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Abstract. We consider here a fully discrete variant of the implicit variational scheme for mean
curvature flow [2, 39], in a setting where the flow is governed by a crystalline surface tension
defined by the limit of pairwise interactions energy on the discrete grid. The algorithm is based
on a new discrete distance from the evolving sets, which prevents the occurrence of the spatial
drift and pinning phenomena identified in [42, 11] in a similar discrete framework. We provide
the first rigorous convergence result holding in any dimension, for any initial set and for a large
class of purely crystalline anisotropies, in which the spatial discretization mesh can be of the
same order or coarser than the time step.

1. Introduction
sec:intro

In this paper we analyse a space- and time-discrete approximation of crystalline mean curvature
flows of the form

evol lawevol law (1.1) V (x, t) = −φ(νE(t)(x))κ
φ
E(t)(x), x ∈ ∂E(t), t ≥ 0,

for a class of crystalline norms φ. We recall that an anisotropy φ is said to be crystalline if and
only if {φ ≤ 1} is a polytope (or equivalently, φ is the support function of a polytope). Moreover
in the current paper we restrict ourselves to the case where {φ ≤ 1} is a zonotope with rational
generators [41, 9]. Here V (x, t) stands for the (outer) normal velocity of the boundary ∂E(t) at
x, φ is a crystalline norm on RN representing the surface tension, κφE(t) is the crystalline mean
curvature of ∂E(t) associated to φ, and νE(t) is the outer unit normal to ∂E(t). The evolution law
(1.1) has been considered to describe some phenomena in materials science and crystal growth;
see e.g. [35, 50]. Our main result is a convergence result of the discrete approximation to the
continuous evolution, as the time and space steps go to zero, even in the somewhat surprising case
where the space-step is greater or equal to the time-step.

From the mathematical point of view, the lack of regularity of the differential operator involved
in the definition of the crystalline curvature (see [6, 7]) is the main reason why the well-posedness
of the crystalline mean curvature flow in every dimension has been a long-standing open problem.
After some partial results (see for instance [1, 4, 5, 15, 26, 27, 28]), important breakthroughs
have been obtained simultaneously in [29, 30, 32], where a suitable crystalline theory of viscosity
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solutions was developed, and with a different approach in [22, 21, 20], where a new notion of
distributional solutions was proposed.

Let us focus on the definition of distributional solutions, referring to the nice review [31] for
further information on viscosity solutions to (1.1) (we just note that the two notions are equivalent
in the setting of this paper [20, Remark 6.1]). The exact definition of distributional solutions will
be recalled in Definition 2.1, but when φ is smooth it can be motivated as follows: It is known
(see for instance [49] for the isotropic case) that E(t) evolves according to (1.1) if and only if the
signed distance function d(·, t) := sdφ

◦

E(t) to ∂E(t) induced by the polar norm1 φ◦, satisfies

∂td ≥ div(∇φ(∇d)) in {d > 0},evol law 1evol law 1 (1.2)

∂td ≤ div(∇φ(∇d)) in {d < 0}evol law 2evol law 2 (1.3)

in the viscosity sense. The idea of the new definition introduced in [22] is to reinterpret the
equations above in the distributional sense. In particular, note that replacing ∇φ(∇u) by a vector
field z ∈ L∞({d > 0};RN ) such that z(x) ∈ ∂φ(∇d) for a.e. x, where ∂φ denotes the subdifferential
of φ, the equations (1.2), (1.3) make sense even when φ is crystalline. The corresponding notion
of super- and sub-solutions bears a comparison principle, which yields uniqueness of the motion
up to fattening. Existence is obtained either by a variant of the minimizing movements scheme of
[2, 39] in the spirit of [16], which consists in building a discrete-in-time evolution obtained by a
recursive minimization procedure (see [22, 20]), or by approximation with smooth anisotropies [21].
We observe that the convergence of such time discrete approaches to a motion characterized
by (1.2)-(1.3) in the viscosity sense was shown in [38], including in the 2D crystalline setting,
while convergence in a distributional sense was established in [15] in the convex case only. Briefly,
given a time-step h > 0 and an initial closed set E0 =: Eh,0, one defines Eh,k+1 = {uh,k+1 ≤ 0},
where uh,k+1 is defined as the minimizer of a so-called “Rudin-Osher-Fatemi” [47] problem:

def u_k contdef u_k cont (1.4) uh,k+1 ∈ argmin
{∫

RN

φ(Du) +
1

2h

∫
RN

|u− sdφ
◦

Eh,k |2
}
.

The idea of the present work is to combine this discretization in time with a simultaneous dis-
cretization in space for the particular class of purely crystalline anisotropies φ of the following
form

def phidef phi (1.5) φ(v) =
∑
i∈E

β(i)|i · v|,

where β(i) > 0 and E ⊆ ZN \{0} is a finite set of generators such that Span E = RN . This kind of
convex polytopes is known in the literature as rational zonotopes. The class of rational zonotopes
is dense in the class of symmetric convex sets if N = 2, while for N ≥ 3 it is nowhere dense. This
fact is due to the strong symmetry properties of zonotopes, as every facet of a zonotope is itself a
zonotope [41]. Note however that the Euclidean ball may be approximated by rational zonotopes
in every dimension.

We now specify the discrete setting we are interested in, referring the reader to [13] for a more
thorough introduction to related topics. We consider an ε-spaced square lattice εZN and discrete
functions u : εZN → R, and denote ui := u(i). We observe that we could also consider a general
finite-dimensional Bravais lattice, at the expense of more tedious notation. A natural discrete

1defined by φ◦(x) = supφ(ν)≤1 ν · x and which satisfies φ(x) = supφ◦(x)≤1 ν · x.
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version of total variation-like energies are those appearing in Ising systems, namely energies of the
form

(1.6) TV εβ (v) := εN−1
∑

i,j∈εZN

β(i/ε− j/ε)|vi − vj |,

where β is as in (1.5) and extended to 0 in ZN \E. Under the hypotheses above on β, the functionals
TV εβ are shown to Γ-converge2 as ε→ 0 to the total variation functional

TVφ(v) =

∫
RN

φ(Dv)

where φ is as in (1.5), see e.g. [19]. It is thus natural to define a minimizing movements scheme
based on TV εβ which is the discrete counterpart of the minimizing procedure (1.4), as follows:
given E0 ⊆ RN , we define E0

ε,h = {i ∈ εZN : (i + [0, ε)N ) ∩ E0 6= ∅} and for every k ∈ N we let
uk+1
ε,h be such that

def u_k introdef u_k intro (1.7) uk+1
ε,h ∈ argmin

{
TV εβ (v) +

1

2h

∑
i∈εZN

|vi − ( sdkε,h)i|2 : v : εZN → R

}
,

where sdkε,h denotes a suitable signed φ◦-distance function to Ekε,h defined on εZN . (Actually, the
energy in (1.7) is infinite and we rather consider the Euler-Lagrange equation of the problem.)
Then, one sets Ek+1

ε,h := {uk+1
ε,h ≤ 0}.

The idea is to study the asymptotic behaviour of the discrete evolutions Ekε,h as both ε, h→ 0.
A similar analysis has been performed in [11], in the planar case, for φ = ‖ · ‖1 and sdkε,h the
continuous signed distance function from the discrete sets Ekε,h restricted to the lattice εZN , see
also [42, 10, 12, 14, 40, 48] for further related results. With this choice, if ε � h it is easy to see
that the dissipation-like term in (1.7)

1

2h

∑
i∈εZN

|vi − ( sdk+1
ε,h )i|2

forces the functions ukε,h to be constant as k varies, therefore producing pinning on the moving
interfaces. Moreover, when the two scales ε, h are going to zero at the same speed it is shown in
[11] that a direct implementation of the standard scheme with the choice above for the distance,
introduces a systematic error of order ε = h at each step, which accumulates and produces a
drift in the limiting evolution. As a result, low curvature shapes remain pinned, while sets with
higher curvature evolve with a law which is a nonlinear modification of the crystalline curvature
flow (1.1). Thus, the evolution law (1.1) can be approximated with the scheme of [11] only if
ε� h. In [42], similar results are derived, still in dimension 2, for the isotropic (Euclidean) mean
curvature flow.

We show in our main result, Theorem 5.2, that with a new appropriate definition of the distance
sdkε,h, we can recover in the limit ε, h→ 0 the actual distributional solution to (1.1) for every initial
set E0 ⊆ RN , for every purely crystalline anisotropy φ of the form (1.5) with rational coefficients, in
any dimension and irrespective of relative size of the space- and time-steps. In fact, the assumption
of the rational character of β can be removed in the regime ε ≤ O(h). To the best of our knowledge
this is the first general rigorous convergence result for a fully discrete scheme without restrictions

2Note that we do not need to assume that the lattice generated by {ek}k=1,...,m is ZN , which is necessary to
ensure the equi-coercivity of the discrete functionals.
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on the dimension, on the initial sets and in which the spatial mesh is allowed to be of the same
order or even coarser than the time step.

Let us further comment on the analysis carried out in [11] in the planar case (see also [13] for
many more references on the topic). One important change between these older results and ours
is that we consider distributional solutions to the crystalline mean curvature flow (1.1), instead
of relying on the characterization of the motion via ODEs, which dates back to [1, 4]. The latter
notion of solution is indeed suited only for planar evolutions, thus the limitation N = 2 in the
past works. With the ODE definition and for φ = ‖ · ‖1, the authors of [11] precisely prove the
following results. If ε� h then the limiting motion is consistent with (1.1), while if h� ε pinning
happens for any nonempty initial data. As already mentioned, in the critical case ε = h, the limit
planar motion is not driven by (1.1), but instead by a slightly modified nonlinear crystalline mean
curvature flow, and pinning may happen for some particular (low curvature) initial data. This
striking difference with our result may be (vaguely) justified by the following remark. While in [11],
the focus is on discrete sets, we rather evolve, in accordance with the definition of distributional
solutions, the signed distance functions to the boundaries. In this way we can effectively achieve
a sub-pixel precision in our approximation, as uε,h and the signed distance function carry more
information than the evolving level set {uε,h(t) ≤ 0}. Our new definition of the interpolated signed
distance is detailed in Section 4.

The consistency result in this paper validates the numerical experiments which we carry on
in Section 6 to illustrate our results. These experiments are derived from previous experiments
in [18], which however were using a different redistancing operation for which no consistency was
proven. Numerical schemes based on the variational approach [2, 39] have been introduced for
crystal growth [3]. Since then, there have been many attempts to implement implicit schemes
based on this approach for isotropic and anisotropic curvature flows in various settings [16, 25, 44,
46, 24]. We are however not aware of a formal convergence proof for these schemes in the fully
discrete setting, which is not relying on the consistency of the spatial discretization with respect to
the time-discrete scheme (hence assuming ε � h, even if in practice these implementations seem
very robust).

Many other techniques have been considered to simulate crystalline flows after [51, 52], see e.g.
[33, 34, 23] for the evolution of planar curves and [43, 45] for higher-dimensional algorithms.

Let us conclude this introduction with two comments. The first one concerns the hypothesis
that φ is purely crystalline. It seems quite technical, as it implies that the associated interaction
function β (in the sense of (1.5)) has finite range. While this is not necessary to carry out
the existence part for the discrete minimizing movements scheme, it is essential for building a
calibration which yields a bound on the speed of Wulff shapes, see Appendix A. In practice,
being the open Wulff shape W := {φ◦≤1} a finite Minkowski sum of (rational) segments (which
is called a zonotope), we can effectively handcraft a calibration along the directions identified by
these segments. It is a remarkable difference between this discrete setting and the continuous one,
where instead the vector field x/φ◦(x) in RN is the right calibration for any anisotropy φ.

The second one is on possible generalizations of the present analysis to more general evolution
laws than (1.1). The more general evolution law which is shown to admit a unique distributional
solution is

(1.8) V (x, t) = ψ(νE(t)(x))
(
−κφE(t)(x) + f(x, t)

)
, x ∈ ∂E(t), t ≥ 0,
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where ψ is a norm (usually referred to as the mobility), and f is a forcing term, see [22, 20] .
We expect most of the present analysis to be valid even if ψ 6= φ, under suitable compatibility
assumptions on ψ (see [22, 20] for details), and it should not be difficult to consider a driving force
f as long as it is Lipschitz in space and globally bounded, see [20] again.

The paper is organized as follows: in the next Section 2, we recall the definition of distributional
crystalline curvature flows from [22, 20]. Then, we study the discrete “Rudin-Osher-Fatemi”
problem and its Euler-Lagrange equation in Section 3. In Section 4, we introduce the discrete
minimizing movement scheme, with our particular definition of the signed distance function. We
study in detail the properties of these distances, then in Section 4.3 we analyse the particular case
of an initial Wulff shape. In the continuous setting, it is well known that under the law (1.1), it
decreases in a self-similar way with a speed proportional to the inverse of its radius. We show an
estimate bounding the decay of the discrete Wulff shapes, it relies on the delicate construction of
a calibration z for the Rudin-Osher-Fatemi problem with datum φ◦, detailed in Appendix A.

Our main result, which is that in the limit ε, h→ 0, the motion defined in Section 4 converges
to a crystalline flow, is stated, and proved, in Section 5. We implemented the discrete scheme in
2D and show some numerical simulations in Section 6. Some technical results are collected in the
Appendix.

2. Distributional crystalline curvature flows
subsec:cf

We recall the distributional formulation for the crystalline mean curvature motion of sets evolv-
ing with normal velocity (1.1) introduced in [22] (see also [20]). Here and in what follows φ is any
norm, φ◦ denotes the polar (or dual) norm of φ and given a closed set F ⊆ RN , distφ

◦
(·, F ) stands

for the φ◦-distance function from F defined by

distφ
◦
(x, F ) := min{φ◦(x− y) : y ∈ F} .

