inequalities at the end of the previous section, there exist not relabeled
subsequences of û, ê and p̂ and functions

uε ∈ W 1,∞(0, T ;L2(Ω;Rn)) ∩H1(0, T ;H1(Ω;Rn)),
eε ∈ H1(0, T ;L2(Ω;Mn

sym)),
pε ∈ H1(0, T ;L2(Ω;Mn

sym)),

such that

û −⇀
N

uε in H1(0, T ;H1(Ω;Rn)), ˙̂u −⇀
N

u̇ε in L∞(0, T ;L2(Ω;Rn))

ê −⇀
N

eε in H1(0, T ;L2(Ω;Mn
sym)), and p̂ −⇀

N
pε in H1(0, T ;L2(Ω;Mn

sym)).

Since for a.e. t ∈ [ti−1, ti]

∥û(t) − u(t)∥H1(Ω;Rn) =
∥∥∥∥ui−1 + t− ti−1

δ
(ui − ui−1) − ui

∥∥∥∥
H1(Ω;Rn)

≤ 2δ
∥∥∥ ˙̂u(t)

∥∥∥
H1(Ω;Rn)

,

we deduce from (5.3.20) and the inequality above that

u −⇀
N

uε in L2(0, T ;H1(Ω;Rn)). (5.3.22)

Thanks to the weak convergences above, by Ascoli-Arzelà theorem (also it follows from [31,
Lemma 2]), we obtain that

û(t) −⇀
N

uε(t) in H1(Ω;Rn), ê(t) −⇀
N

eε(t) in L2(Ω;Mn
sym) and p̂(t) −⇀

N
pε(t) in L2(Ω;Mn

sym),

for all t ∈ [0, T ]. Since (û(0), ẽ(0), p̃(0)) = (u0, e0, p0) for every N , we obtain that

(uε(0), eε(0), pε(0)) = (u0, e0, p0) ∈ H1(Ω;Rn) × L2(Ω;Mn
sym) × L2(Ω;Mn

sym),

moreover, since Eû(t) = ê(t) + p̂(t), we deduce that

Euε(t) = eε(t) + pε(t) ∈ L2(Ω;Mn
sym)

for all t ∈ [0, T ]. By arguing as in (5.3.22), it follows that

e −⇀
N

eε in L∞(0, T ;L2(Ω;Mn
sym)) and p −⇀

N
pε in L2(0, T ;L2(Ω;Mn

sym)).

Thanks to the convergences described above and by (5.3.13) we have that

(σε + εE( ˙̂uε))ν + S ˙̂uε = εEv0ν in H− 1
2 (∂Ω).

With respect to the quadratic approximation, we observe that

sup
t∈[0,T ]

∥ũ(t) − û(t)∥L2(Ω;Rn) ≤ 4δ
∥∥∥ ˙̂u
∥∥∥

L∞((0,T );L2(Ω;Rn))
.

Therefore, ũ −⇀
N

uε in L∞((0, T );L2(Ω;Rn)).
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5.3. Dynamic elasto-plasticity

Weak formulation of the equation of motion and initial condition for the velocity

At this stage, we do not have enough regularity to prove that u̇ε(0) = u0. It is very common
in hyperbolic equations that the initial condition will be obtained by giving sense to the weak
formulation of the equation of motion. This is the aim of this subsection.

Proposition 5.3.3. For all φ ∈ H1(0, T ;H1(Ω;Rn)) such that φ(T, ·) = 0, we have that

−
∫ T

0

∫
Ω
u̇εφ̇ dx dt+

∫ T

0

∫
Ω

(σε + εEu̇ε) : Eφdx dt+
∫ T

0

∫
∂Ω
Su̇ε · φdHn−1 dt

=
∫ T

0

∫
Ω
f · φdx dt+

∫
Ω
v0 · φ(0) dx+

∫ T

0

∫
∂Ω
εEv0ν · φdHn−1 dt.

(5.3.23)

Proof. We define the piecewise constant and piecewise affine interpolations of φ ∈ C∞
0 ((−∞, T )×

Rn;Rn) as follows

φ(t) = φ(ti−1) and φ̂(t) = φ(ti−1) + t− ti
δ

(φ(ti − φ(ti−1)),

for t ∈ [ti−1, ti]. Therefore,

N∑
i=2

δ

∫
Ω

ui − 2ui−1 + ui−2
δ2 ·φ(ti−1) dx = −

N∑
i=1

δ

∫
Ω

ui − ui−1
δ

· φ(ti) − φ(ti−1)
δ

dx−
∫

Ω
v0 ·φ(0) dx

and by considering in (5.3.8) the test function φ(ti−1) and thanks to the discrete integration by
parts, we deduce that

−
N∑

i=1
δ

∫
Ω

ui − ui−1
δ

· φ(ti) − φ(ti−1)
δ

dx+
N∑

i=2
δ

∫
Ω

(
σi + ε

Eui − Eui−1
δ

)
: Eφ(ti−1) dx

+
N∑

i=2
δ

∫
∂Ω

S(ui − ui−1)
δ

· φ(ti−1) dHn−1

=
N∑

i=2
δ

∫
Ω
fi−1 · φ(ti−1) dx+

∫
Ω
v0 · φ(0) dx+

N∑
i=2

δ

∫
∂Ω
εEv0ν · φ(ti−1) dHn−1.

This yields that

−
∫ T

0

∫
Ω

˙̂u · ˙̂φdx dt+
∫ T

δ

∫
Ω

(
σ + εE ˙̂u

)
: Eφdxdt+

∫ T

δ

∫
∂Ω
S ˙̂u · φdHn−1 dt

=
∫ T

δ

∫
Ω
f · φdx dt+

∫
Ω
v0 · φ(0) dx+

∫
∂Ω
εEv0ν · φdHn−1 dt.

(5.3.24)

Since we have the following convergences φ → φ strongly in L2(0, T ;H1(Ω;Rn)), ˙̂φ → φ̇ strongly
in L2(0, T ;L2(Ω;Rn)) and f → f strongly in L2(0, T ;L2(Ω;Rn)), by the absolute continuity of
t 7→ f(t) in L2(Ω;Rn), by the weak convergences of the previous section and by taking N → ∞
in (5.3.24) we obtain that

−
∫ T

0

∫
Ω
u̇ε · φ̇ dx dt+

∫ T

δ

∫
Ω

(σε + εEu̇ε) : Eφdx dt+
∫ T

δ

∫
∂Ω
Su̇ε · φdHn−1 dt

=
∫ T

δ

∫
Ω
f · φdx dt+

∫
Ω
v0 · φ(0) dx+

∫ T

0

∫
∂Ω
εEv0ν · φdHn−1 dt.

(5.3.25)

By densities arguments, (5.3.25) also holds if φ ∈ H1(0, T ;H1(Ω;Rn)) such that φ(T, ·) = 0.
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5. Dissipative boundary conditions

Finally, in view of Proposition 5.3.3, we obtain that u̇ε ∈ L2(0, T ;H1(Ω;Rn)) and üε ∈
L2(0, T ;H−1(Ω;Rn)). Thus, by [16, Theorem 1.19] we infer that u̇ε is equal a.e. t ∈ [0, T ]
to a function in C0(0, T ;L2(Ω;Rn)), moreover the function t 7→ ⟨u̇ε(t)|v(t)⟩L2(Ω;Rn) is absolutely
continuous for every v ∈ L2(0, T ;H1(Ω;Rn)) such that v̇ ∈ L2(0, T ;H−1(Ω;Rn)) and we have
that

d

dt
⟨u̇ε|v⟩L2(Ω;Rn) = ⟨üε|v⟩(H1(Ω;Rn))′,H1(Ω;Rn) + ⟨u̇ε|v̇⟩(H1(Ω;Rn))′,H1(Ω;Rn).

Furthermore, since

üε − div(σε + εEu̇ε) = f in L2(0, T ; (H1(Ω;Rn))′). (5.3.26)

From the last equality, we can get the initial condition for the velocity. Indeed, if we consider
φ = ψ(t)ξ(x), where ψ(t) = 1

T (T − t) and ξ ∈ C∞
0 (Ω;Rn) as a test function in (5.3.25), we obtain

that

−
∫ T

0

∫
Ω
u̇ε · φ̇ dx dt+

∫ T

δ

∫
Ω

(σε + εEu̇ε) : Eφdx dt =
∫ T

δ

∫
Ω
f · φdx dt+

∫
Ω
v0 · φ(0) dx.

(5.3.27)

By (5.3.26) and (5.3.27) and thanks to [16, Theorem 1.1], we deduce that

−
∫ T

0

∫
Ω
u̇ε · φ̇ dx dt = −

∫ T

0
⟨u̇ε|v̇⟩(H1(Ω;Rn))′,H1(Ω;Rn) dt

=
∫ T

0
⟨üε|v⟩(H1(Ω;Rn))′,H1(Ω;Rn) dt−

∫ T

0

d

dt
⟨u̇ε|v⟩L2(Ω;Rn) dt

=
∫ T

0
⟨üε|v⟩(H1(Ω;Rn))′,H1(Ω;Rn) dt−

∫
Ω
u̇ε(T ) · φ(T ) dx+

∫
Ω
u̇ε(0) · φ(0) dx.

