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Abstract. Given a bounded domain Ω ⊂ RN , we study the sharp constant λ(A) of the
classical Poincaré inequality for functions in W 1,∞(Ω) that vanish in a hole A ⊂ Ω. Then, we
prove existence of an optimal hole A⋆ that minimizes the Poincaré constant λ(A), under some
penalization on the volume of the hole A. Moreover, we give a geometrical characterization of
this optimal hole A⋆. In addition, we will consider the same shape optimization problem but
in the case where the penalization is given by the Hausdorff measure of a rectifiable curve A.

On the other hand, we will also study the best constant λ(A) of the Poincaré-Wirtinger
inequality for functions u ∈ W 1,∞(Ω) such that

∫
A
u = 0. And, we will also consider a more

general version of this Poincaré inequality where characteristic function of A in the constraint∫
A
u = 0 is replaced by a probability measure ν (i.e.,

∫
Ω
u dν = 0). Moreover, we will show

existence of an optimal hole A⋆ that optimizes λ(A), among all subsets A ⊂ Ω of prescribed
volume, and we will also characterize it. If the penalization on A is part of the functional,
then we discuss the cases where an optimal hole A⋆ exists and others where it does not.

Finally, we will prove existence, uniqueness and regularity of the optimal density ν⋆ that
minimizes the Poincaré constant λ(ν) plus some penalization F (ν), among all probability
measures ν over Ω.

1. Introduction

Poincaré inequalities have been studied by many authors and there is actually an extensive
literature on this subject which we do not attempt to summarise here. For an overview, see
the articles [9, 12, 13, 14, 16, 17, 1, 7] and the references therein where the main purpose
was to find the smallest constant Λ (or at least to show some bounds on Λ) in the Poincaré
inequality.

Let Ω be a compact domain in RN and A be a subset of Ω. Then, we will consider the
following Poincaré inequality:

(1.1) ||u||∞ ≤ Λ||∇u||∞,

where u ∈ W 1,∞(Ω) with u = 0 on A. It is clear that the sharp constant Λ in the inequality
(1.1) is given by the following formula:

(1.2) Λ = sup

{
||u||∞
||∇u||∞

: u ̸= 0 ∈ W 1,∞(Ω), u = 0 on A

}
.

We note that some similar problems to (1.2) have been already studied in the literature due to
many applications in several branches of applied mathematics (see [11, 6]). First, our aim will
be to know the dependence of the Poincaré constant Λ := Λ(A) on the geometry of A. In [5],
the authors consider the case when A = ∂Ω and, they prove by studying the limit of the first
eigenvalue of the p−Laplacian as p → ∞, that Λ(∂Ω) = max{d(x, ∂Ω) : x ∈ Ω}. Moreover,
they find at the same time that Problem (1.2) is nothing else than the dual of an optimal
transport problem to the boundary (see also [8]). In addition, the authors of [3] showed (using
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a different method than the one in [5]) a formula for the best Poincaré constant Λ that extends
the one in [5] to the case of a general bounded set A ⊂ Ω. More precisely, one can prove that

Λ(A) = max{d(x,A) : x ∈ Ω}

while u(x) := d(x,A) maximizes (1.2). In Section 2, we will introduce an alternative proof for
this result that we consider much simpler than those in [3, 5] and which will be based on a
simple duality trick.

On the other hand, an interesting problem that we consider in the present paper will be
to find an optimal hole A⋆ that gives rise to an optimal Poincaré constant Λ⋆ := Λ(A⋆)
among a class of admissible sets A ⊂ Ω. More precisely, we will consider the following shape
optimization problem:

(1.3) min

{
λ(A)− α|A| : A ⊂ Ω

}
where λ(A) := [Λ(A)]−1 and α > 0 is fixed. In [3], the authors have already studied the
easiest version of Problem (1.3), where the Lebesgue measure of the hole A was assumed to
be bounded from below by a constant m > 0:

(1.4) min

{
λ(A) : A ⊂ Ω, |A| ≥ m

}
.

The main goal of [3] was to show existence of an optimal hole A⋆ for Problem (1.4) and, to
characterize it. To be more precise, they prove that A⋆ is the complement of a ball centered
at some point on ∂Ω. However, the existence of a solution for Problem (1.4) does not imply
that Problem (1.3) has a solution as well. Yet, we will also show in Section 3 that an optimal
hole A⋆ for Problem (1.3) always exists. We note that our proof of existence here is simpler
than the one in [3]. Moreover, we will also consider the case when the penalization on the hole
A is given by its H1−Hausdorff measure:

(1.5) min

{
Λ(A) + αH1(A) : A ⊂ Ω

}
.

For a subset A ⊂ Ω, another possibility will be to consider instead of (1.1) the following
Poincaré inequality:

(1.6) ||u||∞ ≤ Λ||∇u||∞,

among all functions u ∈ W 1,∞(Ω) such that
∫
A u = 0. In this case, the sharp Poincaré

constant Λ := Λ(A) is given by the following:

(1.7) Λ = sup

{
||u||∞
||∇u||∞

: u ̸= 0 ∈ W 1,∞(Ω),

∫
A
u = 0

}
.

In [2], the authors consider the Poincaré inequality (1.6) but in the case when A = Ω. In
particular, they prove that Λ(Ω) = max{−

∫
Ω d(x, z) : x ∈ Ω}. Moreover, they show in [2,

Proposition 3.1], the following upper and lower bounds on Λ(Ω):

(1.8)
1

2
diam(Ω) ≤ Λ(Ω) ≤ N

N + 1
diam(Ω).
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In Section 2, we will extend the result of [2, Theorem 1.1] to an arbitrary set A ⊂ Ω. More
precisely, using a duality argument, we will show that

Λ(A) = max

{
−
∫
A
d(x, z) : x ∈ Ω

}
.

We note that our proof also seems simpler than that of [2]. In addition, we will prove the
following upper/lower bounds:

R⋆ ≤ Λ(A) ≤ diam(Ω), for all A ⊂ Ω,

where R⋆ is the radius of the smallest ball containing Ω. In fact, one can also show that these
two bounds are sharp.

Moreover, we will also consider the shape optimization problem (1.3) (or (1.4)) but when
Λ(A) is given by (1.7) instead of (1.2). The existence of an optimal hole A⋆ in this case is
much delicate due to the lack of semicontinuity of the functional with respect to the weak⋆−
convergence in L∞(Ω). To be more precise, we will show in Section 4 the existence of a
minimizer for Problem (1.4), for all m > 0.

However, we will see that there is a critical value α⋆ which depends on the geometry of the
domain Ω such that the solution of Problem (1.3) exists as soon as α > α⋆. In particular, an
optimal hole A⋆ for Problem (1.3) does not exist if α < α⋆. In addition, we will characterize
the optimal hole A⋆ by showing that it will be again the complement of a ball centered at
some point z⋆ ∈ ∂Ω. In order to prove existence of such an optimal hole A⋆, the idea will be
to replace the characteristic functions χA having |A| ≥ m with probability measures having
bounded densities 0 ≤ ν ≤ m−1, i.e. we consider the following relaxation of (1.3):

(1.9) min

{
λ(ν) : 0 ≤ ν ≤ m−1,

∫
Ω
ν = 1

}
where λ(ν) := [Λ(ν)]−1 and Λ(ν) is the following sharp Poincaré constant for functions u in
W 1,∞(Ω) with

∫
Ω udν = 0:

Λ(ν) = sup

{
||u||∞
||∇u||∞

: u ̸= 0 ∈ W 1,∞(Ω),

∫
Ω
u dν = 0

}
.

First, we will show that Problem (1.9) has a minimizer ν⋆. Then, we will prove that ν⋆ is a
characteristic function of some set A⋆ ⊂ Ω, which turns out to be an optimal hole for Problem
(1.4).

On the other hand, we will also consider the following shape optimization problem (where
Λ(A) is always given by (1.7)):

(1.10) min

{
Λ(A) : A ⊂ Ω, |A| ≥ m

}
.

The existence of an optimal hole A⋆ for this problem (1.10) seems to be much complicated
without adding any extra constraint on A. Yet, assuming convexity of the admissible sets
A in (1.10) will help us in proving existence of such an optimal hole A⋆. However, it will be
difficult to characterize optimal holes in this case. But, we will be able to show some symmetry
property on A⋆ provided that the domain Ω is symmetric.
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In Section 5, we will consider the problem of minimizing the Poincaré constant λ(ν) among
all densities ν with

∫
ν = 1, but in the case where we have an additional penality term on ν:

(1.11) min

{
λ(ν) +

∫
Ω
f(ν) :

∫
Ω
ν = 1

}
where f : R+ 7→ R+ is an appropriate given function. In fact, the existence of a minimizer
ν⋆ for this problem is not difficult thanks to some results which were already proved in [4] on
the lower semicontinuity of the penality term that we are using here. Moreover, we will show
under some assumptions on f that this minimizer ν⋆ is unique and smooth.