Analogously, for any E,F closed we set

distφ
◦
(E,F ) := min{φ◦(x− y) : x ∈ E , y ∈ F} .

We recall that a sequence of closed sets (Ek)k≥1 in RN converges to a closed set E in the Kuratowski
sense: if the following conditions are satisfied

(i) if xk ∈ Ek for each k, any limit point of {xk} belongs to E;
(ii) for all x ∈ E there exists a sequence {xk} such that xk ∈ Ek for each k and xk → x.

We will write in this case:
Ek

K−→ E .

One can easily verify that Ek
K−→ E if and only if (for any norm ψ) distψ(·, Ek) → distψ(·, E)

locally uniformly in RN . Hence, by Ascoli-Arzelà Theorem we have that any sequence of closed sets
admits a converging subsequence in the Kuratowski sense (possibly to ∅, when distψ(·, Ek) → +∞).

Defsol Definition 2.1. Let E0 ⊆ RN be a closed set. Let E be a closed set in RN × [0,+∞) and for
each t ≥ 0 denote E(t) := {x ∈ RN : (x, t) ∈ E}. We say that E is a superflow for (1.1) with
initial datum E0 if

(a) E(0) ⊆ E0;
(b) E(s)

K−→ E(t) as s↗ t for all t > 0;
(c) If E(t) = ∅ for some t ≥ 0, then E(s) = ∅ for all s > t.
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(d) Set T ∗ := inf{t > 0 : E(s) = ∅ for s ≥ t}, and

d(x, t) := distφ
◦
(x,E(t)) for all (x, t) ∈ RN × (0, T ∗) \ E.

Then,

eq:supersoleq:supersol (2.1) ∂td ≥ divz

holds in the distributional sense in RN × (0, T ∗) \ E for a suitable z ∈ L∞(RN × (0, T ∗))

such that z ∈ ∂φ(∇d) a.e., divz is a Radon measure in RN × (0, T ∗) \ E, and (divz)+ ∈
L∞({(x, t) ∈ RN × (0, T ∗) : d(x, t) ≥ δ}) for every δ ∈ (0, 1).

We say that A, open set in RN × [0,+∞), is a subflow for (1.1) with initial datum E0 if
RN × [0,+∞) \A is a superflow for (1.1) with initial datum RN \ int

(
E0

)
.

Finally, we say that E, closed set in RN × [0,+∞), is a weak flow for (1.1) with initial datum
E0 if it is a superflow and if int(E)3 is a subflow, both with initial datum E0.

In [22] the following crucial inclusion principle between sub- and superflows is proven.

th:compar Theorem 2.2. Let E be a superflow with initial datum E0 and F be a subflow with initial datum
F0 in the sense of Definition 2.1. Assume that distφ

◦
(E0,RN \ F 0) =: ∆ > 0. Then,

distφ
◦(
E(t),RN \ F (t)

)
≥ ∆ for all t ≥ 0

(with the convention that distφ
◦
(G, ∅) = distφ

◦
(∅, G) = +∞ for any G).

We also recall the corresponding notion of sub- and supersolution to the level set flow associated
with (1.1). In what follows UC(RN ) stands for the space of uniformly continuous functions on
RN .

deflevelset1 Definition 2.3 (Level set subsolutions and supersolutions). Let u0 ∈ UC(RN ). A lower semi-
continuous function u : RN × [0,+∞) → R is called a level set superflow for (1.1), with initial
datum u0, if u(·, 0) ≥ u0 and if for a.e. λ ∈ R the closed sublevel set {u(·, t) ≤ λ} is a superflow
for (1.1) in the sense of Definition 2.1, with initial datum {u0 ≤ λ}.

An upper-semicontinuous function u : RN × [0,+∞) → R is called a level set subflow for (1.1),
with initial datum u0, if −u is level set superflow in the previous sense, with initial datum −u0.

Finally, a continuous function u : RN × [0,+∞) → R is called a level set flow for (1.1) if it is
both a level set sub- and superflow.

Using Theorem 2.2, it is not difficult to deduce the following parabolic comparison principle
between level set sub- and superflows, which yields in particular the uniqueness of level set flows
(in the sense of Definition 2.3), see [20].

th:lscomp Theorem 2.4. Let u0, v0 ∈ UC(RN ) and let u, v be respectively a level set subflow starting from
u0 and a level set superflow starting from v0. If u0 ≤ v0, then u ≤ v.

We finally recall that in [22] (see also [20]) the existence of level set flows is established by
implementing a level-by-level minimizing movements scheme. This in turn yields existence and
uniqueness (up to fattening) for weak flows. This is made precise in the following statement, see
[22, Corollary 4.6] and [20, Theorem 4.8].

3Here we are taking the interior with respect to RN × [0,+∞)
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th:phiregularlevelset Theorem 2.5. Let u0 ∈ UC(RN ). Then the following holds:
(i) There exists a unique level set flow u in the sense of Definition 2.3 starting u0.
(ii) For all λ ∈ R the sets {(x, t) : u(x, t) ≤ λ} and {(x, t) : u(x, t) < λ} are respectively the

maximal superflow and minimal sublow with initial datum {u0 ≤ λ}.
(iii) For all but countably many λ ∈ R, the fattening phenomenon does not occur; that is,

eq:nonfatteningeq:nonfattening (2.2)
{(x, t) : u(x, t) < λ} = int

(
{(x, t) : u(x, t) ≤ λ}

)
,

cl
(
{(x, t) : u(x, t) < λ}

)
= {(x, t) : u(x, t) ≤ λ} ,

where interior and closure are relative to space-time.
For all such λ, {(x, t) : u(x, t) ≤ λ} is the unique weak flow in the sense of Definition 2.1,

starting from {u0 ≤ λ}.

The aim of this paper is to show that the convergence to the continuum level set flow holds true
also when the Euler implicit time discretisation is combined with a suitable spatial discretisation
procedure.

3. The discrete “Rudin-Osher-Fatemi” problem
sec:ROF

In this part, we describe our discrete setting, we then introduce and analyse the discrete vari-
ant (1.7) of Problem (1.4).

3.1. Discrete functions spaces and operators. For ε > 0, we define the function spaces
Xε = RεZN and Yε = RεZN×εZN . Given a function u ∈ Xε and a discrete “vector field” z ∈ Yε,
with a slight abuse of notation we will denote ui = u(i) and zij = z(i, j), i, j ∈ εZN . The discrete
gradient Dε : Xε → Yε is defined, for u ∈ Xε as

(Dεu)ij =
ui − uj

ε
.

We denote its adjoint operator by D∗
ε : Yε → Xε, namely the operator such that, for η ∈ Xε

compactly supported and for z ∈ Yε, is defined as∑
i

(D∗
εz)iηi :=

∑
ij

zij(Dεη)ij =
∑
ij

zij
ηi − ηj
ε

,

where the indexes, here and throughout the paper, range over εZN if not otherwise stated. In
particular, taking η = χ{i}, one finds that

def D^*def D^* (3.1) (D∗
εz)i =

∑
j

zij − zji
ε

,

which can be seen as a discrete divergence operator.

3.2. Discrete ROF problem. In this section we consider the discrete anisotropic ROF problem
associated with the discrete total variation functional. Without loss of generality, we consider
ε = 1 in this section, and denote X := X1, Y := Y1 and D := D1. Given a nonnegative β ∈ X,
which will be called the interaction function, satisfying

integr betaintegr beta (3.2)
∑
i∈ZN

β(i) =: cβ < +∞,

we set αij = β(i− j) and, for any u ∈ X we define

(3.3) TV (u) =
∑

i,j∈ZN

αij |ui − uj | =
∑
i,j

αij |(Du)i,j |.
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We also consider the discrete perimeter P defined for every E ⊆ ZN as

P(E) := TV (χE) =
∑

i,j∈ZN

αij |χEi − χEj |.

We also consider a suitable localization of the perimeter: namely, for any set A ⊆ RN we define

P(E;A) =
∑

i∈A∩ZN or j∈A∩ZN

αij |χEi − χEj |.

Note that the quantities above may well be infinite.
Then, given g ∈ X, we consider the following problem: find a pair (u, z) ∈ X × Y such that

discrete ELdiscrete EL (3.4)

D∗z + u = g

zij(ui − uj) = αij |ui − uj |, |zij | ≤ αij ∀i, j ∈ ZN .

The equation above is the Euler-Lagrange equation of the discrete ROF functional

discrete ROFdiscrete ROF (3.5) ROFg(v) = TV (v) +
1

2

∑
i∈ZN

(vi − gi)
2.

However, (3.4) makes sense also for those g such that ROFg ≡ +∞. That (3.4) is the first-order
condition for optimality in (3.5) follows from standard convex analysis: the idea is that since

TV (v) = sup {〈z,Dv〉 : |zi,j | ≤ αi,j∀(i, j)} ,

then the subgradients ∂TV (v) of TV at v are precisely given by the vectors D∗z for the z’s which
realize the supremum in this expression. Then, for g with bounded support (such that there is at
least some u with finite energy), (3.4) expresses that 0 ∈ ∂ROFg(u), which by definition is the
condition for the minimality of u.

We will also consider the following geometric minimization problem. Given g ∈ X, find

discr per pbdiscr per pb (3.6) min
F⊆ZN

P(F ) +
∑
i∈ZN

χFi gi.

In order to deal with unbounded sets, possibly with infinite perimeter, we will consider the
following notion of global minimality with respect to compactly supported perturbations.

def loc minimizer Definition 3.1. A set E ⊆ ZN is a global minimizer for the problem (3.6) if for every R > 0

discr per pb locdiscr per pb loc (3.7) P(E;BR) +
∑
|i|<R

χEi gi ≤ P(F ;BR) +
∑
|i|<R

χFi gi

for every F ⊆ ZN such that F4E ⊆ BR. Here BR = {x ∈ RN : |x| < R} is the open ball of
radius R centered in the origin.

geometric-comparison Proposition 3.2. Let g, g′ ∈ X such that g′ − g ≥ δ > 0. Let E,E′ be two global minimizers of
problem (3.7), in the sense of Definition 3.1, corresponding to g, g′ respectively. Then, E′ ⊆ E.

Proof. Let us denote in the following χ := χEs , χ′ := χE
′
s . For a given R > 0 we define the

competitor sets F = (Es \ BR) ∪ ((E′
s ∪ Es) ∩ BR) and F ′ = (E′

s \ BR) ∪ ((E′
s ∩ Es) ∩ BR). By
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minimality of Es, E′
s in BR one has∑

|i|<R or |j|<R

αij |χ′
i − χ′

j |+
∑
|i|<R

g′i(χ
′
i − χ′

i ∧ χi) ≤
∑
|i|<R
|j|<R

αij |χ′
i ∧ χi − χ′

j ∧ χj |comparison 1comparison 1 (3.8)

+
∑
|i|<R
|j|≥R

(αij + αji)|χ′
i ∧ χi − χ′

j |

∑
|i|<R or |j|<R

αij |χi − χj |+
∑
|i|<R

gi(χi − χ′
i ∨ χi) ≤

∑
|i|<R
|j|<R

αij |χ′
i ∨ χi − χ′

j ∨ χj |comparison 2comparison 2 (3.9)

+
∑
|i|<R
|j|≥R

(αij + αji)|χ′
i ∨ χi − χj |.

Using the inequality4 |a∧ b− c∧ d|+ |a∨ b− c∨ d| ≤ |a− c|+ |b− d| and summing together (3.8)
and (3.9) we obtain∑

|i|<R
|j|≥R

(αij + αji)
(
|χi − χj |+ |χ′

i − χ′
j |
)
+ 2

∑
|i|<R

(g′i − gi)(χ
′
i − χi)

+

≤
∑
|i|<R
|j|≥R

(αij + αji)
(
|χ′
i ∧ χi − χ′

j |+ |χ′
i ∨ χi − χj |

)
.

comparison 3comparison 3 (3.10)

We then remark that |χ′
i ∧ χi − χ′

j | ≤ |χ′
i ∧ χi − χ′

i| + |χ′
i − χ′

j | = (χ′
i − χi)

+ + |χ′
i − χ′

j | and
analogously |χ′

i ∨ χi − χj | ≤ (χ′
i − χi)

+ + |χi − χj |. Therefore, (3.10) entails

comparison 4comparison 4 (3.11)
∑
|i|<R

(g′i − gi)(χ
′
i − χi)

+ ≤
∑
|i|<R

(χ′
i − χi)

+
∑
|j|≥R

(αij + αji).

Fix now Rδ > 0 such that ∑
|k|≥Rδ

β(k) ≤ δ

4

and define VR :=
∑

|i|<R(χ
′
i−χi)+. Assuming R > Rδ, for every ` < R we use (3.11) and g+δ ≤ g′

to get

δVR ≤
∑
|i|<`

(χ′
i − χi)

+
∑
|j|≥R

(αij + αji) + 2cβ
∑

`≤|i|<R

(χ′
i − χi)

+

≤ 2
∑
|i|<`

(χ′
i − χi)

+
∑

|k|≥R−`

β(k) + 2cβ(VR − V`).
comparison 5comparison 5 (3.12)

Therefore, choosing ` = R−Rδ in (3.12) we obtain

iter 1iter 1 (3.13) δ

2
VR ≤ 2cβ(VR − VR−Rδ

),

which implies that for every k, ` ∈ N it holds

iter 2iter 2 (3.14) VkRδ
≤
(
1− δ

4cβ

)`
V(k+`)Rδ

.