From (5.3.27), we have that∫ T

0
⟨üε|v⟩(H1(Ω;Rn))′,H1(Ω;Rn) dt+

∫
Ω
u̇ε(0) · φ(0) dx+

∫ T

δ

∫
Ω

(σε + εEu̇ε) : Eφdx dt

=
∫ T

δ

∫
Ω
f · φdx dt+

∫
Ω
v0 · φ(0) dx.

(5.3.28)

Finally, by the integration by parts in (5.3.28), we have that∫
Ω
u̇ε(0) · ξ dx =

∫
Ω
v0 · ξ dx.

Hence,
u̇ε(0) = v0 in H2(Ω;Rn).

Strong convergence and flow rule
In order to obtain the flow rule we need to improve the weak convergences of σ and σ̂, more
precisely, in this section we prove that σ and σ̂ are strongly convergent.

Lemma 5.3.4. We have that σ and σ̂ converge strongly to σε in L2(0, T, L2(Ω;Rn)).

Proof. Before to start the proof, we denote by [t]i = ti for every t ∈ (0, T ] and every i = 2, . . . , N .
Since

üε − div(σε + εEu̇ε) = f in L2(0, T ; (H1(Ω;Rn))′) in L2(0, T ; (H1(Ω;Rn))′)

and
¨̃u(t) − div(σ(t) + εE ˙̂u(t)) = f(t) in (H1(Ω;Rn))′),
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5.3. Dynamic elasto-plasticity

by taking the difference between the two previous equations and by considering as a test function
1[δ,[t]i]

˙̂u ∈ L2(0, T ; (H1(Ω;Rn))′), we obtain that

∫ [t]i

δ
⟨¨̃u− üε| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds

−
∫ [t]i

δ
⟨div(σ + εE ˙̂u)) − div(σε + εEu̇ε)| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds

=
∫ [t]i

δ
(f − f) · ˙̂u ds (5.3.29)

Since f → f strongly in L1(0, T ;L2(Ω;Rn)) and ˙̂u is bounded in L∞(0, T ;L2(Ω;Rn)), by
dominated convergence theorem and from the equality above we infer that

lim
N→∞

(∫ [t]i

δ
⟨¨̃u− üε| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds

−
∫ [t]i

δ
⟨div(σ + εE ˙̂u)) − div(σε + εEu̇ε)| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds

)
= 0.

Recall that,

−
∫ [t]i

δ
⟨div(σ + εE ˙̂u)) − div(σε + εEu̇ε)| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds

=
∫ [t]i

δ

∫
Ω

(σ − σε) : E ˙̂u+ ε(E ˙̂u− Eu̇ε) : E ˙̂u dx ds

+
∫ [t]i

δ

∫
∂Ω
S( ˙̂u− u̇ε) · ˙̂u+ εEv0ν · ( ˙̂u− u̇ε) dHn−1 ds

(5.3.30)

Furthermore, by the following convergences E ˙̂u −⇀
N

Eu̇ε in L2(0, T ;L2(Ω;Mn
sym)) and ˙̂u −⇀

N
u̇ε in

L2(0, T ;L2(∂Ω;Rn)), we deduce that∫ [t]i

δ

∫
Ω
ε(E ˙̂u−Eu̇ε) : E ˙̂u dx ds+

∫ [t]i

δ

∫
∂Ω
S( ˙̂u− u̇ε) · ˙̂u+εEv0ν ·( ˙̂u− u̇ε) dHn−1 ds → 0 (5.3.31)

as N → ∞. By (5.3.29)–(5.3.31) we see that the expression∫ T

0

(∫ [t]i

δ
⟨¨̃u− üε| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds +

∫ [t]i

δ

∫
Ω

(σ − σε) : E ˙̂u+ ε(E ˙̂u− Eu̇ε) : E ˙̂u dx ds

+
∫ [t]i

δ

∫
∂Ω
S( ˙̂u− u̇ε) · ˙̂u dHn−1 ds

)
dt

(5.3.32)

goes to 0 as N → ∞. Thus,

lim inf
N→∞

∫ T

0

∫ [t]i

δ
⟨¨̃u− üε| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt

+ lim sup
N→∞

∫ T

0

∫ [t]i

δ

∫
Ω

(σ − σε) : E ˙̂u dx ds dt

≤ lim sup
N→∞

∫ T

0

(∫ [t]i

δ
⟨¨̃u− üε| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds

+
∫ [t]i

δ

∫
Ω

(σ − σε) : E ˙̂u dHn−1 ds

)
≤ 0.

(5.3.33)
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5. Dissipative boundary conditions

By the additive decomposition of the symmetric gradient with respect to the piecewise affine
interpolation, we obtain that∫ T

0

∫ [t]i

δ

∫
Ω

(σ − σε) : E ˙̂u dx ds dt =
∫ T

0

∫ [t]i

δ

∫
Ω

(σ − σε) : ( ˙̂e+ ˙̂p) dx ds dt.

By the fact that σ −⇀
N

σε in L∞(0, T ;L2(Ω;Mn
sym)), there exist τε ∈ L∞(0, T ;L2(Ω;Mn

sym)) such
that PK(σ) −⇀

N
τε in L∞(0, T ;L2(Ω;Mn

sym)) and τε ∈ K almost everywhere. Furthermore, we
have that∫ T

0

∫ [t]i

δ

∫
Ω

(σ − σε) : ˙̂p dx ds dt =
∫ T

0

∫ [t]i

δ

∫
Ω
H( ˙̂p) + ε

2
∣∣∣ ˙̂p∣∣∣2 + 1

2ε |(PK(σ) − σ|2 − σε : ˙̂p dx ds dt

From the inequality above and by the weak convergences of ˙̂p, σ and PK(σ) we obtain that

lim inf
N→∞

∫ T

0

∫ [t]i

δ

∫
Ω

(σ−σε) : ˙̂p dx ds dt ≥
∫ T

0

∫ [t]i

δ

∫
Ω
H(ṗε)+ ε

2 |ṗε|2+ 1
2ε |τε − σε|2−σε : ṗε dx ds dt

(5.3.34)
In view of the weak convergence of PK(σ) and by the fact that

˙̂p(t) = 1
ε

(σ − PK(σ))

we deduce that
ṗε(t) = 1

ε
(σε − τε).

From the last expression and by (5.3.34), we obtain that

lim inf
N→∞

∫ T

0

∫ [t]i

δ

∫
Ω

(σ − σε) : ˙̂p dx ds dt ≥
∫ T

0

∫ [t]i

δ

∫
Ω
H(ṗε) − τε : ṗε dx ds dt ≥ 0, (5.3.35)

where in the last inequality we used the flow rule. Thus, by (5.3.35), for N large enough, we
deduce that ∫ T

0

∫ [t]i

δ

∫
Ω

(σ − σε) : ˙̂p dx ds dt ≥ 0.

Thus,

lim sup
N→∞

∫ T

0

∫ [t]i

δ

∫
Ω

(σ − σε) : E ˙̂u dx ds dt ≥ lim sup
N→∞

∫ T

0

∫ [t]i

δ

∫
Ω

(σ̂ − σε) : (ê− eε) dx ds dt

= lim sup
N→∞

∫ T

0
Q(ê([t]i) − eε([t]i)) dt,

where we use the fact that ê(0) = −eε(0). Moreover, ê([t]i) = e([t]i) for every t ∈ [0, T ], hence

lim sup
N→∞

∫ T

0

∫ [t]i

δ

∫
Ω

(σ − σε) : E ˙̂u dx ds dt ≥ lim sup
N→∞

∫ T

0
Q(e([t]i) − eε([t]i)) dt.

In the sequel, we are going to present some estimates for the following term∫ T

0

∫ [t]i

δ
⟨¨̃u− üε| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt

=
∫ T

0

∫ [t]i

δ
⟨¨̃u| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt−

∫ T

0

∫ [t]i

δ
⟨üε| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt

+
∫ T

0

∫ [t]i

δ
⟨üε|u̇ε − ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt.
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5.3. Dynamic elasto-plasticity

First, we observe that

lim
N→∞

∫ T

0

∫ [t]i

δ
⟨üε|u̇ε − ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt = 0.

Thanks to the integration by parts, we have that∫ T

0

∫ [t]i

δ
⟨¨̃u| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt ≥ 1

2

(∥∥∥ ˙̂u
∥∥∥2

L2(Ω;Rn)
− ∥v0∥2

L2(Ω;Rn)

)
.

In view of the lower semicontinuity of
∥∥∥ ˙̂u
∥∥∥2

L2(Ω;Rn)
and from the inequality above, we obtain that

lim inf
N→∞

∫ T

0

∫ [t]i

δ
⟨¨̃u| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt ≥ 1

2
(
∥u̇ε∥2

L2(Ω;Rn) − ∥v0∥2
L2(Ω;Rn)

)
.