2. Sharp Poincaré inequality via Optimal Transport

Given a compact set Ω ⊂ RN with Lipschitz boundary, we denote by d(x, y) the geodesic
distance in Ω between the points x and y, that is defined as the infimum of the lengths of
rectifiable curves in Ω that join x and y:

d(x, y) := inf

{∫ 1

0
|α′(t)|dt : α ∈ Lip([0, 1],Ω), α(0) = x and α(1) = y

}
.

2.1. The classical Poincaré inequality. Let A be a subset of Ω. The Poincaré inequality
for functions in W 1,∞(Ω) and vanishing on A reads as follows: there is a constant Λ < ∞ such
that for every u ∈ W 1,∞(Ω) with u = 0 on A, we have

(2.1) ||u||∞ ≤ Λ||∇u||∞.

Now, our aim will be to characterize the sharp constant Λ(A) in this Poincaré inequality (2.1).
Set

(2.2) λ(A) := min

{
||∇u||∞
||u||∞

: u ̸= 0 ∈ W 1,∞(Ω), u = 0 on A

}
.

It is clear that Λ(A) = [λ(A)]−1. Moreover, we have the following:

Theorem 2.1. The function uA(z) := d(z,A) minimizes (2.2) and, the following equality
holds:

λ(A) = [max{d(z,A) : z ∈ Ω}]−1.

Proof. For every u ∈ W 1,∞(Ω) with u = 0 on A, we define its normalized gradient function
ũ := u

||∇u||∞ . So, we have

||∇ũ||∞ = 1, ||ũ||∞ =
||u||∞
||∇u||∞

and ũ = 0 on A.

Hence,

(2.3) λ(A) := min

{
||ũ||∞−1 : ũ ∈ W 1,∞(Ω), ||∇ũ||∞ = 1, ũ = 0 on A

}

=

[
sup

{
||u||∞ : u ∈ W 1,∞(Ω), ||∇u||∞ = 1, u = 0 on A

}]−1
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=

[
sup

{
sup

{∫
Ω\A

udδz : u ∈ W 1,∞(Ω\A), ||∇u||∞ = 1, u = 0 on ∂A

}
: z ∈ Ω\A

}]−1

.

Let us compute

(2.4) sup

{∫
Ω\A

udδz : u ∈ W 1,∞(Ω\A), ||∇u||∞ = 1, u = 0 on ∂A

}
.

Thanks to [8, Section 2.2], one can see that this problem (2.4) is the dual of the optimal
transport problem of the mass δz to the Dirichlet region ∂A:

(2.5) min

{∫
Ω\A×∂A

d(x, y) dγ : (Πx)#γ = δz and spt[(Πy)#γ] ⊂ ∂A

}
.

To see that, let u be an admissible function in (2.4) and γ be a transport plan in (2.5). Then,
we have ∫

Ω\A
u dδz =

∫
Ω\A×∂A

[u(x)− u(y)] dγ(x, y) ≤
∫
Ω\A×∂A

d(x, y) dγ.

Hence,

sup (2.4) ≤ min (2.5).

Now, set uA(x) := d(x,A) (we note that uA = 0 on A and uA is 1−Lipschitz with respect to
the geodesic distance and so, one has ||∇uA||∞ = 1) and γz := δz ⊗ δp(z), where p(z) is any
projection point of z onto ∂A, i.e.

p(z) ∈ argmin{d(z, y) : y ∈ ∂A}.

We have ∫
Ω\A

uA dδz =

∫
Ω\A×∂A

d(x, y) dγz = d(z,A).

Hence, uA is a maximizer in (2.4) while γz is an optimal transport plan in (2.5). In particular,
we get that

sup (2.4) = min (2.5) = d(z,A).

Recalling (2.3), this implies that

λ(A) = [max{d(z,A) : z ∈ Ω}]−1.

Finally, we note also that λ(A) = ||∇uA||∞
||uA||∞ . Hence, this means that uA minimizes Problem

(2.2). □

Remark 2.1. For any set A ⊂ Ω, it is easy to see that we have λ(A) = λ(A), where A
denotes the closure of A. Therefore, in Section 3, we will always assume that A is a closed
set.

2.2. The Poincaré-Wirtinger inequality. Let A ⊂ Ω be such that |A| > 0 (where | · |
denotes the Lebesgue measure on RN ). The Poincaré inequality for functions in W 1,∞(Ω)
having zero mean value on A can be stated as follows: there is a constant Λ < ∞ such that
for every u ∈ W 1,∞(Ω) with

∫
A u = 0, we have

(2.6) ||u||∞ ≤ Λ||∇u||∞.
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Again, we will try to find the best constant Λ(A) in this inequality (2.6). For this aim, we
define

(2.7) λ(A) = [Λ(A)]−1 = min

{
||∇u||∞
||u||∞

: u ̸= 0 ∈ W 1,∞(Ω),

∫
A
u = 0

}
.

Moreover, we may consider a more general version of (2.7) by considering a probability
measure ν instead of the uniform probability mesure over A. More precisely, take ν ∈ P(Ω).
Then, we know that there is a constant Λ < ∞ such that for every u ∈ W 1,∞(Ω) with∫
Ω udν = 0, we have

(2.8) ||u||∞ ≤ Λ ||∇u||∞.

In particular, we see that the optimal constant Λ(ν) in the Poincaré inequality (2.8) is given
by the following:

(2.9) λ(ν) = [Λ(ν)]−1 = min

{
||∇u||∞
||u||∞

: u ̸= 0 ∈ W 1,∞(Ω),

∫
Ω
udν = 0

}
.

It is clear that

λ(A) = λ(νA)

where

νA :=
χA

|A|
.

Theorem 2.2. Let ν be a probability measure over Ω. Then, there exists a point xν ∈ Ω such
that uν(z) := d(z, xν) −

∫
Ω d(y, xν) ν(y) minimizes (2.9). Moreover, we have the following

equality:

λ(ν) =

[
max

{∫
Ω
d(x, z) ν(z) : x ∈ Ω

}]−1

=

[∫
Ω
d(xν , z) ν(z)

]−1

.

Proof. First, we see that

λ(ν) = min

{
min

{
||∇u||∞
|u(x)|

: u ∈ W 1,∞(Ω),

∫
Ω
udν = 0

}
: x ∈ Ω

}
.

Using the normalization ũ := u
||∇u||∞ , we get that

λ(ν) = min

{[
sup

{
|ũ(x)| : ũ ∈ W 1,∞(Ω), ||∇ũ||∞ = 1,

∫
Ω
ũ ν = 0

}]−1

: x ∈ Ω

}

= min

{[
sup

{∣∣∣∣u(x)− ∫
Ω
udν

∣∣∣∣ : u ∈ W 1,∞(Ω), ||∇u||∞ = 1

}]−1

: x ∈ Ω

}
= min

{[
sup

{∫
Ω
udν −

∫
Ω
udδx : u ∈ W 1,∞(Ω), ||∇u||∞ = 1

}]−1

: x ∈ Ω

}
.

Now, we compute

(2.10) sup

{∫
Ω
udν −

∫
Ω
udδx : u ∈ W 1,∞(Ω), ||∇u||∞ = 1

}
.
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We note that (2.10) is nothing else than the dual of the classical Monge-Kantorovich problem
between the source measure ν and the target measure δx:

(2.11) min

{∫
Ω×Ω

d(z, y) dγ : (Πz)#γ = ν and (Πy)#γ = δx

}
.

If u is an admissible function in (2.10) and γ is a transport plan in (2.11) then we have the
following: ∫

Ω
udν −

∫
Ω
udδx =

∫
Ω×Ω

[u(z)− u(y)] dγ(z, y) ≤
∫
Ω×Ω

d(z, y) dγ.

Then, one has

sup (2.10) ≤ min (2.11).

Set uν(z) := d(z, x) −
∫
Ω d(y, x) ν(y) (it is clear that

∫
Ω uν dν = 0 and ||∇uν ||∞ = 1) and

γx := ν ⊗ δx. We have∫
Ω
uν dν −

∫
Ω
uν dδx =

∫
Ω
d(z, x) ν(z) =

∫
Ω×Ω

d(z, y) dγx.

This implies that uν maximizes (2.10) and γx minimizes (2.11). As a consequence of that, we
have

sup (2.10) = min (2.11) =

∫
Ω
d(z, x) ν(z).

Hence,

λ(ν) =

[
max

{∫
Ω
d(x, z) ν(z) : x ∈ Ω

}]−1

. □

Then, we get the following:

Corollary 2.3. Let A ⊂ Ω be such that |A| > 0. Then, there is a point x⋆ ∈ Ω such that
uA(z) := d(z, x⋆)− 1

|A|
∫
A d(y, x⋆) minimizes (2.7). In addition, the following equality holds:

λ(A) =

[
max

{
1

|A|

∫
A

d(z, x) : x ∈ Ω

}]−1

=

[
1

|A|

∫
A
d(z, x⋆)

]−1

.

Proof. Set νA := χA

|A| . Then, we recall that λ(A) = λ(νA). Thanks to Theorem 2.2, we infer

that

λ(A) =

[
max

{∫
Ω
d(x, z) νA(z) : x ∈ Ω

}]−1

. □

We close this section by the following:

Remark 2.2. Notice that λ(A) is not sensitive by adding any negligible set (with respect to
the Lebesgue measure) to A. On the other hand, one can see that in general λ(A) ̸= λ(A) and
so, we can not assume that A is always a closed set, unless ∂A is negligible.