Letting ` → +∞, since V(k+`)Rδ
= O(`N ), we infer that VkRδ

= 0 for every k ∈ N. In particular,
this implies that (χ′ − χ)+ = 0 i.e. χ′ ≤ χ. �

4Indeed, if a ≥ b and c ≥ d, this is an equality, while if a > b and c < d, one deduces that b− d < a− d < a− c,
b−d < b−c < a−c so that there exists t ∈ (0, 1) with a−d = t(b−d)+(1− t)(a−c), b−c = (1− t)(b−d)+ t(a−c):
the conclusion follow by convexity of | · |.
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We will prove the following theorem.

thm exist Theorem 3.3. Given g ∈ X there exists a unique function ug ∈ X and there exists a discrete
vector field z ∈ Y such that (ug, z) is a solution of (3.4). Moreover, the following comparison
principle holds: if g ≤ g′ then ug ≤ ug

′ . Finally, for any R > 0 and s ∈ R the sublevel set
Es := {i ∈ ZN : ugi ≤ s} is a global minimizer (in the sense of Definition 3.1) for (3.6) with g

replaced by g − s.

Proof. Step 1. (Existence) For every n ∈ N set gn := gχBn and note that gn ∈ `2(ZN ). Therefore,
by standard methods and by strict convexity the functional (3.5), with g replaced by gn admits
a unique minimizer un and, as previously observed, the optimality condition is the existence of a
discrete field zn such that (un, zn) solves (3.4) (with gn in place of g). Note that, for any k ∈ ZN ,
by equation (3.4) it holds

equi L infequi L inf (3.15) |unk | ≤ |gnk |+ |(D∗z)k| ≤ |gk|+ cβ for every n ∈ N,

where the last inequality follows from the definition (3.1) and from |zij | ≤ αij and |gn| ≤ |g|. Now,
it is clear that we can extract a subsequence nk and find (u, z) such that unk

i → ui and znk
ij → zij

as k → +∞. Clearly we have that |zij | ≤ αij and zij(ui − uj) = αij |ui − uj | and it is immediate
to check that (u, z) satisfies equation (3.4).
Step 2. (Minimality of the sublevelsets) Let R > 0, s ∈ R and let F ⊆ ZN such that Es4F ⊆⊆
BR. We first remark that αij |χEs

i −χEs
j | = −zij(χEs

i −χEs
j ), which follows easily from the definition

of Es and zij(ui − uj) = αij |ui − uj |.
We set IR := {(i, j) ∈ ZN × ZN : |i| < R or |j| < R} and compute

P(F ;BR)−P(Es;BR) =
∑

(i,j)∈IR

αij |χFi − χFj | −
∑

(i,j)∈IR

αij |χEs
i − χEs

j |

≥ −
∑

(i,j)∈IR

zij(χ
F
i − χFj ) +

∑
(i,j)∈IR

zij(χ
Es
i − χEs

j )

=
∑

(i,j)∈IR

zij(χ
Es
i − χFi − (χEs

j − χFj ))

=
∑
ij

zij(χ
Es
i − χFi − (χEs

j − χFj )),

calibracalibra (3.16)

where in the last equality we used the fact that χEs
i = χFi if |i| ≥ R. Noting that the function

χEs −χF is compactly supported, we may use it as a test function for (3.4). Therefore, from (3.16)
we deduce

P(F ;BR)−P(Es;BR) ≥
∑
ij

zij(χ
Es
i − χFi − (χEs

j − χFj ))

=
∑
i

(χEs
i − χFi )(gi − ui) ≥

∑
i∈Es\F

(gi − s)−
∑

i∈F\Es

(gi − s),

which shows the minimality of Es.
Step 3. (Comparison and uniqueness for (3.4)) Assume g ≤ g′ and let (u, z), (u′, z′) two

corresponding solutions for (3.4). Let s > s′ and recall that by Step 2 {u′ ≤ s′} and {u ≤ s}
are global minimizers for (3.6) according to Definition 3.1, with g replaced by g′ − s′ and g − s

respectively. Since g′−s′−(g−s) ≥ s−s′ > 0, from Proposition 3.2 we obtain {u′ ≤ s′} ⊆ {u ≤ s}.
By the arbitrariness of s, s′ we conclude that u ≤ u′.

�
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rmk stup Remark 3.4. We remark that, given g ∈ X it clearly holds that u−g = −ug.

4. The minimizing movements scheme
section MMS

In this section we provide a combined spatial and time discretisation of the flow (1.1) for a
particular class of norms φ and show the convergence of the scheme to the continuum flow. In
what follows, we consider {e1, . . . , em} ⊆ ZN a finite number of integer vectors spanning the whole
RN , and set E = {±ek}mk=1. We let β ∈ X be a non-negative function such that

β(−i) = β(i) and β(i) > 0 if and only if i ∈ E.

One can naturally associate an anisotropy φ with the function β setting

phi specialphi special (4.1) φ(v) =
∑
i∈E

β(i)|i · v| =
m∑
k=1

2β(ek)|v · ek|.

Note that, in particular, it holds

hp3hp3 (4.2) #{k ∈ ZN : β(k) 6= 0} < +∞.

We recall that the φ-perimeter associated with (4.1)

Pφ(E) =

∫
∂∗E

φ(νE) dH
N−1

(defined for every E ⊆ RN of finite perimeter) is the Γ-limit (in a suitable sense) as ε→ 0 of the
following scaled discrete perimeters

Pε(E) := εN−1
∑

i,j∈εZN

αεij |χEi − χEj | = εN
∑

i,j∈εZN

αεi,j |(Dεχ
E)i,j |

defined for all E ⊆ εZN , see for instance [9]. Here we have set

eq:alphaheq:alphah (4.3) αεij := β

(
i

ε
− j

ε

)
.

Given φ a norm on RN and a closed set E 6∈ {∅,RN}, we denote with sdφ
◦

E the signed φ◦−dis-
tance function from E, which is defined as

sdφ
◦

E (x) := min
y∈E

φ◦(x− y)−min
y/∈E

φ◦(x− y).

We also set sdφ
◦

∅ ≡ +∞ and sdφ
◦

RN ≡ −∞. We denote

def c phidef c phi (4.4) Cφ = min
i∈ZN\{0}

φ◦(i) > 0

and define the φ-Wulff shape WR(x) of radius R > 0 and center x ∈ RN as WR(x) = {y ∈ RN :

φ◦(x− y)≤R}.
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4.1. A discrete redistancing operator. In this section we introduce a discrete proxy for the
signed distance function to a set, and study some of its properties.

Given u ∈ Xε we define the operators dε,φ
◦

± , sdε,φ
◦

± , sdε,φ
◦
: Xε → Xε in the following way:

letting E = {i ∈ εZN : ui ≤ 0}, we first set

(dε,φ
◦

− (u))i = sup
j∈{u≥0}

{uj − φ◦(i− j)} ,

( sdε,φ
◦

− (u))i = inf
j∈{u≤0}

{
(dε,φ

◦

− (u))j + φ◦(i− j)
}
,

(dε,φ
◦

+ (u))i = inf
j∈{u≤0}

{uj + φ◦(i− j)} ,

( sdε,φ
◦

+ (u))i = sup
j∈{u≥0}

{
(dε,φ

◦

+ (u))j − φ◦(i− j)
}
,

( sdε,φ
◦
(u))i =

1

2
( sdε,φ

◦

+ (u))i +
1

2
( sdε,φ

◦

− (u))i.

def d,sddef d,sd (4.5)

Note that dε,φ
◦

+ (u) = −dε,φ
◦

− (−u) and sdε,φ
◦

+ (u) = − sdε,φ
◦

− (−u).
We will say that f ∈ Xε is (L, φ◦)-Lipschitz if for all i, j ∈ εZN it holds |fi − fj | ≤ Lφ◦(i− j).

lip sd Remark 4.1. We assume in what follows that u is (1, φ◦)-Lipschitz. Then, concerning dε,φ
◦

− ,

sdε,φ
◦

− , we remark that

def sd mindef sd min (4.6) dε,φ
◦

− (u) = min {f ∈ Xε : f ≥ u in {u ≥ 0}, f is (1, φ◦)-Lipschitz} ,

and analogously

def sd maxdef sd max (4.7) sdε,φ
◦

− (u) = max
{
f ∈ Xε : f ≤ dε,φ

◦

− (u) in {u ≤ 0}, f is (1, φ◦)-Lipschitz
}
.

Correspondingly it holds

dε,φ
◦

+ (u) = max {f ∈ Xε : f ≤ u in {u ≤ 0}, f is (1, φ◦)-Lipschitz} ,

sdε,φ
◦

+ (u) = min
{
f ∈ Xε : f ≥ dε,φ

◦

+ (u) in {u ≥ 0}, f is (1, φ◦)-Lipschitz
}
,

def sd+def sd+ (4.8)

In particular, the functions dε,φ
◦

± (u), sdε,φ
◦

± (u), sdε,φ
◦
(u) are also (1, φ◦)-Lipschitz. Let us show

(4.6) the other identities being analogous. To this aim, denote by d̂ the function defined by the
right-hand side of (4.6). Since dε,φ

◦

− (u) is the pointwise supremum of (1, φ◦)-Lipschitz functions, we
clearly have that dε,φ

◦

− (u) is itself (1, φ◦)-Lipschitz. Moreover, testing with j = i in the definition of
dε,φ

◦

− (u), we get dε,φ
◦

− (u) ≥ u in {u ≥ 0}. Thus, we infer d̂ ≤ dε,φ
◦

− (u). For the opposite inequality,
let f be any functions as in the minimisation problem on the right-hand side of (4.6). Then for
any i ∈ εZN and j ∈ {u ≥ 0} we have

fi ≥ fj − φ◦(i− j) ≥ uj − φ◦(i− j) .

By maximising with respect to j ∈ {u ≥ 0}, we get f ≥ dε,φ
◦

− (u) and in turn, by the arbitrariness
of f , d̂ ≥ dε,φ

◦

− (u), which concludes the proof of (4.6)
Since the functions dε,φ

◦

± (u), sdε,φ
◦

± (u), sdε,φ
◦
(u) are (1, φ◦)-Lipschitz, from (4.6) it follows that

d-=d-= (4.9) dε,φ
◦

− (u) ≤ u in εZN , dε,φ
◦

− (u) = u in {u ≥ 0},

while (4.7) implies that

sd-=sd-= (4.10) sdε,φ
◦

− (u) ≥ dε,φ
◦

− (u) in εZN , sdε,φ
◦

− (u) = dε,φ
◦

− (u) in {u ≤ 0}.



DISCRETE-TO-CONTINUUM CRYSTALLINE CURVATURE FLOWS 13

Reasoning in the same way, we see that

dε,φ
◦

+ (u) ≥ u in εZN , dε,φ
◦

+ (u) = u in {u ≤ 0},

sdε,φ
◦

+ (u) ≤ dε,φ
◦

+ (u) in εZN , sdε,φ
◦

+ (u) = dε,φ
◦

+ (u) in {u ≥ 0}.
sd+=sd+= (4.11)

In particular we conclude

sd=sd= (4.12) sdε,φ
◦
(u) ≥ u in {u ≥ 0}, sdε,φ

◦
(u) ≤ u in {u ≤ 0}.

Note that (4.12) implies { sdε,φ
◦

+ (u) ≥ 0} ⊇ {u ≥ 0}, and (4.11) yields { sdε,φ
◦

+ (u) < 0} ⊇ {u <
0}, thus { sdε,φ

◦

+ (u) ≥ 0} = {u ≥ 0} (and analogously for sdε,φ
◦

− ). Similarly, one shows that
{ sdε,φ

◦

± (u) ≤ 0} = {u ≤ 0}. In particular, if the level set 0 of u is “fat”, then this is preserved
by these discrete “signed distance functions”. Further properties of these discrete signed distance
functions are presented in Lemma 4.3 below and in Remark 4.9

Moreover, it follows directly from the definition of dε,φ
◦

± (u), sdε,φ
◦

± (u) that the function sdε,φ
◦
(u)

is invariant under integer translations, meaning that for any i, τ ∈ εZN it follows

transl invar sdtransl invar sd (4.13)
(

sdε,φ
◦
(u(·+ τ))

)
i
=
(

sdε,φ
◦
(u)
)
i+τ

.

We now show that the redistancing operator sdε(u) is indeed a discrete approximation of the
signed distance function to the 0-sublevel set of the function u.

Given a set E ⊆ εZN , we will denote with Ê ⊆ RN the closed set defined by

Ê := E + [0, ε]N .

lemma sd sd hat Lemma 4.2. Given a (1, φ◦)-Lipschitz function u ∈ Xε, it holds

comp sd sd hatcomp sd sd hat (4.14) sup
εZN\E

| sdε,φ
◦

± (u)− sdφ
◦

Ê
| ≤ cφε,

for a suitable positive constant cφ, where E = {i ∈ εZN : ui ≤ 0}. Moreover,

comp sd sd hat biscomp sd sd hat bis (4.15) sdε,φ
◦

± (u) ≥ sdφ
◦

Ê
− cφε in εZN .

Proof. In this proof we let cφ denote a positive constant which depends on φ and that may change
from line to line and also within the same line.

We start introducing a slightly modified definition of the discrete signed distance sdε,φ
◦
(u).

Namely, setting

∂+ε E := {i ∈ εZN \ E : ∃j ∈ E with ‖i− j‖∞ = ε}

∂−ε E := {i ∈ E : ∃j ∈ εZN \ E with ‖i− j‖∞ = ε}
,def boundary+def boundary+ (4.16)

we define

(4.17) d̃i =

inf {uj + φ◦(i− j) : j ∈ ∂−ε E} , for i ∈ εZN \ E

sup {uj − φ◦(i− j) : j ∈ ∂+ε E} for i ∈ E
.