By [16, Theorem 1.19], we have that∫ T

0

∫ [t]i

δ
⟨üε|u̇ε⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt = 1

2

∫ T

0

(
∥u̇ε∥2

L2(Ω;Rn)([t]i) − ∥u̇ε∥2
L2(Ω;Rn)(δ)

)
dt

Since u̇ε ∈ C0([0, T ];L2(Ω;Rn)) and by the expression above, we have that

lim
N→Rn

∫ T

0

∫ [t]i

δ
⟨üε|u̇ε⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt = 1

2

∫ T

0

(
∥u̇ε∥2

L2(Ω;Rn)(t) − ∥u̇ε∥2
L2(Ω;Rn)(0)

)
dt.

As a consequence and summarizing all the inequalities above, we can deduce that

lim inf
N→∞

∫ T

0

∫ [t]i

δ
⟨¨̃u− üε| ˙̂u⟩(H1(Ω;Rn))′,H1(Ω;Rn)(s) ds dt ≥ 0. (5.3.36)

Thanks to (5.3.33) and (5.3.36), and up to a relabeling, we obtain that σ converges strongly to σ̇ε in
L2(0, T ;L2(Ω;Mn

sym)). Furthermore, by the fact that σ−σ̂ → 0 strongly in L2(0, T ;L2(Ω;Mn
sym)),

we can conclude the proof of this lemma.

We conclude this section with the following remark: by applying Lemma 5.3.4 and the Lipschitz
continuity of the projection on K, we get that

˙̂p = −1
ε

(PK(σ) − σ) → −1
ε

(PK(σε) − σε) = ṗε strongly in L2(0, T ;L2(Ω;Mn
sym)). (5.3.37)

Uniqueness
We proceed with the classical method to prove the uniqueness of solutions. More precisely, we
consider two different solutions (u1

ε, e
1
ε, p

1
ε) and (u2

ε, e
2
ε, p

2
ε) associated to the initial conditions

(u0, e0, p0, v0) and source terms f and Ev0ν. By subtracting the two equations of motion associated
to both solutions, we see that

ü1
ε − ü2

ε − div((σ1
ε + εEu̇1

ε) − (σ2
ε + εEu̇2

ε)) = 0 in L2(0, T ;H−1(Ω;Rn)). (5.3.38)

Considering to u̇1
ε − u̇2

ε ∈ L2(0, T ;H1(Ω;Rn)) as test function in the distribution defined in
(5.3.38) we have that∫ s

0
⟨ü1

ε − ü2
ε|u̇1

ε − u̇2
ε⟩(H1(Ω;Rn))′,H1(Ω;Rn)dt

−
∫ s

0
⟨div((σ1

ε + εEu̇1
ε) − (σ2

ε + εEu̇2
ε))|u̇1

ε − u̇2
ε⟩(H1(Ω;Rn))′,H1(Ω;Rn)dt = 0.
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5. Dissipative boundary conditions

By the integration by parts we infer from the previous expression that∫ s

0
⟨ü1

ε − ü2
ε|u̇1

ε − u̇2
ε⟩(H1(Ω;Rn))′,H1(Ω;Rn)dt+

∫ s

0

∫
Ω

(σ1
ε − σ2

ε) : (Eu̇1
ε − Eu̇2

ε) dx dt

+ ε

∫ s

0

∫
Ω

∣∣∣Eu̇1
ε − Eu̇2

ε

∣∣∣2 dx dt
−
∫ s

0

∫
∂Ω

(u̇1
ε − u̇2

ε) · ((σ1
ε + εEu̇1

ε) − (σ2
ε + εEu̇2

ε))ν dH1 dt = 0

(5.3.39)

Notice that the last term in the left side of (5.3.39) is equal to∫ s

0

∫
∂Ω
S(u̇1

ε − u̇2
ε) : (u̇1

ε − u̇2
ε) dH1 dt (5.3.40)

which is greater than 0 by (H4). Moreover, we have that

∫ s

0
⟨ü1

ε − ü2
ε|u̇1

ε − u̇2
ε⟩(H1(Ω;Rn))′,H1(Ω;Rn)dt =

∥∥u̇1
ε(s) − u̇2

ε(s)
∥∥2

L2(Ω;Rn)
2 , (5.3.41)

where we used the fact that u̇1
ε(0) = u̇2

ε(0) = 0. Finally, by the additive decomposition of the
symmetric gradient, we have that∫ s

0

∫
Ω

(σ1
ε − σ2

ε) : (Eu̇1
ε − Eu̇2

ε) dx dt

= Q(e1
ε(s) − e2

ε(s)) +
∫ s

0

∫
Ω

(σ1
ε − σ2

ε) : (ṗ1
ε − ṗ2

ε) dx dt

= Q(e1
ε(s) − e2

ε(s)) + 1
ε

∫ s

0

∫
Ω

(σ1
ε − σ2

ε) : (σ1
ε − σ2 − (PK(σ2

ε) − PK(σ1
ε)))dx dt,

(5.3.42)

where we used the fact that e1
ε(0) = e2

ε(0) = e0 and (5.3.37). By (5.3.39)–(5.3.42) we conclude
that e1

ε = e2
ε and u̇1

ε = u̇2
ε. Since u1

ε(0) = u2
ε(0) = u0 we deduce that u1

ε = u2
ε, and by the kinetic

compatibility we obtain that p1
ε = p2

ε.

Remark 5.3.5. In view of the uniqueness of solutions, it is very well known that we do not
have to subtract subsequences in the converges treated before in this section.

Energy balance

By integrating the equation of motion against the function (s, x) 7→ 1[0,t](s)u̇ε(s, x), it follows
that∫ t

0
⟨üε|u̇ε⟩(H1(Ω;Rn))′,H1(Ω;Rn)ds+

∫ t

0

∫
Ω

(σε + εEu̇ε) : Eu̇ε dx ds+
∫ t

0

∫
∂Ω
Su̇ε · u̇ε dHn−1 ds

=
∫ t

0

∫
Ω
f · u̇ε dx ds+

∫ t

0

∫
∂Ω
εEv0ν · u̇ε dHn−1 ds.

(5.3.43)

From the additive decomposition of Eu̇ε and by (5.3.43) yields that

1
2
(
∥u̇ε(t)∥2

L2(Ω;Rn) − ∥u̇ε(0)∥2
L2(Ω;Rn)

)
+Q(eε(t)) −Q(eε(0)) + ε

∫ t

0

∫
Ω

|Eu̇ε|2 dx ds

+
∫ t

0

∫
Ω
ṗε : σε dx ds+

∫ t

0

∫
∂Ω
Su̇ε · u̇ε dHn−1 ds

=
∫ t

0

∫
Ω
f · u̇ε dx ds+

∫ t

0

∫
∂Ω
εEv0ν · u̇ε dHn−1 ds.

(5.3.44)
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Since ṗε = −1
ε (PK(σε) − σε), it follows that ṗε : σε = ε|ṗε|2 +H(ṗε). By inserting the previous

equivalence of ṗε : σε in (5.3.44), we obtain that

1
2∥u̇ε(t)∥2

L2(Ω;Rn) +Q(eε(t)) + ε

∫ s

0

∫
Ω

|Eu̇ε|2 dx ds+
∫ t

0

∫
Ω
H(ṗε) dx ds+

∫ t

0

∫
∂Ω
Su̇ε · u̇ε dHn−1 ds

+ ε

∫ t

0

∫
Ω

|ṗε|2 dx ds

= 1
2∥u̇ε(0)∥2

L2(Ω;Rn) +Q(e(0)) +
∫ t

0

∫
Ω
f · u̇ε dx ds+

∫ t

0

∫
∂Ω
εEv0ν · u̇ε dHn−1 ds,

and thus we obtained the energy balance stated in Theorem 5.3.2 (see (5.3.4)).

A posteriori estimates
In this section, we follow the program of [14, 70]. We begin by extending, for negative times, the
functions uε, eε, pε, f and g, more precisely, we define

uε(t) := u0 + tv0, eε(t) := e0, pε(t) := p0 and f(t) = f(0),

for any t < 0. We also introduce the following notation

∂h
t φ := φ(t) − φ(t− h)

h
.

Let t ∈ [0, T ] and left h ∈ (0, t). We consider as a test function of the equation of motion the
function φ ∈ L2(0, T + h;H1(Ω;Rn)), by integrating by parts we see that∫ T

0
⟨üε(t)|φ(t)⟩(H1(Ω;Rn))′,H1(Ω;Rn)dt+

∫ T

0

∫
Ω

(σε(t) + εEu̇ε(t)) : Eφ(t) dx dt

+
∫ T

0

∫
∂Ω
Su̇ε(t) · φ(t) dHn−1 dt

=
∫ T

0

∫
Ω
f(t) · φ(t) dx dt+

∫ T

0

∫
∂Ω
εEv0ν(t) · φ(t) dHn−1 dt,

(5.3.45)

and by using the same arguments at the time t− h we have that∫ T +h

h
⟨üε(t− h)|φ(t)⟩(H1(Ω;Rn))′,H1(Ω;Rn)dt+

∫ T +h

h

∫
Ω

(σε(t− h) + εEu̇ε(t− h)) : Eφ(t) dx dt

+
∫ T +h

0

∫
∂Ω
Su̇ε(t− h) · φ(t) dHn−1 dt

=
∫ T +h

0

∫
Ω
f(t− h) · φ(t) dx dt+

∫ T +h

0

∫
∂Ω
εEv0ν(t− h) · φ(t) dHn−1 dt.