Remark 2.3. Since the map x 7→
∫
Ω d(x, z) ν(z) is strictly convex, then its maximum is

attained on ∂Ω and so, we have

λ(ν) =

[
max

{∫
Ω
d(x, z) ν(z) : x ∈ ∂Ω

}]−1

.
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3. The classical Poincaré inequality: existence and characterization of
optimal holes

In this section, our aim will be to find a region A ⊂ Ω that optimizes the sharp Poincaré
constant λ(A) (see (2.2)). Fix α > 0, then we consider the following shape optimization
problem:

(3.1) min

{
λ(A)− α|A| : A ⊂ Ω

}
where we recall that λ(A) = [max{d(x,A) : x ∈ Ω}]−1. Notice that Problem (3.1) has a
trivial solution A⋆ if α ≤ 0. Let x⋆ ∈ ∂Ω be such that there is a point z⋆ ∈ ∂Ω with
d(z⋆, x⋆) = diam(Ω) (here, diam(Ω) is with respect to the geodesic distance). So, it is sufficient
to take A⋆ = {x⋆}. Indeed, one has λ(A⋆) = [diam(Ω)]−1 while it is easy to see that λ(A) ≥
[diam(Ω)]−1, for any set A ⊂ Ω. Coming back to the case when α > 0, there is no trivial
solution since when the set A increases then both terms λ(A) and |A| increase.

On the other hand, we recall that the following problem (which is sometime much easier to
study than (3.1) as we will see in Section 4)

(3.2) min

{
λ(A) : A ⊂ Ω, |A| = m

}
has been already studied in [10] where the authors proved existence of a solution A⋆. More
precisely, they show that every optimal hole in (3.2) is a set of the form A⋆ = Ω\B(z⋆, R⋆),
for some point z⋆ ∈ ∂Ω. Here, we will introduce an alternative proof of this result that we
consider simpler than the one in [10].

Proposition 3.1. There exists an optimal hole A⋆ for Problem (3.1). In addition, there is a
point z⋆ ∈ ∂Ω such that, up to a negligible set, A⋆ = Ω\B(z⋆, R⋆) for some R⋆ > 0.

Proof. Let {An}n be a minimizing sequence. Recalling Remark 2.1, one can assume that An

is closed, for all n ∈ N. On the other hand, by Theorem 2.1, we know that un(x) := d(x,An)
is a minimizer for Problem (2.2), for all n ∈ N. Up to a subsequence, we see that An → A⋆ in
the Hausdorff sense and so, un → u⋆ := d(x,A⋆) uniformly in Ω. So, we get that

λ(A⋆) = ||u⋆||∞−1 = lim
n

||un||−1
∞ = lim

n
λ(An).

On the other hand, the volume (Lebesgue measure) is upper semicontinuous with respect to
the Hausdorff convergence. Hence, we have

lim sup
n

|An| ≤ |A⋆|.

Consequently, we infer that

λ(A⋆)− α|A⋆| ≤ lim inf
n

[λ(An)− α|An|].

Hence, A⋆ minimizes Problem (3.1). Now, let z⋆ ∈ Ω\A⋆ be such that λ(A⋆) = [d(z⋆, ∂A⋆)]−1.
Set R⋆ = d(z⋆, ∂A⋆) and A := Ω\B(z⋆, R⋆). Then, it is clear that A⋆ ⊂ A while by definition
of A, we have λ(A) = [R⋆]−1 = λ(A⋆). Assume that |A\A⋆| > 0. Then, we get that

λ(A⋆)− α|A⋆| ≤ λ(A)− α|A| = λ(A⋆)− α|A⋆| − α|A\A⋆|,
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which is a contradiction. Hence, |A\A⋆| = 0 and so, A⋆ = Ω\B(z⋆, R⋆). In addition, thanks
to the fact that λ(A)− α|A| is invariant by translation, then it is not difficult to see that the
point z⋆ must be located on ∂Ω. This concludes the proof. □

Remark 3.1. Fix a constant 0 < m < |Ω|. Then, we consider the following problem:

(3.3) min

{
λ(A) : A ⊂ Ω, |A| ≥ m

}
.

Similarly to Proposition 3.1, one can show that Problem (3.3) has an optimal hole A⋆. In
addition, we have |A⋆| = m since if this is not the case (i.e. |A⋆| > m) then one can reduce
the set A⋆ by removing an ε−neighborhood of ∂A⋆ so that we get a subset A ⊂⊂ A⋆ such that
|A| ≥ m (this is possible if ε > 0 is small enough). But, it is clear that λ(A) < λ(A⋆), which
is in contradiction with the optimality of A⋆. In particular, we see that this optimal hole A⋆

minimizes (3.2). In addition, there will be some α = α(m) > 0 such that this set A⋆ also
minimizes Problem (3.1). Thanks to Proposition 3.1, this yields that A⋆ := Ω\B(z⋆, R⋆), for
some point z⋆ ∈ ∂Ω such that λ(A⋆) = [d(z⋆, ∂A⋆)]−1 := R⋆−1.

Let us introduce two simple examples:

Example 3.1.1. Assume that Ω is the unit ball. Fix 0 < m < |Ω| = π. Let z⋆ be any point
on ∂Ω. Then, it is clear that there exists a unique R⋆ > 0 such that |Ω \B(z⋆, R⋆)| = m.
More precisely, this R⋆ is the unique solution of the following equation:

π −R⋆
√

4−R⋆2 +

∫ R⋆
√

1−R⋆2

4

−R⋆

√
1−R⋆2

4

(
√
R⋆2 − s2 +

√
1− s2 ) = m.

The set A⋆ := Ω\B(z⋆, R⋆) will be optimal for Problem (3.2). In particular, we see that we
have infinitely many optimal holes.

A⋆

z⋆z⋆

Example 3.1.2. Let Ω := [0, 1]2 be the unit cube. Fix 0 < m < |Ω| = 1. Let z⋆ and R⋆ be
defined as in Proposition 3.1. In fact, it is not difficult to see that z⋆ must be a corner point.

By symmetry, we may assume that z⋆ = 0. If m > 1− π
4 , set R

⋆ =

√
4(1−m)

π . Then, we have

|Ω\B(0, R⋆)| = m. Moreover, one has

λ(Ω\B(0, R⋆)) =
1

R⋆
=

√
π

4(1−m)
.
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Now, assume that m ≤ 1 − π
4 . Let R⋆ > 0 be such that |Ω\B(0, R⋆)| = m. It is easy to see

that R⋆ is the solution of the following equation:

πR⋆2

4
− 2

∫ R⋆

1

√
R⋆2 − s2 ds = 1−m.

In this case, we also have that

λ(Ω\B(0, R⋆)) =
1

R⋆
.

In particular, we see that R⋆ →
√
2 when m → 0. Moreover, we have exactly four optimal

holes.

z⋆

A⋆

Set

Λ(A) = [λ(A)]−1 = max{d(x,A) : x ∈ Ω}.

Then, our aim now is to minimize the Poincaré constant Λ(A) (or equivalently, to maximize
λ(A)), but again in the presence of some suitable penalization term on the hole A. First, we
note that the case when the penalization is given by the Lebesgue measure of A, i.e. when we
consider the following problem:

min

{
Λ(A)− α|A| : A ⊂ Ω

}
,

is trivial. If α ≥ 0, it is clear that this problem has a trivial solution which is A⋆ = Ω. On
the other hand, if α < 0 then any negligible set A⋆ which is dense in Ω turns out to be an
optimal hole. Since |A| is not sensitive by adding a negligible set while this is not the case for
the constant Λ(A), then it is much natural here to add a penalization on the H1−Hausdorff
measure of A. More precisely, we consider now the following problem (where α > 0 is fixed):

(3.4) min

{
Λ(A) + αH1(A) : A ⊂ Ω is closed and connected

}
.

Proposition 3.2. Problem (3.4) has an optimal hole A⋆. Moreover, if S⋆ ⊂ Ω is the
set of points x ∈ Ω such that Λ(A⋆) = d(x,A⋆) := R⋆, then any simple component of

A⋆\
⋃

x∈S⋆ B(x,R⋆) is a line segment.

Proof. Let {An}n be a minimizing sequence. Set un(x) := d(x,An), for every n ∈ N. We
recall that Λ(An) = ||un||∞. Up to a subsequence, we see that there is a set A⋆ ⊂ Ω such that
An → A⋆ in the Hausdorff sense and so, un → u⋆ = d(x,A⋆) uniformly in Ω. In particular, this
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implies that Λ(An) → Λ(A⋆). On the other hand, thanks to the fact that the measure H1 is
lower semicontinuous with respect to the Hausdorff convergence over the class of all compact
connected subsets of Ω, then we also have

H1(A⋆) ≤ lim inf
n

H1(An).

Consequently, we get that

Λ(A⋆) + αH1(A⋆) ≤ lim inf
n

[
Λ(An) + αH1(An)

]
.