We start by showing that

sdε,φ
◦

± (u) ≥ d̃ in E,

sdε,φ
◦

± (u) ≤ d̃ in εZN \ E.
eq comp 3eq comp 3 (4.18)

Indeed, we note that for every i ∈ E we have

( sdε,φ
◦

− (u))i = (dε,φ
◦

− (u))i = sup
j∈{u≥0}

{uj − φ◦(i− j)} ≥ sup
j∈∂+

ε E

{uj − φ◦(i− j)} = d̃i.
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On the other hand, recalling that dε,φ
◦

− (u) ≤ u in E, for every i ∈ εZN \ E we see

( sdε,φ
◦

− (u))i = inf
j∈{u≤0}

{(dε,φ
◦

− (u))j + φ◦(i− j)} ≤ inf
j∈∂−

ε E
{uj + φ◦(i− j)} = d̃i.

Reasoning analogously we show the same inequalities between sdε,φ
◦

+ and d̃ and thus prove (4.18).
Next, we prove

tilde d and sdtilde d and sd (4.19) sup
εZN

|d̃− sdφ
◦

Ê
| ≤ cφε.

Recall that by definition (4.16), since u ≤ 0 in E and u > 0 in εZN \ E and since u is (1, φ◦)-
Lipschitz, it holds

|uj | ≤ cφε for j ∈ ∂±ε E.

Then, for every i ∈ εZN \ E we have

eq comp 1eq comp 1 (4.20) d̃i = inf
j∈∂−

ε E
{uj + φ◦(i− j)} ≥ inf

j∈∂−
ε E

φ◦(i− j)− cφε ≥ sdφ
◦

Ê
(i)− cφε.

On the other hand, by definition of sdφ
◦

Ê
there exists x ∈ ∂Ê such that sdφ

◦

Ê
(i) = φ◦(i− x). Let

k ∈ εZN be the closest point from x in ∂−ε E. We have

sdφ
◦

Ê
(i) = φ◦(i− x) ≥ φ◦(i− k)− cφε

≥ φ◦(i− k) + uk − cφε ≥ d̃i − cφε.
eq comp 2eq comp 2 (4.21)

Finally, equation (4.20) and (4.21) imply (4.19) outside E. The other case is analogous.
We now finally prove (4.14) outside E. From (4.18) and (4.19) it holds

dε,φ
◦

− (u) = sdε,φ
◦

− (u) ≥ d̃ ≥ sdφ
◦

Ê
− cφε in E.

In particular, sdφ
◦

Ê
− cφε is an admissible competitor in (4.7), thus sdε,φ

◦

− (u) ≥ sdφ
◦

Ê
− cφε in εZN .

On the other hand, in εZN \E it holds (4.18), thus we conclude (4.14) for sdε,φ
◦

− (u). Concerning
sdε,φ

◦

+ (u), we note that by Remark 4.1 and the equation above it holds

u ≥ sdε,φ
◦

− (u) ≥ sdφ
◦

Ê
− cφε in E.

The function sdφ
◦

Ê
− cφε is therefore admissible in (4.8), thus by maximality

dε,φ
◦

+ (u) ≥ sdφ
◦

Ê
− cφε.

Since sdε,φ
◦

+ (u) = dε,φ
◦

+ (u) in εZN \ E we conclude (4.14), taking also into account again (4.18)
and (4.19). Finally, (4.15) follows by combining (4.14), (4.18) and (4.19). �

We conclude the section with some further properties of the operator sdε,φ
◦
.

lem:sdcompar Lemma 4.3. Given u ∈ Xε and (1, φ◦)-Lipschitz, it holds

simm sdsimm sd (4.22) sdε,φ
◦
(−u) = − sdε,φ

◦
(u).

Furthermore, if u1, u2 ∈ Xε are (1, φ◦)-Lipschitz and u1 ≤ u2 then

sd monotonesd monotone (4.23) sdε,φ
◦
(u1) ≤ sdε,φ

◦
(u2).

Finally, for any s > 0 and u ∈ Xε and (1, φ◦)-Lipschitz, it holds

sd level setssd level sets (4.24) sdε,φ
◦
(u− s) ≤ sdε,φ

◦
(u)− s.
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Proof. For every i ∈ εZN it holds

(dε,φ
◦

− (−u))i = max
j∈{(−u)≥0}

{−uj − φ◦(i− j)} = − min
j∈{u≤0}

{uj + φ◦(i− j)} = −(dε,φ
◦

+ (u))i.

In turn,

( sdε,φ
◦

− (−u))i = min
j∈{(−u)≤0}

{
(dε,φ

◦

− (−u))j + φ◦(i− j)
}

= − max
j∈{u≥0}

{
(dε,φ

◦

+ (u))j − φ◦(i− j)
}
= −( sdε,φ

◦

+ (u))i.

Reasoning in the same way for dε,φ
◦

+ , sdε,φ
◦

+ we arrive at

sd pmsd pm (4.25) sdε,φ
◦

± (−u) = − sdε,φ
◦

∓ (u)

and thus sdε,φ
◦
(−u) = − sdε,φ

◦
(u). The monotonicity property (4.23) follows easily from Defini-

tion (4.5). The proofs of the other results also follow from Definition (4.5), we present only the
one concerning (4.24). Fix s > 0 and u ∈ Xε be a (1, φ◦)-Lipschitz function. By definition of
dε,φ

◦

− (u) we have

(dε,φ
◦

− (u))i = sup
j∈{u≥0}

{uj − φ◦(i− j)} ≥ s+ sup
j∈{u≥s}

{(uj − s)− φ◦(i− j)} = (dε,φ
◦

− (u− s))i + s.

Analogously

( sdε,φ
◦

− (u))i = inf
j∈{u≤0}

{
(dε,φ

◦

− (u))j + φ◦(i− j)
}

≥ s+ inf
j∈{u≤s}

{
(dε,φ

◦

− (u− s))j + φ◦(i− j)
}
= s+ ( sdε,φ

◦

+ (u− s))i.

Since the proofs for dε,φ
◦

+ (u), sdε,φ
◦

+ (u) are analogous, we conclude. �

4.2. The discrete scheme. We now describe our minimizing movements scheme, discretized in
both time and space. A particularity of our scheme is that in practice, it evolves the distance
function to a set rather than the set itself. In particular, at the discrete level, it may depend on
the initialization (even if in the limit the flow is geometric and only depends on the initial set).

Recalling (4.3), we rescale equation (3.4) on the lattice εZN in the following way. We recall
that Xε = RεZN and Yε = RεZN×εZN . Given g ∈ Xε and a time step h > 0, the problem (3.4) now
becomes to find (u, z) ∈ Xε × Yε satisfying

discrete EL rescdiscrete EL resc (4.26)

hD∗
εz + u = g on εZN

zij(ui − uj) = αεij |ui − uj |, |zij | ≤ αεij ,

where D∗
εz is defined in (3.1). For ease of notation we assume ε = ε(h), with ε→ 0 as h→ 0 and

we will specify the dependence on h only.
Let E0 ⊆ RN be a closed set. We define Eh,0 := {i ∈ εZN : (i + [0, ε)N ) ∩ E0 6= ∅}. We note

that

(4.27) Êh,0 → E0, Eh,0 → E0

as h → 0 in the Kuratowski sense, where with a slight abuse of notation we write Êh,0 to denote
the set Êh,0 = Eh,0 + [0, ε]N .

Given a closed set E0 ⊆ RN with E0 /∈ {∅,RN}, we consider uh,0 a (1, φ◦)-Lipschitz function
on εZN which is negative inside Eh,0 and positive outside. For instance, we set

uh,0 :=
1

2
Cφε(1− χEh,0)− 1

2
CφεχEh,0 ,
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where Cφ is defined in (4.4), so that uh,0 is (1, φ◦)-Lipschitz. Let us set (zh,0)ij = 0 for all
i, j ∈ εZN . Then, as long as Eh,k /∈ {∅,RN}, we can iteratively define uh,k+1, zh,k+1 for k ∈ N by
solving (4.26) with g = sdε,φ

◦
(uh,k); i.e.,

discrete EL resc algodiscrete EL resc algo (4.28)

hD∗
εz
h,k+1 + uh,k+1 = sdε,φ

◦
(uh,k) on εZN

zh,k+1
ij (uh,k+1

i − uh,k+1
j ) = αεij |u

h,k+1
i − uh,k+1

j |, |zh,k+1
ij | ≤ αεij .

We recall that the redistancing operator sdε,φ
◦

has been introduced in the previous section. We
then set

Eh,k+1 = {i ∈ εZN : uh,k+1
i ≤ 0}.

If either Eh,k = ∅ or Eh,k = RN , we define Eh,k+1 = Eh,k. We denote by T ∗
h the first discrete time

hk such that Eh,k = ∅, if any; otherwise we let T ∗
h = +∞. Analogously, we set T ′∗

h first discrete
time hk such that Eh,k = RN , if any; otherwise we let T ′∗

h = +∞.
For ease of notation we will set

Eh(t) := Eh,[t/h] ⊆ εZN

dh(t) := sdε,φ
◦
(uh,[t/h]) ∈ Xε

uh(t) := uh,[t/h] ∈ Xε

zh(t) := zh,[t/h] ∈ Yε

d̂h(·, t) := sdφ
◦

Êh(t)
∈ Lip(RN ),

def algodef algo (4.29)

where again, with a slight abuse of notation, Êh(t) stands for Êh(t). Note that in the definition
of d̂h(·, t) we are possibly using the convention sdφ

◦

∅ ≡ +∞ and sdφ
◦

RN ≡ −∞. Note also that
zh(t) is well defined only for 0 ≤ t < min{T ∗

h , T
′∗
h }; however, if needed, we can set zh(t) = 0 for

t ≥ min{T ∗
h , T

′∗
h }.

lip u Remark 4.4. If u is the solution of (4.26) with (L, φ◦)-Lipschitz datum g, by standard arguments,
based on the comparison principle and translation invariance, one can show that u satisfies the
same Lipschitz bound of g. Indeed, given j ∈ εZN , the function u(·−j)±Lφ◦(j) solves (4.26) with
datum g(·−j)±Lφ◦(j). By comparison one concludes as g(·−j)−Lφ◦(j) ≤ g(·) ≤ g(·−j)+Lφ◦(j).

Lemma 4.5. Let uh, Eh, dh be defined as in (4.29). Then, for every t ≥ 0, dh(t) is (1, φ◦)-Lipschitz
and satisfies

u over du over d (4.30)

uh(t) ≤ dh(t) in εZN \ Eh(t)

uh(t) ≥ dh(t) in Eh(t).

Proof. It follows from Remarks 4.1 and 4.4. �

rmk evol compl Remark 4.6. (Evolution of the complement) Let Eh(t), uh(t) be as in (4.29). We note that, if
F0 ⊆ RN is a closed set such that Fh,0 = εZN \ Eh,0, then the discrete evolution starting from
F0 coincides with {uh(t) ≥ 0} for every t ≥ 0. Indeed, denoting vh the discrete evolution starting
from F0, it holds by definition vh,0 = −uh,0, thus recalling (4.22) we have

sdε,φ
◦
(vh,0) = − sdε,φ

◦
(uh,0)

and, by uniqueness for (4.26) it follows that vh(h) = −uh(h). Then we can iterate to conclude.
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rmk comparison Remark 4.7 (Comparison principle). Let E0, F0 be closed sets in RN such that Eh,0 ⊆ Fh,0

(note that this condition is satisfied if E0 ⊆ F0). Let Eh(t), Fh(t) be the corresponding discrete
evolutions and let uh(t), vh(t) be the associated functions as in (4.29). Then, for every t ≥ 0

it holds Eh(t) ⊆ Fh(t). This follows easily by iteration from the monotonicity property (4.23)
and from the comparison principle for (4.26). One in fact could also consider the “open” discrete
evolution given by E̊h(t) := {uh(t) < 0} and F̊h(t) := {vh(t) < 0}. Then, by the same argument
one also have that E̊h(t) ⊆ F̊h(t).

rmk avoidance Remark 4.8 (Avoidance principle). Let E0, F0 ⊆ RN be closed sets such that Eh,0 ∩ Fh,0 = ∅
(which is, for example, implied by dist(E0, F0) > cφε for a suitable cφ > 0). Let Eh, uh and
F̊h(t), vh be the closed and open discrete evolutions starting from E0, F0 respectively (where the
open discrete evolution has been defined in Remark 4.7). Then,

F̊h(t) ⊆ εZN \ Eh(t).

Indeed, Fh,0 ⊆ εZN \ Eh,0 implies that −uh,0 ≤ vh,0 and thus by (4.22) and (4.23)

− sdε,φ
◦
(uh,0) = sdε,φ

◦
(−uh,0) ≤ sdε,φ

◦
(vh,0).

By the comparison principle for (4.26) and iterating one sees that −uh(t) ≤ vh(t) for all t ≥ 0,

which implies
F̊h(t) = {vh(t) < 0} ⊆ {uh(t) > 0} = εZN \ Eh(t).

rmk:sd Remark 4.9. We conclude this section by observing that we could have made different choices of
the distance function, without affecting the final convergence result. In definition (4.5) we could
have set

(d<(u))i = inf
j∈{u<0}

{uj + φ◦(i− j)} ,

( sd<(u))i = sup
j∈{u≥0}

{
(d<(u))j − φ◦(i− j)

}
,

(d≤(u))i = inf
j∈{u≤0}

{uj + φ◦(i− j)} ,

( sd≤(u))i = sup
j∈{u>0}

{
(d<(u))j − φ◦(i− j)

}
.

def sd weirddef sd weird (4.31)

One can see that sd≤(u) mimics the signed distance function to the boundary of {u ≤ 0} while
sd<(u) mimics the signed distance function to the boundary of {u < 0}. Defining the algorithm
as in (4.28) but with sd<, sd≤ replacing sdε,φ

◦
, adapting our proof one can conclude the same

convergence result. Let us further comment on the relation between sdε,φ
◦
, sd≤, sd<. One can

prove that for any (1, φ◦)-Lipschitz function u ∈ Xε, then

three sdthree sd (4.32) sd≤(u) ≤ sdε,φ
◦

− (u) ≤ sdε,φ
◦

+ (u) ≤ sd<(u).