(5.3.46)

We consider, in the difference of (5.3.45) and (5.3.46), the test function

φ(t, x) := 1[0,s](t)
u̇ε(t) − u̇ε(t− h)

h
=: 1[0,s](t)∂t

hu̇ε(t)

and by the definition for negative times we can deduce that∫ s

0
⟨∂t

hüε(t)|∂t
hu̇ε(t)⟩(H1(Ω;Rn))′,H1(Ω;Rn)dt+

∫ s

0

∫
Ω
∂t

h(σε(t) + εEu̇ε(t)) : E∂t
hu̇ε(t) dx dt

+
∫ s

0

∫
∂Ω
S∂t

hu̇ε(t) · ∂t
hu̇ε(t) dHn−1 dt

= 1
h

∫ h

0

∫
Ω

(div(σ0 + εEv0) + f(0)) · ∂t
hu̇ε(t) dx dt+

∫ s

0

∫
Ω
∂t

hf(t) · ∂t
hu̇ε(t) dx dt.

(5.3.47)

127
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By applying additive decomposition of Eu̇ε we see that
∫ s

0

∫
Ω
E∂t

hu̇ε(t)) : ∂t
hσε(t) dx dt

=
∫ s

0

∫
Ω
∂t

hσ̇ε(t)) : ∂t
hσε(t) dx dt+

∫ s

0

∫
Ω
∂t

hṗε(t)) : ∂t
hσε(t) dx dt

− 1
h

∫ h

0

∫
Ω
Ev0 : ∂t

hσε(t) dx dt. (5.3.48)

Inserting (5.3.48) in the right side of (5.3.47) and by the integration by parts we see that

1
2

(∥∥∥∂t
hu̇ε(s)

∥∥∥2

L2(Ω;Rn)
−
∥∥∥∂t

hu̇ε(0)
∥∥∥2

L2(Ω;Rn)
+Q(∂t

heε(s)) −Q(∂t
heε(0))

)
+ ε

∫ s

0

∫
Ω

∣∣∣E∂t
hu̇ε(t)

∣∣∣2 dx dt+
∫ s

0

∫
Ω
∂t

hṗε(t)) : ∂t
hσε(t) dx dt− 1

h

∫ h

0

∫
Ω
Ev0 : ∂t

hσε(t) dx dt

+
∫ s

0

∫
∂Ω
S∂t

hu̇ε(t) · ∂t
hu̇ε(t) dHn−1 dt

≥ 1
2

(∥∥∥∂t
hu̇ε(s)

∥∥∥2

L2(Ω;Rn)
+
∥∥∥∂t

hσε(s)
∥∥∥2

L2(Ω;Mn
sym)

)
+ ε

∫ s

0

∫
Ω

∣∣∣E∂t
hu̇ε(t)

∣∣∣2 dx dt
− 1
h

∫ h

0

∫
Ω
Ev0 : ∂t

hσε(t) dx dt+
∫ s

0

∫
∂Ω
S∂t

hu̇ε(t) · ∂t
hu̇ε(t) dHn−1 dt

(5.3.49)

By (5.3.47) and (5.3.49) we obtain that

1
2

(∥∥∥∂t
hu̇ε(s)

∥∥∥2

L2(Ω;Rn)
+Q(∂t

heε(s))
)

+ ε

∫ s

0

∫
Ω

∣∣∣E∂t
hu̇ε(t)

∣∣∣2 dx dt
+
∫ s

0

∫
∂Ω
S∂t

hu̇ε(t) · ∂t
hu̇ε(t) dHn−1 dt

≤ 1
h

∫ h

0

∫
Ω

(div(σ0 + εEv0) + f(0)) · ∂t
hu̇ε(t) dx dt+ 1

h

∫ h

0

∫
Ω
Ev0 : ∂t

hσε(t) dx dt

+
∫ s

0

∫
Ω
∂t

hf(t) · ∂t
hu̇ε(t) dx dt.

From this follows that

1
2

(∥∥∥∂t
hu̇ε(s)

∥∥∥2

L2(Ω;Rn)
+Q(∂t

heε(s))
)

+ ε

∫ s

0

∫
Ω

∣∣∣E∂t
hu̇ε(t)

∣∣∣2 dx dt
+
∫ s

0

∫
∂Ω
S∂t

hu̇ε(t) · ∂t
hu̇ε(t) dHn−1 dt

≤ ∥div(σ0 + εEv0) + f(0)∥L2(Ω;Rn) sup
t∈[0,T ]

∥∥∥∂t
hu̇ε(t)

∥∥∥
L2(Ω;Rn)

+ ∥Ev0∥L2(Ω;Mn
sym) sup

t∈[0,T ]

∥∥∥∂t
hσε(t)

∥∥∥
L2(Ω;Mn

sym)
+
∥∥∥∂t

hf(t)
∥∥∥

L2(Ω;Rn)
sup

t∈[0,T ]

∥∥∥∂t
hu̇ε(t)

∥∥∥
L2(Ω;Rn)

.

Therefore, there exists c independent of ε and S such that

sup
t∈[0,T ]

∥∥∥∂t
hu̇ε(t)

∥∥∥
L2(Ω;Rn)

+ sup
t∈[0,T ]

∥∥∥∂t
hσε(t)

∥∥∥
L2(Ω;Mn

sym)
+

√
ε
∥∥∥E∂t

hu̇ε(t)
∥∥∥

L2(0,T ;L2(Ω;Mn
sym))

+
(∫ s

0

∫
∂Ω
S∂t

hu̇ε(t) · ∂t
hu̇ε(t) dHn−1 dt

) 1
2

≤ c

(
∥div(σ0 + εEv0) + f(0)∥L2(Ω;Rn) + ∥Ev0∥L2(Ω;Mn

sym) +
∥∥∥∂t

hf
∥∥∥

L1(0,T ;L2(Ω;Rn))

)
.

(5.3.50)
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5.3. Dynamic elasto-plasticity

Letting h → 0 in (5.3.50), we get that

sup
t∈[0,T ]

∥üε(t)∥L2(Ω;Rn) + sup
t∈[0,T ]

∥σ̇ε(t)∥L2(Ω;Mn
sym) +

√
ε∥Eüε(t)∥L2(0,T ;L2(Ω;Mn

sym))

+
(∫ s

0

∫
∂Ω
S∂t

hu̇ε(t) · ∂t
hu̇ε(t) dHn−1 dt

) 1
2

≤ c

(
∥div(σ0 + εEv0) + f(0)∥L2(Ω;Rn) + ∥Ev0∥L2(Ω;Mn

sym) +
∥∥∥ḟ∥∥∥

L2(Ω;Rn)

)
It follows from the fact that üε ∈ L∞(0, T ;L2(Ω;Rn)) and by the distributional equation of
motion, i.e., üε + div(σε + εEu̇ε) = f in D′((0, T ) × Ω) that

div(σε + εEu̇ε) ∈ L2(0, T ;L2(Ω;Rn))

and thus
σε + εEu̇ε ∈ L2(0, T ;H(div,Ω)).

Hence, for every φ ∈ C∞
0 (0, T ;H1(Ω;Rn)) we see that

−
∫ T

0

∫
Ω
u̇ε · φ̇ dx dt+

∫ T

0

∫
Ω

(σε + εEu̇ε) : Eφdx dt+
∫ T

0

∫
∂Ω
Su̇ε · φdHn−1 dt

=
∫ T

0

∫
Ω
f · φdx dt+

∫ T

0

∫
∂Ω
εEv0ν · φdHn−1 dt.

By the integration by parts, from the equality above, it yields that∫ T

0

∫
Ω
üε · φdx dt−

∫ T

0

∫
Ω

div(σε + εEu̇ε) · φdx dt−
∫ T

0

∫
Ω
f · φdx dt

=
∫ T

0
⟨εEv0ν − (σε + εEu̇ε)ν − Su̇ε|φ⟩H−1/2(∂Ω),H1/2(∂Ω) dt.

Thanks to the fact that üε + div(σε + εEu̇ε) = f a.e. in (0, T ) × Ω we obtain that∫ T

0
⟨εEv0ν − (σε + εEu̇ε)ν − Su̇ε|φ⟩H−1/2(∂Ω),H1/2(∂Ω) dt = 0.