Hence, A⋆ minimizes Problem (3.4). Now, we prove the second statement. Fix a point x0
on some simple arc of A⋆ in the interior of Ω and assume that x0 /∈

⋃
x∈S⋆ B(x,R⋆). After a

rotation and translation of axes, one can assume that x0 is the origin. Let w⋆(s), s ∈ (−δ, δ),
be a parametrization of A⋆ around x0. Then, it is obvious that w⋆ minimizes the following
problem:

min

{
J (w) + αH1(Aw) : w(±δ) = w⋆(±δ) and Aw ⊂ Ω

}
where

J (w) = max{d(z,Aw) : z ∈ Ω}, Aw := (A⋆\{w⋆(s) : s ∈ (−δ, δ)}) ∪ {w(s) : s ∈ (−δ, δ)}.

Let η be a smooth function on (−δ, δ) with η(±δ) = 0. Then, by the minimality of w⋆, we
have that

(3.5) J (w⋆) + αH1(Aw⋆) ≤ J (w⋆ + εη) + αH1(Aw⋆+εη),

for all ε small enough. If δ > 0 is small enough, then it is easy to see that for any s ∈ [−δ, δ],

we also have w⋆(s) /∈
⋃

x∈S⋆ B(x,R⋆). On the other hand, assume that for every ε, there is a
point zε ∈ Ω and sε ∈ [−δ, δ] such that

(3.6) J (w⋆ + εη) = d(zε, Aw⋆+εη) = d(zε, w
⋆(sε) + ε η(sε)).

Yet, it is clear that w⋆(sε) + ε η(sε) → w⋆(s) and zε → z⋆, where s ∈ [−δ, δ] and z⋆ ∈ Ω.
Since Aw⋆+εη → A⋆ in the Hausdorff sence, then uε(z) := d(z,Aw⋆+εη) converges uniformly to
u⋆(z) := d(z,A⋆). In particular, we have

(3.7) lim
ε→0

J (w⋆ + εη) = J (w⋆).

Hence, passing to the limit in (3.6) when ε → 0 and using the equality (3.7), we get that

J (w⋆) = d(z⋆, w⋆(s)).

So, z⋆ ∈ S⋆ and w⋆(s) ∈ ∂B(z⋆, R⋆). Yet, this is a contradiction. Consequently, there exists a
point z⋆ ∈ Ω such that J (w⋆ + ε η) = J (w⋆) = d(z⋆, A⋆), for all ε. By (3.5), this yields that

H1(Aw⋆) ≤ H1(Aw⋆+εη).

Since η is arbitrary, this implies that A⋆ is a line segment between w⋆(−δ) and w⋆(δ). This
concludes the proof. □

Remark 3.2. Fix a constant L ≥ 0. Then, we consider the shape optimization problem:

(3.8) min

{
Λ(A) : A ⊂ Ω is closed and connected, H1(A) ≤ L

}
.

Similarly to the proposition 3.2, one can see that Problem (3.8) has an optimal hole A⋆.
Moreover, A⋆ has a full length (i.e., H1(A⋆) = L) since if H1(A⋆) < L then one can add
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an arc of length ε > 0 (small enough) to A⋆ so that we get a set A with H1(A) ≤ L and
Λ(A) < Λ(A⋆), which is a contradiction. This yields that A⋆ is also an optimal hole for the
following problem:

min

{
Λ(A) : A ⊂ Ω is closed and connected, H1(A) = L

}
.

Example 3.2.1. Let Ω be the triangle with vertices (−1, 0), (1, 0) and (0, δ), where 0 < δ < 1.
Let A⋆ be an optimal hole in Problem (3.8). If L = 0 then it is easy to see that A⋆ = {(0, 0)}.
Now, assume that 0 < L < 2(1− δ), then it is not difficult to check that A⋆ = [−L

2 ,
L
2 ]× {0}.

A⋆

We note also that if δ ≥ 1 then the situation becomes much complicated since one can see that
the optimal hole A⋆ will be made of three line segments (two of them having the same length
while the third has a length greater or smaller than the others depending on the values of δ
and L) connected through a triple point which will be the center of the smallest enclosing ball
of Ω. The same difficulty arises when L is large, where we expect A⋆ to be a network.

A⋆

4. The Poincaré-Wirtinger inequality: existence and characterization of
optimal holes

Fix a constant 0 < m < |Ω|. Then, we consider the following shape optimization problem:

(4.1) min

{
λ(A) : A ⊂ Ω, |A| ≥ m

}
where

λ(A) =

[
max

{
1

|A|

∫
A
d(x, z) : x ∈ Ω

}]−1

.
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We note that it is not easy to prove existence of an optimal hole for this problem due to
the fact that if we take a minimizing sequence {An}n, then all what can we say about the
convergence of this sequence is that χAn ⇀⋆ ν⋆ in L∞(Ω), for some function 0 ≤ ν⋆ ≤ 1.
On the other hand, if we assume that the sets An are closed then we will have Hausdorff
convergence of {An}n to some set A⋆. However, the Hausdorff convergence may not imply
convergence in the sense of Lebesgue measure and so, the functional λ(A) is not a priori lower
semicontinuous with respect to the Hausdorff convergence. To avoid this difficulty, let us
consider instead the following problem which is a relaxation of Problem (4.1):

(4.2) min

{
λ(ν) : 0 ≤ ν ≤ m−1,

∫
Ω
ν = 1

}
where

Λ(ν) = (λ(ν))−1 = max

{∫
Ω
d(x, z) ν(z) : x ∈ ∂Ω

}
.

First, we start by introducing the following:

Lemma 4.1. Let ν be a probability measure over Ω. Then, we have the following bounds:

diam(Ω)/2 ≤ Λ(ν) ≤ diam(Ω).

Proof. The second inequality is trivial. For the first inequality, take two points x, x′ ∈ ∂Ω
such that d(x, x′) = diam(Ω). Then, we have the following

Λ(ν) ≥
∫
Ω
d(x, z) ν(z) ≥

∫
Ω
[d(x, x′)− d(x′, z)]ν(z) ≥ d(x, x′)− Λ(ν). □

Lemma 4.2. The map ν 7→ λ(ν) is continuous with respect to the weak* convergence of
measures.

Proof. Fix µ, ν ∈ P(Ω). Let x⋆ ∈ Ω be such that Λ(µ) =
∫
Ω d(x⋆, z)µ(z). Then, we have

Λ(µ)− Λ(ν) ≤
∫

Ω
d(x⋆, z) [µ− ν](z) ≤ W1(µ, ν),

where the second inequality comes from the fact that ϕ(z) := d(x⋆, z) is 1-Lipschitz and that
we have

sup

{∫
Ω
ud[µ− ν] : u ∈ W 1,∞(Ω), ||∇u||∞ = 1

}
= min

{∫
Ω×Ω

d(x, y) dγ : (Πx)#γ = µ and (Πy)#γ = ν

}
:= W1(µ, ν).

Hence, we get that

|Λ(µ)− Λ(ν)| ≤ W1(µ, ν).

Yet, it is well known (see, for instance, [15]) that the Wasserstein distance W1 is continuous
with respect to the weak* convergence of measures. □

From Lemma 4.1, we know that λ(ν) ≥ 1/diam(Ω). Yet, we can also show the following:



14 S. DWEIK

Lemma 4.3. There is a point z⋆ ∈ ∂Ω such that the dirac measure ν⋆ := δz⋆ minimizes

(4.3) min

{
λ(ν) : ν ∈ P(Ω)

}
.

In addition, we have the equality:

(4.4) inf

{
λ(A) : A ⊂ Ω, |A| > 0

}
= inf (4.3) = [diam(Ω)]−1.

However, there is a sequence of sets An such that |An| → 0 and λ(An) → [diam(Ω)]−1. In
particular, an optimal hole A⋆ in (4.4) does not exist.

Proof. Let x⋆ ∈ ∂Ω be such that there is a point z⋆ ∈ ∂Ω with d(x⋆, z⋆) = diam(Ω). Set
ν⋆ := δz⋆ . So, it is clear that

λ(ν⋆) =

[
max

{∫
Ω
d(x, z) ν⋆(z) : x ∈ Ω

}]−1

=

[
max

{
d(x, z⋆) : x ∈ Ω

}]−1

= [d(x⋆, z⋆)]−1.

On the other hand, it is clear that one can always find a sequence of sets An ⊂ Ω with |An| > 0
such that An → {z⋆} in the Hausdorff sense and νAn :=

χAn
|An| ⇀

⋆ ν⋆ in the sense of measures.

In particular, by Lemma 4.2, we get that

λ(An) = λ(νAn) → λ(ν⋆). □

However, we will be able to prove existence of an optimal hole A⋆ that minimizes the
Poincaré constant λ(A) as soon as we assume a lower bound on the Lebesgue measure of the
set A. For this aim, we start by the following:

Proposition 4.4. The relaxed problem (4.2) has a minimizer ν⋆. Moreover, there exists a
subset A⋆ ⊂ Ω such that ν⋆ = m−1 · χA⋆.

Proof. Let {νn}n be a minimizing sequence. Up to a subsequence, we have νn ⇀⋆ ν⋆ with
0 ≤ ν⋆ ≤ m−1 and

∫
Ω ν⋆ = 1. Thanks to Lemma 4.2, one has

λ(νn) → λ(ν⋆).