Thus, between the many possible choices we could have performed in (4.5), it turns out that sd<

is the “maximal” one, while sd≤ is the “minimal”. Indeed, let us show that sdε,φ
◦

− (u) ≤ sdε,φ
◦

+ (u).

By definition (4.5) and (4.9), (4.11) for every i ∈ {u ≥ 0} it holds

( sdε,φ
◦

− (u))i = inf
j∈{u≤0}

{
(dε,φ

◦

− (u))j + φ◦(i− j)
}
≤ inf
j∈{u≤0}

{uj + φ◦(i− j)} = ( sdε,φ
◦

+ (u))i.

Reasoning analogously, for every i ∈ {u ≤ 0} it holds

( sdε,φ
◦

+ (u))i = sup
j∈{u≥0}

{
(dε,φ

◦

+ (u))j − φ◦(i− j)
}
≥ sup
j∈{u≥0}

{uj − φ◦(i− j)} = ( sdε,φ
◦

− (u))i.
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Furthermore, for any two (1, φ◦)-Lipschitz functions u, u′ ∈ Xε, if u ≤ u′ − s for s > 0 then

sd<(u) ≤ sd≤(u′)− s.

In particular, this implies that for any (1, φ◦)-Lipschitz function u ∈ Xε and s′ > s then

sdε,φ
◦
(u− s) ≤ sdε,φ

◦
(u− s′) + s′ − s.

Fix u0 ∈ Xε is a (1, φ◦)-Lipschitz function. Using the properties above and standard arguments,
one can see that for all but countably many s ∈ R the discrete evolutions starting from {u0 ≤ s}
and corresponding to the three possible choices of distances in (4.32) coincide.

sec:Wulff
4.3. Discrete evolution of Wulff shapes. In this section we provide some control on the evo-
lution speed of discrete Wulff shapes. The first result estimates the solution of (4.26) for the
distance to the Wulff shape.

speriamo che sia vero Lemma 4.10. There exists a constant C = C(φ) > 0 with the following property. If u is the
solution of (4.26) with g = φ◦, then u ≤ φh, where φh ∈ Xε is defined as

phi hphi h (4.33) φhi :=

φ◦(i) + Ch
φ◦(i) if φ◦(i) ≥ C(

√
h ∨ ε)

C(
√
h ∨ ε) + Ch√

h∨ε otherwise.

The proof of Lemma 4.10, based on the construction of a calibration, is postponed to Appen-
dix A. We now prove a useful lemma used to estimate the redistancing step in our algorithm for
functions of the form of (4.33).

lemma sd po-R Lemma 4.11. Let R ≥ δ > 0 and set

u := (φ◦ −R) ∨ (δ/2−R).

Then, for ε small enough depending on δ it holds

(4.34) sdε,φ
◦
(u) ≤ φ◦ −R+ ĉε in εZN ,

for a suitable positive constant ĉ, depending on φ. Furthermore, if we assume (B.1), it holds

sd po-Rsd po-R (4.35) sdε,φ
◦
(u) ≤ φ◦ −R in εZN .

Proof. By (4.32), it is sufficient to prove the claim for sdε,φ
◦

+ . We start showing that dε,φ
◦

+ (u) = u,
noting that by (4.11) it suffices to prove dε,φ

◦

+ (u) ≤ u in {u ≥ 0} = {φ◦ ≥ R}. Assuming (B.1),
given i ∈ {u ≥ 0} we note that φ◦(i) ≥ R thus by Lemma B.1 there exists j ∈ WR \ WR−2ε`1

satisfying
φ◦(j) + φ◦(i− j) = φ◦(i).

Taking ε = ε(δ) we can ensure that R− 2ε`1 ≥ δ/2, so that j ∈ (WR \Wδ/2)∩ εZN . By definition
(4.5) and the equation above we conclude that

dε,φ
◦

+ (u) ≤ uj + φ◦(i− j) = φ◦(j)−R+ φ◦(i− j) = φ◦(i)−R,

hence we have shown that dε,φ
◦

+ (u) = u. Finally, from the definition (4.5) and since dε,φ
◦

+ (u) =

u = φ◦ −R on {u ≥ 0}, we conclude by the triangular inequality that sdε,φ
◦

+ (u) ≤ φ◦ −R. All in
all, we have obtained (4.35).

If instead (B.1) does not hold, using the first part of Lemma B.1 and reasoning as above, one
concludes that

sdε,φ
◦

+ (u) ≤ φ◦ −R+ ĉε,

for a positive constant ĉ, and then the conclusion follows. �
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Combining the two results above we can provide a bound on the evolution speed of Wulff shapes
in the algorithm (4.28).

prop:evol Wulff Proposition 4.12. Assume either ε ≤ O(h) or that (B.1) holds. For every δ > 0 there exist
ε0, h0, c0 positive constants depending on δ with the following property. If R ≥ δ, ε ≤ ε0 and
h ≤ h0, then the discrete evolution of WR defined in (4.28), denoted Wh(t), satisfies

est2 speed wulffest2 speed wulff (4.36) Wh(t) ⊇ (WR−c0(t+ε)) ∩ εZ
N ,

as long as R− c0(t+ ε) ≥ δ/2.

Proof. Let W̊h(t) be the open discrete evolution (see Remark 4.7) starting from the closure of WR,
for some R > 0 and let vh(t) be the associated function as in the third equation in (4.29). Using
the definition of vh,0, (4.10) and the first definition in (4.5), it is easy to see that

sd=-R:1sd=-R:1 (4.37) ( sdε,φ
◦

− (vh,0))0 = (dε,φ
◦

− (vh,0))0 ≤ −R+ cφε.

On the other hand, consider i ∈ {vh,0 ≥ 0} and let x′ ∈ ∂WR be such that

φ◦(i− x′) = φ◦(i)− φ◦(x′) = φ◦(i)−R.

Since there exists j′ ∈ {vh,0 ≤ 0} such that φ◦(j′ − x′) ≤ cφε, then by triangular inequality

φ◦(i− j′) ≤ φ◦(i)−R+ cφε.

Thus, using again definition (4.5), we get

(dε,φ
◦

+ (vh,0))i ≤ inf
j∈{vh,0≤0}

φ◦(i− j) ≤ φ◦(i)−R+ cφε,

which implies

sd=-R:2sd=-R:2 (4.38) ( sdε,φ
◦

+ (vh,0))0 ≤ sup
j∈{vh,0≥0}

(dh,0+ (vh,0))j − φ◦(j) ≤ −R+ cφε.

Therefore, since sdε,φ
◦
(vh,0) is a (1, φ◦)-Lipschitz function, from (4.37), (4.38) we get that

sdε,φ
◦
(vh,0) ≤ φ◦ −R+ cφε in εZN .

By comparison and Lemma 4.10 we obtain

startstart (4.39) vh(h) ≤ φh −R+ cφε,

where φh ∈ Xε is defined in (4.33). Considering R ≥ δ and h = h(δ), ε = ε(δ) small enough, the
equation above implies that

start2start2 (4.40) vh(h) ≤ (φ◦ −R+ c0h+ cφε) ∨
(
δ

2
−R

)
where c0 = 4C/δ, with C the same as in (4.33). Assume first (B.1). From Lemma 4.11, with R

replaced by R− c0h− cφε, we get

stima 1stima 1 (4.41) sdε,φ
◦
(vh(h)) ≤ φ◦ −R+ c0h+ cφε,

therefore by comparison and Lemma 4.10 we get

vh(2h) ≤ φh −R+ c0h+ cφε,

which, reasoning as above, implies for ε(δ), h(δ) small

vh(2h) ≤ (φ◦ −R+ 2c0h+ cφε) ∨
(
δ

2
−R

)
.
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Hence, we can iterate the argument to conclude that

est speed vhest speed vh (4.42) vh(t) ≤ (φ◦ −R+ c0t+ cφε) ∨
(
δ

2
−R

)
,

as long as R − c0t − cφε ≥ δ/2 and ε, h are sufficiently small. In particular, this implies (4.36)
(possibly changing the value of c0).

If instead (B.1) does not hold and ε ≤ O(h), we obtain (4.39), (4.40) in the same way. Then,
using the first part of Lemma 4.11 we get

(4.43) sdε,φ
◦
(vh(h)) ≤ φ◦ −R+ c0h+ ĉε+ cφε,

then iterating we get

vh(kh) ≤ (φ◦ −R+ kc0h+ kĉε+ cφε) ∨
(
δ

2
−R

)
,

hence, recalling that ε ≤ O(h) we conclude (4.42) and (4.36), as long as R− c0t− cφε ≥ δ/2, with
ε, h sufficiently small and possibly changing the value of c0. �

As a corollary of the previous result, we deduce an estimate of the evolution of the distance
function d̂h at distance from the evolving boundary, which we show next.

lm:bound dist Corollary 4.13. Let E0 ⊆ RN be a closed set and consider the discrete evolution defined in (4.29).
Assume either that ε ≤ O(h) or that (B.1) holds. Then, for every δ > 0 there exist c0 = c0(δ) > 0,
h0 = h0(δ) > 0 and ε0 = ε0(δ) such that the following holds. If d̂h(x, t) ≥ δ, then for s ≥ t,

bound dist+bound dist+ (4.44) d̂h(x, s) ≥ d̂h(x, t)− c0(s− t+ ε+ h)

provided 0 < h ≤ h0, 0 < ε < ε0 and as long as d̂h(x, t) − c0(s − t + ε + h) ≥ δ/2. Similarly, if
d̂h(x, t) ≤ −δ, then for s ≥ t,

bound dist-bound dist- (4.45) d̂h(x, s) ≤ d̂h(x, t) + c0(s− t+ ε+ h)

provided 0 < h ≤ h0 and as long as d̂h(x, t) + c0(s− t+ ε+ h) ≤ −δ/2.

Proof. As usual, in this proof we denote by cφ a positive constant depending on φ whose value
may change from line to line and also within the same line.

Assume d̂h(x, t) ≥ δ. Without loss of generality we may assume t ∈ [0, T ∗
h ) so that d̂h(x, t) is

finite. Denote by xε ∈ εZN such that x ∈ xε + [0, ε)N . Note that there exists a constant cφ > 0

such that, setting R := d̂h(x, t) − cφε, one has (WR(xε))
h,0 ∩ Eh(t) = ∅ and R > δ/2 (if ε, h are

sufficiently small, depending on δ). By the avoidance principle stated in Remark 4.8, we deduce
that the open discrete evolution of WR(xε), which we denote by F (τ), lies outside Eh([ th ]h + τ)

for all τ ≥ 0. By Proposition 4.12 we deduce

incl wulffincl wulff (4.46) F (τ) ⊇ WR−c0(τ+ε)(xε) ∩ εZ
N ,

provided that R− c0(τ + ε) ≥ δ/2. Note that in particular

(WR−c0(τ+h+ε)(xε) ∩ εZ
N ) ⊆ (εZN \ Eh(t+ τ)),

as long as R− c0(τ + h+ ε) ≥ δ/2. In turn, we get

(4.47) d̂h(xε, t+ τ) ≥ R− c0(τ + h+ ε),

provided R− c0(τ + h+ ε) ≥ δ/2 (for a possibly larger value of c0). Recalling the definition of R
and xε and possibly increasing the value of c0, we infer

(4.48) d̂h(x, t+ τ) ≥ d̂h(x, t)− c0(τ + h+ ε)
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as long as d̂h(x, t)− c0(τ + h+ ε) ≥ δ. The case d̂h(x, t) ≤ −δ is analogous. �

5. Convergence of the scheme
sec:conv

We now are ready to study the convergence of the scheme as ε → 0, h → 0. Recall that we
assumed that ε = ε(h) goes to 0 as h → 0. In this section we assume that either ε ≤ O(h) or
that (B.1) holds. Let Eh(·) be the discrete evolution defined in (4.29) and recall that Êh(·) =

Eh(·) + [0, ε]N . We introduce the closed space-time tubes

tubidiscretitubidiscreti (5.1) E
h
:= cl

(
{(x, t) ∈ RN × [0,+∞) : x ∈ Êh(t)}

)
where the closure is in space-time. Then, there exist A,E open and closed (respectively) subsets
of RN × [0,+∞), with A ⊆ E, and a subsequence hk → 0 such that

E
hk K−→ E and RN × [0,+∞) \ int

(
E
hk
) K−→ RN × [0,+∞) \A,

where interior, and Kuratowski convergence are meant in space-time. Let E(t) and A(t) be the
t-time slice of E and A, respectively..

Note that if E(t) = ∅ for some t ≥ 0, then (4.44) implies E(s) = ∅ for all s ≥ t so that we can
define, as in Definition 2.1, the extinction time T ∗ of E. In the same fashion one can define the
extinction time T ′∗ of RN × [0,+∞) \ A (notice that at least one between T ∗ and T ′∗ is +∞).
Possibly extracting a further (not relabelled) subsequence and arguing exactly as in [22, Proof of
Proposition 4.4] (and relying on the bounds (4.44) and (4.45)), one can in fact show the following
result.

prop:E Proposition 5.1. There exists a countable set N ⊆ (0,+∞) such that d̂hk(·, t)+ → distφ
◦
(·, E(t))

and d̂hk(·, t)− → distφ
◦
(·,RN \ A(t)) locally uniformly for all t ∈ (0,+∞) \ N. Moreover, E and

RN × [0,+∞) \ A satisfy the continuity properties (b) and (c) of Definition 2.1. In addition, if
T ∗ > 0, then {d̂hk} is locally uniformly bounded in RN × (0, T ∗) \ E and analogously {d̂hk} is
locally uniformly bounded in RN × (0, T ′∗)∩A if T ′∗ > 0. Finally, E(0) = E0 and A(0) = int(E0).

themthm Theorem 5.2. The set E is a superflow in the sense of Definition 2.1 with initial datum E0,
while A is a subflow with initial datum E0.