Hence, by density arguments we conclude that

εEv0ν − (σε + εEu̇ε)ν − Su̇ε = 0 in L2(0, T ;H−1/2(∂Ω))

which proves the assertion for the dissipative boundary condition in Theorem 5.3.2 and concludes
the proof of Theorem 5.3.2.

Remark 5.3.6. Unfortunately, to prove Theorem 5.3.1 by means of an asymptotic analysis
when ε → 0 to the solutions provided in Theorem 5.3.2, it is needed that g ≡ 0. In other words,
by assuming (H1)-(H6) we only can obtain homogeneous dissipative boundary conditions, more
precisely, we have in Item 5 of Theorem 5.3.2 the following condition:

Su̇ε + (σε + εEu̇ε)ν = εEv0 in L2(0, T ;L2(∂Ω;Rn)).

This is a consequence that in Theorem 5.3.2, the energy balance and the a posteriori estimates
strongly depend on g. Another consequence of considering g ̸= 0 is that we can not deduce the
crucial strong convergences obtained in [11, Section 4.4] and thus Theorem 5.3.1 does not hold.
That is the main reason that in Theorem 5.3.1 we consider only (H5) and (H6).
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5. Dissipative boundary conditions

5.3.3. Derivation of mixed boundary condition
Our aim is to show through an asymptotic analysis how it is possible to obtain homogeneous mixed
boundary conditions starting from dissipative boundary conditions. We consider a boundary
matrix of the form

S(x) = Sλ(x) :=
(
λ1ΓD

(x) + 1
λ

1ΓN
(x)
)

Id, λ > 0.

Remark 5.3.7. Note that since

∥ · ∥Sλ(x)−1 =
(
λ1ΓD

(x) + 1
λ

1ΓN
(x)
)−1

| · |,

for any λ > 0 and all x ∈ ∂Ω \ Σ, the orthogonal projection P−Kν(x) onto the closed and convex
set −Kν(x) concerning the scalar product ⟨·, ·⟩Sλ(x)−1 coincides with the orthogonal projection
concerning the canonical Euclidean scalar product of Rn. It is in particular independent of λ.

We will need to strengthen assumption (H1) into

(H ′
1) Reference configuration. Let Ω ⊂ Rn be a bounded open set with C3 boundary. We

assume that ∂Ω is decomposed as the following disjoint union

∂Ω = ΓD ∪ ΓN ∪ Σ,

where ΓD and ΓN are open sets in the relative topology of ∂Ω, and Σ = ∂|∂ΩΓD = ∂|∂ΩΓN is a
(n− 2)-dimensional submanifold of class C3.

Moreover, the initial condition needs to be adapted to our mixed boundary conditions.

(H ′
6) The initial conditions. Let u0 ∈ H1(Ω;Rn), v0 ∈ H2(Ω;Rn), e0 ∈ L2(Ω;Mn

sym), p0 ∈
L2(Ω;Mn

sym) and σ0 := Ae0 ∈ H2(Ω;Mn
sym) be such that

Eu0 = e0 + p0 in Ω,
v0 = 0 on ΓD,

σ0ν = 0 on ΓN ,

σ0 +B(0, r) ⊂ K in Ω for some r > 0.

First, we are going to construct a sequence of initial data (uλ
0 , v

λ
0 , e

λ
0 , p

λ
0) satisfying (H6) with

S = Sλ, and approximating (u0, v0, e0, p0) as λ → ∞. This is the object of the following result.

Lemma 5.3.8. Let n = 2, 3. Under assumptions (H ′
1) and (H ′

6), for every λ > 0, there exists
(vλ

0 , σ
λ
0 ) ∈ H2(Ω;Rn) × K such that (vλ

0 , σ
λ
0 ) → (v0, σ0) strongly in H2(Ω;Rn) × H(div,Ω) as

λ → ∞ and (
λ1ΓD

+ 1
λ

1ΓN

)
vλ

0 + σλ
0ν = 0 Hn−1-a.e. on ∂Ω. (5.3.51)

Proof. Since ∂Ω has a C3 boundary then its normal ν belongs to C2(∂Ω;Rn) and, thanks to the
Trace Theorem in Sobolev spaces, the trace of σ0 belongs to H 3

2 (∂Ω;Mn
sym). As a consequence,

the product σ0ν belongs to H 3
2 (∂Ω;Rn) and there exists an extension v̂0 ∈ H2(Ω;Rn) whose

trace on ∂Ω coincides with −σ0ν with the estimate

∥v̂0∥H2(Ω;Rn) ≤ C∥σ0ν∥H3/2(∂Ω;Rn),

where C > 0 is a constant only depending on n and Ω. For each λ > 0, let us define

vλ
0 := v0 + λ−1v̂0 ∈ H2(Ω;Rn).
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5.3. Dynamic elasto-plasticity

It follows that vλ
0 → v0 strongly in H2(Ω;Rn) as λ → ∞. Now, we consider z0 ∈ H1(Ω;Rn) as

the unique weak solution of the boundary value problem{
z0 − div(e(z0)) = 0 in Ω,
e(z0)ν = −v0 on ∂Ω.

(5.3.52)

According to Korn’s inequality and the Lax-Milgram Lemma such a solution exists and is unique.
Using that Ω has a C3-boundary and that v0 ∈ H

3
2 (∂Ω;Rn), elliptic regularity ensures that

z0 ∈ H3(Ω;Rn). Let us define
σλ

0 := σ0 + λ−1e(z0)

In particular, σλ
0 → σ0 strongly in H(div,Ω) as λ → ∞. On ΓD, we observe that

λvλ
0 |ΓD

+ σλ
0ν|ΓD

= λv0|ΓD
+ v̂0|ΓD

+ σ0ν|ΓD
+ 1
λ
e(z0)ν|ΓD

= 0,

where we have used the fact that e(z0)ν = −v0 = 0 and v̂0 = −σ0ν on ΓD. Similarly, on ΓN we
have

1
λ
vλ

0 |ΓN
+ σλ

0ν|ΓN
= 1
λ
v0|ΓN

+ 1
λ2 v̂0|ΓN

+ σ0ν|ΓN
+ 1
λ
e(z0)ν|ΓN

= 0,

where we have used the fact that v̂0 = −σ0ν = 0 and e(z0)ν = −v0 on ΓN . We conclude (5.3.51)
thanks to the fact that ∂Ω = ΓD ∪ ΓN ∪ Σ and Hn−1(Σ) = 0.

It remains to check that σλ
0 ∈ K a.e. in Ω. To this aim, we have by Sobolev embedding (recall

that n = 2 or 3) that e(z0) ∈ H2(Ω;Mn
sym) ⊂ L∞(Ω;Mn

sym). Let r > 0 be the constant given by
the last property of hypothesis (H ′

6) and λ > 0 large enough so that λ−1∥e(z0)∥L∞(Ω;Mn
sym) < r.

It thus follows that σλ
0 ∈ σ0 +B(0, r) ⊂ K a.e. in Ω.

Given the initial data (u0, v
λ
0 , e

λ
0 := A−1σλ

0 , p
λ
0 := Eu0 − A−1σλ

0 ) satisfying (H6), we denote by
(uλ, eλ, pλ) the associated solution given by Theorem 5.3.1. Our aim is to study the asymptotic
behavior of the solutions (uλ, eλ, pλ) when λ → ∞ in order to recover Dirichlet (ΓN = ∅),
Neumann (ΓD = ∅) and mixed boundary conditions in the other cases.

Our main result is the following:

Theorem 5.3.9. Assume that (H ′
1), (H2), (H3), (H5) and (H ′

6) hold. For each λ > 0, let (vλ
0 , σ

λ
0 )

be given by Lemma 5.3.8, and let (uλ, eλ, pλ) be the solution given by Theorem 5.3.1 associated
with the boundary matrix Sλ defined in (5.1.9) and the initial data (u0, v

λ
0 , e

λ
0 := A−1σλ

0 , p
λ
0 :=

Eu0 − A−1σλ
0 ). Then,

uλ ⇀ u weakly* in W 2,∞(0, T ;L2(Ω;Rn)),
eλ ⇀ e weakly* in W 1,∞(0, T ;L2(Ω;Mn

sym)),
σλ ⇀ σ weakly* in W 1,∞(0, T ;L2(Ω;Mn

sym)),
pλ(t) ⇀ p(t) weakly* in M(Ω;Mn

sym) for all t ∈ [0, T ],

where (u, e, p) is the unique triple satisfying
u ∈ W 2,∞(0, T ;L2(Ω;Rn)) ∩ C0,1([0, T ];BD(Ω)),
e ∈ W 1,∞(0, T ;L2(Ω;Mn

sym)),
σ := Ae ∈ W 1,∞(0, T ;L2(Ω;Mn

sym)) ∩ L∞(0, T ;H(div,Ω)),
p ∈ C0,1([0, T ]; M(Ω ∪ ΓD;Mn

sym)),

together with
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5. Dissipative boundary conditions

1. The initial conditions:

u(0) = u0, u̇(0) = v0, e(0) = e0, p(0) = p0;

2. The kinematic compatibility: for all t ∈ [0, T ],{
Eu(t) = e(t) + p(t) in Ω,
p(t) = −u(t) ⊙ νHn−1 on ΓD;

3. The equation of motion:

ü− divσ = f in L2(0, T ;L2(Ω;Rn));

4. The stress constraint: for every t ∈ [0, T ],

σ(t) ∈ K a.e in Ω;

5. The boundary condition

σν = 0 in L2(0, T ;L2(ΓN ;Rn));

6. The flow rule: if one of the following conditions are satisfied:

(i) Dirichlet case: Ω = ΓD,

(ii) Neumann case: Ω = ΓN ,

(iii) Mixed case in dimension n = 2: ΓD ̸= ∅, ΓN ̸= ∅ and Σ finite,

(iv) Mixed case in dimension n = 3: ΓD ̸= ∅, ΓN ̸= ∅ and

K = KD ⊕ (RId) := {σ ∈ M3
sym : σD ∈ KD},

for some compact and convex set KD ⊂ M3
D containing zero in its interior,

then, for a.e. t ∈ [0, T ],

H(ṗ(t)) = [σ(t) : ṗ(t)] in M(Ω ∪ ΓD).