Hence, ν⋆ is a minimizer. Now, we will show that the set {0 < ν⋆ < m−1} is Lebesgue
negligible. We note that there are at most countably many connected components Cn, n ∈ N,
of the support of ν⋆ which are of positive Lebesgue measure. So, it is sufficient to show that
for every n, the set Eδ ∩ Cn, where Eδ := {δ < ν⋆ < m−1 − δ}, is Lebesgue negligible for all
δ > 0. Assume that this is not the case, i.e. there exists δ > 0 such that |Eδ ∩ Cn| > 0.

Let h be a bounded function with spt(h) ⊂ Eδ ∩Cn and
∫
Ω h = 0. For ε > 0 small enough,

it is clear that 0 ≤ ν⋆ + εh ≤ m−1 and
∫
Ω(ν

⋆ + εh) = 1. By the minimality of ν⋆, we get that

(4.5) λ(ν⋆) ≤ λ(ν⋆ + εh).

Fix a point x⋆ ∈ ∂Ω such that λ(ν⋆) = [
∫
Ω d(x⋆, z) ν⋆(z)]−1. Recalling Theorem 2.2, we have

by (4.5) that [∫
Ω
d(x⋆, z) ν⋆(z)

]−1

≤
[∫

Ω
d(x⋆, z) [ν⋆(z) + εh(z)]

]−1

.

Hence, ∫
Ω
d(x⋆, z)h(z) ≤ 0.
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Since h is arbitrary and x⋆ does not depend on h, so we infer that there is a constant c such
that the following holds:

d(x⋆, z) = c, for a.e. z ∈ Eδ ∩ Cn.

In other words, this means that the set Eδ ∩ Cn is contained in the sphere of center x⋆ and
radius c. Hence, |Eδ ∩ Cn| = 0. Yet, this is a contradiction.

As a consequence of that, we have |{0 < ν⋆ < m−1}| = 0 and so, there is a subset A⋆ ⊂ Ω
such that ν⋆ = m−1 · χA⋆ . □

Proposition 4.5. We have min (4.1) = min (4.2). Moreover, there exists an optimal hole A⋆

for Problem (4.1) with |A⋆| = m. In particular, A⋆ solves

(4.6) min

{
λ(A) : A ⊂ Ω, |A| = m

}
.

In addition, there is a point x⋆ ∈ ∂Ω and a constant R⋆ > 0 such that we have A⋆ =
Ω \B(x⋆, R⋆).

Proof. First, it is clear that for any subset A ⊂ Ω with |A| ≥ m, the measure νA := χA

|A| is

admissible in (4.2), i.e. 0 ≤ νA ≤ m−1 and
∫
Ω νA = 1. Moreover, we have λ(νA) = λ(A).

Consequently, we get that

(4.7) min (4.2) ≤ min (4.1).

Yet, by Proposition 4.4, we know that there is a subset A⋆ ⊂ Ω such that ν⋆ = m−1 · χA⋆

minimizes Problem (4.2). Since
∫
Ω ν⋆ = 1, then |A⋆| = m. Moreover, we have

λ(ν⋆) = λ

(
χA⋆

|A⋆|

)
= λ(A⋆).

Recalling (4.7), we infer that A⋆ is an optimal hole for Problem (4.1). In addition, we have
the equality:

min (4.1) = min (4.2).

Now, we prove the last statement. Fix a point x0 ∈ ∂A⋆ ∩
◦
Ω. One can assume, after a

rotation and translation of axes, that x0 = 0 with δ eN ∈ A⋆, where eN :=< 0, ..., 0, 1 > and
δ > 0 is small enough. Let w⋆(z̄), z̄ ∈ Bδ := BN−1(0, δ), be a parametrization of ∂A⋆ around
x0. Then, we see that w⋆ minimizes

min

{
λ(Aw) : w = w⋆ on ∂Bδ, Aw ⊂ Ω and

∫
Bδ

w =

∫
Bδ

w⋆

}
where

Aw := (A⋆\G(w⋆)) ∪G(w), G(w) := {(z̄, w(z̄)) : z̄ ∈ Bδ}.

Let η be a smooth function on Bδ with η = 0 on ∂Bδ and
∫
Bδ

η = 0. Thanks to the minimality

of w⋆, we have

(4.8) λ(Aw⋆) ≤ λ(Aw⋆+εη), for all ε small enough.

Pick any point x⋆ ∈ ∂Ω such that

λ(Aw⋆) =

[
1

|A⋆|

∫
A⋆

d(x⋆, z)

]−1

.
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From (4.8), we have[
1

|A⋆|

∫
A⋆

d(x⋆, z)

]−1

≤
[

1

|Aw⋆+εη|

∫
Aw⋆+εη

d(x⋆, z)

]−1

.

Since |Aw⋆+εη| = |Aw⋆ |, this means that

Φ(ε) :=

∫
Bδ

∫ w⋆(z̄)+εη(z̄)

0
d(x⋆, (z̄, s)) ds dz̄

reaches a minimum at ε = 0 and so, we must have Φ′(0) = 0. Computing the derivative of Φ,
this implies that ∫

Bδ

d(x⋆, (z̄, w⋆(z̄))) η(z̄) dz̄ = 0.

Since η is an arbitrary function with zero mean value, then we infer that there is a constant
R > 0 such that

d(x⋆, (z̄, w⋆(z̄))) = R, for all z̄ ∈ Bδ.

In other words, any connected part of ∂A⋆ in the interior of Ω is a part of a sphere centered
at x⋆ and with some radius R > 0. However, we will show that there is exactly one connected
part of ∂A⋆ inside Ω. More precisely, we claim that A⋆ = Ω\B(x⋆, R⋆), for some R⋆ > 0.
Since ε = 0 is a minimizer of Φ, then we also have Φ′′(0) ≥ 0. This yields that

(4.9) Φ′′(0) =

∫
Bδ

[∇d(x⋆, (z̄, w⋆(z̄))) · eN ] η(z̄)2 dz̄ ≥ 0.

Yet, η is arbitrary. Then, by (4.9), we infer that

∇d(x⋆, (z̄, w⋆(z̄))) · eN ≥ 0, for all z̄ ∈ Bδ.

Recalling that δeN ∈ A⋆, this implies that ∇d(x⋆, x0) is the interior normal vector to ∂A⋆ at
the point x0. Consequently, the claim is proved. □

On the other hand, we may also consider the problem of minimizing the Poincaré constant
λ(A) but in the case where the penalization on A is posed this time in the functional (not in
the constraint):

(4.10) min

{
λ(A)− α |A| : A ⊂ Ω

}
.

Now, the question will be to check whether this problem has an optimal hole or not. But, in
the following example, we will give a negative answer by showing that a solution to Problem
(4.10) does not exist as soon as α ∈]0, α⋆[, for some critical value α⋆. However, we may expect
to have existence of solutions if α > α⋆. Moreover, let us define

α⋆ := sup

{
λ(Ω)− λ(A)

|Ω| − |A|
: A ⊂ Ω

}
.

If α⋆ < ∞, then it is easy to see that for all α ≥ α⋆, the whole domain Ω is an optimal hole
in Problem (4.10).
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But, it is not clear how to show existence of an optimal hole in the case when α ∈]α⋆, α
⋆[,

where the optimal hole becomes non-trivial (i.e., A⋆ ̸= Ω). It seems that this critical value α⋆

depends on the geometry of Ω in some abstract way. Before introducing more details, let us
consider the following example:

Example 4.5.1. Assume that Ω := {(R cos(β), R sin(β)) : 0 ≤ R ≤ 1, 0 ≤ β ≤ β0} is a thin
sector (so, β0 > 0 is small enough). First, let us compute λ(Ω). By Theorem 2.2, we know
that

λ(Ω) =

[
max

{
1

|Ω|

∫
Ω
d(x, z) : x ∈ ∂Ω

}]−1

.

Fix x ∈ ∂Ω. After a rotation and translation of axes, one can assume that x is the origin.
Then, using polar coordinates, we have the following:

1

|Ω|

∫
Ω
d(x, z) =

∫ θmax

θmin

∫ τ(θ)
0 r2 dr dθ∫ θmax

θmin

∫ τ(θ)
0 r dr dθ

≤ 2

3
,

for some 0 ≤ θmin ≤ θmax ≤ π while τ(θ) is the maximal distance from x to a point z ∈ ∂Ω
in the direction eθ :=< cos(θ), sin(θ) >. On the other hand, we also have

1

|Ω|

∫
Ω
d(0, z) =

1

|Ω|

∫ β0

0

∫ 1

0
R2 dR dβ =

2

3
.

Then,

λ(Ω) =
3

2
.

Fix 0 < m ≤ |Ω|. Then, thanks to Proposition 4.5, it is not difficult to see that Am :=

Ω\B(0, Rm), where Rm =
√
1− 2m

β0
, is the optimal hole in Problem (4.6). Let us compute the

value of λ(Am). Similarly to the estimates above, we see that

λ(Am) =

[
max

{
1

|Am|

∫
Am

d(x, z) : x ∈ Ω

}]−1

=

(
1

m

∫
Am

d(0, z)

)−1

.