The proof of this result follows the main lines of the proof of [22, Theorem 4.5 ]. One important
difference with respect to the local, continuous setting is that the variable zhk is defined on the
edges (i, j) between the vertices i, j ∈ εZN and it is therefore unclear how to pass to the limit in
this variable to obtain the limiting vector field z(x, t). In order to do so, we associate with the
discrete vector field zhij(t) ∈ Yε a vector field zh(·, t) in RN defined as follows:

(5.2) zh(x, t) :=
1

ε

∑
j∈εZN

zhij(t)(i− j),

where i ∈ εZN is such that x ∈ i + [0, ε)N . Recall that we can take zhij(t) and thus zh(·, t)
identically zero for t ≥ min{T ∗

h , T
′∗
h }. First, we show the following:

lemma phi circ Lemma 5.3. The vector field zh satisfies

(5.3) φ◦(zh) ≤ 1.
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Proof. Take v 6= 0 in RN . Recalling that φ(v) =
∑
`∈ZN β(`)|v · `|, one has for any x ∈ RN and

i ∈ εZN such that x ∈ i+ [0, ε)N

eq:defzcontinueq:defzcontinu (5.4) zh(x, t) · v =
1

ε

∑
j∈εZN

zhij(t)(i− j) · v =
∑
`∈ZN

zhi,i+ε`(t)` · v ≤ φ(v),

where we used that |zhi,i+ε`(t)| ≤ β(`). �

Hence, being globally bounded, this vector field is weakly-∗ compact in L∞(RN × (0, T );RN )

for any T > 0. The following lemma establishes a relationship between the divergence of its limits
and the limits of the discrete divergences of zh.

lemma d star to div Lemma 5.4. Assume that zhk
∗
⇀ z in L∞(RN × (0, T );RN ) along a subsequence hk → 0. Then,

for every ϕ ∈ C∞(RN × (0, T )) and η ∈ C∞
c (RN × (0, T )) it holds

lim
k→∞

εNk ∫ ∑
i,j∈εkZN

zhk
ij (t)η(i, t)

ϕ(i, t)− ϕ(j, t)

εk
dt

 =

∫∫
η z · ∇ϕdxdt.

Proof. Let ϕ ∈ C∞(RN×(0, T )) and η ∈ C∞
c (RN×(0, T )) and denote S(t) = supp(η(t)) and

Qk := [0, εk)
N . We have

end align1end align1 (5.5) εNk
∑

i,j∈εkZN

zhk
ij (t)η(i, t)

ϕ(i, t)− ϕ(j, t)

εk
= εNk

∑
i,j∈εkZN

zhk
ij (t)

εk
η(i, t)∇ϕ(xij) · (i− j),

where xij belongs to the segment between i and j. Furthermore we have∣∣∣∣∣∣εNk
∑

i,j∈εkZN

zhk
ij (t)η(i, t)

ϕ(i, t)− ϕ(j, t)

εk
−

∑
i,j∈εkZN

zhk
ij (t)

εk

∫
i+Qk

η∇ϕ · (i− j)dx

∣∣∣∣∣∣
≤

∑
i,j∈εkZN

αεkij
εk

|η(i, t)|
∫
i+Qk

|(∇ϕ(xij , t)−∇ϕ(x, t)) · (i− j)| dx+O(εNk )eq align2eq align2 (5.6)

≤ 2‖η‖∞
∑

i∈S(t)∩εkZN

∑
j∈εkZN

αεkij
εk

∫
i+Qk

|(∇ϕ(xij , t)−∇ϕ(x, t)) · (i− j)| dx+O(εNk )

≤ cεNk
∑

i∈S(t)∩εkZN

∑
j∈εkZN

αεkij
εk

|i− j|2 +O(εNk )ineq lip varphiineq lip varphi (5.7)

= cεN+1
k

∑
i∈ZN

εki∈S(t)

∑
j∈ZN

αij |i− j|2 +O(εNk )

≤ cεN+1
k

(∑
`∈ZN

β(`)|`|2
)
(#S(t) ∩ εkZN ) +O(εNk )

≤ cεk
∑
`∈ZN

β(`)|`|2 +O(εNk )end alignend align (5.8)

where in (5.6) we used the Lipschitz property of η and (4.2), while in (5.7) we used the Lipschitz
property of ∇ϕ and |xij − x| ≤ (1 +

√
N)|i − j| for i 6= j and x ∈ i + Qk, and finally in (5.8)

we used that #(S(t) ∩ εZN ) = O(ε−Nk ), which holds locally uniformly in time. Moreover, note
that the the estimate provided above is uniform as t varies in compact subsets of (0, T ). Recalling
(4.2), we conclude integrating in time and sending k → ∞. �

At this point, we may proceed with the proof of Theorem 5.2.
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Proof of Theorem 5.2. As usual, in this proof we denote by cφ a positive constant depending on
φ whose value may change from line to line and also within the same line.

We only show that E is a superflow, as the subflow property of A can be proven analogously.
Points (a), (b) and (c) of Definition 2.1 follow from Proposition 5.1. We are left with showing (d).
Without loss of generality we may assume T ∗ > 0 (which follows from Corollary 4.13 if the initial
set is not trivial). Note also that by Proposition 5.1 we have lim infk T

∗
hk

≥ T ∗.
Step 1: (Proof of (2.1)). For (x, t) ∈ RN × (0, T ∗) \ E we set d(x, t) := distφ

◦
(·, E(t)). By

Lemma 4.2 and Proposition 5.1 we have
conv1conv1 (5.9)

sup
εkZN∩K

|dhk(t)− d(·, t)| → 0 as k → ∞ for t ∈ (0, T ∗) \ N and for any compact K ⊆ RN \ E(t).

Moreover, dhk and d are locally uniformly bounded in RN × (0, T ∗) \ E. Set zhk(·, t) := 0 for
t > T ∗

hk
if T ∗

hk
< T ∗. Extracting a further subsequence, if needed, and recalling Lemma 5.3, we

may assume that zhk converges weakly-∗ in L∞(RN×(0, T ∗);RN ) to some vector-field z satisfying

subdiff 0subdiff 0 (5.10) φ◦(z) ≤ 1

almost everywhere. Recall that by (4.30) we have uhk(t) ≤ dhk(t) in εkZN \ Ehk(t); i.e., in the
region where dhk(t) is nonnegative. Combining with (4.28) (and recalling (4.29)) we infer that for
t < T ∗

hk
it holds

eq:ineqdisceq:ineqdisc (5.11) −D∗
εk
zhk(t+ hk) ≤

dhk(t+ hk)− dhk(t)

hk
in εkZN \ Ehk(t).

Consider a nonnegative test function ϕ ∈ C∞
c ((RN × (0, T ∗)) \ E). If k is large enough, then the

distance of the support of ϕ from E
hk is bounded away from zero. In particular, dhk is finite and

positive on suppϕ. We deduce from (5.11) that

εNk

∫ ∑
i∈εkZN

ϕ(i, t)

(
dhk
i (t+ hk)− dhk

i (t)

hk
+ (D∗

εk
zhk(t+ hk))i

)
dt

= −εNk
∫ ∑

i∈εkZN

ϕ(i, t)− ϕ(i, t− hk)

hk
dhk
i (t)dt+ εNk

∫ ∑
i,j∈εkZN

zhk
ij (t+ hk)− zhk

ji (t+ hk)

hk
ϕ(i, t)dt

= −εNk
∫ ∑

i∈εkZN

ϕ(i, t)− ϕ(i, t− hk)

hk
dhk
i (t)dt+ εNk

∫ ∑
i,j∈εkZN

zhk
ij (t+ hk)

ϕ(i, t)− ϕ(j, t)

hk
dt ≥ 0.

eq end aligneq end align (5.12)

It is easy to check that the first integral in (5.12) converges to −
∫∫

d ∂tϕdxdt as k → ∞ thanks to
(5.9) and since dhk , d are uniformly bounded. Recalling that zhk converges weakly-∗ in L∞(RN ×
(0, T ∗)) to z, we use Lemma 5.4 to conclude that the second integral in (5.12) converges to∫∫

z · ∇ϕdxdt. We thus conclude (2.1).
Step 2: (Convergence of uhk to d). Firstly, we establish an upper bound for −D∗

εk
zhk

away from
Ehk . We start by noting that definition (4.5) implies

bound Lip sdbound Lip sd (5.13) sdε,φ
◦
(u) ≤ 1

2

(
(dε,φ

◦

− (u))j + u` + φ◦(· − j) + φ◦(· − `)
)

in εZN \ {u ≤ 0},

for every (1, φ◦)-Lipschitz function u ∈ Xε and j, ` ∈ {u ≤ 0}. Therefore, specifying the inequality
above for uhk(t), by the comparison principle and Lemma 4.10 we conclude

(5.14) uhk
i (t+ hk) ≤

1

2

(
φhk
i−j + φhk

i−` + (dε,φ
◦

− (uhk(t))j + uhk

` (t)
)
, ∀i ∈ εkZN \ Ehk(t),



24 A. CHAMBOLLE, D. DE GENNARO, AND M. MORINI

where j, ` ∈ Ehk(t). If d̂hk(i, t) ≥ R > 0, recalling the definition of φh, we get

ineq div:1ineq div:1 (5.15) uhk
i (t+ hk) ≤

1

2

(
φ◦(i− j) + φ◦(i− `) + (dε,φ

◦

− (uhk(t))j + uhk

` (t)
)
+

Chk
R− cφε

,

for all i ∈ εkZN \Ehk(t). Infimizing in j, ` over Ehk(t) in (5.15) and using again (4.5) and (4.11),
we conclude

uhk
i (t+ hk) ≤ dhk

i (t) + hk
C

R− cφεk
≤ dhk

i (t) + hk
C

R
.eq:iterkeq:iterk (5.16)

provided hk, εk are small enough depending on R, and for a possibly larger value of C. As a
consequence of (5.16), we obtain

numeronumero (5.17) −D∗
εk
zhk(t+ hk) ≤

C

R
in {d̂hk(·, t) ≥ R} ∩ εkZN .

Using again Lemma 5.4 and the convergences of Ehk
and dhk

it follows that

divz ≤ C

R
in {(x, t) ∈ RN × (0, T ∗) : d(x, t) > R}

in the sense of distributions. Hence divz is a Radon measure in RN × (0, T ∗) \ E, and (divz)+ ∈
L∞({(x, t) ∈ RN × (0, T ∗) : d(x, t) ≥ δ}) for every δ > 0.

On the other hand, note that for every i ∈ εkZN it holds

dhk(t) ≥ dhk
i (t)− φ◦(· − i).

Thus, by Lemma 4.10 and by comparison as before, we get

uhk
i (t+ hk) ≥ dhk

i (t)− φhk
0 = dhk

i (t)− (C + 1)
√
hk.

Combining the above inequality with (5.16), we deduce for all t ∈ (0, T ∗) \ N and any δ > 0 that

sup
{d̂hk

(·,t)≥δ}∩εkZN

|uhk(t+ hk)− dhk(t)| ≤
√
hk(C + 2),

provided that k is large enough. In particular, recalling also (5.9), we deduce that
elleunoelleuno (5.18)

sup
εkZN∩K

|uhk(t)− d(·, t)| → 0 as k → ∞ for t ∈ (0, T ∗) \ N and for any compact K ⊆ RN \ E(t),

also with the sequence {uhk} locally (in space and time) uniformly bounded.
Step 3: (The subdifferential inclusion). It remains to show that

conv subdiffconv subdiff (5.19) z ∈ ∂φ(∇d) a.e. in RN × (0, T ∗) \ E.

Recall that ξ ∈ ∂φ(η) if and only if ξ ∈ {v : φ◦(v) ≤ 1, v ·η ≥ φ(η)}. Since one inequality has been
proved in (5.10), we show the other one. Consider a test function η ≥ 0, η ∈ C∞

c ((RN×(0, T ∗))\E).
Let σ > 0 and set dσ ∈ C∞(RN × (0, T ∗)) as dσ = d ∗ ρσ, where ρσ are space-time mollifiers.
Obviously∑

i,j∈εkZN

zhk
ij (t)η(i, t)(u

hk
i (t)− uhk

j (t)) =
∑

i,j∈εkZN

zhk
ij (t)η(i, t))(dσ(i, t)− dσ(j, t))

+
∑

i,j∈εkZN

zhk
ij (t)η(i, t)

(
uhk
i (t)− dσ(i, t)− uhk

j (t) + dσ(j, t)
)
.

eq rewreq rewr (5.20)

In turn, Lemma 5.4 implies that

eq rewr 1eq rewr 1 (5.21) lim
k→∞

εNk

∫  ∑
i,j∈εkZN

zhk
ij (t)η(i, t)

dσ(i, t)− dσ(j, t)

εk

 dt =
∫∫

z · ∇dσ η dxdt.
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Let us thus show that

lim
σ→0

lim
k→∞

εNk

∫ ∑
i,j∈εkZN

(
zhk
ij (t)η(i, t)

uhk
i (t)− dσ(i, t)− uhk

j (t)− dσ(j, t)

εk

)
dt = 0,error term1error term1 (5.22)

We set for every t ∈ (0, T ∗
h ) and σ > 0

mk,σ(t) := min
i∈supp(η)∩εkZN

(uhk
i (t)− dσ(i, t)),

Mk,σ(t) := max
i∈supp(η)∩εkZN

(uhk
i (t)− dσ(i, t)).