As explained before, the solution (u, e, p) to the previous boundary value problem will be obtained
by means of an asymptotic analysis as λ → ∞ of the solution (uλ, eλ, pλ) of the dissipative
boundary value in the Theorem 5.3.1. This analysis is based in the spirit of [13, Theorem 5.1] in
the antiplane case.

5.3.4. Weak compactness and passing to the limit into linear equations
We observe that the constant C∗ > 0 appearing in estimate (5.3.3) of Theorem 5.3.1 depends on
the various norms ∥u0∥H1(Ω;Rn), ∥vλ

0 ∥H2(Ω;Rn), ∥eλ
0∥L2(Ω;Mn

sym), ∥σλ
0 ∥H(div,Ω) and ∥pλ

0∥L2(Ω;Mn
sym)

of the initial data. Since, by Lemma 5.3.8, these quantities are independent of λ, it follows that
the constant C∗ is independent of λ as well. This is essential to get uniform bounds on the
sequence {(uλ, eλ, pλ)}λ>0 and then weak compactness thereof.

The following compactness result follows from standard argument as, e.g., in [13, Section 5]. The
weak convergences allow us to obtain, in the limit, the initial conditions, the kinetic compatibility,
the equation of motion and the stress constraint,
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Lemma 5.3.10. Assume that (H ′
1), (H2), (H3), (H5) and (H ′

6) hold. There exist a subsequence
(not relabeled) and 

u ∈ W 2,∞(0, T ;L2(Ω;Rn)) ∩ C0,1([0, T ];BD(Ω)),
e ∈ W 1,∞(0, T ;L2(Ω;Mn

sym)),
σ ∈ W 1,∞(0, T ;L2(Ω;Mn

sym)) ∩ L∞(0, T ;H(div,Ω)),
p ∈ C0,1([0, T ]; M(Ω;Mn

sym)),

such that as λ → ∞, 
uλ ⇀ u weakly* in W 2,∞(0, T ;L2(Ω;Rn)),
eλ ⇀ e weakly* in W 1,∞(0, T ;L2(Ω;Mn

sym)),
σλ ⇀ σ weakly* in W 1,∞(0, T ;L2(Ω;Mn

sym)),

and, for every t ∈ [0, T ], 

uλ(t) ⇀ u(t) weakly in L2(Ω;Rn),
uλ(t) ⇀ u(t) weakly* in BD(Ω),
u̇λ(t) ⇀ u̇(t) weakly in L2(Ω;Rn),
eλ(t) ⇀ e(t) weakly in L2(Ω;Mn

sym),
σλ(t) ⇀ σ(t) weakly in L2(Ω;Mn

sym),
pλ(t) ⇀ p(t) weakly* in M(Ω;Mn

sym).

Moreover, there hold:

• the initial conditions: u(0) = u0, u̇(0) = v0, e(0) = e0, p(0) = p0;

• the additive decomposition: for all t ∈ [0, T ],

Eu(t) = e(t) + p(t) in M(Ω;Mn
sym);

• the equation of motion: ü− divσ = f in L2(0, T ;L2(Ω;Rn));

• the stress constraint: for every t ∈ [0, T ], σ(t) = Ae(t) ∈ K a.e in Ω;

• the Neumann condition: σν = 0 in L2(0, T ;L2(ΓN ; ĹRn)).

Proof. According to the energy balance (5.3.2) and estimate (5.3.3), we infer that

∥u̇λ∥L∞(0,T ;L2(Ω;Rn)) + ∥σλ∥L∞(0,T ;L2(Ω;Mn
sym)) + ∥ṗλ∥L1(0,T ;M(Ω;Mn

sym))

+ 1√
λ

∥σλν∥L2(0,T ;L2(ΓD;Rn))+
√
λ∥σλν∥L2(0,T ;L2(ΓN ;Rn))

+
∫ T

0

∫
∂Ω
ψλ(x, u̇λ) dHn−1 ds ≤ C, (5.3.53)

where ψλ is given by (5.3.1) with S = Sλ, and

∥üλ∥2
L∞(0,T ;L2(Ω;Rn)) + ∥ėλ∥2

L∞(0,T ;L2(Ω;Mn
sym)) ≤ C∗.

In both previous estimates, the constants C > 0 and C∗ > 0 are independent of λ. Using that
uλ ∈ W 2,∞(0, T ;L2(Ω;Rn)) and u0 ∈ L2(Ω;Rn), we get

sup
λ>0

∥uλ∥W 2,∞(0,T ;L2(Ω;Rn)) < ∞,
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and similarly, since eλ ∈ W 1,∞(0, T ;L2(Ω;Mn
sym)) and e0 ∈ L2(Ω;Mn

sym),

sup
λ>0

∥eλ∥W 1,∞(0,T ;L2(Ω;Mn
sym)) < ∞.

We can thus extract a subsequence (not relabeled) and find u ∈ W 2,∞(0, T ;L2(Ω;Rn)) and
e ∈ W 1,∞(0, T ;L2(Ω;Mn

sym)) such that, as λ → ∞,{
uλ ⇀ u weakly* in W 2,∞(0, T ;L2(Ω;Rn)),
eλ ⇀ e weakly* in W 1,∞(0, T ;L2(Ω;Mn

sym)).

Setting σ := Ae ∈ W 1,∞(0, T ;L2(Ω;Mn
sym)) we also have

σλ ⇀ σ weakly* in W 1,∞(0, T ;L2(Ω;Mn
sym)),

and using the equation of motion leads to

divσλ = üλ − f ⇀ ü− f weakly* in L∞(0, T ;L2(Ω;Rn)).

By uniqueness of the distributional limit, we infer that divσ = ü− f ∈ L∞(0, T ;L2(Ω;Rn)) and,
thus, σ ∈ L∞(0, T ;H(div,Ω)).

Owing to Ascoli-Arzela Theorem, for every t ∈ [0, T ],
uλ(t) ⇀ u(t) weakly in L2(Ω;Rn),
u̇λ(t) ⇀ u̇(t) weakly in L2(Ω;Rn),
eλ(t) ⇀ e(t) weakly in L2(Ω;Mn

sym),
σλ(t) ⇀ σ(t) weakly in L2(Ω;Mn

sym).

We now derive weak compactness on the sequence {pλ}λ>0 of plastic strains. Thanks to the
energy balance between two arbitrary times 0 ≤ t1 ≤ t2 ≤ T together with (5.2.2),

r

∫ t2

t1
|ṗλ(s)|(Ω) ds ≤

∫ t2

t1
H(ṗλ(s))(Ω) ds ≤ 1

2

∫
Ω

(u̇λ(t1) − u̇λ(t2)) · (u̇λ(t1) + u̇λ(t2)) dx

+1
2

∫
Ω

(σλ(t1) − σλ(t2)) : (eλ(t1) + eλ(t2)) dx

+
∫ t2

t1

∫
Ω
f · u̇λ dx ds.

(5.3.54)

By (H5), using that f ∈ L∞(0, T ;L2(Ω;Rn)), that {u̇λ}λ>0 is bounded in L∞(0, T ;L2(Ω;Rn))
and that {σλ}λ>0 is bounded in L∞(0, T ;L2(Ω;Mn

sym)), we can find a constant C > 0 independent
of λ such that

|pλ(t1) − pλ(t2)|(Ω) ≤
∫ t2

t1
|ṗλ(s)|(Ω)ds ≤ C(t2 − t1).

Applying Ascoli-Arzela Theorem, we extract a further subsequence (independent of time) and
find p ∈ C0,1([0, T ]; M(Ω;Mn

sym)) such that for all t ∈ [0, T ],

pλ(t) ⇀ p(t) weakly* in M(Ω;Mn
sym).