Yet, one has(
1

m

∫
Am

d(0, z)

)−1

=

(
1

m

∫ β0

0

∫ 1

Rm

r2 dr dβ

)−1

=
3

2

Rm + 1

R2
m +Rm + 1

.

Hence,

λ(Am) =
3

2

1 +
√

1− 2m
β0√

1− 2m
β0

+ 2− 2m
β0

.

Set s :=
√
1− 2m

β0
, then we have

inf

{
3

2

1 +
√

1− 2m
β0√

1− 2m
β0

+ 2− 2m
β0

− αm : 0 < m ≤ β0
2

}

=
3− αβ0

2
+ inf

{
αβ0
2

s2 − 3

2

s2

s2 + s+ 1
: 0 ≤ s < 1

}
.
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After some tedious computations, one can check that if α ≤ 1
2β0

then the infimum is attained

at s = 1 (so, m = 0). This implies that a solution for Problem (4.10) does not exist. On the

other hand, if α ≥ 3
β0

then the minimum is attained at s = 0 (so, m = β0

2 ) and so, A⋆ = Ω is

a solution for Problem (4.10). Finally, if α ∈] 1
2β0

, 3
β0
[ then there is a unique s0 ∈]0, 1[ (resp.

0 < m0 < β0

2 ) such that the minimum is attained at s0 (resp. m0) and so, A⋆ = Am0 is an
optimal hole for Problem (4.10). Hence, in this example, the critical values are:

α⋆ =
1

2β0
and α⋆ =

3

β0
.

A⋆

In order to prove existence of a solution to Problem (4.10), we will consider instead the
following relaxation:

(4.11) min

{
λ(ν)− α

∫
Ω
ν : 0 ≤ ν ≤ 1,

∫
Ω
ν > 0

}
where

ν =
ν∫
Ω ν

.

Let us define the critical value α⋆ as follows:

α⋆ = inf

{
λ(ν)− [diam(Ω)]−1∫

Ω ν
: 0 ≤ ν ≤ 1,

∫
Ω
ν > 0

}
.

Proposition 4.6. We have min (4.10) = min (4.11). Moreover, there exists a minimizer ν⋆

for the relaxation (4.11) as soon as α > α⋆. In addition, there is a subset A⋆ ⊂ Ω such that
ν⋆ = χA⋆ and, this set A⋆ turns out to be an optimal hole for Problem (4.10). If α < α⋆, then
Problem (4.11) does not admit any minimizer. And, a solution for Problem (4.10) does not
exist in this case.

Proof. Let {νn}n be a minimizing sequence in Problem (4.11). Up to a subsequence, we have
νn ⇀⋆ ν⋆ in L∞(Ω) with 0 ≤ ν⋆ ≤ 1. In particular,

∫
Ω νn →

∫
Ω ν⋆. Assume that

∫
Ω ν⋆ > 0.

Hence, we get

νn ⇀⋆ ν⋆.

By Lemma 4.2, we infer that

λ(νn) → λ(ν⋆).
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Consequently, ν⋆ minimizes Problem (4.11). But, it remains to check if
∫
Ω ν⋆ > 0 or not.

Assume that
∫
Ω ν⋆ = 0. Since νn ⇀⋆ µ, so we get that

λ(νn)− α

∫
Ω
νn → λ(µ).

In particular, this implies that for all functions 0 ≤ ν ≤ 1 with
∫
Ω ν > 0, we have the

following:

λ(ν)− α

∫
Ω
ν ≥ diam(Ω)−1.

Then, α ≤ α⋆. Hence, Problem (4.11) reaches a minimum if α > α⋆. In particular, we see
that ν⋆ minimizes

min

{
λ(ν) : 0 ≤ ν ≤ 1,

∫
Ω
ν =

∫
Ω
ν⋆
}
.

Yet, this implies that ν⋆/
∫
Ω ν⋆ also minimizes

(4.12) min

{
λ(ν) : 0 ≤ ν ≤

(∫
Ω
ν⋆
)−1

,

∫
Ω
ν = 1

}
.

Recalling Proposition 4.4, we get that there is a set A⋆ ⊂ Ω such that ν⋆∫
Ω ν⋆

= (
∫
Ω ν⋆)−1 · χA⋆

and so, ν⋆ = χA⋆ . For every set A ⊂ Ω, set νA := χA. Then, we have

λ(A⋆)− α|A⋆| = λ(ν⋆)− α

∫
Ω
ν⋆ ≤ λ(νA)− α

∫
Ω
νA = λ(A)− α|A|.

Consequently, A⋆ minimizes Problem (4.10) and, we have min (4.10) = min (4.11). Finally,
assume that α < α⋆. Then, for every 0 ≤ ν ≤ 1 with

∫
Ω ν > 0, we have

λ(ν)− α

∫
Ω
ν > diam(Ω)−1.

But, it is easy to check that in this case one has

inf

{
λ(ν)− α

∫
Ω
ν : 0 ≤ ν ≤ 1,

∫
Ω
ν > 0

}
= diam(Ω)−1.

Hence, a solution for Problem (4.11) does not exist. In the same way, we see also that there
is no optimal hole in (4.10). □

Remark 4.1. Notice that from the definition of the critical value α⋆, we always have the
following estimate:

α⋆ ≤
λ(Ω)− [diam(Ω)]−1

|Ω|
≤ [diam(Ω)]−1

|Ω|
.

Hence, for every α > [diam(Ω)]−1

|Ω| , Problem (4.10) has an optimal hole A⋆.

Now, our aim is to maximize λ(A) (or equivalently, to minimize the Poincaré constant
Λ(A) = λ(A)−1), under some penalization on A. To be more precise, we consider the following
optimization problem (m > 0 is fixed):

(4.13) min

{
Λ(A) : A ⊂ Ω, |A| ≥ m

}
where we recall that

Λ(A) = max

{
1

|A|

∫
A
d(x, z) : x ∈ Ω

}
.
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In fact, we do not have a priori compactness in (4.13) without additional assumptions on A.
However, if we assume that the admissible sets A are closed then we get compactness but the
remaining issue will still be that the functional Λ(A) is not lower semicontinuous with respect
to the Hausdorff convergence. On the other hand, we note that if we consider a relaxation of
(4.13) using bounded functions 0 ≤ ν ≤ m−1 instead of sets A with |A| ≥ m (see (4.2)) then
it will be also difficult to show that a minimizer ν⋆ is a characteristic function (and possibly,
this is not even the case). All these facts make the existence of a solution for this problem a
delicate question !

From Lemma 4.1, we recall that

diam(Ω)/2 ≤ Λ(A) ≤ diam(Ω), for all A ⊂ Ω.

Thanks to Lemma 4.3, we also know that

sup

{
Λ(A) : A ⊂ Ω, |A| > 0

}
= diam(Ω).

Conversely, we also find the minimal value of Λ(A). In fact, we may think that the minimal
value of Λ(A) should be diam(Ω)/2 but we will see in the next result that this is not really
the case.

Lemma 4.7. Let R⋆ be the radius of the minimal enclosing ball of Ω. Then, we have the
following equality:

(4.14) inf{Λ(A) : A ⊂ Ω} = min{Λ(ν) : ν ∈ P(Ω)} = R⋆.

Moreover, the measure ν⋆ := δz⋆, where z⋆ is the center of the minimal enclosing ball, is a
minimizer in (4.14). But, an optimal hole A⋆ does not exist in (4.14).

Proof. First of all, by an approximation argument and thanks to Lemma 4.2, it is easy to see
that we have the following inequality:

inf{Λ(A) : A ⊂ Ω} ≤ min{Λ(δz) : z ∈ Ω}.
Fix a point z ∈ Ω. Then, we have

Λ(δz) = max{d(x, z) : x ∈ ∂Ω}.
Consequently, we get that

min{Λ(δz) : z ∈ Ω} = min{max{d(z, x) : x ∈ ∂Ω} : z ∈ Ω} = R⋆.

Hence,

(4.15) min{Λ(ν) : ν ∈ P(Ω)} ≤ inf{Λ(A) : A ⊂ Ω} ≤ R⋆.

On the other hand, we claim that

(4.16) min{Λ(ν) : ν ∈ P(Ω)} ≥ R⋆.

Translating Ω, we may assume without loss of generality that z⋆ = 0. Let F := {x1, ..., xn}
be a family of points on B(z⋆, R⋆)∩ ∂Ω such that z⋆ is in the interior of the convex hull of F .
Hence, there will be a family of constants {λk : 1 ≤ k ≤ n} such that

n∑
k=1

λk xk = 0, λk ≥ 0 (for every 1 ≤ k ≤ n),

n∑
k=1

λk = 1.
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Now, we see that

min{Λ(ν) : ν ∈ P(Ω)} = min

{
max

{∫
Ω
d(x, z) ν(z) : x ∈ ∂Ω

}
: ν ∈ P(Ω)

}

≥ min

{ n∑
k=1

λk

∫
Ω
d(xk, z) ν(z) : ν ∈ P(Ω)

}
.