The convergence (5.18) implies that these quantities are uniformly bounded and

mekmek (5.23) lim
σ→0

lim
k→+∞

mk,σ(t) = 0, lim
σ→0

lim
k→+∞

Mk,σ(t) = 0,

uniformly for all t /∈ N. For all times t ∈ (0, T ∗) \ N it holds

εNk
∑

i,j∈εkZN

zhk
ij (t)η(i, t)

uhk
i (t)− dσ(i, t)− uhk

j (t) + dσ(j, t)

εk

= εNk
∑

i,j∈εkZN

zhk
ij (t)η(i, t)

(uhk
i (t)− dσ(i, t)−mk,σ(t))− (uhk

j (t)− dσ(j, t)−mk,σ(t))

εk

= εNk
∑

i∈εkZN

(uhk
i (t)− dσ(i, t)−mk,σ(t))

∑
j∈εkZN

(
zhk
ij (t)− zhk

ji (t)

εk
η(i, t) + zhk

ji (t)
η(i, t)− η(j, t)

εk

)
.

eq err 1eq err 1 (5.24)

For k large enough, since the support of η is at positive distance from E, by the bound (5.17) one
has D∗

εk
zhk(t) ≥ −c(δ) on the support for hk small enough. Thus it holds

εNk
∑

i∈εkZN

(uhk
i (t)− dσ(i, t)−mk,σ(t))η(i, t)

∑
j∈εkZN

zhk
ij (t)− zhk

ji (t)

εk

≥ −c(δ)εNk
∑

i∈εkZN

(uhk
i (t)− dσ(i, t)−mk,σ(t))η(i, t).

Recalling that #(supp(η) ∩ εkZN ) = O(h−Nk ) uniformly in time, by uniform convergence and
(5.18) we conclude that

eq err 2eq err 2 (5.25) lim
σ→0

lim inf
k→∞

εNk

∫ ∑
i∈εkZN

(uhk
i (t)− dσ(i, t)−mε,k(t))η(i, t)

∑
j∈εkZN

zhk
ij (t)− zhk

ji (t)

εk
dt ≥ 0.

The other term in (5.24) can be estimated using the Lipschitz constant of η:∣∣∣∣∣∣
∫ ∑

i,j∈εkZN

εNk (uhk
i (t)− dσ(i, t)−mε,k(t))z

hk
ji (t)

η(i, t)− η(j, t)

εk
dt

∣∣∣∣∣∣
≤ ‖∇η‖∞εNk

∫ ∑
i,j∈εkZN

(uhk
i (t)− dσ(i, t)−mε,k(t))α

hk
ji

|i− j|
εk

dt→ 0
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letting first k → +∞ and then σ → 0, thanks to (5.18) and (5.23). Note now that adding and
subtracting Mε,k(t) to (5.22) instead of mε,k(t) and reasoning as above, one proves that

lim
σ→0

lim sup
k→∞

εNk

∫  ∑
i∈εkZN

((uhk
i (t)− dσ(i, t)−Mε,k(t))η(i, t)

∑
j∈εkZN

zhk
ij (t)− zhk

ji (t)

εk

 dt ≤ 0,

lim
ε→0

lim
k→∞

εNk

∫ ∣∣∣∣∣∣
∑

i,j∈εkZN

((uhk
i (t)− dσ(i, t)−Mε,k(t))z

hk
ji (t)

η(i, t)− η(j, t)

εk

∣∣∣∣∣∣ dt = 0.

eq err 4eq err 4 (5.26)

Combining (5.24), (5.25) and (5.26), we conclude (5.22).
Integrating in time (5.20) and combining (5.21) and (5.22), since ∇dσ = ρσ∗∇d→ ∇d pointwise

a.e. and are uniformly bounded in L∞(RN × (0, T ∗);RN ), it holds

lim
k→∞

εNk

∫  ∑
i,j∈εkZN

η(i, t) zhk
ij (t)

uhk
i (t)− uhk

j (t)

εk

 dt =
∫∫

z · ∇d η dxdt.

The convergence above can be paired with the lower semicontinuity of the Γ-convergence of the
discrete total variations (which follows from an adaptation of classical arguments, see e.g. [19])
and zεij(u

ε
i − uεj) = αεij |uεi − uεj | to obtain∫∫
φ(∇d)η ≤ lim inf

k→∞
εNk

∫  ∑
i,j∈εkZN

η(i, t)αhk
ij

|uhk
i (t)− uhk

j (t)|
εk

 dt

= lim inf
k→∞

εNk

∫  ∑
i,j∈εkZN

η(i, t) zhk
ij (t)

uhk
i (t)− uhk

j (t)

εk

 dt =
∫∫

z · ∇d η,

which shows that φ(∇d) = z · ∇d a.e. on the support of η, from which we deduce (5.19). �

We conclude this section by observing that the discrete scheme converges to the unique weak
flow (in the sense of Definition 2.1) starting from E0 for “generic” initial data E0, i.e. whenever
fattening does not occur. More precisely, we have the following Corollary.

Corollary 5.5. Let u0 ∈ UC(RN ) and for every λ ∈ R let Ehλ be the closed space-time tube of the
h-discrete evolution starting from {u0 ≤ λ}; i.e., as in (5.1) with E0 = {u0 ≤ λ}. Then, there
exists a countable set N such that for all λ ∈ RN \ N

E
h

λ
K−→ Eλ in RN × [0,+∞)

as h→ 0, where Eλ is the unique weak flow in the sense of Definition 2.1 starting from {u0 ≤ λ}.

Proof. It follows by combining Theorems 5.2 and 2.5. �

6. Numerical experiments
sec:Num

We show some numerical experiments to illustrate our results, in dimension 2 (an implemen-
tation in 3D is currently being developed). We follow the implementation described in [18] (see
also [17]), except that now the distance is properly computed using using the inf/sup-convolution
formulas (4.5). The (exact) numerical resolution of the discrete ROF functional is computed using
Hochbaum’s parametric maximum flow algorithm [36, 37], implemented upon the maxflow/mincut
implementation of Boykov and Kolmogorov [8]. This particular algorithm has the advantage to
provide an exact solution of the ROF problem, up to computer precision. Other implementations
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Figure 1. An initial datum and evolutions for square, octagonal and “almost
isotropic” anisotropies, at two different times. fig:shapes

of the algorithm yielding approximate minimizers have been considered for instance in [16, 44], of
course they work in practice and allow to address more (an)isotropies than the current work, yet
the joint convergence as ε = h→ 0 is not clear in these contexts. For numerical speedup, the infi-
mum and supremum of definition (4.5) are computed only in a neighborhood of fixed size and not
on the whole grid. We expect this to yield, in general, an error of order Cε with C getting smaller
as the width of the strip increases, however we observe that Corollary B.2 in Appendix B justifies
this restriction (showing that C = 0) in some cases, notably the case φ = ‖ · ‖`1 , φ◦ = ‖ · ‖`∞ ,
see Fig. 2, left, for which the sup/inf are in fact min/max which are reached very close to the
evolving boundary (as one can chose `1 = 1 in Lemma B.1). Similarly, the ROF minimization is
only performed in a neighborhood of the boundary (one can show that this does not affect the
solution in a smaller neighborhood, hence the overall error is the same as when computing the
distance in a strip only).

The code is available at https://plmlab.math.cnrs.fr/chambolle/discretecrystals/ (im-
plemented in C/C++ and running on GNU/linux with gcc).
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Figure 2. Wulff shapes of initial radius R0 = 50 evolved at times t = 0, 200,
400, . . . , 1200 for four different anisotropies (square, octagon, diamond and “al-
most isotropic”). fig:Wulffshapes

Figure 1 shows three examples of flows from the same starting set, composed of random shapes.
The anisotropies are square (nearest neighbours interactions), octagonal (next nearest neighbours,
weighted so that the corresponding Wulff shape is a regular octagon), and “almost isotropic”,

https://plmlab.math.cnrs.fr/chambolle/discretecrystals/
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which is generated by the interactions in the 12 directions e ∈ {(0,±1), (±1, 0), (±1,±2), (±1,±3)}
weighted so that the Wulff shape is a polygon with 24 facets of equal lengths. This is obtained by
setting the weights in the discrete total variation as .131/length(e) for each direction e, so that the
total perimeter of the unit Wulff shape is 24× (2× .131) ≈ 2π, in the hope that the corresponding
crystalline curvature will be close to the Euclidean one.
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Figure 3. Evolution of the radius for the square (left) and octogonal (right) anisotropies. fig:radiiSqOc
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Figure 4. Evolution of the radius for the diamond (left) and “almost isotropic”
(right) anisotropies. fig:radiiDiIs

Then, we estimate the decay of the radius of an initial Wulff shape WR0
= {φ ≤ R0} along the

evolution, up to extinction. In our experiment, R0 = 50. It is well known that the solution is the
Wulff shape of radius R(t) =

√
R2

0 − 2(N − 1)t (where here N = 2). The evolutions are depicted
in Figure 2. We use the same anisotropies as in figure 1, with additionally a “diamond” Wulff
shape generated by the directions (0,±1), (±1,±2) and with sides of equal lengths. In all cases,
the weights have been calibrated so that the perimeters of the Wulff shapes are 6.28 ≈ 2π.

The plots in Figure 4 show that the decay of the radii is remarkably close to the theoretical
prediction, even if this is less precise when more directions of interactions are involved, near
extinction. This might be due in part to the fact that the computation of the distance through
truncated variants of (4.5) become less precise.

Finally, we perform the same experiment with varying ε and h. We observe that the results
look remarkably close even if, at low resolution, the error becomes huge when the size of the Wulff
shape is of the order of the discretization. Figure 5 shows the shapes. Observe that the shape at
time t = 49 is only computed for ε = 0.1 and h = 0.1 (the shape vanishes before for the two other
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Figure 5. Evolution of an initial octagon with R0 = 10 at times 0, 7, 14, . . . .
Left: ε = 1, h = 0.1, middle: ε = 0.1, h = 0.1, right: ε = 0.1, h = 0.5. fig:octos

experiments). On the other hand, this computation took more than one hour, while the case ε = 1

took less than a minute and the case ε = 0.1, h = 0.5 a bit less than an hour. Figure 6 shows the
decay of the radii, which should be

√
R2

0 − 2t for R0 = 10 and t ∈ [0, 50].
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Figure 6. Evolution of the radius for an initial octagon with R0 = 10 until the
vanishing time t = 50. Left: ε = 1, h = 0.1, middle: ε = 0.1, h = 0.1, right:
ε = 0.1, h = 0.5. fig:radiiOcto

Appendix A. Proof of Lemma 4.10
sec:proofscsv

We build here a supersolution to Problem (4.26) when g = φ◦. Let us first recall some notation
and results concerning zonotopes (see e.g. [41]). Recall that E = {±ek}mk=1 ⊆ ZN where, without
loss of generality, the vectors e1, . . . , em span the whole RN . Given a non-negative interaction
function β ∈ X, we assume that β = 0 on ZN \ E and that β(−i) = β(i) for every i ∈ ZN . The
anisotropy φ associated to β, as defined in (1.5), is such that its 1-Wulff shape W1 ⊆ RN is a
zonotope, which can be expressed as the Minkowski sum

W1 =
∑
e∈E

β(e)[−e, e] =
m∑
k=1

2β(ek)[−ek, ek],

where [−e, e] ⊆ R denotes the closed segment from −e to e. Alternatively, one can define the
zonotope W1 as the image of a cube under an affine map. Indeed, it holds

def proj cubedef proj cube (A.1) W1 = V (Q(m))

where V = (2β(e1)e1, . . . , 2β(em)em) ∈ RN×m and Q(m) = [−1, 1]m. Since the set E is uniquely
defined up to sign changes, the matrix V is also uniquely detemined up to permutations of columns
or sign changes.



30 A. CHAMBOLLE, D. DE GENNARO, AND M. MORINI

Note that by definition of zonotope any element x ∈ W` for ` > 0 can be written as

x = `

m∑
k=1

2β(ek)λkek,

for suitable coefficients |λk| ≤ 1. We note that (the closure of) a facet F (of non-zero dimension)
of the zonotope W` can be described in the following form:

formula facetformula facet (A.2) F = `

r∑
j=1

2β(eσ(j))[−eσ(j), eσ(j)] + `

m∑
j=r+1

2β(eσ(j))εσ(j)eσ(j),

where σ is a permutation of {1, . . . ,m}, 1 ≤ r ≤ m and |εj | = 1. Moreover (see [41, page 206] for
details) the vectors eσ(1), . . . , eσ(r) uniquely identify

{e ∈ E : e ‖ F},

and r is uniquely defined as the number of vectors in the family E which are parallel to the facet
F . Analogously, any vertex v of the zonotope W` is of the form

formula vertexformula vertex (A.3) v = `

m∑
j=1

2β(eσ(j))εσ(j)eσ(j),

where εj ∈ {±1} for every j = 1, . . . ,m and σ is a permutation of {1, . . . ,m}. Note however that
not every point of this form is a vertex of the zonotope.

lemma zonotopes Lemma A.1. There exists `0 > 0 such that for every ε > 0 and every ` ≥ `0, if i ∈ εZN belongs
to ∂Wε`, then for each k ∈ {1, . . . ,m} either one of the following holds:

i) neither i+εek nor i−εek belong to ∂Wε`. In this case it holds either φ◦(i+εek) > φ◦(i) >

φ◦(i− εek) or φ◦(i− εek) > φ◦(i) > φ◦(i+ εek);
ii) one between i± εek belongs to ∂Wε`. In this case φ◦(i± εek) ≥ ` and it holds

lengthlength (A.4) #((i+ εZek) ∩ ∂Wε`) ≥ 2[`/`0].