Using the additive decomposition Euλ = eλ+pλ in Ω, the previously established weak convergences
show that u ∈ C0,1([0, T ];BD(Ω)) and, for all t ∈ [0, T ],

uλ(t) ⇀ u(t) weakly* in BD(Ω).
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It is now possible to pass to the limit in the initial condition

u(0) = u0, u̇(0) = v0, e(0) = e0, p(0) = p0,

in the additive decomposition: for all t ∈ [0, T ],

Eu(t) = e(t) + p(t) in M(Ω;Mn
sym),

and in the equation of motion

ü− divσ = f in L2(0, T ;L2(Ω;Rn)).

The stress constraint being convex, hence closed under weak L2(Ω;Mn
sym) convergence, we further

obtain that for every t ∈ [0, T ], σ(t) ∈ K a.e in Ω.

It remains to show the Neumann boundary condition σν = 0 on ΓN . Since σλ ⇀ σ weakly in
L2(0, T ;H(div,Ω)), we deduce that σλν ⇀ σν weakly in L2(0, T ;H−1/2(∂Ω;Rn)). On the other
hand, using estimate (5.3.53), we have

∥σλν∥L2(0,T ;L2(ΓN ;Rn)) ≤ C√
λ

→ 0,

as λ → ∞, hence σν = 0 in L2(0, T ;L2(ΓN ;Rn)).

5.3.5. Flow rule
It remains to prove the flow rule, which will be performed by passing to the limit in the energy
balance obtained in the Theorem 5.3.1, namely, for all t ∈ [0, T ],

1
2

∫
Ω

|u̇λ(t)|2 dx+
∫

Ω
Q(eλ(t)) dx+

∫ t

0
H(ṗλ(s))(Ω) ds+

∫ t

0

∫
∂Ω
ψλ(x, u̇λ) dHn−1 ds

≤ 1
2

∫
Ω

|v0|2 dx+
∫

Ω
Q(e0) dx+

∫ t

0

∫
Ω
f · u̇λ dx ds. (5.3.55)

The first two terms will easily pass to the lower limit by lower semicontinuity of the norm with
respect to weak L2-convergence. The main issue is to pass to the (lower) limit in both last terms
in the left-hand side of the previous inequality. The following result will enable one to obtain a
lower bound.

Lemma 5.3.11. Let {(ûλ, êλ, p̂λ)}λ>0 ⊂ [BD(Ω) ∩ L2(Ω;Rn)] × L2(Ω;Mn
sym) × M(Ω;Mn

sym) be
such that Eûλ = êλ + p̂λ in Ω, and

ûλ ⇀ û weakly in L2(Ω;Rn),
ûλ ⇀ û weakly* in BD(Ω),
êλ ⇀ ê weakly in L2(Ω;Mn

sym),
p̂λ ⇀ p̂ weakly* in M(Ω;Mn

sym),

as λ → ∞, for some (û, ê, p̂) ∈ [BD(Ω) ∩ L2(Ω;Rn)] × L2(Ω;Mn
sym) × M(Ω;Mn

sym). Then,

H(p̂)(Ω) +
∫

ΓD

H(−û⊙ ν) dHn−1 ≤ lim inf
λ→∞

(
H(p̂λ)(Ω) +

∫
∂Ω
ψλ(x, ûλ) dHn−1

)
. (5.3.56)

Proof. Without loss of generality, we assume that the right hand side of (5.3.56) is finite. Let
(λk)k∈N be such that λk ↗ ∞ and

lim inf
λ→∞

(
H(p̂λ)(Ω) +

∫
∂Ω
ψλ(x, ûλ) dHn−1

)
= lim

k→∞

(
H(p̂λk

)(Ω) +
∫

∂Ω
ψλk

(x, ûλk
) dHn−1

)
.
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As a consequence, there exists a constant c > 0 (independent of k) such that∫
∂Ω
ψλk

(x, ûλk
) dHn−1 ≤ c

for all k ∈ N. By definition (5.3.1) of ψλ (see also [11, Lemma 4.9]), there exists a function
vk ∈ L2(∂Ω;Rn) such that∫

∂Ω
ψλk

(x, ûλk
) dHn−1 = 1

2

∫
∂Ω
Sλk

(ûλk
− vk) · (ûλk

− vk) dHn−1 +
∫

∂Ω
H(−vk ⊙ ν) dHn−1

≥ λk

2

∫
ΓD

|ûλk
− vk|2 dHn−1 +

∫
∂Ω
H(−vk ⊙ ν) dHn−1.

By nonnegativity of H, we infer that ûλk
− vk → 0 in L2(ΓD;Rn) as k → ∞. Moreover

H(p̂λk
)(Ω) +

∫
∂Ω
ψλk

(x, ûλk
) dHn−1

≥ H(p̂λk
)(Ω) +

∫
ΓD

H(−vk ⊙ ν) dHn−1

≥ Hµ(p̂λk
)(Ω) +

∫
ΓD

Hµ(−vk ⊙ ν) dHn−1, (5.3.57)

where Hµ : Mn
sym → R+ is the Moreau–Yosida transform of H (see [4, Lemma 1.61] or [47,

Lemma 5.30]), defined by

Hµ(p) := inf
q∈Mn

sym

{H(q) + µ|p− q|} for all p ∈ Mn
sym.

We recall that Hµ of H enjoys the following properties:

1. For all µ > 0 we have that Hµ ≤ H;

2. The function Hµ is µ-Lipschitz;

3. The function Hµ is convex as the inf-convolution between the proper convex functions H
and µ| · | (see e.g. [75, Theorem 5.4]);

4. For all p ∈ Mn
sym, Hµ(p) → H(p) as µ → ∞.

By the µ-Lipschitz continuity of Hµ, adding and subtracting the term
∫

ΓD
Hµ(−ûλk

⊙ ν) dHn−1

in (5.3.57) yields

H(p̂λk
)(Ω) +

∫
∂Ω
ψλk

(x, ûλk
) dHn−1

≥ Hµ(p̂λk
)(Ω) +

∫
ΓD

Hµ(−ûλk
⊙ ν) dHn−1 − µ

∫
ΓD

|ûλk
− vk| dHn−1. (5.3.58)

Passing to the limit as k → ∞ in (5.3.58), we obtain

lim
k→∞

(
H(p̂λk

)(Ω) +
∫

∂Ω
ψλk

(x, ûλk
) dHn−1

)
≥ lim inf

k→∞

(
Hµ(p̂λk

)(Ω) +
∫

ΓD

Hµ(−ûλk
⊙ ν) dHn−1

)
. (5.3.59)

Let U ⊂ RN be an open set such that ΓD = U ∩ ∂Ω, and let Ω̃ := Ω ∪ U . We extend (ûλ, êλ, p̂λ)
to Ω̃ as

ũλ :=
{
ûλ in Ω,
0 in Ω̃ \ Ω,

ẽλ :=
{
êλ in Ω,
0 in Ω̃ \ Ω,
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and
p̃λ := Eũλ − ẽλ = p̂λ Ω − ûλ ⊙ νHn−1 ΓD.

Similarly, we set

ũ :=
{
û in Ω,
0 in Ω̃ \ Ω,

ẽ :=
{
ê in Ω,
0 in Ω̃ \ Ω.

Note that p̃λ ⇀ p̃ weakly* in M(Ω̃;Mn
sym) with p̃ = Eũ− ẽ = p̂ Ω − û⊙ νHn−1 ΓD. Using

that Hµ is a continuous, convex and positively one homogeneous function with Hµ(0) = 0, we
can apply Reshetnyak’s lower semicontinuity Theorem (see [4, Theorem 2.38]) to get that

lim inf
k→∞

(
Hµ(p̂λk

)(Ω) +
∫

ΓD

Hµ(−ûλk
⊙ ν) dHn−1

)
= lim inf

k→∞
Hµ(p̃λk

)(Ω̃) ≥ Hµ(p̃)(Ω̃)

= Hµ(p̂)(Ω) +
∫

ΓD

Hµ(−û⊙ ν) dHn−1.

We have thus established that for all µ > 0,

lim inf
λ→∞

(
H(p̂λ)(Ω) +

∫
∂Ω
ψλ(x, ûλ) dHn−1

)
≥ Hµ(p̂)(Ω) +

∫
ΓD

Hµ(−û⊙ ν) dHn−1.

We can now pass to the limit as µ → ∞ owing to the Monotone Convergence theorem to get that

lim inf
λ→∞

(
H(p̂λ)(Ω) +

∫
∂Ω
ψλ(x, ûλ) dHn−1

)
≥ H(p̂)(Ω) +

∫
ΓD

H(−û⊙ ν) dHn−1,

which leads to the desired lower bound.

We are now in position to prove a lower bound energy inequality. Since for all t ∈ [0, T ], we have
u̇λ(t) ⇀ u̇(t) weakly in L2(Ω;Rn) and eλ(t) ⇀ e(t) weakly in L2(Ω;Mn

sym), we get by weak lower
semicontinuity of the norm that

1
2

∫
Ω

|u̇(t)|2 dx+ Q(e(t)) ≤ lim inf
λ→∞

{1
2

∫
Ω

|u̇λ(t)|2 dx+ Q(eλ(t))
}
.