Yet, we have
n∑

k=1

λk

∫
Ω
d(xk, z

⋆) ν(z) ≤
n∑

k=1

λk

∫
Ω
d(xk, z) ν(z).

This follows immediately from the fact that the function Φ(z) :=
∑n

k=1 λk d(xk, z) is clearly
convex while ∇Φ(z⋆) = 0 and so, we have

Φ(z⋆) =

n∑
k=1

λk d(xk, z
⋆) ≤ Φ(z) =

n∑
k=1

λk d(xk, z).

Then, this implies that

min

{ n∑
k=1

λk

∫
Ω
d(xk, z) ν(z) : ν ∈ P(Ω)

}
=

n∑
k=1

λk d(z
⋆, xk) = R⋆.

Hence, the claim (4.16) is proved. Finally, combining (4.16) with (4.15), this concludes the
proof. □

Coming back to Problem (4.13), we will add another constraint (namely, convexity) on the
admissible sets A which makes the problem easier to solve. To be more precise, we consider
now the following version of (4.13):

(4.17) min

{
Λ(A) : A ⊂ Ω is convex, |A| ≥ m

}
.

Then, we have the following:

Proposition 4.8. Problem (4.17) has an optimal hole A⋆.

Proof. Let {An}n be a minimizing sequence in Problem (4.17). Recalling Remark 2.2, one
can assume that An is closed, for all n ∈ N. Hence, up to a subsequence, An → A⋆ in the
Hausdorff sense and A⋆ is clearly convex. In addition, thanks to the convexity of the sets An,
we also have |An| → |A⋆|. In particular, one has |A⋆| ≥ m. On the other hand, it is easy to
check that

χAn
|An| →

χA⋆

|A⋆| in L1(Ω) and so,

Λ(An) → Λ(A⋆).

Consequently, this implies that A⋆ is an optimal hole for Problem (4.17). Notice that the
convexity of A here is a sufficient condition to get lower semicontinuity of the functional
Λ(A). □

Remark 4.2. Let us consider instead of (4.17) the following problem (which is somehow more
complicated to study):

(4.18) min

{
Λ(A)− α|A| : A ⊂ Ω is convex

}
.
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Let us check if this problem admits a solution or not. Let {An}n be a minimizing sequence
converging to some convex set A⋆. If |A⋆| > 0 then similarly to Proposition 4.8, we infer that
A⋆ is an optimal hole for Problem (4.18). Now, assume that |A⋆| = 0. Since νAn =

χAn
|An| ⇀

⋆ ν⋆,

for some ν⋆ ∈ P(Ω), then Λ(νAn) → Λ(ν⋆). In particular, one has

Λ(An)− α|An| = Λ(νAn)− α|An| → Λ(ν⋆).

Yet, thanks to Lemma 4.7, we know that Λ(ν⋆) ≥ R⋆. Hence, this implies that for all convex
sets A ⊂ Ω, we have

Λ(A)− α|A| ≥ R⋆.

Now, let us define the critical value α⋆ as follows:

α⋆ = inf

{
Λ(A)−R⋆

|A|
: A ⊂ Ω is convex

}
.

Then, for any α > α⋆, Problem (4.18) reaches a minimum. If α < α⋆, then it is not difficult
to see that the infimum of (4.18) equals R⋆ and so, a solution for Problem (4.18) does not
exist. We note also that

α⋆ ≤
Λ(Ω)−R⋆

|Ω|
≤ diam(Ω)−R⋆

|Ω|
.

On the other hand, it is difficult to characterize an optimal hole A⋆ for Problem (4.18).
However, we will be able to show a symmetry property on this optimal hole assuming that the
domain Ω is symmetric.

For this aim, let us recall the definition of the Steiner symmetrization of a compact convex
set A ⊂ RN relative to an hyperplane L which will be represented by z1 = 0. For any point
z̄ := (0, z2, ..., zN ) ∈ L, we will denote by L⊥

z̄ the line segment passing by z̄ and orthogonal to
L, i.e.

L⊥
z̄ := {z̄ + z1 e1 : z1 ∈ R},

where e1 :=< 1, 0, ..., 0 >. Let mz̄ = |A ∩ L⊥
z̄ | be the measure (i.e., total length) of the slice

L⊥
z̄ ∩ A. Replacing each slice by the interval centered on L with the same length yields the

symmetrized domain SL(A):

SL(A) :=

{
z̄ + z1 e1 : z̄ + w1 e1 ∈ A for some w1 ∈ R and − mz̄

2
≤ z1 ≤

mz̄

2

}
.

It is clear that SL(A) is symmetric with respect to L, SL(A) is convex and, |SL(A)| = |A|.
We define the interval Iz̄ = L⊥

z̄ ∩ A, I ′z̄ the reflection of Iz̄ with respect to L and, SL(Iz̄) =
[−mz̄

2 , mz̄
2 ].

Then, we have the following:

Proposition 4.9. Assume that SL(Ω) = Ω, for some hyperplane L. Let A⋆ be an optimal
hole in Problem (4.17). Then, we also have SL(A

⋆) = A⋆.

Proof. First of all, we may assume after a rotation and translation of axes that L is the
hyperplane z1 = 0. For every x ∈ ∂Ω, we have∫

A⋆

d(x, z) =

∫
z̄∈L

∫
Iz̄

d(x, (z1, z̄)) dz1 dz̄.
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Let A′ (resp. x′) be the symmetry of A⋆ (resp. x) with respect to L. Then, it is easy to see
that ∫

A′
d(x′, z) =

∫
z̄∈L

∫
I′z̄

d(x′, (z1, z̄)) dz1 dz̄ =

∫
A⋆

d(x, z).

In particular, we have
Λ(A′) = Λ(A⋆).

On the other hand, one has∫
SL(A⋆)

d(x, z) =

∫
z̄∈L

∫
SL(Iz̄)

d(x, (z1, z̄)) dz1 dz̄.

Assume that Iz̄ = {(1 − t)p + tq : 0 ≤ t ≤ 1}, where (p, z̄), (q, z̄) ∈ ∂A⋆. Then, for every

z1 ∈ SL(Iz̄), we see that there is a unique t ∈ [0, 1] such that z1 =
(1−2t)p+(2t−1)q

2 . In particular,
we have

d

(
x,

(
(1− 2t)p+ (2t− 1)q

2
, z̄

))
≤ d(x, ((1− t)p+ tq, z̄))

2
+

d(x, (−tp+ (t− 1)q, z̄))

2
.

Hence,
(4.19)∫

z̄∈L

∫
SL(Iz̄)

d(x, (z1, z̄)) dz1 dz̄ ≤ 1

2

∫
z̄∈L

∫
Iz̄

d(x, (z1, z̄)) dz1 dz̄ +
1

2

∫
z̄∈L

∫
I′z̄

d(x, (z1, z̄)) dz1 dz̄

=
1

2

∫
A⋆

d(x, z) +
1

2

∫
A′
d(x, z) ≤ |A⋆|

2
Λ(A⋆) +

|A′|
2

Λ(A′) = |A⋆|Λ(A⋆).

Since the point x ∈ ∂Ω is arbitrary and |SL(A
⋆)| = |A⋆|, then this yields that we have the

following:
Λ(SL(A

⋆)) ≤ Λ(A⋆).

Consequently, SL(A
⋆) is also an optimal hole in (4.17). In addition, the inequality in (4.19)

becomes equality and so, we must have SL(A
⋆) = A⋆. □

As a simple consequence of that, we get the following:

Corollary 4.10. Assume that Ω := B(0, R). Then, the optimal hole A⋆ is a ball centered at
the origin and with radius R⋆ ≤ R.

A⋆
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Proof. This follows immediately from Proposition 4.9 since A⋆ has to be symmetric with
respect to any line passing through the origin. □

Let us come back to the original problem (4.13) and assume that it admits an optimal
hole A⋆, then it seems that one can show that A⋆ is convex. In the sequel, we will show this
convexity result by characterizing A⋆ in the case where Ω is a polygonal domain.

Proposition 4.11. Assume that Ω is a simplex with n−hyperplanes of symmetry. If A⋆ is
an optimal hole for Problem (4.13), then there will be a constant c > 0 such that

A⋆ =

{
x ∈ Ω :

2n∑
i=1

d(x, xi) ≤ c

}
where F := {xi : 1 ≤ i ≤ 2n} is the set of vertices on ∂Ω such that, for every 1 ≤ i ≤ 2n,
we have

Λ(A⋆) =
1

|A⋆|

∫
A⋆

d(xi, z).

Proof. Let {Lj : 1 ≤ j ≤ n} be the hyperplanes of symmetry for Ω. These hyperplanes
divide A⋆ into 2n−essentially disjoint sets A⋆

k, 1 ≤ k ≤ 2n. Moreover, it is clear that each
of these sets A⋆

k can be obtained from A⋆
1 after a finite number of symmetries with respect

to some of these hyperplanes Lj ; we will denote by Sk : Ω 7→ Ω these maps that transform
A⋆

1 into A⋆
k. Let us assume that A⋆

1 is bounded by ∂A⋆ and the hyperplanes L1, L2. Fix a

point a1 ∈ (∂A⋆
1 ∩

◦
Ω)\{L1 ∪ L2}. After a rotation and translation of axes, we may assume

that a1 = 0 with δeN ∈ A⋆, where eN :=< 0, ..., 0, 1 > and δ > 0 is small enough. Let w⋆(z̄),
z̄ ∈ Bδ := BN−1(0, δ), be a parametrization of ∂A⋆ around a1. Set

G1(w
⋆) := {(z̄, w⋆(z̄)) : z̄ ∈ Bδ}.