Proof. By scaling, it suffices to prove the result in the case ε = 1. We take `0 such that

choice ell0choice ell0 (A.5) `0 ≥ max
k=1,...,m

1

2β(ek)

and remark that `0 ∈ (0,+∞). Note that the choice (A.5) implies for every j = 1, . . . ,m that

|[−2`β(ej)ej , 2`β(ej)ej ]| = 4`β(ej)|ej | ≥ 2
`

`0
|ej |.

We then fix i ∈ ∂W` ∩ ZN and ek ∈ E. We have to distinguish two cases.
Case 1. There exists a facet F 3 i of W` such that ek ‖ F . By (A.2) we then see that

i ∈ 2`β(ek)[−ek, ek] + j,

where j ∈ F . This implies in particular that {n ∈ Z : i+ nek ∈ F} is an interval of Z containing
0. Furthermore, by the assumption (A.5), it contains at least [2`|ek|/`0] points and we conclude
(A.4). Since i and one between i± ek belong to ∂W`, then φ◦(i± ek) ≥ ` by convexity.
Case 2. For every facet F 3 i of W` it holds ek ∦ F . Let us fix a facet F 3 i and note that by
(A.2) and up to relabelling the indexes, it holds

i ∈ `

r∑
j=1

2β(ej)[−ej , ej ] + `

m∑
j=r+1

2β(ej)εjej ,
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with k > r and |εj | = 1 for j = r + 1, . . . ,m. Recalling (A.1), we see that

i− εkek = `V (y − εk
`β(ek)

ẽk),

where ẽ1, . . . ẽm denotes the canonical base of Rm and y ∈
∑r
j=1[−ẽj , ẽj ] +

∑m
j=r+1 εj ẽj ⊆ ∂Q(m).

By the choice (A.5) and since k > r, one deduces that y − εk
`β(ek)

ẽk ∈ Q(m), thus i − εkek ∈ W`.
Since then ek ∦ F for any facet containing i, it must hold φ◦(i − εkek) < `. By convexity one
easily concludes that φ◦(i+ εkek) > `, which shows i). �

We now define a calibration zij for every (i, j) ∈
(
{φ◦ > ε`0} ∩ εZN

)
× εZN . Fix i ∈ εZN with

φ◦(i) > ε`0. In the following we write i ∼ j if i−j
ε ∈ E. We start defining

def z 1def z 1 (A.6) zij =


0 if j 6∼ i

−β(ek) if j = i± εek and φ◦(j) > φ◦(i)

β(ek) if j = i± εek and φ◦(j) < φ◦(i).

In particular, this definition covers case i) in Lemma A.1. Assume then that there exists j ∼ i

with φ◦(j) = φ◦(i) and j−i
ε = ek ∈ E. Since i ∈ εZN and ek ∈ E fall in case ii) of Lemma A.1,

there exists an interval [−n, n̄] ∩ Z for n, n̄ ∈ N such that

(i+ εZek) ∩ ∂Wφ◦

φ◦(i) = i+ ([−n, n̄] ∩ Z)εek

and moreover

length2length2 (A.7) #([−n, n̄] ∩ Z) ≥ 2[φ◦(i)/(ε`0)].

Thus, we define zij as a linear interpolation of the values assumed at the extremal points of
i+ [−n, n̄]εek as

zi+tεek,i+(t+1)εek := β(ek)

(
1− 2

t+ n+ 1

n+ n̄+ 1

)
∀t ∈ [−n− 1, n̄] ∩ Z,

zi+tεek,i+(t−1)εek := β(ek)

(
1− 2

−t+ n+ 1

n+ n̄+ 1

)
∀t ∈ [−n, n̄+ 1] ∩ Z.

def z 2def z 2 (A.8)

By definition one easily sees that

subdiff zsubdiff z (A.9) |zij | ≤ αεij , zij(φ
◦(i)− φ◦(j)) = αεij |φ◦(i)− φ◦(j)|.

We now show how to bound the divergence (D∗
εz)i. Assume that φ◦(i + εek) = φ◦(i) or that

φ◦(i− εek) = φ◦(i). Then by definition (A.8) and by (A.7) one deduces

zi,i+εek + zi,i−εek − zi+εek,i − zi−εek,i = − 4β(ek)

n+ n̄+ 1
≥ − 2β(ek)

[φ◦(i)/(ε`0)]
≥ − Cε

φ◦(i)
,div1div1 (A.10)

and similarly if φ◦(i− εek) = φ◦(i). If instead φ◦(i± εek) 6= φ◦(i) and φ◦(i± εek) ≥ ε`0, one sees
that

div2div2 (A.11) zi,i+εek + zi,i−εek = 0 and zi+εek,i + zi−εek,i = 0

Combining (A.10) and (A.11) and recalling (4.2) we conclude that if φ◦(i) ≥ `1ε then

bound div big dbound div big d (A.12) h(D∗
εz)i ≥ − cφh

φ◦(i)

for a suitable positive constant cφ depending on φ.
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We now illustrate a procedure that allows to extend the calibration above to εZN × εZN . We
set C > 1 a sufficiently big constant and define a function v ∈ Xε setting

def vdef v (A.13) v :=

φ
◦ +

Ch

φ◦
on {φ◦ ≥ C(

√
h ∨ ε)} ∩ εZN

C(
√
h ∨ ε) + h√

h∨ε on {φ◦ < C(
√
h ∨ ε)} ∩ εZN

.

A calibration w ∈ Yε can be defined setting for i, j ∈ εZN

def z 3def z 3 (A.14) wij :=

zij if φ◦(i) ≥ 2
√
C(

√
h ∨ ε)

−αεij if φ◦(i) < 2
√
C(

√
h ∨ ε)

.

Since x 7→ x + Chx−1 is strictly monotone in the region {x ≥
√
Ch}, we can employ (A.9) to

prove that, for every i, j ∈ εZN with φ◦(i) ≥ C(
√
h ∨ ε), it holds

eq subdiff veq subdiff v (A.15) wij(vi − vj) = αεij |vi − vj |, |wij | ≤ αεij .

Moreover, taking C large enough ensures that whenever j ∼ i, then

φ◦(i) ≤ 2
√
C(

√
h ∨ ε) =⇒ φ◦(j) ≤ C(

√
h ∨ ε)

φ◦(i) ≥ 2
√
C(

√
h ∨ ε) =⇒ φ◦(j) ≥

√
C(

√
h ∨ ε)

.choice Cchoice C (A.16)

Thus, equation (A.15) can be directly checked in the case φ◦(i) ≤ 2
√
C(

√
h∨ε) using the definition

(A.14).
Note now that definition (A.14) implies D∗

εw = 0 in the region {φ◦ < 2
√
C(

√
h ∨ ε)} thus we

assume φ◦(i) ≥ 2
√
C(

√
h ∨ ε) and estimate (D∗

εw)i. If φ◦(i − εek) < 2
√
C(

√
h ∨ ε) by convexity

φ◦(i+ εek) > 2
√
C(

√
h ∨ ε), thus by definition (A.14) we get

zi,i+εek − zi+εek,i + zi,i−εek − zi−εek,i = −β(ek)− β(ek) + β(ek)− (−β(ek)) = 0.

The symmetric case is analogous. On the other hand, if every j ∼ i is in {φ◦ ≥ 2
√
C(

√
h ∨ ε)}

equation (A.12) holds. Therefore, we have shown

bound div wbound div w (A.17) hD∗
εw ≥ −cφh

φ◦
χ{φ◦≥

√
C(

√
h∨ε)}.

By a direct computation, using (A.17) and assuming the C > cφ, we see that the pair (v, w)

defined above satisfies hD∗
εw + v ≥ φ◦

wij(vi − vj) = αεij |vi − vj |, |wij | ≤ αεij .

Recalling the comparison result in Theorem 3.3, we conclude that the solution u to (3.4) satisfies
u ≤ v in εZN .

Appendix B. A remark on the inf/sup-convolution formulas (4.5)
app:finite

In this section we show that in some particular cases, the inf, sup in the definition (4.5) can
be replaced by min,max and that this minimization/maximization procedure can be made in a
fixed neighborhood of the point considered. Yet, our proof also shows that this neighborhood
can become very large, depending on the weights of the interaction, and it seems that we cannot
expect in general cases that the min,max are actually reached.
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We introduce the following condition. There exists `φ > 0 such that for every εk ∈ {0,±1} for
k = 1, . . . ,m, there exists ` ≤ `φ such that

rational zonotoperational zonotope (B.1) `

m∑
k=1

2β(ek)εkek ∈ ZN .

Note that this condition is satisfied if β(ek)/β(ek′) ∈ Q for all k, k′ = 1, . . . ,m.

lemma neigh Lemma B.1. There exists `1 > 0 with the following property. For any i ∈ εZN with φ◦(i) ≥ ε`1

there exists j ∈ εZN \ {0} with φ◦(j) < φ◦(i) and satisfying

additive s d1additive s d1 (B.2) φ◦(i) ≥ φ◦(j) + φ◦(i− j)− cφε.

If (B.1) holds, for any i ∈ εZN with φ◦(i) ≥ 2ε`1 there exists j ∈ (Wε`1 \ {0}) ∩ εZN such that

additive sdadditive sd (B.3) φ◦(i) = φ◦(j) + φ◦(i− j).

Moreover, for every R ∈ (2ε`1, φ
◦(i)) there exists j ∈ WR \WR−2ε`1 such that (B.3) holds.

Proof. By scaling we prove the result in the case ε = 1. Given i ∈ ZN \ {0}, inequality (B.2)
follows easily choosing `1 ≥ 2, considering σi ∈ RN \ {0} for an appropriate σ ∈ (0, 1) and j ∈ ZN

so that σi ∈ (j + [0, 1]N ).
We now assume (B.1) and denote by `φ the radius associated to φ. We then choose `1 = `φ.

Let us fix i ∈ ZN with φ◦(i) = ` ≥ 2`1. By (A.2) there exist r > 0, εk, λk with |εk| = 1 and
|λk| < 1 such that

i = `

(
r∑

k=1

2β(ek)εkek +

m∑
k=r+1

λk2β(ek)ek

)
.

Let us denote the point

v =

r∑
k=1

2β(ek)εkek ∈ ∂W1,

and define the function sign by sign(x) = x/|x| if x 6= 0 and 0 otherwise. For any `′ ≤ `φ we
rewrite i as follows

i = `′

(
v +

m∑
k=r+1

2β(ek)sign(λk)ek

)
+ (`− `′)

(
v +

m∑
k=r+1

2β(ek)

(
`

`− `′
λk −

`′

`− `′
sign(λk)

)
ek

)

=: `′w + (`− `′)

(
v +

m∑
k=r+1

2β(ek)λ
′
kek

)
.

Notice that, since ` ≥ 2`′ and |λk| ≤ 1 it holds |λ′k| ≤ 1, thus by formula (A.2) we get

v +

m∑
k=r+1

2β(ek)λ
′
kek ∈ ∂W1

and therefore φ◦(i− `′w) = `− `′. We conclude noting that by the hypothesis (B.1) we can choose
`′ ≤ `1 so that `′w ∈ ZN , which implies (B.3) since φ◦(`′w) = `′.

We now prove the last assertion. Since φ◦(i) ≥ 2`1, by the previous result there exists j0 ∈
(W`1 \ {0}) so that φ◦(i) = φ◦(j0)+φ◦(i− j0). Now, if R− 2`1 ≤ φ◦(j0) we conclude. If not, then
φ◦(i− j0) ≥ 2`1 by (B.3), and thus we can find k0 ∈ (W`1 \ {0}) so that

induct0induct0 (B.4) φ◦(i− j0) = φ◦(k0) + φ◦(i− j0 − k0).

Denoting j1 = j0 + k0, on one hand (B.4) implies

induct1induct1 (B.5) φ◦(i) = φ◦(j0) + φ◦(j1 − j0) + φ◦(i− j1) ≥ φ◦(j1) + φ◦(i− j1)
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thus equality holds instead. If φ◦(j1) ≥ R − 2`1 we conclude, if not (B.5) yields φ◦(i− j1) ≥ 2`1

and we can iterate. Recalling that φ◦ ≥ cφ > 0 on εZN \ {0}, it is clear that after a finite number
of iterations the process stops, and one can check that the required properties are satisfied. �

By the previous lemma it is easy to prove the following result.

cor neigh Corollary B.2. Let u ∈ X be a (1, φ)-Lipschitz function and `1 as in Lemma B.1. Then, for all
i ∈ εZN it holds

sup
j∈{u≥0}

{uj − φ◦(i− j)} = max
j∈{u≥0}

{uj − φ◦(i− j)} .

In addition, if i ∈ {u ≤ 0}, the maximum is reached in a point in ({u ≤ 0}+W2ε`1) ∩ εZN .

Proof. It is enough to consider i ∈ {u < 0}∩εZN . Let us denote F = ({u ≤ 0}+W2ε`1)∩{u > 0}.
Firstly, by a variant of the argument by iteration employed in the proof of Lemma B.1, one can
prove that

sup=sup'sup=sup' (B.6) sup
j∈{u≥0}

{uj − φ◦(i− j)} = sup
j∈F

{uj − φ◦(i− j)} .

On the other hand, take a point j0 ∈ {u > 0}. If j ∈ F satisfies uj − φ◦(i− j) ≥ uj0 − φ◦(i− j0),
since u ≤ 2ε`1 in F (as u is (1, φ◦)-Lipschitz) we obtain

2ε`1 + φ◦(i− j0) ≥ φ◦(i− j),

which implies that the sup in (B.6) is indeed a max. �
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