To pass to the lower limit in the remaining terms in the left-hand side of the energy inequality
(5.3.55), we consider a partition 0 = t0 ≤ t1 ≤ . . . ≤ tN = t of the time interval [0, t]. By
convexity of H and ψλ(x, ·), we infer from Jensen’s inequality that∫ t

0
H(ṗλ(s))(Ω) ds+

∫ t

0

∫
∂Ω
ψλ(x, u̇λ(s)) dHn−1 ds

≥
N∑

i=1

{
H(pλ(ti) − pλ(ti−1))(Ω) +

∫
∂Ω
ψλ(x, uλ(ti) − uλ(ti−1)) dHn−1

}
.

Since, for all 0 ≤ i ≤ N we have that
uλ(ti) ⇀ u(ti) weakly in L2(Ω;Rn),
uλ(ti) ⇀ u(ti) weakly* in BD(Ω),
eλ(ti) ⇀ e(ti) weakly in L2(Ω;Mn

sym),
pλ(ti) ⇀ p(ti) weakly* in M(Ω;Mn

sym),

we can apply Proposition 5.3.11 to get that

lim inf
λ→∞

(∫ t

0
H(ṗλ(s))(Ω) ds+

∫ t

0

∫
∂Ω
ψλ(x, u̇λ) dHn−1 ds

)
≥

N∑
i=1

H(p(ti) − p(ti−1))(Ω ∪ ΓD),
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where the measure p(t) is extended to ΓD by setting

p(t) ΓD := −u(t) ⊙ νHn−1 ΓD.

Passing to the supremum with respect to all partitions, we deduce that

VH(p; 0, t) := sup
{

N∑
i=1

H(p(ti) − p(ti−1))(Ω ∪ ΓD) : 0 = t0 ≤ t1 ≤ · ≤ tN = t, N ∈ N
}
< ∞.

Using [32, Theorem 7.1]1, we get that

lim inf
λ→∞

(∫ t

0
H(ṗλ(s))(Ω) ds+

∫ t

0

∫
∂Ω
ψλ(x, u̇λ) dHn−1 ds

)
≥
∫ t

0
H(ṗ(s))(Ω ∪ ΓD) ds.

Passing to the lower limit in (5.3.55) as λ → ∞ yields

1
2

∫
Ω

|u̇(t)|2 dx+ Q(e(t)) +
∫ t

0
H(ṗ(s))(Ω ∪ ΓD) ds

≤ 1
2

∫
Ω

|v0|2 dx+ Q(e0) +
∫ t

0

∫
Ω
f · u̇ dx ds. (5.3.60)

The proof of the other energy inequality relies on the convexity inequality proved in Section 5.2.
Indeed, assuming one of the following assumptions:

• ∂Ω = ΓD;

• ∂Ω = ΓN ;

• n = 2 and Σ is a finite set;

• n = 3 and K = KD ⊕ (R Id), for some compact and convex set KD ⊂ M3
D containing 0 in

its interior;

we can appeal Proposition 5.2.4, Proposition 5.2.6 or Proposition 5.2.7. Indeed, for a.e. t ∈ [0, T ],
we have (u̇(t), ė(t), ṗ(t)) ∈ A0, σ(t) ∈ K ∩ S0 and H(ṗ(t)) is a finite measure (by (5.3.60)). As a
consequence, for a.e. t ∈ [0, T ], the duality pairing [σ(t) : ṗ(t)] ∈ D′(Rn) is well defined and it
extends to a bounded Radon measure supported in Ω with

H(ṗ(t)) ≥ [σ(t) : ṗ(t)] in M(Rn) . (5.3.61)

Since the nonnegative measure H(ṗ(t))− [σ(t) : ṗ(t)] is compactly supported in Ω, we can evaluate
its mass by taking the test function φ ≡ 1 in Definition 5.2.2. We then obtain that for a.e.
t ∈ [0, T ],

0 ≤ H(ṗ(t))(Ω ∪ ΓD) +
∫

Ω
σ(t) : ė(t) dx+

∫
Ω
u̇(t) · divσ(t) dx.

Using the equation of motion and the regularity properties of u̇ and e, we can integrate by parts
respect to time and get that

0 ≤
∫ t

0
H(ṗ(s))(Ω ∪ ΓD)) ds+ Q(e(t)) − Q(e0)

+ 1
2

∫
Ω

|u̇(t)|2 dx− 1
2

∫
Ω

|v0|2 dx−
∫ t

0

∫
Ω
f · u dx ds.

1Note that [32, Theorem 7.1] is stated for functions H which are bounded from above, which is not our case here
because H is allowed to take the value +∞. However, a careful inspection of the proof of [32, Theorem 7.1]
shows the validy of this result in our case thanks to the additional property VH(p; 0, t) < ∞.
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Owing to the first energy inequality (5.3.60), we deduce that the last expression is zero, which
implies that the nonnegative measure H(ṗ(t)) − [σ(t) : ṗ(t)] has zero mass in Ω. This leads in
turn that this measure vanishes in Ω, in other words the flow rule H(ṗ(t)) = [σ(t) : ṗ(t)] in M(Ω)
is satisfied. Finally, since H(ṗ(t)) is concentrated on Ω ∪ ΓD, it follows that [σ(t) : ṗ(t)] vanishes
on ∂Ω \ ΓD and that the flow rule H(ṗ(t)) = [σ(t) : ṗ(t)] holds in M(Ω ∪ ΓD).

5.3.6. Uniqueness
Let (u1, e1, p1) and (u2, e2, p2) be two solutions given by Theorem 5.3.9. Subtracting the equations
of motion of each solution, we have

ü1 − ü2 − div(σ1 − σ2) = 0 in L2(0, T ;L2(Ω;Rn)).

Let us consider the test function φ := 1[0,t](u̇1 − u̇2) ∈ L2(0, T ;L2(Ω;Rn)), we deduce∫ t

0

∫
Ω

(ü1 − ü2) : (u̇1 − u̇2) dx ds−
∫ t

0

∫
Ω

(div(σ1 − σ2)) · (u̇1 − u̇2) dx ds = 0. (5.3.62)

Since ü1 − ü2 ∈ L2(0, T ;L2(Ω;Rn)) and u̇1(0) = u̇2(0) = v0, we infer that
∫ t

0

∫
Ω

(ü1(s) − ü2(s)) : (u̇1(s) − u̇2(s)) dx ds =
∥u̇1(t) − u̇2(t)∥2

L2(Ω;Rn)
2 . (5.3.63)

We already know that, for a.e. s ∈ [0, T ], the distributions [σ1(s) : ṗ1(s)] and [σ2(s) : ṗ2(s)] belong
to M(Ω ∪ ΓD). Moreover, since (u̇1(s), ė1(s), ṗ1(s)), (u̇2(s), ė2(s), ṗ2(s)) ∈ A0, σ1(s), σ2(s) ∈
S0 ∩ K and H(ṗ1(s)), H(ṗ2(s)) are finite measures we can appeal Propositions 5.2.4, 5.2.6 and
5.2.7 which state that [σ2(t) : ṗ1(s)] and [σ1(s) : ṗ2(s)] extend to bounded Radon measures
supported in Ω with

[σ1(s) : ṗ1(s)] = H(ṗ1(s)) ≥ [σ2(s) : ṗ1(s)] in M(Rn),

and
[σ2(s) : ṗ2(s)] = H(ṗ2(s)) ≥ [σ1(s) : ṗ2(s)] in M(Rn).

As a consequence, the measure [(σ1(s) − σ2(s)) : (ṗ1(s) − ṗ2(s))] is nonnegative. Furthermore, by
the definition of stress duality (see Definition 5.2.2 with the test function φ ≡ 1 and g = 0), we
infer that

0 ≤
∫ t

0
[(σ1(s) − σ2(s)) : (ṗ1(s) − ṗ2(s))](Ω)

= −
∫ t

0

∫
Ω

(σ1(s) − σ2(s)) : (ė1(s) − ė2(s)) dx ds

−
∫ t

0

∫
Ω

(div(σ1(s) − σ2(s))) · (u̇1(s) − u̇2(s)) dx ds

= −Q(e1(t) − e2(t)) −
∫ t

0

∫
Ω

(div(σ1(s) − σ2(s))) · (u̇1(s) − u̇2(s)) dx ds, (5.3.64)

where we have used the fact that e1(0) = e2(0) = e0. By (5.3.62), (5.3.63) and (5.3.64), we infer
that

∥u̇1(t) − u̇2(t)∥2
L2(Ω;Rn)

2 + Q(e1(t) − e2(t)) ≤ 0.

From the expression above, we infer that e1 = e2 and u̇1 = u̇2. Since, u1(0) = u2(0) = u0,
we conclude that u1 = u2, and by the kinematic compatibility p1 = p2. This concludes the
proof of the uniqueness. In particular, by uniqueness of the limit, there is no need of extracting
subsequences when passing to the limit as λ → ∞. The proof of Theorem 5.3.9 is now complete.
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