On the other hand, we define ak := Sk(a1) and Gk(w
⋆) := Sk(G1), for every 1 ≤ k ≤ 2n.

Then, it is clear that w⋆ minimizes the following problem:

min

{
Λ(Aw) : w = w⋆ on Bδ, Aw ⊂ Ω and

∫
Bδ

w =

∫
Bδ

w⋆

}
where

Aw := (A⋆\G(w⋆)) ∪G(w), G(w) :=
2n⋃
k=1

Gk(w).

Let η be a smooth function on Bδ such that η = 0 on ∂Bδ and
∫
Bδ

η = 0. Thanks to the

minimality of w⋆, we have

Λ(Aw⋆) ≤ Λ(Aw⋆+εη), for all ε small enough.

Let x⋆ ∈ ∂Ω be any vertex such that

Λ(A⋆) =
1

|A⋆|

∫
A⋆

d(x⋆, z).

Since Ω is a simplex and Aw⋆+εη is symmetric with respect to all the hyperplanes Lj , then it
is easy to see that for all ε small enough, we have

Λ(Aw⋆+εη) =
1

|Aw⋆+εη|

∫
Aw⋆+εη

d(x⋆, z).
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Consequently, we have ∫
Aw⋆+εη

d(x⋆, z)−
∫

Aw⋆

d(x⋆, z) ≥ 0.

But, ∫
Aw⋆+εη

d(x⋆, z)−
∫
Aw⋆

d(x⋆, z)

= −
2n∑
k=1

[ ∫
Bδ

∫ w⋆(z̄)+εη(z̄)

0
d(x⋆, Sk(z̄, s))−

∫
Bδ

∫ w⋆(z̄)

0
d(x⋆, Sk(z̄, s))

]
.

Moreover, one has

lim
ε→0

∫
Aw⋆+εη

d(x⋆, z)−
∫
Aw⋆

d(x⋆, z)

ε
= 0.

Then, we get ∫
Bδ

( 2n∑
k=1

d(x⋆, Sk(z̄, w
⋆(z̄)))

)
η(z̄) = 0.

Yet, it is clear that

d(x⋆, Sk(z̄, w
⋆(z̄))) = d(S−1

k (x⋆), (z̄, w⋆(z̄))), for all z̄ ∈ Bδ.

Hence,

(4.20)

∫
Bδ

( 2n∑
k=1

d(S−1
k (x⋆), (z̄, w⋆(z̄)))

)
η(z̄) = 0.

Since η is an arbitrary function with
∫
Bδ

η = 0, then by (4.20) we infer that there is a constant

c > 0 such that
2n∑
k=1

d(S−1
k (x⋆), z) = c.

But, thanks to Proposition 4.9, it is not difficult to see that F = {S−1
k (x⋆) : 1 ≤ k ≤ 2n}.

This concludes the proof. □

Example 4.11.1. Assume that Ω is the triangle determined by (−L, 0), (L, 0) and (0, ε),
where 0 < ε << L. For ε small enough, it is not difficult to see that F = {(−L, 0), (L, 0)}
(see the definition of F in Proposition 4.11). Hence, by Proposition 4.11, we know that ∂A⋆

is given by the following equation:

|x− (L, 0)|+ |x+ (L, 0)| = c.

We note that c > 2L. Hence, the boundary of A⋆ in the interior of Ω is an arc of the ellipse
with equation: (

1− 4L2

c2

)
x21 + x22 =

c2

4
− L2.

A⋆
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5. Regularity of the optimal measure in the Poincaré-Wirtinger inequality

In this last section, we minimize the Poincaré constant λ(ν) among all densities ν ∈ L1(Ω)
but in the case where there is an additional penality term which is given by a convex functional
F (ν). More precisely, we consider the following problem:

(5.1) min

{
λ(ν) + F (ν) : ν ∈ P(Ω)

}
where

F (ν) :=

{∫
Ω f(ν(x)) if ν << Ld,

+∞ otherwise

and f : R+ 7→ R+ is assumed to be lower semicontinuous and convex, with f(0) = 0 and

superlinear at infinity, that is lim
t→+∞

f(t)
t = +∞.

Then, we have the following:

Proposition 5.1. There exists a density ν⋆ that minimizes Problem 5.1.

Proof. Let {νn}n be a minimizing sequence in Problem (5.1). Up to a subsequence, we know
that νn ⇀⋆ ν⋆. From Lemma 4.2, we get that

λ(νn) → λ(ν⋆).

Thanks to [4] and to our assumptions on f , we also have that the functional F is lower
semicontinuous with respect to the weak⋆ convergence of measures. Hence, we infer that

λ(ν⋆) + F (ν⋆) ≤ lim inf
n

[λ(νn) + F (νn)].

Consequently, ν⋆ is a minimizer in Problem (5.1). □

Under certain assumptions on the function f , we will be able also to show uniqueness of
this minimizer ν⋆ by characterizing it and, to study at the same time its regularity. Then, we
close this paper by the following result:

Proposition 5.2. Assume that f is C1 and strictly convex. Then, ν⋆ is the unique minimizer
in Problem 5.1. Moreover, there exist a point x⋆ ∈ ∂Ω and a constant c ∈ R such that we have
the following:

(5.2) ν⋆(x) = f ′−1
(
max

{
d(x⋆, x)

[
∫
Ω d(x⋆, z) ν⋆(z)]2

+ c, f ′(0)

})
.

In particular, ν⋆ is a continuous density over Ω. In addition, ν⋆ is Lipschitz as soon as
f ′′ ≥ δ > 0.

Proof. Let µ ∈ P(Ω) be such that µ << Ld. For every ε > 0, set νε := (1− ε)ν⋆ + εµ. Then,
it is clear that νε ∈ P(Ω). Thanks to the minimality of ν⋆, we have

λ(ν⋆) + F (ν⋆) ≤ λ(νε) + F (νε).
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Now, let x⋆ ∈ ∂Ω be a point such that λ(ν⋆) = [
∫
Ω d(x⋆, z) ν⋆(z)]−1. Recalling (2.2), we get

that [∫
Ω
d(x⋆, z) ν⋆(z)

]−1

+ F (ν⋆) ≤
[∫

Ω
d(x⋆, z) νε(z)

]−1

+ F (νε).

Hence, ∫
Ω d(x⋆, z) (ν⋆ − µ)(z)

[
∫
Ω d(x⋆, z) νε(z)][

∫
Ω d(x⋆, z) ν⋆(z)]

+

∫
Ω(f(νε(z))− f(ν⋆(z)))

ε
≥ 0.

Since f is a C1 convex function, then we have∫
Ω d(x⋆, z) (ν⋆ − µ)(z)

[
∫
Ω d(x⋆, z) νε(z)][

∫
Ω d(x⋆, z) ν⋆(z)]

+

∫
Ω
f ′(ν⋆(z))[µ(z)− ν⋆(z)] ≥ 0.

Passing to the limit when ε → 0+, we get∫
Ω d(x⋆, z) (ν⋆ − µ)(z)

[
∫
Ω d(x⋆, z) ν⋆(z)]2

+

∫
Ω
f ′(ν⋆(z))[µ(z)− ν⋆(z)] ≥ 0.

Consequently,∫
Ω

[
f ′(ν⋆(z))− d(x⋆, z)

[
∫
Ω d(x⋆, z) ν⋆(z)]2

]
µ(z) ≥

∫
Ω

[
f ′(ν⋆(z))− d(x⋆, z)

[
∫
Ω d(x⋆, z) ν⋆(z)]2

]
ν⋆(z).

Since µ is an arbitrary probability measure with µ << Ld, then there will be a constant c such
that

f ′(ν⋆(z))− d(x⋆, z)

[
∫
Ω d(x⋆, z) ν⋆(z)]2

≥ c

with

f ′(ν⋆(z))− d(x⋆, z)

[
∫
Ω d(x⋆, z) ν⋆(z)]2

= c on {ν⋆ > 0}.

Hence,

f ′(ν⋆(z)) = max

{
c+

d(x⋆, z)

[
∫
Ω d(x⋆, z) ν⋆(z)]2

, f ′(0)

}
.

Thanks to the fact that f is assumed to be strictly convex (so, f ′ is invertible), we get (5.2).
Finally, the last statement follows immediately from (5.2). □
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[16] G. Szeg’o, Inequalities for certain membranes of a given area, J. Rational Mech. Anal. 3, 343–356, 1954.
[17] H. F. Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational

Mech. Anal. 5, 633–636 1956.

Mathematics Program, Department of Mathematics, Statistics and Physics, College of Arts
and Sciences, Qatar University, 2713, Doha, Qatar.

Email address: sdweik@qu.edu.qa


